1 /* Induction variable canonicalization and loop peeling. 2 Copyright (C) 2004-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This pass detects the loops that iterate a constant number of times, 21 adds a canonical induction variable (step -1, tested against 0) 22 and replaces the exit test. This enables the less powerful rtl 23 level analysis to use this information. 24 25 This might spoil the code in some cases (by increasing register pressure). 26 Note that in the case the new variable is not needed, ivopts will get rid 27 of it, so it might only be a problem when there are no other linear induction 28 variables. In that case the created optimization possibilities are likely 29 to pay up. 30 31 We also perform 32 - complete unrolling (or peeling) when the loops is rolling few enough 33 times 34 - simple peeling (i.e. copying few initial iterations prior the loop) 35 when number of iteration estimate is known (typically by the profile 36 info). */ 37 38 #include "config.h" 39 #include "system.h" 40 #include "coretypes.h" 41 #include "backend.h" 42 #include "tree.h" 43 #include "gimple.h" 44 #include "cfghooks.h" 45 #include "tree-pass.h" 46 #include "ssa.h" 47 #include "cgraph.h" 48 #include "gimple-pretty-print.h" 49 #include "fold-const.h" 50 #include "profile.h" 51 #include "gimple-fold.h" 52 #include "tree-eh.h" 53 #include "gimple-iterator.h" 54 #include "tree-cfg.h" 55 #include "tree-ssa-loop-manip.h" 56 #include "tree-ssa-loop-niter.h" 57 #include "tree-ssa-loop.h" 58 #include "tree-into-ssa.h" 59 #include "cfgloop.h" 60 #include "tree-chrec.h" 61 #include "tree-scalar-evolution.h" 62 #include "tree-inline.h" 63 #include "tree-cfgcleanup.h" 64 #include "builtins.h" 65 #include "tree-ssa-sccvn.h" 66 #include "dbgcnt.h" 67 68 /* Specifies types of loops that may be unrolled. */ 69 70 enum unroll_level 71 { 72 UL_SINGLE_ITER, /* Only loops that exit immediately in the first 73 iteration. */ 74 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase 75 of code size. */ 76 UL_ALL /* All suitable loops. */ 77 }; 78 79 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT 80 is the exit edge whose condition is replaced. The ssa versions of the new 81 IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER 82 if they are not NULL. */ 83 84 void 85 create_canonical_iv (class loop *loop, edge exit, tree niter, 86 tree *var_before = NULL, tree *var_after = NULL) 87 { 88 edge in; 89 tree type, var; 90 gcond *cond; 91 gimple_stmt_iterator incr_at; 92 enum tree_code cmp; 93 94 if (dump_file && (dump_flags & TDF_DETAILS)) 95 { 96 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num); 97 print_generic_expr (dump_file, niter, TDF_SLIM); 98 fprintf (dump_file, " iterations.\n"); 99 } 100 101 cond = as_a <gcond *> (last_stmt (exit->src)); 102 in = EDGE_SUCC (exit->src, 0); 103 if (in == exit) 104 in = EDGE_SUCC (exit->src, 1); 105 106 /* Note that we do not need to worry about overflows, since 107 type of niter is always unsigned and all comparisons are 108 just for equality/nonequality -- i.e. everything works 109 with a modulo arithmetics. */ 110 111 type = TREE_TYPE (niter); 112 niter = fold_build2 (PLUS_EXPR, type, 113 niter, 114 build_int_cst (type, 1)); 115 incr_at = gsi_last_bb (in->src); 116 create_iv (niter, 117 build_int_cst (type, -1), 118 NULL_TREE, loop, 119 &incr_at, false, var_before, &var); 120 if (var_after) 121 *var_after = var; 122 123 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR; 124 gimple_cond_set_code (cond, cmp); 125 gimple_cond_set_lhs (cond, var); 126 gimple_cond_set_rhs (cond, build_int_cst (type, 0)); 127 update_stmt (cond); 128 } 129 130 /* Describe size of loop as detected by tree_estimate_loop_size. */ 131 struct loop_size 132 { 133 /* Number of instructions in the loop. */ 134 int overall; 135 136 /* Number of instructions that will be likely optimized out in 137 peeled iterations of loop (i.e. computation based on induction 138 variable where induction variable starts at known constant.) */ 139 int eliminated_by_peeling; 140 141 /* Same statistics for last iteration of loop: it is smaller because 142 instructions after exit are not executed. */ 143 int last_iteration; 144 int last_iteration_eliminated_by_peeling; 145 146 /* If some IV computation will become constant. */ 147 bool constant_iv; 148 149 /* Number of call stmts that are not a builtin and are pure or const 150 present on the hot path. */ 151 int num_pure_calls_on_hot_path; 152 /* Number of call stmts that are not a builtin and are not pure nor const 153 present on the hot path. */ 154 int num_non_pure_calls_on_hot_path; 155 /* Number of statements other than calls in the loop. */ 156 int non_call_stmts_on_hot_path; 157 /* Number of branches seen on the hot path. */ 158 int num_branches_on_hot_path; 159 }; 160 161 /* Return true if OP in STMT will be constant after peeling LOOP. */ 162 163 static bool 164 constant_after_peeling (tree op, gimple *stmt, class loop *loop) 165 { 166 if (CONSTANT_CLASS_P (op)) 167 return true; 168 169 /* We can still fold accesses to constant arrays when index is known. */ 170 if (TREE_CODE (op) != SSA_NAME) 171 { 172 tree base = op; 173 174 /* First make fast look if we see constant array inside. */ 175 while (handled_component_p (base)) 176 base = TREE_OPERAND (base, 0); 177 if ((DECL_P (base) 178 && ctor_for_folding (base) != error_mark_node) 179 || CONSTANT_CLASS_P (base)) 180 { 181 /* If so, see if we understand all the indices. */ 182 base = op; 183 while (handled_component_p (base)) 184 { 185 if (TREE_CODE (base) == ARRAY_REF 186 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop)) 187 return false; 188 base = TREE_OPERAND (base, 0); 189 } 190 return true; 191 } 192 return false; 193 } 194 195 /* Induction variables are constants when defined in loop. */ 196 if (loop_containing_stmt (stmt) != loop) 197 return false; 198 tree ev = analyze_scalar_evolution (loop, op); 199 if (chrec_contains_undetermined (ev) 200 || chrec_contains_symbols (ev)) 201 return false; 202 return true; 203 } 204 205 /* Computes an estimated number of insns in LOOP. 206 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last 207 iteration of the loop. 208 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration 209 of loop. 210 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT. 211 Stop estimating after UPPER_BOUND is met. Return true in this case. */ 212 213 static bool 214 tree_estimate_loop_size (class loop *loop, edge exit, edge edge_to_cancel, 215 struct loop_size *size, int upper_bound) 216 { 217 basic_block *body = get_loop_body (loop); 218 gimple_stmt_iterator gsi; 219 unsigned int i; 220 bool after_exit; 221 vec<basic_block> path = get_loop_hot_path (loop); 222 223 size->overall = 0; 224 size->eliminated_by_peeling = 0; 225 size->last_iteration = 0; 226 size->last_iteration_eliminated_by_peeling = 0; 227 size->num_pure_calls_on_hot_path = 0; 228 size->num_non_pure_calls_on_hot_path = 0; 229 size->non_call_stmts_on_hot_path = 0; 230 size->num_branches_on_hot_path = 0; 231 size->constant_iv = 0; 232 233 if (dump_file && (dump_flags & TDF_DETAILS)) 234 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num); 235 for (i = 0; i < loop->num_nodes; i++) 236 { 237 if (edge_to_cancel && body[i] != edge_to_cancel->src 238 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src)) 239 after_exit = true; 240 else 241 after_exit = false; 242 if (dump_file && (dump_flags & TDF_DETAILS)) 243 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index, 244 after_exit); 245 246 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 247 { 248 gimple *stmt = gsi_stmt (gsi); 249 int num = estimate_num_insns (stmt, &eni_size_weights); 250 bool likely_eliminated = false; 251 bool likely_eliminated_last = false; 252 bool likely_eliminated_peeled = false; 253 254 if (dump_file && (dump_flags & TDF_DETAILS)) 255 { 256 fprintf (dump_file, " size: %3i ", num); 257 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0); 258 } 259 260 /* Look for reasons why we might optimize this stmt away. */ 261 262 if (!gimple_has_side_effects (stmt)) 263 { 264 /* Exit conditional. */ 265 if (exit && body[i] == exit->src 266 && stmt == last_stmt (exit->src)) 267 { 268 if (dump_file && (dump_flags & TDF_DETAILS)) 269 fprintf (dump_file, " Exit condition will be eliminated " 270 "in peeled copies.\n"); 271 likely_eliminated_peeled = true; 272 } 273 if (edge_to_cancel && body[i] == edge_to_cancel->src 274 && stmt == last_stmt (edge_to_cancel->src)) 275 { 276 if (dump_file && (dump_flags & TDF_DETAILS)) 277 fprintf (dump_file, " Exit condition will be eliminated " 278 "in last copy.\n"); 279 likely_eliminated_last = true; 280 } 281 /* Sets of IV variables */ 282 if (gimple_code (stmt) == GIMPLE_ASSIGN 283 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop)) 284 { 285 if (dump_file && (dump_flags & TDF_DETAILS)) 286 fprintf (dump_file, " Induction variable computation will" 287 " be folded away.\n"); 288 likely_eliminated = true; 289 } 290 /* Assignments of IV variables. */ 291 else if (gimple_code (stmt) == GIMPLE_ASSIGN 292 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME 293 && constant_after_peeling (gimple_assign_rhs1 (stmt), 294 stmt, loop) 295 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS 296 || constant_after_peeling (gimple_assign_rhs2 (stmt), 297 stmt, loop)) 298 && gimple_assign_rhs_class (stmt) != GIMPLE_TERNARY_RHS) 299 { 300 size->constant_iv = true; 301 if (dump_file && (dump_flags & TDF_DETAILS)) 302 fprintf (dump_file, 303 " Constant expression will be folded away.\n"); 304 likely_eliminated = true; 305 } 306 /* Conditionals. */ 307 else if ((gimple_code (stmt) == GIMPLE_COND 308 && constant_after_peeling (gimple_cond_lhs (stmt), stmt, 309 loop) 310 && constant_after_peeling (gimple_cond_rhs (stmt), stmt, 311 loop) 312 /* We don't simplify all constant compares so make sure 313 they are not both constant already. See PR70288. */ 314 && (! is_gimple_min_invariant (gimple_cond_lhs (stmt)) 315 || ! is_gimple_min_invariant 316 (gimple_cond_rhs (stmt)))) 317 || (gimple_code (stmt) == GIMPLE_SWITCH 318 && constant_after_peeling (gimple_switch_index ( 319 as_a <gswitch *> 320 (stmt)), 321 stmt, loop) 322 && ! is_gimple_min_invariant 323 (gimple_switch_index 324 (as_a <gswitch *> (stmt))))) 325 { 326 if (dump_file && (dump_flags & TDF_DETAILS)) 327 fprintf (dump_file, " Constant conditional.\n"); 328 likely_eliminated = true; 329 } 330 } 331 332 size->overall += num; 333 if (likely_eliminated || likely_eliminated_peeled) 334 size->eliminated_by_peeling += num; 335 if (!after_exit) 336 { 337 size->last_iteration += num; 338 if (likely_eliminated || likely_eliminated_last) 339 size->last_iteration_eliminated_by_peeling += num; 340 } 341 if ((size->overall * 3 / 2 - size->eliminated_by_peeling 342 - size->last_iteration_eliminated_by_peeling) > upper_bound) 343 { 344 free (body); 345 path.release (); 346 return true; 347 } 348 } 349 } 350 while (path.length ()) 351 { 352 basic_block bb = path.pop (); 353 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 354 { 355 gimple *stmt = gsi_stmt (gsi); 356 if (gimple_code (stmt) == GIMPLE_CALL 357 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))) 358 { 359 int flags = gimple_call_flags (stmt); 360 if (flags & (ECF_PURE | ECF_CONST)) 361 size->num_pure_calls_on_hot_path++; 362 else 363 size->num_non_pure_calls_on_hot_path++; 364 size->num_branches_on_hot_path ++; 365 } 366 /* Count inexpensive calls as non-calls, because they will likely 367 expand inline. */ 368 else if (gimple_code (stmt) != GIMPLE_DEBUG) 369 size->non_call_stmts_on_hot_path++; 370 if (((gimple_code (stmt) == GIMPLE_COND 371 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop) 372 || !constant_after_peeling (gimple_cond_rhs (stmt), stmt, 373 loop))) 374 || (gimple_code (stmt) == GIMPLE_SWITCH 375 && !constant_after_peeling (gimple_switch_index ( 376 as_a <gswitch *> (stmt)), 377 stmt, loop))) 378 && (!exit || bb != exit->src)) 379 size->num_branches_on_hot_path++; 380 } 381 } 382 path.release (); 383 if (dump_file && (dump_flags & TDF_DETAILS)) 384 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall, 385 size->eliminated_by_peeling, size->last_iteration, 386 size->last_iteration_eliminated_by_peeling); 387 388 free (body); 389 return false; 390 } 391 392 /* Estimate number of insns of completely unrolled loop. 393 It is (NUNROLL + 1) * size of loop body with taking into account 394 the fact that in last copy everything after exit conditional 395 is dead and that some instructions will be eliminated after 396 peeling. 397 398 Loop body is likely going to simplify further, this is difficult 399 to guess, we just decrease the result by 1/3. */ 400 401 static unsigned HOST_WIDE_INT 402 estimated_unrolled_size (struct loop_size *size, 403 unsigned HOST_WIDE_INT nunroll) 404 { 405 HOST_WIDE_INT unr_insns = ((nunroll) 406 * (HOST_WIDE_INT) (size->overall 407 - size->eliminated_by_peeling)); 408 if (!nunroll) 409 unr_insns = 0; 410 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling; 411 412 unr_insns = unr_insns * 2 / 3; 413 if (unr_insns <= 0) 414 unr_insns = 1; 415 416 return unr_insns; 417 } 418 419 /* Loop LOOP is known to not loop. See if there is an edge in the loop 420 body that can be remove to make the loop to always exit and at 421 the same time it does not make any code potentially executed 422 during the last iteration dead. 423 424 After complete unrolling we still may get rid of the conditional 425 on the exit in the last copy even if we have no idea what it does. 426 This is quite common case for loops of form 427 428 int a[5]; 429 for (i=0;i<b;i++) 430 a[i]=0; 431 432 Here we prove the loop to iterate 5 times but we do not know 433 it from induction variable. 434 435 For now we handle only simple case where there is exit condition 436 just before the latch block and the latch block contains no statements 437 with side effect that may otherwise terminate the execution of loop 438 (such as by EH or by terminating the program or longjmp). 439 440 In the general case we may want to cancel the paths leading to statements 441 loop-niter identified as having undefined effect in the last iteration. 442 The other cases are hopefully rare and will be cleaned up later. */ 443 444 static edge 445 loop_edge_to_cancel (class loop *loop) 446 { 447 vec<edge> exits; 448 unsigned i; 449 edge edge_to_cancel; 450 gimple_stmt_iterator gsi; 451 452 /* We want only one predecestor of the loop. */ 453 if (EDGE_COUNT (loop->latch->preds) > 1) 454 return NULL; 455 456 exits = get_loop_exit_edges (loop); 457 458 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel) 459 { 460 /* Find the other edge than the loop exit 461 leaving the conditoinal. */ 462 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2) 463 continue; 464 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel) 465 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1); 466 else 467 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0); 468 469 /* We only can handle conditionals. */ 470 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 471 continue; 472 473 /* We should never have conditionals in the loop latch. */ 474 gcc_assert (edge_to_cancel->dest != loop->header); 475 476 /* Check that it leads to loop latch. */ 477 if (edge_to_cancel->dest != loop->latch) 478 continue; 479 480 exits.release (); 481 482 /* Verify that the code in loop latch does nothing that may end program 483 execution without really reaching the exit. This may include 484 non-pure/const function calls, EH statements, volatile ASMs etc. */ 485 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi)) 486 if (gimple_has_side_effects (gsi_stmt (gsi))) 487 return NULL; 488 return edge_to_cancel; 489 } 490 exits.release (); 491 return NULL; 492 } 493 494 /* Remove all tests for exits that are known to be taken after LOOP was 495 peeled NPEELED times. Put gcc_unreachable before every statement 496 known to not be executed. */ 497 498 static bool 499 remove_exits_and_undefined_stmts (class loop *loop, unsigned int npeeled) 500 { 501 class nb_iter_bound *elt; 502 bool changed = false; 503 504 for (elt = loop->bounds; elt; elt = elt->next) 505 { 506 /* If statement is known to be undefined after peeling, turn it 507 into unreachable (or trap when debugging experience is supposed 508 to be good). */ 509 if (!elt->is_exit 510 && wi::ltu_p (elt->bound, npeeled)) 511 { 512 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt); 513 gcall *stmt = gimple_build_call 514 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 515 gimple_set_location (stmt, gimple_location (elt->stmt)); 516 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 517 split_block (gimple_bb (stmt), stmt); 518 changed = true; 519 if (dump_file && (dump_flags & TDF_DETAILS)) 520 { 521 fprintf (dump_file, "Forced statement unreachable: "); 522 print_gimple_stmt (dump_file, elt->stmt, 0); 523 } 524 } 525 /* If we know the exit will be taken after peeling, update. */ 526 else if (elt->is_exit 527 && wi::leu_p (elt->bound, npeeled)) 528 { 529 basic_block bb = gimple_bb (elt->stmt); 530 edge exit_edge = EDGE_SUCC (bb, 0); 531 532 if (dump_file && (dump_flags & TDF_DETAILS)) 533 { 534 fprintf (dump_file, "Forced exit to be taken: "); 535 print_gimple_stmt (dump_file, elt->stmt, 0); 536 } 537 if (!loop_exit_edge_p (loop, exit_edge)) 538 exit_edge = EDGE_SUCC (bb, 1); 539 exit_edge->probability = profile_probability::always (); 540 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge)); 541 gcond *cond_stmt = as_a <gcond *> (elt->stmt); 542 if (exit_edge->flags & EDGE_TRUE_VALUE) 543 gimple_cond_make_true (cond_stmt); 544 else 545 gimple_cond_make_false (cond_stmt); 546 update_stmt (cond_stmt); 547 changed = true; 548 } 549 } 550 return changed; 551 } 552 553 /* Remove all exits that are known to be never taken because of the loop bound 554 discovered. */ 555 556 static bool 557 remove_redundant_iv_tests (class loop *loop) 558 { 559 class nb_iter_bound *elt; 560 bool changed = false; 561 562 if (!loop->any_upper_bound) 563 return false; 564 for (elt = loop->bounds; elt; elt = elt->next) 565 { 566 /* Exit is pointless if it won't be taken before loop reaches 567 upper bound. */ 568 if (elt->is_exit && loop->any_upper_bound 569 && wi::ltu_p (loop->nb_iterations_upper_bound, elt->bound)) 570 { 571 basic_block bb = gimple_bb (elt->stmt); 572 edge exit_edge = EDGE_SUCC (bb, 0); 573 class tree_niter_desc niter; 574 575 if (!loop_exit_edge_p (loop, exit_edge)) 576 exit_edge = EDGE_SUCC (bb, 1); 577 578 /* Only when we know the actual number of iterations, not 579 just a bound, we can remove the exit. */ 580 if (!number_of_iterations_exit (loop, exit_edge, 581 &niter, false, false) 582 || !integer_onep (niter.assumptions) 583 || !integer_zerop (niter.may_be_zero) 584 || !niter.niter 585 || TREE_CODE (niter.niter) != INTEGER_CST 586 || !wi::ltu_p (loop->nb_iterations_upper_bound, 587 wi::to_widest (niter.niter))) 588 continue; 589 590 if (dump_file && (dump_flags & TDF_DETAILS)) 591 { 592 fprintf (dump_file, "Removed pointless exit: "); 593 print_gimple_stmt (dump_file, elt->stmt, 0); 594 } 595 gcond *cond_stmt = as_a <gcond *> (elt->stmt); 596 if (exit_edge->flags & EDGE_TRUE_VALUE) 597 gimple_cond_make_false (cond_stmt); 598 else 599 gimple_cond_make_true (cond_stmt); 600 update_stmt (cond_stmt); 601 changed = true; 602 } 603 } 604 return changed; 605 } 606 607 /* Stores loops that will be unlooped and edges that will be removed 608 after we process whole loop tree. */ 609 static vec<loop_p> loops_to_unloop; 610 static vec<int> loops_to_unloop_nunroll; 611 static vec<edge> edges_to_remove; 612 /* Stores loops that has been peeled. */ 613 static bitmap peeled_loops; 614 615 /* Cancel all fully unrolled loops by putting __builtin_unreachable 616 on the latch edge. 617 We do it after all unrolling since unlooping moves basic blocks 618 across loop boundaries trashing loop closed SSA form as well 619 as SCEV info needed to be intact during unrolling. 620 621 IRRED_INVALIDATED is used to bookkeep if information about 622 irreducible regions may become invalid as a result 623 of the transformation. 624 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case 625 when we need to go into loop closed SSA form. */ 626 627 static void 628 unloop_loops (bitmap loop_closed_ssa_invalidated, 629 bool *irred_invalidated) 630 { 631 while (loops_to_unloop.length ()) 632 { 633 class loop *loop = loops_to_unloop.pop (); 634 int n_unroll = loops_to_unloop_nunroll.pop (); 635 basic_block latch = loop->latch; 636 edge latch_edge = loop_latch_edge (loop); 637 int flags = latch_edge->flags; 638 location_t locus = latch_edge->goto_locus; 639 gcall *stmt; 640 gimple_stmt_iterator gsi; 641 642 remove_exits_and_undefined_stmts (loop, n_unroll); 643 644 /* Unloop destroys the latch edge. */ 645 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated); 646 647 /* Create new basic block for the latch edge destination and wire 648 it in. */ 649 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 650 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags); 651 latch_edge->probability = profile_probability::never (); 652 latch_edge->flags |= flags; 653 latch_edge->goto_locus = locus; 654 655 add_bb_to_loop (latch_edge->dest, current_loops->tree_root); 656 latch_edge->dest->count = profile_count::zero (); 657 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src); 658 659 gsi = gsi_start_bb (latch_edge->dest); 660 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 661 } 662 loops_to_unloop.release (); 663 loops_to_unloop_nunroll.release (); 664 665 /* Remove edges in peeled copies. Given remove_path removes dominated 666 regions we need to cope with removal of already removed paths. */ 667 unsigned i; 668 edge e; 669 auto_vec<int, 20> src_bbs; 670 src_bbs.reserve_exact (edges_to_remove.length ()); 671 FOR_EACH_VEC_ELT (edges_to_remove, i, e) 672 src_bbs.quick_push (e->src->index); 673 FOR_EACH_VEC_ELT (edges_to_remove, i, e) 674 if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i])) 675 { 676 bool ok = remove_path (e, irred_invalidated, 677 loop_closed_ssa_invalidated); 678 gcc_assert (ok); 679 } 680 edges_to_remove.release (); 681 } 682 683 /* Tries to unroll LOOP completely, i.e. NITER times. 684 UL determines which loops we are allowed to unroll. 685 EXIT is the exit of the loop that should be eliminated. 686 MAXITER specfy bound on number of iterations, -1 if it is 687 not known or too large for HOST_WIDE_INT. The location 688 LOCUS corresponding to the loop is used when emitting 689 a summary of the unroll to the dump file. */ 690 691 static bool 692 try_unroll_loop_completely (class loop *loop, 693 edge exit, tree niter, bool may_be_zero, 694 enum unroll_level ul, 695 HOST_WIDE_INT maxiter, 696 dump_user_location_t locus, bool allow_peel) 697 { 698 unsigned HOST_WIDE_INT n_unroll = 0; 699 bool n_unroll_found = false; 700 edge edge_to_cancel = NULL; 701 702 /* See if we proved number of iterations to be low constant. 703 704 EXIT is an edge that will be removed in all but last iteration of 705 the loop. 706 707 EDGE_TO_CACNEL is an edge that will be removed from the last iteration 708 of the unrolled sequence and is expected to make the final loop not 709 rolling. 710 711 If the number of execution of loop is determined by standard induction 712 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving 713 from the iv test. */ 714 if (tree_fits_uhwi_p (niter)) 715 { 716 n_unroll = tree_to_uhwi (niter); 717 n_unroll_found = true; 718 edge_to_cancel = EDGE_SUCC (exit->src, 0); 719 if (edge_to_cancel == exit) 720 edge_to_cancel = EDGE_SUCC (exit->src, 1); 721 } 722 /* We do not know the number of iterations and thus we cannot eliminate 723 the EXIT edge. */ 724 else 725 exit = NULL; 726 727 /* See if we can improve our estimate by using recorded loop bounds. */ 728 if ((allow_peel || maxiter == 0 || ul == UL_NO_GROWTH) 729 && maxiter >= 0 730 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll)) 731 { 732 n_unroll = maxiter; 733 n_unroll_found = true; 734 /* Loop terminates before the IV variable test, so we cannot 735 remove it in the last iteration. */ 736 edge_to_cancel = NULL; 737 } 738 739 if (!n_unroll_found) 740 return false; 741 742 if (!loop->unroll 743 && n_unroll > (unsigned) param_max_completely_peel_times) 744 { 745 if (dump_file && (dump_flags & TDF_DETAILS)) 746 fprintf (dump_file, "Not unrolling loop %d " 747 "(--param max-completely-peel-times limit reached).\n", 748 loop->num); 749 return false; 750 } 751 752 if (!edge_to_cancel) 753 edge_to_cancel = loop_edge_to_cancel (loop); 754 755 if (n_unroll) 756 { 757 if (ul == UL_SINGLE_ITER) 758 return false; 759 760 if (loop->unroll) 761 { 762 /* If the unrolling factor is too large, bail out. */ 763 if (n_unroll > (unsigned)loop->unroll) 764 { 765 if (dump_file && (dump_flags & TDF_DETAILS)) 766 fprintf (dump_file, 767 "Not unrolling loop %d: " 768 "user didn't want it unrolled completely.\n", 769 loop->num); 770 return false; 771 } 772 } 773 else 774 { 775 struct loop_size size; 776 /* EXIT can be removed only if we are sure it passes first N_UNROLL 777 iterations. */ 778 bool remove_exit = (exit && niter 779 && TREE_CODE (niter) == INTEGER_CST 780 && wi::leu_p (n_unroll, wi::to_widest (niter))); 781 bool large 782 = tree_estimate_loop_size 783 (loop, remove_exit ? exit : NULL, edge_to_cancel, &size, 784 param_max_completely_peeled_insns); 785 if (large) 786 { 787 if (dump_file && (dump_flags & TDF_DETAILS)) 788 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n", 789 loop->num); 790 return false; 791 } 792 793 unsigned HOST_WIDE_INT ninsns = size.overall; 794 unsigned HOST_WIDE_INT unr_insns 795 = estimated_unrolled_size (&size, n_unroll); 796 if (dump_file && (dump_flags & TDF_DETAILS)) 797 { 798 fprintf (dump_file, " Loop size: %d\n", (int) ninsns); 799 fprintf (dump_file, " Estimated size after unrolling: %d\n", 800 (int) unr_insns); 801 } 802 803 /* If the code is going to shrink, we don't need to be extra 804 cautious on guessing if the unrolling is going to be 805 profitable. */ 806 if (unr_insns 807 /* If there is IV variable that will become constant, we 808 save one instruction in the loop prologue we do not 809 account otherwise. */ 810 <= ninsns + (size.constant_iv != false)) 811 ; 812 /* We unroll only inner loops, because we do not consider it 813 profitable otheriwse. We still can cancel loopback edge 814 of not rolling loop; this is always a good idea. */ 815 else if (ul == UL_NO_GROWTH) 816 { 817 if (dump_file && (dump_flags & TDF_DETAILS)) 818 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n", 819 loop->num); 820 return false; 821 } 822 /* Outer loops tend to be less interesting candidates for 823 complete unrolling unless we can do a lot of propagation 824 into the inner loop body. For now we disable outer loop 825 unrolling when the code would grow. */ 826 else if (loop->inner) 827 { 828 if (dump_file && (dump_flags & TDF_DETAILS)) 829 fprintf (dump_file, "Not unrolling loop %d: " 830 "it is not innermost and code would grow.\n", 831 loop->num); 832 return false; 833 } 834 /* If there is call on a hot path through the loop, then 835 there is most probably not much to optimize. */ 836 else if (size.num_non_pure_calls_on_hot_path) 837 { 838 if (dump_file && (dump_flags & TDF_DETAILS)) 839 fprintf (dump_file, "Not unrolling loop %d: " 840 "contains call and code would grow.\n", 841 loop->num); 842 return false; 843 } 844 /* If there is pure/const call in the function, then we can 845 still optimize the unrolled loop body if it contains some 846 other interesting code than the calls and code storing or 847 cumulating the return value. */ 848 else if (size.num_pure_calls_on_hot_path 849 /* One IV increment, one test, one ivtmp store and 850 one useful stmt. That is about minimal loop 851 doing pure call. */ 852 && (size.non_call_stmts_on_hot_path 853 <= 3 + size.num_pure_calls_on_hot_path)) 854 { 855 if (dump_file && (dump_flags & TDF_DETAILS)) 856 fprintf (dump_file, "Not unrolling loop %d: " 857 "contains just pure calls and code would grow.\n", 858 loop->num); 859 return false; 860 } 861 /* Complete unrolling is major win when control flow is 862 removed and one big basic block is created. If the loop 863 contains control flow the optimization may still be a win 864 because of eliminating the loop overhead but it also may 865 blow the branch predictor tables. Limit number of 866 branches on the hot path through the peeled sequence. */ 867 else if (size.num_branches_on_hot_path * (int)n_unroll 868 > param_max_peel_branches) 869 { 870 if (dump_file && (dump_flags & TDF_DETAILS)) 871 fprintf (dump_file, "Not unrolling loop %d: " 872 "number of branches on hot path in the unrolled " 873 "sequence reaches --param max-peel-branches limit.\n", 874 loop->num); 875 return false; 876 } 877 else if (unr_insns 878 > (unsigned) param_max_completely_peeled_insns) 879 { 880 if (dump_file && (dump_flags & TDF_DETAILS)) 881 fprintf (dump_file, "Not unrolling loop %d: " 882 "number of insns in the unrolled sequence reaches " 883 "--param max-completely-peeled-insns limit.\n", 884 loop->num); 885 return false; 886 } 887 } 888 889 if (!dbg_cnt (gimple_unroll)) 890 return false; 891 892 initialize_original_copy_tables (); 893 auto_sbitmap wont_exit (n_unroll + 1); 894 if (exit && niter 895 && TREE_CODE (niter) == INTEGER_CST 896 && wi::leu_p (n_unroll, wi::to_widest (niter))) 897 { 898 bitmap_ones (wont_exit); 899 if (wi::eq_p (wi::to_widest (niter), n_unroll) 900 || edge_to_cancel) 901 bitmap_clear_bit (wont_exit, 0); 902 } 903 else 904 { 905 exit = NULL; 906 bitmap_clear (wont_exit); 907 } 908 if (may_be_zero) 909 bitmap_clear_bit (wont_exit, 1); 910 911 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop), 912 n_unroll, wont_exit, 913 exit, &edges_to_remove, 914 DLTHE_FLAG_UPDATE_FREQ 915 | DLTHE_FLAG_COMPLETTE_PEEL)) 916 { 917 free_original_copy_tables (); 918 if (dump_file && (dump_flags & TDF_DETAILS)) 919 fprintf (dump_file, "Failed to duplicate the loop\n"); 920 return false; 921 } 922 923 free_original_copy_tables (); 924 } 925 926 /* Remove the conditional from the last copy of the loop. */ 927 if (edge_to_cancel) 928 { 929 gcond *cond = as_a <gcond *> (last_stmt (edge_to_cancel->src)); 930 force_edge_cold (edge_to_cancel, true); 931 if (edge_to_cancel->flags & EDGE_TRUE_VALUE) 932 gimple_cond_make_false (cond); 933 else 934 gimple_cond_make_true (cond); 935 update_stmt (cond); 936 /* Do not remove the path, as doing so may remove outer loop and 937 confuse bookkeeping code in tree_unroll_loops_completely. */ 938 } 939 940 /* Store the loop for later unlooping and exit removal. */ 941 loops_to_unloop.safe_push (loop); 942 loops_to_unloop_nunroll.safe_push (n_unroll); 943 944 if (dump_enabled_p ()) 945 { 946 if (!n_unroll) 947 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 948 "loop turned into non-loop; it never loops\n"); 949 else 950 { 951 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 952 "loop with %d iterations completely unrolled", 953 (int) n_unroll); 954 if (loop->header->count.initialized_p ()) 955 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, 956 " (header execution count %d)", 957 (int)loop->header->count.to_gcov_type ()); 958 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n"); 959 } 960 } 961 962 if (dump_file && (dump_flags & TDF_DETAILS)) 963 { 964 if (exit) 965 fprintf (dump_file, "Exit condition of peeled iterations was " 966 "eliminated.\n"); 967 if (edge_to_cancel) 968 fprintf (dump_file, "Last iteration exit edge was proved true.\n"); 969 else 970 fprintf (dump_file, "Latch of last iteration was marked by " 971 "__builtin_unreachable ().\n"); 972 } 973 974 return true; 975 } 976 977 /* Return number of instructions after peeling. */ 978 static unsigned HOST_WIDE_INT 979 estimated_peeled_sequence_size (struct loop_size *size, 980 unsigned HOST_WIDE_INT npeel) 981 { 982 return MAX (npeel * (HOST_WIDE_INT) (size->overall 983 - size->eliminated_by_peeling), 1); 984 } 985 986 /* If the loop is expected to iterate N times and is 987 small enough, duplicate the loop body N+1 times before 988 the loop itself. This way the hot path will never 989 enter the loop. 990 Parameters are the same as for try_unroll_loops_completely */ 991 992 static bool 993 try_peel_loop (class loop *loop, 994 edge exit, tree niter, bool may_be_zero, 995 HOST_WIDE_INT maxiter) 996 { 997 HOST_WIDE_INT npeel; 998 struct loop_size size; 999 int peeled_size; 1000 1001 if (!flag_peel_loops 1002 || param_max_peel_times <= 0 1003 || !peeled_loops) 1004 return false; 1005 1006 if (bitmap_bit_p (peeled_loops, loop->num)) 1007 { 1008 if (dump_file) 1009 fprintf (dump_file, "Not peeling: loop is already peeled\n"); 1010 return false; 1011 } 1012 1013 /* We don't peel loops that will be unrolled as this can duplicate a 1014 loop more times than the user requested. */ 1015 if (loop->unroll) 1016 { 1017 if (dump_file) 1018 fprintf (dump_file, "Not peeling: user didn't want it peeled.\n"); 1019 return false; 1020 } 1021 1022 /* Peel only innermost loops. 1023 While the code is perfectly capable of peeling non-innermost loops, 1024 the heuristics would probably need some improvements. */ 1025 if (loop->inner) 1026 { 1027 if (dump_file) 1028 fprintf (dump_file, "Not peeling: outer loop\n"); 1029 return false; 1030 } 1031 1032 if (!optimize_loop_for_speed_p (loop)) 1033 { 1034 if (dump_file) 1035 fprintf (dump_file, "Not peeling: cold loop\n"); 1036 return false; 1037 } 1038 1039 /* Check if there is an estimate on the number of iterations. */ 1040 npeel = estimated_loop_iterations_int (loop); 1041 if (npeel < 0) 1042 npeel = likely_max_loop_iterations_int (loop); 1043 if (npeel < 0) 1044 { 1045 if (dump_file) 1046 fprintf (dump_file, "Not peeling: number of iterations is not " 1047 "estimated\n"); 1048 return false; 1049 } 1050 if (maxiter >= 0 && maxiter <= npeel) 1051 { 1052 if (dump_file) 1053 fprintf (dump_file, "Not peeling: upper bound is known so can " 1054 "unroll completely\n"); 1055 return false; 1056 } 1057 1058 /* We want to peel estimated number of iterations + 1 (so we never 1059 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES 1060 and be sure to avoid overflows. */ 1061 if (npeel > param_max_peel_times - 1) 1062 { 1063 if (dump_file) 1064 fprintf (dump_file, "Not peeling: rolls too much " 1065 "(%i + 1 > --param max-peel-times)\n", (int) npeel); 1066 return false; 1067 } 1068 npeel++; 1069 1070 /* Check peeled loops size. */ 1071 tree_estimate_loop_size (loop, exit, NULL, &size, 1072 param_max_peeled_insns); 1073 if ((peeled_size = estimated_peeled_sequence_size (&size, (int) npeel)) 1074 > param_max_peeled_insns) 1075 { 1076 if (dump_file) 1077 fprintf (dump_file, "Not peeling: peeled sequence size is too large " 1078 "(%i insns > --param max-peel-insns)", peeled_size); 1079 return false; 1080 } 1081 1082 if (!dbg_cnt (gimple_unroll)) 1083 return false; 1084 1085 /* Duplicate possibly eliminating the exits. */ 1086 initialize_original_copy_tables (); 1087 auto_sbitmap wont_exit (npeel + 1); 1088 if (exit && niter 1089 && TREE_CODE (niter) == INTEGER_CST 1090 && wi::leu_p (npeel, wi::to_widest (niter))) 1091 { 1092 bitmap_ones (wont_exit); 1093 bitmap_clear_bit (wont_exit, 0); 1094 } 1095 else 1096 { 1097 exit = NULL; 1098 bitmap_clear (wont_exit); 1099 } 1100 if (may_be_zero) 1101 bitmap_clear_bit (wont_exit, 1); 1102 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop), 1103 npeel, wont_exit, 1104 exit, &edges_to_remove, 1105 DLTHE_FLAG_UPDATE_FREQ)) 1106 { 1107 free_original_copy_tables (); 1108 return false; 1109 } 1110 free_original_copy_tables (); 1111 if (dump_file && (dump_flags & TDF_DETAILS)) 1112 { 1113 fprintf (dump_file, "Peeled loop %d, %i times.\n", 1114 loop->num, (int) npeel); 1115 } 1116 if (loop->any_estimate) 1117 { 1118 if (wi::ltu_p (npeel, loop->nb_iterations_estimate)) 1119 loop->nb_iterations_estimate -= npeel; 1120 else 1121 loop->nb_iterations_estimate = 0; 1122 } 1123 if (loop->any_upper_bound) 1124 { 1125 if (wi::ltu_p (npeel, loop->nb_iterations_upper_bound)) 1126 loop->nb_iterations_upper_bound -= npeel; 1127 else 1128 loop->nb_iterations_upper_bound = 0; 1129 } 1130 if (loop->any_likely_upper_bound) 1131 { 1132 if (wi::ltu_p (npeel, loop->nb_iterations_likely_upper_bound)) 1133 loop->nb_iterations_likely_upper_bound -= npeel; 1134 else 1135 { 1136 loop->any_estimate = true; 1137 loop->nb_iterations_estimate = 0; 1138 loop->nb_iterations_likely_upper_bound = 0; 1139 } 1140 } 1141 profile_count entry_count = profile_count::zero (); 1142 1143 edge e; 1144 edge_iterator ei; 1145 FOR_EACH_EDGE (e, ei, loop->header->preds) 1146 if (e->src != loop->latch) 1147 { 1148 if (e->src->count.initialized_p ()) 1149 entry_count += e->src->count; 1150 gcc_assert (!flow_bb_inside_loop_p (loop, e->src)); 1151 } 1152 profile_probability p; 1153 p = entry_count.probability_in (loop->header->count); 1154 scale_loop_profile (loop, p, 0); 1155 bitmap_set_bit (peeled_loops, loop->num); 1156 return true; 1157 } 1158 /* Adds a canonical induction variable to LOOP if suitable. 1159 CREATE_IV is true if we may create a new iv. UL determines 1160 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try 1161 to determine the number of iterations of a loop by direct evaluation. 1162 Returns true if cfg is changed. */ 1163 1164 static bool 1165 canonicalize_loop_induction_variables (class loop *loop, 1166 bool create_iv, enum unroll_level ul, 1167 bool try_eval, bool allow_peel) 1168 { 1169 edge exit = NULL; 1170 tree niter; 1171 HOST_WIDE_INT maxiter; 1172 bool modified = false; 1173 dump_user_location_t locus; 1174 class tree_niter_desc niter_desc; 1175 bool may_be_zero = false; 1176 1177 /* For unrolling allow conditional constant or zero iterations, thus 1178 perform loop-header copying on-the-fly. */ 1179 exit = single_exit (loop); 1180 niter = chrec_dont_know; 1181 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false)) 1182 { 1183 niter = niter_desc.niter; 1184 may_be_zero 1185 = niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero); 1186 } 1187 if (TREE_CODE (niter) == INTEGER_CST) 1188 locus = last_stmt (exit->src); 1189 else 1190 { 1191 /* For non-constant niter fold may_be_zero into niter again. */ 1192 if (may_be_zero) 1193 { 1194 if (COMPARISON_CLASS_P (niter_desc.may_be_zero)) 1195 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), 1196 niter_desc.may_be_zero, 1197 build_int_cst (TREE_TYPE (niter), 0), niter); 1198 else 1199 niter = chrec_dont_know; 1200 may_be_zero = false; 1201 } 1202 1203 /* If the loop has more than one exit, try checking all of them 1204 for # of iterations determinable through scev. */ 1205 if (!exit) 1206 niter = find_loop_niter (loop, &exit); 1207 1208 /* Finally if everything else fails, try brute force evaluation. */ 1209 if (try_eval 1210 && (chrec_contains_undetermined (niter) 1211 || TREE_CODE (niter) != INTEGER_CST)) 1212 niter = find_loop_niter_by_eval (loop, &exit); 1213 1214 if (exit) 1215 locus = last_stmt (exit->src); 1216 1217 if (TREE_CODE (niter) != INTEGER_CST) 1218 exit = NULL; 1219 } 1220 1221 /* We work exceptionally hard here to estimate the bound 1222 by find_loop_niter_by_eval. Be sure to keep it for future. */ 1223 if (niter && TREE_CODE (niter) == INTEGER_CST) 1224 { 1225 vec<edge> exits = get_loop_exit_edges (loop); 1226 record_niter_bound (loop, wi::to_widest (niter), 1227 exit == single_likely_exit (loop, exits), true); 1228 exits.release (); 1229 } 1230 1231 /* Force re-computation of loop bounds so we can remove redundant exits. */ 1232 maxiter = max_loop_iterations_int (loop); 1233 1234 if (dump_file && (dump_flags & TDF_DETAILS) 1235 && TREE_CODE (niter) == INTEGER_CST) 1236 { 1237 fprintf (dump_file, "Loop %d iterates ", loop->num); 1238 print_generic_expr (dump_file, niter, TDF_SLIM); 1239 fprintf (dump_file, " times.\n"); 1240 } 1241 if (dump_file && (dump_flags & TDF_DETAILS) 1242 && maxiter >= 0) 1243 { 1244 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num, 1245 (int)maxiter); 1246 } 1247 if (dump_file && (dump_flags & TDF_DETAILS) 1248 && likely_max_loop_iterations_int (loop) >= 0) 1249 { 1250 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n", 1251 loop->num, (int)likely_max_loop_iterations_int (loop)); 1252 } 1253 1254 /* Remove exits that are known to be never taken based on loop bound. 1255 Needs to be called after compilation of max_loop_iterations_int that 1256 populates the loop bounds. */ 1257 modified |= remove_redundant_iv_tests (loop); 1258 1259 if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul, 1260 maxiter, locus, allow_peel)) 1261 return true; 1262 1263 if (create_iv 1264 && niter && !chrec_contains_undetermined (niter) 1265 && exit && just_once_each_iteration_p (loop, exit->src)) 1266 { 1267 tree iv_niter = niter; 1268 if (may_be_zero) 1269 { 1270 if (COMPARISON_CLASS_P (niter_desc.may_be_zero)) 1271 iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter), 1272 niter_desc.may_be_zero, 1273 build_int_cst (TREE_TYPE (iv_niter), 0), 1274 iv_niter); 1275 else 1276 iv_niter = NULL_TREE; 1277 } 1278 if (iv_niter) 1279 create_canonical_iv (loop, exit, iv_niter); 1280 } 1281 1282 if (ul == UL_ALL) 1283 modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter); 1284 1285 return modified; 1286 } 1287 1288 /* The main entry point of the pass. Adds canonical induction variables 1289 to the suitable loops. */ 1290 1291 unsigned int 1292 canonicalize_induction_variables (void) 1293 { 1294 class loop *loop; 1295 bool changed = false; 1296 bool irred_invalidated = false; 1297 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 1298 1299 estimate_numbers_of_iterations (cfun); 1300 1301 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1302 { 1303 changed |= canonicalize_loop_induction_variables (loop, 1304 true, UL_SINGLE_ITER, 1305 true, false); 1306 } 1307 gcc_assert (!need_ssa_update_p (cfun)); 1308 1309 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1310 if (irred_invalidated 1311 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1312 mark_irreducible_loops (); 1313 1314 /* Clean up the information about numbers of iterations, since brute force 1315 evaluation could reveal new information. */ 1316 free_numbers_of_iterations_estimates (cfun); 1317 scev_reset (); 1318 1319 if (!bitmap_empty_p (loop_closed_ssa_invalidated)) 1320 { 1321 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA)); 1322 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1323 } 1324 BITMAP_FREE (loop_closed_ssa_invalidated); 1325 1326 if (changed) 1327 return TODO_cleanup_cfg; 1328 return 0; 1329 } 1330 1331 /* Process loops from innermost to outer, stopping at the innermost 1332 loop we unrolled. */ 1333 1334 static bool 1335 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer, 1336 bitmap father_bbs, class loop *loop) 1337 { 1338 class loop *loop_father; 1339 bool changed = false; 1340 class loop *inner; 1341 enum unroll_level ul; 1342 unsigned num = number_of_loops (cfun); 1343 1344 /* Process inner loops first. Don't walk loops added by the recursive 1345 calls because SSA form is not up-to-date. They can be handled in the 1346 next iteration. */ 1347 bitmap child_father_bbs = NULL; 1348 for (inner = loop->inner; inner != NULL; inner = inner->next) 1349 if ((unsigned) inner->num < num) 1350 { 1351 if (!child_father_bbs) 1352 child_father_bbs = BITMAP_ALLOC (NULL); 1353 if (tree_unroll_loops_completely_1 (may_increase_size, unroll_outer, 1354 child_father_bbs, inner)) 1355 { 1356 bitmap_ior_into (father_bbs, child_father_bbs); 1357 bitmap_clear (child_father_bbs); 1358 changed = true; 1359 } 1360 } 1361 if (child_father_bbs) 1362 BITMAP_FREE (child_father_bbs); 1363 1364 /* If we changed an inner loop we cannot process outer loops in this 1365 iteration because SSA form is not up-to-date. Continue with 1366 siblings of outer loops instead. */ 1367 if (changed) 1368 { 1369 /* If we are recorded as father clear all other fathers that 1370 are necessarily covered already to avoid redundant work. */ 1371 if (bitmap_bit_p (father_bbs, loop->header->index)) 1372 { 1373 bitmap_clear (father_bbs); 1374 bitmap_set_bit (father_bbs, loop->header->index); 1375 } 1376 return true; 1377 } 1378 1379 /* Don't unroll #pragma omp simd loops until the vectorizer 1380 attempts to vectorize those. */ 1381 if (loop->force_vectorize) 1382 return false; 1383 1384 /* Try to unroll this loop. */ 1385 loop_father = loop_outer (loop); 1386 if (!loop_father) 1387 return false; 1388 1389 if (loop->unroll > 1) 1390 ul = UL_ALL; 1391 else if (may_increase_size && optimize_loop_nest_for_speed_p (loop) 1392 /* Unroll outermost loops only if asked to do so or they do 1393 not cause code growth. */ 1394 && (unroll_outer || loop_outer (loop_father))) 1395 ul = UL_ALL; 1396 else 1397 ul = UL_NO_GROWTH; 1398 1399 if (canonicalize_loop_induction_variables 1400 (loop, false, ul, !flag_tree_loop_ivcanon, unroll_outer)) 1401 { 1402 /* If we'll continue unrolling, we need to propagate constants 1403 within the new basic blocks to fold away induction variable 1404 computations; otherwise, the size might blow up before the 1405 iteration is complete and the IR eventually cleaned up. */ 1406 if (loop_outer (loop_father)) 1407 { 1408 /* Once we process our father we will have processed 1409 the fathers of our children as well, so avoid doing 1410 redundant work and clear fathers we've gathered sofar. */ 1411 bitmap_clear (father_bbs); 1412 bitmap_set_bit (father_bbs, loop_father->header->index); 1413 } 1414 1415 return true; 1416 } 1417 1418 return false; 1419 } 1420 1421 /* Unroll LOOPS completely if they iterate just few times. Unless 1422 MAY_INCREASE_SIZE is true, perform the unrolling only if the 1423 size of the code does not increase. */ 1424 1425 static unsigned int 1426 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer) 1427 { 1428 bitmap father_bbs = BITMAP_ALLOC (NULL); 1429 bool changed; 1430 int iteration = 0; 1431 bool irred_invalidated = false; 1432 1433 estimate_numbers_of_iterations (cfun); 1434 1435 do 1436 { 1437 changed = false; 1438 bitmap loop_closed_ssa_invalidated = NULL; 1439 1440 if (loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1441 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 1442 1443 free_numbers_of_iterations_estimates (cfun); 1444 estimate_numbers_of_iterations (cfun); 1445 1446 changed = tree_unroll_loops_completely_1 (may_increase_size, 1447 unroll_outer, father_bbs, 1448 current_loops->tree_root); 1449 if (changed) 1450 { 1451 unsigned i; 1452 1453 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1454 1455 /* We cannot use TODO_update_ssa_no_phi because VOPS gets confused. */ 1456 if (loop_closed_ssa_invalidated 1457 && !bitmap_empty_p (loop_closed_ssa_invalidated)) 1458 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated, 1459 TODO_update_ssa); 1460 else 1461 update_ssa (TODO_update_ssa); 1462 1463 /* father_bbs is a bitmap of loop father header BB indices. 1464 Translate that to what non-root loops these BBs belong to now. */ 1465 bitmap_iterator bi; 1466 bitmap fathers = BITMAP_ALLOC (NULL); 1467 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi) 1468 { 1469 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i); 1470 if (! unrolled_loop_bb) 1471 continue; 1472 if (loop_outer (unrolled_loop_bb->loop_father)) 1473 bitmap_set_bit (fathers, 1474 unrolled_loop_bb->loop_father->num); 1475 } 1476 bitmap_clear (father_bbs); 1477 /* Propagate the constants within the new basic blocks. */ 1478 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi) 1479 { 1480 loop_p father = get_loop (cfun, i); 1481 bitmap exit_bbs = BITMAP_ALLOC (NULL); 1482 loop_exit *exit = father->exits->next; 1483 while (exit->e) 1484 { 1485 bitmap_set_bit (exit_bbs, exit->e->dest->index); 1486 exit = exit->next; 1487 } 1488 do_rpo_vn (cfun, loop_preheader_edge (father), exit_bbs); 1489 } 1490 BITMAP_FREE (fathers); 1491 1492 /* This will take care of removing completely unrolled loops 1493 from the loop structures so we can continue unrolling now 1494 innermost loops. */ 1495 if (cleanup_tree_cfg ()) 1496 update_ssa (TODO_update_ssa_only_virtuals); 1497 1498 /* Clean up the information about numbers of iterations, since 1499 complete unrolling might have invalidated it. */ 1500 scev_reset (); 1501 if (flag_checking && loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1502 verify_loop_closed_ssa (true); 1503 } 1504 if (loop_closed_ssa_invalidated) 1505 BITMAP_FREE (loop_closed_ssa_invalidated); 1506 } 1507 while (changed 1508 && ++iteration <= param_max_unroll_iterations); 1509 1510 BITMAP_FREE (father_bbs); 1511 1512 if (irred_invalidated 1513 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1514 mark_irreducible_loops (); 1515 1516 return 0; 1517 } 1518 1519 /* Canonical induction variable creation pass. */ 1520 1521 namespace { 1522 1523 const pass_data pass_data_iv_canon = 1524 { 1525 GIMPLE_PASS, /* type */ 1526 "ivcanon", /* name */ 1527 OPTGROUP_LOOP, /* optinfo_flags */ 1528 TV_TREE_LOOP_IVCANON, /* tv_id */ 1529 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1530 0, /* properties_provided */ 1531 0, /* properties_destroyed */ 1532 0, /* todo_flags_start */ 1533 0, /* todo_flags_finish */ 1534 }; 1535 1536 class pass_iv_canon : public gimple_opt_pass 1537 { 1538 public: 1539 pass_iv_canon (gcc::context *ctxt) 1540 : gimple_opt_pass (pass_data_iv_canon, ctxt) 1541 {} 1542 1543 /* opt_pass methods: */ 1544 virtual bool gate (function *) { return flag_tree_loop_ivcanon != 0; } 1545 virtual unsigned int execute (function *fun); 1546 1547 }; // class pass_iv_canon 1548 1549 unsigned int 1550 pass_iv_canon::execute (function *fun) 1551 { 1552 if (number_of_loops (fun) <= 1) 1553 return 0; 1554 1555 return canonicalize_induction_variables (); 1556 } 1557 1558 } // anon namespace 1559 1560 gimple_opt_pass * 1561 make_pass_iv_canon (gcc::context *ctxt) 1562 { 1563 return new pass_iv_canon (ctxt); 1564 } 1565 1566 /* Complete unrolling of loops. */ 1567 1568 namespace { 1569 1570 const pass_data pass_data_complete_unroll = 1571 { 1572 GIMPLE_PASS, /* type */ 1573 "cunroll", /* name */ 1574 OPTGROUP_LOOP, /* optinfo_flags */ 1575 TV_COMPLETE_UNROLL, /* tv_id */ 1576 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1577 0, /* properties_provided */ 1578 0, /* properties_destroyed */ 1579 0, /* todo_flags_start */ 1580 0, /* todo_flags_finish */ 1581 }; 1582 1583 class pass_complete_unroll : public gimple_opt_pass 1584 { 1585 public: 1586 pass_complete_unroll (gcc::context *ctxt) 1587 : gimple_opt_pass (pass_data_complete_unroll, ctxt) 1588 {} 1589 1590 /* opt_pass methods: */ 1591 virtual unsigned int execute (function *); 1592 1593 }; // class pass_complete_unroll 1594 1595 unsigned int 1596 pass_complete_unroll::execute (function *fun) 1597 { 1598 if (number_of_loops (fun) <= 1) 1599 return 0; 1600 1601 /* If we ever decide to run loop peeling more than once, we will need to 1602 track loops already peeled in loop structures themselves to avoid 1603 re-peeling the same loop multiple times. */ 1604 if (flag_peel_loops) 1605 peeled_loops = BITMAP_ALLOC (NULL); 1606 unsigned int val = tree_unroll_loops_completely (flag_cunroll_grow_size, 1607 true); 1608 if (peeled_loops) 1609 { 1610 BITMAP_FREE (peeled_loops); 1611 peeled_loops = NULL; 1612 } 1613 return val; 1614 } 1615 1616 } // anon namespace 1617 1618 gimple_opt_pass * 1619 make_pass_complete_unroll (gcc::context *ctxt) 1620 { 1621 return new pass_complete_unroll (ctxt); 1622 } 1623 1624 /* Complete unrolling of inner loops. */ 1625 1626 namespace { 1627 1628 const pass_data pass_data_complete_unrolli = 1629 { 1630 GIMPLE_PASS, /* type */ 1631 "cunrolli", /* name */ 1632 OPTGROUP_LOOP, /* optinfo_flags */ 1633 TV_COMPLETE_UNROLL, /* tv_id */ 1634 ( PROP_cfg | PROP_ssa ), /* properties_required */ 1635 0, /* properties_provided */ 1636 0, /* properties_destroyed */ 1637 0, /* todo_flags_start */ 1638 0, /* todo_flags_finish */ 1639 }; 1640 1641 class pass_complete_unrolli : public gimple_opt_pass 1642 { 1643 public: 1644 pass_complete_unrolli (gcc::context *ctxt) 1645 : gimple_opt_pass (pass_data_complete_unrolli, ctxt) 1646 {} 1647 1648 /* opt_pass methods: */ 1649 virtual bool gate (function *) { return optimize >= 2; } 1650 virtual unsigned int execute (function *); 1651 1652 }; // class pass_complete_unrolli 1653 1654 unsigned int 1655 pass_complete_unrolli::execute (function *fun) 1656 { 1657 unsigned ret = 0; 1658 1659 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS); 1660 if (number_of_loops (fun) > 1) 1661 { 1662 scev_initialize (); 1663 ret = tree_unroll_loops_completely (optimize >= 3, false); 1664 scev_finalize (); 1665 } 1666 loop_optimizer_finalize (); 1667 1668 return ret; 1669 } 1670 1671 } // anon namespace 1672 1673 gimple_opt_pass * 1674 make_pass_complete_unrolli (gcc::context *ctxt) 1675 { 1676 return new pass_complete_unrolli (ctxt); 1677 } 1678 1679 1680