1 /* Induction variable canonicalization and loop peeling. 2 Copyright (C) 2004-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This pass detects the loops that iterate a constant number of times, 21 adds a canonical induction variable (step -1, tested against 0) 22 and replaces the exit test. This enables the less powerful rtl 23 level analysis to use this information. 24 25 This might spoil the code in some cases (by increasing register pressure). 26 Note that in the case the new variable is not needed, ivopts will get rid 27 of it, so it might only be a problem when there are no other linear induction 28 variables. In that case the created optimization possibilities are likely 29 to pay up. 30 31 Additionally in case we detect that it is beneficial to unroll the 32 loop completely, we do it right here to expose the optimization 33 possibilities to the following passes. */ 34 35 #include "config.h" 36 #include "system.h" 37 #include "coretypes.h" 38 #include "tm.h" 39 #include "tree.h" 40 #include "tm_p.h" 41 #include "basic-block.h" 42 #include "gimple-pretty-print.h" 43 #include "tree-flow.h" 44 #include "cfgloop.h" 45 #include "tree-pass.h" 46 #include "tree-chrec.h" 47 #include "tree-scalar-evolution.h" 48 #include "params.h" 49 #include "flags.h" 50 #include "tree-inline.h" 51 #include "target.h" 52 53 /* Specifies types of loops that may be unrolled. */ 54 55 enum unroll_level 56 { 57 UL_SINGLE_ITER, /* Only loops that exit immediately in the first 58 iteration. */ 59 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase 60 of code size. */ 61 UL_ALL /* All suitable loops. */ 62 }; 63 64 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT 65 is the exit edge whose condition is replaced. */ 66 67 static void 68 create_canonical_iv (struct loop *loop, edge exit, tree niter) 69 { 70 edge in; 71 tree type, var; 72 gimple cond; 73 gimple_stmt_iterator incr_at; 74 enum tree_code cmp; 75 76 if (dump_file && (dump_flags & TDF_DETAILS)) 77 { 78 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num); 79 print_generic_expr (dump_file, niter, TDF_SLIM); 80 fprintf (dump_file, " iterations.\n"); 81 } 82 83 cond = last_stmt (exit->src); 84 in = EDGE_SUCC (exit->src, 0); 85 if (in == exit) 86 in = EDGE_SUCC (exit->src, 1); 87 88 /* Note that we do not need to worry about overflows, since 89 type of niter is always unsigned and all comparisons are 90 just for equality/nonequality -- i.e. everything works 91 with a modulo arithmetics. */ 92 93 type = TREE_TYPE (niter); 94 niter = fold_build2 (PLUS_EXPR, type, 95 niter, 96 build_int_cst (type, 1)); 97 incr_at = gsi_last_bb (in->src); 98 create_iv (niter, 99 build_int_cst (type, -1), 100 NULL_TREE, loop, 101 &incr_at, false, NULL, &var); 102 103 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR; 104 gimple_cond_set_code (cond, cmp); 105 gimple_cond_set_lhs (cond, var); 106 gimple_cond_set_rhs (cond, build_int_cst (type, 0)); 107 update_stmt (cond); 108 } 109 110 /* Computes an estimated number of insns in LOOP, weighted by WEIGHTS. */ 111 112 unsigned 113 tree_num_loop_insns (struct loop *loop, eni_weights *weights) 114 { 115 basic_block *body = get_loop_body (loop); 116 gimple_stmt_iterator gsi; 117 unsigned size = 0, i; 118 119 for (i = 0; i < loop->num_nodes; i++) 120 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 121 size += estimate_num_insns (gsi_stmt (gsi), weights); 122 free (body); 123 124 return size; 125 } 126 127 /* Describe size of loop as detected by tree_estimate_loop_size. */ 128 struct loop_size 129 { 130 /* Number of instructions in the loop. */ 131 int overall; 132 133 /* Number of instructions that will be likely optimized out in 134 peeled iterations of loop (i.e. computation based on induction 135 variable where induction variable starts at known constant.) */ 136 int eliminated_by_peeling; 137 138 /* Same statistics for last iteration of loop: it is smaller because 139 instructions after exit are not executed. */ 140 int last_iteration; 141 int last_iteration_eliminated_by_peeling; 142 143 /* If some IV computation will become constant. */ 144 bool constant_iv; 145 146 /* Number of call stmts that are not a builtin and are pure or const 147 present on the hot path. */ 148 int num_pure_calls_on_hot_path; 149 /* Number of call stmts that are not a builtin and are not pure nor const 150 present on the hot path. */ 151 int num_non_pure_calls_on_hot_path; 152 /* Number of statements other than calls in the loop. */ 153 int non_call_stmts_on_hot_path; 154 /* Number of branches seen on the hot path. */ 155 int num_branches_on_hot_path; 156 }; 157 158 /* Return true if OP in STMT will be constant after peeling LOOP. */ 159 160 static bool 161 constant_after_peeling (tree op, gimple stmt, struct loop *loop) 162 { 163 affine_iv iv; 164 165 if (is_gimple_min_invariant (op)) 166 return true; 167 168 /* We can still fold accesses to constant arrays when index is known. */ 169 if (TREE_CODE (op) != SSA_NAME) 170 { 171 tree base = op; 172 173 /* First make fast look if we see constant array inside. */ 174 while (handled_component_p (base)) 175 base = TREE_OPERAND (base, 0); 176 if ((DECL_P (base) 177 && const_value_known_p (base)) 178 || CONSTANT_CLASS_P (base)) 179 { 180 /* If so, see if we understand all the indices. */ 181 base = op; 182 while (handled_component_p (base)) 183 { 184 if (TREE_CODE (base) == ARRAY_REF 185 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop)) 186 return false; 187 base = TREE_OPERAND (base, 0); 188 } 189 return true; 190 } 191 return false; 192 } 193 194 /* Induction variables are constants. */ 195 if (!simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false)) 196 return false; 197 if (!is_gimple_min_invariant (iv.base)) 198 return false; 199 if (!is_gimple_min_invariant (iv.step)) 200 return false; 201 return true; 202 } 203 204 /* Computes an estimated number of insns in LOOP. 205 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last 206 iteration of the loop. 207 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration 208 of loop. 209 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT. 210 Stop estimating after UPPER_BOUND is met. Return true in this case. */ 211 212 static bool 213 tree_estimate_loop_size (struct loop *loop, edge exit, edge edge_to_cancel, struct loop_size *size, 214 int upper_bound) 215 { 216 basic_block *body = get_loop_body (loop); 217 gimple_stmt_iterator gsi; 218 unsigned int i; 219 bool after_exit; 220 vec<basic_block> path = get_loop_hot_path (loop); 221 222 size->overall = 0; 223 size->eliminated_by_peeling = 0; 224 size->last_iteration = 0; 225 size->last_iteration_eliminated_by_peeling = 0; 226 size->num_pure_calls_on_hot_path = 0; 227 size->num_non_pure_calls_on_hot_path = 0; 228 size->non_call_stmts_on_hot_path = 0; 229 size->num_branches_on_hot_path = 0; 230 size->constant_iv = 0; 231 232 if (dump_file && (dump_flags & TDF_DETAILS)) 233 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num); 234 for (i = 0; i < loop->num_nodes; i++) 235 { 236 if (edge_to_cancel && body[i] != edge_to_cancel->src 237 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src)) 238 after_exit = true; 239 else 240 after_exit = false; 241 if (dump_file && (dump_flags & TDF_DETAILS)) 242 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index, after_exit); 243 244 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 245 { 246 gimple stmt = gsi_stmt (gsi); 247 int num = estimate_num_insns (stmt, &eni_size_weights); 248 bool likely_eliminated = false; 249 bool likely_eliminated_last = false; 250 bool likely_eliminated_peeled = false; 251 252 if (dump_file && (dump_flags & TDF_DETAILS)) 253 { 254 fprintf (dump_file, " size: %3i ", num); 255 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0); 256 } 257 258 /* Look for reasons why we might optimize this stmt away. */ 259 260 if (gimple_has_side_effects (stmt)) 261 ; 262 /* Exit conditional. */ 263 else if (exit && body[i] == exit->src 264 && stmt == last_stmt (exit->src)) 265 { 266 if (dump_file && (dump_flags & TDF_DETAILS)) 267 fprintf (dump_file, " Exit condition will be eliminated " 268 "in peeled copies.\n"); 269 likely_eliminated_peeled = true; 270 } 271 else if (edge_to_cancel && body[i] == edge_to_cancel->src 272 && stmt == last_stmt (edge_to_cancel->src)) 273 { 274 if (dump_file && (dump_flags & TDF_DETAILS)) 275 fprintf (dump_file, " Exit condition will be eliminated " 276 "in last copy.\n"); 277 likely_eliminated_last = true; 278 } 279 /* Sets of IV variables */ 280 else if (gimple_code (stmt) == GIMPLE_ASSIGN 281 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop)) 282 { 283 if (dump_file && (dump_flags & TDF_DETAILS)) 284 fprintf (dump_file, " Induction variable computation will" 285 " be folded away.\n"); 286 likely_eliminated = true; 287 } 288 /* Assignments of IV variables. */ 289 else if (gimple_code (stmt) == GIMPLE_ASSIGN 290 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME 291 && constant_after_peeling (gimple_assign_rhs1 (stmt), stmt, loop) 292 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS 293 || constant_after_peeling (gimple_assign_rhs2 (stmt), 294 stmt, loop))) 295 { 296 size->constant_iv = true; 297 if (dump_file && (dump_flags & TDF_DETAILS)) 298 fprintf (dump_file, " Constant expression will be folded away.\n"); 299 likely_eliminated = true; 300 } 301 /* Conditionals. */ 302 else if ((gimple_code (stmt) == GIMPLE_COND 303 && constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop) 304 && constant_after_peeling (gimple_cond_rhs (stmt), stmt, loop)) 305 || (gimple_code (stmt) == GIMPLE_SWITCH 306 && constant_after_peeling (gimple_switch_index (stmt), stmt, loop))) 307 { 308 if (dump_file && (dump_flags & TDF_DETAILS)) 309 fprintf (dump_file, " Constant conditional.\n"); 310 likely_eliminated = true; 311 } 312 313 size->overall += num; 314 if (likely_eliminated || likely_eliminated_peeled) 315 size->eliminated_by_peeling += num; 316 if (!after_exit) 317 { 318 size->last_iteration += num; 319 if (likely_eliminated || likely_eliminated_last) 320 size->last_iteration_eliminated_by_peeling += num; 321 } 322 if ((size->overall * 3 / 2 - size->eliminated_by_peeling 323 - size->last_iteration_eliminated_by_peeling) > upper_bound) 324 { 325 free (body); 326 path.release (); 327 return true; 328 } 329 } 330 } 331 while (path.length ()) 332 { 333 basic_block bb = path.pop (); 334 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 335 { 336 gimple stmt = gsi_stmt (gsi); 337 if (gimple_code (stmt) == GIMPLE_CALL) 338 { 339 int flags = gimple_call_flags (stmt); 340 tree decl = gimple_call_fndecl (stmt); 341 342 if (decl && DECL_IS_BUILTIN (decl) 343 && is_inexpensive_builtin (decl)) 344 ; 345 else if (flags & (ECF_PURE | ECF_CONST)) 346 size->num_pure_calls_on_hot_path++; 347 else 348 size->num_non_pure_calls_on_hot_path++; 349 size->num_branches_on_hot_path ++; 350 } 351 else if (gimple_code (stmt) != GIMPLE_CALL 352 && gimple_code (stmt) != GIMPLE_DEBUG) 353 size->non_call_stmts_on_hot_path++; 354 if (((gimple_code (stmt) == GIMPLE_COND 355 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop) 356 || constant_after_peeling (gimple_cond_rhs (stmt), stmt, loop))) 357 || (gimple_code (stmt) == GIMPLE_SWITCH 358 && !constant_after_peeling (gimple_switch_index (stmt), stmt, loop))) 359 && (!exit || bb != exit->src)) 360 size->num_branches_on_hot_path++; 361 } 362 } 363 path.release (); 364 if (dump_file && (dump_flags & TDF_DETAILS)) 365 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall, 366 size->eliminated_by_peeling, size->last_iteration, 367 size->last_iteration_eliminated_by_peeling); 368 369 free (body); 370 return false; 371 } 372 373 /* Estimate number of insns of completely unrolled loop. 374 It is (NUNROLL + 1) * size of loop body with taking into account 375 the fact that in last copy everything after exit conditional 376 is dead and that some instructions will be eliminated after 377 peeling. 378 379 Loop body is likely going to simplify futher, this is difficult 380 to guess, we just decrease the result by 1/3. */ 381 382 static unsigned HOST_WIDE_INT 383 estimated_unrolled_size (struct loop_size *size, 384 unsigned HOST_WIDE_INT nunroll) 385 { 386 HOST_WIDE_INT unr_insns = ((nunroll) 387 * (HOST_WIDE_INT) (size->overall 388 - size->eliminated_by_peeling)); 389 if (!nunroll) 390 unr_insns = 0; 391 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling; 392 393 unr_insns = unr_insns * 2 / 3; 394 if (unr_insns <= 0) 395 unr_insns = 1; 396 397 return unr_insns; 398 } 399 400 /* Loop LOOP is known to not loop. See if there is an edge in the loop 401 body that can be remove to make the loop to always exit and at 402 the same time it does not make any code potentially executed 403 during the last iteration dead. 404 405 After complette unrolling we still may get rid of the conditional 406 on the exit in the last copy even if we have no idea what it does. 407 This is quite common case for loops of form 408 409 int a[5]; 410 for (i=0;i<b;i++) 411 a[i]=0; 412 413 Here we prove the loop to iterate 5 times but we do not know 414 it from induction variable. 415 416 For now we handle only simple case where there is exit condition 417 just before the latch block and the latch block contains no statements 418 with side effect that may otherwise terminate the execution of loop 419 (such as by EH or by terminating the program or longjmp). 420 421 In the general case we may want to cancel the paths leading to statements 422 loop-niter identified as having undefined effect in the last iteration. 423 The other cases are hopefully rare and will be cleaned up later. */ 424 425 edge 426 loop_edge_to_cancel (struct loop *loop) 427 { 428 vec<edge> exits; 429 unsigned i; 430 edge edge_to_cancel; 431 gimple_stmt_iterator gsi; 432 433 /* We want only one predecestor of the loop. */ 434 if (EDGE_COUNT (loop->latch->preds) > 1) 435 return NULL; 436 437 exits = get_loop_exit_edges (loop); 438 439 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel) 440 { 441 /* Find the other edge than the loop exit 442 leaving the conditoinal. */ 443 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2) 444 continue; 445 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel) 446 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1); 447 else 448 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0); 449 450 /* We only can handle conditionals. */ 451 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 452 continue; 453 454 /* We should never have conditionals in the loop latch. */ 455 gcc_assert (edge_to_cancel->dest != loop->header); 456 457 /* Check that it leads to loop latch. */ 458 if (edge_to_cancel->dest != loop->latch) 459 continue; 460 461 exits.release (); 462 463 /* Verify that the code in loop latch does nothing that may end program 464 execution without really reaching the exit. This may include 465 non-pure/const function calls, EH statements, volatile ASMs etc. */ 466 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi)) 467 if (gimple_has_side_effects (gsi_stmt (gsi))) 468 return NULL; 469 return edge_to_cancel; 470 } 471 exits.release (); 472 return NULL; 473 } 474 475 /* Remove all tests for exits that are known to be taken after LOOP was 476 peeled NPEELED times. Put gcc_unreachable before every statement 477 known to not be executed. */ 478 479 static bool 480 remove_exits_and_undefined_stmts (struct loop *loop, unsigned int npeeled) 481 { 482 struct nb_iter_bound *elt; 483 bool changed = false; 484 485 for (elt = loop->bounds; elt; elt = elt->next) 486 { 487 /* If statement is known to be undefined after peeling, turn it 488 into unreachable (or trap when debugging experience is supposed 489 to be good). */ 490 if (!elt->is_exit 491 && elt->bound.ult (double_int::from_uhwi (npeeled))) 492 { 493 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt); 494 gimple stmt = gimple_build_call 495 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 496 497 gimple_set_location (stmt, gimple_location (elt->stmt)); 498 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 499 changed = true; 500 if (dump_file && (dump_flags & TDF_DETAILS)) 501 { 502 fprintf (dump_file, "Forced statement unreachable: "); 503 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 504 } 505 } 506 /* If we know the exit will be taken after peeling, update. */ 507 else if (elt->is_exit 508 && elt->bound.ule (double_int::from_uhwi (npeeled))) 509 { 510 basic_block bb = gimple_bb (elt->stmt); 511 edge exit_edge = EDGE_SUCC (bb, 0); 512 513 if (dump_file && (dump_flags & TDF_DETAILS)) 514 { 515 fprintf (dump_file, "Forced exit to be taken: "); 516 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 517 } 518 if (!loop_exit_edge_p (loop, exit_edge)) 519 exit_edge = EDGE_SUCC (bb, 1); 520 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge)); 521 if (exit_edge->flags & EDGE_TRUE_VALUE) 522 gimple_cond_make_true (elt->stmt); 523 else 524 gimple_cond_make_false (elt->stmt); 525 update_stmt (elt->stmt); 526 changed = true; 527 } 528 } 529 return changed; 530 } 531 532 /* Remove all exits that are known to be never taken because of the loop bound 533 discovered. */ 534 535 static bool 536 remove_redundant_iv_tests (struct loop *loop) 537 { 538 struct nb_iter_bound *elt; 539 bool changed = false; 540 541 if (!loop->any_upper_bound) 542 return false; 543 for (elt = loop->bounds; elt; elt = elt->next) 544 { 545 /* Exit is pointless if it won't be taken before loop reaches 546 upper bound. */ 547 if (elt->is_exit && loop->any_upper_bound 548 && loop->nb_iterations_upper_bound.ult (elt->bound)) 549 { 550 basic_block bb = gimple_bb (elt->stmt); 551 edge exit_edge = EDGE_SUCC (bb, 0); 552 struct tree_niter_desc niter; 553 554 if (!loop_exit_edge_p (loop, exit_edge)) 555 exit_edge = EDGE_SUCC (bb, 1); 556 557 /* Only when we know the actual number of iterations, not 558 just a bound, we can remove the exit. */ 559 if (!number_of_iterations_exit (loop, exit_edge, 560 &niter, false, false) 561 || !integer_onep (niter.assumptions) 562 || !integer_zerop (niter.may_be_zero) 563 || !niter.niter 564 || TREE_CODE (niter.niter) != INTEGER_CST 565 || !loop->nb_iterations_upper_bound.ult 566 (tree_to_double_int (niter.niter))) 567 continue; 568 569 if (dump_file && (dump_flags & TDF_DETAILS)) 570 { 571 fprintf (dump_file, "Removed pointless exit: "); 572 print_gimple_stmt (dump_file, elt->stmt, 0, 0); 573 } 574 if (exit_edge->flags & EDGE_TRUE_VALUE) 575 gimple_cond_make_false (elt->stmt); 576 else 577 gimple_cond_make_true (elt->stmt); 578 update_stmt (elt->stmt); 579 changed = true; 580 } 581 } 582 return changed; 583 } 584 585 /* Stores loops that will be unlooped after we process whole loop tree. */ 586 static vec<loop_p> loops_to_unloop; 587 static vec<int> loops_to_unloop_nunroll; 588 589 /* Cancel all fully unrolled loops by putting __builtin_unreachable 590 on the latch edge. 591 We do it after all unrolling since unlooping moves basic blocks 592 across loop boundaries trashing loop closed SSA form as well 593 as SCEV info needed to be intact during unrolling. 594 595 IRRED_INVALIDATED is used to bookkeep if information about 596 irreducible regions may become invalid as a result 597 of the transformation. 598 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case 599 when we need to go into loop closed SSA form. */ 600 601 void 602 unloop_loops (bitmap loop_closed_ssa_invalidated, 603 bool *irred_invalidated) 604 { 605 while (loops_to_unloop.length ()) 606 { 607 struct loop *loop = loops_to_unloop.pop (); 608 int n_unroll = loops_to_unloop_nunroll.pop (); 609 basic_block latch = loop->latch; 610 edge latch_edge = loop_latch_edge (loop); 611 int flags = latch_edge->flags; 612 location_t locus = latch_edge->goto_locus; 613 gimple stmt; 614 gimple_stmt_iterator gsi; 615 616 remove_exits_and_undefined_stmts (loop, n_unroll); 617 618 /* Unloop destroys the latch edge. */ 619 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated); 620 621 /* Create new basic block for the latch edge destination and wire 622 it in. */ 623 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0); 624 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags); 625 latch_edge->probability = 0; 626 latch_edge->count = 0; 627 latch_edge->flags |= flags; 628 latch_edge->goto_locus = locus; 629 630 latch_edge->dest->loop_father = current_loops->tree_root; 631 latch_edge->dest->count = 0; 632 latch_edge->dest->frequency = 0; 633 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src); 634 635 gsi = gsi_start_bb (latch_edge->dest); 636 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 637 } 638 loops_to_unloop.release (); 639 loops_to_unloop_nunroll.release (); 640 } 641 642 /* Tries to unroll LOOP completely, i.e. NITER times. 643 UL determines which loops we are allowed to unroll. 644 EXIT is the exit of the loop that should be eliminated. 645 MAXITER specfy bound on number of iterations, -1 if it is 646 not known or too large for HOST_WIDE_INT. The location 647 LOCUS corresponding to the loop is used when emitting 648 a summary of the unroll to the dump file. */ 649 650 static bool 651 try_unroll_loop_completely (struct loop *loop, 652 edge exit, tree niter, 653 enum unroll_level ul, 654 HOST_WIDE_INT maxiter, 655 location_t locus) 656 { 657 unsigned HOST_WIDE_INT n_unroll, ninsns, max_unroll, unr_insns; 658 gimple cond; 659 struct loop_size size; 660 bool n_unroll_found = false; 661 edge edge_to_cancel = NULL; 662 663 /* See if we proved number of iterations to be low constant. 664 665 EXIT is an edge that will be removed in all but last iteration of 666 the loop. 667 668 EDGE_TO_CACNEL is an edge that will be removed from the last iteration 669 of the unrolled sequence and is expected to make the final loop not 670 rolling. 671 672 If the number of execution of loop is determined by standard induction 673 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving 674 from the iv test. */ 675 if (host_integerp (niter, 1)) 676 { 677 n_unroll = tree_low_cst (niter, 1); 678 n_unroll_found = true; 679 edge_to_cancel = EDGE_SUCC (exit->src, 0); 680 if (edge_to_cancel == exit) 681 edge_to_cancel = EDGE_SUCC (exit->src, 1); 682 } 683 /* We do not know the number of iterations and thus we can not eliminate 684 the EXIT edge. */ 685 else 686 exit = NULL; 687 688 /* See if we can improve our estimate by using recorded loop bounds. */ 689 if (maxiter >= 0 690 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll)) 691 { 692 n_unroll = maxiter; 693 n_unroll_found = true; 694 /* Loop terminates before the IV variable test, so we can not 695 remove it in the last iteration. */ 696 edge_to_cancel = NULL; 697 } 698 699 if (!n_unroll_found) 700 return false; 701 702 max_unroll = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES); 703 if (n_unroll > max_unroll) 704 return false; 705 706 if (!edge_to_cancel) 707 edge_to_cancel = loop_edge_to_cancel (loop); 708 709 if (n_unroll) 710 { 711 sbitmap wont_exit; 712 edge e; 713 unsigned i; 714 bool large; 715 vec<edge> to_remove = vNULL; 716 if (ul == UL_SINGLE_ITER) 717 return false; 718 719 large = tree_estimate_loop_size 720 (loop, exit, edge_to_cancel, &size, 721 PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS)); 722 ninsns = size.overall; 723 if (large) 724 { 725 if (dump_file && (dump_flags & TDF_DETAILS)) 726 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n", 727 loop->num); 728 return false; 729 } 730 731 unr_insns = estimated_unrolled_size (&size, n_unroll); 732 if (dump_file && (dump_flags & TDF_DETAILS)) 733 { 734 fprintf (dump_file, " Loop size: %d\n", (int) ninsns); 735 fprintf (dump_file, " Estimated size after unrolling: %d\n", 736 (int) unr_insns); 737 } 738 739 /* If the code is going to shrink, we don't need to be extra cautious 740 on guessing if the unrolling is going to be profitable. */ 741 if (unr_insns 742 /* If there is IV variable that will become constant, we save 743 one instruction in the loop prologue we do not account 744 otherwise. */ 745 <= ninsns + (size.constant_iv != false)) 746 ; 747 /* We unroll only inner loops, because we do not consider it profitable 748 otheriwse. We still can cancel loopback edge of not rolling loop; 749 this is always a good idea. */ 750 else if (ul == UL_NO_GROWTH) 751 { 752 if (dump_file && (dump_flags & TDF_DETAILS)) 753 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n", 754 loop->num); 755 return false; 756 } 757 /* Outer loops tend to be less interesting candidates for complette 758 unrolling unless we can do a lot of propagation into the inner loop 759 body. For now we disable outer loop unrolling when the code would 760 grow. */ 761 else if (loop->inner) 762 { 763 if (dump_file && (dump_flags & TDF_DETAILS)) 764 fprintf (dump_file, "Not unrolling loop %d: " 765 "it is not innermost and code would grow.\n", 766 loop->num); 767 return false; 768 } 769 /* If there is call on a hot path through the loop, then 770 there is most probably not much to optimize. */ 771 else if (size.num_non_pure_calls_on_hot_path) 772 { 773 if (dump_file && (dump_flags & TDF_DETAILS)) 774 fprintf (dump_file, "Not unrolling loop %d: " 775 "contains call and code would grow.\n", 776 loop->num); 777 return false; 778 } 779 /* If there is pure/const call in the function, then we 780 can still optimize the unrolled loop body if it contains 781 some other interesting code than the calls and code 782 storing or cumulating the return value. */ 783 else if (size.num_pure_calls_on_hot_path 784 /* One IV increment, one test, one ivtmp store 785 and one usefull stmt. That is about minimal loop 786 doing pure call. */ 787 && (size.non_call_stmts_on_hot_path 788 <= 3 + size.num_pure_calls_on_hot_path)) 789 { 790 if (dump_file && (dump_flags & TDF_DETAILS)) 791 fprintf (dump_file, "Not unrolling loop %d: " 792 "contains just pure calls and code would grow.\n", 793 loop->num); 794 return false; 795 } 796 /* Complette unrolling is major win when control flow is removed and 797 one big basic block is created. If the loop contains control flow 798 the optimization may still be a win because of eliminating the loop 799 overhead but it also may blow the branch predictor tables. 800 Limit number of branches on the hot path through the peeled 801 sequence. */ 802 else if (size.num_branches_on_hot_path * (int)n_unroll 803 > PARAM_VALUE (PARAM_MAX_PEEL_BRANCHES)) 804 { 805 if (dump_file && (dump_flags & TDF_DETAILS)) 806 fprintf (dump_file, "Not unrolling loop %d: " 807 " number of branches on hot path in the unrolled sequence" 808 " reach --param max-peel-branches limit.\n", 809 loop->num); 810 return false; 811 } 812 else if (unr_insns 813 > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS)) 814 { 815 if (dump_file && (dump_flags & TDF_DETAILS)) 816 fprintf (dump_file, "Not unrolling loop %d: " 817 "(--param max-completely-peeled-insns limit reached).\n", 818 loop->num); 819 return false; 820 } 821 822 initialize_original_copy_tables (); 823 wont_exit = sbitmap_alloc (n_unroll + 1); 824 bitmap_ones (wont_exit); 825 bitmap_clear_bit (wont_exit, 0); 826 827 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop), 828 n_unroll, wont_exit, 829 exit, &to_remove, 830 DLTHE_FLAG_UPDATE_FREQ 831 | DLTHE_FLAG_COMPLETTE_PEEL)) 832 { 833 free_original_copy_tables (); 834 free (wont_exit); 835 if (dump_file && (dump_flags & TDF_DETAILS)) 836 fprintf (dump_file, "Failed to duplicate the loop\n"); 837 return false; 838 } 839 840 FOR_EACH_VEC_ELT (to_remove, i, e) 841 { 842 bool ok = remove_path (e); 843 gcc_assert (ok); 844 } 845 846 to_remove.release (); 847 free (wont_exit); 848 free_original_copy_tables (); 849 } 850 851 852 /* Remove the conditional from the last copy of the loop. */ 853 if (edge_to_cancel) 854 { 855 cond = last_stmt (edge_to_cancel->src); 856 if (edge_to_cancel->flags & EDGE_TRUE_VALUE) 857 gimple_cond_make_false (cond); 858 else 859 gimple_cond_make_true (cond); 860 update_stmt (cond); 861 /* Do not remove the path. Doing so may remove outer loop 862 and confuse bookkeeping code in tree_unroll_loops_completelly. */ 863 } 864 865 /* Store the loop for later unlooping and exit removal. */ 866 loops_to_unloop.safe_push (loop); 867 loops_to_unloop_nunroll.safe_push (n_unroll); 868 869 if (dump_enabled_p ()) 870 { 871 if (!n_unroll) 872 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 873 "Turned loop into non-loop; it never loops.\n"); 874 else 875 { 876 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus, 877 "Completely unroll loop %d times", (int)n_unroll); 878 if (profile_info) 879 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, 880 " (header execution count %d)", 881 (int)loop->header->count); 882 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n"); 883 } 884 } 885 886 if (dump_file && (dump_flags & TDF_DETAILS)) 887 { 888 if (exit) 889 fprintf (dump_file, "Exit condition of peeled iterations was " 890 "eliminated.\n"); 891 if (edge_to_cancel) 892 fprintf (dump_file, "Last iteration exit edge was proved true.\n"); 893 else 894 fprintf (dump_file, "Latch of last iteration was marked by " 895 "__builtin_unreachable ().\n"); 896 } 897 898 return true; 899 } 900 901 /* Adds a canonical induction variable to LOOP if suitable. 902 CREATE_IV is true if we may create a new iv. UL determines 903 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try 904 to determine the number of iterations of a loop by direct evaluation. 905 Returns true if cfg is changed. */ 906 907 static bool 908 canonicalize_loop_induction_variables (struct loop *loop, 909 bool create_iv, enum unroll_level ul, 910 bool try_eval) 911 { 912 edge exit = NULL; 913 tree niter; 914 HOST_WIDE_INT maxiter; 915 bool modified = false; 916 location_t locus = UNKNOWN_LOCATION; 917 918 niter = number_of_latch_executions (loop); 919 exit = single_exit (loop); 920 if (TREE_CODE (niter) == INTEGER_CST) 921 locus = gimple_location (last_stmt (exit->src)); 922 else 923 { 924 /* If the loop has more than one exit, try checking all of them 925 for # of iterations determinable through scev. */ 926 if (!exit) 927 niter = find_loop_niter (loop, &exit); 928 929 /* Finally if everything else fails, try brute force evaluation. */ 930 if (try_eval 931 && (chrec_contains_undetermined (niter) 932 || TREE_CODE (niter) != INTEGER_CST)) 933 niter = find_loop_niter_by_eval (loop, &exit); 934 935 if (exit) 936 locus = gimple_location (last_stmt (exit->src)); 937 938 if (TREE_CODE (niter) != INTEGER_CST) 939 exit = NULL; 940 } 941 942 /* We work exceptionally hard here to estimate the bound 943 by find_loop_niter_by_eval. Be sure to keep it for future. */ 944 if (niter && TREE_CODE (niter) == INTEGER_CST) 945 { 946 record_niter_bound (loop, tree_to_double_int (niter), 947 exit == single_likely_exit (loop), true); 948 } 949 950 /* Force re-computation of loop bounds so we can remove redundant exits. */ 951 maxiter = max_loop_iterations_int (loop); 952 953 if (dump_file && (dump_flags & TDF_DETAILS) 954 && TREE_CODE (niter) == INTEGER_CST) 955 { 956 fprintf (dump_file, "Loop %d iterates ", loop->num); 957 print_generic_expr (dump_file, niter, TDF_SLIM); 958 fprintf (dump_file, " times.\n"); 959 } 960 if (dump_file && (dump_flags & TDF_DETAILS) 961 && maxiter >= 0) 962 { 963 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num, 964 (int)maxiter); 965 } 966 967 /* Remove exits that are known to be never taken based on loop bound. 968 Needs to be called after compilation of max_loop_iterations_int that 969 populates the loop bounds. */ 970 modified |= remove_redundant_iv_tests (loop); 971 972 if (try_unroll_loop_completely (loop, exit, niter, ul, maxiter, locus)) 973 return true; 974 975 if (create_iv 976 && niter && !chrec_contains_undetermined (niter) 977 && exit && just_once_each_iteration_p (loop, exit->src)) 978 create_canonical_iv (loop, exit, niter); 979 980 return modified; 981 } 982 983 /* The main entry point of the pass. Adds canonical induction variables 984 to the suitable loops. */ 985 986 unsigned int 987 canonicalize_induction_variables (void) 988 { 989 loop_iterator li; 990 struct loop *loop; 991 bool changed = false; 992 bool irred_invalidated = false; 993 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 994 995 free_numbers_of_iterations_estimates (); 996 estimate_numbers_of_iterations (); 997 998 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) 999 { 1000 changed |= canonicalize_loop_induction_variables (loop, 1001 true, UL_SINGLE_ITER, 1002 true); 1003 } 1004 gcc_assert (!need_ssa_update_p (cfun)); 1005 1006 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1007 if (irred_invalidated 1008 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1009 mark_irreducible_loops (); 1010 1011 /* Clean up the information about numbers of iterations, since brute force 1012 evaluation could reveal new information. */ 1013 scev_reset (); 1014 1015 if (!bitmap_empty_p (loop_closed_ssa_invalidated)) 1016 { 1017 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA)); 1018 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1019 } 1020 BITMAP_FREE (loop_closed_ssa_invalidated); 1021 1022 if (changed) 1023 return TODO_cleanup_cfg; 1024 return 0; 1025 } 1026 1027 /* Propagate VAL into all uses of SSA_NAME. */ 1028 1029 static void 1030 propagate_into_all_uses (tree ssa_name, tree val) 1031 { 1032 imm_use_iterator iter; 1033 gimple use_stmt; 1034 1035 FOR_EACH_IMM_USE_STMT (use_stmt, iter, ssa_name) 1036 { 1037 gimple_stmt_iterator use_stmt_gsi = gsi_for_stmt (use_stmt); 1038 use_operand_p use; 1039 1040 FOR_EACH_IMM_USE_ON_STMT (use, iter) 1041 SET_USE (use, val); 1042 1043 if (is_gimple_assign (use_stmt) 1044 && get_gimple_rhs_class (gimple_assign_rhs_code (use_stmt)) 1045 == GIMPLE_SINGLE_RHS) 1046 { 1047 tree rhs = gimple_assign_rhs1 (use_stmt); 1048 1049 if (TREE_CODE (rhs) == ADDR_EXPR) 1050 recompute_tree_invariant_for_addr_expr (rhs); 1051 } 1052 1053 fold_stmt_inplace (&use_stmt_gsi); 1054 update_stmt (use_stmt); 1055 maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt); 1056 } 1057 } 1058 1059 /* Propagate constant SSA_NAMEs defined in basic block BB. */ 1060 1061 static void 1062 propagate_constants_for_unrolling (basic_block bb) 1063 { 1064 gimple_stmt_iterator gsi; 1065 1066 /* Look for degenerate PHI nodes with constant argument. */ 1067 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) 1068 { 1069 gimple phi = gsi_stmt (gsi); 1070 tree result = gimple_phi_result (phi); 1071 tree arg = gimple_phi_arg_def (phi, 0); 1072 1073 if (gimple_phi_num_args (phi) == 1 && TREE_CODE (arg) == INTEGER_CST) 1074 { 1075 propagate_into_all_uses (result, arg); 1076 gsi_remove (&gsi, true); 1077 release_ssa_name (result); 1078 } 1079 else 1080 gsi_next (&gsi); 1081 } 1082 1083 /* Look for assignments to SSA names with constant RHS. */ 1084 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) 1085 { 1086 gimple stmt = gsi_stmt (gsi); 1087 tree lhs; 1088 1089 if (is_gimple_assign (stmt) 1090 && gimple_assign_rhs_code (stmt) == INTEGER_CST 1091 && (lhs = gimple_assign_lhs (stmt), TREE_CODE (lhs) == SSA_NAME) 1092 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) 1093 { 1094 propagate_into_all_uses (lhs, gimple_assign_rhs1 (stmt)); 1095 gsi_remove (&gsi, true); 1096 release_ssa_name (lhs); 1097 } 1098 else 1099 gsi_next (&gsi); 1100 } 1101 } 1102 1103 /* Process loops from innermost to outer, stopping at the innermost 1104 loop we unrolled. */ 1105 1106 static bool 1107 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer, 1108 vec<loop_p, va_stack>& father_stack, 1109 struct loop *loop) 1110 { 1111 struct loop *loop_father; 1112 bool changed = false; 1113 struct loop *inner; 1114 enum unroll_level ul; 1115 1116 /* Process inner loops first. */ 1117 for (inner = loop->inner; inner != NULL; inner = inner->next) 1118 changed |= tree_unroll_loops_completely_1 (may_increase_size, 1119 unroll_outer, father_stack, 1120 inner); 1121 1122 /* If we changed an inner loop we cannot process outer loops in this 1123 iteration because SSA form is not up-to-date. Continue with 1124 siblings of outer loops instead. */ 1125 if (changed) 1126 return true; 1127 1128 /* Try to unroll this loop. */ 1129 loop_father = loop_outer (loop); 1130 if (!loop_father) 1131 return false; 1132 1133 if (may_increase_size && optimize_loop_nest_for_speed_p (loop) 1134 /* Unroll outermost loops only if asked to do so or they do 1135 not cause code growth. */ 1136 && (unroll_outer || loop_outer (loop_father))) 1137 ul = UL_ALL; 1138 else 1139 ul = UL_NO_GROWTH; 1140 1141 if (canonicalize_loop_induction_variables 1142 (loop, false, ul, !flag_tree_loop_ivcanon)) 1143 { 1144 /* If we'll continue unrolling, we need to propagate constants 1145 within the new basic blocks to fold away induction variable 1146 computations; otherwise, the size might blow up before the 1147 iteration is complete and the IR eventually cleaned up. */ 1148 if (loop_outer (loop_father) && !loop_father->aux) 1149 { 1150 father_stack.safe_push (loop_father); 1151 loop_father->aux = loop_father; 1152 } 1153 1154 return true; 1155 } 1156 1157 return false; 1158 } 1159 1160 /* Unroll LOOPS completely if they iterate just few times. Unless 1161 MAY_INCREASE_SIZE is true, perform the unrolling only if the 1162 size of the code does not increase. */ 1163 1164 unsigned int 1165 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer) 1166 { 1167 vec<loop_p, va_stack> father_stack; 1168 bool changed; 1169 int iteration = 0; 1170 bool irred_invalidated = false; 1171 1172 vec_stack_alloc (loop_p, father_stack, 16); 1173 do 1174 { 1175 changed = false; 1176 bitmap loop_closed_ssa_invalidated = NULL; 1177 1178 if (loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1179 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL); 1180 1181 free_numbers_of_iterations_estimates (); 1182 estimate_numbers_of_iterations (); 1183 1184 changed = tree_unroll_loops_completely_1 (may_increase_size, 1185 unroll_outer, father_stack, 1186 current_loops->tree_root); 1187 if (changed) 1188 { 1189 struct loop **iter; 1190 unsigned i; 1191 1192 /* Be sure to skip unlooped loops while procesing father_stack 1193 array. */ 1194 FOR_EACH_VEC_ELT (loops_to_unloop, i, iter) 1195 (*iter)->aux = NULL; 1196 FOR_EACH_VEC_ELT (father_stack, i, iter) 1197 if (!(*iter)->aux) 1198 *iter = NULL; 1199 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated); 1200 1201 /* We can not use TODO_update_ssa_no_phi because VOPS gets confused. */ 1202 if (loop_closed_ssa_invalidated 1203 && !bitmap_empty_p (loop_closed_ssa_invalidated)) 1204 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated, 1205 TODO_update_ssa); 1206 else 1207 update_ssa (TODO_update_ssa); 1208 1209 /* Propagate the constants within the new basic blocks. */ 1210 FOR_EACH_VEC_ELT (father_stack, i, iter) 1211 if (*iter) 1212 { 1213 unsigned j; 1214 basic_block *body = get_loop_body_in_dom_order (*iter); 1215 for (j = 0; j < (*iter)->num_nodes; j++) 1216 propagate_constants_for_unrolling (body[j]); 1217 free (body); 1218 (*iter)->aux = NULL; 1219 } 1220 father_stack.truncate (0); 1221 1222 /* This will take care of removing completely unrolled loops 1223 from the loop structures so we can continue unrolling now 1224 innermost loops. */ 1225 if (cleanup_tree_cfg ()) 1226 update_ssa (TODO_update_ssa_only_virtuals); 1227 1228 /* Clean up the information about numbers of iterations, since 1229 complete unrolling might have invalidated it. */ 1230 scev_reset (); 1231 #ifdef ENABLE_CHECKING 1232 if (loops_state_satisfies_p (LOOP_CLOSED_SSA)) 1233 verify_loop_closed_ssa (true); 1234 #endif 1235 } 1236 if (loop_closed_ssa_invalidated) 1237 BITMAP_FREE (loop_closed_ssa_invalidated); 1238 } 1239 while (changed 1240 && ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS)); 1241 1242 father_stack.release (); 1243 1244 if (irred_invalidated 1245 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)) 1246 mark_irreducible_loops (); 1247 1248 return 0; 1249 } 1250