1 /* Loop invariant motion. 2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by the 9 Free Software Foundation; either version 3, or (at your option) any 10 later version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "rtl.h" 27 #include "tm_p.h" 28 #include "hard-reg-set.h" 29 #include "basic-block.h" 30 #include "output.h" 31 #include "diagnostic.h" 32 #include "tree-flow.h" 33 #include "tree-dump.h" 34 #include "timevar.h" 35 #include "cfgloop.h" 36 #include "domwalk.h" 37 #include "params.h" 38 #include "tree-pass.h" 39 #include "flags.h" 40 #include "real.h" 41 #include "hashtab.h" 42 #include "tree-affine.h" 43 #include "pointer-set.h" 44 #include "tree-ssa-propagate.h" 45 46 /* TODO: Support for predicated code motion. I.e. 47 48 while (1) 49 { 50 if (cond) 51 { 52 a = inv; 53 something; 54 } 55 } 56 57 Where COND and INV are is invariants, but evaluating INV may trap or be 58 invalid from some other reason if !COND. This may be transformed to 59 60 if (cond) 61 a = inv; 62 while (1) 63 { 64 if (cond) 65 something; 66 } */ 67 68 /* A type for the list of statements that have to be moved in order to be able 69 to hoist an invariant computation. */ 70 71 struct depend 72 { 73 gimple stmt; 74 struct depend *next; 75 }; 76 77 /* The auxiliary data kept for each statement. */ 78 79 struct lim_aux_data 80 { 81 struct loop *max_loop; /* The outermost loop in that the statement 82 is invariant. */ 83 84 struct loop *tgt_loop; /* The loop out of that we want to move the 85 invariant. */ 86 87 struct loop *always_executed_in; 88 /* The outermost loop for that we are sure 89 the statement is executed if the loop 90 is entered. */ 91 92 unsigned cost; /* Cost of the computation performed by the 93 statement. */ 94 95 struct depend *depends; /* List of statements that must be also hoisted 96 out of the loop when this statement is 97 hoisted; i.e. those that define the operands 98 of the statement and are inside of the 99 MAX_LOOP loop. */ 100 }; 101 102 /* Maps statements to their lim_aux_data. */ 103 104 static struct pointer_map_t *lim_aux_data_map; 105 106 /* Description of a memory reference location. */ 107 108 typedef struct mem_ref_loc 109 { 110 tree *ref; /* The reference itself. */ 111 gimple stmt; /* The statement in that it occurs. */ 112 } *mem_ref_loc_p; 113 114 DEF_VEC_P(mem_ref_loc_p); 115 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap); 116 117 /* The list of memory reference locations in a loop. */ 118 119 typedef struct mem_ref_locs 120 { 121 VEC (mem_ref_loc_p, heap) *locs; 122 } *mem_ref_locs_p; 123 124 DEF_VEC_P(mem_ref_locs_p); 125 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap); 126 127 /* Description of a memory reference. */ 128 129 typedef struct mem_ref 130 { 131 tree mem; /* The memory itself. */ 132 unsigned id; /* ID assigned to the memory reference 133 (its index in memory_accesses.refs_list) */ 134 hashval_t hash; /* Its hash value. */ 135 bitmap stored; /* The set of loops in that this memory location 136 is stored to. */ 137 VEC (mem_ref_locs_p, heap) *accesses_in_loop; 138 /* The locations of the accesses. Vector 139 indexed by the loop number. */ 140 bitmap vops; /* Vops corresponding to this memory 141 location. */ 142 143 /* The following sets are computed on demand. We keep both set and 144 its complement, so that we know whether the information was 145 already computed or not. */ 146 bitmap indep_loop; /* The set of loops in that the memory 147 reference is independent, meaning: 148 If it is stored in the loop, this store 149 is independent on all other loads and 150 stores. 151 If it is only loaded, then it is independent 152 on all stores in the loop. */ 153 bitmap dep_loop; /* The complement of INDEP_LOOP. */ 154 155 bitmap indep_ref; /* The set of memory references on that 156 this reference is independent. */ 157 bitmap dep_ref; /* The complement of DEP_REF. */ 158 } *mem_ref_p; 159 160 DEF_VEC_P(mem_ref_p); 161 DEF_VEC_ALLOC_P(mem_ref_p, heap); 162 163 DEF_VEC_P(bitmap); 164 DEF_VEC_ALLOC_P(bitmap, heap); 165 166 DEF_VEC_P(htab_t); 167 DEF_VEC_ALLOC_P(htab_t, heap); 168 169 /* Description of memory accesses in loops. */ 170 171 static struct 172 { 173 /* The hash table of memory references accessed in loops. */ 174 htab_t refs; 175 176 /* The list of memory references. */ 177 VEC (mem_ref_p, heap) *refs_list; 178 179 /* The set of memory references accessed in each loop. */ 180 VEC (bitmap, heap) *refs_in_loop; 181 182 /* The set of memory references accessed in each loop, including 183 subloops. */ 184 VEC (bitmap, heap) *all_refs_in_loop; 185 186 /* The set of virtual operands clobbered in a given loop. */ 187 VEC (bitmap, heap) *clobbered_vops; 188 189 /* Map from the pair (loop, virtual operand) to the set of refs that 190 touch the virtual operand in the loop. */ 191 VEC (htab_t, heap) *vop_ref_map; 192 193 /* Cache for expanding memory addresses. */ 194 struct pointer_map_t *ttae_cache; 195 } memory_accesses; 196 197 static bool ref_indep_loop_p (struct loop *, mem_ref_p); 198 199 /* Minimum cost of an expensive expression. */ 200 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE)) 201 202 /* The outermost loop for that execution of the header guarantees that the 203 block will be executed. */ 204 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux) 205 206 static struct lim_aux_data * 207 init_lim_data (gimple stmt) 208 { 209 void **p = pointer_map_insert (lim_aux_data_map, stmt); 210 211 *p = XCNEW (struct lim_aux_data); 212 return (struct lim_aux_data *) *p; 213 } 214 215 static struct lim_aux_data * 216 get_lim_data (gimple stmt) 217 { 218 void **p = pointer_map_contains (lim_aux_data_map, stmt); 219 if (!p) 220 return NULL; 221 222 return (struct lim_aux_data *) *p; 223 } 224 225 /* Releases the memory occupied by DATA. */ 226 227 static void 228 free_lim_aux_data (struct lim_aux_data *data) 229 { 230 struct depend *dep, *next; 231 232 for (dep = data->depends; dep; dep = next) 233 { 234 next = dep->next; 235 free (dep); 236 } 237 free (data); 238 } 239 240 static void 241 clear_lim_data (gimple stmt) 242 { 243 void **p = pointer_map_contains (lim_aux_data_map, stmt); 244 if (!p) 245 return; 246 247 free_lim_aux_data ((struct lim_aux_data *) *p); 248 *p = NULL; 249 } 250 251 /* Calls CBCK for each index in memory reference ADDR_P. There are two 252 kinds situations handled; in each of these cases, the memory reference 253 and DATA are passed to the callback: 254 255 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also 256 pass the pointer to the index to the callback. 257 258 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the 259 pointer to addr to the callback. 260 261 If the callback returns false, the whole search stops and false is returned. 262 Otherwise the function returns true after traversing through the whole 263 reference *ADDR_P. */ 264 265 bool 266 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data) 267 { 268 tree *nxt, *idx; 269 270 for (; ; addr_p = nxt) 271 { 272 switch (TREE_CODE (*addr_p)) 273 { 274 case SSA_NAME: 275 return cbck (*addr_p, addr_p, data); 276 277 case MISALIGNED_INDIRECT_REF: 278 case ALIGN_INDIRECT_REF: 279 case INDIRECT_REF: 280 nxt = &TREE_OPERAND (*addr_p, 0); 281 return cbck (*addr_p, nxt, data); 282 283 case BIT_FIELD_REF: 284 case VIEW_CONVERT_EXPR: 285 case REALPART_EXPR: 286 case IMAGPART_EXPR: 287 nxt = &TREE_OPERAND (*addr_p, 0); 288 break; 289 290 case COMPONENT_REF: 291 /* If the component has varying offset, it behaves like index 292 as well. */ 293 idx = &TREE_OPERAND (*addr_p, 2); 294 if (*idx 295 && !cbck (*addr_p, idx, data)) 296 return false; 297 298 nxt = &TREE_OPERAND (*addr_p, 0); 299 break; 300 301 case ARRAY_REF: 302 case ARRAY_RANGE_REF: 303 nxt = &TREE_OPERAND (*addr_p, 0); 304 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data)) 305 return false; 306 break; 307 308 case VAR_DECL: 309 case PARM_DECL: 310 case STRING_CST: 311 case RESULT_DECL: 312 case VECTOR_CST: 313 case COMPLEX_CST: 314 case INTEGER_CST: 315 case REAL_CST: 316 case FIXED_CST: 317 case CONSTRUCTOR: 318 return true; 319 320 case ADDR_EXPR: 321 gcc_assert (is_gimple_min_invariant (*addr_p)); 322 return true; 323 324 case TARGET_MEM_REF: 325 idx = &TMR_BASE (*addr_p); 326 if (*idx 327 && !cbck (*addr_p, idx, data)) 328 return false; 329 idx = &TMR_INDEX (*addr_p); 330 if (*idx 331 && !cbck (*addr_p, idx, data)) 332 return false; 333 return true; 334 335 default: 336 gcc_unreachable (); 337 } 338 } 339 } 340 341 /* If it is possible to hoist the statement STMT unconditionally, 342 returns MOVE_POSSIBLE. 343 If it is possible to hoist the statement STMT, but we must avoid making 344 it executed if it would not be executed in the original program (e.g. 345 because it may trap), return MOVE_PRESERVE_EXECUTION. 346 Otherwise return MOVE_IMPOSSIBLE. */ 347 348 enum move_pos 349 movement_possibility (gimple stmt) 350 { 351 tree lhs; 352 enum move_pos ret = MOVE_POSSIBLE; 353 354 if (flag_unswitch_loops 355 && gimple_code (stmt) == GIMPLE_COND) 356 { 357 /* If we perform unswitching, force the operands of the invariant 358 condition to be moved out of the loop. */ 359 return MOVE_POSSIBLE; 360 } 361 362 if (gimple_get_lhs (stmt) == NULL_TREE) 363 return MOVE_IMPOSSIBLE; 364 365 if (gimple_vdef (stmt)) 366 return MOVE_IMPOSSIBLE; 367 368 if (stmt_ends_bb_p (stmt) 369 || gimple_has_volatile_ops (stmt) 370 || gimple_has_side_effects (stmt) 371 || stmt_could_throw_p (stmt)) 372 return MOVE_IMPOSSIBLE; 373 374 if (is_gimple_call (stmt)) 375 { 376 /* While pure or const call is guaranteed to have no side effects, we 377 cannot move it arbitrarily. Consider code like 378 379 char *s = something (); 380 381 while (1) 382 { 383 if (s) 384 t = strlen (s); 385 else 386 t = 0; 387 } 388 389 Here the strlen call cannot be moved out of the loop, even though 390 s is invariant. In addition to possibly creating a call with 391 invalid arguments, moving out a function call that is not executed 392 may cause performance regressions in case the call is costly and 393 not executed at all. */ 394 ret = MOVE_PRESERVE_EXECUTION; 395 lhs = gimple_call_lhs (stmt); 396 } 397 else if (is_gimple_assign (stmt)) 398 lhs = gimple_assign_lhs (stmt); 399 else 400 return MOVE_IMPOSSIBLE; 401 402 if (TREE_CODE (lhs) == SSA_NAME 403 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) 404 return MOVE_IMPOSSIBLE; 405 406 if (TREE_CODE (lhs) != SSA_NAME 407 || gimple_could_trap_p (stmt)) 408 return MOVE_PRESERVE_EXECUTION; 409 410 return ret; 411 } 412 413 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost 414 loop to that we could move the expression using DEF if it did not have 415 other operands, i.e. the outermost loop enclosing LOOP in that the value 416 of DEF is invariant. */ 417 418 static struct loop * 419 outermost_invariant_loop (tree def, struct loop *loop) 420 { 421 gimple def_stmt; 422 basic_block def_bb; 423 struct loop *max_loop; 424 struct lim_aux_data *lim_data; 425 426 if (!def) 427 return superloop_at_depth (loop, 1); 428 429 if (TREE_CODE (def) != SSA_NAME) 430 { 431 gcc_assert (is_gimple_min_invariant (def)); 432 return superloop_at_depth (loop, 1); 433 } 434 435 def_stmt = SSA_NAME_DEF_STMT (def); 436 def_bb = gimple_bb (def_stmt); 437 if (!def_bb) 438 return superloop_at_depth (loop, 1); 439 440 max_loop = find_common_loop (loop, def_bb->loop_father); 441 442 lim_data = get_lim_data (def_stmt); 443 if (lim_data != NULL && lim_data->max_loop != NULL) 444 max_loop = find_common_loop (max_loop, 445 loop_outer (lim_data->max_loop)); 446 if (max_loop == loop) 447 return NULL; 448 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1); 449 450 return max_loop; 451 } 452 453 /* DATA is a structure containing information associated with a statement 454 inside LOOP. DEF is one of the operands of this statement. 455 456 Find the outermost loop enclosing LOOP in that value of DEF is invariant 457 and record this in DATA->max_loop field. If DEF itself is defined inside 458 this loop as well (i.e. we need to hoist it out of the loop if we want 459 to hoist the statement represented by DATA), record the statement in that 460 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true, 461 add the cost of the computation of DEF to the DATA->cost. 462 463 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */ 464 465 static bool 466 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop, 467 bool add_cost) 468 { 469 gimple def_stmt = SSA_NAME_DEF_STMT (def); 470 basic_block def_bb = gimple_bb (def_stmt); 471 struct loop *max_loop; 472 struct depend *dep; 473 struct lim_aux_data *def_data; 474 475 if (!def_bb) 476 return true; 477 478 max_loop = outermost_invariant_loop (def, loop); 479 if (!max_loop) 480 return false; 481 482 if (flow_loop_nested_p (data->max_loop, max_loop)) 483 data->max_loop = max_loop; 484 485 def_data = get_lim_data (def_stmt); 486 if (!def_data) 487 return true; 488 489 if (add_cost 490 /* Only add the cost if the statement defining DEF is inside LOOP, 491 i.e. if it is likely that by moving the invariants dependent 492 on it, we will be able to avoid creating a new register for 493 it (since it will be only used in these dependent invariants). */ 494 && def_bb->loop_father == loop) 495 data->cost += def_data->cost; 496 497 dep = XNEW (struct depend); 498 dep->stmt = def_stmt; 499 dep->next = data->depends; 500 data->depends = dep; 501 502 return true; 503 } 504 505 /* Returns an estimate for a cost of statement STMT. TODO -- the values here 506 are just ad-hoc constants. The estimates should be based on target-specific 507 values. */ 508 509 static unsigned 510 stmt_cost (gimple stmt) 511 { 512 tree fndecl; 513 unsigned cost = 1; 514 515 /* Always try to create possibilities for unswitching. */ 516 if (gimple_code (stmt) == GIMPLE_COND) 517 return LIM_EXPENSIVE; 518 519 /* Hoisting memory references out should almost surely be a win. */ 520 if (gimple_references_memory_p (stmt)) 521 cost += 20; 522 523 if (is_gimple_call (stmt)) 524 { 525 /* We should be hoisting calls if possible. */ 526 527 /* Unless the call is a builtin_constant_p; this always folds to a 528 constant, so moving it is useless. */ 529 fndecl = gimple_call_fndecl (stmt); 530 if (fndecl 531 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 532 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P) 533 return 0; 534 535 return cost + 20; 536 } 537 538 if (gimple_code (stmt) != GIMPLE_ASSIGN) 539 return cost; 540 541 switch (gimple_assign_rhs_code (stmt)) 542 { 543 case MULT_EXPR: 544 case TRUNC_DIV_EXPR: 545 case CEIL_DIV_EXPR: 546 case FLOOR_DIV_EXPR: 547 case ROUND_DIV_EXPR: 548 case EXACT_DIV_EXPR: 549 case CEIL_MOD_EXPR: 550 case FLOOR_MOD_EXPR: 551 case ROUND_MOD_EXPR: 552 case TRUNC_MOD_EXPR: 553 case RDIV_EXPR: 554 /* Division and multiplication are usually expensive. */ 555 cost += 20; 556 break; 557 558 case LSHIFT_EXPR: 559 case RSHIFT_EXPR: 560 cost += 20; 561 break; 562 563 default: 564 break; 565 } 566 567 return cost; 568 } 569 570 /* Finds the outermost loop between OUTER and LOOP in that the memory reference 571 REF is independent. If REF is not independent in LOOP, NULL is returned 572 instead. */ 573 574 static struct loop * 575 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref) 576 { 577 struct loop *aloop; 578 579 if (bitmap_bit_p (ref->stored, loop->num)) 580 return NULL; 581 582 for (aloop = outer; 583 aloop != loop; 584 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1)) 585 if (!bitmap_bit_p (ref->stored, aloop->num) 586 && ref_indep_loop_p (aloop, ref)) 587 return aloop; 588 589 if (ref_indep_loop_p (loop, ref)) 590 return loop; 591 else 592 return NULL; 593 } 594 595 /* If there is a simple load or store to a memory reference in STMT, returns 596 the location of the memory reference, and sets IS_STORE according to whether 597 it is a store or load. Otherwise, returns NULL. */ 598 599 static tree * 600 simple_mem_ref_in_stmt (gimple stmt, bool *is_store) 601 { 602 tree *lhs; 603 enum tree_code code; 604 605 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */ 606 if (gimple_code (stmt) != GIMPLE_ASSIGN) 607 return NULL; 608 609 code = gimple_assign_rhs_code (stmt); 610 611 lhs = gimple_assign_lhs_ptr (stmt); 612 613 if (TREE_CODE (*lhs) == SSA_NAME) 614 { 615 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS 616 || !is_gimple_addressable (gimple_assign_rhs1 (stmt))) 617 return NULL; 618 619 *is_store = false; 620 return gimple_assign_rhs1_ptr (stmt); 621 } 622 else if (code == SSA_NAME 623 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS 624 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))) 625 { 626 *is_store = true; 627 return lhs; 628 } 629 else 630 return NULL; 631 } 632 633 /* Returns the memory reference contained in STMT. */ 634 635 static mem_ref_p 636 mem_ref_in_stmt (gimple stmt) 637 { 638 bool store; 639 tree *mem = simple_mem_ref_in_stmt (stmt, &store); 640 hashval_t hash; 641 mem_ref_p ref; 642 643 if (!mem) 644 return NULL; 645 gcc_assert (!store); 646 647 hash = iterative_hash_expr (*mem, 0); 648 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash); 649 650 gcc_assert (ref != NULL); 651 return ref; 652 } 653 654 /* Determine the outermost loop to that it is possible to hoist a statement 655 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine 656 the outermost loop in that the value computed by STMT is invariant. 657 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that 658 we preserve the fact whether STMT is executed. It also fills other related 659 information to LIM_DATA (STMT). 660 661 The function returns false if STMT cannot be hoisted outside of the loop it 662 is defined in, and true otherwise. */ 663 664 static bool 665 determine_max_movement (gimple stmt, bool must_preserve_exec) 666 { 667 basic_block bb = gimple_bb (stmt); 668 struct loop *loop = bb->loop_father; 669 struct loop *level; 670 struct lim_aux_data *lim_data = get_lim_data (stmt); 671 tree val; 672 ssa_op_iter iter; 673 674 if (must_preserve_exec) 675 level = ALWAYS_EXECUTED_IN (bb); 676 else 677 level = superloop_at_depth (loop, 1); 678 lim_data->max_loop = level; 679 680 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE) 681 if (!add_dependency (val, lim_data, loop, true)) 682 return false; 683 684 if (gimple_vuse (stmt)) 685 { 686 mem_ref_p ref = mem_ref_in_stmt (stmt); 687 688 if (ref) 689 { 690 lim_data->max_loop 691 = outermost_indep_loop (lim_data->max_loop, loop, ref); 692 if (!lim_data->max_loop) 693 return false; 694 } 695 else 696 { 697 if ((val = gimple_vuse (stmt)) != NULL_TREE) 698 { 699 if (!add_dependency (val, lim_data, loop, false)) 700 return false; 701 } 702 } 703 } 704 705 lim_data->cost += stmt_cost (stmt); 706 707 return true; 708 } 709 710 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL, 711 and that one of the operands of this statement is computed by STMT. 712 Ensure that STMT (together with all the statements that define its 713 operands) is hoisted at least out of the loop LEVEL. */ 714 715 static void 716 set_level (gimple stmt, struct loop *orig_loop, struct loop *level) 717 { 718 struct loop *stmt_loop = gimple_bb (stmt)->loop_father; 719 struct depend *dep; 720 struct lim_aux_data *lim_data; 721 722 stmt_loop = find_common_loop (orig_loop, stmt_loop); 723 lim_data = get_lim_data (stmt); 724 if (lim_data != NULL && lim_data->tgt_loop != NULL) 725 stmt_loop = find_common_loop (stmt_loop, 726 loop_outer (lim_data->tgt_loop)); 727 if (flow_loop_nested_p (stmt_loop, level)) 728 return; 729 730 gcc_assert (level == lim_data->max_loop 731 || flow_loop_nested_p (lim_data->max_loop, level)); 732 733 lim_data->tgt_loop = level; 734 for (dep = lim_data->depends; dep; dep = dep->next) 735 set_level (dep->stmt, orig_loop, level); 736 } 737 738 /* Determines an outermost loop from that we want to hoist the statement STMT. 739 For now we chose the outermost possible loop. TODO -- use profiling 740 information to set it more sanely. */ 741 742 static void 743 set_profitable_level (gimple stmt) 744 { 745 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop); 746 } 747 748 /* Returns true if STMT is a call that has side effects. */ 749 750 static bool 751 nonpure_call_p (gimple stmt) 752 { 753 if (gimple_code (stmt) != GIMPLE_CALL) 754 return false; 755 756 return gimple_has_side_effects (stmt); 757 } 758 759 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */ 760 761 static gimple 762 rewrite_reciprocal (gimple_stmt_iterator *bsi) 763 { 764 gimple stmt, stmt1, stmt2; 765 tree var, name, lhs, type; 766 tree real_one; 767 gimple_stmt_iterator gsi; 768 769 stmt = gsi_stmt (*bsi); 770 lhs = gimple_assign_lhs (stmt); 771 type = TREE_TYPE (lhs); 772 773 var = create_tmp_var (type, "reciptmp"); 774 add_referenced_var (var); 775 DECL_GIMPLE_REG_P (var) = 1; 776 777 /* For vectors, create a VECTOR_CST full of 1's. */ 778 if (TREE_CODE (type) == VECTOR_TYPE) 779 { 780 int i, len; 781 tree list = NULL_TREE; 782 real_one = build_real (TREE_TYPE (type), dconst1); 783 len = TYPE_VECTOR_SUBPARTS (type); 784 for (i = 0; i < len; i++) 785 list = tree_cons (NULL, real_one, list); 786 real_one = build_vector (type, list); 787 } 788 else 789 real_one = build_real (type, dconst1); 790 791 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, 792 var, real_one, gimple_assign_rhs2 (stmt)); 793 name = make_ssa_name (var, stmt1); 794 gimple_assign_set_lhs (stmt1, name); 795 796 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name, 797 gimple_assign_rhs1 (stmt)); 798 799 /* Replace division stmt with reciprocal and multiply stmts. 800 The multiply stmt is not invariant, so update iterator 801 and avoid rescanning. */ 802 gsi = *bsi; 803 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); 804 gsi_replace (&gsi, stmt2, true); 805 806 /* Continue processing with invariant reciprocal statement. */ 807 return stmt1; 808 } 809 810 /* Check if the pattern at *BSI is a bittest of the form 811 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */ 812 813 static gimple 814 rewrite_bittest (gimple_stmt_iterator *bsi) 815 { 816 gimple stmt, use_stmt, stmt1, stmt2; 817 tree lhs, var, name, t, a, b; 818 use_operand_p use; 819 820 stmt = gsi_stmt (*bsi); 821 lhs = gimple_assign_lhs (stmt); 822 823 /* Verify that the single use of lhs is a comparison against zero. */ 824 if (TREE_CODE (lhs) != SSA_NAME 825 || !single_imm_use (lhs, &use, &use_stmt) 826 || gimple_code (use_stmt) != GIMPLE_COND) 827 return stmt; 828 if (gimple_cond_lhs (use_stmt) != lhs 829 || (gimple_cond_code (use_stmt) != NE_EXPR 830 && gimple_cond_code (use_stmt) != EQ_EXPR) 831 || !integer_zerop (gimple_cond_rhs (use_stmt))) 832 return stmt; 833 834 /* Get at the operands of the shift. The rhs is TMP1 & 1. */ 835 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 836 if (gimple_code (stmt1) != GIMPLE_ASSIGN) 837 return stmt; 838 839 /* There is a conversion in between possibly inserted by fold. */ 840 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1))) 841 { 842 t = gimple_assign_rhs1 (stmt1); 843 if (TREE_CODE (t) != SSA_NAME 844 || !has_single_use (t)) 845 return stmt; 846 stmt1 = SSA_NAME_DEF_STMT (t); 847 if (gimple_code (stmt1) != GIMPLE_ASSIGN) 848 return stmt; 849 } 850 851 /* Verify that B is loop invariant but A is not. Verify that with 852 all the stmt walking we are still in the same loop. */ 853 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR 854 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt)) 855 return stmt; 856 857 a = gimple_assign_rhs1 (stmt1); 858 b = gimple_assign_rhs2 (stmt1); 859 860 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL 861 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL) 862 { 863 gimple_stmt_iterator rsi; 864 865 /* 1 << B */ 866 var = create_tmp_var (TREE_TYPE (a), "shifttmp"); 867 add_referenced_var (var); 868 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a), 869 build_int_cst (TREE_TYPE (a), 1), b); 870 stmt1 = gimple_build_assign (var, t); 871 name = make_ssa_name (var, stmt1); 872 gimple_assign_set_lhs (stmt1, name); 873 874 /* A & (1 << B) */ 875 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name); 876 stmt2 = gimple_build_assign (var, t); 877 name = make_ssa_name (var, stmt2); 878 gimple_assign_set_lhs (stmt2, name); 879 880 /* Replace the SSA_NAME we compare against zero. Adjust 881 the type of zero accordingly. */ 882 SET_USE (use, name); 883 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0)); 884 885 /* Don't use gsi_replace here, none of the new assignments sets 886 the variable originally set in stmt. Move bsi to stmt1, and 887 then remove the original stmt, so that we get a chance to 888 retain debug info for it. */ 889 rsi = *bsi; 890 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); 891 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT); 892 gsi_remove (&rsi, true); 893 894 return stmt1; 895 } 896 897 return stmt; 898 } 899 900 901 /* Determine the outermost loops in that statements in basic block BB are 902 invariant, and record them to the LIM_DATA associated with the statements. 903 Callback for walk_dominator_tree. */ 904 905 static void 906 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED, 907 basic_block bb) 908 { 909 enum move_pos pos; 910 gimple_stmt_iterator bsi; 911 gimple stmt; 912 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL; 913 struct loop *outermost = ALWAYS_EXECUTED_IN (bb); 914 struct lim_aux_data *lim_data; 915 916 if (!loop_outer (bb->loop_father)) 917 return; 918 919 if (dump_file && (dump_flags & TDF_DETAILS)) 920 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n", 921 bb->index, bb->loop_father->num, loop_depth (bb->loop_father)); 922 923 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 924 { 925 stmt = gsi_stmt (bsi); 926 927 pos = movement_possibility (stmt); 928 if (pos == MOVE_IMPOSSIBLE) 929 { 930 if (nonpure_call_p (stmt)) 931 { 932 maybe_never = true; 933 outermost = NULL; 934 } 935 /* Make sure to note always_executed_in for stores to make 936 store-motion work. */ 937 else if (stmt_makes_single_store (stmt)) 938 { 939 struct lim_aux_data *lim_data = init_lim_data (stmt); 940 lim_data->always_executed_in = outermost; 941 } 942 continue; 943 } 944 945 if (is_gimple_assign (stmt) 946 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) 947 == GIMPLE_BINARY_RHS)) 948 { 949 tree op0 = gimple_assign_rhs1 (stmt); 950 tree op1 = gimple_assign_rhs2 (stmt); 951 struct loop *ol1 = outermost_invariant_loop (op1, 952 loop_containing_stmt (stmt)); 953 954 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal 955 to be hoisted out of loop, saving expensive divide. */ 956 if (pos == MOVE_POSSIBLE 957 && gimple_assign_rhs_code (stmt) == RDIV_EXPR 958 && flag_unsafe_math_optimizations 959 && !flag_trapping_math 960 && ol1 != NULL 961 && outermost_invariant_loop (op0, ol1) == NULL) 962 stmt = rewrite_reciprocal (&bsi); 963 964 /* If the shift count is invariant, convert (A >> B) & 1 to 965 A & (1 << B) allowing the bit mask to be hoisted out of the loop 966 saving an expensive shift. */ 967 if (pos == MOVE_POSSIBLE 968 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 969 && integer_onep (op1) 970 && TREE_CODE (op0) == SSA_NAME 971 && has_single_use (op0)) 972 stmt = rewrite_bittest (&bsi); 973 } 974 975 lim_data = init_lim_data (stmt); 976 lim_data->always_executed_in = outermost; 977 978 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION) 979 continue; 980 981 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION)) 982 { 983 lim_data->max_loop = NULL; 984 continue; 985 } 986 987 if (dump_file && (dump_flags & TDF_DETAILS)) 988 { 989 print_gimple_stmt (dump_file, stmt, 2, 0); 990 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", 991 loop_depth (lim_data->max_loop), 992 lim_data->cost); 993 } 994 995 if (lim_data->cost >= LIM_EXPENSIVE) 996 set_profitable_level (stmt); 997 } 998 } 999 1000 /* For each statement determines the outermost loop in that it is invariant, 1001 statements on whose motion it depends and the cost of the computation. 1002 This information is stored to the LIM_DATA structure associated with 1003 each statement. */ 1004 1005 static void 1006 determine_invariantness (void) 1007 { 1008 struct dom_walk_data walk_data; 1009 1010 memset (&walk_data, 0, sizeof (struct dom_walk_data)); 1011 walk_data.dom_direction = CDI_DOMINATORS; 1012 walk_data.before_dom_children = determine_invariantness_stmt; 1013 1014 init_walk_dominator_tree (&walk_data); 1015 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); 1016 fini_walk_dominator_tree (&walk_data); 1017 } 1018 1019 /* Hoist the statements in basic block BB out of the loops prescribed by 1020 data stored in LIM_DATA structures associated with each statement. Callback 1021 for walk_dominator_tree. */ 1022 1023 static void 1024 move_computations_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED, 1025 basic_block bb) 1026 { 1027 struct loop *level; 1028 gimple_stmt_iterator bsi; 1029 gimple stmt; 1030 unsigned cost = 0; 1031 struct lim_aux_data *lim_data; 1032 1033 if (!loop_outer (bb->loop_father)) 1034 return; 1035 1036 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); ) 1037 { 1038 stmt = gsi_stmt (bsi); 1039 1040 lim_data = get_lim_data (stmt); 1041 if (lim_data == NULL) 1042 { 1043 gsi_next (&bsi); 1044 continue; 1045 } 1046 1047 cost = lim_data->cost; 1048 level = lim_data->tgt_loop; 1049 clear_lim_data (stmt); 1050 1051 if (!level) 1052 { 1053 gsi_next (&bsi); 1054 continue; 1055 } 1056 1057 /* We do not really want to move conditionals out of the loop; we just 1058 placed it here to force its operands to be moved if necessary. */ 1059 if (gimple_code (stmt) == GIMPLE_COND) 1060 continue; 1061 1062 if (dump_file && (dump_flags & TDF_DETAILS)) 1063 { 1064 fprintf (dump_file, "Moving statement\n"); 1065 print_gimple_stmt (dump_file, stmt, 0, 0); 1066 fprintf (dump_file, "(cost %u) out of loop %d.\n\n", 1067 cost, level->num); 1068 } 1069 1070 mark_virtual_ops_for_renaming (stmt); 1071 gsi_insert_on_edge (loop_preheader_edge (level), stmt); 1072 gsi_remove (&bsi, false); 1073 } 1074 } 1075 1076 /* Hoist the statements out of the loops prescribed by data stored in 1077 LIM_DATA structures associated with each statement.*/ 1078 1079 static void 1080 move_computations (void) 1081 { 1082 struct dom_walk_data walk_data; 1083 1084 memset (&walk_data, 0, sizeof (struct dom_walk_data)); 1085 walk_data.dom_direction = CDI_DOMINATORS; 1086 walk_data.before_dom_children = move_computations_stmt; 1087 1088 init_walk_dominator_tree (&walk_data); 1089 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR); 1090 fini_walk_dominator_tree (&walk_data); 1091 1092 gsi_commit_edge_inserts (); 1093 if (need_ssa_update_p (cfun)) 1094 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1095 } 1096 1097 /* Checks whether the statement defining variable *INDEX can be hoisted 1098 out of the loop passed in DATA. Callback for for_each_index. */ 1099 1100 static bool 1101 may_move_till (tree ref, tree *index, void *data) 1102 { 1103 struct loop *loop = (struct loop *) data, *max_loop; 1104 1105 /* If REF is an array reference, check also that the step and the lower 1106 bound is invariant in LOOP. */ 1107 if (TREE_CODE (ref) == ARRAY_REF) 1108 { 1109 tree step = TREE_OPERAND (ref, 3); 1110 tree lbound = TREE_OPERAND (ref, 2); 1111 1112 max_loop = outermost_invariant_loop (step, loop); 1113 if (!max_loop) 1114 return false; 1115 1116 max_loop = outermost_invariant_loop (lbound, loop); 1117 if (!max_loop) 1118 return false; 1119 } 1120 1121 max_loop = outermost_invariant_loop (*index, loop); 1122 if (!max_loop) 1123 return false; 1124 1125 return true; 1126 } 1127 1128 /* If OP is SSA NAME, force the statement that defines it to be 1129 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */ 1130 1131 static void 1132 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop) 1133 { 1134 gimple stmt; 1135 1136 if (!op 1137 || is_gimple_min_invariant (op)) 1138 return; 1139 1140 gcc_assert (TREE_CODE (op) == SSA_NAME); 1141 1142 stmt = SSA_NAME_DEF_STMT (op); 1143 if (gimple_nop_p (stmt)) 1144 return; 1145 1146 set_level (stmt, orig_loop, loop); 1147 } 1148 1149 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of 1150 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for 1151 for_each_index. */ 1152 1153 struct fmt_data 1154 { 1155 struct loop *loop; 1156 struct loop *orig_loop; 1157 }; 1158 1159 static bool 1160 force_move_till (tree ref, tree *index, void *data) 1161 { 1162 struct fmt_data *fmt_data = (struct fmt_data *) data; 1163 1164 if (TREE_CODE (ref) == ARRAY_REF) 1165 { 1166 tree step = TREE_OPERAND (ref, 3); 1167 tree lbound = TREE_OPERAND (ref, 2); 1168 1169 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop); 1170 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop); 1171 } 1172 1173 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop); 1174 1175 return true; 1176 } 1177 1178 /* A hash function for struct mem_ref object OBJ. */ 1179 1180 static hashval_t 1181 memref_hash (const void *obj) 1182 { 1183 const struct mem_ref *const mem = (const struct mem_ref *) obj; 1184 1185 return mem->hash; 1186 } 1187 1188 /* An equality function for struct mem_ref object OBJ1 with 1189 memory reference OBJ2. */ 1190 1191 static int 1192 memref_eq (const void *obj1, const void *obj2) 1193 { 1194 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1; 1195 1196 return operand_equal_p (mem1->mem, (const_tree) obj2, 0); 1197 } 1198 1199 /* Releases list of memory reference locations ACCS. */ 1200 1201 static void 1202 free_mem_ref_locs (mem_ref_locs_p accs) 1203 { 1204 unsigned i; 1205 mem_ref_loc_p loc; 1206 1207 if (!accs) 1208 return; 1209 1210 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++) 1211 free (loc); 1212 VEC_free (mem_ref_loc_p, heap, accs->locs); 1213 free (accs); 1214 } 1215 1216 /* A function to free the mem_ref object OBJ. */ 1217 1218 static void 1219 memref_free (void *obj) 1220 { 1221 struct mem_ref *const mem = (struct mem_ref *) obj; 1222 unsigned i; 1223 mem_ref_locs_p accs; 1224 1225 BITMAP_FREE (mem->stored); 1226 BITMAP_FREE (mem->indep_loop); 1227 BITMAP_FREE (mem->dep_loop); 1228 BITMAP_FREE (mem->indep_ref); 1229 BITMAP_FREE (mem->dep_ref); 1230 1231 for (i = 0; VEC_iterate (mem_ref_locs_p, mem->accesses_in_loop, i, accs); i++) 1232 free_mem_ref_locs (accs); 1233 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop); 1234 1235 BITMAP_FREE (mem->vops); 1236 free (mem); 1237 } 1238 1239 /* Allocates and returns a memory reference description for MEM whose hash 1240 value is HASH and id is ID. */ 1241 1242 static mem_ref_p 1243 mem_ref_alloc (tree mem, unsigned hash, unsigned id) 1244 { 1245 mem_ref_p ref = XNEW (struct mem_ref); 1246 ref->mem = mem; 1247 ref->id = id; 1248 ref->hash = hash; 1249 ref->stored = BITMAP_ALLOC (NULL); 1250 ref->indep_loop = BITMAP_ALLOC (NULL); 1251 ref->dep_loop = BITMAP_ALLOC (NULL); 1252 ref->indep_ref = BITMAP_ALLOC (NULL); 1253 ref->dep_ref = BITMAP_ALLOC (NULL); 1254 ref->accesses_in_loop = NULL; 1255 ref->vops = BITMAP_ALLOC (NULL); 1256 1257 return ref; 1258 } 1259 1260 /* Allocates and returns the new list of locations. */ 1261 1262 static mem_ref_locs_p 1263 mem_ref_locs_alloc (void) 1264 { 1265 mem_ref_locs_p accs = XNEW (struct mem_ref_locs); 1266 accs->locs = NULL; 1267 return accs; 1268 } 1269 1270 /* Records memory reference location *LOC in LOOP to the memory reference 1271 description REF. The reference occurs in statement STMT. */ 1272 1273 static void 1274 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc) 1275 { 1276 mem_ref_loc_p aref = XNEW (struct mem_ref_loc); 1277 mem_ref_locs_p accs; 1278 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num); 1279 1280 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop) 1281 <= (unsigned) loop->num) 1282 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop, 1283 loop->num + 1); 1284 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num); 1285 if (!accs) 1286 { 1287 accs = mem_ref_locs_alloc (); 1288 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs); 1289 } 1290 1291 aref->stmt = stmt; 1292 aref->ref = loc; 1293 1294 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref); 1295 bitmap_set_bit (ril, ref->id); 1296 } 1297 1298 /* Marks reference REF as stored in LOOP. */ 1299 1300 static void 1301 mark_ref_stored (mem_ref_p ref, struct loop *loop) 1302 { 1303 for (; 1304 loop != current_loops->tree_root 1305 && !bitmap_bit_p (ref->stored, loop->num); 1306 loop = loop_outer (loop)) 1307 bitmap_set_bit (ref->stored, loop->num); 1308 } 1309 1310 /* Gathers memory references in statement STMT in LOOP, storing the 1311 information about them in the memory_accesses structure. Marks 1312 the vops accessed through unrecognized statements there as 1313 well. */ 1314 1315 static void 1316 gather_mem_refs_stmt (struct loop *loop, gimple stmt) 1317 { 1318 tree *mem = NULL; 1319 hashval_t hash; 1320 PTR *slot; 1321 mem_ref_p ref; 1322 tree vname; 1323 bool is_stored; 1324 bitmap clvops; 1325 unsigned id; 1326 1327 if (!gimple_vuse (stmt)) 1328 return; 1329 1330 mem = simple_mem_ref_in_stmt (stmt, &is_stored); 1331 if (!mem) 1332 goto fail; 1333 1334 hash = iterative_hash_expr (*mem, 0); 1335 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT); 1336 1337 if (*slot) 1338 { 1339 ref = (mem_ref_p) *slot; 1340 id = ref->id; 1341 } 1342 else 1343 { 1344 id = VEC_length (mem_ref_p, memory_accesses.refs_list); 1345 ref = mem_ref_alloc (*mem, hash, id); 1346 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref); 1347 *slot = ref; 1348 1349 if (dump_file && (dump_flags & TDF_DETAILS)) 1350 { 1351 fprintf (dump_file, "Memory reference %u: ", id); 1352 print_generic_expr (dump_file, ref->mem, TDF_SLIM); 1353 fprintf (dump_file, "\n"); 1354 } 1355 } 1356 if (is_stored) 1357 mark_ref_stored (ref, loop); 1358 1359 if ((vname = gimple_vuse (stmt)) != NULL_TREE) 1360 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname))); 1361 record_mem_ref_loc (ref, loop, stmt, mem); 1362 return; 1363 1364 fail: 1365 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num); 1366 if ((vname = gimple_vuse (stmt)) != NULL_TREE) 1367 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname))); 1368 } 1369 1370 /* Gathers memory references in loops. */ 1371 1372 static void 1373 gather_mem_refs_in_loops (void) 1374 { 1375 gimple_stmt_iterator bsi; 1376 basic_block bb; 1377 struct loop *loop; 1378 loop_iterator li; 1379 bitmap clvo, clvi; 1380 bitmap lrefs, alrefs, alrefso; 1381 1382 FOR_EACH_BB (bb) 1383 { 1384 loop = bb->loop_father; 1385 if (loop == current_loops->tree_root) 1386 continue; 1387 1388 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 1389 gather_mem_refs_stmt (loop, gsi_stmt (bsi)); 1390 } 1391 1392 /* Propagate the information about clobbered vops and accessed memory 1393 references up the loop hierarchy. */ 1394 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) 1395 { 1396 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num); 1397 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num); 1398 bitmap_ior_into (alrefs, lrefs); 1399 1400 if (loop_outer (loop) == current_loops->tree_root) 1401 continue; 1402 1403 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num); 1404 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops, 1405 loop_outer (loop)->num); 1406 bitmap_ior_into (clvo, clvi); 1407 1408 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop, 1409 loop_outer (loop)->num); 1410 bitmap_ior_into (alrefso, alrefs); 1411 } 1412 } 1413 1414 /* Element of the hash table that maps vops to memory references. */ 1415 1416 struct vop_to_refs_elt 1417 { 1418 /* DECL_UID of the vop. */ 1419 unsigned uid; 1420 1421 /* List of the all references. */ 1422 bitmap refs_all; 1423 1424 /* List of stored references. */ 1425 bitmap refs_stored; 1426 }; 1427 1428 /* A hash function for struct vop_to_refs_elt object OBJ. */ 1429 1430 static hashval_t 1431 vtoe_hash (const void *obj) 1432 { 1433 const struct vop_to_refs_elt *const vtoe = 1434 (const struct vop_to_refs_elt *) obj; 1435 1436 return vtoe->uid; 1437 } 1438 1439 /* An equality function for struct vop_to_refs_elt object OBJ1 with 1440 uid of a vop OBJ2. */ 1441 1442 static int 1443 vtoe_eq (const void *obj1, const void *obj2) 1444 { 1445 const struct vop_to_refs_elt *const vtoe = 1446 (const struct vop_to_refs_elt *) obj1; 1447 const unsigned *const uid = (const unsigned *) obj2; 1448 1449 return vtoe->uid == *uid; 1450 } 1451 1452 /* A function to free the struct vop_to_refs_elt object. */ 1453 1454 static void 1455 vtoe_free (void *obj) 1456 { 1457 struct vop_to_refs_elt *const vtoe = 1458 (struct vop_to_refs_elt *) obj; 1459 1460 BITMAP_FREE (vtoe->refs_all); 1461 BITMAP_FREE (vtoe->refs_stored); 1462 free (vtoe); 1463 } 1464 1465 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true 1466 if the reference REF is stored. */ 1467 1468 static void 1469 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored) 1470 { 1471 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT); 1472 struct vop_to_refs_elt *vtoe; 1473 1474 if (!*slot) 1475 { 1476 vtoe = XNEW (struct vop_to_refs_elt); 1477 vtoe->uid = vop; 1478 vtoe->refs_all = BITMAP_ALLOC (NULL); 1479 vtoe->refs_stored = BITMAP_ALLOC (NULL); 1480 *slot = vtoe; 1481 } 1482 else 1483 vtoe = (struct vop_to_refs_elt *) *slot; 1484 1485 bitmap_set_bit (vtoe->refs_all, ref); 1486 if (stored) 1487 bitmap_set_bit (vtoe->refs_stored, ref); 1488 } 1489 1490 /* Returns the set of references that access VOP according to the table 1491 VOP_TO_REFS. */ 1492 1493 static bitmap 1494 get_vop_accesses (htab_t vop_to_refs, unsigned vop) 1495 { 1496 struct vop_to_refs_elt *const vtoe = 1497 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop); 1498 return vtoe->refs_all; 1499 } 1500 1501 /* Returns the set of stores that access VOP according to the table 1502 VOP_TO_REFS. */ 1503 1504 static bitmap 1505 get_vop_stores (htab_t vop_to_refs, unsigned vop) 1506 { 1507 struct vop_to_refs_elt *const vtoe = 1508 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop); 1509 return vtoe->refs_stored; 1510 } 1511 1512 /* Adds REF to mapping from virtual operands to references in LOOP. */ 1513 1514 static void 1515 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref) 1516 { 1517 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num); 1518 bool stored = bitmap_bit_p (ref->stored, loop->num); 1519 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, 1520 loop->num); 1521 bitmap_iterator bi; 1522 unsigned vop; 1523 1524 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi) 1525 { 1526 record_vop_access (map, vop, ref->id, stored); 1527 } 1528 } 1529 1530 /* Create a mapping from virtual operands to references that touch them 1531 in LOOP. */ 1532 1533 static void 1534 create_vop_ref_mapping_loop (struct loop *loop) 1535 { 1536 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num); 1537 struct loop *sloop; 1538 bitmap_iterator bi; 1539 unsigned i; 1540 mem_ref_p ref; 1541 1542 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi) 1543 { 1544 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 1545 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop)) 1546 add_vop_ref_mapping (sloop, ref); 1547 } 1548 } 1549 1550 /* For each non-clobbered virtual operand and each loop, record the memory 1551 references in this loop that touch the operand. */ 1552 1553 static void 1554 create_vop_ref_mapping (void) 1555 { 1556 loop_iterator li; 1557 struct loop *loop; 1558 1559 FOR_EACH_LOOP (li, loop, 0) 1560 { 1561 create_vop_ref_mapping_loop (loop); 1562 } 1563 } 1564 1565 /* Gathers information about memory accesses in the loops. */ 1566 1567 static void 1568 analyze_memory_references (void) 1569 { 1570 unsigned i; 1571 bitmap empty; 1572 htab_t hempty; 1573 1574 memory_accesses.refs 1575 = htab_create (100, memref_hash, memref_eq, memref_free); 1576 memory_accesses.refs_list = NULL; 1577 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap, 1578 number_of_loops ()); 1579 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap, 1580 number_of_loops ()); 1581 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap, 1582 number_of_loops ()); 1583 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap, 1584 number_of_loops ()); 1585 1586 for (i = 0; i < number_of_loops (); i++) 1587 { 1588 empty = BITMAP_ALLOC (NULL); 1589 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty); 1590 empty = BITMAP_ALLOC (NULL); 1591 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty); 1592 empty = BITMAP_ALLOC (NULL); 1593 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty); 1594 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free); 1595 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty); 1596 } 1597 1598 memory_accesses.ttae_cache = NULL; 1599 1600 gather_mem_refs_in_loops (); 1601 create_vop_ref_mapping (); 1602 } 1603 1604 /* Returns true if a region of size SIZE1 at position 0 and a region of 1605 size SIZE2 at position DIFF cannot overlap. */ 1606 1607 static bool 1608 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2) 1609 { 1610 double_int d, bound; 1611 1612 /* Unless the difference is a constant, we fail. */ 1613 if (diff->n != 0) 1614 return false; 1615 1616 d = diff->offset; 1617 if (double_int_negative_p (d)) 1618 { 1619 /* The second object is before the first one, we succeed if the last 1620 element of the second object is before the start of the first one. */ 1621 bound = double_int_add (d, double_int_add (size2, double_int_minus_one)); 1622 return double_int_negative_p (bound); 1623 } 1624 else 1625 { 1626 /* We succeed if the second object starts after the first one ends. */ 1627 return double_int_scmp (size1, d) <= 0; 1628 } 1629 } 1630 1631 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in 1632 tree_to_aff_combination_expand. */ 1633 1634 static bool 1635 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache) 1636 { 1637 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same 1638 object and their offset differ in such a way that the locations cannot 1639 overlap, then they cannot alias. */ 1640 double_int size1, size2; 1641 aff_tree off1, off2; 1642 1643 /* Perform basic offset and type-based disambiguation. */ 1644 if (!refs_may_alias_p (mem1, mem2)) 1645 return false; 1646 1647 /* The expansion of addresses may be a bit expensive, thus we only do 1648 the check at -O2 and higher optimization levels. */ 1649 if (optimize < 2) 1650 return true; 1651 1652 get_inner_reference_aff (mem1, &off1, &size1); 1653 get_inner_reference_aff (mem2, &off2, &size2); 1654 aff_combination_expand (&off1, ttae_cache); 1655 aff_combination_expand (&off2, ttae_cache); 1656 aff_combination_scale (&off1, double_int_minus_one); 1657 aff_combination_add (&off2, &off1); 1658 1659 if (cannot_overlap_p (&off2, size1, size2)) 1660 return false; 1661 1662 return true; 1663 } 1664 1665 /* Rewrites location LOC by TMP_VAR. */ 1666 1667 static void 1668 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var) 1669 { 1670 mark_virtual_ops_for_renaming (loc->stmt); 1671 *loc->ref = tmp_var; 1672 update_stmt (loc->stmt); 1673 } 1674 1675 /* Adds all locations of REF in LOOP and its subloops to LOCS. */ 1676 1677 static void 1678 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref, 1679 VEC (mem_ref_loc_p, heap) **locs) 1680 { 1681 mem_ref_locs_p accs; 1682 unsigned i; 1683 mem_ref_loc_p loc; 1684 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, 1685 loop->num); 1686 struct loop *subloop; 1687 1688 if (!bitmap_bit_p (refs, ref->id)) 1689 return; 1690 1691 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop) 1692 > (unsigned) loop->num) 1693 { 1694 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num); 1695 if (accs) 1696 { 1697 for (i = 0; VEC_iterate (mem_ref_loc_p, accs->locs, i, loc); i++) 1698 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc); 1699 } 1700 } 1701 1702 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) 1703 get_all_locs_in_loop (subloop, ref, locs); 1704 } 1705 1706 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */ 1707 1708 static void 1709 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var) 1710 { 1711 unsigned i; 1712 mem_ref_loc_p loc; 1713 VEC (mem_ref_loc_p, heap) *locs = NULL; 1714 1715 get_all_locs_in_loop (loop, ref, &locs); 1716 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++) 1717 rewrite_mem_ref_loc (loc, tmp_var); 1718 VEC_free (mem_ref_loc_p, heap, locs); 1719 } 1720 1721 /* The name and the length of the currently generated variable 1722 for lsm. */ 1723 #define MAX_LSM_NAME_LENGTH 40 1724 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1]; 1725 static int lsm_tmp_name_length; 1726 1727 /* Adds S to lsm_tmp_name. */ 1728 1729 static void 1730 lsm_tmp_name_add (const char *s) 1731 { 1732 int l = strlen (s) + lsm_tmp_name_length; 1733 if (l > MAX_LSM_NAME_LENGTH) 1734 return; 1735 1736 strcpy (lsm_tmp_name + lsm_tmp_name_length, s); 1737 lsm_tmp_name_length = l; 1738 } 1739 1740 /* Stores the name for temporary variable that replaces REF to 1741 lsm_tmp_name. */ 1742 1743 static void 1744 gen_lsm_tmp_name (tree ref) 1745 { 1746 const char *name; 1747 1748 switch (TREE_CODE (ref)) 1749 { 1750 case MISALIGNED_INDIRECT_REF: 1751 case ALIGN_INDIRECT_REF: 1752 case INDIRECT_REF: 1753 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1754 lsm_tmp_name_add ("_"); 1755 break; 1756 1757 case BIT_FIELD_REF: 1758 case VIEW_CONVERT_EXPR: 1759 case ARRAY_RANGE_REF: 1760 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1761 break; 1762 1763 case REALPART_EXPR: 1764 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1765 lsm_tmp_name_add ("_RE"); 1766 break; 1767 1768 case IMAGPART_EXPR: 1769 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1770 lsm_tmp_name_add ("_IM"); 1771 break; 1772 1773 case COMPONENT_REF: 1774 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1775 lsm_tmp_name_add ("_"); 1776 name = get_name (TREE_OPERAND (ref, 1)); 1777 if (!name) 1778 name = "F"; 1779 lsm_tmp_name_add (name); 1780 break; 1781 1782 case ARRAY_REF: 1783 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1784 lsm_tmp_name_add ("_I"); 1785 break; 1786 1787 case SSA_NAME: 1788 ref = SSA_NAME_VAR (ref); 1789 /* Fallthru. */ 1790 1791 case VAR_DECL: 1792 case PARM_DECL: 1793 name = get_name (ref); 1794 if (!name) 1795 name = "D"; 1796 lsm_tmp_name_add (name); 1797 break; 1798 1799 case STRING_CST: 1800 lsm_tmp_name_add ("S"); 1801 break; 1802 1803 case RESULT_DECL: 1804 lsm_tmp_name_add ("R"); 1805 break; 1806 1807 case INTEGER_CST: 1808 /* Nothing. */ 1809 break; 1810 1811 default: 1812 gcc_unreachable (); 1813 } 1814 } 1815 1816 /* Determines name for temporary variable that replaces REF. 1817 The name is accumulated into the lsm_tmp_name variable. 1818 N is added to the name of the temporary. */ 1819 1820 char * 1821 get_lsm_tmp_name (tree ref, unsigned n) 1822 { 1823 char ns[2]; 1824 1825 lsm_tmp_name_length = 0; 1826 gen_lsm_tmp_name (ref); 1827 lsm_tmp_name_add ("_lsm"); 1828 if (n < 10) 1829 { 1830 ns[0] = '0' + n; 1831 ns[1] = 0; 1832 lsm_tmp_name_add (ns); 1833 } 1834 return lsm_tmp_name; 1835 } 1836 1837 /* Executes store motion of memory reference REF from LOOP. 1838 Exits from the LOOP are stored in EXITS. The initialization of the 1839 temporary variable is put to the preheader of the loop, and assignments 1840 to the reference from the temporary variable are emitted to exits. */ 1841 1842 static void 1843 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref) 1844 { 1845 tree tmp_var; 1846 unsigned i; 1847 gimple load, store; 1848 struct fmt_data fmt_data; 1849 edge ex; 1850 struct lim_aux_data *lim_data; 1851 1852 if (dump_file && (dump_flags & TDF_DETAILS)) 1853 { 1854 fprintf (dump_file, "Executing store motion of "); 1855 print_generic_expr (dump_file, ref->mem, 0); 1856 fprintf (dump_file, " from loop %d\n", loop->num); 1857 } 1858 1859 tmp_var = make_rename_temp (TREE_TYPE (ref->mem), 1860 get_lsm_tmp_name (ref->mem, ~0)); 1861 1862 fmt_data.loop = loop; 1863 fmt_data.orig_loop = loop; 1864 for_each_index (&ref->mem, force_move_till, &fmt_data); 1865 1866 rewrite_mem_refs (loop, ref, tmp_var); 1867 1868 /* Emit the load & stores. */ 1869 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem)); 1870 lim_data = init_lim_data (load); 1871 lim_data->max_loop = loop; 1872 lim_data->tgt_loop = loop; 1873 1874 /* Put this into the latch, so that we are sure it will be processed after 1875 all dependencies. */ 1876 gsi_insert_on_edge (loop_latch_edge (loop), load); 1877 1878 for (i = 0; VEC_iterate (edge, exits, i, ex); i++) 1879 { 1880 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var); 1881 gsi_insert_on_edge (ex, store); 1882 } 1883 } 1884 1885 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit 1886 edges of the LOOP. */ 1887 1888 static void 1889 hoist_memory_references (struct loop *loop, bitmap mem_refs, 1890 VEC (edge, heap) *exits) 1891 { 1892 mem_ref_p ref; 1893 unsigned i; 1894 bitmap_iterator bi; 1895 1896 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) 1897 { 1898 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 1899 execute_sm (loop, exits, ref); 1900 } 1901 } 1902 1903 /* Returns true if REF is always accessed in LOOP. If STORED_P is true 1904 make sure REF is always stored to in LOOP. */ 1905 1906 static bool 1907 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p) 1908 { 1909 VEC (mem_ref_loc_p, heap) *locs = NULL; 1910 unsigned i; 1911 mem_ref_loc_p loc; 1912 bool ret = false; 1913 struct loop *must_exec; 1914 tree base; 1915 1916 base = get_base_address (ref->mem); 1917 if (INDIRECT_REF_P (base)) 1918 base = TREE_OPERAND (base, 0); 1919 1920 get_all_locs_in_loop (loop, ref, &locs); 1921 for (i = 0; VEC_iterate (mem_ref_loc_p, locs, i, loc); i++) 1922 { 1923 if (!get_lim_data (loc->stmt)) 1924 continue; 1925 1926 /* If we require an always executed store make sure the statement 1927 stores to the reference. */ 1928 if (stored_p) 1929 { 1930 tree lhs; 1931 if (!gimple_get_lhs (loc->stmt)) 1932 continue; 1933 lhs = get_base_address (gimple_get_lhs (loc->stmt)); 1934 if (!lhs) 1935 continue; 1936 if (INDIRECT_REF_P (lhs)) 1937 lhs = TREE_OPERAND (lhs, 0); 1938 if (lhs != base) 1939 continue; 1940 } 1941 1942 must_exec = get_lim_data (loc->stmt)->always_executed_in; 1943 if (!must_exec) 1944 continue; 1945 1946 if (must_exec == loop 1947 || flow_loop_nested_p (must_exec, loop)) 1948 { 1949 ret = true; 1950 break; 1951 } 1952 } 1953 VEC_free (mem_ref_loc_p, heap, locs); 1954 1955 return ret; 1956 } 1957 1958 /* Returns true if REF1 and REF2 are independent. */ 1959 1960 static bool 1961 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2) 1962 { 1963 if (ref1 == ref2 1964 || bitmap_bit_p (ref1->indep_ref, ref2->id)) 1965 return true; 1966 if (bitmap_bit_p (ref1->dep_ref, ref2->id)) 1967 return false; 1968 1969 if (dump_file && (dump_flags & TDF_DETAILS)) 1970 fprintf (dump_file, "Querying dependency of refs %u and %u: ", 1971 ref1->id, ref2->id); 1972 1973 if (mem_refs_may_alias_p (ref1->mem, ref2->mem, 1974 &memory_accesses.ttae_cache)) 1975 { 1976 bitmap_set_bit (ref1->dep_ref, ref2->id); 1977 bitmap_set_bit (ref2->dep_ref, ref1->id); 1978 if (dump_file && (dump_flags & TDF_DETAILS)) 1979 fprintf (dump_file, "dependent.\n"); 1980 return false; 1981 } 1982 else 1983 { 1984 bitmap_set_bit (ref1->indep_ref, ref2->id); 1985 bitmap_set_bit (ref2->indep_ref, ref1->id); 1986 if (dump_file && (dump_flags & TDF_DETAILS)) 1987 fprintf (dump_file, "independent.\n"); 1988 return true; 1989 } 1990 } 1991 1992 /* Records the information whether REF is independent in LOOP (according 1993 to INDEP). */ 1994 1995 static void 1996 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep) 1997 { 1998 if (indep) 1999 bitmap_set_bit (ref->indep_loop, loop->num); 2000 else 2001 bitmap_set_bit (ref->dep_loop, loop->num); 2002 } 2003 2004 /* Returns true if REF is independent on all other memory references in 2005 LOOP. */ 2006 2007 static bool 2008 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref) 2009 { 2010 bitmap clobbers, refs_to_check, refs; 2011 unsigned i; 2012 bitmap_iterator bi; 2013 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num); 2014 htab_t map; 2015 mem_ref_p aref; 2016 2017 /* If the reference is clobbered, it is not independent. */ 2018 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num); 2019 if (bitmap_intersect_p (ref->vops, clobbers)) 2020 return false; 2021 2022 refs_to_check = BITMAP_ALLOC (NULL); 2023 2024 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num); 2025 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi) 2026 { 2027 if (stored) 2028 refs = get_vop_accesses (map, i); 2029 else 2030 refs = get_vop_stores (map, i); 2031 2032 bitmap_ior_into (refs_to_check, refs); 2033 } 2034 2035 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi) 2036 { 2037 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 2038 if (!refs_independent_p (ref, aref)) 2039 { 2040 ret = false; 2041 record_indep_loop (loop, aref, false); 2042 break; 2043 } 2044 } 2045 2046 BITMAP_FREE (refs_to_check); 2047 return ret; 2048 } 2049 2050 /* Returns true if REF is independent on all other memory references in 2051 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */ 2052 2053 static bool 2054 ref_indep_loop_p (struct loop *loop, mem_ref_p ref) 2055 { 2056 bool ret; 2057 2058 if (bitmap_bit_p (ref->indep_loop, loop->num)) 2059 return true; 2060 if (bitmap_bit_p (ref->dep_loop, loop->num)) 2061 return false; 2062 2063 ret = ref_indep_loop_p_1 (loop, ref); 2064 2065 if (dump_file && (dump_flags & TDF_DETAILS)) 2066 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n", 2067 ref->id, loop->num, ret ? "independent" : "dependent"); 2068 2069 record_indep_loop (loop, ref, ret); 2070 2071 return ret; 2072 } 2073 2074 /* Returns true if we can perform store motion of REF from LOOP. */ 2075 2076 static bool 2077 can_sm_ref_p (struct loop *loop, mem_ref_p ref) 2078 { 2079 tree base; 2080 2081 /* Unless the reference is stored in the loop, there is nothing to do. */ 2082 if (!bitmap_bit_p (ref->stored, loop->num)) 2083 return false; 2084 2085 /* It should be movable. */ 2086 if (!is_gimple_reg_type (TREE_TYPE (ref->mem)) 2087 || TREE_THIS_VOLATILE (ref->mem) 2088 || !for_each_index (&ref->mem, may_move_till, loop)) 2089 return false; 2090 2091 /* If it can trap, it must be always executed in LOOP. 2092 Readonly memory locations may trap when storing to them, but 2093 tree_could_trap_p is a predicate for rvalues, so check that 2094 explicitly. */ 2095 base = get_base_address (ref->mem); 2096 if ((tree_could_trap_p (ref->mem) 2097 || (DECL_P (base) && TREE_READONLY (base))) 2098 && !ref_always_accessed_p (loop, ref, true)) 2099 return false; 2100 2101 /* And it must be independent on all other memory references 2102 in LOOP. */ 2103 if (!ref_indep_loop_p (loop, ref)) 2104 return false; 2105 2106 return true; 2107 } 2108 2109 /* Marks the references in LOOP for that store motion should be performed 2110 in REFS_TO_SM. SM_EXECUTED is the set of references for that store 2111 motion was performed in one of the outer loops. */ 2112 2113 static void 2114 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm) 2115 { 2116 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, 2117 loop->num); 2118 unsigned i; 2119 bitmap_iterator bi; 2120 mem_ref_p ref; 2121 2122 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi) 2123 { 2124 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 2125 if (can_sm_ref_p (loop, ref)) 2126 bitmap_set_bit (refs_to_sm, i); 2127 } 2128 } 2129 2130 /* Checks whether LOOP (with exits stored in EXITS array) is suitable 2131 for a store motion optimization (i.e. whether we can insert statement 2132 on its exits). */ 2133 2134 static bool 2135 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED, 2136 VEC (edge, heap) *exits) 2137 { 2138 unsigned i; 2139 edge ex; 2140 2141 for (i = 0; VEC_iterate (edge, exits, i, ex); i++) 2142 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH)) 2143 return false; 2144 2145 return true; 2146 } 2147 2148 /* Try to perform store motion for all memory references modified inside 2149 LOOP. SM_EXECUTED is the bitmap of the memory references for that 2150 store motion was executed in one of the outer loops. */ 2151 2152 static void 2153 store_motion_loop (struct loop *loop, bitmap sm_executed) 2154 { 2155 VEC (edge, heap) *exits = get_loop_exit_edges (loop); 2156 struct loop *subloop; 2157 bitmap sm_in_loop = BITMAP_ALLOC (NULL); 2158 2159 if (loop_suitable_for_sm (loop, exits)) 2160 { 2161 find_refs_for_sm (loop, sm_executed, sm_in_loop); 2162 hoist_memory_references (loop, sm_in_loop, exits); 2163 } 2164 VEC_free (edge, heap, exits); 2165 2166 bitmap_ior_into (sm_executed, sm_in_loop); 2167 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) 2168 store_motion_loop (subloop, sm_executed); 2169 bitmap_and_compl_into (sm_executed, sm_in_loop); 2170 BITMAP_FREE (sm_in_loop); 2171 } 2172 2173 /* Try to perform store motion for all memory references modified inside 2174 loops. */ 2175 2176 static void 2177 store_motion (void) 2178 { 2179 struct loop *loop; 2180 bitmap sm_executed = BITMAP_ALLOC (NULL); 2181 2182 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) 2183 store_motion_loop (loop, sm_executed); 2184 2185 BITMAP_FREE (sm_executed); 2186 gsi_commit_edge_inserts (); 2187 } 2188 2189 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e. 2190 for each such basic block bb records the outermost loop for that execution 2191 of its header implies execution of bb. CONTAINS_CALL is the bitmap of 2192 blocks that contain a nonpure call. */ 2193 2194 static void 2195 fill_always_executed_in (struct loop *loop, sbitmap contains_call) 2196 { 2197 basic_block bb = NULL, *bbs, last = NULL; 2198 unsigned i; 2199 edge e; 2200 struct loop *inn_loop = loop; 2201 2202 if (!loop->header->aux) 2203 { 2204 bbs = get_loop_body_in_dom_order (loop); 2205 2206 for (i = 0; i < loop->num_nodes; i++) 2207 { 2208 edge_iterator ei; 2209 bb = bbs[i]; 2210 2211 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 2212 last = bb; 2213 2214 if (TEST_BIT (contains_call, bb->index)) 2215 break; 2216 2217 FOR_EACH_EDGE (e, ei, bb->succs) 2218 if (!flow_bb_inside_loop_p (loop, e->dest)) 2219 break; 2220 if (e) 2221 break; 2222 2223 /* A loop might be infinite (TODO use simple loop analysis 2224 to disprove this if possible). */ 2225 if (bb->flags & BB_IRREDUCIBLE_LOOP) 2226 break; 2227 2228 if (!flow_bb_inside_loop_p (inn_loop, bb)) 2229 break; 2230 2231 if (bb->loop_father->header == bb) 2232 { 2233 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 2234 break; 2235 2236 /* In a loop that is always entered we may proceed anyway. 2237 But record that we entered it and stop once we leave it. */ 2238 inn_loop = bb->loop_father; 2239 } 2240 } 2241 2242 while (1) 2243 { 2244 last->aux = loop; 2245 if (last == loop->header) 2246 break; 2247 last = get_immediate_dominator (CDI_DOMINATORS, last); 2248 } 2249 2250 free (bbs); 2251 } 2252 2253 for (loop = loop->inner; loop; loop = loop->next) 2254 fill_always_executed_in (loop, contains_call); 2255 } 2256 2257 /* Compute the global information needed by the loop invariant motion pass. */ 2258 2259 static void 2260 tree_ssa_lim_initialize (void) 2261 { 2262 sbitmap contains_call = sbitmap_alloc (last_basic_block); 2263 gimple_stmt_iterator bsi; 2264 struct loop *loop; 2265 basic_block bb; 2266 2267 sbitmap_zero (contains_call); 2268 FOR_EACH_BB (bb) 2269 { 2270 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 2271 { 2272 if (nonpure_call_p (gsi_stmt (bsi))) 2273 break; 2274 } 2275 2276 if (!gsi_end_p (bsi)) 2277 SET_BIT (contains_call, bb->index); 2278 } 2279 2280 for (loop = current_loops->tree_root->inner; loop; loop = loop->next) 2281 fill_always_executed_in (loop, contains_call); 2282 2283 sbitmap_free (contains_call); 2284 2285 lim_aux_data_map = pointer_map_create (); 2286 } 2287 2288 /* Cleans up after the invariant motion pass. */ 2289 2290 static void 2291 tree_ssa_lim_finalize (void) 2292 { 2293 basic_block bb; 2294 unsigned i; 2295 bitmap b; 2296 htab_t h; 2297 2298 FOR_EACH_BB (bb) 2299 { 2300 bb->aux = NULL; 2301 } 2302 2303 pointer_map_destroy (lim_aux_data_map); 2304 2305 VEC_free (mem_ref_p, heap, memory_accesses.refs_list); 2306 htab_delete (memory_accesses.refs); 2307 2308 for (i = 0; VEC_iterate (bitmap, memory_accesses.refs_in_loop, i, b); i++) 2309 BITMAP_FREE (b); 2310 VEC_free (bitmap, heap, memory_accesses.refs_in_loop); 2311 2312 for (i = 0; VEC_iterate (bitmap, memory_accesses.all_refs_in_loop, i, b); i++) 2313 BITMAP_FREE (b); 2314 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop); 2315 2316 for (i = 0; VEC_iterate (bitmap, memory_accesses.clobbered_vops, i, b); i++) 2317 BITMAP_FREE (b); 2318 VEC_free (bitmap, heap, memory_accesses.clobbered_vops); 2319 2320 for (i = 0; VEC_iterate (htab_t, memory_accesses.vop_ref_map, i, h); i++) 2321 htab_delete (h); 2322 VEC_free (htab_t, heap, memory_accesses.vop_ref_map); 2323 2324 if (memory_accesses.ttae_cache) 2325 pointer_map_destroy (memory_accesses.ttae_cache); 2326 } 2327 2328 /* Moves invariants from loops. Only "expensive" invariants are moved out -- 2329 i.e. those that are likely to be win regardless of the register pressure. */ 2330 2331 void 2332 tree_ssa_lim (void) 2333 { 2334 tree_ssa_lim_initialize (); 2335 2336 /* Gathers information about memory accesses in the loops. */ 2337 analyze_memory_references (); 2338 2339 /* For each statement determine the outermost loop in that it is 2340 invariant and cost for computing the invariant. */ 2341 determine_invariantness (); 2342 2343 /* Execute store motion. Force the necessary invariants to be moved 2344 out of the loops as well. */ 2345 store_motion (); 2346 2347 /* Move the expressions that are expensive enough. */ 2348 move_computations (); 2349 2350 tree_ssa_lim_finalize (); 2351 } 2352