1 /* Loop invariant motion. 2 Copyright (C) 2003-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "tree.h" 25 #include "gimple.h" 26 #include "cfghooks.h" 27 #include "tree-pass.h" 28 #include "ssa.h" 29 #include "gimple-pretty-print.h" 30 #include "fold-const.h" 31 #include "cfganal.h" 32 #include "tree-eh.h" 33 #include "gimplify.h" 34 #include "gimple-iterator.h" 35 #include "tree-cfg.h" 36 #include "tree-ssa-loop-manip.h" 37 #include "tree-ssa-loop.h" 38 #include "tree-into-ssa.h" 39 #include "cfgloop.h" 40 #include "domwalk.h" 41 #include "params.h" 42 #include "tree-affine.h" 43 #include "tree-ssa-propagate.h" 44 #include "trans-mem.h" 45 #include "gimple-fold.h" 46 #include "tree-scalar-evolution.h" 47 #include "tree-ssa-loop-niter.h" 48 49 /* TODO: Support for predicated code motion. I.e. 50 51 while (1) 52 { 53 if (cond) 54 { 55 a = inv; 56 something; 57 } 58 } 59 60 Where COND and INV are invariants, but evaluating INV may trap or be 61 invalid from some other reason if !COND. This may be transformed to 62 63 if (cond) 64 a = inv; 65 while (1) 66 { 67 if (cond) 68 something; 69 } */ 70 71 /* The auxiliary data kept for each statement. */ 72 73 struct lim_aux_data 74 { 75 struct loop *max_loop; /* The outermost loop in that the statement 76 is invariant. */ 77 78 struct loop *tgt_loop; /* The loop out of that we want to move the 79 invariant. */ 80 81 struct loop *always_executed_in; 82 /* The outermost loop for that we are sure 83 the statement is executed if the loop 84 is entered. */ 85 86 unsigned cost; /* Cost of the computation performed by the 87 statement. */ 88 89 vec<gimple *> depends; /* Vector of statements that must be also 90 hoisted out of the loop when this statement 91 is hoisted; i.e. those that define the 92 operands of the statement and are inside of 93 the MAX_LOOP loop. */ 94 }; 95 96 /* Maps statements to their lim_aux_data. */ 97 98 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map; 99 100 /* Description of a memory reference location. */ 101 102 struct mem_ref_loc 103 { 104 tree *ref; /* The reference itself. */ 105 gimple *stmt; /* The statement in that it occurs. */ 106 }; 107 108 109 /* Description of a memory reference. */ 110 111 struct im_mem_ref 112 { 113 unsigned id; /* ID assigned to the memory reference 114 (its index in memory_accesses.refs_list) */ 115 hashval_t hash; /* Its hash value. */ 116 117 /* The memory access itself and associated caching of alias-oracle 118 query meta-data. */ 119 ao_ref mem; 120 121 bitmap stored; /* The set of loops in that this memory location 122 is stored to. */ 123 vec<mem_ref_loc> accesses_in_loop; 124 /* The locations of the accesses. Vector 125 indexed by the loop number. */ 126 127 /* The following sets are computed on demand. We keep both set and 128 its complement, so that we know whether the information was 129 already computed or not. */ 130 bitmap_head indep_loop; /* The set of loops in that the memory 131 reference is independent, meaning: 132 If it is stored in the loop, this store 133 is independent on all other loads and 134 stores. 135 If it is only loaded, then it is independent 136 on all stores in the loop. */ 137 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */ 138 }; 139 140 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first 141 to record (in)dependence against stores in the loop and its subloops, the 142 second to record (in)dependence against all references in the loop 143 and its subloops. */ 144 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0)) 145 146 /* Mem_ref hashtable helpers. */ 147 148 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref> 149 { 150 typedef tree_node *compare_type; 151 static inline hashval_t hash (const im_mem_ref *); 152 static inline bool equal (const im_mem_ref *, const tree_node *); 153 }; 154 155 /* A hash function for struct im_mem_ref object OBJ. */ 156 157 inline hashval_t 158 mem_ref_hasher::hash (const im_mem_ref *mem) 159 { 160 return mem->hash; 161 } 162 163 /* An equality function for struct im_mem_ref object MEM1 with 164 memory reference OBJ2. */ 165 166 inline bool 167 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2) 168 { 169 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0); 170 } 171 172 173 /* Description of memory accesses in loops. */ 174 175 static struct 176 { 177 /* The hash table of memory references accessed in loops. */ 178 hash_table<mem_ref_hasher> *refs; 179 180 /* The list of memory references. */ 181 vec<im_mem_ref *> refs_list; 182 183 /* The set of memory references accessed in each loop. */ 184 vec<bitmap_head> refs_in_loop; 185 186 /* The set of memory references stored in each loop. */ 187 vec<bitmap_head> refs_stored_in_loop; 188 189 /* The set of memory references stored in each loop, including subloops . */ 190 vec<bitmap_head> all_refs_stored_in_loop; 191 192 /* Cache for expanding memory addresses. */ 193 hash_map<tree, name_expansion *> *ttae_cache; 194 } memory_accesses; 195 196 /* Obstack for the bitmaps in the above data structures. */ 197 static bitmap_obstack lim_bitmap_obstack; 198 static obstack mem_ref_obstack; 199 200 static bool ref_indep_loop_p (struct loop *, im_mem_ref *); 201 202 /* Minimum cost of an expensive expression. */ 203 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE)) 204 205 /* The outermost loop for which execution of the header guarantees that the 206 block will be executed. */ 207 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux) 208 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL)) 209 210 /* ID of the shared unanalyzable mem. */ 211 #define UNANALYZABLE_MEM_ID 0 212 213 /* Whether the reference was analyzable. */ 214 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID) 215 216 static struct lim_aux_data * 217 init_lim_data (gimple *stmt) 218 { 219 lim_aux_data *p = XCNEW (struct lim_aux_data); 220 lim_aux_data_map->put (stmt, p); 221 222 return p; 223 } 224 225 static struct lim_aux_data * 226 get_lim_data (gimple *stmt) 227 { 228 lim_aux_data **p = lim_aux_data_map->get (stmt); 229 if (!p) 230 return NULL; 231 232 return *p; 233 } 234 235 /* Releases the memory occupied by DATA. */ 236 237 static void 238 free_lim_aux_data (struct lim_aux_data *data) 239 { 240 data->depends.release (); 241 free (data); 242 } 243 244 static void 245 clear_lim_data (gimple *stmt) 246 { 247 lim_aux_data **p = lim_aux_data_map->get (stmt); 248 if (!p) 249 return; 250 251 free_lim_aux_data (*p); 252 *p = NULL; 253 } 254 255 256 /* The possibilities of statement movement. */ 257 enum move_pos 258 { 259 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */ 260 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement 261 become executed -- memory accesses, ... */ 262 MOVE_POSSIBLE /* Unlimited movement. */ 263 }; 264 265 266 /* If it is possible to hoist the statement STMT unconditionally, 267 returns MOVE_POSSIBLE. 268 If it is possible to hoist the statement STMT, but we must avoid making 269 it executed if it would not be executed in the original program (e.g. 270 because it may trap), return MOVE_PRESERVE_EXECUTION. 271 Otherwise return MOVE_IMPOSSIBLE. */ 272 273 enum move_pos 274 movement_possibility (gimple *stmt) 275 { 276 tree lhs; 277 enum move_pos ret = MOVE_POSSIBLE; 278 279 if (flag_unswitch_loops 280 && gimple_code (stmt) == GIMPLE_COND) 281 { 282 /* If we perform unswitching, force the operands of the invariant 283 condition to be moved out of the loop. */ 284 return MOVE_POSSIBLE; 285 } 286 287 if (gimple_code (stmt) == GIMPLE_PHI 288 && gimple_phi_num_args (stmt) <= 2 289 && !virtual_operand_p (gimple_phi_result (stmt)) 290 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt))) 291 return MOVE_POSSIBLE; 292 293 if (gimple_get_lhs (stmt) == NULL_TREE) 294 return MOVE_IMPOSSIBLE; 295 296 if (gimple_vdef (stmt)) 297 return MOVE_IMPOSSIBLE; 298 299 if (stmt_ends_bb_p (stmt) 300 || gimple_has_volatile_ops (stmt) 301 || gimple_has_side_effects (stmt) 302 || stmt_could_throw_p (stmt)) 303 return MOVE_IMPOSSIBLE; 304 305 if (is_gimple_call (stmt)) 306 { 307 /* While pure or const call is guaranteed to have no side effects, we 308 cannot move it arbitrarily. Consider code like 309 310 char *s = something (); 311 312 while (1) 313 { 314 if (s) 315 t = strlen (s); 316 else 317 t = 0; 318 } 319 320 Here the strlen call cannot be moved out of the loop, even though 321 s is invariant. In addition to possibly creating a call with 322 invalid arguments, moving out a function call that is not executed 323 may cause performance regressions in case the call is costly and 324 not executed at all. */ 325 ret = MOVE_PRESERVE_EXECUTION; 326 lhs = gimple_call_lhs (stmt); 327 } 328 else if (is_gimple_assign (stmt)) 329 lhs = gimple_assign_lhs (stmt); 330 else 331 return MOVE_IMPOSSIBLE; 332 333 if (TREE_CODE (lhs) == SSA_NAME 334 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) 335 return MOVE_IMPOSSIBLE; 336 337 if (TREE_CODE (lhs) != SSA_NAME 338 || gimple_could_trap_p (stmt)) 339 return MOVE_PRESERVE_EXECUTION; 340 341 /* Non local loads in a transaction cannot be hoisted out. Well, 342 unless the load happens on every path out of the loop, but we 343 don't take this into account yet. */ 344 if (flag_tm 345 && gimple_in_transaction (stmt) 346 && gimple_assign_single_p (stmt)) 347 { 348 tree rhs = gimple_assign_rhs1 (stmt); 349 if (DECL_P (rhs) && is_global_var (rhs)) 350 { 351 if (dump_file) 352 { 353 fprintf (dump_file, "Cannot hoist conditional load of "); 354 print_generic_expr (dump_file, rhs, TDF_SLIM); 355 fprintf (dump_file, " because it is in a transaction.\n"); 356 } 357 return MOVE_IMPOSSIBLE; 358 } 359 } 360 361 return ret; 362 } 363 364 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost 365 loop to that we could move the expression using DEF if it did not have 366 other operands, i.e. the outermost loop enclosing LOOP in that the value 367 of DEF is invariant. */ 368 369 static struct loop * 370 outermost_invariant_loop (tree def, struct loop *loop) 371 { 372 gimple *def_stmt; 373 basic_block def_bb; 374 struct loop *max_loop; 375 struct lim_aux_data *lim_data; 376 377 if (!def) 378 return superloop_at_depth (loop, 1); 379 380 if (TREE_CODE (def) != SSA_NAME) 381 { 382 gcc_assert (is_gimple_min_invariant (def)); 383 return superloop_at_depth (loop, 1); 384 } 385 386 def_stmt = SSA_NAME_DEF_STMT (def); 387 def_bb = gimple_bb (def_stmt); 388 if (!def_bb) 389 return superloop_at_depth (loop, 1); 390 391 max_loop = find_common_loop (loop, def_bb->loop_father); 392 393 lim_data = get_lim_data (def_stmt); 394 if (lim_data != NULL && lim_data->max_loop != NULL) 395 max_loop = find_common_loop (max_loop, 396 loop_outer (lim_data->max_loop)); 397 if (max_loop == loop) 398 return NULL; 399 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1); 400 401 return max_loop; 402 } 403 404 /* DATA is a structure containing information associated with a statement 405 inside LOOP. DEF is one of the operands of this statement. 406 407 Find the outermost loop enclosing LOOP in that value of DEF is invariant 408 and record this in DATA->max_loop field. If DEF itself is defined inside 409 this loop as well (i.e. we need to hoist it out of the loop if we want 410 to hoist the statement represented by DATA), record the statement in that 411 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true, 412 add the cost of the computation of DEF to the DATA->cost. 413 414 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */ 415 416 static bool 417 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop, 418 bool add_cost) 419 { 420 gimple *def_stmt = SSA_NAME_DEF_STMT (def); 421 basic_block def_bb = gimple_bb (def_stmt); 422 struct loop *max_loop; 423 struct lim_aux_data *def_data; 424 425 if (!def_bb) 426 return true; 427 428 max_loop = outermost_invariant_loop (def, loop); 429 if (!max_loop) 430 return false; 431 432 if (flow_loop_nested_p (data->max_loop, max_loop)) 433 data->max_loop = max_loop; 434 435 def_data = get_lim_data (def_stmt); 436 if (!def_data) 437 return true; 438 439 if (add_cost 440 /* Only add the cost if the statement defining DEF is inside LOOP, 441 i.e. if it is likely that by moving the invariants dependent 442 on it, we will be able to avoid creating a new register for 443 it (since it will be only used in these dependent invariants). */ 444 && def_bb->loop_father == loop) 445 data->cost += def_data->cost; 446 447 data->depends.safe_push (def_stmt); 448 449 return true; 450 } 451 452 /* Returns an estimate for a cost of statement STMT. The values here 453 are just ad-hoc constants, similar to costs for inlining. */ 454 455 static unsigned 456 stmt_cost (gimple *stmt) 457 { 458 /* Always try to create possibilities for unswitching. */ 459 if (gimple_code (stmt) == GIMPLE_COND 460 || gimple_code (stmt) == GIMPLE_PHI) 461 return LIM_EXPENSIVE; 462 463 /* We should be hoisting calls if possible. */ 464 if (is_gimple_call (stmt)) 465 { 466 tree fndecl; 467 468 /* Unless the call is a builtin_constant_p; this always folds to a 469 constant, so moving it is useless. */ 470 fndecl = gimple_call_fndecl (stmt); 471 if (fndecl 472 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 473 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P) 474 return 0; 475 476 return LIM_EXPENSIVE; 477 } 478 479 /* Hoisting memory references out should almost surely be a win. */ 480 if (gimple_references_memory_p (stmt)) 481 return LIM_EXPENSIVE; 482 483 if (gimple_code (stmt) != GIMPLE_ASSIGN) 484 return 1; 485 486 switch (gimple_assign_rhs_code (stmt)) 487 { 488 case MULT_EXPR: 489 case WIDEN_MULT_EXPR: 490 case WIDEN_MULT_PLUS_EXPR: 491 case WIDEN_MULT_MINUS_EXPR: 492 case DOT_PROD_EXPR: 493 case FMA_EXPR: 494 case TRUNC_DIV_EXPR: 495 case CEIL_DIV_EXPR: 496 case FLOOR_DIV_EXPR: 497 case ROUND_DIV_EXPR: 498 case EXACT_DIV_EXPR: 499 case CEIL_MOD_EXPR: 500 case FLOOR_MOD_EXPR: 501 case ROUND_MOD_EXPR: 502 case TRUNC_MOD_EXPR: 503 case RDIV_EXPR: 504 /* Division and multiplication are usually expensive. */ 505 return LIM_EXPENSIVE; 506 507 case LSHIFT_EXPR: 508 case RSHIFT_EXPR: 509 case WIDEN_LSHIFT_EXPR: 510 case LROTATE_EXPR: 511 case RROTATE_EXPR: 512 /* Shifts and rotates are usually expensive. */ 513 return LIM_EXPENSIVE; 514 515 case CONSTRUCTOR: 516 /* Make vector construction cost proportional to the number 517 of elements. */ 518 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)); 519 520 case SSA_NAME: 521 case PAREN_EXPR: 522 /* Whether or not something is wrapped inside a PAREN_EXPR 523 should not change move cost. Nor should an intermediate 524 unpropagated SSA name copy. */ 525 return 0; 526 527 default: 528 return 1; 529 } 530 } 531 532 /* Finds the outermost loop between OUTER and LOOP in that the memory reference 533 REF is independent. If REF is not independent in LOOP, NULL is returned 534 instead. */ 535 536 static struct loop * 537 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref) 538 { 539 struct loop *aloop; 540 541 if (ref->stored && bitmap_bit_p (ref->stored, loop->num)) 542 return NULL; 543 544 for (aloop = outer; 545 aloop != loop; 546 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1)) 547 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num)) 548 && ref_indep_loop_p (aloop, ref)) 549 return aloop; 550 551 if (ref_indep_loop_p (loop, ref)) 552 return loop; 553 else 554 return NULL; 555 } 556 557 /* If there is a simple load or store to a memory reference in STMT, returns 558 the location of the memory reference, and sets IS_STORE according to whether 559 it is a store or load. Otherwise, returns NULL. */ 560 561 static tree * 562 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store) 563 { 564 tree *lhs, *rhs; 565 566 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */ 567 if (!gimple_assign_single_p (stmt)) 568 return NULL; 569 570 lhs = gimple_assign_lhs_ptr (stmt); 571 rhs = gimple_assign_rhs1_ptr (stmt); 572 573 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt)) 574 { 575 *is_store = false; 576 return rhs; 577 } 578 else if (gimple_vdef (stmt) 579 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs))) 580 { 581 *is_store = true; 582 return lhs; 583 } 584 else 585 return NULL; 586 } 587 588 /* Returns the memory reference contained in STMT. */ 589 590 static im_mem_ref * 591 mem_ref_in_stmt (gimple *stmt) 592 { 593 bool store; 594 tree *mem = simple_mem_ref_in_stmt (stmt, &store); 595 hashval_t hash; 596 im_mem_ref *ref; 597 598 if (!mem) 599 return NULL; 600 gcc_assert (!store); 601 602 hash = iterative_hash_expr (*mem, 0); 603 ref = memory_accesses.refs->find_with_hash (*mem, hash); 604 605 gcc_assert (ref != NULL); 606 return ref; 607 } 608 609 /* From a controlling predicate in DOM determine the arguments from 610 the PHI node PHI that are chosen if the predicate evaluates to 611 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if 612 they are non-NULL. Returns true if the arguments can be determined, 613 else return false. */ 614 615 static bool 616 extract_true_false_args_from_phi (basic_block dom, gphi *phi, 617 tree *true_arg_p, tree *false_arg_p) 618 { 619 edge te, fe; 620 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi), 621 &te, &fe)) 622 return false; 623 624 if (true_arg_p) 625 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx); 626 if (false_arg_p) 627 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx); 628 629 return true; 630 } 631 632 /* Determine the outermost loop to that it is possible to hoist a statement 633 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine 634 the outermost loop in that the value computed by STMT is invariant. 635 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that 636 we preserve the fact whether STMT is executed. It also fills other related 637 information to LIM_DATA (STMT). 638 639 The function returns false if STMT cannot be hoisted outside of the loop it 640 is defined in, and true otherwise. */ 641 642 static bool 643 determine_max_movement (gimple *stmt, bool must_preserve_exec) 644 { 645 basic_block bb = gimple_bb (stmt); 646 struct loop *loop = bb->loop_father; 647 struct loop *level; 648 struct lim_aux_data *lim_data = get_lim_data (stmt); 649 tree val; 650 ssa_op_iter iter; 651 652 if (must_preserve_exec) 653 level = ALWAYS_EXECUTED_IN (bb); 654 else 655 level = superloop_at_depth (loop, 1); 656 lim_data->max_loop = level; 657 658 if (gphi *phi = dyn_cast <gphi *> (stmt)) 659 { 660 use_operand_p use_p; 661 unsigned min_cost = UINT_MAX; 662 unsigned total_cost = 0; 663 struct lim_aux_data *def_data; 664 665 /* We will end up promoting dependencies to be unconditionally 666 evaluated. For this reason the PHI cost (and thus the 667 cost we remove from the loop by doing the invariant motion) 668 is that of the cheapest PHI argument dependency chain. */ 669 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE) 670 { 671 val = USE_FROM_PTR (use_p); 672 673 if (TREE_CODE (val) != SSA_NAME) 674 { 675 /* Assign const 1 to constants. */ 676 min_cost = MIN (min_cost, 1); 677 total_cost += 1; 678 continue; 679 } 680 if (!add_dependency (val, lim_data, loop, false)) 681 return false; 682 683 gimple *def_stmt = SSA_NAME_DEF_STMT (val); 684 if (gimple_bb (def_stmt) 685 && gimple_bb (def_stmt)->loop_father == loop) 686 { 687 def_data = get_lim_data (def_stmt); 688 if (def_data) 689 { 690 min_cost = MIN (min_cost, def_data->cost); 691 total_cost += def_data->cost; 692 } 693 } 694 } 695 696 min_cost = MIN (min_cost, total_cost); 697 lim_data->cost += min_cost; 698 699 if (gimple_phi_num_args (phi) > 1) 700 { 701 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); 702 gimple *cond; 703 if (gsi_end_p (gsi_last_bb (dom))) 704 return false; 705 cond = gsi_stmt (gsi_last_bb (dom)); 706 if (gimple_code (cond) != GIMPLE_COND) 707 return false; 708 /* Verify that this is an extended form of a diamond and 709 the PHI arguments are completely controlled by the 710 predicate in DOM. */ 711 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL)) 712 return false; 713 714 /* Fold in dependencies and cost of the condition. */ 715 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE) 716 { 717 if (!add_dependency (val, lim_data, loop, false)) 718 return false; 719 def_data = get_lim_data (SSA_NAME_DEF_STMT (val)); 720 if (def_data) 721 lim_data->cost += def_data->cost; 722 } 723 724 /* We want to avoid unconditionally executing very expensive 725 operations. As costs for our dependencies cannot be 726 negative just claim we are not invariand for this case. 727 We also are not sure whether the control-flow inside the 728 loop will vanish. */ 729 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE 730 && !(min_cost != 0 731 && total_cost / min_cost <= 2)) 732 return false; 733 734 /* Assume that the control-flow in the loop will vanish. 735 ??? We should verify this and not artificially increase 736 the cost if that is not the case. */ 737 lim_data->cost += stmt_cost (stmt); 738 } 739 740 return true; 741 } 742 else 743 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE) 744 if (!add_dependency (val, lim_data, loop, true)) 745 return false; 746 747 if (gimple_vuse (stmt)) 748 { 749 im_mem_ref *ref = mem_ref_in_stmt (stmt); 750 751 if (ref) 752 { 753 lim_data->max_loop 754 = outermost_indep_loop (lim_data->max_loop, loop, ref); 755 if (!lim_data->max_loop) 756 return false; 757 } 758 else 759 { 760 if ((val = gimple_vuse (stmt)) != NULL_TREE) 761 { 762 if (!add_dependency (val, lim_data, loop, false)) 763 return false; 764 } 765 } 766 } 767 768 lim_data->cost += stmt_cost (stmt); 769 770 return true; 771 } 772 773 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL, 774 and that one of the operands of this statement is computed by STMT. 775 Ensure that STMT (together with all the statements that define its 776 operands) is hoisted at least out of the loop LEVEL. */ 777 778 static void 779 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level) 780 { 781 struct loop *stmt_loop = gimple_bb (stmt)->loop_father; 782 struct lim_aux_data *lim_data; 783 gimple *dep_stmt; 784 unsigned i; 785 786 stmt_loop = find_common_loop (orig_loop, stmt_loop); 787 lim_data = get_lim_data (stmt); 788 if (lim_data != NULL && lim_data->tgt_loop != NULL) 789 stmt_loop = find_common_loop (stmt_loop, 790 loop_outer (lim_data->tgt_loop)); 791 if (flow_loop_nested_p (stmt_loop, level)) 792 return; 793 794 gcc_assert (level == lim_data->max_loop 795 || flow_loop_nested_p (lim_data->max_loop, level)); 796 797 lim_data->tgt_loop = level; 798 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt) 799 set_level (dep_stmt, orig_loop, level); 800 } 801 802 /* Determines an outermost loop from that we want to hoist the statement STMT. 803 For now we chose the outermost possible loop. TODO -- use profiling 804 information to set it more sanely. */ 805 806 static void 807 set_profitable_level (gimple *stmt) 808 { 809 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop); 810 } 811 812 /* Returns true if STMT is a call that has side effects. */ 813 814 static bool 815 nonpure_call_p (gimple *stmt) 816 { 817 if (gimple_code (stmt) != GIMPLE_CALL) 818 return false; 819 820 return gimple_has_side_effects (stmt); 821 } 822 823 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */ 824 825 static gimple * 826 rewrite_reciprocal (gimple_stmt_iterator *bsi) 827 { 828 gassign *stmt, *stmt1, *stmt2; 829 tree name, lhs, type; 830 tree real_one; 831 gimple_stmt_iterator gsi; 832 833 stmt = as_a <gassign *> (gsi_stmt (*bsi)); 834 lhs = gimple_assign_lhs (stmt); 835 type = TREE_TYPE (lhs); 836 837 real_one = build_one_cst (type); 838 839 name = make_temp_ssa_name (type, NULL, "reciptmp"); 840 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one, 841 gimple_assign_rhs2 (stmt)); 842 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name, 843 gimple_assign_rhs1 (stmt)); 844 845 /* Replace division stmt with reciprocal and multiply stmts. 846 The multiply stmt is not invariant, so update iterator 847 and avoid rescanning. */ 848 gsi = *bsi; 849 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); 850 gsi_replace (&gsi, stmt2, true); 851 852 /* Continue processing with invariant reciprocal statement. */ 853 return stmt1; 854 } 855 856 /* Check if the pattern at *BSI is a bittest of the form 857 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */ 858 859 static gimple * 860 rewrite_bittest (gimple_stmt_iterator *bsi) 861 { 862 gassign *stmt; 863 gimple *stmt1; 864 gassign *stmt2; 865 gimple *use_stmt; 866 gcond *cond_stmt; 867 tree lhs, name, t, a, b; 868 use_operand_p use; 869 870 stmt = as_a <gassign *> (gsi_stmt (*bsi)); 871 lhs = gimple_assign_lhs (stmt); 872 873 /* Verify that the single use of lhs is a comparison against zero. */ 874 if (TREE_CODE (lhs) != SSA_NAME 875 || !single_imm_use (lhs, &use, &use_stmt)) 876 return stmt; 877 cond_stmt = dyn_cast <gcond *> (use_stmt); 878 if (!cond_stmt) 879 return stmt; 880 if (gimple_cond_lhs (cond_stmt) != lhs 881 || (gimple_cond_code (cond_stmt) != NE_EXPR 882 && gimple_cond_code (cond_stmt) != EQ_EXPR) 883 || !integer_zerop (gimple_cond_rhs (cond_stmt))) 884 return stmt; 885 886 /* Get at the operands of the shift. The rhs is TMP1 & 1. */ 887 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 888 if (gimple_code (stmt1) != GIMPLE_ASSIGN) 889 return stmt; 890 891 /* There is a conversion in between possibly inserted by fold. */ 892 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1))) 893 { 894 t = gimple_assign_rhs1 (stmt1); 895 if (TREE_CODE (t) != SSA_NAME 896 || !has_single_use (t)) 897 return stmt; 898 stmt1 = SSA_NAME_DEF_STMT (t); 899 if (gimple_code (stmt1) != GIMPLE_ASSIGN) 900 return stmt; 901 } 902 903 /* Verify that B is loop invariant but A is not. Verify that with 904 all the stmt walking we are still in the same loop. */ 905 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR 906 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt)) 907 return stmt; 908 909 a = gimple_assign_rhs1 (stmt1); 910 b = gimple_assign_rhs2 (stmt1); 911 912 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL 913 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL) 914 { 915 gimple_stmt_iterator rsi; 916 917 /* 1 << B */ 918 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a), 919 build_int_cst (TREE_TYPE (a), 1), b); 920 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp"); 921 stmt1 = gimple_build_assign (name, t); 922 923 /* A & (1 << B) */ 924 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name); 925 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp"); 926 stmt2 = gimple_build_assign (name, t); 927 928 /* Replace the SSA_NAME we compare against zero. Adjust 929 the type of zero accordingly. */ 930 SET_USE (use, name); 931 gimple_cond_set_rhs (cond_stmt, 932 build_int_cst_type (TREE_TYPE (name), 933 0)); 934 935 /* Don't use gsi_replace here, none of the new assignments sets 936 the variable originally set in stmt. Move bsi to stmt1, and 937 then remove the original stmt, so that we get a chance to 938 retain debug info for it. */ 939 rsi = *bsi; 940 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); 941 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT); 942 gimple *to_release = gsi_stmt (rsi); 943 gsi_remove (&rsi, true); 944 release_defs (to_release); 945 946 return stmt1; 947 } 948 949 return stmt; 950 } 951 952 /* For each statement determines the outermost loop in that it is invariant, 953 - statements on whose motion it depends and the cost of the computation. 954 - This information is stored to the LIM_DATA structure associated with 955 - each statement. */ 956 class invariantness_dom_walker : public dom_walker 957 { 958 public: 959 invariantness_dom_walker (cdi_direction direction) 960 : dom_walker (direction) {} 961 962 virtual edge before_dom_children (basic_block); 963 }; 964 965 /* Determine the outermost loops in that statements in basic block BB are 966 invariant, and record them to the LIM_DATA associated with the statements. 967 Callback for dom_walker. */ 968 969 edge 970 invariantness_dom_walker::before_dom_children (basic_block bb) 971 { 972 enum move_pos pos; 973 gimple_stmt_iterator bsi; 974 gimple *stmt; 975 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL; 976 struct loop *outermost = ALWAYS_EXECUTED_IN (bb); 977 struct lim_aux_data *lim_data; 978 979 if (!loop_outer (bb->loop_father)) 980 return NULL; 981 982 if (dump_file && (dump_flags & TDF_DETAILS)) 983 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n", 984 bb->index, bb->loop_father->num, loop_depth (bb->loop_father)); 985 986 /* Look at PHI nodes, but only if there is at most two. 987 ??? We could relax this further by post-processing the inserted 988 code and transforming adjacent cond-exprs with the same predicate 989 to control flow again. */ 990 bsi = gsi_start_phis (bb); 991 if (!gsi_end_p (bsi) 992 && ((gsi_next (&bsi), gsi_end_p (bsi)) 993 || (gsi_next (&bsi), gsi_end_p (bsi)))) 994 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 995 { 996 stmt = gsi_stmt (bsi); 997 998 pos = movement_possibility (stmt); 999 if (pos == MOVE_IMPOSSIBLE) 1000 continue; 1001 1002 lim_data = init_lim_data (stmt); 1003 lim_data->always_executed_in = outermost; 1004 1005 if (!determine_max_movement (stmt, false)) 1006 { 1007 lim_data->max_loop = NULL; 1008 continue; 1009 } 1010 1011 if (dump_file && (dump_flags & TDF_DETAILS)) 1012 { 1013 print_gimple_stmt (dump_file, stmt, 2, 0); 1014 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", 1015 loop_depth (lim_data->max_loop), 1016 lim_data->cost); 1017 } 1018 1019 if (lim_data->cost >= LIM_EXPENSIVE) 1020 set_profitable_level (stmt); 1021 } 1022 1023 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 1024 { 1025 stmt = gsi_stmt (bsi); 1026 1027 pos = movement_possibility (stmt); 1028 if (pos == MOVE_IMPOSSIBLE) 1029 { 1030 if (nonpure_call_p (stmt)) 1031 { 1032 maybe_never = true; 1033 outermost = NULL; 1034 } 1035 /* Make sure to note always_executed_in for stores to make 1036 store-motion work. */ 1037 else if (stmt_makes_single_store (stmt)) 1038 { 1039 struct lim_aux_data *lim_data = init_lim_data (stmt); 1040 lim_data->always_executed_in = outermost; 1041 } 1042 continue; 1043 } 1044 1045 if (is_gimple_assign (stmt) 1046 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) 1047 == GIMPLE_BINARY_RHS)) 1048 { 1049 tree op0 = gimple_assign_rhs1 (stmt); 1050 tree op1 = gimple_assign_rhs2 (stmt); 1051 struct loop *ol1 = outermost_invariant_loop (op1, 1052 loop_containing_stmt (stmt)); 1053 1054 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal 1055 to be hoisted out of loop, saving expensive divide. */ 1056 if (pos == MOVE_POSSIBLE 1057 && gimple_assign_rhs_code (stmt) == RDIV_EXPR 1058 && flag_unsafe_math_optimizations 1059 && !flag_trapping_math 1060 && ol1 != NULL 1061 && outermost_invariant_loop (op0, ol1) == NULL) 1062 stmt = rewrite_reciprocal (&bsi); 1063 1064 /* If the shift count is invariant, convert (A >> B) & 1 to 1065 A & (1 << B) allowing the bit mask to be hoisted out of the loop 1066 saving an expensive shift. */ 1067 if (pos == MOVE_POSSIBLE 1068 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 1069 && integer_onep (op1) 1070 && TREE_CODE (op0) == SSA_NAME 1071 && has_single_use (op0)) 1072 stmt = rewrite_bittest (&bsi); 1073 } 1074 1075 lim_data = init_lim_data (stmt); 1076 lim_data->always_executed_in = outermost; 1077 1078 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION) 1079 continue; 1080 1081 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION)) 1082 { 1083 lim_data->max_loop = NULL; 1084 continue; 1085 } 1086 1087 if (dump_file && (dump_flags & TDF_DETAILS)) 1088 { 1089 print_gimple_stmt (dump_file, stmt, 2, 0); 1090 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", 1091 loop_depth (lim_data->max_loop), 1092 lim_data->cost); 1093 } 1094 1095 if (lim_data->cost >= LIM_EXPENSIVE) 1096 set_profitable_level (stmt); 1097 } 1098 return NULL; 1099 } 1100 1101 class move_computations_dom_walker : public dom_walker 1102 { 1103 public: 1104 move_computations_dom_walker (cdi_direction direction) 1105 : dom_walker (direction), todo_ (0) {} 1106 1107 virtual edge before_dom_children (basic_block); 1108 1109 unsigned int todo_; 1110 }; 1111 1112 /* Hoist the statements in basic block BB out of the loops prescribed by 1113 data stored in LIM_DATA structures associated with each statement. Callback 1114 for walk_dominator_tree. */ 1115 1116 unsigned int 1117 move_computations_worker (basic_block bb) 1118 { 1119 struct loop *level; 1120 unsigned cost = 0; 1121 struct lim_aux_data *lim_data; 1122 unsigned int todo = 0; 1123 1124 if (!loop_outer (bb->loop_father)) 1125 return todo; 1126 1127 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); ) 1128 { 1129 gassign *new_stmt; 1130 gphi *stmt = bsi.phi (); 1131 1132 lim_data = get_lim_data (stmt); 1133 if (lim_data == NULL) 1134 { 1135 gsi_next (&bsi); 1136 continue; 1137 } 1138 1139 cost = lim_data->cost; 1140 level = lim_data->tgt_loop; 1141 clear_lim_data (stmt); 1142 1143 if (!level) 1144 { 1145 gsi_next (&bsi); 1146 continue; 1147 } 1148 1149 if (dump_file && (dump_flags & TDF_DETAILS)) 1150 { 1151 fprintf (dump_file, "Moving PHI node\n"); 1152 print_gimple_stmt (dump_file, stmt, 0, 0); 1153 fprintf (dump_file, "(cost %u) out of loop %d.\n\n", 1154 cost, level->num); 1155 } 1156 1157 if (gimple_phi_num_args (stmt) == 1) 1158 { 1159 tree arg = PHI_ARG_DEF (stmt, 0); 1160 new_stmt = gimple_build_assign (gimple_phi_result (stmt), 1161 TREE_CODE (arg), arg); 1162 } 1163 else 1164 { 1165 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); 1166 gimple *cond = gsi_stmt (gsi_last_bb (dom)); 1167 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t; 1168 /* Get the PHI arguments corresponding to the true and false 1169 edges of COND. */ 1170 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1); 1171 gcc_assert (arg0 && arg1); 1172 t = build2 (gimple_cond_code (cond), boolean_type_node, 1173 gimple_cond_lhs (cond), gimple_cond_rhs (cond)); 1174 new_stmt = gimple_build_assign (gimple_phi_result (stmt), 1175 COND_EXPR, t, arg0, arg1); 1176 todo |= TODO_cleanup_cfg; 1177 } 1178 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt))) 1179 && (!ALWAYS_EXECUTED_IN (bb) 1180 || (ALWAYS_EXECUTED_IN (bb) != level 1181 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) 1182 { 1183 tree lhs = gimple_assign_lhs (new_stmt); 1184 SSA_NAME_RANGE_INFO (lhs) = NULL; 1185 } 1186 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt); 1187 remove_phi_node (&bsi, false); 1188 } 1189 1190 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); ) 1191 { 1192 edge e; 1193 1194 gimple *stmt = gsi_stmt (bsi); 1195 1196 lim_data = get_lim_data (stmt); 1197 if (lim_data == NULL) 1198 { 1199 gsi_next (&bsi); 1200 continue; 1201 } 1202 1203 cost = lim_data->cost; 1204 level = lim_data->tgt_loop; 1205 clear_lim_data (stmt); 1206 1207 if (!level) 1208 { 1209 gsi_next (&bsi); 1210 continue; 1211 } 1212 1213 /* We do not really want to move conditionals out of the loop; we just 1214 placed it here to force its operands to be moved if necessary. */ 1215 if (gimple_code (stmt) == GIMPLE_COND) 1216 continue; 1217 1218 if (dump_file && (dump_flags & TDF_DETAILS)) 1219 { 1220 fprintf (dump_file, "Moving statement\n"); 1221 print_gimple_stmt (dump_file, stmt, 0, 0); 1222 fprintf (dump_file, "(cost %u) out of loop %d.\n\n", 1223 cost, level->num); 1224 } 1225 1226 e = loop_preheader_edge (level); 1227 gcc_assert (!gimple_vdef (stmt)); 1228 if (gimple_vuse (stmt)) 1229 { 1230 /* The new VUSE is the one from the virtual PHI in the loop 1231 header or the one already present. */ 1232 gphi_iterator gsi2; 1233 for (gsi2 = gsi_start_phis (e->dest); 1234 !gsi_end_p (gsi2); gsi_next (&gsi2)) 1235 { 1236 gphi *phi = gsi2.phi (); 1237 if (virtual_operand_p (gimple_phi_result (phi))) 1238 { 1239 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e)); 1240 break; 1241 } 1242 } 1243 } 1244 gsi_remove (&bsi, false); 1245 if (gimple_has_lhs (stmt) 1246 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME 1247 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt))) 1248 && (!ALWAYS_EXECUTED_IN (bb) 1249 || !(ALWAYS_EXECUTED_IN (bb) == level 1250 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) 1251 { 1252 tree lhs = gimple_get_lhs (stmt); 1253 SSA_NAME_RANGE_INFO (lhs) = NULL; 1254 } 1255 /* In case this is a stmt that is not unconditionally executed 1256 when the target loop header is executed and the stmt may 1257 invoke undefined integer or pointer overflow rewrite it to 1258 unsigned arithmetic. */ 1259 if (is_gimple_assign (stmt) 1260 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))) 1261 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt))) 1262 && arith_code_with_undefined_signed_overflow 1263 (gimple_assign_rhs_code (stmt)) 1264 && (!ALWAYS_EXECUTED_IN (bb) 1265 || !(ALWAYS_EXECUTED_IN (bb) == level 1266 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) 1267 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt)); 1268 else 1269 gsi_insert_on_edge (e, stmt); 1270 } 1271 1272 return todo; 1273 } 1274 1275 /* Hoist the statements out of the loops prescribed by data stored in 1276 LIM_DATA structures associated with each statement.*/ 1277 1278 static unsigned int 1279 move_computations (void) 1280 { 1281 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); 1282 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false); 1283 unsigned todo = 0; 1284 1285 for (int i = 0; i < n; ++i) 1286 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i])); 1287 1288 free (rpo); 1289 1290 gsi_commit_edge_inserts (); 1291 if (need_ssa_update_p (cfun)) 1292 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1293 1294 return todo; 1295 } 1296 1297 /* Checks whether the statement defining variable *INDEX can be hoisted 1298 out of the loop passed in DATA. Callback for for_each_index. */ 1299 1300 static bool 1301 may_move_till (tree ref, tree *index, void *data) 1302 { 1303 struct loop *loop = (struct loop *) data, *max_loop; 1304 1305 /* If REF is an array reference, check also that the step and the lower 1306 bound is invariant in LOOP. */ 1307 if (TREE_CODE (ref) == ARRAY_REF) 1308 { 1309 tree step = TREE_OPERAND (ref, 3); 1310 tree lbound = TREE_OPERAND (ref, 2); 1311 1312 max_loop = outermost_invariant_loop (step, loop); 1313 if (!max_loop) 1314 return false; 1315 1316 max_loop = outermost_invariant_loop (lbound, loop); 1317 if (!max_loop) 1318 return false; 1319 } 1320 1321 max_loop = outermost_invariant_loop (*index, loop); 1322 if (!max_loop) 1323 return false; 1324 1325 return true; 1326 } 1327 1328 /* If OP is SSA NAME, force the statement that defines it to be 1329 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */ 1330 1331 static void 1332 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop) 1333 { 1334 gimple *stmt; 1335 1336 if (!op 1337 || is_gimple_min_invariant (op)) 1338 return; 1339 1340 gcc_assert (TREE_CODE (op) == SSA_NAME); 1341 1342 stmt = SSA_NAME_DEF_STMT (op); 1343 if (gimple_nop_p (stmt)) 1344 return; 1345 1346 set_level (stmt, orig_loop, loop); 1347 } 1348 1349 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of 1350 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for 1351 for_each_index. */ 1352 1353 struct fmt_data 1354 { 1355 struct loop *loop; 1356 struct loop *orig_loop; 1357 }; 1358 1359 static bool 1360 force_move_till (tree ref, tree *index, void *data) 1361 { 1362 struct fmt_data *fmt_data = (struct fmt_data *) data; 1363 1364 if (TREE_CODE (ref) == ARRAY_REF) 1365 { 1366 tree step = TREE_OPERAND (ref, 3); 1367 tree lbound = TREE_OPERAND (ref, 2); 1368 1369 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop); 1370 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop); 1371 } 1372 1373 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop); 1374 1375 return true; 1376 } 1377 1378 /* A function to free the mem_ref object OBJ. */ 1379 1380 static void 1381 memref_free (struct im_mem_ref *mem) 1382 { 1383 mem->accesses_in_loop.release (); 1384 } 1385 1386 /* Allocates and returns a memory reference description for MEM whose hash 1387 value is HASH and id is ID. */ 1388 1389 static im_mem_ref * 1390 mem_ref_alloc (tree mem, unsigned hash, unsigned id) 1391 { 1392 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref); 1393 ao_ref_init (&ref->mem, mem); 1394 ref->id = id; 1395 ref->hash = hash; 1396 ref->stored = NULL; 1397 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack); 1398 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack); 1399 ref->accesses_in_loop.create (1); 1400 1401 return ref; 1402 } 1403 1404 /* Records memory reference location *LOC in LOOP to the memory reference 1405 description REF. The reference occurs in statement STMT. */ 1406 1407 static void 1408 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc) 1409 { 1410 mem_ref_loc aref; 1411 aref.stmt = stmt; 1412 aref.ref = loc; 1413 ref->accesses_in_loop.safe_push (aref); 1414 } 1415 1416 /* Set the LOOP bit in REF stored bitmap and allocate that if 1417 necessary. Return whether a bit was changed. */ 1418 1419 static bool 1420 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop) 1421 { 1422 if (!ref->stored) 1423 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack); 1424 return bitmap_set_bit (ref->stored, loop->num); 1425 } 1426 1427 /* Marks reference REF as stored in LOOP. */ 1428 1429 static void 1430 mark_ref_stored (im_mem_ref *ref, struct loop *loop) 1431 { 1432 while (loop != current_loops->tree_root 1433 && set_ref_stored_in_loop (ref, loop)) 1434 loop = loop_outer (loop); 1435 } 1436 1437 /* Gathers memory references in statement STMT in LOOP, storing the 1438 information about them in the memory_accesses structure. Marks 1439 the vops accessed through unrecognized statements there as 1440 well. */ 1441 1442 static void 1443 gather_mem_refs_stmt (struct loop *loop, gimple *stmt) 1444 { 1445 tree *mem = NULL; 1446 hashval_t hash; 1447 im_mem_ref **slot; 1448 im_mem_ref *ref; 1449 bool is_stored; 1450 unsigned id; 1451 1452 if (!gimple_vuse (stmt)) 1453 return; 1454 1455 mem = simple_mem_ref_in_stmt (stmt, &is_stored); 1456 if (!mem) 1457 { 1458 /* We use the shared mem_ref for all unanalyzable refs. */ 1459 id = UNANALYZABLE_MEM_ID; 1460 ref = memory_accesses.refs_list[id]; 1461 if (dump_file && (dump_flags & TDF_DETAILS)) 1462 { 1463 fprintf (dump_file, "Unanalyzed memory reference %u: ", id); 1464 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1465 } 1466 is_stored = gimple_vdef (stmt); 1467 } 1468 else 1469 { 1470 hash = iterative_hash_expr (*mem, 0); 1471 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT); 1472 if (*slot) 1473 { 1474 ref = *slot; 1475 id = ref->id; 1476 } 1477 else 1478 { 1479 id = memory_accesses.refs_list.length (); 1480 ref = mem_ref_alloc (*mem, hash, id); 1481 memory_accesses.refs_list.safe_push (ref); 1482 *slot = ref; 1483 1484 if (dump_file && (dump_flags & TDF_DETAILS)) 1485 { 1486 fprintf (dump_file, "Memory reference %u: ", id); 1487 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM); 1488 fprintf (dump_file, "\n"); 1489 } 1490 } 1491 1492 record_mem_ref_loc (ref, stmt, mem); 1493 } 1494 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id); 1495 if (is_stored) 1496 { 1497 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id); 1498 mark_ref_stored (ref, loop); 1499 } 1500 return; 1501 } 1502 1503 static unsigned *bb_loop_postorder; 1504 1505 /* qsort sort function to sort blocks after their loop fathers postorder. */ 1506 1507 static int 1508 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_) 1509 { 1510 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_); 1511 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_); 1512 struct loop *loop1 = bb1->loop_father; 1513 struct loop *loop2 = bb2->loop_father; 1514 if (loop1->num == loop2->num) 1515 return 0; 1516 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; 1517 } 1518 1519 /* qsort sort function to sort ref locs after their loop fathers postorder. */ 1520 1521 static int 1522 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_) 1523 { 1524 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_); 1525 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_); 1526 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father; 1527 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father; 1528 if (loop1->num == loop2->num) 1529 return 0; 1530 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; 1531 } 1532 1533 /* Gathers memory references in loops. */ 1534 1535 static void 1536 analyze_memory_references (void) 1537 { 1538 gimple_stmt_iterator bsi; 1539 basic_block bb, *bbs; 1540 struct loop *loop, *outer; 1541 unsigned i, n; 1542 1543 /* Collect all basic-blocks in loops and sort them after their 1544 loops postorder. */ 1545 i = 0; 1546 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS); 1547 FOR_EACH_BB_FN (bb, cfun) 1548 if (bb->loop_father != current_loops->tree_root) 1549 bbs[i++] = bb; 1550 n = i; 1551 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp); 1552 1553 /* Visit blocks in loop postorder and assign mem-ref IDs in that order. 1554 That results in better locality for all the bitmaps. */ 1555 for (i = 0; i < n; ++i) 1556 { 1557 basic_block bb = bbs[i]; 1558 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 1559 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi)); 1560 } 1561 1562 /* Sort the location list of gathered memory references after their 1563 loop postorder number. */ 1564 im_mem_ref *ref; 1565 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) 1566 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp); 1567 1568 free (bbs); 1569 // free (bb_loop_postorder); 1570 1571 /* Propagate the information about accessed memory references up 1572 the loop hierarchy. */ 1573 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 1574 { 1575 /* Finalize the overall touched references (including subloops). */ 1576 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num], 1577 &memory_accesses.refs_stored_in_loop[loop->num]); 1578 1579 /* Propagate the information about accessed memory references up 1580 the loop hierarchy. */ 1581 outer = loop_outer (loop); 1582 if (outer == current_loops->tree_root) 1583 continue; 1584 1585 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num], 1586 &memory_accesses.all_refs_stored_in_loop[loop->num]); 1587 } 1588 } 1589 1590 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in 1591 tree_to_aff_combination_expand. */ 1592 1593 static bool 1594 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2, 1595 hash_map<tree, name_expansion *> **ttae_cache) 1596 { 1597 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same 1598 object and their offset differ in such a way that the locations cannot 1599 overlap, then they cannot alias. */ 1600 widest_int size1, size2; 1601 aff_tree off1, off2; 1602 1603 /* Perform basic offset and type-based disambiguation. */ 1604 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true)) 1605 return false; 1606 1607 /* The expansion of addresses may be a bit expensive, thus we only do 1608 the check at -O2 and higher optimization levels. */ 1609 if (optimize < 2) 1610 return true; 1611 1612 get_inner_reference_aff (mem1->mem.ref, &off1, &size1); 1613 get_inner_reference_aff (mem2->mem.ref, &off2, &size2); 1614 aff_combination_expand (&off1, ttae_cache); 1615 aff_combination_expand (&off2, ttae_cache); 1616 aff_combination_scale (&off1, -1); 1617 aff_combination_add (&off2, &off1); 1618 1619 if (aff_comb_cannot_overlap_p (&off2, size1, size2)) 1620 return false; 1621 1622 return true; 1623 } 1624 1625 /* Compare function for bsearch searching for reference locations 1626 in a loop. */ 1627 1628 static int 1629 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_) 1630 { 1631 struct loop *loop = (struct loop *)const_cast<void *>(loop_); 1632 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_); 1633 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father; 1634 if (loop->num == loc_loop->num 1635 || flow_loop_nested_p (loop, loc_loop)) 1636 return 0; 1637 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num] 1638 ? -1 : 1); 1639 } 1640 1641 /* Iterates over all locations of REF in LOOP and its subloops calling 1642 fn.operator() with the location as argument. When that operator 1643 returns true the iteration is stopped and true is returned. 1644 Otherwise false is returned. */ 1645 1646 template <typename FN> 1647 static bool 1648 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn) 1649 { 1650 unsigned i; 1651 mem_ref_loc *loc; 1652 1653 /* Search for the cluster of locs in the accesses_in_loop vector 1654 which is sorted after postorder index of the loop father. */ 1655 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp); 1656 if (!loc) 1657 return false; 1658 1659 /* We have found one location inside loop or its sub-loops. Iterate 1660 both forward and backward to cover the whole cluster. */ 1661 i = loc - ref->accesses_in_loop.address (); 1662 while (i > 0) 1663 { 1664 --i; 1665 mem_ref_loc *l = &ref->accesses_in_loop[i]; 1666 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt))) 1667 break; 1668 if (fn (l)) 1669 return true; 1670 } 1671 for (i = loc - ref->accesses_in_loop.address (); 1672 i < ref->accesses_in_loop.length (); ++i) 1673 { 1674 mem_ref_loc *l = &ref->accesses_in_loop[i]; 1675 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt))) 1676 break; 1677 if (fn (l)) 1678 return true; 1679 } 1680 1681 return false; 1682 } 1683 1684 /* Rewrites location LOC by TMP_VAR. */ 1685 1686 struct rewrite_mem_ref_loc 1687 { 1688 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {} 1689 bool operator () (mem_ref_loc *loc); 1690 tree tmp_var; 1691 }; 1692 1693 bool 1694 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc) 1695 { 1696 *loc->ref = tmp_var; 1697 update_stmt (loc->stmt); 1698 return false; 1699 } 1700 1701 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */ 1702 1703 static void 1704 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var) 1705 { 1706 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var)); 1707 } 1708 1709 /* Stores the first reference location in LOCP. */ 1710 1711 struct first_mem_ref_loc_1 1712 { 1713 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {} 1714 bool operator () (mem_ref_loc *loc); 1715 mem_ref_loc **locp; 1716 }; 1717 1718 bool 1719 first_mem_ref_loc_1::operator () (mem_ref_loc *loc) 1720 { 1721 *locp = loc; 1722 return true; 1723 } 1724 1725 /* Returns the first reference location to REF in LOOP. */ 1726 1727 static mem_ref_loc * 1728 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref) 1729 { 1730 mem_ref_loc *locp = NULL; 1731 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp)); 1732 return locp; 1733 } 1734 1735 struct prev_flag_edges { 1736 /* Edge to insert new flag comparison code. */ 1737 edge append_cond_position; 1738 1739 /* Edge for fall through from previous flag comparison. */ 1740 edge last_cond_fallthru; 1741 }; 1742 1743 /* Helper function for execute_sm. Emit code to store TMP_VAR into 1744 MEM along edge EX. 1745 1746 The store is only done if MEM has changed. We do this so no 1747 changes to MEM occur on code paths that did not originally store 1748 into it. 1749 1750 The common case for execute_sm will transform: 1751 1752 for (...) { 1753 if (foo) 1754 stuff; 1755 else 1756 MEM = TMP_VAR; 1757 } 1758 1759 into: 1760 1761 lsm = MEM; 1762 for (...) { 1763 if (foo) 1764 stuff; 1765 else 1766 lsm = TMP_VAR; 1767 } 1768 MEM = lsm; 1769 1770 This function will generate: 1771 1772 lsm = MEM; 1773 1774 lsm_flag = false; 1775 ... 1776 for (...) { 1777 if (foo) 1778 stuff; 1779 else { 1780 lsm = TMP_VAR; 1781 lsm_flag = true; 1782 } 1783 } 1784 if (lsm_flag) <-- 1785 MEM = lsm; <-- 1786 */ 1787 1788 static void 1789 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag) 1790 { 1791 basic_block new_bb, then_bb, old_dest; 1792 bool loop_has_only_one_exit; 1793 edge then_old_edge, orig_ex = ex; 1794 gimple_stmt_iterator gsi; 1795 gimple *stmt; 1796 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux; 1797 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP; 1798 1799 /* ?? Insert store after previous store if applicable. See note 1800 below. */ 1801 if (prev_edges) 1802 ex = prev_edges->append_cond_position; 1803 1804 loop_has_only_one_exit = single_pred_p (ex->dest); 1805 1806 if (loop_has_only_one_exit) 1807 ex = split_block_after_labels (ex->dest); 1808 else 1809 { 1810 for (gphi_iterator gpi = gsi_start_phis (ex->dest); 1811 !gsi_end_p (gpi); gsi_next (&gpi)) 1812 { 1813 gphi *phi = gpi.phi (); 1814 if (virtual_operand_p (gimple_phi_result (phi))) 1815 continue; 1816 1817 /* When the destination has a non-virtual PHI node with multiple 1818 predecessors make sure we preserve the PHI structure by 1819 forcing a forwarder block so that hoisting of that PHI will 1820 still work. */ 1821 split_edge (ex); 1822 break; 1823 } 1824 } 1825 1826 old_dest = ex->dest; 1827 new_bb = split_edge (ex); 1828 then_bb = create_empty_bb (new_bb); 1829 if (irr) 1830 then_bb->flags = BB_IRREDUCIBLE_LOOP; 1831 add_bb_to_loop (then_bb, new_bb->loop_father); 1832 1833 gsi = gsi_start_bb (new_bb); 1834 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node, 1835 NULL_TREE, NULL_TREE); 1836 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); 1837 1838 gsi = gsi_start_bb (then_bb); 1839 /* Insert actual store. */ 1840 stmt = gimple_build_assign (unshare_expr (mem), tmp_var); 1841 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); 1842 1843 make_edge (new_bb, then_bb, 1844 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); 1845 make_edge (new_bb, old_dest, 1846 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); 1847 then_old_edge = make_edge (then_bb, old_dest, 1848 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); 1849 1850 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb); 1851 1852 if (prev_edges) 1853 { 1854 basic_block prevbb = prev_edges->last_cond_fallthru->src; 1855 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb); 1856 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb); 1857 set_immediate_dominator (CDI_DOMINATORS, old_dest, 1858 recompute_dominator (CDI_DOMINATORS, old_dest)); 1859 } 1860 1861 /* ?? Because stores may alias, they must happen in the exact 1862 sequence they originally happened. Save the position right after 1863 the (_lsm) store we just created so we can continue appending after 1864 it and maintain the original order. */ 1865 { 1866 struct prev_flag_edges *p; 1867 1868 if (orig_ex->aux) 1869 orig_ex->aux = NULL; 1870 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges)); 1871 p = (struct prev_flag_edges *) orig_ex->aux; 1872 p->append_cond_position = then_old_edge; 1873 p->last_cond_fallthru = find_edge (new_bb, old_dest); 1874 orig_ex->aux = (void *) p; 1875 } 1876 1877 if (!loop_has_only_one_exit) 1878 for (gphi_iterator gpi = gsi_start_phis (old_dest); 1879 !gsi_end_p (gpi); gsi_next (&gpi)) 1880 { 1881 gphi *phi = gpi.phi (); 1882 unsigned i; 1883 1884 for (i = 0; i < gimple_phi_num_args (phi); i++) 1885 if (gimple_phi_arg_edge (phi, i)->src == new_bb) 1886 { 1887 tree arg = gimple_phi_arg_def (phi, i); 1888 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION); 1889 update_stmt (phi); 1890 } 1891 } 1892 /* Remove the original fall through edge. This was the 1893 single_succ_edge (new_bb). */ 1894 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU; 1895 } 1896 1897 /* When REF is set on the location, set flag indicating the store. */ 1898 1899 struct sm_set_flag_if_changed 1900 { 1901 sm_set_flag_if_changed (tree flag_) : flag (flag_) {} 1902 bool operator () (mem_ref_loc *loc); 1903 tree flag; 1904 }; 1905 1906 bool 1907 sm_set_flag_if_changed::operator () (mem_ref_loc *loc) 1908 { 1909 /* Only set the flag for writes. */ 1910 if (is_gimple_assign (loc->stmt) 1911 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref) 1912 { 1913 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt); 1914 gimple *stmt = gimple_build_assign (flag, boolean_true_node); 1915 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); 1916 } 1917 return false; 1918 } 1919 1920 /* Helper function for execute_sm. On every location where REF is 1921 set, set an appropriate flag indicating the store. */ 1922 1923 static tree 1924 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref) 1925 { 1926 tree flag; 1927 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag"); 1928 flag = create_tmp_reg (boolean_type_node, str); 1929 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag)); 1930 return flag; 1931 } 1932 1933 /* Executes store motion of memory reference REF from LOOP. 1934 Exits from the LOOP are stored in EXITS. The initialization of the 1935 temporary variable is put to the preheader of the loop, and assignments 1936 to the reference from the temporary variable are emitted to exits. */ 1937 1938 static void 1939 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref) 1940 { 1941 tree tmp_var, store_flag = NULL_TREE; 1942 unsigned i; 1943 gassign *load; 1944 struct fmt_data fmt_data; 1945 edge ex; 1946 struct lim_aux_data *lim_data; 1947 bool multi_threaded_model_p = false; 1948 gimple_stmt_iterator gsi; 1949 1950 if (dump_file && (dump_flags & TDF_DETAILS)) 1951 { 1952 fprintf (dump_file, "Executing store motion of "); 1953 print_generic_expr (dump_file, ref->mem.ref, 0); 1954 fprintf (dump_file, " from loop %d\n", loop->num); 1955 } 1956 1957 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref), 1958 get_lsm_tmp_name (ref->mem.ref, ~0)); 1959 1960 fmt_data.loop = loop; 1961 fmt_data.orig_loop = loop; 1962 for_each_index (&ref->mem.ref, force_move_till, &fmt_data); 1963 1964 if (bb_in_transaction (loop_preheader_edge (loop)->src) 1965 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES)) 1966 multi_threaded_model_p = true; 1967 1968 if (multi_threaded_model_p) 1969 store_flag = execute_sm_if_changed_flag_set (loop, ref); 1970 1971 rewrite_mem_refs (loop, ref, tmp_var); 1972 1973 /* Emit the load code on a random exit edge or into the latch if 1974 the loop does not exit, so that we are sure it will be processed 1975 by move_computations after all dependencies. */ 1976 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt); 1977 1978 /* FIXME/TODO: For the multi-threaded variant, we could avoid this 1979 load altogether, since the store is predicated by a flag. We 1980 could, do the load only if it was originally in the loop. */ 1981 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref)); 1982 lim_data = init_lim_data (load); 1983 lim_data->max_loop = loop; 1984 lim_data->tgt_loop = loop; 1985 gsi_insert_before (&gsi, load, GSI_SAME_STMT); 1986 1987 if (multi_threaded_model_p) 1988 { 1989 load = gimple_build_assign (store_flag, boolean_false_node); 1990 lim_data = init_lim_data (load); 1991 lim_data->max_loop = loop; 1992 lim_data->tgt_loop = loop; 1993 gsi_insert_before (&gsi, load, GSI_SAME_STMT); 1994 } 1995 1996 /* Sink the store to every exit from the loop. */ 1997 FOR_EACH_VEC_ELT (exits, i, ex) 1998 if (!multi_threaded_model_p) 1999 { 2000 gassign *store; 2001 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var); 2002 gsi_insert_on_edge (ex, store); 2003 } 2004 else 2005 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag); 2006 } 2007 2008 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit 2009 edges of the LOOP. */ 2010 2011 static void 2012 hoist_memory_references (struct loop *loop, bitmap mem_refs, 2013 vec<edge> exits) 2014 { 2015 im_mem_ref *ref; 2016 unsigned i; 2017 bitmap_iterator bi; 2018 2019 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) 2020 { 2021 ref = memory_accesses.refs_list[i]; 2022 execute_sm (loop, exits, ref); 2023 } 2024 } 2025 2026 struct ref_always_accessed 2027 { 2028 ref_always_accessed (struct loop *loop_, bool stored_p_) 2029 : loop (loop_), stored_p (stored_p_) {} 2030 bool operator () (mem_ref_loc *loc); 2031 struct loop *loop; 2032 bool stored_p; 2033 }; 2034 2035 bool 2036 ref_always_accessed::operator () (mem_ref_loc *loc) 2037 { 2038 struct loop *must_exec; 2039 2040 if (!get_lim_data (loc->stmt)) 2041 return false; 2042 2043 /* If we require an always executed store make sure the statement 2044 stores to the reference. */ 2045 if (stored_p) 2046 { 2047 tree lhs = gimple_get_lhs (loc->stmt); 2048 if (!lhs 2049 || lhs != *loc->ref) 2050 return false; 2051 } 2052 2053 must_exec = get_lim_data (loc->stmt)->always_executed_in; 2054 if (!must_exec) 2055 return false; 2056 2057 if (must_exec == loop 2058 || flow_loop_nested_p (must_exec, loop)) 2059 return true; 2060 2061 return false; 2062 } 2063 2064 /* Returns true if REF is always accessed in LOOP. If STORED_P is true 2065 make sure REF is always stored to in LOOP. */ 2066 2067 static bool 2068 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p) 2069 { 2070 return for_all_locs_in_loop (loop, ref, 2071 ref_always_accessed (loop, stored_p)); 2072 } 2073 2074 /* Returns true if REF1 and REF2 are independent. */ 2075 2076 static bool 2077 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2) 2078 { 2079 if (ref1 == ref2) 2080 return true; 2081 2082 if (dump_file && (dump_flags & TDF_DETAILS)) 2083 fprintf (dump_file, "Querying dependency of refs %u and %u: ", 2084 ref1->id, ref2->id); 2085 2086 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache)) 2087 { 2088 if (dump_file && (dump_flags & TDF_DETAILS)) 2089 fprintf (dump_file, "dependent.\n"); 2090 return false; 2091 } 2092 else 2093 { 2094 if (dump_file && (dump_flags & TDF_DETAILS)) 2095 fprintf (dump_file, "independent.\n"); 2096 return true; 2097 } 2098 } 2099 2100 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP 2101 and its super-loops. */ 2102 2103 static void 2104 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p) 2105 { 2106 /* We can propagate dependent-in-loop bits up the loop 2107 hierarchy to all outer loops. */ 2108 while (loop != current_loops->tree_root 2109 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p))) 2110 loop = loop_outer (loop); 2111 } 2112 2113 /* Returns true if REF is independent on all other memory 2114 references in LOOP. */ 2115 2116 static bool 2117 ref_indep_loop_p_1 (struct loop *loop, im_mem_ref *ref, bool stored_p) 2118 { 2119 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num)); 2120 2121 bool indep_p = true; 2122 bitmap refs_to_check; 2123 2124 if (stored_p) 2125 refs_to_check = &memory_accesses.refs_in_loop[loop->num]; 2126 else 2127 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num]; 2128 2129 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)) 2130 indep_p = false; 2131 else 2132 { 2133 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))) 2134 return true; 2135 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p))) 2136 return false; 2137 2138 struct loop *inner = loop->inner; 2139 while (inner) 2140 { 2141 if (!ref_indep_loop_p_1 (inner, ref, stored_p)) 2142 { 2143 indep_p = false; 2144 break; 2145 } 2146 inner = inner->next; 2147 } 2148 2149 if (indep_p) 2150 { 2151 unsigned i; 2152 bitmap_iterator bi; 2153 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi) 2154 { 2155 im_mem_ref *aref = memory_accesses.refs_list[i]; 2156 if (!refs_independent_p (ref, aref)) 2157 { 2158 indep_p = false; 2159 break; 2160 } 2161 } 2162 } 2163 } 2164 2165 if (dump_file && (dump_flags & TDF_DETAILS)) 2166 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n", 2167 ref->id, loop->num, indep_p ? "independent" : "dependent"); 2168 2169 /* Record the computed result in the cache. */ 2170 if (indep_p) 2171 { 2172 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)) 2173 && stored_p) 2174 { 2175 /* If it's independend against all refs then it's independent 2176 against stores, too. */ 2177 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false)); 2178 } 2179 } 2180 else 2181 { 2182 record_dep_loop (loop, ref, stored_p); 2183 if (!stored_p) 2184 { 2185 /* If it's dependent against stores it's dependent against 2186 all refs, too. */ 2187 record_dep_loop (loop, ref, true); 2188 } 2189 } 2190 2191 return indep_p; 2192 } 2193 2194 /* Returns true if REF is independent on all other memory references in 2195 LOOP. */ 2196 2197 static bool 2198 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref) 2199 { 2200 gcc_checking_assert (MEM_ANALYZABLE (ref)); 2201 2202 return ref_indep_loop_p_1 (loop, ref, false); 2203 } 2204 2205 /* Returns true if we can perform store motion of REF from LOOP. */ 2206 2207 static bool 2208 can_sm_ref_p (struct loop *loop, im_mem_ref *ref) 2209 { 2210 tree base; 2211 2212 /* Can't hoist unanalyzable refs. */ 2213 if (!MEM_ANALYZABLE (ref)) 2214 return false; 2215 2216 /* It should be movable. */ 2217 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref)) 2218 || TREE_THIS_VOLATILE (ref->mem.ref) 2219 || !for_each_index (&ref->mem.ref, may_move_till, loop)) 2220 return false; 2221 2222 /* If it can throw fail, we do not properly update EH info. */ 2223 if (tree_could_throw_p (ref->mem.ref)) 2224 return false; 2225 2226 /* If it can trap, it must be always executed in LOOP. 2227 Readonly memory locations may trap when storing to them, but 2228 tree_could_trap_p is a predicate for rvalues, so check that 2229 explicitly. */ 2230 base = get_base_address (ref->mem.ref); 2231 if ((tree_could_trap_p (ref->mem.ref) 2232 || (DECL_P (base) && TREE_READONLY (base))) 2233 && !ref_always_accessed_p (loop, ref, true)) 2234 return false; 2235 2236 /* And it must be independent on all other memory references 2237 in LOOP. */ 2238 if (!ref_indep_loop_p (loop, ref)) 2239 return false; 2240 2241 return true; 2242 } 2243 2244 /* Marks the references in LOOP for that store motion should be performed 2245 in REFS_TO_SM. SM_EXECUTED is the set of references for that store 2246 motion was performed in one of the outer loops. */ 2247 2248 static void 2249 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm) 2250 { 2251 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num]; 2252 unsigned i; 2253 bitmap_iterator bi; 2254 im_mem_ref *ref; 2255 2256 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi) 2257 { 2258 ref = memory_accesses.refs_list[i]; 2259 if (can_sm_ref_p (loop, ref)) 2260 bitmap_set_bit (refs_to_sm, i); 2261 } 2262 } 2263 2264 /* Checks whether LOOP (with exits stored in EXITS array) is suitable 2265 for a store motion optimization (i.e. whether we can insert statement 2266 on its exits). */ 2267 2268 static bool 2269 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED, 2270 vec<edge> exits) 2271 { 2272 unsigned i; 2273 edge ex; 2274 2275 FOR_EACH_VEC_ELT (exits, i, ex) 2276 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH)) 2277 return false; 2278 2279 return true; 2280 } 2281 2282 /* Try to perform store motion for all memory references modified inside 2283 LOOP. SM_EXECUTED is the bitmap of the memory references for that 2284 store motion was executed in one of the outer loops. */ 2285 2286 static void 2287 store_motion_loop (struct loop *loop, bitmap sm_executed) 2288 { 2289 vec<edge> exits = get_loop_exit_edges (loop); 2290 struct loop *subloop; 2291 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack); 2292 2293 if (loop_suitable_for_sm (loop, exits)) 2294 { 2295 find_refs_for_sm (loop, sm_executed, sm_in_loop); 2296 hoist_memory_references (loop, sm_in_loop, exits); 2297 } 2298 exits.release (); 2299 2300 bitmap_ior_into (sm_executed, sm_in_loop); 2301 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) 2302 store_motion_loop (subloop, sm_executed); 2303 bitmap_and_compl_into (sm_executed, sm_in_loop); 2304 BITMAP_FREE (sm_in_loop); 2305 } 2306 2307 /* Try to perform store motion for all memory references modified inside 2308 loops. */ 2309 2310 static void 2311 store_motion (void) 2312 { 2313 struct loop *loop; 2314 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack); 2315 2316 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) 2317 store_motion_loop (loop, sm_executed); 2318 2319 BITMAP_FREE (sm_executed); 2320 gsi_commit_edge_inserts (); 2321 } 2322 2323 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e. 2324 for each such basic block bb records the outermost loop for that execution 2325 of its header implies execution of bb. CONTAINS_CALL is the bitmap of 2326 blocks that contain a nonpure call. */ 2327 2328 static void 2329 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call) 2330 { 2331 basic_block bb = NULL, *bbs, last = NULL; 2332 unsigned i; 2333 edge e; 2334 struct loop *inn_loop = loop; 2335 2336 if (ALWAYS_EXECUTED_IN (loop->header) == NULL) 2337 { 2338 bbs = get_loop_body_in_dom_order (loop); 2339 2340 for (i = 0; i < loop->num_nodes; i++) 2341 { 2342 edge_iterator ei; 2343 bb = bbs[i]; 2344 2345 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 2346 last = bb; 2347 2348 if (bitmap_bit_p (contains_call, bb->index)) 2349 break; 2350 2351 FOR_EACH_EDGE (e, ei, bb->succs) 2352 { 2353 /* If there is an exit from this BB. */ 2354 if (!flow_bb_inside_loop_p (loop, e->dest)) 2355 break; 2356 /* Or we enter a possibly non-finite loop. */ 2357 if (flow_loop_nested_p (bb->loop_father, 2358 e->dest->loop_father) 2359 && ! finite_loop_p (e->dest->loop_father)) 2360 break; 2361 } 2362 if (e) 2363 break; 2364 2365 /* A loop might be infinite (TODO use simple loop analysis 2366 to disprove this if possible). */ 2367 if (bb->flags & BB_IRREDUCIBLE_LOOP) 2368 break; 2369 2370 if (!flow_bb_inside_loop_p (inn_loop, bb)) 2371 break; 2372 2373 if (bb->loop_father->header == bb) 2374 { 2375 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 2376 break; 2377 2378 /* In a loop that is always entered we may proceed anyway. 2379 But record that we entered it and stop once we leave it. */ 2380 inn_loop = bb->loop_father; 2381 } 2382 } 2383 2384 while (1) 2385 { 2386 SET_ALWAYS_EXECUTED_IN (last, loop); 2387 if (last == loop->header) 2388 break; 2389 last = get_immediate_dominator (CDI_DOMINATORS, last); 2390 } 2391 2392 free (bbs); 2393 } 2394 2395 for (loop = loop->inner; loop; loop = loop->next) 2396 fill_always_executed_in_1 (loop, contains_call); 2397 } 2398 2399 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e. 2400 for each such basic block bb records the outermost loop for that execution 2401 of its header implies execution of bb. */ 2402 2403 static void 2404 fill_always_executed_in (void) 2405 { 2406 basic_block bb; 2407 struct loop *loop; 2408 2409 auto_sbitmap contains_call (last_basic_block_for_fn (cfun)); 2410 bitmap_clear (contains_call); 2411 FOR_EACH_BB_FN (bb, cfun) 2412 { 2413 gimple_stmt_iterator gsi; 2414 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2415 { 2416 if (nonpure_call_p (gsi_stmt (gsi))) 2417 break; 2418 } 2419 2420 if (!gsi_end_p (gsi)) 2421 bitmap_set_bit (contains_call, bb->index); 2422 } 2423 2424 for (loop = current_loops->tree_root->inner; loop; loop = loop->next) 2425 fill_always_executed_in_1 (loop, contains_call); 2426 } 2427 2428 2429 /* Compute the global information needed by the loop invariant motion pass. */ 2430 2431 static void 2432 tree_ssa_lim_initialize (void) 2433 { 2434 struct loop *loop; 2435 unsigned i; 2436 2437 bitmap_obstack_initialize (&lim_bitmap_obstack); 2438 gcc_obstack_init (&mem_ref_obstack); 2439 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>; 2440 2441 if (flag_tm) 2442 compute_transaction_bits (); 2443 2444 alloc_aux_for_edges (0); 2445 2446 memory_accesses.refs = new hash_table<mem_ref_hasher> (100); 2447 memory_accesses.refs_list.create (100); 2448 /* Allocate a special, unanalyzable mem-ref with ID zero. */ 2449 memory_accesses.refs_list.quick_push 2450 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID)); 2451 2452 memory_accesses.refs_in_loop.create (number_of_loops (cfun)); 2453 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun)); 2454 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun)); 2455 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun)); 2456 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun)); 2457 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun)); 2458 2459 for (i = 0; i < number_of_loops (cfun); i++) 2460 { 2461 bitmap_initialize (&memory_accesses.refs_in_loop[i], 2462 &lim_bitmap_obstack); 2463 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i], 2464 &lim_bitmap_obstack); 2465 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i], 2466 &lim_bitmap_obstack); 2467 } 2468 2469 memory_accesses.ttae_cache = NULL; 2470 2471 /* Initialize bb_loop_postorder with a mapping from loop->num to 2472 its postorder index. */ 2473 i = 0; 2474 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun)); 2475 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 2476 bb_loop_postorder[loop->num] = i++; 2477 } 2478 2479 /* Cleans up after the invariant motion pass. */ 2480 2481 static void 2482 tree_ssa_lim_finalize (void) 2483 { 2484 basic_block bb; 2485 unsigned i; 2486 im_mem_ref *ref; 2487 2488 free_aux_for_edges (); 2489 2490 FOR_EACH_BB_FN (bb, cfun) 2491 SET_ALWAYS_EXECUTED_IN (bb, NULL); 2492 2493 bitmap_obstack_release (&lim_bitmap_obstack); 2494 delete lim_aux_data_map; 2495 2496 delete memory_accesses.refs; 2497 memory_accesses.refs = NULL; 2498 2499 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) 2500 memref_free (ref); 2501 memory_accesses.refs_list.release (); 2502 obstack_free (&mem_ref_obstack, NULL); 2503 2504 memory_accesses.refs_in_loop.release (); 2505 memory_accesses.refs_stored_in_loop.release (); 2506 memory_accesses.all_refs_stored_in_loop.release (); 2507 2508 if (memory_accesses.ttae_cache) 2509 free_affine_expand_cache (&memory_accesses.ttae_cache); 2510 2511 free (bb_loop_postorder); 2512 } 2513 2514 /* Moves invariants from loops. Only "expensive" invariants are moved out -- 2515 i.e. those that are likely to be win regardless of the register pressure. */ 2516 2517 static unsigned int 2518 tree_ssa_lim (void) 2519 { 2520 unsigned int todo; 2521 2522 tree_ssa_lim_initialize (); 2523 2524 /* Gathers information about memory accesses in the loops. */ 2525 analyze_memory_references (); 2526 2527 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */ 2528 fill_always_executed_in (); 2529 2530 /* For each statement determine the outermost loop in that it is 2531 invariant and cost for computing the invariant. */ 2532 invariantness_dom_walker (CDI_DOMINATORS) 2533 .walk (cfun->cfg->x_entry_block_ptr); 2534 2535 /* Execute store motion. Force the necessary invariants to be moved 2536 out of the loops as well. */ 2537 store_motion (); 2538 2539 /* Move the expressions that are expensive enough. */ 2540 todo = move_computations (); 2541 2542 tree_ssa_lim_finalize (); 2543 2544 return todo; 2545 } 2546 2547 /* Loop invariant motion pass. */ 2548 2549 namespace { 2550 2551 const pass_data pass_data_lim = 2552 { 2553 GIMPLE_PASS, /* type */ 2554 "lim", /* name */ 2555 OPTGROUP_LOOP, /* optinfo_flags */ 2556 TV_LIM, /* tv_id */ 2557 PROP_cfg, /* properties_required */ 2558 0, /* properties_provided */ 2559 0, /* properties_destroyed */ 2560 0, /* todo_flags_start */ 2561 0, /* todo_flags_finish */ 2562 }; 2563 2564 class pass_lim : public gimple_opt_pass 2565 { 2566 public: 2567 pass_lim (gcc::context *ctxt) 2568 : gimple_opt_pass (pass_data_lim, ctxt) 2569 {} 2570 2571 /* opt_pass methods: */ 2572 opt_pass * clone () { return new pass_lim (m_ctxt); } 2573 virtual bool gate (function *) { return flag_tree_loop_im != 0; } 2574 virtual unsigned int execute (function *); 2575 2576 }; // class pass_lim 2577 2578 unsigned int 2579 pass_lim::execute (function *fun) 2580 { 2581 bool in_loop_pipeline = scev_initialized_p (); 2582 if (!in_loop_pipeline) 2583 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS); 2584 2585 if (number_of_loops (fun) <= 1) 2586 return 0; 2587 unsigned int todo = tree_ssa_lim (); 2588 2589 if (!in_loop_pipeline) 2590 loop_optimizer_finalize (); 2591 return todo; 2592 } 2593 2594 } // anon namespace 2595 2596 gimple_opt_pass * 2597 make_pass_lim (gcc::context *ctxt) 2598 { 2599 return new pass_lim (ctxt); 2600 } 2601 2602 2603