1 /* Combining of if-expressions on trees. 2 Copyright (C) 2007-2017 Free Software Foundation, Inc. 3 Contributed by Richard Guenther <rguenther@suse.de> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "cfghooks.h" 29 #include "tree-pass.h" 30 #include "memmodel.h" 31 #include "tm_p.h" 32 #include "ssa.h" 33 #include "tree-pretty-print.h" 34 /* rtl is needed only because arm back-end requires it for 35 BRANCH_COST. */ 36 #include "fold-const.h" 37 #include "cfganal.h" 38 #include "gimple-fold.h" 39 #include "gimple-iterator.h" 40 #include "gimplify-me.h" 41 #include "tree-cfg.h" 42 #include "tree-ssa.h" 43 44 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT 45 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 46 (BRANCH_COST (optimize_function_for_speed_p (cfun), \ 47 false) >= 2) 48 #endif 49 50 /* This pass combines COND_EXPRs to simplify control flow. It 51 currently recognizes bit tests and comparisons in chains that 52 represent logical and or logical or of two COND_EXPRs. 53 54 It does so by walking basic blocks in a approximate reverse 55 post-dominator order and trying to match CFG patterns that 56 represent logical and or logical or of two COND_EXPRs. 57 Transformations are done if the COND_EXPR conditions match 58 either 59 60 1. two single bit tests X & (1 << Yn) (for logical and) 61 62 2. two bit tests X & Yn (for logical or) 63 64 3. two comparisons X OPn Y (for logical or) 65 66 To simplify this pass, removing basic blocks and dead code 67 is left to CFG cleanup and DCE. */ 68 69 70 /* Recognize a if-then-else CFG pattern starting to match with the 71 COND_BB basic-block containing the COND_EXPR. The recognized 72 then end else blocks are stored to *THEN_BB and *ELSE_BB. If 73 *THEN_BB and/or *ELSE_BB are already set, they are required to 74 match the then and else basic-blocks to make the pattern match. 75 Returns true if the pattern matched, false otherwise. */ 76 77 static bool 78 recognize_if_then_else (basic_block cond_bb, 79 basic_block *then_bb, basic_block *else_bb) 80 { 81 edge t, e; 82 83 if (EDGE_COUNT (cond_bb->succs) != 2) 84 return false; 85 86 /* Find the then/else edges. */ 87 t = EDGE_SUCC (cond_bb, 0); 88 e = EDGE_SUCC (cond_bb, 1); 89 if (!(t->flags & EDGE_TRUE_VALUE)) 90 std::swap (t, e); 91 if (!(t->flags & EDGE_TRUE_VALUE) 92 || !(e->flags & EDGE_FALSE_VALUE)) 93 return false; 94 95 /* Check if the edge destinations point to the required block. */ 96 if (*then_bb 97 && t->dest != *then_bb) 98 return false; 99 if (*else_bb 100 && e->dest != *else_bb) 101 return false; 102 103 if (!*then_bb) 104 *then_bb = t->dest; 105 if (!*else_bb) 106 *else_bb = e->dest; 107 108 return true; 109 } 110 111 /* Verify if the basic block BB does not have side-effects. Return 112 true in this case, else false. */ 113 114 static bool 115 bb_no_side_effects_p (basic_block bb) 116 { 117 gimple_stmt_iterator gsi; 118 119 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 120 { 121 gimple *stmt = gsi_stmt (gsi); 122 123 if (is_gimple_debug (stmt)) 124 continue; 125 126 if (gimple_has_side_effects (stmt) 127 || gimple_uses_undefined_value_p (stmt) 128 || gimple_could_trap_p (stmt) 129 || gimple_vuse (stmt) 130 /* const calls don't match any of the above, yet they could 131 still have some side-effects - they could contain 132 gimple_could_trap_p statements, like floating point 133 exceptions or integer division by zero. See PR70586. 134 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p 135 should handle this. */ 136 || is_gimple_call (stmt)) 137 return false; 138 } 139 140 return true; 141 } 142 143 /* Return true if BB is an empty forwarder block to TO_BB. */ 144 145 static bool 146 forwarder_block_to (basic_block bb, basic_block to_bb) 147 { 148 return empty_block_p (bb) 149 && single_succ_p (bb) 150 && single_succ (bb) == to_bb; 151 } 152 153 /* Verify if all PHI node arguments in DEST for edges from BB1 or 154 BB2 to DEST are the same. This makes the CFG merge point 155 free from side-effects. Return true in this case, else false. */ 156 157 static bool 158 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest) 159 { 160 edge e1 = find_edge (bb1, dest); 161 edge e2 = find_edge (bb2, dest); 162 gphi_iterator gsi; 163 gphi *phi; 164 165 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) 166 { 167 phi = gsi.phi (); 168 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1), 169 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0)) 170 return false; 171 } 172 173 return true; 174 } 175 176 /* Return the best representative SSA name for CANDIDATE which is used 177 in a bit test. */ 178 179 static tree 180 get_name_for_bit_test (tree candidate) 181 { 182 /* Skip single-use names in favor of using the name from a 183 non-widening conversion definition. */ 184 if (TREE_CODE (candidate) == SSA_NAME 185 && has_single_use (candidate)) 186 { 187 gimple *def_stmt = SSA_NAME_DEF_STMT (candidate); 188 if (is_gimple_assign (def_stmt) 189 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) 190 { 191 if (TYPE_PRECISION (TREE_TYPE (candidate)) 192 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))) 193 return gimple_assign_rhs1 (def_stmt); 194 } 195 } 196 197 return candidate; 198 } 199 200 /* Recognize a single bit test pattern in GIMPLE_COND and its defining 201 statements. Store the name being tested in *NAME and the bit 202 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT). 203 Returns true if the pattern matched, false otherwise. */ 204 205 static bool 206 recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv) 207 { 208 gimple *stmt; 209 210 /* Get at the definition of the result of the bit test. */ 211 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR) 212 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME 213 || !integer_zerop (gimple_cond_rhs (cond))) 214 return false; 215 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)); 216 if (!is_gimple_assign (stmt)) 217 return false; 218 219 /* Look at which bit is tested. One form to recognize is 220 D.1985_5 = state_3(D) >> control1_4(D); 221 D.1986_6 = (int) D.1985_5; 222 D.1987_7 = op0 & 1; 223 if (D.1987_7 != 0) */ 224 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 225 && integer_onep (gimple_assign_rhs2 (stmt)) 226 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) 227 { 228 tree orig_name = gimple_assign_rhs1 (stmt); 229 230 /* Look through copies and conversions to eventually 231 find the stmt that computes the shift. */ 232 stmt = SSA_NAME_DEF_STMT (orig_name); 233 234 while (is_gimple_assign (stmt) 235 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)) 236 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt))) 237 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))) 238 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) 239 || gimple_assign_ssa_name_copy_p (stmt))) 240 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 241 242 /* If we found such, decompose it. */ 243 if (is_gimple_assign (stmt) 244 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR) 245 { 246 /* op0 & (1 << op1) */ 247 *bit = gimple_assign_rhs2 (stmt); 248 *name = gimple_assign_rhs1 (stmt); 249 } 250 else 251 { 252 /* t & 1 */ 253 *bit = integer_zero_node; 254 *name = get_name_for_bit_test (orig_name); 255 } 256 257 return true; 258 } 259 260 /* Another form is 261 D.1987_7 = op0 & (1 << CST) 262 if (D.1987_7 != 0) */ 263 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 264 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME 265 && integer_pow2p (gimple_assign_rhs2 (stmt))) 266 { 267 *name = gimple_assign_rhs1 (stmt); 268 *bit = build_int_cst (integer_type_node, 269 tree_log2 (gimple_assign_rhs2 (stmt))); 270 return true; 271 } 272 273 /* Another form is 274 D.1986_6 = 1 << control1_4(D) 275 D.1987_7 = op0 & D.1986_6 276 if (D.1987_7 != 0) */ 277 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 278 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME 279 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME) 280 { 281 gimple *tmp; 282 283 /* Both arguments of the BIT_AND_EXPR can be the single-bit 284 specifying expression. */ 285 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 286 if (is_gimple_assign (tmp) 287 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR 288 && integer_onep (gimple_assign_rhs1 (tmp))) 289 { 290 *name = gimple_assign_rhs2 (stmt); 291 *bit = gimple_assign_rhs2 (tmp); 292 return true; 293 } 294 295 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); 296 if (is_gimple_assign (tmp) 297 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR 298 && integer_onep (gimple_assign_rhs1 (tmp))) 299 { 300 *name = gimple_assign_rhs1 (stmt); 301 *bit = gimple_assign_rhs2 (tmp); 302 return true; 303 } 304 } 305 306 return false; 307 } 308 309 /* Recognize a bit test pattern in a GIMPLE_COND and its defining 310 statements. Store the name being tested in *NAME and the bits 311 in *BITS. The COND_EXPR computes *NAME & *BITS. 312 Returns true if the pattern matched, false otherwise. */ 313 314 static bool 315 recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv) 316 { 317 gimple *stmt; 318 319 /* Get at the definition of the result of the bit test. */ 320 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR) 321 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME 322 || !integer_zerop (gimple_cond_rhs (cond))) 323 return false; 324 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)); 325 if (!is_gimple_assign (stmt) 326 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR) 327 return false; 328 329 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt)); 330 *bits = gimple_assign_rhs2 (stmt); 331 332 return true; 333 } 334 335 336 /* Update profile after code in outer_cond_bb was adjusted so 337 outer_cond_bb has no condition. */ 338 339 static void 340 update_profile_after_ifcombine (basic_block inner_cond_bb, 341 basic_block outer_cond_bb) 342 { 343 edge outer_to_inner = find_edge (outer_cond_bb, inner_cond_bb); 344 edge outer2 = (EDGE_SUCC (outer_cond_bb, 0) == outer_to_inner 345 ? EDGE_SUCC (outer_cond_bb, 1) 346 : EDGE_SUCC (outer_cond_bb, 0)); 347 edge inner_taken = EDGE_SUCC (inner_cond_bb, 0); 348 edge inner_not_taken = EDGE_SUCC (inner_cond_bb, 1); 349 350 if (inner_taken->dest != outer2->dest) 351 std::swap (inner_taken, inner_not_taken); 352 gcc_assert (inner_taken->dest == outer2->dest); 353 354 /* In the following we assume that inner_cond_bb has single predecessor. */ 355 gcc_assert (single_pred_p (inner_cond_bb)); 356 357 /* Path outer_cond_bb->(outer2) needs to be merged into path 358 outer_cond_bb->(outer_to_inner)->inner_cond_bb->(inner_taken) 359 and probability of inner_not_taken updated. */ 360 361 outer_to_inner->count = outer_cond_bb->count; 362 inner_cond_bb->count = outer_cond_bb->count; 363 inner_taken->count += outer2->count; 364 outer2->count = 0; 365 366 inner_taken->probability = outer2->probability 367 + RDIV (outer_to_inner->probability 368 * inner_taken->probability, 369 REG_BR_PROB_BASE); 370 if (inner_taken->probability > REG_BR_PROB_BASE) 371 inner_taken->probability = REG_BR_PROB_BASE; 372 inner_not_taken->probability = REG_BR_PROB_BASE 373 - inner_taken->probability; 374 375 outer_to_inner->probability = REG_BR_PROB_BASE; 376 inner_cond_bb->frequency = outer_cond_bb->frequency; 377 outer2->probability = 0; 378 } 379 380 /* If-convert on a and pattern with a common else block. The inner 381 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB. 382 inner_inv, outer_inv and result_inv indicate whether the conditions 383 are inverted. 384 Returns true if the edges to the common else basic-block were merged. */ 385 386 static bool 387 ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv, 388 basic_block outer_cond_bb, bool outer_inv, bool result_inv) 389 { 390 gimple_stmt_iterator gsi; 391 gimple *inner_stmt, *outer_stmt; 392 gcond *inner_cond, *outer_cond; 393 tree name1, name2, bit1, bit2, bits1, bits2; 394 395 inner_stmt = last_stmt (inner_cond_bb); 396 if (!inner_stmt 397 || gimple_code (inner_stmt) != GIMPLE_COND) 398 return false; 399 inner_cond = as_a <gcond *> (inner_stmt); 400 401 outer_stmt = last_stmt (outer_cond_bb); 402 if (!outer_stmt 403 || gimple_code (outer_stmt) != GIMPLE_COND) 404 return false; 405 outer_cond = as_a <gcond *> (outer_stmt); 406 407 /* See if we test a single bit of the same name in both tests. In 408 that case remove the outer test, merging both else edges, 409 and change the inner one to test for 410 name & (bit1 | bit2) == (bit1 | bit2). */ 411 if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv) 412 && recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv) 413 && name1 == name2) 414 { 415 tree t, t2; 416 417 /* Do it. */ 418 gsi = gsi_for_stmt (inner_cond); 419 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1), 420 build_int_cst (TREE_TYPE (name1), 1), bit1); 421 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1), 422 build_int_cst (TREE_TYPE (name1), 1), bit2); 423 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2); 424 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 425 true, GSI_SAME_STMT); 426 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t); 427 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE, 428 true, GSI_SAME_STMT); 429 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, 430 boolean_type_node, t2, t); 431 t = canonicalize_cond_expr_cond (t); 432 if (!t) 433 return false; 434 gimple_cond_set_condition_from_tree (inner_cond, t); 435 update_stmt (inner_cond); 436 437 /* Leave CFG optimization to cfg_cleanup. */ 438 gimple_cond_set_condition_from_tree (outer_cond, 439 outer_inv ? boolean_false_node : boolean_true_node); 440 update_stmt (outer_cond); 441 442 update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb); 443 444 if (dump_file) 445 { 446 fprintf (dump_file, "optimizing double bit test to "); 447 print_generic_expr (dump_file, name1, 0); 448 fprintf (dump_file, " & T == T\nwith temporary T = (1 << "); 449 print_generic_expr (dump_file, bit1, 0); 450 fprintf (dump_file, ") | (1 << "); 451 print_generic_expr (dump_file, bit2, 0); 452 fprintf (dump_file, ")\n"); 453 } 454 455 return true; 456 } 457 458 /* See if we have two bit tests of the same name in both tests. 459 In that case remove the outer test and change the inner one to 460 test for name & (bits1 | bits2) != 0. */ 461 else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv) 462 && recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv)) 463 { 464 gimple_stmt_iterator gsi; 465 tree t; 466 467 /* Find the common name which is bit-tested. */ 468 if (name1 == name2) 469 ; 470 else if (bits1 == bits2) 471 { 472 std::swap (name2, bits2); 473 std::swap (name1, bits1); 474 } 475 else if (name1 == bits2) 476 std::swap (name2, bits2); 477 else if (bits1 == name2) 478 std::swap (name1, bits1); 479 else 480 return false; 481 482 /* As we strip non-widening conversions in finding a common 483 name that is tested make sure to end up with an integral 484 type for building the bit operations. */ 485 if (TYPE_PRECISION (TREE_TYPE (bits1)) 486 >= TYPE_PRECISION (TREE_TYPE (bits2))) 487 { 488 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1); 489 name1 = fold_convert (TREE_TYPE (bits1), name1); 490 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2); 491 bits2 = fold_convert (TREE_TYPE (bits1), bits2); 492 } 493 else 494 { 495 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2); 496 name1 = fold_convert (TREE_TYPE (bits2), name1); 497 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1); 498 bits1 = fold_convert (TREE_TYPE (bits2), bits1); 499 } 500 501 /* Do it. */ 502 gsi = gsi_for_stmt (inner_cond); 503 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2); 504 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 505 true, GSI_SAME_STMT); 506 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t); 507 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 508 true, GSI_SAME_STMT); 509 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t, 510 build_int_cst (TREE_TYPE (t), 0)); 511 t = canonicalize_cond_expr_cond (t); 512 if (!t) 513 return false; 514 gimple_cond_set_condition_from_tree (inner_cond, t); 515 update_stmt (inner_cond); 516 517 /* Leave CFG optimization to cfg_cleanup. */ 518 gimple_cond_set_condition_from_tree (outer_cond, 519 outer_inv ? boolean_false_node : boolean_true_node); 520 update_stmt (outer_cond); 521 update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb); 522 523 if (dump_file) 524 { 525 fprintf (dump_file, "optimizing bits or bits test to "); 526 print_generic_expr (dump_file, name1, 0); 527 fprintf (dump_file, " & T != 0\nwith temporary T = "); 528 print_generic_expr (dump_file, bits1, 0); 529 fprintf (dump_file, " | "); 530 print_generic_expr (dump_file, bits2, 0); 531 fprintf (dump_file, "\n"); 532 } 533 534 return true; 535 } 536 537 /* See if we have two comparisons that we can merge into one. */ 538 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison 539 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison) 540 { 541 tree t; 542 enum tree_code inner_cond_code = gimple_cond_code (inner_cond); 543 enum tree_code outer_cond_code = gimple_cond_code (outer_cond); 544 545 /* Invert comparisons if necessary (and possible). */ 546 if (inner_inv) 547 inner_cond_code = invert_tree_comparison (inner_cond_code, 548 HONOR_NANS (gimple_cond_lhs (inner_cond))); 549 if (inner_cond_code == ERROR_MARK) 550 return false; 551 if (outer_inv) 552 outer_cond_code = invert_tree_comparison (outer_cond_code, 553 HONOR_NANS (gimple_cond_lhs (outer_cond))); 554 if (outer_cond_code == ERROR_MARK) 555 return false; 556 /* Don't return false so fast, try maybe_fold_or_comparisons? */ 557 558 if (!(t = maybe_fold_and_comparisons (inner_cond_code, 559 gimple_cond_lhs (inner_cond), 560 gimple_cond_rhs (inner_cond), 561 outer_cond_code, 562 gimple_cond_lhs (outer_cond), 563 gimple_cond_rhs (outer_cond)))) 564 { 565 tree t1, t2; 566 gimple_stmt_iterator gsi; 567 if (!LOGICAL_OP_NON_SHORT_CIRCUIT) 568 return false; 569 /* Only do this optimization if the inner bb contains only the conditional. */ 570 if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb))) 571 return false; 572 t1 = fold_build2_loc (gimple_location (inner_cond), 573 inner_cond_code, 574 boolean_type_node, 575 gimple_cond_lhs (inner_cond), 576 gimple_cond_rhs (inner_cond)); 577 t2 = fold_build2_loc (gimple_location (outer_cond), 578 outer_cond_code, 579 boolean_type_node, 580 gimple_cond_lhs (outer_cond), 581 gimple_cond_rhs (outer_cond)); 582 t = fold_build2_loc (gimple_location (inner_cond), 583 TRUTH_AND_EXPR, boolean_type_node, t1, t2); 584 if (result_inv) 585 { 586 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t); 587 result_inv = false; 588 } 589 gsi = gsi_for_stmt (inner_cond); 590 t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true, 591 GSI_SAME_STMT); 592 } 593 if (result_inv) 594 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t); 595 t = canonicalize_cond_expr_cond (t); 596 if (!t) 597 return false; 598 gimple_cond_set_condition_from_tree (inner_cond, t); 599 update_stmt (inner_cond); 600 601 /* Leave CFG optimization to cfg_cleanup. */ 602 gimple_cond_set_condition_from_tree (outer_cond, 603 outer_inv ? boolean_false_node : boolean_true_node); 604 update_stmt (outer_cond); 605 update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb); 606 607 if (dump_file) 608 { 609 fprintf (dump_file, "optimizing two comparisons to "); 610 print_generic_expr (dump_file, t, 0); 611 fprintf (dump_file, "\n"); 612 } 613 614 return true; 615 } 616 617 return false; 618 } 619 620 /* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and 621 dispatch to the appropriate if-conversion helper for a particular 622 set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB. 623 PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */ 624 625 static bool 626 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb, 627 basic_block then_bb, basic_block else_bb, 628 basic_block phi_pred_bb) 629 { 630 /* The && form is characterized by a common else_bb with 631 the two edges leading to it mergable. The latter is 632 guaranteed by matching PHI arguments in the else_bb and 633 the inner cond_bb having no side-effects. */ 634 if (phi_pred_bb != else_bb 635 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb) 636 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)) 637 { 638 /* We have 639 <outer_cond_bb> 640 if (q) goto inner_cond_bb; else goto else_bb; 641 <inner_cond_bb> 642 if (p) goto ...; else goto else_bb; 643 ... 644 <else_bb> 645 ... 646 */ 647 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false, 648 false); 649 } 650 651 /* And a version where the outer condition is negated. */ 652 if (phi_pred_bb != else_bb 653 && recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb) 654 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)) 655 { 656 /* We have 657 <outer_cond_bb> 658 if (q) goto else_bb; else goto inner_cond_bb; 659 <inner_cond_bb> 660 if (p) goto ...; else goto else_bb; 661 ... 662 <else_bb> 663 ... 664 */ 665 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true, 666 false); 667 } 668 669 /* The || form is characterized by a common then_bb with the 670 two edges leading to it mergable. The latter is guaranteed 671 by matching PHI arguments in the then_bb and the inner cond_bb 672 having no side-effects. */ 673 if (phi_pred_bb != then_bb 674 && recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb) 675 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)) 676 { 677 /* We have 678 <outer_cond_bb> 679 if (q) goto then_bb; else goto inner_cond_bb; 680 <inner_cond_bb> 681 if (q) goto then_bb; else goto ...; 682 <then_bb> 683 ... 684 */ 685 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true, 686 true); 687 } 688 689 /* And a version where the outer condition is negated. */ 690 if (phi_pred_bb != then_bb 691 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb) 692 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)) 693 { 694 /* We have 695 <outer_cond_bb> 696 if (q) goto inner_cond_bb; else goto then_bb; 697 <inner_cond_bb> 698 if (q) goto then_bb; else goto ...; 699 <then_bb> 700 ... 701 */ 702 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false, 703 true); 704 } 705 706 return false; 707 } 708 709 /* Recognize a CFG pattern and dispatch to the appropriate 710 if-conversion helper. We start with BB as the innermost 711 worker basic-block. Returns true if a transformation was done. */ 712 713 static bool 714 tree_ssa_ifcombine_bb (basic_block inner_cond_bb) 715 { 716 basic_block then_bb = NULL, else_bb = NULL; 717 718 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb)) 719 return false; 720 721 /* Recognize && and || of two conditions with a common 722 then/else block which entry edges we can merge. That is: 723 if (a || b) 724 ; 725 and 726 if (a && b) 727 ; 728 This requires a single predecessor of the inner cond_bb. */ 729 if (single_pred_p (inner_cond_bb) 730 && bb_no_side_effects_p (inner_cond_bb)) 731 { 732 basic_block outer_cond_bb = single_pred (inner_cond_bb); 733 734 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, 735 then_bb, else_bb, inner_cond_bb)) 736 return true; 737 738 if (forwarder_block_to (else_bb, then_bb)) 739 { 740 /* Other possibilities for the && form, if else_bb is 741 empty forwarder block to then_bb. Compared to the above simpler 742 forms this can be treated as if then_bb and else_bb were swapped, 743 and the corresponding inner_cond_bb not inverted because of that. 744 For same_phi_args_p we look at equality of arguments between 745 edge from outer_cond_bb and the forwarder block. */ 746 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb, 747 then_bb, else_bb)) 748 return true; 749 } 750 else if (forwarder_block_to (then_bb, else_bb)) 751 { 752 /* Other possibilities for the || form, if then_bb is 753 empty forwarder block to else_bb. Compared to the above simpler 754 forms this can be treated as if then_bb and else_bb were swapped, 755 and the corresponding inner_cond_bb not inverted because of that. 756 For same_phi_args_p we look at equality of arguments between 757 edge from outer_cond_bb and the forwarder block. */ 758 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb, 759 then_bb, then_bb)) 760 return true; 761 } 762 } 763 764 return false; 765 } 766 767 /* Main entry for the tree if-conversion pass. */ 768 769 namespace { 770 771 const pass_data pass_data_tree_ifcombine = 772 { 773 GIMPLE_PASS, /* type */ 774 "ifcombine", /* name */ 775 OPTGROUP_NONE, /* optinfo_flags */ 776 TV_TREE_IFCOMBINE, /* tv_id */ 777 ( PROP_cfg | PROP_ssa ), /* properties_required */ 778 0, /* properties_provided */ 779 0, /* properties_destroyed */ 780 0, /* todo_flags_start */ 781 TODO_update_ssa, /* todo_flags_finish */ 782 }; 783 784 class pass_tree_ifcombine : public gimple_opt_pass 785 { 786 public: 787 pass_tree_ifcombine (gcc::context *ctxt) 788 : gimple_opt_pass (pass_data_tree_ifcombine, ctxt) 789 {} 790 791 /* opt_pass methods: */ 792 virtual unsigned int execute (function *); 793 794 }; // class pass_tree_ifcombine 795 796 unsigned int 797 pass_tree_ifcombine::execute (function *fun) 798 { 799 basic_block *bbs; 800 bool cfg_changed = false; 801 int i; 802 803 bbs = single_pred_before_succ_order (); 804 calculate_dominance_info (CDI_DOMINATORS); 805 806 /* Search every basic block for COND_EXPR we may be able to optimize. 807 808 We walk the blocks in order that guarantees that a block with 809 a single predecessor is processed after the predecessor. 810 This ensures that we collapse outter ifs before visiting the 811 inner ones, and also that we do not try to visit a removed 812 block. This is opposite of PHI-OPT, because we cascade the 813 combining rather than cascading PHIs. */ 814 for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--) 815 { 816 basic_block bb = bbs[i]; 817 gimple *stmt = last_stmt (bb); 818 819 if (stmt 820 && gimple_code (stmt) == GIMPLE_COND) 821 if (tree_ssa_ifcombine_bb (bb)) 822 { 823 /* Clear range info from all stmts in BB which is now executed 824 conditional on a always true/false condition. */ 825 reset_flow_sensitive_info_in_bb (bb); 826 cfg_changed |= true; 827 } 828 } 829 830 free (bbs); 831 832 return cfg_changed ? TODO_cleanup_cfg : 0; 833 } 834 835 } // anon namespace 836 837 gimple_opt_pass * 838 make_pass_tree_ifcombine (gcc::context *ctxt) 839 { 840 return new pass_tree_ifcombine (ctxt); 841 } 842