xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-ifcombine.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Combining of if-expressions on trees.
2    Copyright (C) 2007-2017 Free Software Foundation, Inc.
3    Contributed by Richard Guenther <rguenther@suse.de>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "ssa.h"
33 #include "tree-pretty-print.h"
34 /* rtl is needed only because arm back-end requires it for
35    BRANCH_COST.  */
36 #include "fold-const.h"
37 #include "cfganal.h"
38 #include "gimple-fold.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-cfg.h"
42 #include "tree-ssa.h"
43 
44 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
45 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
46   (BRANCH_COST (optimize_function_for_speed_p (cfun), \
47                 false) >= 2)
48 #endif
49 
50 /* This pass combines COND_EXPRs to simplify control flow.  It
51    currently recognizes bit tests and comparisons in chains that
52    represent logical and or logical or of two COND_EXPRs.
53 
54    It does so by walking basic blocks in a approximate reverse
55    post-dominator order and trying to match CFG patterns that
56    represent logical and or logical or of two COND_EXPRs.
57    Transformations are done if the COND_EXPR conditions match
58    either
59 
60      1. two single bit tests X & (1 << Yn) (for logical and)
61 
62      2. two bit tests X & Yn (for logical or)
63 
64      3. two comparisons X OPn Y (for logical or)
65 
66    To simplify this pass, removing basic blocks and dead code
67    is left to CFG cleanup and DCE.  */
68 
69 
70 /* Recognize a if-then-else CFG pattern starting to match with the
71    COND_BB basic-block containing the COND_EXPR.  The recognized
72    then end else blocks are stored to *THEN_BB and *ELSE_BB.  If
73    *THEN_BB and/or *ELSE_BB are already set, they are required to
74    match the then and else basic-blocks to make the pattern match.
75    Returns true if the pattern matched, false otherwise.  */
76 
77 static bool
78 recognize_if_then_else (basic_block cond_bb,
79 			basic_block *then_bb, basic_block *else_bb)
80 {
81   edge t, e;
82 
83   if (EDGE_COUNT (cond_bb->succs) != 2)
84     return false;
85 
86   /* Find the then/else edges.  */
87   t = EDGE_SUCC (cond_bb, 0);
88   e = EDGE_SUCC (cond_bb, 1);
89   if (!(t->flags & EDGE_TRUE_VALUE))
90     std::swap (t, e);
91   if (!(t->flags & EDGE_TRUE_VALUE)
92       || !(e->flags & EDGE_FALSE_VALUE))
93     return false;
94 
95   /* Check if the edge destinations point to the required block.  */
96   if (*then_bb
97       && t->dest != *then_bb)
98     return false;
99   if (*else_bb
100       && e->dest != *else_bb)
101     return false;
102 
103   if (!*then_bb)
104     *then_bb = t->dest;
105   if (!*else_bb)
106     *else_bb = e->dest;
107 
108   return true;
109 }
110 
111 /* Verify if the basic block BB does not have side-effects.  Return
112    true in this case, else false.  */
113 
114 static bool
115 bb_no_side_effects_p (basic_block bb)
116 {
117   gimple_stmt_iterator gsi;
118 
119   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
120     {
121       gimple *stmt = gsi_stmt (gsi);
122 
123       if (is_gimple_debug (stmt))
124 	continue;
125 
126       if (gimple_has_side_effects (stmt)
127 	  || gimple_uses_undefined_value_p (stmt)
128 	  || gimple_could_trap_p (stmt)
129 	  || gimple_vuse (stmt)
130 	  /* const calls don't match any of the above, yet they could
131 	     still have some side-effects - they could contain
132 	     gimple_could_trap_p statements, like floating point
133 	     exceptions or integer division by zero.  See PR70586.
134 	     FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
135 	     should handle this.  */
136 	  || is_gimple_call (stmt))
137 	return false;
138     }
139 
140   return true;
141 }
142 
143 /* Return true if BB is an empty forwarder block to TO_BB.  */
144 
145 static bool
146 forwarder_block_to (basic_block bb, basic_block to_bb)
147 {
148   return empty_block_p (bb)
149 	 && single_succ_p (bb)
150 	 && single_succ (bb) == to_bb;
151 }
152 
153 /* Verify if all PHI node arguments in DEST for edges from BB1 or
154    BB2 to DEST are the same.  This makes the CFG merge point
155    free from side-effects.  Return true in this case, else false.  */
156 
157 static bool
158 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
159 {
160   edge e1 = find_edge (bb1, dest);
161   edge e2 = find_edge (bb2, dest);
162   gphi_iterator gsi;
163   gphi *phi;
164 
165   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
166     {
167       phi = gsi.phi ();
168       if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
169 			    PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
170         return false;
171     }
172 
173   return true;
174 }
175 
176 /* Return the best representative SSA name for CANDIDATE which is used
177    in a bit test.  */
178 
179 static tree
180 get_name_for_bit_test (tree candidate)
181 {
182   /* Skip single-use names in favor of using the name from a
183      non-widening conversion definition.  */
184   if (TREE_CODE (candidate) == SSA_NAME
185       && has_single_use (candidate))
186     {
187       gimple *def_stmt = SSA_NAME_DEF_STMT (candidate);
188       if (is_gimple_assign (def_stmt)
189 	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
190 	{
191 	  if (TYPE_PRECISION (TREE_TYPE (candidate))
192 	      <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
193 	    return gimple_assign_rhs1 (def_stmt);
194 	}
195     }
196 
197   return candidate;
198 }
199 
200 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
201    statements.  Store the name being tested in *NAME and the bit
202    in *BIT.  The GIMPLE_COND computes *NAME & (1 << *BIT).
203    Returns true if the pattern matched, false otherwise.  */
204 
205 static bool
206 recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv)
207 {
208   gimple *stmt;
209 
210   /* Get at the definition of the result of the bit test.  */
211   if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
212       || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
213       || !integer_zerop (gimple_cond_rhs (cond)))
214     return false;
215   stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
216   if (!is_gimple_assign (stmt))
217     return false;
218 
219   /* Look at which bit is tested.  One form to recognize is
220      D.1985_5 = state_3(D) >> control1_4(D);
221      D.1986_6 = (int) D.1985_5;
222      D.1987_7 = op0 & 1;
223      if (D.1987_7 != 0)  */
224   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
225       && integer_onep (gimple_assign_rhs2 (stmt))
226       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
227     {
228       tree orig_name = gimple_assign_rhs1 (stmt);
229 
230       /* Look through copies and conversions to eventually
231 	 find the stmt that computes the shift.  */
232       stmt = SSA_NAME_DEF_STMT (orig_name);
233 
234       while (is_gimple_assign (stmt)
235 	     && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
236 		  && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
237 		      <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))))
238 		  && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
239 		 || gimple_assign_ssa_name_copy_p (stmt)))
240 	stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
241 
242       /* If we found such, decompose it.  */
243       if (is_gimple_assign (stmt)
244 	  && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
245 	{
246 	  /* op0 & (1 << op1) */
247 	  *bit = gimple_assign_rhs2 (stmt);
248 	  *name = gimple_assign_rhs1 (stmt);
249 	}
250       else
251 	{
252 	  /* t & 1 */
253 	  *bit = integer_zero_node;
254 	  *name = get_name_for_bit_test (orig_name);
255 	}
256 
257       return true;
258     }
259 
260   /* Another form is
261      D.1987_7 = op0 & (1 << CST)
262      if (D.1987_7 != 0)  */
263   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
264       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
265       && integer_pow2p (gimple_assign_rhs2 (stmt)))
266     {
267       *name = gimple_assign_rhs1 (stmt);
268       *bit = build_int_cst (integer_type_node,
269 			    tree_log2 (gimple_assign_rhs2 (stmt)));
270       return true;
271     }
272 
273   /* Another form is
274      D.1986_6 = 1 << control1_4(D)
275      D.1987_7 = op0 & D.1986_6
276      if (D.1987_7 != 0)  */
277   if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
278       && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
279       && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
280     {
281       gimple *tmp;
282 
283       /* Both arguments of the BIT_AND_EXPR can be the single-bit
284 	 specifying expression.  */
285       tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
286       if (is_gimple_assign (tmp)
287 	  && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
288 	  && integer_onep (gimple_assign_rhs1 (tmp)))
289 	{
290 	  *name = gimple_assign_rhs2 (stmt);
291 	  *bit = gimple_assign_rhs2 (tmp);
292 	  return true;
293 	}
294 
295       tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
296       if (is_gimple_assign (tmp)
297 	  && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
298 	  && integer_onep (gimple_assign_rhs1 (tmp)))
299 	{
300 	  *name = gimple_assign_rhs1 (stmt);
301 	  *bit = gimple_assign_rhs2 (tmp);
302 	  return true;
303 	}
304     }
305 
306   return false;
307 }
308 
309 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
310    statements.  Store the name being tested in *NAME and the bits
311    in *BITS.  The COND_EXPR computes *NAME & *BITS.
312    Returns true if the pattern matched, false otherwise.  */
313 
314 static bool
315 recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv)
316 {
317   gimple *stmt;
318 
319   /* Get at the definition of the result of the bit test.  */
320   if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
321       || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
322       || !integer_zerop (gimple_cond_rhs (cond)))
323     return false;
324   stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
325   if (!is_gimple_assign (stmt)
326       || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
327     return false;
328 
329   *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
330   *bits = gimple_assign_rhs2 (stmt);
331 
332   return true;
333 }
334 
335 
336 /* Update profile after code in outer_cond_bb was adjusted so
337    outer_cond_bb has no condition.  */
338 
339 static void
340 update_profile_after_ifcombine (basic_block inner_cond_bb,
341 			        basic_block outer_cond_bb)
342 {
343   edge outer_to_inner = find_edge (outer_cond_bb, inner_cond_bb);
344   edge outer2 = (EDGE_SUCC (outer_cond_bb, 0) == outer_to_inner
345 		 ? EDGE_SUCC (outer_cond_bb, 1)
346 		 : EDGE_SUCC (outer_cond_bb, 0));
347   edge inner_taken = EDGE_SUCC (inner_cond_bb, 0);
348   edge inner_not_taken = EDGE_SUCC (inner_cond_bb, 1);
349 
350   if (inner_taken->dest != outer2->dest)
351     std::swap (inner_taken, inner_not_taken);
352   gcc_assert (inner_taken->dest == outer2->dest);
353 
354   /* In the following we assume that inner_cond_bb has single predecessor.  */
355   gcc_assert (single_pred_p (inner_cond_bb));
356 
357   /* Path outer_cond_bb->(outer2) needs to be merged into path
358      outer_cond_bb->(outer_to_inner)->inner_cond_bb->(inner_taken)
359      and probability of inner_not_taken updated.  */
360 
361   outer_to_inner->count = outer_cond_bb->count;
362   inner_cond_bb->count = outer_cond_bb->count;
363   inner_taken->count += outer2->count;
364   outer2->count = 0;
365 
366   inner_taken->probability = outer2->probability
367 			     + RDIV (outer_to_inner->probability
368 				     * inner_taken->probability,
369 				     REG_BR_PROB_BASE);
370   if (inner_taken->probability > REG_BR_PROB_BASE)
371     inner_taken->probability = REG_BR_PROB_BASE;
372   inner_not_taken->probability = REG_BR_PROB_BASE
373 				 - inner_taken->probability;
374 
375   outer_to_inner->probability = REG_BR_PROB_BASE;
376   inner_cond_bb->frequency = outer_cond_bb->frequency;
377   outer2->probability = 0;
378 }
379 
380 /* If-convert on a and pattern with a common else block.  The inner
381    if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
382    inner_inv, outer_inv and result_inv indicate whether the conditions
383    are inverted.
384    Returns true if the edges to the common else basic-block were merged.  */
385 
386 static bool
387 ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv,
388 		   basic_block outer_cond_bb, bool outer_inv, bool result_inv)
389 {
390   gimple_stmt_iterator gsi;
391   gimple *inner_stmt, *outer_stmt;
392   gcond *inner_cond, *outer_cond;
393   tree name1, name2, bit1, bit2, bits1, bits2;
394 
395   inner_stmt = last_stmt (inner_cond_bb);
396   if (!inner_stmt
397       || gimple_code (inner_stmt) != GIMPLE_COND)
398     return false;
399   inner_cond = as_a <gcond *> (inner_stmt);
400 
401   outer_stmt = last_stmt (outer_cond_bb);
402   if (!outer_stmt
403       || gimple_code (outer_stmt) != GIMPLE_COND)
404     return false;
405   outer_cond = as_a <gcond *> (outer_stmt);
406 
407   /* See if we test a single bit of the same name in both tests.  In
408      that case remove the outer test, merging both else edges,
409      and change the inner one to test for
410      name & (bit1 | bit2) == (bit1 | bit2).  */
411   if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv)
412       && recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv)
413       && name1 == name2)
414     {
415       tree t, t2;
416 
417       /* Do it.  */
418       gsi = gsi_for_stmt (inner_cond);
419       t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
420 		       build_int_cst (TREE_TYPE (name1), 1), bit1);
421       t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
422 		        build_int_cst (TREE_TYPE (name1), 1), bit2);
423       t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
424       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
425 				    true, GSI_SAME_STMT);
426       t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
427       t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
428 				     true, GSI_SAME_STMT);
429       t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR,
430 		       boolean_type_node, t2, t);
431       t = canonicalize_cond_expr_cond (t);
432       if (!t)
433 	return false;
434       gimple_cond_set_condition_from_tree (inner_cond, t);
435       update_stmt (inner_cond);
436 
437       /* Leave CFG optimization to cfg_cleanup.  */
438       gimple_cond_set_condition_from_tree (outer_cond,
439 	outer_inv ? boolean_false_node : boolean_true_node);
440       update_stmt (outer_cond);
441 
442       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
443 
444       if (dump_file)
445 	{
446 	  fprintf (dump_file, "optimizing double bit test to ");
447 	  print_generic_expr (dump_file, name1, 0);
448 	  fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
449 	  print_generic_expr (dump_file, bit1, 0);
450 	  fprintf (dump_file, ") | (1 << ");
451 	  print_generic_expr (dump_file, bit2, 0);
452 	  fprintf (dump_file, ")\n");
453 	}
454 
455       return true;
456     }
457 
458   /* See if we have two bit tests of the same name in both tests.
459      In that case remove the outer test and change the inner one to
460      test for name & (bits1 | bits2) != 0.  */
461   else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv)
462       && recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv))
463     {
464       gimple_stmt_iterator gsi;
465       tree t;
466 
467       /* Find the common name which is bit-tested.  */
468       if (name1 == name2)
469 	;
470       else if (bits1 == bits2)
471 	{
472 	  std::swap (name2, bits2);
473 	  std::swap (name1, bits1);
474 	}
475       else if (name1 == bits2)
476 	std::swap (name2, bits2);
477       else if (bits1 == name2)
478 	std::swap (name1, bits1);
479       else
480 	return false;
481 
482       /* As we strip non-widening conversions in finding a common
483          name that is tested make sure to end up with an integral
484 	 type for building the bit operations.  */
485       if (TYPE_PRECISION (TREE_TYPE (bits1))
486 	  >= TYPE_PRECISION (TREE_TYPE (bits2)))
487 	{
488 	  bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
489 	  name1 = fold_convert (TREE_TYPE (bits1), name1);
490 	  bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
491 	  bits2 = fold_convert (TREE_TYPE (bits1), bits2);
492 	}
493       else
494 	{
495 	  bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
496 	  name1 = fold_convert (TREE_TYPE (bits2), name1);
497 	  bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
498 	  bits1 = fold_convert (TREE_TYPE (bits2), bits1);
499 	}
500 
501       /* Do it.  */
502       gsi = gsi_for_stmt (inner_cond);
503       t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
504       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
505 				    true, GSI_SAME_STMT);
506       t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
507       t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
508 				    true, GSI_SAME_STMT);
509       t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t,
510 		       build_int_cst (TREE_TYPE (t), 0));
511       t = canonicalize_cond_expr_cond (t);
512       if (!t)
513 	return false;
514       gimple_cond_set_condition_from_tree (inner_cond, t);
515       update_stmt (inner_cond);
516 
517       /* Leave CFG optimization to cfg_cleanup.  */
518       gimple_cond_set_condition_from_tree (outer_cond,
519 	outer_inv ? boolean_false_node : boolean_true_node);
520       update_stmt (outer_cond);
521       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
522 
523       if (dump_file)
524 	{
525 	  fprintf (dump_file, "optimizing bits or bits test to ");
526 	  print_generic_expr (dump_file, name1, 0);
527 	  fprintf (dump_file, " & T != 0\nwith temporary T = ");
528 	  print_generic_expr (dump_file, bits1, 0);
529 	  fprintf (dump_file, " | ");
530 	  print_generic_expr (dump_file, bits2, 0);
531 	  fprintf (dump_file, "\n");
532 	}
533 
534       return true;
535     }
536 
537   /* See if we have two comparisons that we can merge into one.  */
538   else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
539 	   && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
540     {
541       tree t;
542       enum tree_code inner_cond_code = gimple_cond_code (inner_cond);
543       enum tree_code outer_cond_code = gimple_cond_code (outer_cond);
544 
545       /* Invert comparisons if necessary (and possible).  */
546       if (inner_inv)
547 	inner_cond_code = invert_tree_comparison (inner_cond_code,
548 	  HONOR_NANS (gimple_cond_lhs (inner_cond)));
549       if (inner_cond_code == ERROR_MARK)
550 	return false;
551       if (outer_inv)
552 	outer_cond_code = invert_tree_comparison (outer_cond_code,
553 	  HONOR_NANS (gimple_cond_lhs (outer_cond)));
554       if (outer_cond_code == ERROR_MARK)
555 	return false;
556       /* Don't return false so fast, try maybe_fold_or_comparisons?  */
557 
558       if (!(t = maybe_fold_and_comparisons (inner_cond_code,
559 					    gimple_cond_lhs (inner_cond),
560 					    gimple_cond_rhs (inner_cond),
561 					    outer_cond_code,
562 					    gimple_cond_lhs (outer_cond),
563 					    gimple_cond_rhs (outer_cond))))
564 	{
565 	  tree t1, t2;
566 	  gimple_stmt_iterator gsi;
567 	  if (!LOGICAL_OP_NON_SHORT_CIRCUIT)
568 	    return false;
569 	  /* Only do this optimization if the inner bb contains only the conditional. */
570 	  if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb)))
571 	    return false;
572 	  t1 = fold_build2_loc (gimple_location (inner_cond),
573 				inner_cond_code,
574 				boolean_type_node,
575 				gimple_cond_lhs (inner_cond),
576 				gimple_cond_rhs (inner_cond));
577 	  t2 = fold_build2_loc (gimple_location (outer_cond),
578 				outer_cond_code,
579 				boolean_type_node,
580 				gimple_cond_lhs (outer_cond),
581 				gimple_cond_rhs (outer_cond));
582 	  t = fold_build2_loc (gimple_location (inner_cond),
583 			       TRUTH_AND_EXPR, boolean_type_node, t1, t2);
584 	  if (result_inv)
585 	    {
586 	      t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
587 	      result_inv = false;
588 	    }
589 	  gsi = gsi_for_stmt (inner_cond);
590 	  t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true,
591 					  GSI_SAME_STMT);
592         }
593       if (result_inv)
594 	t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
595       t = canonicalize_cond_expr_cond (t);
596       if (!t)
597 	return false;
598       gimple_cond_set_condition_from_tree (inner_cond, t);
599       update_stmt (inner_cond);
600 
601       /* Leave CFG optimization to cfg_cleanup.  */
602       gimple_cond_set_condition_from_tree (outer_cond,
603 	outer_inv ? boolean_false_node : boolean_true_node);
604       update_stmt (outer_cond);
605       update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
606 
607       if (dump_file)
608 	{
609 	  fprintf (dump_file, "optimizing two comparisons to ");
610 	  print_generic_expr (dump_file, t, 0);
611 	  fprintf (dump_file, "\n");
612 	}
613 
614       return true;
615     }
616 
617   return false;
618 }
619 
620 /* Helper function for tree_ssa_ifcombine_bb.  Recognize a CFG pattern and
621    dispatch to the appropriate if-conversion helper for a particular
622    set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
623    PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB.  */
624 
625 static bool
626 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb,
627 			 basic_block then_bb, basic_block else_bb,
628 			 basic_block phi_pred_bb)
629 {
630   /* The && form is characterized by a common else_bb with
631      the two edges leading to it mergable.  The latter is
632      guaranteed by matching PHI arguments in the else_bb and
633      the inner cond_bb having no side-effects.  */
634   if (phi_pred_bb != else_bb
635       && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
636       && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
637     {
638       /* We have
639 	   <outer_cond_bb>
640 	     if (q) goto inner_cond_bb; else goto else_bb;
641 	   <inner_cond_bb>
642 	     if (p) goto ...; else goto else_bb;
643 	     ...
644 	   <else_bb>
645 	     ...
646        */
647       return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false,
648 				false);
649     }
650 
651   /* And a version where the outer condition is negated.  */
652   if (phi_pred_bb != else_bb
653       && recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb)
654       && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
655     {
656       /* We have
657 	   <outer_cond_bb>
658 	     if (q) goto else_bb; else goto inner_cond_bb;
659 	   <inner_cond_bb>
660 	     if (p) goto ...; else goto else_bb;
661 	     ...
662 	   <else_bb>
663 	     ...
664        */
665       return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true,
666 				false);
667     }
668 
669   /* The || form is characterized by a common then_bb with the
670      two edges leading to it mergable.  The latter is guaranteed
671      by matching PHI arguments in the then_bb and the inner cond_bb
672      having no side-effects.  */
673   if (phi_pred_bb != then_bb
674       && recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
675       && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
676     {
677       /* We have
678 	   <outer_cond_bb>
679 	     if (q) goto then_bb; else goto inner_cond_bb;
680 	   <inner_cond_bb>
681 	     if (q) goto then_bb; else goto ...;
682 	   <then_bb>
683 	     ...
684        */
685       return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true,
686 				true);
687     }
688 
689   /* And a version where the outer condition is negated.  */
690   if (phi_pred_bb != then_bb
691       && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb)
692       && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
693     {
694       /* We have
695 	   <outer_cond_bb>
696 	     if (q) goto inner_cond_bb; else goto then_bb;
697 	   <inner_cond_bb>
698 	     if (q) goto then_bb; else goto ...;
699 	   <then_bb>
700 	     ...
701        */
702       return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false,
703 				true);
704     }
705 
706   return false;
707 }
708 
709 /* Recognize a CFG pattern and dispatch to the appropriate
710    if-conversion helper.  We start with BB as the innermost
711    worker basic-block.  Returns true if a transformation was done.  */
712 
713 static bool
714 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
715 {
716   basic_block then_bb = NULL, else_bb = NULL;
717 
718   if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
719     return false;
720 
721   /* Recognize && and || of two conditions with a common
722      then/else block which entry edges we can merge.  That is:
723        if (a || b)
724 	 ;
725      and
726        if (a && b)
727 	 ;
728      This requires a single predecessor of the inner cond_bb.  */
729   if (single_pred_p (inner_cond_bb)
730       && bb_no_side_effects_p (inner_cond_bb))
731     {
732       basic_block outer_cond_bb = single_pred (inner_cond_bb);
733 
734       if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb,
735 				   then_bb, else_bb, inner_cond_bb))
736 	return true;
737 
738       if (forwarder_block_to (else_bb, then_bb))
739 	{
740 	  /* Other possibilities for the && form, if else_bb is
741 	     empty forwarder block to then_bb.  Compared to the above simpler
742 	     forms this can be treated as if then_bb and else_bb were swapped,
743 	     and the corresponding inner_cond_bb not inverted because of that.
744 	     For same_phi_args_p we look at equality of arguments between
745 	     edge from outer_cond_bb and the forwarder block.  */
746 	  if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
747 				       then_bb, else_bb))
748 	    return true;
749 	}
750       else if (forwarder_block_to (then_bb, else_bb))
751 	{
752 	  /* Other possibilities for the || form, if then_bb is
753 	     empty forwarder block to else_bb.  Compared to the above simpler
754 	     forms this can be treated as if then_bb and else_bb were swapped,
755 	     and the corresponding inner_cond_bb not inverted because of that.
756 	     For same_phi_args_p we look at equality of arguments between
757 	     edge from outer_cond_bb and the forwarder block.  */
758 	  if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
759 				       then_bb, then_bb))
760 	    return true;
761 	}
762     }
763 
764   return false;
765 }
766 
767 /* Main entry for the tree if-conversion pass.  */
768 
769 namespace {
770 
771 const pass_data pass_data_tree_ifcombine =
772 {
773   GIMPLE_PASS, /* type */
774   "ifcombine", /* name */
775   OPTGROUP_NONE, /* optinfo_flags */
776   TV_TREE_IFCOMBINE, /* tv_id */
777   ( PROP_cfg | PROP_ssa ), /* properties_required */
778   0, /* properties_provided */
779   0, /* properties_destroyed */
780   0, /* todo_flags_start */
781   TODO_update_ssa, /* todo_flags_finish */
782 };
783 
784 class pass_tree_ifcombine : public gimple_opt_pass
785 {
786 public:
787   pass_tree_ifcombine (gcc::context *ctxt)
788     : gimple_opt_pass (pass_data_tree_ifcombine, ctxt)
789   {}
790 
791   /* opt_pass methods: */
792   virtual unsigned int execute (function *);
793 
794 }; // class pass_tree_ifcombine
795 
796 unsigned int
797 pass_tree_ifcombine::execute (function *fun)
798 {
799   basic_block *bbs;
800   bool cfg_changed = false;
801   int i;
802 
803   bbs = single_pred_before_succ_order ();
804   calculate_dominance_info (CDI_DOMINATORS);
805 
806   /* Search every basic block for COND_EXPR we may be able to optimize.
807 
808      We walk the blocks in order that guarantees that a block with
809      a single predecessor is processed after the predecessor.
810      This ensures that we collapse outter ifs before visiting the
811      inner ones, and also that we do not try to visit a removed
812      block.  This is opposite of PHI-OPT, because we cascade the
813      combining rather than cascading PHIs. */
814   for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
815     {
816       basic_block bb = bbs[i];
817       gimple *stmt = last_stmt (bb);
818 
819       if (stmt
820 	  && gimple_code (stmt) == GIMPLE_COND)
821 	if (tree_ssa_ifcombine_bb (bb))
822 	  {
823 	    /* Clear range info from all stmts in BB which is now executed
824 	       conditional on a always true/false condition.  */
825 	    reset_flow_sensitive_info_in_bb (bb);
826 	    cfg_changed |= true;
827 	  }
828     }
829 
830   free (bbs);
831 
832   return cfg_changed ? TODO_cleanup_cfg : 0;
833 }
834 
835 } // anon namespace
836 
837 gimple_opt_pass *
838 make_pass_tree_ifcombine (gcc::context *ctxt)
839 {
840   return new pass_tree_ifcombine (ctxt);
841 }
842