1 /* Combining of if-expressions on trees. 2 Copyright (C) 2007-2016 Free Software Foundation, Inc. 3 Contributed by Richard Guenther <rguenther@suse.de> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "cfghooks.h" 29 #include "tree-pass.h" 30 #include "tm_p.h" 31 #include "ssa.h" 32 #include "tree-pretty-print.h" 33 /* rtl is needed only because arm back-end requires it for 34 BRANCH_COST. */ 35 #include "fold-const.h" 36 #include "cfganal.h" 37 #include "gimple-fold.h" 38 #include "gimple-iterator.h" 39 #include "gimplify-me.h" 40 #include "tree-cfg.h" 41 #include "tree-ssa.h" 42 43 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT 44 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 45 (BRANCH_COST (optimize_function_for_speed_p (cfun), \ 46 false) >= 2) 47 #endif 48 49 /* This pass combines COND_EXPRs to simplify control flow. It 50 currently recognizes bit tests and comparisons in chains that 51 represent logical and or logical or of two COND_EXPRs. 52 53 It does so by walking basic blocks in a approximate reverse 54 post-dominator order and trying to match CFG patterns that 55 represent logical and or logical or of two COND_EXPRs. 56 Transformations are done if the COND_EXPR conditions match 57 either 58 59 1. two single bit tests X & (1 << Yn) (for logical and) 60 61 2. two bit tests X & Yn (for logical or) 62 63 3. two comparisons X OPn Y (for logical or) 64 65 To simplify this pass, removing basic blocks and dead code 66 is left to CFG cleanup and DCE. */ 67 68 69 /* Recognize a if-then-else CFG pattern starting to match with the 70 COND_BB basic-block containing the COND_EXPR. The recognized 71 then end else blocks are stored to *THEN_BB and *ELSE_BB. If 72 *THEN_BB and/or *ELSE_BB are already set, they are required to 73 match the then and else basic-blocks to make the pattern match. 74 Returns true if the pattern matched, false otherwise. */ 75 76 static bool 77 recognize_if_then_else (basic_block cond_bb, 78 basic_block *then_bb, basic_block *else_bb) 79 { 80 edge t, e; 81 82 if (EDGE_COUNT (cond_bb->succs) != 2) 83 return false; 84 85 /* Find the then/else edges. */ 86 t = EDGE_SUCC (cond_bb, 0); 87 e = EDGE_SUCC (cond_bb, 1); 88 if (!(t->flags & EDGE_TRUE_VALUE)) 89 std::swap (t, e); 90 if (!(t->flags & EDGE_TRUE_VALUE) 91 || !(e->flags & EDGE_FALSE_VALUE)) 92 return false; 93 94 /* Check if the edge destinations point to the required block. */ 95 if (*then_bb 96 && t->dest != *then_bb) 97 return false; 98 if (*else_bb 99 && e->dest != *else_bb) 100 return false; 101 102 if (!*then_bb) 103 *then_bb = t->dest; 104 if (!*else_bb) 105 *else_bb = e->dest; 106 107 return true; 108 } 109 110 /* Verify if the basic block BB does not have side-effects. Return 111 true in this case, else false. */ 112 113 static bool 114 bb_no_side_effects_p (basic_block bb) 115 { 116 gimple_stmt_iterator gsi; 117 118 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 119 { 120 gimple *stmt = gsi_stmt (gsi); 121 122 if (is_gimple_debug (stmt)) 123 continue; 124 125 if (gimple_has_side_effects (stmt) 126 || gimple_uses_undefined_value_p (stmt) 127 || gimple_could_trap_p (stmt) 128 || gimple_vuse (stmt) 129 /* const calls don't match any of the above, yet they could 130 still have some side-effects - they could contain 131 gimple_could_trap_p statements, like floating point 132 exceptions or integer division by zero. See PR70586. 133 FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p 134 should handle this. */ 135 || is_gimple_call (stmt)) 136 return false; 137 } 138 139 return true; 140 } 141 142 /* Return true if BB is an empty forwarder block to TO_BB. */ 143 144 static bool 145 forwarder_block_to (basic_block bb, basic_block to_bb) 146 { 147 return empty_block_p (bb) 148 && single_succ_p (bb) 149 && single_succ (bb) == to_bb; 150 } 151 152 /* Verify if all PHI node arguments in DEST for edges from BB1 or 153 BB2 to DEST are the same. This makes the CFG merge point 154 free from side-effects. Return true in this case, else false. */ 155 156 static bool 157 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest) 158 { 159 edge e1 = find_edge (bb1, dest); 160 edge e2 = find_edge (bb2, dest); 161 gphi_iterator gsi; 162 gphi *phi; 163 164 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi)) 165 { 166 phi = gsi.phi (); 167 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1), 168 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0)) 169 return false; 170 } 171 172 return true; 173 } 174 175 /* Return the best representative SSA name for CANDIDATE which is used 176 in a bit test. */ 177 178 static tree 179 get_name_for_bit_test (tree candidate) 180 { 181 /* Skip single-use names in favor of using the name from a 182 non-widening conversion definition. */ 183 if (TREE_CODE (candidate) == SSA_NAME 184 && has_single_use (candidate)) 185 { 186 gimple *def_stmt = SSA_NAME_DEF_STMT (candidate); 187 if (is_gimple_assign (def_stmt) 188 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))) 189 { 190 if (TYPE_PRECISION (TREE_TYPE (candidate)) 191 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))) 192 return gimple_assign_rhs1 (def_stmt); 193 } 194 } 195 196 return candidate; 197 } 198 199 /* Recognize a single bit test pattern in GIMPLE_COND and its defining 200 statements. Store the name being tested in *NAME and the bit 201 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT). 202 Returns true if the pattern matched, false otherwise. */ 203 204 static bool 205 recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv) 206 { 207 gimple *stmt; 208 209 /* Get at the definition of the result of the bit test. */ 210 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR) 211 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME 212 || !integer_zerop (gimple_cond_rhs (cond))) 213 return false; 214 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)); 215 if (!is_gimple_assign (stmt)) 216 return false; 217 218 /* Look at which bit is tested. One form to recognize is 219 D.1985_5 = state_3(D) >> control1_4(D); 220 D.1986_6 = (int) D.1985_5; 221 D.1987_7 = op0 & 1; 222 if (D.1987_7 != 0) */ 223 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 224 && integer_onep (gimple_assign_rhs2 (stmt)) 225 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) 226 { 227 tree orig_name = gimple_assign_rhs1 (stmt); 228 229 /* Look through copies and conversions to eventually 230 find the stmt that computes the shift. */ 231 stmt = SSA_NAME_DEF_STMT (orig_name); 232 233 while (is_gimple_assign (stmt) 234 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)) 235 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt))) 236 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))) 237 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME) 238 || gimple_assign_ssa_name_copy_p (stmt))) 239 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 240 241 /* If we found such, decompose it. */ 242 if (is_gimple_assign (stmt) 243 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR) 244 { 245 /* op0 & (1 << op1) */ 246 *bit = gimple_assign_rhs2 (stmt); 247 *name = gimple_assign_rhs1 (stmt); 248 } 249 else 250 { 251 /* t & 1 */ 252 *bit = integer_zero_node; 253 *name = get_name_for_bit_test (orig_name); 254 } 255 256 return true; 257 } 258 259 /* Another form is 260 D.1987_7 = op0 & (1 << CST) 261 if (D.1987_7 != 0) */ 262 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 263 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME 264 && integer_pow2p (gimple_assign_rhs2 (stmt))) 265 { 266 *name = gimple_assign_rhs1 (stmt); 267 *bit = build_int_cst (integer_type_node, 268 tree_log2 (gimple_assign_rhs2 (stmt))); 269 return true; 270 } 271 272 /* Another form is 273 D.1986_6 = 1 << control1_4(D) 274 D.1987_7 = op0 & D.1986_6 275 if (D.1987_7 != 0) */ 276 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR 277 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME 278 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME) 279 { 280 gimple *tmp; 281 282 /* Both arguments of the BIT_AND_EXPR can be the single-bit 283 specifying expression. */ 284 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 285 if (is_gimple_assign (tmp) 286 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR 287 && integer_onep (gimple_assign_rhs1 (tmp))) 288 { 289 *name = gimple_assign_rhs2 (stmt); 290 *bit = gimple_assign_rhs2 (tmp); 291 return true; 292 } 293 294 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt)); 295 if (is_gimple_assign (tmp) 296 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR 297 && integer_onep (gimple_assign_rhs1 (tmp))) 298 { 299 *name = gimple_assign_rhs1 (stmt); 300 *bit = gimple_assign_rhs2 (tmp); 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 /* Recognize a bit test pattern in a GIMPLE_COND and its defining 309 statements. Store the name being tested in *NAME and the bits 310 in *BITS. The COND_EXPR computes *NAME & *BITS. 311 Returns true if the pattern matched, false otherwise. */ 312 313 static bool 314 recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv) 315 { 316 gimple *stmt; 317 318 /* Get at the definition of the result of the bit test. */ 319 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR) 320 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME 321 || !integer_zerop (gimple_cond_rhs (cond))) 322 return false; 323 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)); 324 if (!is_gimple_assign (stmt) 325 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR) 326 return false; 327 328 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt)); 329 *bits = gimple_assign_rhs2 (stmt); 330 331 return true; 332 } 333 334 /* If-convert on a and pattern with a common else block. The inner 335 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB. 336 inner_inv, outer_inv and result_inv indicate whether the conditions 337 are inverted. 338 Returns true if the edges to the common else basic-block were merged. */ 339 340 static bool 341 ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv, 342 basic_block outer_cond_bb, bool outer_inv, bool result_inv) 343 { 344 gimple_stmt_iterator gsi; 345 gimple *inner_stmt, *outer_stmt; 346 gcond *inner_cond, *outer_cond; 347 tree name1, name2, bit1, bit2, bits1, bits2; 348 349 inner_stmt = last_stmt (inner_cond_bb); 350 if (!inner_stmt 351 || gimple_code (inner_stmt) != GIMPLE_COND) 352 return false; 353 inner_cond = as_a <gcond *> (inner_stmt); 354 355 outer_stmt = last_stmt (outer_cond_bb); 356 if (!outer_stmt 357 || gimple_code (outer_stmt) != GIMPLE_COND) 358 return false; 359 outer_cond = as_a <gcond *> (outer_stmt); 360 361 /* See if we test a single bit of the same name in both tests. In 362 that case remove the outer test, merging both else edges, 363 and change the inner one to test for 364 name & (bit1 | bit2) == (bit1 | bit2). */ 365 if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv) 366 && recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv) 367 && name1 == name2) 368 { 369 tree t, t2; 370 371 /* Do it. */ 372 gsi = gsi_for_stmt (inner_cond); 373 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1), 374 build_int_cst (TREE_TYPE (name1), 1), bit1); 375 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1), 376 build_int_cst (TREE_TYPE (name1), 1), bit2); 377 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2); 378 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 379 true, GSI_SAME_STMT); 380 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t); 381 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE, 382 true, GSI_SAME_STMT); 383 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, 384 boolean_type_node, t2, t); 385 t = canonicalize_cond_expr_cond (t); 386 if (!t) 387 return false; 388 gimple_cond_set_condition_from_tree (inner_cond, t); 389 update_stmt (inner_cond); 390 391 /* Leave CFG optimization to cfg_cleanup. */ 392 gimple_cond_set_condition_from_tree (outer_cond, 393 outer_inv ? boolean_false_node : boolean_true_node); 394 update_stmt (outer_cond); 395 396 if (dump_file) 397 { 398 fprintf (dump_file, "optimizing double bit test to "); 399 print_generic_expr (dump_file, name1, 0); 400 fprintf (dump_file, " & T == T\nwith temporary T = (1 << "); 401 print_generic_expr (dump_file, bit1, 0); 402 fprintf (dump_file, ") | (1 << "); 403 print_generic_expr (dump_file, bit2, 0); 404 fprintf (dump_file, ")\n"); 405 } 406 407 return true; 408 } 409 410 /* See if we have two bit tests of the same name in both tests. 411 In that case remove the outer test and change the inner one to 412 test for name & (bits1 | bits2) != 0. */ 413 else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv) 414 && recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv)) 415 { 416 gimple_stmt_iterator gsi; 417 tree t; 418 419 /* Find the common name which is bit-tested. */ 420 if (name1 == name2) 421 ; 422 else if (bits1 == bits2) 423 { 424 std::swap (name2, bits2); 425 std::swap (name1, bits1); 426 } 427 else if (name1 == bits2) 428 std::swap (name2, bits2); 429 else if (bits1 == name2) 430 std::swap (name1, bits1); 431 else 432 return false; 433 434 /* As we strip non-widening conversions in finding a common 435 name that is tested make sure to end up with an integral 436 type for building the bit operations. */ 437 if (TYPE_PRECISION (TREE_TYPE (bits1)) 438 >= TYPE_PRECISION (TREE_TYPE (bits2))) 439 { 440 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1); 441 name1 = fold_convert (TREE_TYPE (bits1), name1); 442 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2); 443 bits2 = fold_convert (TREE_TYPE (bits1), bits2); 444 } 445 else 446 { 447 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2); 448 name1 = fold_convert (TREE_TYPE (bits2), name1); 449 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1); 450 bits1 = fold_convert (TREE_TYPE (bits2), bits1); 451 } 452 453 /* Do it. */ 454 gsi = gsi_for_stmt (inner_cond); 455 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2); 456 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 457 true, GSI_SAME_STMT); 458 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t); 459 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE, 460 true, GSI_SAME_STMT); 461 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t, 462 build_int_cst (TREE_TYPE (t), 0)); 463 t = canonicalize_cond_expr_cond (t); 464 if (!t) 465 return false; 466 gimple_cond_set_condition_from_tree (inner_cond, t); 467 update_stmt (inner_cond); 468 469 /* Leave CFG optimization to cfg_cleanup. */ 470 gimple_cond_set_condition_from_tree (outer_cond, 471 outer_inv ? boolean_false_node : boolean_true_node); 472 update_stmt (outer_cond); 473 474 if (dump_file) 475 { 476 fprintf (dump_file, "optimizing bits or bits test to "); 477 print_generic_expr (dump_file, name1, 0); 478 fprintf (dump_file, " & T != 0\nwith temporary T = "); 479 print_generic_expr (dump_file, bits1, 0); 480 fprintf (dump_file, " | "); 481 print_generic_expr (dump_file, bits2, 0); 482 fprintf (dump_file, "\n"); 483 } 484 485 return true; 486 } 487 488 /* See if we have two comparisons that we can merge into one. */ 489 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison 490 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison) 491 { 492 tree t; 493 enum tree_code inner_cond_code = gimple_cond_code (inner_cond); 494 enum tree_code outer_cond_code = gimple_cond_code (outer_cond); 495 496 /* Invert comparisons if necessary (and possible). */ 497 if (inner_inv) 498 inner_cond_code = invert_tree_comparison (inner_cond_code, 499 HONOR_NANS (gimple_cond_lhs (inner_cond))); 500 if (inner_cond_code == ERROR_MARK) 501 return false; 502 if (outer_inv) 503 outer_cond_code = invert_tree_comparison (outer_cond_code, 504 HONOR_NANS (gimple_cond_lhs (outer_cond))); 505 if (outer_cond_code == ERROR_MARK) 506 return false; 507 /* Don't return false so fast, try maybe_fold_or_comparisons? */ 508 509 if (!(t = maybe_fold_and_comparisons (inner_cond_code, 510 gimple_cond_lhs (inner_cond), 511 gimple_cond_rhs (inner_cond), 512 outer_cond_code, 513 gimple_cond_lhs (outer_cond), 514 gimple_cond_rhs (outer_cond)))) 515 { 516 tree t1, t2; 517 gimple_stmt_iterator gsi; 518 if (!LOGICAL_OP_NON_SHORT_CIRCUIT) 519 return false; 520 /* Only do this optimization if the inner bb contains only the conditional. */ 521 if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb))) 522 return false; 523 t1 = fold_build2_loc (gimple_location (inner_cond), 524 inner_cond_code, 525 boolean_type_node, 526 gimple_cond_lhs (inner_cond), 527 gimple_cond_rhs (inner_cond)); 528 t2 = fold_build2_loc (gimple_location (outer_cond), 529 outer_cond_code, 530 boolean_type_node, 531 gimple_cond_lhs (outer_cond), 532 gimple_cond_rhs (outer_cond)); 533 t = fold_build2_loc (gimple_location (inner_cond), 534 TRUTH_AND_EXPR, boolean_type_node, t1, t2); 535 if (result_inv) 536 { 537 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t); 538 result_inv = false; 539 } 540 gsi = gsi_for_stmt (inner_cond); 541 t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true, 542 GSI_SAME_STMT); 543 } 544 if (result_inv) 545 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t); 546 t = canonicalize_cond_expr_cond (t); 547 if (!t) 548 return false; 549 gimple_cond_set_condition_from_tree (inner_cond, t); 550 update_stmt (inner_cond); 551 552 /* Leave CFG optimization to cfg_cleanup. */ 553 gimple_cond_set_condition_from_tree (outer_cond, 554 outer_inv ? boolean_false_node : boolean_true_node); 555 update_stmt (outer_cond); 556 557 if (dump_file) 558 { 559 fprintf (dump_file, "optimizing two comparisons to "); 560 print_generic_expr (dump_file, t, 0); 561 fprintf (dump_file, "\n"); 562 } 563 564 return true; 565 } 566 567 return false; 568 } 569 570 /* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and 571 dispatch to the appropriate if-conversion helper for a particular 572 set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB. 573 PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */ 574 575 static bool 576 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb, 577 basic_block then_bb, basic_block else_bb, 578 basic_block phi_pred_bb) 579 { 580 /* The && form is characterized by a common else_bb with 581 the two edges leading to it mergable. The latter is 582 guaranteed by matching PHI arguments in the else_bb and 583 the inner cond_bb having no side-effects. */ 584 if (phi_pred_bb != else_bb 585 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb) 586 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)) 587 { 588 /* We have 589 <outer_cond_bb> 590 if (q) goto inner_cond_bb; else goto else_bb; 591 <inner_cond_bb> 592 if (p) goto ...; else goto else_bb; 593 ... 594 <else_bb> 595 ... 596 */ 597 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false, 598 false); 599 } 600 601 /* And a version where the outer condition is negated. */ 602 if (phi_pred_bb != else_bb 603 && recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb) 604 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)) 605 { 606 /* We have 607 <outer_cond_bb> 608 if (q) goto else_bb; else goto inner_cond_bb; 609 <inner_cond_bb> 610 if (p) goto ...; else goto else_bb; 611 ... 612 <else_bb> 613 ... 614 */ 615 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true, 616 false); 617 } 618 619 /* The || form is characterized by a common then_bb with the 620 two edges leading to it mergable. The latter is guaranteed 621 by matching PHI arguments in the then_bb and the inner cond_bb 622 having no side-effects. */ 623 if (phi_pred_bb != then_bb 624 && recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb) 625 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)) 626 { 627 /* We have 628 <outer_cond_bb> 629 if (q) goto then_bb; else goto inner_cond_bb; 630 <inner_cond_bb> 631 if (q) goto then_bb; else goto ...; 632 <then_bb> 633 ... 634 */ 635 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true, 636 true); 637 } 638 639 /* And a version where the outer condition is negated. */ 640 if (phi_pred_bb != then_bb 641 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb) 642 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)) 643 { 644 /* We have 645 <outer_cond_bb> 646 if (q) goto inner_cond_bb; else goto then_bb; 647 <inner_cond_bb> 648 if (q) goto then_bb; else goto ...; 649 <then_bb> 650 ... 651 */ 652 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false, 653 true); 654 } 655 656 return false; 657 } 658 659 /* Recognize a CFG pattern and dispatch to the appropriate 660 if-conversion helper. We start with BB as the innermost 661 worker basic-block. Returns true if a transformation was done. */ 662 663 static bool 664 tree_ssa_ifcombine_bb (basic_block inner_cond_bb) 665 { 666 basic_block then_bb = NULL, else_bb = NULL; 667 668 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb)) 669 return false; 670 671 /* Recognize && and || of two conditions with a common 672 then/else block which entry edges we can merge. That is: 673 if (a || b) 674 ; 675 and 676 if (a && b) 677 ; 678 This requires a single predecessor of the inner cond_bb. */ 679 if (single_pred_p (inner_cond_bb) 680 && bb_no_side_effects_p (inner_cond_bb)) 681 { 682 basic_block outer_cond_bb = single_pred (inner_cond_bb); 683 684 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, 685 then_bb, else_bb, inner_cond_bb)) 686 return true; 687 688 if (forwarder_block_to (else_bb, then_bb)) 689 { 690 /* Other possibilities for the && form, if else_bb is 691 empty forwarder block to then_bb. Compared to the above simpler 692 forms this can be treated as if then_bb and else_bb were swapped, 693 and the corresponding inner_cond_bb not inverted because of that. 694 For same_phi_args_p we look at equality of arguments between 695 edge from outer_cond_bb and the forwarder block. */ 696 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb, 697 then_bb, else_bb)) 698 return true; 699 } 700 else if (forwarder_block_to (then_bb, else_bb)) 701 { 702 /* Other possibilities for the || form, if then_bb is 703 empty forwarder block to else_bb. Compared to the above simpler 704 forms this can be treated as if then_bb and else_bb were swapped, 705 and the corresponding inner_cond_bb not inverted because of that. 706 For same_phi_args_p we look at equality of arguments between 707 edge from outer_cond_bb and the forwarder block. */ 708 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb, 709 then_bb, then_bb)) 710 return true; 711 } 712 } 713 714 return false; 715 } 716 717 /* Main entry for the tree if-conversion pass. */ 718 719 namespace { 720 721 const pass_data pass_data_tree_ifcombine = 722 { 723 GIMPLE_PASS, /* type */ 724 "ifcombine", /* name */ 725 OPTGROUP_NONE, /* optinfo_flags */ 726 TV_TREE_IFCOMBINE, /* tv_id */ 727 ( PROP_cfg | PROP_ssa ), /* properties_required */ 728 0, /* properties_provided */ 729 0, /* properties_destroyed */ 730 0, /* todo_flags_start */ 731 TODO_update_ssa, /* todo_flags_finish */ 732 }; 733 734 class pass_tree_ifcombine : public gimple_opt_pass 735 { 736 public: 737 pass_tree_ifcombine (gcc::context *ctxt) 738 : gimple_opt_pass (pass_data_tree_ifcombine, ctxt) 739 {} 740 741 /* opt_pass methods: */ 742 virtual unsigned int execute (function *); 743 744 }; // class pass_tree_ifcombine 745 746 unsigned int 747 pass_tree_ifcombine::execute (function *fun) 748 { 749 basic_block *bbs; 750 bool cfg_changed = false; 751 int i; 752 753 bbs = single_pred_before_succ_order (); 754 calculate_dominance_info (CDI_DOMINATORS); 755 756 /* Search every basic block for COND_EXPR we may be able to optimize. 757 758 We walk the blocks in order that guarantees that a block with 759 a single predecessor is processed after the predecessor. 760 This ensures that we collapse outter ifs before visiting the 761 inner ones, and also that we do not try to visit a removed 762 block. This is opposite of PHI-OPT, because we cascade the 763 combining rather than cascading PHIs. */ 764 for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--) 765 { 766 basic_block bb = bbs[i]; 767 gimple *stmt = last_stmt (bb); 768 769 if (stmt 770 && gimple_code (stmt) == GIMPLE_COND) 771 if (tree_ssa_ifcombine_bb (bb)) 772 { 773 /* Clear range info from all stmts in BB which is now executed 774 conditional on a always true/false condition. */ 775 reset_flow_sensitive_info_in_bb (bb); 776 cfg_changed |= true; 777 } 778 } 779 780 free (bbs); 781 782 return cfg_changed ? TODO_cleanup_cfg : 0; 783 } 784 785 } // anon namespace 786 787 gimple_opt_pass * 788 make_pass_tree_ifcombine (gcc::context *ctxt) 789 { 790 return new pass_tree_ifcombine (ctxt); 791 } 792