xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-dom.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* SSA Dominator optimizations for trees
2    Copyright (C) 2001-2017 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "gimple-iterator.h"
36 #include "tree-cfg.h"
37 #include "tree-into-ssa.h"
38 #include "domwalk.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-ssa-threadupdate.h"
41 #include "params.h"
42 #include "tree-ssa-scopedtables.h"
43 #include "tree-ssa-threadedge.h"
44 #include "tree-ssa-dom.h"
45 #include "gimplify.h"
46 #include "tree-cfgcleanup.h"
47 #include "dbgcnt.h"
48 
49 /* This file implements optimizations on the dominator tree.  */
50 
51 /* Structure for recording edge equivalences.
52 
53    Computing and storing the edge equivalences instead of creating
54    them on-demand can save significant amounts of time, particularly
55    for pathological cases involving switch statements.
56 
57    These structures live for a single iteration of the dominator
58    optimizer in the edge's AUX field.  At the end of an iteration we
59    free each of these structures.  */
60 
61 struct edge_info
62 {
63   /* If this edge creates a simple equivalence, the LHS and RHS of
64      the equivalence will be stored here.  */
65   tree lhs;
66   tree rhs;
67 
68   /* Traversing an edge may also indicate one or more particular conditions
69      are true or false.  */
70   vec<cond_equivalence> cond_equivalences;
71 };
72 
73 /* Track whether or not we have changed the control flow graph.  */
74 static bool cfg_altered;
75 
76 /* Bitmap of blocks that have had EH statements cleaned.  We should
77    remove their dead edges eventually.  */
78 static bitmap need_eh_cleanup;
79 static vec<gimple *> need_noreturn_fixup;
80 
81 /* Statistics for dominator optimizations.  */
82 struct opt_stats_d
83 {
84   long num_stmts;
85   long num_exprs_considered;
86   long num_re;
87   long num_const_prop;
88   long num_copy_prop;
89 };
90 
91 static struct opt_stats_d opt_stats;
92 
93 /* Local functions.  */
94 static edge optimize_stmt (basic_block, gimple_stmt_iterator,
95 			   class const_and_copies *,
96 			   class avail_exprs_stack *);
97 static void record_equality (tree, tree, class const_and_copies *);
98 static void record_equivalences_from_phis (basic_block);
99 static void record_equivalences_from_incoming_edge (basic_block,
100 						    class const_and_copies *,
101 						    class avail_exprs_stack *);
102 static void eliminate_redundant_computations (gimple_stmt_iterator *,
103 					      class const_and_copies *,
104 					      class avail_exprs_stack *);
105 static void record_equivalences_from_stmt (gimple *, int,
106 					   class avail_exprs_stack *);
107 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
108 static void dump_dominator_optimization_stats (FILE *file,
109 					       hash_table<expr_elt_hasher> *);
110 
111 
112 /* Free the edge_info data attached to E, if it exists.  */
113 
114 void
115 free_dom_edge_info (edge e)
116 {
117   struct edge_info *edge_info = (struct edge_info *)e->aux;
118 
119   if (edge_info)
120     {
121       edge_info->cond_equivalences.release ();
122       free (edge_info);
123     }
124 }
125 
126 /* Allocate an EDGE_INFO for edge E and attach it to E.
127    Return the new EDGE_INFO structure.  */
128 
129 static struct edge_info *
130 allocate_edge_info (edge e)
131 {
132   struct edge_info *edge_info;
133 
134   /* Free the old one, if it exists.  */
135   free_dom_edge_info (e);
136 
137   edge_info = XCNEW (struct edge_info);
138 
139   e->aux = edge_info;
140   return edge_info;
141 }
142 
143 /* Free all EDGE_INFO structures associated with edges in the CFG.
144    If a particular edge can be threaded, copy the redirection
145    target from the EDGE_INFO structure into the edge's AUX field
146    as required by code to update the CFG and SSA graph for
147    jump threading.  */
148 
149 static void
150 free_all_edge_infos (void)
151 {
152   basic_block bb;
153   edge_iterator ei;
154   edge e;
155 
156   FOR_EACH_BB_FN (bb, cfun)
157     {
158       FOR_EACH_EDGE (e, ei, bb->preds)
159         {
160 	  free_dom_edge_info (e);
161 	  e->aux = NULL;
162 	}
163     }
164 }
165 
166 /* We have finished optimizing BB, record any information implied by
167    taking a specific outgoing edge from BB.  */
168 
169 static void
170 record_edge_info (basic_block bb)
171 {
172   gimple_stmt_iterator gsi = gsi_last_bb (bb);
173   struct edge_info *edge_info;
174 
175   if (! gsi_end_p (gsi))
176     {
177       gimple *stmt = gsi_stmt (gsi);
178       location_t loc = gimple_location (stmt);
179 
180       if (gimple_code (stmt) == GIMPLE_SWITCH)
181 	{
182 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
183 	  tree index = gimple_switch_index (switch_stmt);
184 
185 	  if (TREE_CODE (index) == SSA_NAME)
186 	    {
187 	      int i;
188               int n_labels = gimple_switch_num_labels (switch_stmt);
189 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
190 	      edge e;
191 	      edge_iterator ei;
192 
193 	      for (i = 0; i < n_labels; i++)
194 		{
195 		  tree label = gimple_switch_label (switch_stmt, i);
196 		  basic_block target_bb = label_to_block (CASE_LABEL (label));
197 		  if (CASE_HIGH (label)
198 		      || !CASE_LOW (label)
199 		      || info[target_bb->index])
200 		    info[target_bb->index] = error_mark_node;
201 		  else
202 		    info[target_bb->index] = label;
203 		}
204 
205 	      FOR_EACH_EDGE (e, ei, bb->succs)
206 		{
207 		  basic_block target_bb = e->dest;
208 		  tree label = info[target_bb->index];
209 
210 		  if (label != NULL && label != error_mark_node)
211 		    {
212 		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
213 						 CASE_LOW (label));
214 		      edge_info = allocate_edge_info (e);
215 		      edge_info->lhs = index;
216 		      edge_info->rhs = x;
217 		    }
218 		}
219 	      free (info);
220 	    }
221 	}
222 
223       /* A COND_EXPR may create equivalences too.  */
224       if (gimple_code (stmt) == GIMPLE_COND)
225 	{
226 	  edge true_edge;
227 	  edge false_edge;
228 
229           tree op0 = gimple_cond_lhs (stmt);
230           tree op1 = gimple_cond_rhs (stmt);
231           enum tree_code code = gimple_cond_code (stmt);
232 
233 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
234 
235           /* Special case comparing booleans against a constant as we
236              know the value of OP0 on both arms of the branch.  i.e., we
237              can record an equivalence for OP0 rather than COND.
238 
239 	     However, don't do this if the constant isn't zero or one.
240 	     Such conditionals will get optimized more thoroughly during
241 	     the domwalk.  */
242 	  if ((code == EQ_EXPR || code == NE_EXPR)
243 	      && TREE_CODE (op0) == SSA_NAME
244 	      && ssa_name_has_boolean_range (op0)
245 	      && is_gimple_min_invariant (op1)
246 	      && (integer_zerop (op1) || integer_onep (op1)))
247             {
248 	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
249 	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
250 
251               if (code == EQ_EXPR)
252                 {
253                   edge_info = allocate_edge_info (true_edge);
254                   edge_info->lhs = op0;
255                   edge_info->rhs = (integer_zerop (op1) ? false_val : true_val);
256 
257                   edge_info = allocate_edge_info (false_edge);
258                   edge_info->lhs = op0;
259                   edge_info->rhs = (integer_zerop (op1) ? true_val : false_val);
260                 }
261               else
262                 {
263                   edge_info = allocate_edge_info (true_edge);
264                   edge_info->lhs = op0;
265                   edge_info->rhs = (integer_zerop (op1) ? true_val : false_val);
266 
267                   edge_info = allocate_edge_info (false_edge);
268                   edge_info->lhs = op0;
269                   edge_info->rhs = (integer_zerop (op1) ? false_val : true_val);
270                 }
271             }
272           else if (is_gimple_min_invariant (op0)
273                    && (TREE_CODE (op1) == SSA_NAME
274                        || is_gimple_min_invariant (op1)))
275             {
276               tree cond = build2 (code, boolean_type_node, op0, op1);
277               tree inverted = invert_truthvalue_loc (loc, cond);
278               bool can_infer_simple_equiv
279                 = !(HONOR_SIGNED_ZEROS (op0)
280                     && real_zerop (op0));
281               struct edge_info *edge_info;
282 
283               edge_info = allocate_edge_info (true_edge);
284               record_conditions (&edge_info->cond_equivalences, cond, inverted);
285 
286               if (can_infer_simple_equiv && code == EQ_EXPR)
287                 {
288                   edge_info->lhs = op1;
289                   edge_info->rhs = op0;
290                 }
291 
292               edge_info = allocate_edge_info (false_edge);
293               record_conditions (&edge_info->cond_equivalences, inverted, cond);
294 
295               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
296                 {
297                   edge_info->lhs = op1;
298                   edge_info->rhs = op0;
299                 }
300             }
301 
302           else if (TREE_CODE (op0) == SSA_NAME
303                    && (TREE_CODE (op1) == SSA_NAME
304                        || is_gimple_min_invariant (op1)))
305             {
306               tree cond = build2 (code, boolean_type_node, op0, op1);
307               tree inverted = invert_truthvalue_loc (loc, cond);
308               bool can_infer_simple_equiv
309                 = !(HONOR_SIGNED_ZEROS (op1)
310                     && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
311               struct edge_info *edge_info;
312 
313               edge_info = allocate_edge_info (true_edge);
314               record_conditions (&edge_info->cond_equivalences, cond, inverted);
315 
316               if (can_infer_simple_equiv && code == EQ_EXPR)
317                 {
318                   edge_info->lhs = op0;
319                   edge_info->rhs = op1;
320                 }
321 
322               edge_info = allocate_edge_info (false_edge);
323               record_conditions (&edge_info->cond_equivalences, inverted, cond);
324 
325               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
326                 {
327                   edge_info->lhs = op0;
328                   edge_info->rhs = op1;
329                 }
330             }
331         }
332 
333       /* ??? TRUTH_NOT_EXPR can create an equivalence too.  */
334     }
335 }
336 
337 
338 class dom_opt_dom_walker : public dom_walker
339 {
340 public:
341   dom_opt_dom_walker (cdi_direction direction,
342 		      class const_and_copies *const_and_copies,
343 		      class avail_exprs_stack *avail_exprs_stack)
344     : dom_walker (direction, true),
345       m_const_and_copies (const_and_copies),
346       m_avail_exprs_stack (avail_exprs_stack),
347       m_dummy_cond (NULL) {}
348 
349   virtual edge before_dom_children (basic_block);
350   virtual void after_dom_children (basic_block);
351 
352 private:
353 
354   /* Unwindable equivalences, both const/copy and expression varieties.  */
355   class const_and_copies *m_const_and_copies;
356   class avail_exprs_stack *m_avail_exprs_stack;
357 
358   gcond *m_dummy_cond;
359 };
360 
361 /* Jump threading, redundancy elimination and const/copy propagation.
362 
363    This pass may expose new symbols that need to be renamed into SSA.  For
364    every new symbol exposed, its corresponding bit will be set in
365    VARS_TO_RENAME.  */
366 
367 namespace {
368 
369 const pass_data pass_data_dominator =
370 {
371   GIMPLE_PASS, /* type */
372   "dom", /* name */
373   OPTGROUP_NONE, /* optinfo_flags */
374   TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
375   ( PROP_cfg | PROP_ssa ), /* properties_required */
376   0, /* properties_provided */
377   0, /* properties_destroyed */
378   0, /* todo_flags_start */
379   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
380 };
381 
382 class pass_dominator : public gimple_opt_pass
383 {
384 public:
385   pass_dominator (gcc::context *ctxt)
386     : gimple_opt_pass (pass_data_dominator, ctxt),
387       may_peel_loop_headers_p (false)
388   {}
389 
390   /* opt_pass methods: */
391   opt_pass * clone () { return new pass_dominator (m_ctxt); }
392   void set_pass_param (unsigned int n, bool param)
393     {
394       gcc_assert (n == 0);
395       may_peel_loop_headers_p = param;
396     }
397   virtual bool gate (function *) { return flag_tree_dom != 0; }
398   virtual unsigned int execute (function *);
399 
400  private:
401   /* This flag is used to prevent loops from being peeled repeatedly in jump
402      threading; it will be removed once we preserve loop structures throughout
403      the compilation -- we will be able to mark the affected loops directly in
404      jump threading, and avoid peeling them next time.  */
405   bool may_peel_loop_headers_p;
406 }; // class pass_dominator
407 
408 unsigned int
409 pass_dominator::execute (function *fun)
410 {
411   memset (&opt_stats, 0, sizeof (opt_stats));
412 
413   /* Create our hash tables.  */
414   hash_table<expr_elt_hasher> *avail_exprs
415     = new hash_table<expr_elt_hasher> (1024);
416   class avail_exprs_stack *avail_exprs_stack
417     = new class avail_exprs_stack (avail_exprs);
418   class const_and_copies *const_and_copies = new class const_and_copies ();
419   need_eh_cleanup = BITMAP_ALLOC (NULL);
420   need_noreturn_fixup.create (0);
421 
422   calculate_dominance_info (CDI_DOMINATORS);
423   cfg_altered = false;
424 
425   /* We need to know loop structures in order to avoid destroying them
426      in jump threading.  Note that we still can e.g. thread through loop
427      headers to an exit edge, or through loop header to the loop body, assuming
428      that we update the loop info.
429 
430      TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
431      to several overly conservative bail-outs in jump threading, case
432      gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
433      missing.  We should improve jump threading in future then
434      LOOPS_HAVE_PREHEADERS won't be needed here.  */
435   loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
436 
437   /* Initialize the value-handle array.  */
438   threadedge_initialize_values ();
439 
440   /* We need accurate information regarding back edges in the CFG
441      for jump threading; this may include back edges that are not part of
442      a single loop.  */
443   mark_dfs_back_edges ();
444 
445   /* We want to create the edge info structures before the dominator walk
446      so that they'll be in place for the jump threader, particularly when
447      threading through a join block.
448 
449      The conditions will be lazily updated with global equivalences as
450      we reach them during the dominator walk.  */
451   basic_block bb;
452   FOR_EACH_BB_FN (bb, fun)
453     record_edge_info (bb);
454 
455   /* Recursively walk the dominator tree optimizing statements.  */
456   dom_opt_dom_walker walker (CDI_DOMINATORS,
457 			     const_and_copies,
458 			     avail_exprs_stack);
459   walker.walk (fun->cfg->x_entry_block_ptr);
460 
461   /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
462      edge.  When found, remove jump threads which contain any outgoing
463      edge from the affected block.  */
464   if (cfg_altered)
465     {
466       FOR_EACH_BB_FN (bb, fun)
467 	{
468 	  edge_iterator ei;
469 	  edge e;
470 
471 	  /* First see if there are any edges without EDGE_EXECUTABLE
472 	     set.  */
473 	  bool found = false;
474 	  FOR_EACH_EDGE (e, ei, bb->succs)
475 	    {
476 	      if ((e->flags & EDGE_EXECUTABLE) == 0)
477 		{
478 		  found = true;
479 		  break;
480 		}
481 	    }
482 
483 	  /* If there were any such edges found, then remove jump threads
484 	     containing any edge leaving BB.  */
485 	  if (found)
486 	    FOR_EACH_EDGE (e, ei, bb->succs)
487 	      remove_jump_threads_including (e);
488 	}
489     }
490 
491   {
492     gimple_stmt_iterator gsi;
493     basic_block bb;
494     FOR_EACH_BB_FN (bb, fun)
495       {
496 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
497 	  update_stmt_if_modified (gsi_stmt (gsi));
498       }
499   }
500 
501   /* If we exposed any new variables, go ahead and put them into
502      SSA form now, before we handle jump threading.  This simplifies
503      interactions between rewriting of _DECL nodes into SSA form
504      and rewriting SSA_NAME nodes into SSA form after block
505      duplication and CFG manipulation.  */
506   update_ssa (TODO_update_ssa);
507 
508   free_all_edge_infos ();
509 
510   /* Thread jumps, creating duplicate blocks as needed.  */
511   cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
512 
513   if (cfg_altered)
514     free_dominance_info (CDI_DOMINATORS);
515 
516   /* Removal of statements may make some EH edges dead.  Purge
517      such edges from the CFG as needed.  */
518   if (!bitmap_empty_p (need_eh_cleanup))
519     {
520       unsigned i;
521       bitmap_iterator bi;
522 
523       /* Jump threading may have created forwarder blocks from blocks
524 	 needing EH cleanup; the new successor of these blocks, which
525 	 has inherited from the original block, needs the cleanup.
526 	 Don't clear bits in the bitmap, as that can break the bitmap
527 	 iterator.  */
528       EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
529 	{
530 	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
531 	  if (bb == NULL)
532 	    continue;
533 	  while (single_succ_p (bb)
534 		 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
535 	    bb = single_succ (bb);
536 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
537 	    continue;
538 	  if ((unsigned) bb->index != i)
539 	    bitmap_set_bit (need_eh_cleanup, bb->index);
540 	}
541 
542       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
543       bitmap_clear (need_eh_cleanup);
544     }
545 
546   /* Fixup stmts that became noreturn calls.  This may require splitting
547      blocks and thus isn't possible during the dominator walk or before
548      jump threading finished.  Do this in reverse order so we don't
549      inadvertedly remove a stmt we want to fixup by visiting a dominating
550      now noreturn call first.  */
551   while (!need_noreturn_fixup.is_empty ())
552     {
553       gimple *stmt = need_noreturn_fixup.pop ();
554       if (dump_file && dump_flags & TDF_DETAILS)
555 	{
556 	  fprintf (dump_file, "Fixing up noreturn call ");
557 	  print_gimple_stmt (dump_file, stmt, 0, 0);
558 	  fprintf (dump_file, "\n");
559 	}
560       fixup_noreturn_call (stmt);
561     }
562 
563   statistics_counter_event (fun, "Redundant expressions eliminated",
564 			    opt_stats.num_re);
565   statistics_counter_event (fun, "Constants propagated",
566 			    opt_stats.num_const_prop);
567   statistics_counter_event (fun, "Copies propagated",
568 			    opt_stats.num_copy_prop);
569 
570   /* Debugging dumps.  */
571   if (dump_file && (dump_flags & TDF_STATS))
572     dump_dominator_optimization_stats (dump_file, avail_exprs);
573 
574   loop_optimizer_finalize ();
575 
576   /* Delete our main hashtable.  */
577   delete avail_exprs;
578   avail_exprs = NULL;
579 
580   /* Free asserted bitmaps and stacks.  */
581   BITMAP_FREE (need_eh_cleanup);
582   need_noreturn_fixup.release ();
583   delete avail_exprs_stack;
584   delete const_and_copies;
585 
586   /* Free the value-handle array.  */
587   threadedge_finalize_values ();
588 
589   return 0;
590 }
591 
592 } // anon namespace
593 
594 gimple_opt_pass *
595 make_pass_dominator (gcc::context *ctxt)
596 {
597   return new pass_dominator (ctxt);
598 }
599 
600 
601 /* A trivial wrapper so that we can present the generic jump
602    threading code with a simple API for simplifying statements.  */
603 static tree
604 simplify_stmt_for_jump_threading (gimple *stmt,
605 				  gimple *within_stmt ATTRIBUTE_UNUSED,
606 				  class avail_exprs_stack *avail_exprs_stack,
607 				  basic_block bb ATTRIBUTE_UNUSED)
608 {
609   return avail_exprs_stack->lookup_avail_expr (stmt, false, true);
610 }
611 
612 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
613 
614 static tree
615 dom_valueize (tree t)
616 {
617   if (TREE_CODE (t) == SSA_NAME)
618     {
619       tree tem = SSA_NAME_VALUE (t);
620       if (tem)
621 	return tem;
622     }
623   return t;
624 }
625 
626 /* We have just found an equivalence for LHS on an edge E.
627    Look backwards to other uses of LHS and see if we can derive
628    additional equivalences that are valid on edge E.  */
629 static void
630 back_propagate_equivalences (tree lhs, edge e,
631 			     class const_and_copies *const_and_copies)
632 {
633   use_operand_p use_p;
634   imm_use_iterator iter;
635   bitmap domby = NULL;
636   basic_block dest = e->dest;
637 
638   /* Iterate over the uses of LHS to see if any dominate E->dest.
639      If so, they may create useful equivalences too.
640 
641      ???  If the code gets re-organized to a worklist to catch more
642      indirect opportunities and it is made to handle PHIs then this
643      should only consider use_stmts in basic-blocks we have already visited.  */
644   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
645     {
646       gimple *use_stmt = USE_STMT (use_p);
647 
648       /* Often the use is in DEST, which we trivially know we can't use.
649 	 This is cheaper than the dominator set tests below.  */
650       if (dest == gimple_bb (use_stmt))
651 	continue;
652 
653       /* Filter out statements that can never produce a useful
654 	 equivalence.  */
655       tree lhs2 = gimple_get_lhs (use_stmt);
656       if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
657 	continue;
658 
659       /* Profiling has shown the domination tests here can be fairly
660 	 expensive.  We get significant improvements by building the
661 	 set of blocks that dominate BB.  We can then just test
662 	 for set membership below.
663 
664 	 We also initialize the set lazily since often the only uses
665 	 are going to be in the same block as DEST.  */
666       if (!domby)
667 	{
668 	  domby = BITMAP_ALLOC (NULL);
669 	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
670 	  while (bb)
671 	    {
672 	      bitmap_set_bit (domby, bb->index);
673 	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
674 	    }
675 	}
676 
677       /* This tests if USE_STMT does not dominate DEST.  */
678       if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
679 	continue;
680 
681       /* At this point USE_STMT dominates DEST and may result in a
682 	 useful equivalence.  Try to simplify its RHS to a constant
683 	 or SSA_NAME.  */
684       tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
685 						 no_follow_ssa_edges);
686       if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
687 	record_equality (lhs2, res, const_and_copies);
688     }
689 
690   if (domby)
691     BITMAP_FREE (domby);
692 }
693 
694 /* Record NAME has the value zero and if NAME was set from a BIT_IOR_EXPR
695    recurse into both operands recording their values as zero too.
696    RECURSION_DEPTH controls how far back we recurse through the operands
697    of the BIT_IOR_EXPR.  */
698 
699 static void
700 derive_equivalences_from_bit_ior (tree name,
701 				  const_and_copies *const_and_copies,
702 				  int recursion_limit)
703 {
704   if (recursion_limit == 0)
705     return;
706 
707   if (TREE_CODE (name) == SSA_NAME)
708     {
709       tree value = build_zero_cst (TREE_TYPE (name));
710 
711       /* This records the equivalence for the toplevel object.  */
712       record_equality (name, value, const_and_copies);
713 
714       /* And we can recurse into each operand to potentially find more
715 	 equivalences.  */
716       gimple *def_stmt = SSA_NAME_DEF_STMT (name);
717       if (is_gimple_assign (def_stmt)
718 	  && gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
719 	{
720 	  derive_equivalences_from_bit_ior (gimple_assign_rhs1 (def_stmt),
721 					    const_and_copies,
722 					    recursion_limit - 1);
723 	  derive_equivalences_from_bit_ior (gimple_assign_rhs2 (def_stmt),
724 					    const_and_copies,
725 					    recursion_limit - 1);
726 	}
727     }
728 }
729 
730 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
731    by traversing edge E (which are cached in E->aux).
732 
733    Callers are responsible for managing the unwinding markers.  */
734 void
735 record_temporary_equivalences (edge e,
736 			       class const_and_copies *const_and_copies,
737 			       class avail_exprs_stack *avail_exprs_stack)
738 {
739   int i;
740   struct edge_info *edge_info = (struct edge_info *) e->aux;
741 
742   /* If we have info associated with this edge, record it into
743      our equivalence tables.  */
744   if (edge_info)
745     {
746       cond_equivalence *eq;
747       /* If we have 0 = COND or 1 = COND equivalences, record them
748 	 into our expression hash tables.  */
749       for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
750 	{
751 	  avail_exprs_stack->record_cond (eq);
752 
753 	  /* If the condition is testing that X == 0 is true or X != 0 is false
754 	     and X is set from a BIT_IOR_EXPR, then we can record equivalences
755 	     for the operands of the BIT_IOR_EXPR (and recurse on those).  */
756 	  tree op0 = eq->cond.ops.binary.opnd0;
757 	  tree op1 = eq->cond.ops.binary.opnd1;
758 	  if (TREE_CODE (op0) == SSA_NAME && integer_zerop (op1))
759 	    {
760 	      enum tree_code code = eq->cond.ops.binary.op;
761 	      if ((code == EQ_EXPR && eq->value == boolean_true_node)
762 		  || (code == NE_EXPR && eq->value == boolean_false_node))
763 		derive_equivalences_from_bit_ior (op0, const_and_copies, 4);
764 
765 	      /* TODO: We could handle BIT_AND_EXPR in a similar fashion
766 		 recording that the operands have a nonzero value.  */
767 
768 	      /* TODO: We can handle more cases here, particularly when OP0 is
769 		 known to have a boolean range.  */
770 	    }
771 	}
772 
773       tree lhs = edge_info->lhs;
774       if (!lhs || TREE_CODE (lhs) != SSA_NAME)
775 	return;
776 
777       /* Record the simple NAME = VALUE equivalence.  */
778       tree rhs = edge_info->rhs;
779       record_equality (lhs, rhs, const_and_copies);
780 
781       /* We already recorded that LHS = RHS, with canonicalization,
782 	 value chain following, etc.
783 
784 	 We also want to record RHS = LHS, but without any canonicalization
785 	 or value chain following.  */
786       if (TREE_CODE (rhs) == SSA_NAME)
787 	const_and_copies->record_const_or_copy_raw (rhs, lhs,
788 						    SSA_NAME_VALUE (rhs));
789 
790       /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
791 	 set via a widening type conversion, then we may be able to record
792 	 additional equivalences.  */
793       if (TREE_CODE (rhs) == INTEGER_CST)
794 	{
795 	  gimple *defstmt = SSA_NAME_DEF_STMT (lhs);
796 
797 	  if (defstmt
798 	      && is_gimple_assign (defstmt)
799 	      && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
800 	    {
801 	      tree old_rhs = gimple_assign_rhs1 (defstmt);
802 
803 	      /* If the conversion widens the original value and
804 		 the constant is in the range of the type of OLD_RHS,
805 		 then convert the constant and record the equivalence.
806 
807 		 Note that int_fits_type_p does not check the precision
808 		 if the upper and lower bounds are OK.  */
809 	      if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
810 		  && (TYPE_PRECISION (TREE_TYPE (lhs))
811 		      > TYPE_PRECISION (TREE_TYPE (old_rhs)))
812 		  && int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
813 		{
814 		  tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
815 		  record_equality (old_rhs, newval, const_and_copies);
816 		}
817 	    }
818 	}
819 
820       /* Any equivalence found for LHS may result in additional
821 	 equivalences for other uses of LHS that we have already
822 	 processed.  */
823       back_propagate_equivalences (lhs, e, const_and_copies);
824     }
825 }
826 
827 /* PHI nodes can create equivalences too.
828 
829    Ignoring any alternatives which are the same as the result, if
830    all the alternatives are equal, then the PHI node creates an
831    equivalence.  */
832 
833 static void
834 record_equivalences_from_phis (basic_block bb)
835 {
836   gphi_iterator gsi;
837 
838   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
839     {
840       gphi *phi = gsi.phi ();
841 
842       tree lhs = gimple_phi_result (phi);
843       tree rhs = NULL;
844       size_t i;
845 
846       for (i = 0; i < gimple_phi_num_args (phi); i++)
847 	{
848 	  tree t = gimple_phi_arg_def (phi, i);
849 
850 	  /* Ignore alternatives which are the same as our LHS.  Since
851 	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
852 	     can simply compare pointers.  */
853 	  if (lhs == t)
854 	    continue;
855 
856 	  /* If the associated edge is not marked as executable, then it
857 	     can be ignored.  */
858 	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
859 	    continue;
860 
861 	  t = dom_valueize (t);
862 
863 	  /* If we have not processed an alternative yet, then set
864 	     RHS to this alternative.  */
865 	  if (rhs == NULL)
866 	    rhs = t;
867 	  /* If we have processed an alternative (stored in RHS), then
868 	     see if it is equal to this one.  If it isn't, then stop
869 	     the search.  */
870 	  else if (! operand_equal_for_phi_arg_p (rhs, t))
871 	    break;
872 	}
873 
874       /* If we had no interesting alternatives, then all the RHS alternatives
875 	 must have been the same as LHS.  */
876       if (!rhs)
877 	rhs = lhs;
878 
879       /* If we managed to iterate through each PHI alternative without
880 	 breaking out of the loop, then we have a PHI which may create
881 	 a useful equivalence.  We do not need to record unwind data for
882 	 this, since this is a true assignment and not an equivalence
883 	 inferred from a comparison.  All uses of this ssa name are dominated
884 	 by this assignment, so unwinding just costs time and space.  */
885       if (i == gimple_phi_num_args (phi)
886 	  && may_propagate_copy (lhs, rhs))
887 	set_ssa_name_value (lhs, rhs);
888     }
889 }
890 
891 /* Ignoring loop backedges, if BB has precisely one incoming edge then
892    return that edge.  Otherwise return NULL.  */
893 static edge
894 single_incoming_edge_ignoring_loop_edges (basic_block bb)
895 {
896   edge retval = NULL;
897   edge e;
898   edge_iterator ei;
899 
900   FOR_EACH_EDGE (e, ei, bb->preds)
901     {
902       /* A loop back edge can be identified by the destination of
903 	 the edge dominating the source of the edge.  */
904       if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
905 	continue;
906 
907       /* We can safely ignore edges that are not executable.  */
908       if ((e->flags & EDGE_EXECUTABLE) == 0)
909 	continue;
910 
911       /* If we have already seen a non-loop edge, then we must have
912 	 multiple incoming non-loop edges and thus we return NULL.  */
913       if (retval)
914 	return NULL;
915 
916       /* This is the first non-loop incoming edge we have found.  Record
917 	 it.  */
918       retval = e;
919     }
920 
921   return retval;
922 }
923 
924 /* Record any equivalences created by the incoming edge to BB into
925    CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
926    incoming edge, then no equivalence is created.  */
927 
928 static void
929 record_equivalences_from_incoming_edge (basic_block bb,
930     class const_and_copies *const_and_copies,
931     class avail_exprs_stack *avail_exprs_stack)
932 {
933   edge e;
934   basic_block parent;
935 
936   /* If our parent block ended with a control statement, then we may be
937      able to record some equivalences based on which outgoing edge from
938      the parent was followed.  */
939   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
940 
941   e = single_incoming_edge_ignoring_loop_edges (bb);
942 
943   /* If we had a single incoming edge from our parent block, then enter
944      any data associated with the edge into our tables.  */
945   if (e && e->src == parent)
946     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
947 }
948 
949 /* Dump statistics for the hash table HTAB.  */
950 
951 static void
952 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
953 {
954   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
955 	   (long) htab.size (),
956 	   (long) htab.elements (),
957 	   htab.collisions ());
958 }
959 
960 /* Dump SSA statistics on FILE.  */
961 
962 static void
963 dump_dominator_optimization_stats (FILE *file,
964 				   hash_table<expr_elt_hasher> *avail_exprs)
965 {
966   fprintf (file, "Total number of statements:                   %6ld\n\n",
967 	   opt_stats.num_stmts);
968   fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
969            opt_stats.num_exprs_considered);
970 
971   fprintf (file, "\nHash table statistics:\n");
972 
973   fprintf (file, "    avail_exprs: ");
974   htab_statistics (file, *avail_exprs);
975 }
976 
977 
978 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
979    This constrains the cases in which we may treat this as assignment.  */
980 
981 static void
982 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
983 {
984   tree prev_x = NULL, prev_y = NULL;
985 
986   if (tree_swap_operands_p (x, y))
987     std::swap (x, y);
988 
989   /* Most of the time tree_swap_operands_p does what we want.  But there
990      are cases where we know one operand is better for copy propagation than
991      the other.  Given no other code cares about ordering of equality
992      comparison operators for that purpose, we just handle the special cases
993      here.  */
994   if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
995     {
996       /* If one operand is a single use operand, then make it
997 	 X.  This will preserve its single use properly and if this
998 	 conditional is eliminated, the computation of X can be
999 	 eliminated as well.  */
1000       if (has_single_use (y) && ! has_single_use (x))
1001 	std::swap (x, y);
1002     }
1003   if (TREE_CODE (x) == SSA_NAME)
1004     prev_x = SSA_NAME_VALUE (x);
1005   if (TREE_CODE (y) == SSA_NAME)
1006     prev_y = SSA_NAME_VALUE (y);
1007 
1008   /* If one of the previous values is invariant, or invariant in more loops
1009      (by depth), then use that.
1010      Otherwise it doesn't matter which value we choose, just so
1011      long as we canonicalize on one value.  */
1012   if (is_gimple_min_invariant (y))
1013     ;
1014   else if (is_gimple_min_invariant (x))
1015     prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1016   else if (prev_x && is_gimple_min_invariant (prev_x))
1017     x = y, y = prev_x, prev_x = prev_y;
1018   else if (prev_y)
1019     y = prev_y;
1020 
1021   /* After the swapping, we must have one SSA_NAME.  */
1022   if (TREE_CODE (x) != SSA_NAME)
1023     return;
1024 
1025   /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1026      variable compared against zero.  If we're honoring signed zeros,
1027      then we cannot record this value unless we know that the value is
1028      nonzero.  */
1029   if (HONOR_SIGNED_ZEROS (x)
1030       && (TREE_CODE (y) != REAL_CST
1031 	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
1032     return;
1033 
1034   const_and_copies->record_const_or_copy (x, y, prev_x);
1035 }
1036 
1037 /* Returns true when STMT is a simple iv increment.  It detects the
1038    following situation:
1039 
1040    i_1 = phi (..., i_2)
1041    i_2 = i_1 +/- ...  */
1042 
1043 bool
1044 simple_iv_increment_p (gimple *stmt)
1045 {
1046   enum tree_code code;
1047   tree lhs, preinc;
1048   gimple *phi;
1049   size_t i;
1050 
1051   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1052     return false;
1053 
1054   lhs = gimple_assign_lhs (stmt);
1055   if (TREE_CODE (lhs) != SSA_NAME)
1056     return false;
1057 
1058   code = gimple_assign_rhs_code (stmt);
1059   if (code != PLUS_EXPR
1060       && code != MINUS_EXPR
1061       && code != POINTER_PLUS_EXPR)
1062     return false;
1063 
1064   preinc = gimple_assign_rhs1 (stmt);
1065   if (TREE_CODE (preinc) != SSA_NAME)
1066     return false;
1067 
1068   phi = SSA_NAME_DEF_STMT (preinc);
1069   if (gimple_code (phi) != GIMPLE_PHI)
1070     return false;
1071 
1072   for (i = 0; i < gimple_phi_num_args (phi); i++)
1073     if (gimple_phi_arg_def (phi, i) == lhs)
1074       return true;
1075 
1076   return false;
1077 }
1078 
1079 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1080    successors of BB.  */
1081 
1082 static void
1083 cprop_into_successor_phis (basic_block bb,
1084 			   class const_and_copies *const_and_copies)
1085 {
1086   edge e;
1087   edge_iterator ei;
1088 
1089   FOR_EACH_EDGE (e, ei, bb->succs)
1090     {
1091       int indx;
1092       gphi_iterator gsi;
1093 
1094       /* If this is an abnormal edge, then we do not want to copy propagate
1095 	 into the PHI alternative associated with this edge.  */
1096       if (e->flags & EDGE_ABNORMAL)
1097 	continue;
1098 
1099       gsi = gsi_start_phis (e->dest);
1100       if (gsi_end_p (gsi))
1101 	continue;
1102 
1103       /* We may have an equivalence associated with this edge.  While
1104 	 we can not propagate it into non-dominated blocks, we can
1105 	 propagate them into PHIs in non-dominated blocks.  */
1106 
1107       /* Push the unwind marker so we can reset the const and copies
1108 	 table back to its original state after processing this edge.  */
1109       const_and_copies->push_marker ();
1110 
1111       /* Extract and record any simple NAME = VALUE equivalences.
1112 
1113 	 Don't bother with [01] = COND equivalences, they're not useful
1114 	 here.  */
1115       struct edge_info *edge_info = (struct edge_info *) e->aux;
1116       if (edge_info)
1117 	{
1118 	  tree lhs = edge_info->lhs;
1119 	  tree rhs = edge_info->rhs;
1120 
1121 	  if (lhs && TREE_CODE (lhs) == SSA_NAME)
1122 	    const_and_copies->record_const_or_copy (lhs, rhs);
1123 	}
1124 
1125       indx = e->dest_idx;
1126       for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1127 	{
1128 	  tree new_val;
1129 	  use_operand_p orig_p;
1130 	  tree orig_val;
1131           gphi *phi = gsi.phi ();
1132 
1133 	  /* The alternative may be associated with a constant, so verify
1134 	     it is an SSA_NAME before doing anything with it.  */
1135 	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1136 	  orig_val = get_use_from_ptr (orig_p);
1137 	  if (TREE_CODE (orig_val) != SSA_NAME)
1138 	    continue;
1139 
1140 	  /* If we have *ORIG_P in our constant/copy table, then replace
1141 	     ORIG_P with its value in our constant/copy table.  */
1142 	  new_val = SSA_NAME_VALUE (orig_val);
1143 	  if (new_val
1144 	      && new_val != orig_val
1145 	      && may_propagate_copy (orig_val, new_val))
1146 	    propagate_value (orig_p, new_val);
1147 	}
1148 
1149       const_and_copies->pop_to_marker ();
1150     }
1151 }
1152 
1153 edge
1154 dom_opt_dom_walker::before_dom_children (basic_block bb)
1155 {
1156   gimple_stmt_iterator gsi;
1157 
1158   if (dump_file && (dump_flags & TDF_DETAILS))
1159     fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1160 
1161   /* Push a marker on the stacks of local information so that we know how
1162      far to unwind when we finalize this block.  */
1163   m_avail_exprs_stack->push_marker ();
1164   m_const_and_copies->push_marker ();
1165 
1166   record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1167 					  m_avail_exprs_stack);
1168 
1169   /* PHI nodes can create equivalences too.  */
1170   record_equivalences_from_phis (bb);
1171 
1172   /* Create equivalences from redundant PHIs.  PHIs are only truly
1173      redundant when they exist in the same block, so push another
1174      marker and unwind right afterwards.  */
1175   m_avail_exprs_stack->push_marker ();
1176   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1177     eliminate_redundant_computations (&gsi, m_const_and_copies,
1178 				      m_avail_exprs_stack);
1179   m_avail_exprs_stack->pop_to_marker ();
1180 
1181   edge taken_edge = NULL;
1182   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1183     taken_edge
1184       = optimize_stmt (bb, gsi, m_const_and_copies, m_avail_exprs_stack);
1185 
1186   /* Now prepare to process dominated blocks.  */
1187   record_edge_info (bb);
1188   cprop_into_successor_phis (bb, m_const_and_copies);
1189   if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1190     return NULL;
1191 
1192   return taken_edge;
1193 }
1194 
1195 /* We have finished processing the dominator children of BB, perform
1196    any finalization actions in preparation for leaving this node in
1197    the dominator tree.  */
1198 
1199 void
1200 dom_opt_dom_walker::after_dom_children (basic_block bb)
1201 {
1202   if (! m_dummy_cond)
1203     m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
1204 				      integer_zero_node, NULL, NULL);
1205 
1206   thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1207 			 m_avail_exprs_stack,
1208 			 simplify_stmt_for_jump_threading);
1209 
1210   /* These remove expressions local to BB from the tables.  */
1211   m_avail_exprs_stack->pop_to_marker ();
1212   m_const_and_copies->pop_to_marker ();
1213 }
1214 
1215 /* Search for redundant computations in STMT.  If any are found, then
1216    replace them with the variable holding the result of the computation.
1217 
1218    If safe, record this expression into AVAIL_EXPRS_STACK and
1219    CONST_AND_COPIES.  */
1220 
1221 static void
1222 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1223 				  class const_and_copies *const_and_copies,
1224 				  class avail_exprs_stack *avail_exprs_stack)
1225 {
1226   tree expr_type;
1227   tree cached_lhs;
1228   tree def;
1229   bool insert = true;
1230   bool assigns_var_p = false;
1231 
1232   gimple *stmt = gsi_stmt (*gsi);
1233 
1234   if (gimple_code (stmt) == GIMPLE_PHI)
1235     def = gimple_phi_result (stmt);
1236   else
1237     def = gimple_get_lhs (stmt);
1238 
1239   /* Certain expressions on the RHS can be optimized away, but can not
1240      themselves be entered into the hash tables.  */
1241   if (! def
1242       || TREE_CODE (def) != SSA_NAME
1243       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1244       || gimple_vdef (stmt)
1245       /* Do not record equivalences for increments of ivs.  This would create
1246 	 overlapping live ranges for a very questionable gain.  */
1247       || simple_iv_increment_p (stmt))
1248     insert = false;
1249 
1250   /* Check if the expression has been computed before.  */
1251   cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1252 
1253   opt_stats.num_exprs_considered++;
1254 
1255   /* Get the type of the expression we are trying to optimize.  */
1256   if (is_gimple_assign (stmt))
1257     {
1258       expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1259       assigns_var_p = true;
1260     }
1261   else if (gimple_code (stmt) == GIMPLE_COND)
1262     expr_type = boolean_type_node;
1263   else if (is_gimple_call (stmt))
1264     {
1265       gcc_assert (gimple_call_lhs (stmt));
1266       expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1267       assigns_var_p = true;
1268     }
1269   else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1270     expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1271   else if (gimple_code (stmt) == GIMPLE_PHI)
1272     /* We can't propagate into a phi, so the logic below doesn't apply.
1273        Instead record an equivalence between the cached LHS and the
1274        PHI result of this statement, provided they are in the same block.
1275        This should be sufficient to kill the redundant phi.  */
1276     {
1277       if (def && cached_lhs)
1278 	const_and_copies->record_const_or_copy (def, cached_lhs);
1279       return;
1280     }
1281   else
1282     gcc_unreachable ();
1283 
1284   if (!cached_lhs)
1285     return;
1286 
1287   /* It is safe to ignore types here since we have already done
1288      type checking in the hashing and equality routines.  In fact
1289      type checking here merely gets in the way of constant
1290      propagation.  Also, make sure that it is safe to propagate
1291      CACHED_LHS into the expression in STMT.  */
1292   if ((TREE_CODE (cached_lhs) != SSA_NAME
1293        && (assigns_var_p
1294            || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1295       || may_propagate_copy_into_stmt (stmt, cached_lhs))
1296   {
1297       gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1298 			   || is_gimple_min_invariant (cached_lhs));
1299 
1300       if (dump_file && (dump_flags & TDF_DETAILS))
1301 	{
1302 	  fprintf (dump_file, "  Replaced redundant expr '");
1303 	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
1304 	  fprintf (dump_file, "' with '");
1305 	  print_generic_expr (dump_file, cached_lhs, dump_flags);
1306           fprintf (dump_file, "'\n");
1307 	}
1308 
1309       opt_stats.num_re++;
1310 
1311       if (assigns_var_p
1312 	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1313 	cached_lhs = fold_convert (expr_type, cached_lhs);
1314 
1315       propagate_tree_value_into_stmt (gsi, cached_lhs);
1316 
1317       /* Since it is always necessary to mark the result as modified,
1318          perhaps we should move this into propagate_tree_value_into_stmt
1319          itself.  */
1320       gimple_set_modified (gsi_stmt (*gsi), true);
1321   }
1322 }
1323 
1324 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1325    the available expressions table or the const_and_copies table.
1326    Detect and record those equivalences into AVAIL_EXPRS_STACK.
1327 
1328    We handle only very simple copy equivalences here.  The heavy
1329    lifing is done by eliminate_redundant_computations.  */
1330 
1331 static void
1332 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1333 			       class avail_exprs_stack *avail_exprs_stack)
1334 {
1335   tree lhs;
1336   enum tree_code lhs_code;
1337 
1338   gcc_assert (is_gimple_assign (stmt));
1339 
1340   lhs = gimple_assign_lhs (stmt);
1341   lhs_code = TREE_CODE (lhs);
1342 
1343   if (lhs_code == SSA_NAME
1344       && gimple_assign_single_p (stmt))
1345     {
1346       tree rhs = gimple_assign_rhs1 (stmt);
1347 
1348       /* If the RHS of the assignment is a constant or another variable that
1349 	 may be propagated, register it in the CONST_AND_COPIES table.  We
1350 	 do not need to record unwind data for this, since this is a true
1351 	 assignment and not an equivalence inferred from a comparison.  All
1352 	 uses of this ssa name are dominated by this assignment, so unwinding
1353 	 just costs time and space.  */
1354       if (may_optimize_p
1355 	  && (TREE_CODE (rhs) == SSA_NAME
1356 	      || is_gimple_min_invariant (rhs)))
1357 	{
1358 	  rhs = dom_valueize (rhs);
1359 
1360 	  if (dump_file && (dump_flags & TDF_DETAILS))
1361 	    {
1362 	      fprintf (dump_file, "==== ASGN ");
1363 	      print_generic_expr (dump_file, lhs, 0);
1364 	      fprintf (dump_file, " = ");
1365 	      print_generic_expr (dump_file, rhs, 0);
1366 	      fprintf (dump_file, "\n");
1367 	    }
1368 
1369 	  set_ssa_name_value (lhs, rhs);
1370 	}
1371     }
1372 
1373   /* Make sure we can propagate &x + CST.  */
1374   if (lhs_code == SSA_NAME
1375       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1376       && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1377       && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1378     {
1379       tree op0 = gimple_assign_rhs1 (stmt);
1380       tree op1 = gimple_assign_rhs2 (stmt);
1381       tree new_rhs
1382 	= build_fold_addr_expr (fold_build2 (MEM_REF,
1383 					     TREE_TYPE (TREE_TYPE (op0)),
1384 					     unshare_expr (op0),
1385 					     fold_convert (ptr_type_node,
1386 							   op1)));
1387       if (dump_file && (dump_flags & TDF_DETAILS))
1388 	{
1389 	  fprintf (dump_file, "==== ASGN ");
1390 	  print_generic_expr (dump_file, lhs, 0);
1391 	  fprintf (dump_file, " = ");
1392 	  print_generic_expr (dump_file, new_rhs, 0);
1393 	  fprintf (dump_file, "\n");
1394 	}
1395 
1396       set_ssa_name_value (lhs, new_rhs);
1397     }
1398 
1399   /* A memory store, even an aliased store, creates a useful
1400      equivalence.  By exchanging the LHS and RHS, creating suitable
1401      vops and recording the result in the available expression table,
1402      we may be able to expose more redundant loads.  */
1403   if (!gimple_has_volatile_ops (stmt)
1404       && gimple_references_memory_p (stmt)
1405       && gimple_assign_single_p (stmt)
1406       && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1407 	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1408       && !is_gimple_reg (lhs))
1409     {
1410       tree rhs = gimple_assign_rhs1 (stmt);
1411       gassign *new_stmt;
1412 
1413       /* Build a new statement with the RHS and LHS exchanged.  */
1414       if (TREE_CODE (rhs) == SSA_NAME)
1415         {
1416           /* NOTE tuples.  The call to gimple_build_assign below replaced
1417              a call to build_gimple_modify_stmt, which did not set the
1418              SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
1419              may cause an SSA validation failure, as the LHS may be a
1420              default-initialized name and should have no definition.  I'm
1421              a bit dubious of this, as the artificial statement that we
1422              generate here may in fact be ill-formed, but it is simply
1423              used as an internal device in this pass, and never becomes
1424              part of the CFG.  */
1425 	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1426           new_stmt = gimple_build_assign (rhs, lhs);
1427           SSA_NAME_DEF_STMT (rhs) = defstmt;
1428         }
1429       else
1430         new_stmt = gimple_build_assign (rhs, lhs);
1431 
1432       gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1433 
1434       /* Finally enter the statement into the available expression
1435 	 table.  */
1436       avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1437     }
1438 }
1439 
1440 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1441    CONST_AND_COPIES.  */
1442 
1443 static void
1444 cprop_operand (gimple *stmt, use_operand_p op_p)
1445 {
1446   tree val;
1447   tree op = USE_FROM_PTR (op_p);
1448 
1449   /* If the operand has a known constant value or it is known to be a
1450      copy of some other variable, use the value or copy stored in
1451      CONST_AND_COPIES.  */
1452   val = SSA_NAME_VALUE (op);
1453   if (val && val != op)
1454     {
1455       /* Do not replace hard register operands in asm statements.  */
1456       if (gimple_code (stmt) == GIMPLE_ASM
1457 	  && !may_propagate_copy_into_asm (op))
1458 	return;
1459 
1460       /* Certain operands are not allowed to be copy propagated due
1461 	 to their interaction with exception handling and some GCC
1462 	 extensions.  */
1463       if (!may_propagate_copy (op, val))
1464 	return;
1465 
1466       /* Do not propagate copies into BIVs.
1467          See PR23821 and PR62217 for how this can disturb IV and
1468 	 number of iteration analysis.  */
1469       if (TREE_CODE (val) != INTEGER_CST)
1470 	{
1471 	  gimple *def = SSA_NAME_DEF_STMT (op);
1472 	  if (gimple_code (def) == GIMPLE_PHI
1473 	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
1474 	    return;
1475 	}
1476 
1477       /* Dump details.  */
1478       if (dump_file && (dump_flags & TDF_DETAILS))
1479 	{
1480 	  fprintf (dump_file, "  Replaced '");
1481 	  print_generic_expr (dump_file, op, dump_flags);
1482 	  fprintf (dump_file, "' with %s '",
1483 		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1484 	  print_generic_expr (dump_file, val, dump_flags);
1485 	  fprintf (dump_file, "'\n");
1486 	}
1487 
1488       if (TREE_CODE (val) != SSA_NAME)
1489 	opt_stats.num_const_prop++;
1490       else
1491 	opt_stats.num_copy_prop++;
1492 
1493       propagate_value (op_p, val);
1494 
1495       /* And note that we modified this statement.  This is now
1496 	 safe, even if we changed virtual operands since we will
1497 	 rescan the statement and rewrite its operands again.  */
1498       gimple_set_modified (stmt, true);
1499     }
1500 }
1501 
1502 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1503    known value for that SSA_NAME (or NULL if no value is known).
1504 
1505    Propagate values from CONST_AND_COPIES into the uses, vuses and
1506    vdef_ops of STMT.  */
1507 
1508 static void
1509 cprop_into_stmt (gimple *stmt)
1510 {
1511   use_operand_p op_p;
1512   ssa_op_iter iter;
1513   tree last_copy_propagated_op = NULL;
1514 
1515   FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1516     {
1517       tree old_op = USE_FROM_PTR (op_p);
1518 
1519       /* If we have A = B and B = A in the copy propagation tables
1520 	 (due to an equality comparison), avoid substituting B for A
1521 	 then A for B in the trivially discovered cases.   This allows
1522 	 optimization of statements were A and B appear as input
1523 	 operands.  */
1524       if (old_op != last_copy_propagated_op)
1525 	{
1526 	  cprop_operand (stmt, op_p);
1527 
1528 	  tree new_op = USE_FROM_PTR (op_p);
1529 	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1530 	    last_copy_propagated_op = new_op;
1531 	}
1532     }
1533 }
1534 
1535 /* Optimize the statement in block BB pointed to by iterator SI
1536    using equivalences from CONST_AND_COPIES and AVAIL_EXPRS_STACK.
1537 
1538    We try to perform some simplistic global redundancy elimination and
1539    constant propagation:
1540 
1541    1- To detect global redundancy, we keep track of expressions that have
1542       been computed in this block and its dominators.  If we find that the
1543       same expression is computed more than once, we eliminate repeated
1544       computations by using the target of the first one.
1545 
1546    2- Constant values and copy assignments.  This is used to do very
1547       simplistic constant and copy propagation.  When a constant or copy
1548       assignment is found, we map the value on the RHS of the assignment to
1549       the variable in the LHS in the CONST_AND_COPIES table.  */
1550 
1551 static edge
1552 optimize_stmt (basic_block bb, gimple_stmt_iterator si,
1553 	       class const_and_copies *const_and_copies,
1554 	       class avail_exprs_stack *avail_exprs_stack)
1555 {
1556   gimple *stmt, *old_stmt;
1557   bool may_optimize_p;
1558   bool modified_p = false;
1559   bool was_noreturn;
1560   edge retval = NULL;
1561 
1562   old_stmt = stmt = gsi_stmt (si);
1563   was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
1564 
1565   if (dump_file && (dump_flags & TDF_DETAILS))
1566     {
1567       fprintf (dump_file, "Optimizing statement ");
1568       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1569     }
1570 
1571   update_stmt_if_modified (stmt);
1572   opt_stats.num_stmts++;
1573 
1574   /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
1575   cprop_into_stmt (stmt);
1576 
1577   /* If the statement has been modified with constant replacements,
1578      fold its RHS before checking for redundant computations.  */
1579   if (gimple_modified_p (stmt))
1580     {
1581       tree rhs = NULL;
1582 
1583       /* Try to fold the statement making sure that STMT is kept
1584 	 up to date.  */
1585       if (fold_stmt (&si))
1586 	{
1587 	  stmt = gsi_stmt (si);
1588 	  gimple_set_modified (stmt, true);
1589 
1590 	  if (dump_file && (dump_flags & TDF_DETAILS))
1591 	    {
1592 	      fprintf (dump_file, "  Folded to: ");
1593 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1594 	    }
1595 	}
1596 
1597       /* We only need to consider cases that can yield a gimple operand.  */
1598       if (gimple_assign_single_p (stmt))
1599         rhs = gimple_assign_rhs1 (stmt);
1600       else if (gimple_code (stmt) == GIMPLE_GOTO)
1601         rhs = gimple_goto_dest (stmt);
1602       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1603         /* This should never be an ADDR_EXPR.  */
1604         rhs = gimple_switch_index (swtch_stmt);
1605 
1606       if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
1607         recompute_tree_invariant_for_addr_expr (rhs);
1608 
1609       /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
1610 	 even if fold_stmt updated the stmt already and thus cleared
1611 	 gimple_modified_p flag on it.  */
1612       modified_p = true;
1613     }
1614 
1615   /* Check for redundant computations.  Do this optimization only
1616      for assignments that have no volatile ops and conditionals.  */
1617   may_optimize_p = (!gimple_has_side_effects (stmt)
1618                     && (is_gimple_assign (stmt)
1619                         || (is_gimple_call (stmt)
1620                             && gimple_call_lhs (stmt) != NULL_TREE)
1621                         || gimple_code (stmt) == GIMPLE_COND
1622                         || gimple_code (stmt) == GIMPLE_SWITCH));
1623 
1624   if (may_optimize_p)
1625     {
1626       if (gimple_code (stmt) == GIMPLE_CALL)
1627 	{
1628 	  /* Resolve __builtin_constant_p.  If it hasn't been
1629 	     folded to integer_one_node by now, it's fairly
1630 	     certain that the value simply isn't constant.  */
1631 	  tree callee = gimple_call_fndecl (stmt);
1632 	  if (callee
1633 	      && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
1634 	      && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
1635 	    {
1636 	      propagate_tree_value_into_stmt (&si, integer_zero_node);
1637 	      stmt = gsi_stmt (si);
1638 	    }
1639 	}
1640 
1641       if (gimple_code (stmt) == GIMPLE_COND)
1642 	{
1643 	  tree lhs = gimple_cond_lhs (stmt);
1644 	  tree rhs = gimple_cond_rhs (stmt);
1645 
1646 	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
1647 	     then this conditional is computable at compile time.  We can just
1648 	     shove either 0 or 1 into the LHS, mark the statement as modified
1649 	     and all the right things will just happen below.
1650 
1651 	     Note this would apply to any case where LHS has a range
1652 	     narrower than its type implies and RHS is outside that
1653 	     narrower range.  Future work.  */
1654 	  if (TREE_CODE (lhs) == SSA_NAME
1655 	      && ssa_name_has_boolean_range (lhs)
1656 	      && TREE_CODE (rhs) == INTEGER_CST
1657 	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
1658 	    {
1659 	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
1660 				   fold_convert (TREE_TYPE (lhs),
1661 						 integer_zero_node));
1662 	      gimple_set_modified (stmt, true);
1663 	    }
1664 	}
1665 
1666       update_stmt_if_modified (stmt);
1667       eliminate_redundant_computations (&si, const_and_copies,
1668 					avail_exprs_stack);
1669       stmt = gsi_stmt (si);
1670 
1671       /* Perform simple redundant store elimination.  */
1672       if (gimple_assign_single_p (stmt)
1673 	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
1674 	{
1675 	  tree lhs = gimple_assign_lhs (stmt);
1676 	  tree rhs = gimple_assign_rhs1 (stmt);
1677 	  tree cached_lhs;
1678 	  gassign *new_stmt;
1679 	  rhs = dom_valueize (rhs);
1680 	  /* Build a new statement with the RHS and LHS exchanged.  */
1681 	  if (TREE_CODE (rhs) == SSA_NAME)
1682 	    {
1683 	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1684 	      new_stmt = gimple_build_assign (rhs, lhs);
1685 	      SSA_NAME_DEF_STMT (rhs) = defstmt;
1686 	    }
1687 	  else
1688 	    new_stmt = gimple_build_assign (rhs, lhs);
1689 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
1690 	  cached_lhs = avail_exprs_stack->lookup_avail_expr (new_stmt, false,
1691 							     false);
1692 	  if (cached_lhs
1693 	      && rhs == cached_lhs)
1694 	    {
1695 	      basic_block bb = gimple_bb (stmt);
1696 	      unlink_stmt_vdef (stmt);
1697 	      if (gsi_remove (&si, true))
1698 		{
1699 		  bitmap_set_bit (need_eh_cleanup, bb->index);
1700 		  if (dump_file && (dump_flags & TDF_DETAILS))
1701 		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
1702 		}
1703 	      release_defs (stmt);
1704 	      return retval;
1705 	    }
1706 	}
1707     }
1708 
1709   /* Record any additional equivalences created by this statement.  */
1710   if (is_gimple_assign (stmt))
1711     record_equivalences_from_stmt (stmt, may_optimize_p, avail_exprs_stack);
1712 
1713   /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
1714      know where it goes.  */
1715   if (gimple_modified_p (stmt) || modified_p)
1716     {
1717       tree val = NULL;
1718 
1719       if (gimple_code (stmt) == GIMPLE_COND)
1720         val = fold_binary_loc (gimple_location (stmt),
1721 			       gimple_cond_code (stmt), boolean_type_node,
1722 			       gimple_cond_lhs (stmt),
1723 			       gimple_cond_rhs (stmt));
1724       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1725 	val = gimple_switch_index (swtch_stmt);
1726 
1727       if (val && TREE_CODE (val) == INTEGER_CST)
1728 	{
1729 	  retval = find_taken_edge (bb, val);
1730 	  if (retval)
1731 	    {
1732 	      /* Fix the condition to be either true or false.  */
1733 	      if (gimple_code (stmt) == GIMPLE_COND)
1734 		{
1735 		  if (integer_zerop (val))
1736 		    gimple_cond_make_false (as_a <gcond *> (stmt));
1737 		  else if (integer_onep (val))
1738 		    gimple_cond_make_true (as_a <gcond *> (stmt));
1739 		  else
1740 		    gcc_unreachable ();
1741 
1742 		  gimple_set_modified (stmt, true);
1743 		}
1744 
1745 	      /* Further simplifications may be possible.  */
1746 	      cfg_altered = true;
1747 	    }
1748 	}
1749 
1750       update_stmt_if_modified (stmt);
1751 
1752       /* If we simplified a statement in such a way as to be shown that it
1753 	 cannot trap, update the eh information and the cfg to match.  */
1754       if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1755 	{
1756 	  bitmap_set_bit (need_eh_cleanup, bb->index);
1757 	  if (dump_file && (dump_flags & TDF_DETAILS))
1758 	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
1759 	}
1760 
1761       if (!was_noreturn
1762 	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
1763 	need_noreturn_fixup.safe_push (stmt);
1764     }
1765   return retval;
1766 }
1767