xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-dom.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* SSA Dominator optimizations for trees
2    Copyright (C) 2001-2019 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
31 #include "cfganal.h"
32 #include "cfgloop.h"
33 #include "gimple-fold.h"
34 #include "tree-eh.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-into-ssa.h"
39 #include "domwalk.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
42 #include "params.h"
43 #include "tree-ssa-scopedtables.h"
44 #include "tree-ssa-threadedge.h"
45 #include "tree-ssa-dom.h"
46 #include "gimplify.h"
47 #include "tree-cfgcleanup.h"
48 #include "dbgcnt.h"
49 #include "alloc-pool.h"
50 #include "tree-vrp.h"
51 #include "vr-values.h"
52 #include "gimple-ssa-evrp-analyze.h"
53 
54 /* This file implements optimizations on the dominator tree.  */
55 
56 /* Structure for recording edge equivalences.
57 
58    Computing and storing the edge equivalences instead of creating
59    them on-demand can save significant amounts of time, particularly
60    for pathological cases involving switch statements.
61 
62    These structures live for a single iteration of the dominator
63    optimizer in the edge's AUX field.  At the end of an iteration we
64    free each of these structures.  */
65 class edge_info
66 {
67  public:
68   typedef std::pair <tree, tree> equiv_pair;
69   edge_info (edge);
70   ~edge_info ();
71 
72   /* Record a simple LHS = RHS equivalence.  This may trigger
73      calls to derive_equivalences.  */
74   void record_simple_equiv (tree, tree);
75 
76   /* If traversing this edge creates simple equivalences, we store
77      them as LHS/RHS pairs within this vector.  */
78   vec<equiv_pair> simple_equivalences;
79 
80   /* Traversing an edge may also indicate one or more particular conditions
81      are true or false.  */
82   vec<cond_equivalence> cond_equivalences;
83 
84  private:
85   /* Derive equivalences by walking the use-def chains.  */
86   void derive_equivalences (tree, tree, int);
87 };
88 
89 /* Track whether or not we have changed the control flow graph.  */
90 static bool cfg_altered;
91 
92 /* Bitmap of blocks that have had EH statements cleaned.  We should
93    remove their dead edges eventually.  */
94 static bitmap need_eh_cleanup;
95 static vec<gimple *> need_noreturn_fixup;
96 
97 /* Statistics for dominator optimizations.  */
98 struct opt_stats_d
99 {
100   long num_stmts;
101   long num_exprs_considered;
102   long num_re;
103   long num_const_prop;
104   long num_copy_prop;
105 };
106 
107 static struct opt_stats_d opt_stats;
108 
109 /* Local functions.  */
110 static void record_equality (tree, tree, class const_and_copies *);
111 static void record_equivalences_from_phis (basic_block);
112 static void record_equivalences_from_incoming_edge (basic_block,
113 						    class const_and_copies *,
114 						    class avail_exprs_stack *);
115 static void eliminate_redundant_computations (gimple_stmt_iterator *,
116 					      class const_and_copies *,
117 					      class avail_exprs_stack *);
118 static void record_equivalences_from_stmt (gimple *, int,
119 					   class avail_exprs_stack *);
120 static void dump_dominator_optimization_stats (FILE *file,
121 					       hash_table<expr_elt_hasher> *);
122 
123 /* Constructor for EDGE_INFO.  An EDGE_INFO instance is always
124    associated with an edge E.  */
125 
126 edge_info::edge_info (edge e)
127 {
128   /* Free the old one associated with E, if it exists and
129      associate our new object with E.  */
130   free_dom_edge_info (e);
131   e->aux = this;
132 
133   /* And initialize the embedded vectors.  */
134   simple_equivalences = vNULL;
135   cond_equivalences = vNULL;
136 }
137 
138 /* Destructor just needs to release the vectors.  */
139 
140 edge_info::~edge_info (void)
141 {
142   this->cond_equivalences.release ();
143   this->simple_equivalences.release ();
144 }
145 
146 /* NAME is known to have the value VALUE, which must be a constant.
147 
148    Walk through its use-def chain to see if there are other equivalences
149    we might be able to derive.
150 
151    RECURSION_LIMIT controls how far back we recurse through the use-def
152    chains.  */
153 
154 void
155 edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
156 {
157   if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
158     return;
159 
160   /* This records the equivalence for the toplevel object.  Do
161      this before checking the recursion limit.  */
162   simple_equivalences.safe_push (equiv_pair (name, value));
163 
164   /* Limit how far up the use-def chains we are willing to walk.  */
165   if (recursion_limit == 0)
166     return;
167 
168   /* We can walk up the use-def chains to potentially find more
169      equivalences.  */
170   gimple *def_stmt = SSA_NAME_DEF_STMT (name);
171   if (is_gimple_assign (def_stmt))
172     {
173       enum tree_code code = gimple_assign_rhs_code (def_stmt);
174       switch (code)
175 	{
176 	/* If the result of an OR is zero, then its operands are, too.  */
177 	case BIT_IOR_EXPR:
178 	  if (integer_zerop (value))
179 	    {
180 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
181 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
182 
183 	      value = build_zero_cst (TREE_TYPE (rhs1));
184 	      derive_equivalences (rhs1, value, recursion_limit - 1);
185 	      value = build_zero_cst (TREE_TYPE (rhs2));
186 	      derive_equivalences (rhs2, value, recursion_limit - 1);
187 	    }
188 	  break;
189 
190 	/* If the result of an AND is nonzero, then its operands are, too.  */
191 	case BIT_AND_EXPR:
192 	  if (!integer_zerop (value))
193 	    {
194 	      tree rhs1 = gimple_assign_rhs1 (def_stmt);
195 	      tree rhs2 = gimple_assign_rhs2 (def_stmt);
196 
197 	      /* If either operand has a boolean range, then we
198 		 know its value must be one, otherwise we just know it
199 		 is nonzero.  The former is clearly useful, I haven't
200 		 seen cases where the latter is helpful yet.  */
201 	      if (TREE_CODE (rhs1) == SSA_NAME)
202 		{
203 		  if (ssa_name_has_boolean_range (rhs1))
204 		    {
205 		      value = build_one_cst (TREE_TYPE (rhs1));
206 		      derive_equivalences (rhs1, value, recursion_limit - 1);
207 		    }
208 		}
209 	      if (TREE_CODE (rhs2) == SSA_NAME)
210 		{
211 		  if (ssa_name_has_boolean_range (rhs2))
212 		    {
213 		      value = build_one_cst (TREE_TYPE (rhs2));
214 		      derive_equivalences (rhs2, value, recursion_limit - 1);
215 		    }
216 		}
217 	    }
218 	  break;
219 
220 	/* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
221 	   set via a widening type conversion, then we may be able to record
222 	   additional equivalences.  */
223 	case NOP_EXPR:
224 	case CONVERT_EXPR:
225 	  {
226 	    tree rhs = gimple_assign_rhs1 (def_stmt);
227 	    tree rhs_type = TREE_TYPE (rhs);
228 	    if (INTEGRAL_TYPE_P (rhs_type)
229 		&& (TYPE_PRECISION (TREE_TYPE (name))
230 		    >= TYPE_PRECISION (rhs_type))
231 		&& int_fits_type_p (value, rhs_type))
232 	      derive_equivalences (rhs,
233 				   fold_convert (rhs_type, value),
234 				   recursion_limit - 1);
235 	    break;
236 	  }
237 
238 	/* We can invert the operation of these codes trivially if
239 	   one of the RHS operands is a constant to produce a known
240 	   value for the other RHS operand.  */
241 	case POINTER_PLUS_EXPR:
242 	case PLUS_EXPR:
243 	  {
244 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
245 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
246 
247 	    /* If either argument is a constant, then we can compute
248 	       a constant value for the nonconstant argument.  */
249 	    if (TREE_CODE (rhs1) == INTEGER_CST
250 		&& TREE_CODE (rhs2) == SSA_NAME)
251 	      derive_equivalences (rhs2,
252 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
253 						value, rhs1),
254 				   recursion_limit - 1);
255 	    else if (TREE_CODE (rhs2) == INTEGER_CST
256 		     && TREE_CODE (rhs1) == SSA_NAME)
257 	      derive_equivalences (rhs1,
258 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
259 						value, rhs2),
260 				   recursion_limit - 1);
261 	    break;
262 	  }
263 
264 	/* If one of the operands is a constant, then we can compute
265 	   the value of the other operand.  If both operands are
266 	   SSA_NAMEs, then they must be equal if the result is zero.  */
267 	case MINUS_EXPR:
268 	  {
269 	    tree rhs1 = gimple_assign_rhs1 (def_stmt);
270 	    tree rhs2 = gimple_assign_rhs2 (def_stmt);
271 
272 	    /* If either argument is a constant, then we can compute
273 	       a constant value for the nonconstant argument.  */
274 	    if (TREE_CODE (rhs1) == INTEGER_CST
275 		&& TREE_CODE (rhs2) == SSA_NAME)
276 	      derive_equivalences (rhs2,
277 				   fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
278 						rhs1, value),
279 				   recursion_limit - 1);
280 	    else if (TREE_CODE (rhs2) == INTEGER_CST
281 		     && TREE_CODE (rhs1) == SSA_NAME)
282 	      derive_equivalences (rhs1,
283 				   fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
284 						value, rhs2),
285 				   recursion_limit - 1);
286 	    else if (integer_zerop (value))
287 	      {
288 		tree cond = build2 (EQ_EXPR, boolean_type_node,
289 				    gimple_assign_rhs1 (def_stmt),
290 				    gimple_assign_rhs2 (def_stmt));
291 		tree inverted = invert_truthvalue (cond);
292 		record_conditions (&this->cond_equivalences, cond, inverted);
293 	      }
294 	    break;
295 	  }
296 
297 	case EQ_EXPR:
298 	case NE_EXPR:
299 	  {
300 	    if ((code == EQ_EXPR && integer_onep (value))
301 		|| (code == NE_EXPR && integer_zerop (value)))
302 	      {
303 		tree rhs1 = gimple_assign_rhs1 (def_stmt);
304 		tree rhs2 = gimple_assign_rhs2 (def_stmt);
305 
306 		/* If either argument is a constant, then record the
307 		   other argument as being the same as that constant.
308 
309 		   If neither operand is a constant, then we have a
310 		   conditional name == name equivalence.  */
311 		if (TREE_CODE (rhs1) == INTEGER_CST)
312 		  derive_equivalences (rhs2, rhs1, recursion_limit - 1);
313 		else if (TREE_CODE (rhs2) == INTEGER_CST)
314 		  derive_equivalences (rhs1, rhs2, recursion_limit - 1);
315 	      }
316 	    else
317 	      {
318 		tree cond = build2 (code, boolean_type_node,
319 				    gimple_assign_rhs1 (def_stmt),
320 				    gimple_assign_rhs2 (def_stmt));
321 		tree inverted = invert_truthvalue (cond);
322 		if (integer_zerop (value))
323 		  std::swap (cond, inverted);
324 		record_conditions (&this->cond_equivalences, cond, inverted);
325 	      }
326 	    break;
327 	  }
328 
329 	/* For BIT_NOT and NEGATE, we can just apply the operation to the
330 	   VALUE to get the new equivalence.  It will always be a constant
331 	   so we can recurse.  */
332 	case BIT_NOT_EXPR:
333 	case NEGATE_EXPR:
334 	  {
335 	    tree rhs = gimple_assign_rhs1 (def_stmt);
336 	    tree res;
337 	    /* If this is a NOT and the operand has a boolean range, then we
338 	       know its value must be zero or one.  We are not supposed to
339 	       have a BIT_NOT_EXPR for boolean types with precision > 1 in
340 	       the general case, see e.g. the handling of TRUTH_NOT_EXPR in
341 	       the gimplifier, but it can be generated by match.pd out of
342 	       a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR.  Now the handling
343 	       of BIT_AND_EXPR above already forces a specific semantics for
344 	       boolean types with precision > 1 so we must do the same here,
345 	       otherwise we could change the semantics of TRUTH_NOT_EXPR for
346 	       boolean types with precision > 1.  */
347 	    if (code == BIT_NOT_EXPR
348 		&& TREE_CODE (rhs) == SSA_NAME
349 		&& ssa_name_has_boolean_range (rhs))
350 	      {
351 		if ((TREE_INT_CST_LOW (value) & 1) == 0)
352 		  res = build_one_cst (TREE_TYPE (rhs));
353 		else
354 		  res = build_zero_cst (TREE_TYPE (rhs));
355 	      }
356 	    else
357 	      res = fold_build1 (code, TREE_TYPE (rhs), value);
358 	    derive_equivalences (rhs, res, recursion_limit - 1);
359 	    break;
360 	  }
361 
362 	default:
363 	  {
364 	    if (TREE_CODE_CLASS (code) == tcc_comparison)
365 	      {
366 		tree cond = build2 (code, boolean_type_node,
367 				    gimple_assign_rhs1 (def_stmt),
368 				    gimple_assign_rhs2 (def_stmt));
369 		tree inverted = invert_truthvalue (cond);
370 		if (integer_zerop (value))
371 		  std::swap (cond, inverted);
372 		record_conditions (&this->cond_equivalences, cond, inverted);
373 		break;
374 	      }
375 	    break;
376 	  }
377 	}
378     }
379 }
380 
381 void
382 edge_info::record_simple_equiv (tree lhs, tree rhs)
383 {
384   /* If the RHS is a constant, then we may be able to derive
385      further equivalences.  Else just record the name = name
386      equivalence.  */
387   if (TREE_CODE (rhs) == INTEGER_CST)
388     derive_equivalences (lhs, rhs, 4);
389   else
390     simple_equivalences.safe_push (equiv_pair (lhs, rhs));
391 }
392 
393 /* Free the edge_info data attached to E, if it exists.  */
394 
395 void
396 free_dom_edge_info (edge e)
397 {
398   class edge_info *edge_info = (struct edge_info *)e->aux;
399 
400   if (edge_info)
401     delete edge_info;
402 }
403 
404 /* Free all EDGE_INFO structures associated with edges in the CFG.
405    If a particular edge can be threaded, copy the redirection
406    target from the EDGE_INFO structure into the edge's AUX field
407    as required by code to update the CFG and SSA graph for
408    jump threading.  */
409 
410 static void
411 free_all_edge_infos (void)
412 {
413   basic_block bb;
414   edge_iterator ei;
415   edge e;
416 
417   FOR_EACH_BB_FN (bb, cfun)
418     {
419       FOR_EACH_EDGE (e, ei, bb->preds)
420         {
421 	  free_dom_edge_info (e);
422 	  e->aux = NULL;
423 	}
424     }
425 }
426 
427 /* We have finished optimizing BB, record any information implied by
428    taking a specific outgoing edge from BB.  */
429 
430 static void
431 record_edge_info (basic_block bb)
432 {
433   gimple_stmt_iterator gsi = gsi_last_bb (bb);
434   class edge_info *edge_info;
435 
436   if (! gsi_end_p (gsi))
437     {
438       gimple *stmt = gsi_stmt (gsi);
439       location_t loc = gimple_location (stmt);
440 
441       if (gimple_code (stmt) == GIMPLE_SWITCH)
442 	{
443 	  gswitch *switch_stmt = as_a <gswitch *> (stmt);
444 	  tree index = gimple_switch_index (switch_stmt);
445 
446 	  if (TREE_CODE (index) == SSA_NAME)
447 	    {
448 	      int i;
449               int n_labels = gimple_switch_num_labels (switch_stmt);
450 	      tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
451 	      edge e;
452 	      edge_iterator ei;
453 
454 	      for (i = 0; i < n_labels; i++)
455 		{
456 		  tree label = gimple_switch_label (switch_stmt, i);
457 		  basic_block target_bb
458 		    = label_to_block (cfun, CASE_LABEL (label));
459 		  if (CASE_HIGH (label)
460 		      || !CASE_LOW (label)
461 		      || info[target_bb->index])
462 		    info[target_bb->index] = error_mark_node;
463 		  else
464 		    info[target_bb->index] = label;
465 		}
466 
467 	      FOR_EACH_EDGE (e, ei, bb->succs)
468 		{
469 		  basic_block target_bb = e->dest;
470 		  tree label = info[target_bb->index];
471 
472 		  if (label != NULL && label != error_mark_node)
473 		    {
474 		      tree x = fold_convert_loc (loc, TREE_TYPE (index),
475 						 CASE_LOW (label));
476 		      edge_info = new class edge_info (e);
477 		      edge_info->record_simple_equiv (index, x);
478 		    }
479 		}
480 	      free (info);
481 	    }
482 	}
483 
484       /* A COND_EXPR may create equivalences too.  */
485       if (gimple_code (stmt) == GIMPLE_COND)
486 	{
487 	  edge true_edge;
488 	  edge false_edge;
489 
490           tree op0 = gimple_cond_lhs (stmt);
491           tree op1 = gimple_cond_rhs (stmt);
492           enum tree_code code = gimple_cond_code (stmt);
493 
494 	  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
495 
496           /* Special case comparing booleans against a constant as we
497              know the value of OP0 on both arms of the branch.  i.e., we
498              can record an equivalence for OP0 rather than COND.
499 
500 	     However, don't do this if the constant isn't zero or one.
501 	     Such conditionals will get optimized more thoroughly during
502 	     the domwalk.  */
503 	  if ((code == EQ_EXPR || code == NE_EXPR)
504 	      && TREE_CODE (op0) == SSA_NAME
505 	      && ssa_name_has_boolean_range (op0)
506 	      && is_gimple_min_invariant (op1)
507 	      && (integer_zerop (op1) || integer_onep (op1)))
508             {
509 	      tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
510 	      tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
511 
512               if (code == EQ_EXPR)
513                 {
514 		  edge_info = new class edge_info (true_edge);
515 		  edge_info->record_simple_equiv (op0,
516 						  (integer_zerop (op1)
517 						   ? false_val : true_val));
518 		  edge_info = new class edge_info (false_edge);
519 		  edge_info->record_simple_equiv (op0,
520 						  (integer_zerop (op1)
521 						   ? true_val : false_val));
522                 }
523               else
524                 {
525 		  edge_info = new class edge_info (true_edge);
526 		  edge_info->record_simple_equiv (op0,
527 						  (integer_zerop (op1)
528 						   ? true_val : false_val));
529 		  edge_info = new class edge_info (false_edge);
530 		  edge_info->record_simple_equiv (op0,
531 						  (integer_zerop (op1)
532 						   ? false_val : true_val));
533                 }
534             }
535 	  /* This can show up in the IL as a result of copy propagation
536 	     it will eventually be canonicalized, but we have to cope
537 	     with this case within the pass.  */
538           else if (is_gimple_min_invariant (op0)
539                    && TREE_CODE (op1) == SSA_NAME)
540             {
541               tree cond = build2 (code, boolean_type_node, op0, op1);
542               tree inverted = invert_truthvalue_loc (loc, cond);
543               bool can_infer_simple_equiv
544                 = !(HONOR_SIGNED_ZEROS (op0)
545                     && real_zerop (op0));
546               struct edge_info *edge_info;
547 
548 	      edge_info = new class edge_info (true_edge);
549               record_conditions (&edge_info->cond_equivalences, cond, inverted);
550 
551               if (can_infer_simple_equiv && code == EQ_EXPR)
552 		edge_info->record_simple_equiv (op1, op0);
553 
554 	      edge_info = new class edge_info (false_edge);
555               record_conditions (&edge_info->cond_equivalences, inverted, cond);
556 
557               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
558 		edge_info->record_simple_equiv (op1, op0);
559             }
560 
561           else if (TREE_CODE (op0) == SSA_NAME
562                    && (TREE_CODE (op1) == SSA_NAME
563                        || is_gimple_min_invariant (op1)))
564             {
565               tree cond = build2 (code, boolean_type_node, op0, op1);
566               tree inverted = invert_truthvalue_loc (loc, cond);
567               bool can_infer_simple_equiv
568                 = !(HONOR_SIGNED_ZEROS (op1)
569                     && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
570               struct edge_info *edge_info;
571 
572 	      edge_info = new class edge_info (true_edge);
573               record_conditions (&edge_info->cond_equivalences, cond, inverted);
574 
575               if (can_infer_simple_equiv && code == EQ_EXPR)
576 		edge_info->record_simple_equiv (op0, op1);
577 
578 	      edge_info = new class edge_info (false_edge);
579               record_conditions (&edge_info->cond_equivalences, inverted, cond);
580 
581               if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
582 		edge_info->record_simple_equiv (op0, op1);
583             }
584         }
585     }
586 }
587 
588 
589 class dom_opt_dom_walker : public dom_walker
590 {
591 public:
592   dom_opt_dom_walker (cdi_direction direction,
593 		      class const_and_copies *const_and_copies,
594 		      class avail_exprs_stack *avail_exprs_stack,
595 		      gcond *dummy_cond)
596     : dom_walker (direction, REACHABLE_BLOCKS),
597       m_const_and_copies (const_and_copies),
598       m_avail_exprs_stack (avail_exprs_stack),
599       evrp_range_analyzer (true),
600       m_dummy_cond (dummy_cond) { }
601 
602   virtual edge before_dom_children (basic_block);
603   virtual void after_dom_children (basic_block);
604 
605 private:
606 
607   /* Unwindable equivalences, both const/copy and expression varieties.  */
608   class const_and_copies *m_const_and_copies;
609   class avail_exprs_stack *m_avail_exprs_stack;
610 
611   /* VRP data.  */
612   class evrp_range_analyzer evrp_range_analyzer;
613 
614   /* Dummy condition to avoid creating lots of throw away statements.  */
615   gcond *m_dummy_cond;
616 
617   /* Optimize a single statement within a basic block using the
618      various tables mantained by DOM.  Returns the taken edge if
619      the statement is a conditional with a statically determined
620      value.  */
621   edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
622 };
623 
624 /* Jump threading, redundancy elimination and const/copy propagation.
625 
626    This pass may expose new symbols that need to be renamed into SSA.  For
627    every new symbol exposed, its corresponding bit will be set in
628    VARS_TO_RENAME.  */
629 
630 namespace {
631 
632 const pass_data pass_data_dominator =
633 {
634   GIMPLE_PASS, /* type */
635   "dom", /* name */
636   OPTGROUP_NONE, /* optinfo_flags */
637   TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
638   ( PROP_cfg | PROP_ssa ), /* properties_required */
639   0, /* properties_provided */
640   0, /* properties_destroyed */
641   0, /* todo_flags_start */
642   ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
643 };
644 
645 class pass_dominator : public gimple_opt_pass
646 {
647 public:
648   pass_dominator (gcc::context *ctxt)
649     : gimple_opt_pass (pass_data_dominator, ctxt),
650       may_peel_loop_headers_p (false)
651   {}
652 
653   /* opt_pass methods: */
654   opt_pass * clone () { return new pass_dominator (m_ctxt); }
655   void set_pass_param (unsigned int n, bool param)
656     {
657       gcc_assert (n == 0);
658       may_peel_loop_headers_p = param;
659     }
660   virtual bool gate (function *) { return flag_tree_dom != 0; }
661   virtual unsigned int execute (function *);
662 
663  private:
664   /* This flag is used to prevent loops from being peeled repeatedly in jump
665      threading; it will be removed once we preserve loop structures throughout
666      the compilation -- we will be able to mark the affected loops directly in
667      jump threading, and avoid peeling them next time.  */
668   bool may_peel_loop_headers_p;
669 }; // class pass_dominator
670 
671 unsigned int
672 pass_dominator::execute (function *fun)
673 {
674   memset (&opt_stats, 0, sizeof (opt_stats));
675 
676   /* Create our hash tables.  */
677   hash_table<expr_elt_hasher> *avail_exprs
678     = new hash_table<expr_elt_hasher> (1024);
679   class avail_exprs_stack *avail_exprs_stack
680     = new class avail_exprs_stack (avail_exprs);
681   class const_and_copies *const_and_copies = new class const_and_copies ();
682   need_eh_cleanup = BITMAP_ALLOC (NULL);
683   need_noreturn_fixup.create (0);
684 
685   calculate_dominance_info (CDI_DOMINATORS);
686   cfg_altered = false;
687 
688   /* We need to know loop structures in order to avoid destroying them
689      in jump threading.  Note that we still can e.g. thread through loop
690      headers to an exit edge, or through loop header to the loop body, assuming
691      that we update the loop info.
692 
693      TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
694      to several overly conservative bail-outs in jump threading, case
695      gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
696      missing.  We should improve jump threading in future then
697      LOOPS_HAVE_PREHEADERS won't be needed here.  */
698   loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
699 
700   /* Initialize the value-handle array.  */
701   threadedge_initialize_values ();
702 
703   /* We need accurate information regarding back edges in the CFG
704      for jump threading; this may include back edges that are not part of
705      a single loop.  */
706   mark_dfs_back_edges ();
707 
708   /* We want to create the edge info structures before the dominator walk
709      so that they'll be in place for the jump threader, particularly when
710      threading through a join block.
711 
712      The conditions will be lazily updated with global equivalences as
713      we reach them during the dominator walk.  */
714   basic_block bb;
715   FOR_EACH_BB_FN (bb, fun)
716     record_edge_info (bb);
717 
718   gcond *dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
719 					 integer_zero_node, NULL, NULL);
720 
721   /* Recursively walk the dominator tree optimizing statements.  */
722   dom_opt_dom_walker walker (CDI_DOMINATORS, const_and_copies,
723 			     avail_exprs_stack, dummy_cond);
724   walker.walk (fun->cfg->x_entry_block_ptr);
725 
726   /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
727      edge.  When found, remove jump threads which contain any outgoing
728      edge from the affected block.  */
729   if (cfg_altered)
730     {
731       FOR_EACH_BB_FN (bb, fun)
732 	{
733 	  edge_iterator ei;
734 	  edge e;
735 
736 	  /* First see if there are any edges without EDGE_EXECUTABLE
737 	     set.  */
738 	  bool found = false;
739 	  FOR_EACH_EDGE (e, ei, bb->succs)
740 	    {
741 	      if ((e->flags & EDGE_EXECUTABLE) == 0)
742 		{
743 		  found = true;
744 		  break;
745 		}
746 	    }
747 
748 	  /* If there were any such edges found, then remove jump threads
749 	     containing any edge leaving BB.  */
750 	  if (found)
751 	    FOR_EACH_EDGE (e, ei, bb->succs)
752 	      remove_jump_threads_including (e);
753 	}
754     }
755 
756   {
757     gimple_stmt_iterator gsi;
758     basic_block bb;
759     FOR_EACH_BB_FN (bb, fun)
760       {
761 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
762 	  update_stmt_if_modified (gsi_stmt (gsi));
763       }
764   }
765 
766   /* If we exposed any new variables, go ahead and put them into
767      SSA form now, before we handle jump threading.  This simplifies
768      interactions between rewriting of _DECL nodes into SSA form
769      and rewriting SSA_NAME nodes into SSA form after block
770      duplication and CFG manipulation.  */
771   update_ssa (TODO_update_ssa);
772 
773   free_all_edge_infos ();
774 
775   /* Thread jumps, creating duplicate blocks as needed.  */
776   cfg_altered |= thread_through_all_blocks (may_peel_loop_headers_p);
777 
778   if (cfg_altered)
779     free_dominance_info (CDI_DOMINATORS);
780 
781   /* Removal of statements may make some EH edges dead.  Purge
782      such edges from the CFG as needed.  */
783   if (!bitmap_empty_p (need_eh_cleanup))
784     {
785       unsigned i;
786       bitmap_iterator bi;
787 
788       /* Jump threading may have created forwarder blocks from blocks
789 	 needing EH cleanup; the new successor of these blocks, which
790 	 has inherited from the original block, needs the cleanup.
791 	 Don't clear bits in the bitmap, as that can break the bitmap
792 	 iterator.  */
793       EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
794 	{
795 	  basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
796 	  if (bb == NULL)
797 	    continue;
798 	  while (single_succ_p (bb)
799 		 && (single_succ_edge (bb)->flags
800 		     & (EDGE_EH|EDGE_DFS_BACK)) == 0)
801 	    bb = single_succ (bb);
802 	  if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
803 	    continue;
804 	  if ((unsigned) bb->index != i)
805 	    bitmap_set_bit (need_eh_cleanup, bb->index);
806 	}
807 
808       gimple_purge_all_dead_eh_edges (need_eh_cleanup);
809       bitmap_clear (need_eh_cleanup);
810     }
811 
812   /* Fixup stmts that became noreturn calls.  This may require splitting
813      blocks and thus isn't possible during the dominator walk or before
814      jump threading finished.  Do this in reverse order so we don't
815      inadvertedly remove a stmt we want to fixup by visiting a dominating
816      now noreturn call first.  */
817   while (!need_noreturn_fixup.is_empty ())
818     {
819       gimple *stmt = need_noreturn_fixup.pop ();
820       if (dump_file && dump_flags & TDF_DETAILS)
821 	{
822 	  fprintf (dump_file, "Fixing up noreturn call ");
823 	  print_gimple_stmt (dump_file, stmt, 0);
824 	  fprintf (dump_file, "\n");
825 	}
826       fixup_noreturn_call (stmt);
827     }
828 
829   statistics_counter_event (fun, "Redundant expressions eliminated",
830 			    opt_stats.num_re);
831   statistics_counter_event (fun, "Constants propagated",
832 			    opt_stats.num_const_prop);
833   statistics_counter_event (fun, "Copies propagated",
834 			    opt_stats.num_copy_prop);
835 
836   /* Debugging dumps.  */
837   if (dump_file && (dump_flags & TDF_STATS))
838     dump_dominator_optimization_stats (dump_file, avail_exprs);
839 
840   loop_optimizer_finalize ();
841 
842   /* Delete our main hashtable.  */
843   delete avail_exprs;
844   avail_exprs = NULL;
845 
846   /* Free asserted bitmaps and stacks.  */
847   BITMAP_FREE (need_eh_cleanup);
848   need_noreturn_fixup.release ();
849   delete avail_exprs_stack;
850   delete const_and_copies;
851 
852   /* Free the value-handle array.  */
853   threadedge_finalize_values ();
854 
855   return 0;
856 }
857 
858 } // anon namespace
859 
860 gimple_opt_pass *
861 make_pass_dominator (gcc::context *ctxt)
862 {
863   return new pass_dominator (ctxt);
864 }
865 
866 /* A hack until we remove threading from tree-vrp.c and bring the
867    simplification routine into the dom_opt_dom_walker class.  */
868 static class vr_values *x_vr_values;
869 
870 /* A trivial wrapper so that we can present the generic jump
871    threading code with a simple API for simplifying statements.  */
872 static tree
873 simplify_stmt_for_jump_threading (gimple *stmt,
874 				  gimple *within_stmt ATTRIBUTE_UNUSED,
875 				  class avail_exprs_stack *avail_exprs_stack,
876 				  basic_block bb ATTRIBUTE_UNUSED)
877 {
878   /* First query our hash table to see if the the expression is available
879      there.  A non-NULL return value will be either a constant or another
880      SSA_NAME.  */
881   tree cached_lhs =  avail_exprs_stack->lookup_avail_expr (stmt, false, true);
882   if (cached_lhs)
883     return cached_lhs;
884 
885   /* If the hash table query failed, query VRP information.  This is
886      essentially the same as tree-vrp's simplification routine.  The
887      copy in tree-vrp is scheduled for removal in gcc-9.  */
888   if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
889     {
890       cached_lhs
891 	= x_vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
892 						 gimple_cond_lhs (cond_stmt),
893 						 gimple_cond_rhs (cond_stmt),
894 						 within_stmt);
895       return cached_lhs;
896     }
897 
898   if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
899     {
900       tree op = gimple_switch_index (switch_stmt);
901       if (TREE_CODE (op) != SSA_NAME)
902 	return NULL_TREE;
903 
904       value_range *vr = x_vr_values->get_value_range (op);
905       if (vr->undefined_p ()
906 	  || vr->varying_p ()
907 	  || vr->symbolic_p ())
908 	return NULL_TREE;
909 
910       if (vr->kind () == VR_RANGE)
911 	{
912 	  size_t i, j;
913 
914 	  find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
915 
916 	  if (i == j)
917 	    {
918 	      tree label = gimple_switch_label (switch_stmt, i);
919 	      tree singleton;
920 
921 	      if (CASE_HIGH (label) != NULL_TREE
922 		  ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
923 		     && tree_int_cst_compare (CASE_HIGH (label), vr->max ()) >= 0)
924 		  : (vr->singleton_p (&singleton)
925 		     && tree_int_cst_equal (CASE_LOW (label), singleton)))
926 		return label;
927 
928 	      if (i > j)
929 		return gimple_switch_label (switch_stmt, 0);
930 	    }
931 	}
932 
933       if (vr->kind () == VR_ANTI_RANGE)
934           {
935             unsigned n = gimple_switch_num_labels (switch_stmt);
936             tree min_label = gimple_switch_label (switch_stmt, 1);
937             tree max_label = gimple_switch_label (switch_stmt, n - 1);
938 
939             /* The default label will be taken only if the anti-range of the
940                operand is entirely outside the bounds of all the (non-default)
941                case labels.  */
942             if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
943                 && (CASE_HIGH (max_label) != NULL_TREE
944                     ? tree_int_cst_compare (vr->max (), CASE_HIGH (max_label)) >= 0
945                     : tree_int_cst_compare (vr->max (), CASE_LOW (max_label)) >= 0))
946             return gimple_switch_label (switch_stmt, 0);
947           }
948 	return NULL_TREE;
949     }
950 
951   if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
952     {
953       tree lhs = gimple_assign_lhs (assign_stmt);
954       if (TREE_CODE (lhs) == SSA_NAME
955 	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
956 	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
957 	  && stmt_interesting_for_vrp (stmt))
958 	{
959 	  edge dummy_e;
960 	  tree dummy_tree;
961 	  value_range new_vr;
962 	  x_vr_values->extract_range_from_stmt (stmt, &dummy_e,
963 					      &dummy_tree, &new_vr);
964 	  tree singleton;
965 	  if (new_vr.singleton_p (&singleton))
966 	    return singleton;
967 	}
968     }
969   return NULL;
970 }
971 
972 /* Valueize hook for gimple_fold_stmt_to_constant_1.  */
973 
974 static tree
975 dom_valueize (tree t)
976 {
977   if (TREE_CODE (t) == SSA_NAME)
978     {
979       tree tem = SSA_NAME_VALUE (t);
980       if (tem)
981 	return tem;
982     }
983   return t;
984 }
985 
986 /* We have just found an equivalence for LHS on an edge E.
987    Look backwards to other uses of LHS and see if we can derive
988    additional equivalences that are valid on edge E.  */
989 static void
990 back_propagate_equivalences (tree lhs, edge e,
991 			     class const_and_copies *const_and_copies)
992 {
993   use_operand_p use_p;
994   imm_use_iterator iter;
995   bitmap domby = NULL;
996   basic_block dest = e->dest;
997 
998   /* Iterate over the uses of LHS to see if any dominate E->dest.
999      If so, they may create useful equivalences too.
1000 
1001      ???  If the code gets re-organized to a worklist to catch more
1002      indirect opportunities and it is made to handle PHIs then this
1003      should only consider use_stmts in basic-blocks we have already visited.  */
1004   FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1005     {
1006       gimple *use_stmt = USE_STMT (use_p);
1007 
1008       /* Often the use is in DEST, which we trivially know we can't use.
1009 	 This is cheaper than the dominator set tests below.  */
1010       if (dest == gimple_bb (use_stmt))
1011 	continue;
1012 
1013       /* Filter out statements that can never produce a useful
1014 	 equivalence.  */
1015       tree lhs2 = gimple_get_lhs (use_stmt);
1016       if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1017 	continue;
1018 
1019       /* Profiling has shown the domination tests here can be fairly
1020 	 expensive.  We get significant improvements by building the
1021 	 set of blocks that dominate BB.  We can then just test
1022 	 for set membership below.
1023 
1024 	 We also initialize the set lazily since often the only uses
1025 	 are going to be in the same block as DEST.  */
1026       if (!domby)
1027 	{
1028 	  domby = BITMAP_ALLOC (NULL);
1029 	  basic_block bb = get_immediate_dominator (CDI_DOMINATORS, dest);
1030 	  while (bb)
1031 	    {
1032 	      bitmap_set_bit (domby, bb->index);
1033 	      bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1034 	    }
1035 	}
1036 
1037       /* This tests if USE_STMT does not dominate DEST.  */
1038       if (!bitmap_bit_p (domby, gimple_bb (use_stmt)->index))
1039 	continue;
1040 
1041       /* At this point USE_STMT dominates DEST and may result in a
1042 	 useful equivalence.  Try to simplify its RHS to a constant
1043 	 or SSA_NAME.  */
1044       tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1045 						 no_follow_ssa_edges);
1046       if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1047 	record_equality (lhs2, res, const_and_copies);
1048     }
1049 
1050   if (domby)
1051     BITMAP_FREE (domby);
1052 }
1053 
1054 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1055    by traversing edge E (which are cached in E->aux).
1056 
1057    Callers are responsible for managing the unwinding markers.  */
1058 void
1059 record_temporary_equivalences (edge e,
1060 			       class const_and_copies *const_and_copies,
1061 			       class avail_exprs_stack *avail_exprs_stack)
1062 {
1063   int i;
1064   class edge_info *edge_info = (class edge_info *) e->aux;
1065 
1066   /* If we have info associated with this edge, record it into
1067      our equivalence tables.  */
1068   if (edge_info)
1069     {
1070       cond_equivalence *eq;
1071       /* If we have 0 = COND or 1 = COND equivalences, record them
1072 	 into our expression hash tables.  */
1073       for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1074 	avail_exprs_stack->record_cond (eq);
1075 
1076       edge_info::equiv_pair *seq;
1077       for (i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1078 	{
1079 	  tree lhs = seq->first;
1080 	  if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1081 	    continue;
1082 
1083 	  /* Record the simple NAME = VALUE equivalence.  */
1084 	  tree rhs = seq->second;
1085 
1086 	  /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1087 	     cheaper to compute than the other, then set up the equivalence
1088 	     such that we replace the expensive one with the cheap one.
1089 
1090 	     If they are the same cost to compute, then do not record
1091 	     anything.  */
1092 	  if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1093 	    {
1094 	      gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1095 	      int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1096 
1097 	      gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1098 	      int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1099 
1100 	      if (rhs_cost > lhs_cost)
1101 	        record_equality (rhs, lhs, const_and_copies);
1102 	      else if (rhs_cost < lhs_cost)
1103 	        record_equality (lhs, rhs, const_and_copies);
1104 	    }
1105 	  else
1106 	    record_equality (lhs, rhs, const_and_copies);
1107 
1108 
1109 	  /* Any equivalence found for LHS may result in additional
1110 	     equivalences for other uses of LHS that we have already
1111 	     processed.  */
1112 	  back_propagate_equivalences (lhs, e, const_and_copies);
1113 	}
1114     }
1115 }
1116 
1117 /* PHI nodes can create equivalences too.
1118 
1119    Ignoring any alternatives which are the same as the result, if
1120    all the alternatives are equal, then the PHI node creates an
1121    equivalence.  */
1122 
1123 static void
1124 record_equivalences_from_phis (basic_block bb)
1125 {
1126   gphi_iterator gsi;
1127 
1128   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
1129     {
1130       gphi *phi = gsi.phi ();
1131 
1132       /* We might eliminate the PHI, so advance GSI now.  */
1133       gsi_next (&gsi);
1134 
1135       tree lhs = gimple_phi_result (phi);
1136       tree rhs = NULL;
1137       size_t i;
1138 
1139       for (i = 0; i < gimple_phi_num_args (phi); i++)
1140 	{
1141 	  tree t = gimple_phi_arg_def (phi, i);
1142 
1143 	  /* Ignore alternatives which are the same as our LHS.  Since
1144 	     LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1145 	     can simply compare pointers.  */
1146 	  if (lhs == t)
1147 	    continue;
1148 
1149 	  /* If the associated edge is not marked as executable, then it
1150 	     can be ignored.  */
1151 	  if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1152 	    continue;
1153 
1154 	  t = dom_valueize (t);
1155 
1156 	  /* If T is an SSA_NAME and its associated edge is a backedge,
1157 	     then quit as we cannot utilize this equivalence.  */
1158 	  if (TREE_CODE (t) == SSA_NAME
1159 	      && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1160 	    break;
1161 
1162 	  /* If we have not processed an alternative yet, then set
1163 	     RHS to this alternative.  */
1164 	  if (rhs == NULL)
1165 	    rhs = t;
1166 	  /* If we have processed an alternative (stored in RHS), then
1167 	     see if it is equal to this one.  If it isn't, then stop
1168 	     the search.  */
1169 	  else if (! operand_equal_for_phi_arg_p (rhs, t))
1170 	    break;
1171 	}
1172 
1173       /* If we had no interesting alternatives, then all the RHS alternatives
1174 	 must have been the same as LHS.  */
1175       if (!rhs)
1176 	rhs = lhs;
1177 
1178       /* If we managed to iterate through each PHI alternative without
1179 	 breaking out of the loop, then we have a PHI which may create
1180 	 a useful equivalence.  We do not need to record unwind data for
1181 	 this, since this is a true assignment and not an equivalence
1182 	 inferred from a comparison.  All uses of this ssa name are dominated
1183 	 by this assignment, so unwinding just costs time and space.  */
1184       if (i == gimple_phi_num_args (phi))
1185 	{
1186 	  if (may_propagate_copy (lhs, rhs))
1187 	    set_ssa_name_value (lhs, rhs);
1188 	  else if (virtual_operand_p (lhs))
1189 	    {
1190 	      gimple *use_stmt;
1191 	      imm_use_iterator iter;
1192 	      use_operand_p use_p;
1193 	      /* For virtual operands we have to propagate into all uses as
1194 	         otherwise we will create overlapping life-ranges.  */
1195 	      FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1196 	        FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1197 	          SET_USE (use_p, rhs);
1198 	      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1199 	        SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1200 	      gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1201 	      remove_phi_node (&tmp_gsi, true);
1202 	    }
1203 	}
1204     }
1205 }
1206 
1207 /* Record any equivalences created by the incoming edge to BB into
1208    CONST_AND_COPIES and AVAIL_EXPRS_STACK.  If BB has more than one
1209    incoming edge, then no equivalence is created.  */
1210 
1211 static void
1212 record_equivalences_from_incoming_edge (basic_block bb,
1213     class const_and_copies *const_and_copies,
1214     class avail_exprs_stack *avail_exprs_stack)
1215 {
1216   edge e;
1217   basic_block parent;
1218 
1219   /* If our parent block ended with a control statement, then we may be
1220      able to record some equivalences based on which outgoing edge from
1221      the parent was followed.  */
1222   parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1223 
1224   e = single_pred_edge_ignoring_loop_edges (bb, true);
1225 
1226   /* If we had a single incoming edge from our parent block, then enter
1227      any data associated with the edge into our tables.  */
1228   if (e && e->src == parent)
1229     record_temporary_equivalences (e, const_and_copies, avail_exprs_stack);
1230 }
1231 
1232 /* Dump statistics for the hash table HTAB.  */
1233 
1234 static void
1235 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1236 {
1237   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1238 	   (long) htab.size (),
1239 	   (long) htab.elements (),
1240 	   htab.collisions ());
1241 }
1242 
1243 /* Dump SSA statistics on FILE.  */
1244 
1245 static void
1246 dump_dominator_optimization_stats (FILE *file,
1247 				   hash_table<expr_elt_hasher> *avail_exprs)
1248 {
1249   fprintf (file, "Total number of statements:                   %6ld\n\n",
1250 	   opt_stats.num_stmts);
1251   fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1252            opt_stats.num_exprs_considered);
1253 
1254   fprintf (file, "\nHash table statistics:\n");
1255 
1256   fprintf (file, "    avail_exprs: ");
1257   htab_statistics (file, *avail_exprs);
1258 }
1259 
1260 
1261 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1262    This constrains the cases in which we may treat this as assignment.  */
1263 
1264 static void
1265 record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1266 {
1267   tree prev_x = NULL, prev_y = NULL;
1268 
1269   if (tree_swap_operands_p (x, y))
1270     std::swap (x, y);
1271 
1272   /* Most of the time tree_swap_operands_p does what we want.  But there
1273      are cases where we know one operand is better for copy propagation than
1274      the other.  Given no other code cares about ordering of equality
1275      comparison operators for that purpose, we just handle the special cases
1276      here.  */
1277   if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1278     {
1279       /* If one operand is a single use operand, then make it
1280 	 X.  This will preserve its single use properly and if this
1281 	 conditional is eliminated, the computation of X can be
1282 	 eliminated as well.  */
1283       if (has_single_use (y) && ! has_single_use (x))
1284 	std::swap (x, y);
1285     }
1286   if (TREE_CODE (x) == SSA_NAME)
1287     prev_x = SSA_NAME_VALUE (x);
1288   if (TREE_CODE (y) == SSA_NAME)
1289     prev_y = SSA_NAME_VALUE (y);
1290 
1291   /* If one of the previous values is invariant, or invariant in more loops
1292      (by depth), then use that.
1293      Otherwise it doesn't matter which value we choose, just so
1294      long as we canonicalize on one value.  */
1295   if (is_gimple_min_invariant (y))
1296     ;
1297   else if (is_gimple_min_invariant (x))
1298     prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1299   else if (prev_x && is_gimple_min_invariant (prev_x))
1300     x = y, y = prev_x, prev_x = prev_y;
1301   else if (prev_y)
1302     y = prev_y;
1303 
1304   /* After the swapping, we must have one SSA_NAME.  */
1305   if (TREE_CODE (x) != SSA_NAME)
1306     return;
1307 
1308   /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1309      variable compared against zero.  If we're honoring signed zeros,
1310      then we cannot record this value unless we know that the value is
1311      nonzero.  */
1312   if (HONOR_SIGNED_ZEROS (x)
1313       && (TREE_CODE (y) != REAL_CST
1314 	  || real_equal (&dconst0, &TREE_REAL_CST (y))))
1315     return;
1316 
1317   const_and_copies->record_const_or_copy (x, y, prev_x);
1318 }
1319 
1320 /* Returns true when STMT is a simple iv increment.  It detects the
1321    following situation:
1322 
1323    i_1 = phi (..., i_k)
1324    [...]
1325    i_j = i_{j-1}  for each j : 2 <= j <= k-1
1326    [...]
1327    i_k = i_{k-1} +/- ...  */
1328 
1329 bool
1330 simple_iv_increment_p (gimple *stmt)
1331 {
1332   enum tree_code code;
1333   tree lhs, preinc;
1334   gimple *phi;
1335   size_t i;
1336 
1337   if (gimple_code (stmt) != GIMPLE_ASSIGN)
1338     return false;
1339 
1340   lhs = gimple_assign_lhs (stmt);
1341   if (TREE_CODE (lhs) != SSA_NAME)
1342     return false;
1343 
1344   code = gimple_assign_rhs_code (stmt);
1345   if (code != PLUS_EXPR
1346       && code != MINUS_EXPR
1347       && code != POINTER_PLUS_EXPR)
1348     return false;
1349 
1350   preinc = gimple_assign_rhs1 (stmt);
1351   if (TREE_CODE (preinc) != SSA_NAME)
1352     return false;
1353 
1354   phi = SSA_NAME_DEF_STMT (preinc);
1355   while (gimple_code (phi) != GIMPLE_PHI)
1356     {
1357       /* Follow trivial copies, but not the DEF used in a back edge,
1358 	 so that we don't prevent coalescing.  */
1359       if (!gimple_assign_ssa_name_copy_p (phi))
1360 	return false;
1361       preinc = gimple_assign_rhs1 (phi);
1362       phi = SSA_NAME_DEF_STMT (preinc);
1363     }
1364 
1365   for (i = 0; i < gimple_phi_num_args (phi); i++)
1366     if (gimple_phi_arg_def (phi, i) == lhs)
1367       return true;
1368 
1369   return false;
1370 }
1371 
1372 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1373    successors of BB.  */
1374 
1375 static void
1376 cprop_into_successor_phis (basic_block bb,
1377 			   class const_and_copies *const_and_copies)
1378 {
1379   edge e;
1380   edge_iterator ei;
1381 
1382   FOR_EACH_EDGE (e, ei, bb->succs)
1383     {
1384       int indx;
1385       gphi_iterator gsi;
1386 
1387       /* If this is an abnormal edge, then we do not want to copy propagate
1388 	 into the PHI alternative associated with this edge.  */
1389       if (e->flags & EDGE_ABNORMAL)
1390 	continue;
1391 
1392       gsi = gsi_start_phis (e->dest);
1393       if (gsi_end_p (gsi))
1394 	continue;
1395 
1396       /* We may have an equivalence associated with this edge.  While
1397 	 we cannot propagate it into non-dominated blocks, we can
1398 	 propagate them into PHIs in non-dominated blocks.  */
1399 
1400       /* Push the unwind marker so we can reset the const and copies
1401 	 table back to its original state after processing this edge.  */
1402       const_and_copies->push_marker ();
1403 
1404       /* Extract and record any simple NAME = VALUE equivalences.
1405 
1406 	 Don't bother with [01] = COND equivalences, they're not useful
1407 	 here.  */
1408       class edge_info *edge_info = (class edge_info *) e->aux;
1409 
1410       if (edge_info)
1411 	{
1412 	  edge_info::equiv_pair *seq;
1413 	  for (int i = 0; edge_info->simple_equivalences.iterate (i, &seq); ++i)
1414 	    {
1415 	      tree lhs = seq->first;
1416 	      tree rhs = seq->second;
1417 
1418 	      if (lhs && TREE_CODE (lhs) == SSA_NAME)
1419 		const_and_copies->record_const_or_copy (lhs, rhs);
1420 	    }
1421 
1422 	}
1423 
1424       indx = e->dest_idx;
1425       for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1426 	{
1427 	  tree new_val;
1428 	  use_operand_p orig_p;
1429 	  tree orig_val;
1430           gphi *phi = gsi.phi ();
1431 
1432 	  /* The alternative may be associated with a constant, so verify
1433 	     it is an SSA_NAME before doing anything with it.  */
1434 	  orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1435 	  orig_val = get_use_from_ptr (orig_p);
1436 	  if (TREE_CODE (orig_val) != SSA_NAME)
1437 	    continue;
1438 
1439 	  /* If we have *ORIG_P in our constant/copy table, then replace
1440 	     ORIG_P with its value in our constant/copy table.  */
1441 	  new_val = SSA_NAME_VALUE (orig_val);
1442 	  if (new_val
1443 	      && new_val != orig_val
1444 	      && may_propagate_copy (orig_val, new_val))
1445 	    propagate_value (orig_p, new_val);
1446 	}
1447 
1448       const_and_copies->pop_to_marker ();
1449     }
1450 }
1451 
1452 edge
1453 dom_opt_dom_walker::before_dom_children (basic_block bb)
1454 {
1455   gimple_stmt_iterator gsi;
1456 
1457   if (dump_file && (dump_flags & TDF_DETAILS))
1458     fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1459 
1460   evrp_range_analyzer.enter (bb);
1461 
1462   /* Push a marker on the stacks of local information so that we know how
1463      far to unwind when we finalize this block.  */
1464   m_avail_exprs_stack->push_marker ();
1465   m_const_and_copies->push_marker ();
1466 
1467   record_equivalences_from_incoming_edge (bb, m_const_and_copies,
1468 					  m_avail_exprs_stack);
1469 
1470   /* PHI nodes can create equivalences too.  */
1471   record_equivalences_from_phis (bb);
1472 
1473   /* Create equivalences from redundant PHIs.  PHIs are only truly
1474      redundant when they exist in the same block, so push another
1475      marker and unwind right afterwards.  */
1476   m_avail_exprs_stack->push_marker ();
1477   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1478     eliminate_redundant_computations (&gsi, m_const_and_copies,
1479 				      m_avail_exprs_stack);
1480   m_avail_exprs_stack->pop_to_marker ();
1481 
1482   edge taken_edge = NULL;
1483   /* Initialize visited flag ahead of us, it has undefined state on
1484      pass entry.  */
1485   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1486     gimple_set_visited (gsi_stmt (gsi), false);
1487   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1488     {
1489       /* Do not optimize a stmt twice, substitution might end up with
1490          _3 = _3 which is not valid.  */
1491       if (gimple_visited_p (gsi_stmt (gsi)))
1492 	{
1493 	  gsi_next (&gsi);
1494 	  continue;
1495 	}
1496 
1497       /* Compute range information and optimize the stmt.  */
1498       evrp_range_analyzer.record_ranges_from_stmt (gsi_stmt (gsi), false);
1499       bool removed_p = false;
1500       taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1501       if (!removed_p)
1502 	gimple_set_visited (gsi_stmt (gsi), true);
1503 
1504       /* Go back and visit stmts inserted by folding after substituting
1505 	 into the stmt at gsi.  */
1506       if (gsi_end_p (gsi))
1507 	{
1508 	  gcc_checking_assert (removed_p);
1509 	  gsi = gsi_last_bb (bb);
1510 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)))
1511 	    gsi_prev (&gsi);
1512 	}
1513       else
1514 	{
1515 	  do
1516 	    {
1517 	      gsi_prev (&gsi);
1518 	    }
1519 	  while (!gsi_end_p (gsi) && !gimple_visited_p (gsi_stmt (gsi)));
1520 	}
1521       if (gsi_end_p (gsi))
1522 	gsi = gsi_start_bb (bb);
1523       else
1524 	gsi_next (&gsi);
1525     }
1526 
1527   /* Now prepare to process dominated blocks.  */
1528   record_edge_info (bb);
1529   cprop_into_successor_phis (bb, m_const_and_copies);
1530   if (taken_edge && !dbg_cnt (dom_unreachable_edges))
1531     return NULL;
1532 
1533   return taken_edge;
1534 }
1535 
1536 /* We have finished processing the dominator children of BB, perform
1537    any finalization actions in preparation for leaving this node in
1538    the dominator tree.  */
1539 
1540 void
1541 dom_opt_dom_walker::after_dom_children (basic_block bb)
1542 {
1543   x_vr_values = evrp_range_analyzer.get_vr_values ();
1544   thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
1545 			 m_avail_exprs_stack,
1546 			 &evrp_range_analyzer,
1547 			 simplify_stmt_for_jump_threading);
1548   x_vr_values = NULL;
1549 
1550   /* These remove expressions local to BB from the tables.  */
1551   m_avail_exprs_stack->pop_to_marker ();
1552   m_const_and_copies->pop_to_marker ();
1553   evrp_range_analyzer.leave (bb);
1554 }
1555 
1556 /* Search for redundant computations in STMT.  If any are found, then
1557    replace them with the variable holding the result of the computation.
1558 
1559    If safe, record this expression into AVAIL_EXPRS_STACK and
1560    CONST_AND_COPIES.  */
1561 
1562 static void
1563 eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1564 				  class const_and_copies *const_and_copies,
1565 				  class avail_exprs_stack *avail_exprs_stack)
1566 {
1567   tree expr_type;
1568   tree cached_lhs;
1569   tree def;
1570   bool insert = true;
1571   bool assigns_var_p = false;
1572 
1573   gimple *stmt = gsi_stmt (*gsi);
1574 
1575   if (gimple_code (stmt) == GIMPLE_PHI)
1576     def = gimple_phi_result (stmt);
1577   else
1578     def = gimple_get_lhs (stmt);
1579 
1580   /* Certain expressions on the RHS can be optimized away, but cannot
1581      themselves be entered into the hash tables.  */
1582   if (! def
1583       || TREE_CODE (def) != SSA_NAME
1584       || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1585       || gimple_vdef (stmt)
1586       /* Do not record equivalences for increments of ivs.  This would create
1587 	 overlapping live ranges for a very questionable gain.  */
1588       || simple_iv_increment_p (stmt))
1589     insert = false;
1590 
1591   /* Check if the expression has been computed before.  */
1592   cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1593 
1594   opt_stats.num_exprs_considered++;
1595 
1596   /* Get the type of the expression we are trying to optimize.  */
1597   if (is_gimple_assign (stmt))
1598     {
1599       expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1600       assigns_var_p = true;
1601     }
1602   else if (gimple_code (stmt) == GIMPLE_COND)
1603     expr_type = boolean_type_node;
1604   else if (is_gimple_call (stmt))
1605     {
1606       gcc_assert (gimple_call_lhs (stmt));
1607       expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1608       assigns_var_p = true;
1609     }
1610   else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
1611     expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1612   else if (gimple_code (stmt) == GIMPLE_PHI)
1613     /* We can't propagate into a phi, so the logic below doesn't apply.
1614        Instead record an equivalence between the cached LHS and the
1615        PHI result of this statement, provided they are in the same block.
1616        This should be sufficient to kill the redundant phi.  */
1617     {
1618       if (def && cached_lhs)
1619 	const_and_copies->record_const_or_copy (def, cached_lhs);
1620       return;
1621     }
1622   else
1623     gcc_unreachable ();
1624 
1625   if (!cached_lhs)
1626     return;
1627 
1628   /* It is safe to ignore types here since we have already done
1629      type checking in the hashing and equality routines.  In fact
1630      type checking here merely gets in the way of constant
1631      propagation.  Also, make sure that it is safe to propagate
1632      CACHED_LHS into the expression in STMT.  */
1633   if ((TREE_CODE (cached_lhs) != SSA_NAME
1634        && (assigns_var_p
1635            || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1636       || may_propagate_copy_into_stmt (stmt, cached_lhs))
1637   {
1638       gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1639 			   || is_gimple_min_invariant (cached_lhs));
1640 
1641       if (dump_file && (dump_flags & TDF_DETAILS))
1642 	{
1643 	  fprintf (dump_file, "  Replaced redundant expr '");
1644 	  print_gimple_expr (dump_file, stmt, 0, dump_flags);
1645 	  fprintf (dump_file, "' with '");
1646 	  print_generic_expr (dump_file, cached_lhs, dump_flags);
1647           fprintf (dump_file, "'\n");
1648 	}
1649 
1650       opt_stats.num_re++;
1651 
1652       if (assigns_var_p
1653 	  && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1654 	cached_lhs = fold_convert (expr_type, cached_lhs);
1655 
1656       propagate_tree_value_into_stmt (gsi, cached_lhs);
1657 
1658       /* Since it is always necessary to mark the result as modified,
1659          perhaps we should move this into propagate_tree_value_into_stmt
1660          itself.  */
1661       gimple_set_modified (gsi_stmt (*gsi), true);
1662   }
1663 }
1664 
1665 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1666    the available expressions table or the const_and_copies table.
1667    Detect and record those equivalences into AVAIL_EXPRS_STACK.
1668 
1669    We handle only very simple copy equivalences here.  The heavy
1670    lifing is done by eliminate_redundant_computations.  */
1671 
1672 static void
1673 record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1674 			       class avail_exprs_stack *avail_exprs_stack)
1675 {
1676   tree lhs;
1677   enum tree_code lhs_code;
1678 
1679   gcc_assert (is_gimple_assign (stmt));
1680 
1681   lhs = gimple_assign_lhs (stmt);
1682   lhs_code = TREE_CODE (lhs);
1683 
1684   if (lhs_code == SSA_NAME
1685       && gimple_assign_single_p (stmt))
1686     {
1687       tree rhs = gimple_assign_rhs1 (stmt);
1688 
1689       /* If the RHS of the assignment is a constant or another variable that
1690 	 may be propagated, register it in the CONST_AND_COPIES table.  We
1691 	 do not need to record unwind data for this, since this is a true
1692 	 assignment and not an equivalence inferred from a comparison.  All
1693 	 uses of this ssa name are dominated by this assignment, so unwinding
1694 	 just costs time and space.  */
1695       if (may_optimize_p
1696 	  && (TREE_CODE (rhs) == SSA_NAME
1697 	      || is_gimple_min_invariant (rhs)))
1698 	{
1699 	  rhs = dom_valueize (rhs);
1700 
1701 	  if (dump_file && (dump_flags & TDF_DETAILS))
1702 	    {
1703 	      fprintf (dump_file, "==== ASGN ");
1704 	      print_generic_expr (dump_file, lhs);
1705 	      fprintf (dump_file, " = ");
1706 	      print_generic_expr (dump_file, rhs);
1707 	      fprintf (dump_file, "\n");
1708 	    }
1709 
1710 	  set_ssa_name_value (lhs, rhs);
1711 	}
1712     }
1713 
1714   /* Make sure we can propagate &x + CST.  */
1715   if (lhs_code == SSA_NAME
1716       && gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR
1717       && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1718       && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1719     {
1720       tree op0 = gimple_assign_rhs1 (stmt);
1721       tree op1 = gimple_assign_rhs2 (stmt);
1722       tree new_rhs
1723 	= build_fold_addr_expr (fold_build2 (MEM_REF,
1724 					     TREE_TYPE (TREE_TYPE (op0)),
1725 					     unshare_expr (op0),
1726 					     fold_convert (ptr_type_node,
1727 							   op1)));
1728       if (dump_file && (dump_flags & TDF_DETAILS))
1729 	{
1730 	  fprintf (dump_file, "==== ASGN ");
1731 	  print_generic_expr (dump_file, lhs);
1732 	  fprintf (dump_file, " = ");
1733 	  print_generic_expr (dump_file, new_rhs);
1734 	  fprintf (dump_file, "\n");
1735 	}
1736 
1737       set_ssa_name_value (lhs, new_rhs);
1738     }
1739 
1740   /* A memory store, even an aliased store, creates a useful
1741      equivalence.  By exchanging the LHS and RHS, creating suitable
1742      vops and recording the result in the available expression table,
1743      we may be able to expose more redundant loads.  */
1744   if (!gimple_has_volatile_ops (stmt)
1745       && gimple_references_memory_p (stmt)
1746       && gimple_assign_single_p (stmt)
1747       && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1748 	  || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
1749       && !is_gimple_reg (lhs))
1750     {
1751       tree rhs = gimple_assign_rhs1 (stmt);
1752       gassign *new_stmt;
1753 
1754       /* Build a new statement with the RHS and LHS exchanged.  */
1755       if (TREE_CODE (rhs) == SSA_NAME)
1756         {
1757           /* NOTE tuples.  The call to gimple_build_assign below replaced
1758              a call to build_gimple_modify_stmt, which did not set the
1759              SSA_NAME_DEF_STMT on the LHS of the assignment.  Doing so
1760              may cause an SSA validation failure, as the LHS may be a
1761              default-initialized name and should have no definition.  I'm
1762              a bit dubious of this, as the artificial statement that we
1763              generate here may in fact be ill-formed, but it is simply
1764              used as an internal device in this pass, and never becomes
1765              part of the CFG.  */
1766 	  gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
1767           new_stmt = gimple_build_assign (rhs, lhs);
1768           SSA_NAME_DEF_STMT (rhs) = defstmt;
1769         }
1770       else
1771         new_stmt = gimple_build_assign (rhs, lhs);
1772 
1773       gimple_set_vuse (new_stmt, gimple_vdef (stmt));
1774 
1775       /* Finally enter the statement into the available expression
1776 	 table.  */
1777       avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
1778     }
1779 }
1780 
1781 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1782    CONST_AND_COPIES.  */
1783 
1784 static void
1785 cprop_operand (gimple *stmt, use_operand_p op_p, vr_values *vr_values)
1786 {
1787   tree val;
1788   tree op = USE_FROM_PTR (op_p);
1789 
1790   /* If the operand has a known constant value or it is known to be a
1791      copy of some other variable, use the value or copy stored in
1792      CONST_AND_COPIES.  */
1793   val = SSA_NAME_VALUE (op);
1794   if (!val)
1795     val = vr_values->op_with_constant_singleton_value_range (op);
1796 
1797   if (val && val != op)
1798     {
1799       /* Do not replace hard register operands in asm statements.  */
1800       if (gimple_code (stmt) == GIMPLE_ASM
1801 	  && !may_propagate_copy_into_asm (op))
1802 	return;
1803 
1804       /* Certain operands are not allowed to be copy propagated due
1805 	 to their interaction with exception handling and some GCC
1806 	 extensions.  */
1807       if (!may_propagate_copy (op, val))
1808 	return;
1809 
1810       /* Do not propagate copies into BIVs.
1811          See PR23821 and PR62217 for how this can disturb IV and
1812 	 number of iteration analysis.  */
1813       if (TREE_CODE (val) != INTEGER_CST)
1814 	{
1815 	  gimple *def = SSA_NAME_DEF_STMT (op);
1816 	  if (gimple_code (def) == GIMPLE_PHI
1817 	      && gimple_bb (def)->loop_father->header == gimple_bb (def))
1818 	    return;
1819 	}
1820 
1821       /* Dump details.  */
1822       if (dump_file && (dump_flags & TDF_DETAILS))
1823 	{
1824 	  fprintf (dump_file, "  Replaced '");
1825 	  print_generic_expr (dump_file, op, dump_flags);
1826 	  fprintf (dump_file, "' with %s '",
1827 		   (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
1828 	  print_generic_expr (dump_file, val, dump_flags);
1829 	  fprintf (dump_file, "'\n");
1830 	}
1831 
1832       if (TREE_CODE (val) != SSA_NAME)
1833 	opt_stats.num_const_prop++;
1834       else
1835 	opt_stats.num_copy_prop++;
1836 
1837       propagate_value (op_p, val);
1838 
1839       /* And note that we modified this statement.  This is now
1840 	 safe, even if we changed virtual operands since we will
1841 	 rescan the statement and rewrite its operands again.  */
1842       gimple_set_modified (stmt, true);
1843     }
1844 }
1845 
1846 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1847    known value for that SSA_NAME (or NULL if no value is known).
1848 
1849    Propagate values from CONST_AND_COPIES into the uses, vuses and
1850    vdef_ops of STMT.  */
1851 
1852 static void
1853 cprop_into_stmt (gimple *stmt, vr_values *vr_values)
1854 {
1855   use_operand_p op_p;
1856   ssa_op_iter iter;
1857   tree last_copy_propagated_op = NULL;
1858 
1859   FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
1860     {
1861       tree old_op = USE_FROM_PTR (op_p);
1862 
1863       /* If we have A = B and B = A in the copy propagation tables
1864 	 (due to an equality comparison), avoid substituting B for A
1865 	 then A for B in the trivially discovered cases.   This allows
1866 	 optimization of statements were A and B appear as input
1867 	 operands.  */
1868       if (old_op != last_copy_propagated_op)
1869 	{
1870 	  cprop_operand (stmt, op_p, vr_values);
1871 
1872 	  tree new_op = USE_FROM_PTR (op_p);
1873 	  if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
1874 	    last_copy_propagated_op = new_op;
1875 	}
1876     }
1877 }
1878 
1879 /* If STMT contains a relational test, try to convert it into an
1880    equality test if there is only a single value which can ever
1881    make the test true.
1882 
1883    For example, if the expression hash table contains:
1884 
1885     TRUE = (i <= 1)
1886 
1887    And we have a test within statement of i >= 1, then we can safely
1888    rewrite the test as i == 1 since there only a single value where
1889    the test is true.
1890 
1891    This is similar to code in VRP.  */
1892 
1893 static void
1894 test_for_singularity (gimple *stmt, gcond *dummy_cond,
1895 		      avail_exprs_stack *avail_exprs_stack)
1896 {
1897   /* We want to support gimple conditionals as well as assignments
1898      where the RHS contains a conditional.  */
1899   if (is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND)
1900     {
1901       enum tree_code code = ERROR_MARK;
1902       tree lhs, rhs;
1903 
1904       /* Extract the condition of interest from both forms we support.  */
1905       if (is_gimple_assign (stmt))
1906 	{
1907 	  code = gimple_assign_rhs_code (stmt);
1908 	  lhs = gimple_assign_rhs1 (stmt);
1909 	  rhs = gimple_assign_rhs2 (stmt);
1910 	}
1911       else if (gimple_code (stmt) == GIMPLE_COND)
1912 	{
1913 	  code = gimple_cond_code (as_a <gcond *> (stmt));
1914 	  lhs = gimple_cond_lhs (as_a <gcond *> (stmt));
1915 	  rhs = gimple_cond_rhs (as_a <gcond *> (stmt));
1916 	}
1917 
1918       /* We're looking for a relational test using LE/GE.  Also note we can
1919 	 canonicalize LT/GT tests against constants into LE/GT tests.  */
1920       if (code == LE_EXPR || code == GE_EXPR
1921 	  || ((code == LT_EXPR || code == GT_EXPR)
1922 	       && TREE_CODE (rhs) == INTEGER_CST))
1923 	{
1924 	  /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR.  */
1925 	  if (code == LT_EXPR)
1926 	    rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
1927 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1928 
1929 	  if (code == GT_EXPR)
1930 	    rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
1931 			       rhs, build_int_cst (TREE_TYPE (rhs), 1));
1932 
1933 	  /* Determine the code we want to check for in the hash table.  */
1934 	  enum tree_code test_code;
1935 	  if (code == GE_EXPR || code == GT_EXPR)
1936 	    test_code = LE_EXPR;
1937 	  else
1938 	    test_code = GE_EXPR;
1939 
1940 	  /* Update the dummy statement so we can query the hash tables.  */
1941 	  gimple_cond_set_code (dummy_cond, test_code);
1942 	  gimple_cond_set_lhs (dummy_cond, lhs);
1943 	  gimple_cond_set_rhs (dummy_cond, rhs);
1944 	  tree cached_lhs
1945 	    = avail_exprs_stack->lookup_avail_expr (dummy_cond, false, false);
1946 
1947 	  /* If the lookup returned 1 (true), then the expression we
1948 	     queried was in the hash table.  As a result there is only
1949 	     one value that makes the original conditional true.  Update
1950 	     STMT accordingly.  */
1951 	  if (cached_lhs && integer_onep (cached_lhs))
1952 	    {
1953 	      if (is_gimple_assign (stmt))
1954 		{
1955 		  gimple_assign_set_rhs_code (stmt, EQ_EXPR);
1956 		  gimple_assign_set_rhs2 (stmt, rhs);
1957 		  gimple_set_modified (stmt, true);
1958 		}
1959 	      else
1960 		{
1961 		  gimple_set_modified (stmt, true);
1962 		  gimple_cond_set_code (as_a <gcond *> (stmt), EQ_EXPR);
1963 		  gimple_cond_set_rhs (as_a <gcond *> (stmt), rhs);
1964 		  gimple_set_modified (stmt, true);
1965 		}
1966 	    }
1967 	}
1968     }
1969 }
1970 
1971 /* Optimize the statement in block BB pointed to by iterator SI.
1972 
1973    We try to perform some simplistic global redundancy elimination and
1974    constant propagation:
1975 
1976    1- To detect global redundancy, we keep track of expressions that have
1977       been computed in this block and its dominators.  If we find that the
1978       same expression is computed more than once, we eliminate repeated
1979       computations by using the target of the first one.
1980 
1981    2- Constant values and copy assignments.  This is used to do very
1982       simplistic constant and copy propagation.  When a constant or copy
1983       assignment is found, we map the value on the RHS of the assignment to
1984       the variable in the LHS in the CONST_AND_COPIES table.
1985 
1986    3- Very simple redundant store elimination is performed.
1987 
1988    4- We can simplify a condition to a constant or from a relational
1989       condition to an equality condition.  */
1990 
1991 edge
1992 dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
1993 				   bool *removed_p)
1994 {
1995   gimple *stmt, *old_stmt;
1996   bool may_optimize_p;
1997   bool modified_p = false;
1998   bool was_noreturn;
1999   edge retval = NULL;
2000 
2001   old_stmt = stmt = gsi_stmt (*si);
2002   was_noreturn = is_gimple_call (stmt) && gimple_call_noreturn_p (stmt);
2003 
2004   if (dump_file && (dump_flags & TDF_DETAILS))
2005     {
2006       fprintf (dump_file, "Optimizing statement ");
2007       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2008     }
2009 
2010   update_stmt_if_modified (stmt);
2011   opt_stats.num_stmts++;
2012 
2013   /* Const/copy propagate into USES, VUSES and the RHS of VDEFs.  */
2014   cprop_into_stmt (stmt, evrp_range_analyzer.get_vr_values ());
2015 
2016   /* If the statement has been modified with constant replacements,
2017      fold its RHS before checking for redundant computations.  */
2018   if (gimple_modified_p (stmt))
2019     {
2020       tree rhs = NULL;
2021 
2022       /* Try to fold the statement making sure that STMT is kept
2023 	 up to date.  */
2024       if (fold_stmt (si))
2025 	{
2026 	  stmt = gsi_stmt (*si);
2027 	  gimple_set_modified (stmt, true);
2028 
2029 	  if (dump_file && (dump_flags & TDF_DETAILS))
2030 	    {
2031 	      fprintf (dump_file, "  Folded to: ");
2032 	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2033 	    }
2034 	}
2035 
2036       /* We only need to consider cases that can yield a gimple operand.  */
2037       if (gimple_assign_single_p (stmt))
2038         rhs = gimple_assign_rhs1 (stmt);
2039       else if (gimple_code (stmt) == GIMPLE_GOTO)
2040         rhs = gimple_goto_dest (stmt);
2041       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2042         /* This should never be an ADDR_EXPR.  */
2043         rhs = gimple_switch_index (swtch_stmt);
2044 
2045       if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2046         recompute_tree_invariant_for_addr_expr (rhs);
2047 
2048       /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2049 	 even if fold_stmt updated the stmt already and thus cleared
2050 	 gimple_modified_p flag on it.  */
2051       modified_p = true;
2052     }
2053 
2054   /* Check for redundant computations.  Do this optimization only
2055      for assignments that have no volatile ops and conditionals.  */
2056   may_optimize_p = (!gimple_has_side_effects (stmt)
2057                     && (is_gimple_assign (stmt)
2058                         || (is_gimple_call (stmt)
2059                             && gimple_call_lhs (stmt) != NULL_TREE)
2060                         || gimple_code (stmt) == GIMPLE_COND
2061                         || gimple_code (stmt) == GIMPLE_SWITCH));
2062 
2063   if (may_optimize_p)
2064     {
2065       if (gimple_code (stmt) == GIMPLE_CALL)
2066 	{
2067 	  /* Resolve __builtin_constant_p.  If it hasn't been
2068 	     folded to integer_one_node by now, it's fairly
2069 	     certain that the value simply isn't constant.  */
2070 	  tree callee = gimple_call_fndecl (stmt);
2071 	  if (callee
2072 	      && fndecl_built_in_p (callee, BUILT_IN_CONSTANT_P))
2073 	    {
2074 	      propagate_tree_value_into_stmt (si, integer_zero_node);
2075 	      stmt = gsi_stmt (*si);
2076 	    }
2077 	}
2078 
2079       if (gimple_code (stmt) == GIMPLE_COND)
2080 	{
2081 	  tree lhs = gimple_cond_lhs (stmt);
2082 	  tree rhs = gimple_cond_rhs (stmt);
2083 
2084 	  /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2085 	     then this conditional is computable at compile time.  We can just
2086 	     shove either 0 or 1 into the LHS, mark the statement as modified
2087 	     and all the right things will just happen below.
2088 
2089 	     Note this would apply to any case where LHS has a range
2090 	     narrower than its type implies and RHS is outside that
2091 	     narrower range.  Future work.  */
2092 	  if (TREE_CODE (lhs) == SSA_NAME
2093 	      && ssa_name_has_boolean_range (lhs)
2094 	      && TREE_CODE (rhs) == INTEGER_CST
2095 	      && ! (integer_zerop (rhs) || integer_onep (rhs)))
2096 	    {
2097 	      gimple_cond_set_lhs (as_a <gcond *> (stmt),
2098 				   fold_convert (TREE_TYPE (lhs),
2099 						 integer_zero_node));
2100 	      gimple_set_modified (stmt, true);
2101 	    }
2102 	  else if (TREE_CODE (lhs) == SSA_NAME)
2103 	    {
2104 	      /* Exploiting EVRP data is not yet fully integrated into DOM
2105 		 but we need to do something for this case to avoid regressing
2106 		 udr4.f90 and new1.C which have unexecutable blocks with
2107 		 undefined behavior that get diagnosed if they're left in the
2108 		 IL because we've attached range information to new
2109 		 SSA_NAMES.  */
2110 	      update_stmt_if_modified (stmt);
2111 	      edge taken_edge = NULL;
2112 	      evrp_range_analyzer.vrp_visit_cond_stmt (as_a <gcond *> (stmt),
2113 						       &taken_edge);
2114 	      if (taken_edge)
2115 		{
2116 		  if (taken_edge->flags & EDGE_TRUE_VALUE)
2117 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2118 		  else if (taken_edge->flags & EDGE_FALSE_VALUE)
2119 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2120 		  else
2121 		    gcc_unreachable ();
2122 		  gimple_set_modified (stmt, true);
2123 		  update_stmt (stmt);
2124 		  cfg_altered = true;
2125 		  return taken_edge;
2126 		}
2127 	    }
2128 	}
2129 
2130       update_stmt_if_modified (stmt);
2131       eliminate_redundant_computations (si, m_const_and_copies,
2132 					m_avail_exprs_stack);
2133       stmt = gsi_stmt (*si);
2134 
2135       /* Perform simple redundant store elimination.  */
2136       if (gimple_assign_single_p (stmt)
2137 	  && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2138 	{
2139 	  tree lhs = gimple_assign_lhs (stmt);
2140 	  tree rhs = gimple_assign_rhs1 (stmt);
2141 	  tree cached_lhs;
2142 	  gassign *new_stmt;
2143 	  rhs = dom_valueize (rhs);
2144 	  /* Build a new statement with the RHS and LHS exchanged.  */
2145 	  if (TREE_CODE (rhs) == SSA_NAME)
2146 	    {
2147 	      gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2148 	      new_stmt = gimple_build_assign (rhs, lhs);
2149 	      SSA_NAME_DEF_STMT (rhs) = defstmt;
2150 	    }
2151 	  else
2152 	    new_stmt = gimple_build_assign (rhs, lhs);
2153 	  gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2154 	  cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2155 							       false);
2156 	  if (cached_lhs && operand_equal_p (rhs, cached_lhs, 0))
2157 	    {
2158 	      basic_block bb = gimple_bb (stmt);
2159 	      unlink_stmt_vdef (stmt);
2160 	      if (gsi_remove (si, true))
2161 		{
2162 		  bitmap_set_bit (need_eh_cleanup, bb->index);
2163 		  if (dump_file && (dump_flags & TDF_DETAILS))
2164 		    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2165 		}
2166 	      release_defs (stmt);
2167 	      *removed_p = true;
2168 	      return retval;
2169 	    }
2170 	}
2171 
2172       /* If this statement was not redundant, we may still be able to simplify
2173 	 it, which may in turn allow other part of DOM or other passes to do
2174 	 a better job.  */
2175       test_for_singularity (stmt, m_dummy_cond, m_avail_exprs_stack);
2176     }
2177 
2178   /* Record any additional equivalences created by this statement.  */
2179   if (is_gimple_assign (stmt))
2180     record_equivalences_from_stmt (stmt, may_optimize_p, m_avail_exprs_stack);
2181 
2182   /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2183      know where it goes.  */
2184   if (gimple_modified_p (stmt) || modified_p)
2185     {
2186       tree val = NULL;
2187 
2188       if (gimple_code (stmt) == GIMPLE_COND)
2189         val = fold_binary_loc (gimple_location (stmt),
2190 			       gimple_cond_code (stmt), boolean_type_node,
2191 			       gimple_cond_lhs (stmt),
2192 			       gimple_cond_rhs (stmt));
2193       else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (stmt))
2194 	val = gimple_switch_index (swtch_stmt);
2195 
2196       if (val && TREE_CODE (val) == INTEGER_CST)
2197 	{
2198 	  retval = find_taken_edge (bb, val);
2199 	  if (retval)
2200 	    {
2201 	      /* Fix the condition to be either true or false.  */
2202 	      if (gimple_code (stmt) == GIMPLE_COND)
2203 		{
2204 		  if (integer_zerop (val))
2205 		    gimple_cond_make_false (as_a <gcond *> (stmt));
2206 		  else if (integer_onep (val))
2207 		    gimple_cond_make_true (as_a <gcond *> (stmt));
2208 		  else
2209 		    gcc_unreachable ();
2210 
2211 		  gimple_set_modified (stmt, true);
2212 		}
2213 
2214 	      /* Further simplifications may be possible.  */
2215 	      cfg_altered = true;
2216 	    }
2217 	}
2218 
2219       update_stmt_if_modified (stmt);
2220 
2221       /* If we simplified a statement in such a way as to be shown that it
2222 	 cannot trap, update the eh information and the cfg to match.  */
2223       if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2224 	{
2225 	  bitmap_set_bit (need_eh_cleanup, bb->index);
2226 	  if (dump_file && (dump_flags & TDF_DETAILS))
2227 	    fprintf (dump_file, "  Flagged to clear EH edges.\n");
2228 	}
2229 
2230       if (!was_noreturn
2231 	  && is_gimple_call (stmt) && gimple_call_noreturn_p (stmt))
2232 	need_noreturn_fixup.safe_push (stmt);
2233     }
2234   return retval;
2235 }
2236