1 /* Coalesce SSA_NAMES together for the out-of-ssa pass. 2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 3 Free Software Foundation, Inc. 4 Contributed by Andrew MacLeod <amacleod@redhat.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3, or (at your option) 11 any later version. 12 13 GCC is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "tm.h" 26 #include "tree.h" 27 #include "flags.h" 28 #include "diagnostic.h" 29 #include "bitmap.h" 30 #include "tree-flow.h" 31 #include "hashtab.h" 32 #include "tree-dump.h" 33 #include "tree-ssa-live.h" 34 #include "toplev.h" 35 36 37 /* This set of routines implements a coalesce_list. This is an object which 38 is used to track pairs of ssa_names which are desirable to coalesce 39 together to avoid copies. Costs are associated with each pair, and when 40 all desired information has been collected, the object can be used to 41 order the pairs for processing. */ 42 43 /* This structure defines a pair entry. */ 44 45 typedef struct coalesce_pair 46 { 47 int first_element; 48 int second_element; 49 int cost; 50 } * coalesce_pair_p; 51 typedef const struct coalesce_pair *const_coalesce_pair_p; 52 53 typedef struct cost_one_pair_d 54 { 55 int first_element; 56 int second_element; 57 struct cost_one_pair_d *next; 58 } * cost_one_pair_p; 59 60 /* This structure maintains the list of coalesce pairs. */ 61 62 typedef struct coalesce_list_d 63 { 64 htab_t list; /* Hash table. */ 65 coalesce_pair_p *sorted; /* List when sorted. */ 66 int num_sorted; /* Number in the sorted list. */ 67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */ 68 } *coalesce_list_p; 69 70 #define NO_BEST_COALESCE -1 71 #define MUST_COALESCE_COST INT_MAX 72 73 74 /* Return cost of execution of copy instruction with FREQUENCY. */ 75 76 static inline int 77 coalesce_cost (int frequency, bool optimize_for_size) 78 { 79 /* Base costs on BB frequencies bounded by 1. */ 80 int cost = frequency; 81 82 if (!cost) 83 cost = 1; 84 85 if (optimize_for_size) 86 cost = 1; 87 88 return cost; 89 } 90 91 92 /* Return the cost of executing a copy instruction in basic block BB. */ 93 94 static inline int 95 coalesce_cost_bb (basic_block bb) 96 { 97 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb)); 98 } 99 100 101 /* Return the cost of executing a copy instruction on edge E. */ 102 103 static inline int 104 coalesce_cost_edge (edge e) 105 { 106 int mult = 1; 107 108 /* Inserting copy on critical edge costs more than inserting it elsewhere. */ 109 if (EDGE_CRITICAL_P (e)) 110 mult = 2; 111 if (e->flags & EDGE_ABNORMAL) 112 return MUST_COALESCE_COST; 113 if (e->flags & EDGE_EH) 114 { 115 edge e2; 116 edge_iterator ei; 117 FOR_EACH_EDGE (e2, ei, e->dest->preds) 118 if (e2 != e) 119 { 120 /* Putting code on EH edge that leads to BB 121 with multiple predecestors imply splitting of 122 edge too. */ 123 if (mult < 2) 124 mult = 2; 125 /* If there are multiple EH predecestors, we 126 also copy EH regions and produce separate 127 landing pad. This is expensive. */ 128 if (e2->flags & EDGE_EH) 129 { 130 mult = 5; 131 break; 132 } 133 } 134 } 135 136 return coalesce_cost (EDGE_FREQUENCY (e), 137 optimize_edge_for_size_p (e)) * mult; 138 } 139 140 141 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the 142 2 elements via P1 and P2. 1 is returned by the function if there is a pair, 143 NO_BEST_COALESCE is returned if there aren't any. */ 144 145 static inline int 146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2) 147 { 148 cost_one_pair_p ptr; 149 150 ptr = cl->cost_one_list; 151 if (!ptr) 152 return NO_BEST_COALESCE; 153 154 *p1 = ptr->first_element; 155 *p2 = ptr->second_element; 156 cl->cost_one_list = ptr->next; 157 158 free (ptr); 159 160 return 1; 161 } 162 163 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the 164 2 elements via P1 and P2. Their calculated cost is returned by the function. 165 NO_BEST_COALESCE is returned if the coalesce list is empty. */ 166 167 static inline int 168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2) 169 { 170 coalesce_pair_p node; 171 int ret; 172 173 if (cl->sorted == NULL) 174 return pop_cost_one_pair (cl, p1, p2); 175 176 if (cl->num_sorted == 0) 177 return pop_cost_one_pair (cl, p1, p2); 178 179 node = cl->sorted[--(cl->num_sorted)]; 180 *p1 = node->first_element; 181 *p2 = node->second_element; 182 ret = node->cost; 183 free (node); 184 185 return ret; 186 } 187 188 189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1)) 190 191 /* Hash function for coalesce list. Calculate hash for PAIR. */ 192 193 static unsigned int 194 coalesce_pair_map_hash (const void *pair) 195 { 196 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element); 197 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element); 198 199 return COALESCE_HASH_FN (a,b); 200 } 201 202 203 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2, 204 returning TRUE if the two pairs are equivalent. */ 205 206 static int 207 coalesce_pair_map_eq (const void *pair1, const void *pair2) 208 { 209 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1; 210 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2; 211 212 return (p1->first_element == p2->first_element 213 && p1->second_element == p2->second_element); 214 } 215 216 217 /* Create a new empty coalesce list object and return it. */ 218 219 static inline coalesce_list_p 220 create_coalesce_list (void) 221 { 222 coalesce_list_p list; 223 unsigned size = num_ssa_names * 3; 224 225 if (size < 40) 226 size = 40; 227 228 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d)); 229 list->list = htab_create (size, coalesce_pair_map_hash, 230 coalesce_pair_map_eq, NULL); 231 list->sorted = NULL; 232 list->num_sorted = 0; 233 list->cost_one_list = NULL; 234 return list; 235 } 236 237 238 /* Delete coalesce list CL. */ 239 240 static inline void 241 delete_coalesce_list (coalesce_list_p cl) 242 { 243 gcc_assert (cl->cost_one_list == NULL); 244 htab_delete (cl->list); 245 if (cl->sorted) 246 free (cl->sorted); 247 gcc_assert (cl->num_sorted == 0); 248 free (cl); 249 } 250 251 252 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If 253 one isn't found, return NULL if CREATE is false, otherwise create a new 254 coalesce pair object and return it. */ 255 256 static coalesce_pair_p 257 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create) 258 { 259 struct coalesce_pair p; 260 void **slot; 261 unsigned int hash; 262 263 /* Normalize so that p1 is the smaller value. */ 264 if (p2 < p1) 265 { 266 p.first_element = p2; 267 p.second_element = p1; 268 } 269 else 270 { 271 p.first_element = p1; 272 p.second_element = p2; 273 } 274 275 hash = coalesce_pair_map_hash (&p); 276 slot = htab_find_slot_with_hash (cl->list, &p, hash, 277 create ? INSERT : NO_INSERT); 278 if (!slot) 279 return NULL; 280 281 if (!*slot) 282 { 283 struct coalesce_pair * pair = XNEW (struct coalesce_pair); 284 gcc_assert (cl->sorted == NULL); 285 pair->first_element = p.first_element; 286 pair->second_element = p.second_element; 287 pair->cost = 0; 288 *slot = (void *)pair; 289 } 290 291 return (struct coalesce_pair *) *slot; 292 } 293 294 static inline void 295 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2) 296 { 297 cost_one_pair_p pair; 298 299 pair = XNEW (struct cost_one_pair_d); 300 pair->first_element = p1; 301 pair->second_element = p2; 302 pair->next = cl->cost_one_list; 303 cl->cost_one_list = pair; 304 } 305 306 307 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */ 308 309 static inline void 310 add_coalesce (coalesce_list_p cl, int p1, int p2, int value) 311 { 312 coalesce_pair_p node; 313 314 gcc_assert (cl->sorted == NULL); 315 if (p1 == p2) 316 return; 317 318 node = find_coalesce_pair (cl, p1, p2, true); 319 320 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */ 321 if (node->cost < MUST_COALESCE_COST - 1) 322 { 323 if (value < MUST_COALESCE_COST - 1) 324 node->cost += value; 325 else 326 node->cost = value; 327 } 328 } 329 330 331 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */ 332 333 static int 334 compare_pairs (const void *p1, const void *p2) 335 { 336 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1; 337 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2; 338 int result; 339 340 result = (* pp1)->cost - (* pp2)->cost; 341 /* Since qsort does not guarantee stability we use the elements 342 as a secondary key. This provides us with independence from 343 the host's implementation of the sorting algorithm. */ 344 if (result == 0) 345 { 346 result = (* pp2)->first_element - (* pp1)->first_element; 347 if (result == 0) 348 result = (* pp2)->second_element - (* pp1)->second_element; 349 } 350 351 return result; 352 } 353 354 355 /* Return the number of unique coalesce pairs in CL. */ 356 357 static inline int 358 num_coalesce_pairs (coalesce_list_p cl) 359 { 360 return htab_elements (cl->list); 361 } 362 363 364 /* Iterator over hash table pairs. */ 365 typedef struct 366 { 367 htab_iterator hti; 368 } coalesce_pair_iterator; 369 370 371 /* Return first partition pair from list CL, initializing iterator ITER. */ 372 373 static inline coalesce_pair_p 374 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter) 375 { 376 coalesce_pair_p pair; 377 378 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list); 379 return pair; 380 } 381 382 383 /* Return TRUE if there are no more partitions in for ITER to process. */ 384 385 static inline bool 386 end_coalesce_pair_p (coalesce_pair_iterator *iter) 387 { 388 return end_htab_p (&(iter->hti)); 389 } 390 391 392 /* Return the next partition pair to be visited by ITER. */ 393 394 static inline coalesce_pair_p 395 next_coalesce_pair (coalesce_pair_iterator *iter) 396 { 397 coalesce_pair_p pair; 398 399 pair = (coalesce_pair_p) next_htab_element (&(iter->hti)); 400 return pair; 401 } 402 403 404 /* Iterate over CL using ITER, returning values in PAIR. */ 405 406 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \ 407 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \ 408 !end_coalesce_pair_p (&(ITER)); \ 409 (PAIR) = next_coalesce_pair (&(ITER))) 410 411 412 /* Prepare CL for removal of preferred pairs. When finished they are sorted 413 in order from most important coalesce to least important. */ 414 415 static void 416 sort_coalesce_list (coalesce_list_p cl) 417 { 418 unsigned x, num; 419 coalesce_pair_p p; 420 coalesce_pair_iterator ppi; 421 422 gcc_assert (cl->sorted == NULL); 423 424 num = num_coalesce_pairs (cl); 425 cl->num_sorted = num; 426 if (num == 0) 427 return; 428 429 /* Allocate a vector for the pair pointers. */ 430 cl->sorted = XNEWVEC (coalesce_pair_p, num); 431 432 /* Populate the vector with pointers to the pairs. */ 433 x = 0; 434 FOR_EACH_PARTITION_PAIR (p, ppi, cl) 435 cl->sorted[x++] = p; 436 gcc_assert (x == num); 437 438 /* Already sorted. */ 439 if (num == 1) 440 return; 441 442 /* If there are only 2, just pick swap them if the order isn't correct. */ 443 if (num == 2) 444 { 445 if (cl->sorted[0]->cost > cl->sorted[1]->cost) 446 { 447 p = cl->sorted[0]; 448 cl->sorted[0] = cl->sorted[1]; 449 cl->sorted[1] = p; 450 } 451 return; 452 } 453 454 /* Only call qsort if there are more than 2 items. */ 455 if (num > 2) 456 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs); 457 } 458 459 460 /* Send debug info for coalesce list CL to file F. */ 461 462 static void 463 dump_coalesce_list (FILE *f, coalesce_list_p cl) 464 { 465 coalesce_pair_p node; 466 coalesce_pair_iterator ppi; 467 int x; 468 tree var; 469 470 if (cl->sorted == NULL) 471 { 472 fprintf (f, "Coalesce List:\n"); 473 FOR_EACH_PARTITION_PAIR (node, ppi, cl) 474 { 475 tree var1 = ssa_name (node->first_element); 476 tree var2 = ssa_name (node->second_element); 477 print_generic_expr (f, var1, TDF_SLIM); 478 fprintf (f, " <-> "); 479 print_generic_expr (f, var2, TDF_SLIM); 480 fprintf (f, " (%1d), ", node->cost); 481 fprintf (f, "\n"); 482 } 483 } 484 else 485 { 486 fprintf (f, "Sorted Coalesce list:\n"); 487 for (x = cl->num_sorted - 1 ; x >=0; x--) 488 { 489 node = cl->sorted[x]; 490 fprintf (f, "(%d) ", node->cost); 491 var = ssa_name (node->first_element); 492 print_generic_expr (f, var, TDF_SLIM); 493 fprintf (f, " <-> "); 494 var = ssa_name (node->second_element); 495 print_generic_expr (f, var, TDF_SLIM); 496 fprintf (f, "\n"); 497 } 498 } 499 } 500 501 502 /* This represents a conflict graph. Implemented as an array of bitmaps. 503 A full matrix is used for conflicts rather than just upper triangular form. 504 this make sit much simpler and faster to perform conflict merges. */ 505 506 typedef struct ssa_conflicts_d 507 { 508 unsigned size; 509 bitmap *conflicts; 510 } * ssa_conflicts_p; 511 512 513 /* Return an empty new conflict graph for SIZE elements. */ 514 515 static inline ssa_conflicts_p 516 ssa_conflicts_new (unsigned size) 517 { 518 ssa_conflicts_p ptr; 519 520 ptr = XNEW (struct ssa_conflicts_d); 521 ptr->conflicts = XCNEWVEC (bitmap, size); 522 ptr->size = size; 523 return ptr; 524 } 525 526 527 /* Free storage for conflict graph PTR. */ 528 529 static inline void 530 ssa_conflicts_delete (ssa_conflicts_p ptr) 531 { 532 unsigned x; 533 for (x = 0; x < ptr->size; x++) 534 if (ptr->conflicts[x]) 535 BITMAP_FREE (ptr->conflicts[x]); 536 537 free (ptr->conflicts); 538 free (ptr); 539 } 540 541 542 /* Test if elements X and Y conflict in graph PTR. */ 543 544 static inline bool 545 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y) 546 { 547 bitmap b; 548 549 #ifdef ENABLE_CHECKING 550 gcc_assert (x < ptr->size); 551 gcc_assert (y < ptr->size); 552 gcc_assert (x != y); 553 #endif 554 555 b = ptr->conflicts[x]; 556 if (b) 557 /* Avoid the lookup if Y has no conflicts. */ 558 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false; 559 else 560 return false; 561 } 562 563 564 /* Add a conflict with Y to the bitmap for X in graph PTR. */ 565 566 static inline void 567 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y) 568 { 569 /* If there are no conflicts yet, allocate the bitmap and set bit. */ 570 if (!ptr->conflicts[x]) 571 ptr->conflicts[x] = BITMAP_ALLOC (NULL); 572 bitmap_set_bit (ptr->conflicts[x], y); 573 } 574 575 576 /* Add conflicts between X and Y in graph PTR. */ 577 578 static inline void 579 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y) 580 { 581 #ifdef ENABLE_CHECKING 582 gcc_assert (x < ptr->size); 583 gcc_assert (y < ptr->size); 584 gcc_assert (x != y); 585 #endif 586 ssa_conflicts_add_one (ptr, x, y); 587 ssa_conflicts_add_one (ptr, y, x); 588 } 589 590 591 /* Merge all Y's conflict into X in graph PTR. */ 592 593 static inline void 594 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y) 595 { 596 unsigned z; 597 bitmap_iterator bi; 598 599 gcc_assert (x != y); 600 if (!(ptr->conflicts[y])) 601 return; 602 603 /* Add a conflict between X and every one Y has. If the bitmap doesn't 604 exist, then it has already been coalesced, and we don't need to add a 605 conflict. */ 606 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi) 607 if (ptr->conflicts[z]) 608 bitmap_set_bit (ptr->conflicts[z], x); 609 610 if (ptr->conflicts[x]) 611 { 612 /* If X has conflicts, add Y's to X. */ 613 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]); 614 BITMAP_FREE (ptr->conflicts[y]); 615 } 616 else 617 { 618 /* If X has no conflicts, simply use Y's. */ 619 ptr->conflicts[x] = ptr->conflicts[y]; 620 ptr->conflicts[y] = NULL; 621 } 622 } 623 624 625 /* Dump a conflicts graph. */ 626 627 static void 628 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr) 629 { 630 unsigned x; 631 632 fprintf (file, "\nConflict graph:\n"); 633 634 for (x = 0; x < ptr->size; x++) 635 if (ptr->conflicts[x]) 636 { 637 fprintf (dump_file, "%d: ", x); 638 dump_bitmap (file, ptr->conflicts[x]); 639 } 640 } 641 642 643 /* This structure is used to efficiently record the current status of live 644 SSA_NAMES when building a conflict graph. 645 LIVE_BASE_VAR has a bit set for each base variable which has at least one 646 ssa version live. 647 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an 648 index, and is used to track what partitions of each base variable are 649 live. This makes it easy to add conflicts between just live partitions 650 with the same base variable. 651 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is 652 marked as being live. This delays clearing of these bitmaps until 653 they are actually needed again. */ 654 655 typedef struct live_track_d 656 { 657 bitmap live_base_var; /* Indicates if a basevar is live. */ 658 bitmap *live_base_partitions; /* Live partitions for each basevar. */ 659 var_map map; /* Var_map being used for partition mapping. */ 660 } * live_track_p; 661 662 663 /* This routine will create a new live track structure based on the partitions 664 in MAP. */ 665 666 static live_track_p 667 new_live_track (var_map map) 668 { 669 live_track_p ptr; 670 int lim, x; 671 672 /* Make sure there is a partition view in place. */ 673 gcc_assert (map->partition_to_base_index != NULL); 674 675 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d)); 676 ptr->map = map; 677 lim = num_basevars (map); 678 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim); 679 ptr->live_base_var = BITMAP_ALLOC (NULL); 680 for (x = 0; x < lim; x++) 681 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL); 682 return ptr; 683 } 684 685 686 /* This routine will free the memory associated with PTR. */ 687 688 static void 689 delete_live_track (live_track_p ptr) 690 { 691 int x, lim; 692 693 lim = num_basevars (ptr->map); 694 for (x = 0; x < lim; x++) 695 BITMAP_FREE (ptr->live_base_partitions[x]); 696 BITMAP_FREE (ptr->live_base_var); 697 free (ptr->live_base_partitions); 698 free (ptr); 699 } 700 701 702 /* This function will remove PARTITION from the live list in PTR. */ 703 704 static inline void 705 live_track_remove_partition (live_track_p ptr, int partition) 706 { 707 int root; 708 709 root = basevar_index (ptr->map, partition); 710 bitmap_clear_bit (ptr->live_base_partitions[root], partition); 711 /* If the element list is empty, make the base variable not live either. */ 712 if (bitmap_empty_p (ptr->live_base_partitions[root])) 713 bitmap_clear_bit (ptr->live_base_var, root); 714 } 715 716 717 /* This function will adds PARTITION to the live list in PTR. */ 718 719 static inline void 720 live_track_add_partition (live_track_p ptr, int partition) 721 { 722 int root; 723 724 root = basevar_index (ptr->map, partition); 725 /* If this base var wasn't live before, it is now. Clear the element list 726 since it was delayed until needed. */ 727 if (!bitmap_bit_p (ptr->live_base_var, root)) 728 { 729 bitmap_set_bit (ptr->live_base_var, root); 730 bitmap_clear (ptr->live_base_partitions[root]); 731 } 732 bitmap_set_bit (ptr->live_base_partitions[root], partition); 733 734 } 735 736 737 /* Clear the live bit for VAR in PTR. */ 738 739 static inline void 740 live_track_clear_var (live_track_p ptr, tree var) 741 { 742 int p; 743 744 p = var_to_partition (ptr->map, var); 745 if (p != NO_PARTITION) 746 live_track_remove_partition (ptr, p); 747 } 748 749 750 /* Return TRUE if VAR is live in PTR. */ 751 752 static inline bool 753 live_track_live_p (live_track_p ptr, tree var) 754 { 755 int p, root; 756 757 p = var_to_partition (ptr->map, var); 758 if (p != NO_PARTITION) 759 { 760 root = basevar_index (ptr->map, p); 761 if (bitmap_bit_p (ptr->live_base_var, root)) 762 return bitmap_bit_p (ptr->live_base_partitions[root], p); 763 } 764 return false; 765 } 766 767 768 /* This routine will add USE to PTR. USE will be marked as live in both the 769 ssa live map and the live bitmap for the root of USE. */ 770 771 static inline void 772 live_track_process_use (live_track_p ptr, tree use) 773 { 774 int p; 775 776 p = var_to_partition (ptr->map, use); 777 if (p == NO_PARTITION) 778 return; 779 780 /* Mark as live in the appropriate live list. */ 781 live_track_add_partition (ptr, p); 782 } 783 784 785 /* This routine will process a DEF in PTR. DEF will be removed from the live 786 lists, and if there are any other live partitions with the same base 787 variable, conflicts will be added to GRAPH. */ 788 789 static inline void 790 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph) 791 { 792 int p, root; 793 bitmap b; 794 unsigned x; 795 bitmap_iterator bi; 796 797 p = var_to_partition (ptr->map, def); 798 if (p == NO_PARTITION) 799 return; 800 801 /* Clear the liveness bit. */ 802 live_track_remove_partition (ptr, p); 803 804 /* If the bitmap isn't empty now, conflicts need to be added. */ 805 root = basevar_index (ptr->map, p); 806 if (bitmap_bit_p (ptr->live_base_var, root)) 807 { 808 b = ptr->live_base_partitions[root]; 809 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi) 810 ssa_conflicts_add (graph, p, x); 811 } 812 } 813 814 815 /* Initialize PTR with the partitions set in INIT. */ 816 817 static inline void 818 live_track_init (live_track_p ptr, bitmap init) 819 { 820 unsigned p; 821 bitmap_iterator bi; 822 823 /* Mark all live on exit partitions. */ 824 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi) 825 live_track_add_partition (ptr, p); 826 } 827 828 829 /* This routine will clear all live partitions in PTR. */ 830 831 static inline void 832 live_track_clear_base_vars (live_track_p ptr) 833 { 834 /* Simply clear the live base list. Anything marked as live in the element 835 lists will be cleared later if/when the base variable ever comes alive 836 again. */ 837 bitmap_clear (ptr->live_base_var); 838 } 839 840 841 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the 842 partition view of the var_map liveinfo is based on get entries in the 843 conflict graph. Only conflicts between ssa_name partitions with the same 844 base variable are added. */ 845 846 static ssa_conflicts_p 847 build_ssa_conflict_graph (tree_live_info_p liveinfo) 848 { 849 ssa_conflicts_p graph; 850 var_map map; 851 basic_block bb; 852 ssa_op_iter iter; 853 live_track_p live; 854 855 map = live_var_map (liveinfo); 856 graph = ssa_conflicts_new (num_var_partitions (map)); 857 858 live = new_live_track (map); 859 860 FOR_EACH_BB (bb) 861 { 862 gimple_stmt_iterator gsi; 863 864 /* Start with live on exit temporaries. */ 865 live_track_init (live, live_on_exit (liveinfo, bb)); 866 867 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 868 { 869 tree var; 870 gimple stmt = gsi_stmt (gsi); 871 872 /* A copy between 2 partitions does not introduce an interference 873 by itself. If they did, you would never be able to coalesce 874 two things which are copied. If the two variables really do 875 conflict, they will conflict elsewhere in the program. 876 877 This is handled by simply removing the SRC of the copy from the 878 live list, and processing the stmt normally. */ 879 if (is_gimple_assign (stmt)) 880 { 881 tree lhs = gimple_assign_lhs (stmt); 882 tree rhs1 = gimple_assign_rhs1 (stmt); 883 if (gimple_assign_copy_p (stmt) 884 && TREE_CODE (lhs) == SSA_NAME 885 && TREE_CODE (rhs1) == SSA_NAME) 886 live_track_clear_var (live, rhs1); 887 } 888 else if (is_gimple_debug (stmt)) 889 continue; 890 891 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF) 892 live_track_process_def (live, var, graph); 893 894 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE) 895 live_track_process_use (live, var); 896 } 897 898 /* If result of a PHI is unused, looping over the statements will not 899 record any conflicts since the def was never live. Since the PHI node 900 is going to be translated out of SSA form, it will insert a copy. 901 There must be a conflict recorded between the result of the PHI and 902 any variables that are live. Otherwise the out-of-ssa translation 903 may create incorrect code. */ 904 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 905 { 906 gimple phi = gsi_stmt (gsi); 907 tree result = PHI_RESULT (phi); 908 if (live_track_live_p (live, result)) 909 live_track_process_def (live, result, graph); 910 } 911 912 live_track_clear_base_vars (live); 913 } 914 915 delete_live_track (live); 916 return graph; 917 } 918 919 920 /* Shortcut routine to print messages to file F of the form: 921 "STR1 EXPR1 STR2 EXPR2 STR3." */ 922 923 static inline void 924 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2, 925 tree expr2, const char *str3) 926 { 927 fprintf (f, "%s", str1); 928 print_generic_expr (f, expr1, TDF_SLIM); 929 fprintf (f, "%s", str2); 930 print_generic_expr (f, expr2, TDF_SLIM); 931 fprintf (f, "%s", str3); 932 } 933 934 935 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is 936 the phi node at fault, I is the argument index at fault. A message is 937 printed and compilation is then terminated. */ 938 939 static inline void 940 abnormal_corrupt (gimple phi, int i) 941 { 942 edge e = gimple_phi_arg_edge (phi, i); 943 tree res = gimple_phi_result (phi); 944 tree arg = gimple_phi_arg_def (phi, i); 945 946 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n", 947 e->src->index, e->dest->index); 948 fprintf (stderr, "Argument %d (", i); 949 print_generic_expr (stderr, arg, TDF_SLIM); 950 if (TREE_CODE (arg) != SSA_NAME) 951 fprintf (stderr, ") is not an SSA_NAME.\n"); 952 else 953 { 954 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg)); 955 fprintf (stderr, ") does not have the same base variable as the result "); 956 print_generic_stmt (stderr, res, TDF_SLIM); 957 } 958 959 internal_error ("SSA corruption"); 960 } 961 962 963 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */ 964 965 static inline void 966 fail_abnormal_edge_coalesce (int x, int y) 967 { 968 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y); 969 fprintf (stderr, " which are marked as MUST COALESCE.\n"); 970 print_generic_expr (stderr, ssa_name (x), TDF_SLIM); 971 fprintf (stderr, " and "); 972 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM); 973 974 internal_error ("SSA corruption"); 975 } 976 977 978 /* This function creates a var_map for the current function as well as creating 979 a coalesce list for use later in the out of ssa process. */ 980 981 static var_map 982 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy) 983 { 984 gimple_stmt_iterator gsi; 985 basic_block bb; 986 tree var; 987 gimple stmt; 988 tree first; 989 var_map map; 990 ssa_op_iter iter; 991 int v1, v2, cost; 992 unsigned i; 993 994 #ifdef ENABLE_CHECKING 995 bitmap used_in_real_ops; 996 bitmap used_in_virtual_ops; 997 998 used_in_real_ops = BITMAP_ALLOC (NULL); 999 used_in_virtual_ops = BITMAP_ALLOC (NULL); 1000 #endif 1001 1002 map = init_var_map (num_ssa_names); 1003 1004 FOR_EACH_BB (bb) 1005 { 1006 tree arg; 1007 1008 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1009 { 1010 gimple phi = gsi_stmt (gsi); 1011 size_t i; 1012 int ver; 1013 tree res; 1014 bool saw_copy = false; 1015 1016 res = gimple_phi_result (phi); 1017 ver = SSA_NAME_VERSION (res); 1018 register_ssa_partition (map, res); 1019 1020 /* Register ssa_names and coalesces between the args and the result 1021 of all PHI. */ 1022 for (i = 0; i < gimple_phi_num_args (phi); i++) 1023 { 1024 edge e = gimple_phi_arg_edge (phi, i); 1025 arg = PHI_ARG_DEF (phi, i); 1026 if (TREE_CODE (arg) == SSA_NAME) 1027 register_ssa_partition (map, arg); 1028 if (TREE_CODE (arg) == SSA_NAME 1029 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res)) 1030 { 1031 saw_copy = true; 1032 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg)); 1033 if ((e->flags & EDGE_ABNORMAL) == 0) 1034 { 1035 int cost = coalesce_cost_edge (e); 1036 if (cost == 1 && has_single_use (arg)) 1037 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg)); 1038 else 1039 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost); 1040 } 1041 } 1042 else 1043 if (e->flags & EDGE_ABNORMAL) 1044 abnormal_corrupt (phi, i); 1045 } 1046 if (saw_copy) 1047 bitmap_set_bit (used_in_copy, ver); 1048 } 1049 1050 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1051 { 1052 stmt = gsi_stmt (gsi); 1053 1054 if (is_gimple_debug (stmt)) 1055 continue; 1056 1057 /* Register USE and DEF operands in each statement. */ 1058 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE)) 1059 register_ssa_partition (map, var); 1060 1061 /* Check for copy coalesces. */ 1062 switch (gimple_code (stmt)) 1063 { 1064 case GIMPLE_ASSIGN: 1065 { 1066 tree lhs = gimple_assign_lhs (stmt); 1067 tree rhs1 = gimple_assign_rhs1 (stmt); 1068 1069 if (gimple_assign_copy_p (stmt) 1070 && TREE_CODE (lhs) == SSA_NAME 1071 && TREE_CODE (rhs1) == SSA_NAME 1072 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1)) 1073 { 1074 v1 = SSA_NAME_VERSION (lhs); 1075 v2 = SSA_NAME_VERSION (rhs1); 1076 cost = coalesce_cost_bb (bb); 1077 add_coalesce (cl, v1, v2, cost); 1078 bitmap_set_bit (used_in_copy, v1); 1079 bitmap_set_bit (used_in_copy, v2); 1080 } 1081 } 1082 break; 1083 1084 case GIMPLE_ASM: 1085 { 1086 unsigned long noutputs, i; 1087 unsigned long ninputs; 1088 tree *outputs, link; 1089 noutputs = gimple_asm_noutputs (stmt); 1090 ninputs = gimple_asm_ninputs (stmt); 1091 outputs = (tree *) alloca (noutputs * sizeof (tree)); 1092 for (i = 0; i < noutputs; ++i) { 1093 link = gimple_asm_output_op (stmt, i); 1094 outputs[i] = TREE_VALUE (link); 1095 } 1096 1097 for (i = 0; i < ninputs; ++i) 1098 { 1099 const char *constraint; 1100 tree input; 1101 char *end; 1102 unsigned long match; 1103 1104 link = gimple_asm_input_op (stmt, i); 1105 constraint 1106 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); 1107 input = TREE_VALUE (link); 1108 1109 if (TREE_CODE (input) != SSA_NAME) 1110 continue; 1111 1112 match = strtoul (constraint, &end, 10); 1113 if (match >= noutputs || end == constraint) 1114 continue; 1115 1116 if (TREE_CODE (outputs[match]) != SSA_NAME) 1117 continue; 1118 1119 v1 = SSA_NAME_VERSION (outputs[match]); 1120 v2 = SSA_NAME_VERSION (input); 1121 1122 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input)) 1123 { 1124 cost = coalesce_cost (REG_BR_PROB_BASE, 1125 optimize_bb_for_size_p (bb)); 1126 add_coalesce (cl, v1, v2, cost); 1127 bitmap_set_bit (used_in_copy, v1); 1128 bitmap_set_bit (used_in_copy, v2); 1129 } 1130 } 1131 break; 1132 } 1133 1134 default: 1135 break; 1136 } 1137 1138 #ifdef ENABLE_CHECKING 1139 /* Mark real uses and defs. */ 1140 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE)) 1141 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var))); 1142 1143 /* Validate that virtual ops don't get used in funny ways. */ 1144 if (gimple_vuse (stmt)) 1145 bitmap_set_bit (used_in_virtual_ops, 1146 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt)))); 1147 #endif /* ENABLE_CHECKING */ 1148 } 1149 } 1150 1151 /* Now process result decls and live on entry variables for entry into 1152 the coalesce list. */ 1153 first = NULL_TREE; 1154 for (i = 1; i < num_ssa_names; i++) 1155 { 1156 var = ssa_name (i); 1157 if (var != NULL_TREE && is_gimple_reg (var)) 1158 { 1159 /* Add coalesces between all the result decls. */ 1160 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL) 1161 { 1162 if (first == NULL_TREE) 1163 first = var; 1164 else 1165 { 1166 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first)); 1167 v1 = SSA_NAME_VERSION (first); 1168 v2 = SSA_NAME_VERSION (var); 1169 bitmap_set_bit (used_in_copy, v1); 1170 bitmap_set_bit (used_in_copy, v2); 1171 cost = coalesce_cost_bb (EXIT_BLOCK_PTR); 1172 add_coalesce (cl, v1, v2, cost); 1173 } 1174 } 1175 /* Mark any default_def variables as being in the coalesce list 1176 since they will have to be coalesced with the base variable. If 1177 not marked as present, they won't be in the coalesce view. */ 1178 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var 1179 && !has_zero_uses (var)) 1180 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var)); 1181 } 1182 } 1183 1184 #if defined ENABLE_CHECKING 1185 { 1186 unsigned i; 1187 bitmap both = BITMAP_ALLOC (NULL); 1188 bitmap_and (both, used_in_real_ops, used_in_virtual_ops); 1189 if (!bitmap_empty_p (both)) 1190 { 1191 bitmap_iterator bi; 1192 1193 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi) 1194 fprintf (stderr, "Variable %s used in real and virtual operands\n", 1195 get_name (referenced_var (i))); 1196 internal_error ("SSA corruption"); 1197 } 1198 1199 BITMAP_FREE (used_in_real_ops); 1200 BITMAP_FREE (used_in_virtual_ops); 1201 BITMAP_FREE (both); 1202 } 1203 #endif 1204 1205 return map; 1206 } 1207 1208 1209 /* Attempt to coalesce ssa versions X and Y together using the partition 1210 mapping in MAP and checking conflicts in GRAPH. Output any debug info to 1211 DEBUG, if it is nun-NULL. */ 1212 1213 static inline bool 1214 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y, 1215 FILE *debug) 1216 { 1217 int z; 1218 tree var1, var2; 1219 int p1, p2; 1220 1221 p1 = var_to_partition (map, ssa_name (x)); 1222 p2 = var_to_partition (map, ssa_name (y)); 1223 1224 if (debug) 1225 { 1226 fprintf (debug, "(%d)", x); 1227 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM); 1228 fprintf (debug, " & (%d)", y); 1229 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM); 1230 } 1231 1232 if (p1 == p2) 1233 { 1234 if (debug) 1235 fprintf (debug, ": Already Coalesced.\n"); 1236 return true; 1237 } 1238 1239 if (debug) 1240 fprintf (debug, " [map: %d, %d] ", p1, p2); 1241 1242 1243 if (!ssa_conflicts_test_p (graph, p1, p2)) 1244 { 1245 var1 = partition_to_var (map, p1); 1246 var2 = partition_to_var (map, p2); 1247 z = var_union (map, var1, var2); 1248 if (z == NO_PARTITION) 1249 { 1250 if (debug) 1251 fprintf (debug, ": Unable to perform partition union.\n"); 1252 return false; 1253 } 1254 1255 /* z is the new combined partition. Remove the other partition from 1256 the list, and merge the conflicts. */ 1257 if (z == p1) 1258 ssa_conflicts_merge (graph, p1, p2); 1259 else 1260 ssa_conflicts_merge (graph, p2, p1); 1261 1262 if (debug) 1263 fprintf (debug, ": Success -> %d\n", z); 1264 return true; 1265 } 1266 1267 if (debug) 1268 fprintf (debug, ": Fail due to conflict\n"); 1269 1270 return false; 1271 } 1272 1273 1274 /* Attempt to Coalesce partitions in MAP which occur in the list CL using 1275 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */ 1276 1277 static void 1278 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl, 1279 FILE *debug) 1280 { 1281 int x = 0, y = 0; 1282 tree var1, var2; 1283 int cost; 1284 basic_block bb; 1285 edge e; 1286 edge_iterator ei; 1287 1288 /* First, coalesce all the copies across abnormal edges. These are not placed 1289 in the coalesce list because they do not need to be sorted, and simply 1290 consume extra memory/compilation time in large programs. */ 1291 1292 FOR_EACH_BB (bb) 1293 { 1294 FOR_EACH_EDGE (e, ei, bb->preds) 1295 if (e->flags & EDGE_ABNORMAL) 1296 { 1297 gimple_stmt_iterator gsi; 1298 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 1299 gsi_next (&gsi)) 1300 { 1301 gimple phi = gsi_stmt (gsi); 1302 tree res = PHI_RESULT (phi); 1303 tree arg = PHI_ARG_DEF (phi, e->dest_idx); 1304 int v1 = SSA_NAME_VERSION (res); 1305 int v2 = SSA_NAME_VERSION (arg); 1306 1307 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res)) 1308 abnormal_corrupt (phi, e->dest_idx); 1309 1310 if (debug) 1311 fprintf (debug, "Abnormal coalesce: "); 1312 1313 if (!attempt_coalesce (map, graph, v1, v2, debug)) 1314 fail_abnormal_edge_coalesce (v1, v2); 1315 } 1316 } 1317 } 1318 1319 /* Now process the items in the coalesce list. */ 1320 1321 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE) 1322 { 1323 var1 = ssa_name (x); 1324 var2 = ssa_name (y); 1325 1326 /* Assert the coalesces have the same base variable. */ 1327 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2)); 1328 1329 if (debug) 1330 fprintf (debug, "Coalesce list: "); 1331 attempt_coalesce (map, graph, x, y, debug); 1332 } 1333 } 1334 1335 /* Returns a hash code for P. */ 1336 1337 static hashval_t 1338 hash_ssa_name_by_var (const void *p) 1339 { 1340 const_tree n = (const_tree) p; 1341 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n)); 1342 } 1343 1344 /* Returns nonzero if P1 and P2 are equal. */ 1345 1346 static int 1347 eq_ssa_name_by_var (const void *p1, const void *p2) 1348 { 1349 const_tree n1 = (const_tree) p1; 1350 const_tree n2 = (const_tree) p2; 1351 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2); 1352 } 1353 1354 /* Reduce the number of copies by coalescing variables in the function. Return 1355 a partition map with the resulting coalesces. */ 1356 1357 extern var_map 1358 coalesce_ssa_name (void) 1359 { 1360 tree_live_info_p liveinfo; 1361 ssa_conflicts_p graph; 1362 coalesce_list_p cl; 1363 bitmap used_in_copies = BITMAP_ALLOC (NULL); 1364 var_map map; 1365 unsigned int i; 1366 static htab_t ssa_name_hash; 1367 1368 cl = create_coalesce_list (); 1369 map = create_outofssa_var_map (cl, used_in_copies); 1370 1371 /* We need to coalesce all names originating same SSA_NAME_VAR 1372 so debug info remains undisturbed. */ 1373 if (!optimize) 1374 { 1375 ssa_name_hash = htab_create (10, hash_ssa_name_by_var, 1376 eq_ssa_name_by_var, NULL); 1377 for (i = 1; i < num_ssa_names; i++) 1378 { 1379 tree a = ssa_name (i); 1380 1381 if (a 1382 && SSA_NAME_VAR (a) 1383 && !DECL_ARTIFICIAL (SSA_NAME_VAR (a)) 1384 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a))) 1385 { 1386 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT); 1387 1388 if (!*slot) 1389 *slot = a; 1390 else 1391 { 1392 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot), 1393 MUST_COALESCE_COST - 1); 1394 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a)); 1395 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot)); 1396 } 1397 } 1398 } 1399 htab_delete (ssa_name_hash); 1400 } 1401 if (dump_file && (dump_flags & TDF_DETAILS)) 1402 dump_var_map (dump_file, map); 1403 1404 /* Don't calculate live ranges for variables not in the coalesce list. */ 1405 partition_view_bitmap (map, used_in_copies, true); 1406 BITMAP_FREE (used_in_copies); 1407 1408 if (num_var_partitions (map) < 1) 1409 { 1410 delete_coalesce_list (cl); 1411 return map; 1412 } 1413 1414 if (dump_file && (dump_flags & TDF_DETAILS)) 1415 dump_var_map (dump_file, map); 1416 1417 liveinfo = calculate_live_ranges (map); 1418 1419 if (dump_file && (dump_flags & TDF_DETAILS)) 1420 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY); 1421 1422 /* Build a conflict graph. */ 1423 graph = build_ssa_conflict_graph (liveinfo); 1424 delete_tree_live_info (liveinfo); 1425 if (dump_file && (dump_flags & TDF_DETAILS)) 1426 ssa_conflicts_dump (dump_file, graph); 1427 1428 sort_coalesce_list (cl); 1429 1430 if (dump_file && (dump_flags & TDF_DETAILS)) 1431 { 1432 fprintf (dump_file, "\nAfter sorting:\n"); 1433 dump_coalesce_list (dump_file, cl); 1434 } 1435 1436 /* First, coalesce all live on entry variables to their base variable. 1437 This will ensure the first use is coming from the correct location. */ 1438 1439 if (dump_file && (dump_flags & TDF_DETAILS)) 1440 dump_var_map (dump_file, map); 1441 1442 /* Now coalesce everything in the list. */ 1443 coalesce_partitions (map, graph, cl, 1444 ((dump_flags & TDF_DETAILS) ? dump_file 1445 : NULL)); 1446 1447 delete_coalesce_list (cl); 1448 ssa_conflicts_delete (graph); 1449 1450 return map; 1451 } 1452