xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-ssa-coalesce.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2    Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Andrew MacLeod <amacleod@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "diagnostic.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "toplev.h"
35 
36 
37 /* This set of routines implements a coalesce_list.  This is an object which
38    is used to track pairs of ssa_names which are desirable to coalesce
39    together to avoid copies.  Costs are associated with each pair, and when
40    all desired information has been collected, the object can be used to
41    order the pairs for processing.  */
42 
43 /* This structure defines a pair entry.  */
44 
45 typedef struct coalesce_pair
46 {
47   int first_element;
48   int second_element;
49   int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
52 
53 typedef struct cost_one_pair_d
54 {
55   int first_element;
56   int second_element;
57   struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
59 
60 /* This structure maintains the list of coalesce pairs.  */
61 
62 typedef struct coalesce_list_d
63 {
64   htab_t list;			/* Hash table.  */
65   coalesce_pair_p *sorted;	/* List when sorted.  */
66   int num_sorted;		/* Number in the sorted list.  */
67   cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1.  */
68 } *coalesce_list_p;
69 
70 #define NO_BEST_COALESCE	-1
71 #define MUST_COALESCE_COST	INT_MAX
72 
73 
74 /* Return cost of execution of copy instruction with FREQUENCY.  */
75 
76 static inline int
77 coalesce_cost (int frequency, bool optimize_for_size)
78 {
79   /* Base costs on BB frequencies bounded by 1.  */
80   int cost = frequency;
81 
82   if (!cost)
83     cost = 1;
84 
85   if (optimize_for_size)
86     cost = 1;
87 
88   return cost;
89 }
90 
91 
92 /* Return the cost of executing a copy instruction in basic block BB.  */
93 
94 static inline int
95 coalesce_cost_bb (basic_block bb)
96 {
97   return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
98 }
99 
100 
101 /* Return the cost of executing a copy instruction on edge E.  */
102 
103 static inline int
104 coalesce_cost_edge (edge e)
105 {
106   int mult = 1;
107 
108   /* Inserting copy on critical edge costs more than inserting it elsewhere.  */
109   if (EDGE_CRITICAL_P (e))
110     mult = 2;
111   if (e->flags & EDGE_ABNORMAL)
112     return MUST_COALESCE_COST;
113   if (e->flags & EDGE_EH)
114     {
115       edge e2;
116       edge_iterator ei;
117       FOR_EACH_EDGE (e2, ei, e->dest->preds)
118 	if (e2 != e)
119 	  {
120 	    /* Putting code on EH edge that leads to BB
121 	       with multiple predecestors imply splitting of
122 	       edge too.  */
123 	    if (mult < 2)
124 	      mult = 2;
125 	    /* If there are multiple EH predecestors, we
126 	       also copy EH regions and produce separate
127 	       landing pad.  This is expensive.  */
128 	    if (e2->flags & EDGE_EH)
129 	      {
130 	        mult = 5;
131 	        break;
132 	      }
133 	  }
134     }
135 
136   return coalesce_cost (EDGE_FREQUENCY (e),
137 			optimize_edge_for_size_p (e)) * mult;
138 }
139 
140 
141 /* Retrieve a pair to coalesce from the cost_one_list in CL.  Returns the
142    2 elements via P1 and P2.  1 is returned by the function if there is a pair,
143    NO_BEST_COALESCE is returned if there aren't any.  */
144 
145 static inline int
146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
147 {
148   cost_one_pair_p ptr;
149 
150   ptr = cl->cost_one_list;
151   if (!ptr)
152     return NO_BEST_COALESCE;
153 
154   *p1 = ptr->first_element;
155   *p2 = ptr->second_element;
156   cl->cost_one_list = ptr->next;
157 
158   free (ptr);
159 
160   return 1;
161 }
162 
163 /* Retrieve the most expensive remaining pair to coalesce from CL.  Returns the
164    2 elements via P1 and P2.  Their calculated cost is returned by the function.
165    NO_BEST_COALESCE is returned if the coalesce list is empty.  */
166 
167 static inline int
168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
169 {
170   coalesce_pair_p node;
171   int ret;
172 
173   if (cl->sorted == NULL)
174     return pop_cost_one_pair (cl, p1, p2);
175 
176   if (cl->num_sorted == 0)
177     return pop_cost_one_pair (cl, p1, p2);
178 
179   node = cl->sorted[--(cl->num_sorted)];
180   *p1 = node->first_element;
181   *p2 = node->second_element;
182   ret = node->cost;
183   free (node);
184 
185   return ret;
186 }
187 
188 
189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
190 
191 /* Hash function for coalesce list.  Calculate hash for PAIR.   */
192 
193 static unsigned int
194 coalesce_pair_map_hash (const void *pair)
195 {
196   hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
197   hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
198 
199   return COALESCE_HASH_FN (a,b);
200 }
201 
202 
203 /* Equality function for coalesce list hash table.  Compare PAIR1 and PAIR2,
204    returning TRUE if the two pairs are equivalent.  */
205 
206 static int
207 coalesce_pair_map_eq (const void *pair1, const void *pair2)
208 {
209   const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
210   const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
211 
212   return (p1->first_element == p2->first_element
213 	  && p1->second_element == p2->second_element);
214 }
215 
216 
217 /* Create a new empty coalesce list object and return it.  */
218 
219 static inline coalesce_list_p
220 create_coalesce_list (void)
221 {
222   coalesce_list_p list;
223   unsigned size = num_ssa_names * 3;
224 
225   if (size < 40)
226     size = 40;
227 
228   list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
229   list->list = htab_create (size, coalesce_pair_map_hash,
230   			    coalesce_pair_map_eq, NULL);
231   list->sorted = NULL;
232   list->num_sorted = 0;
233   list->cost_one_list = NULL;
234   return list;
235 }
236 
237 
238 /* Delete coalesce list CL.  */
239 
240 static inline void
241 delete_coalesce_list (coalesce_list_p cl)
242 {
243   gcc_assert (cl->cost_one_list == NULL);
244   htab_delete (cl->list);
245   if (cl->sorted)
246     free (cl->sorted);
247   gcc_assert (cl->num_sorted == 0);
248   free (cl);
249 }
250 
251 
252 /* Find a matching coalesce pair object in CL for the pair P1 and P2.  If
253    one isn't found, return NULL if CREATE is false, otherwise create a new
254    coalesce pair object and return it.  */
255 
256 static coalesce_pair_p
257 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
258 {
259   struct coalesce_pair p;
260   void **slot;
261   unsigned int hash;
262 
263   /* Normalize so that p1 is the smaller value.  */
264   if (p2 < p1)
265     {
266       p.first_element = p2;
267       p.second_element = p1;
268     }
269   else
270     {
271       p.first_element = p1;
272       p.second_element = p2;
273     }
274 
275   hash = coalesce_pair_map_hash (&p);
276   slot = htab_find_slot_with_hash (cl->list, &p, hash,
277 				   create ? INSERT : NO_INSERT);
278   if (!slot)
279     return NULL;
280 
281   if (!*slot)
282     {
283       struct coalesce_pair * pair = XNEW (struct coalesce_pair);
284       gcc_assert (cl->sorted == NULL);
285       pair->first_element = p.first_element;
286       pair->second_element = p.second_element;
287       pair->cost = 0;
288       *slot = (void *)pair;
289     }
290 
291   return (struct coalesce_pair *) *slot;
292 }
293 
294 static inline void
295 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
296 {
297   cost_one_pair_p pair;
298 
299   pair = XNEW (struct cost_one_pair_d);
300   pair->first_element = p1;
301   pair->second_element = p2;
302   pair->next = cl->cost_one_list;
303   cl->cost_one_list = pair;
304 }
305 
306 
307 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE.  */
308 
309 static inline void
310 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
311 {
312   coalesce_pair_p node;
313 
314   gcc_assert (cl->sorted == NULL);
315   if (p1 == p2)
316     return;
317 
318   node = find_coalesce_pair (cl, p1, p2, true);
319 
320   /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way.  */
321   if (node->cost < MUST_COALESCE_COST - 1)
322     {
323       if (value < MUST_COALESCE_COST - 1)
324 	node->cost += value;
325       else
326 	node->cost = value;
327     }
328 }
329 
330 
331 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order.  */
332 
333 static int
334 compare_pairs (const void *p1, const void *p2)
335 {
336   const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
337   const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
338   int result;
339 
340   result = (* pp1)->cost - (* pp2)->cost;
341   /* Since qsort does not guarantee stability we use the elements
342      as a secondary key.  This provides us with independence from
343      the host's implementation of the sorting algorithm.  */
344   if (result == 0)
345     {
346       result = (* pp2)->first_element - (* pp1)->first_element;
347       if (result == 0)
348 	result = (* pp2)->second_element - (* pp1)->second_element;
349     }
350 
351   return result;
352 }
353 
354 
355 /* Return the number of unique coalesce pairs in CL.  */
356 
357 static inline int
358 num_coalesce_pairs (coalesce_list_p cl)
359 {
360   return htab_elements (cl->list);
361 }
362 
363 
364 /* Iterator over hash table pairs.  */
365 typedef struct
366 {
367   htab_iterator hti;
368 } coalesce_pair_iterator;
369 
370 
371 /* Return first partition pair from list CL, initializing iterator ITER.  */
372 
373 static inline coalesce_pair_p
374 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
375 {
376   coalesce_pair_p pair;
377 
378   pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
379   return pair;
380 }
381 
382 
383 /* Return TRUE if there are no more partitions in for ITER to process.  */
384 
385 static inline bool
386 end_coalesce_pair_p (coalesce_pair_iterator *iter)
387 {
388   return end_htab_p (&(iter->hti));
389 }
390 
391 
392 /* Return the next partition pair to be visited by ITER.  */
393 
394 static inline coalesce_pair_p
395 next_coalesce_pair (coalesce_pair_iterator *iter)
396 {
397   coalesce_pair_p pair;
398 
399   pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
400   return pair;
401 }
402 
403 
404 /* Iterate over CL using ITER, returning values in PAIR.  */
405 
406 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL)		\
407   for ((PAIR) = first_coalesce_pair ((CL), &(ITER));	\
408        !end_coalesce_pair_p (&(ITER));			\
409        (PAIR) = next_coalesce_pair (&(ITER)))
410 
411 
412 /* Prepare CL for removal of preferred pairs.  When finished they are sorted
413    in order from most important coalesce to least important.  */
414 
415 static void
416 sort_coalesce_list (coalesce_list_p cl)
417 {
418   unsigned x, num;
419   coalesce_pair_p p;
420   coalesce_pair_iterator ppi;
421 
422   gcc_assert (cl->sorted == NULL);
423 
424   num = num_coalesce_pairs (cl);
425   cl->num_sorted = num;
426   if (num == 0)
427     return;
428 
429   /* Allocate a vector for the pair pointers.  */
430   cl->sorted = XNEWVEC (coalesce_pair_p, num);
431 
432   /* Populate the vector with pointers to the pairs.  */
433   x = 0;
434   FOR_EACH_PARTITION_PAIR (p, ppi, cl)
435     cl->sorted[x++] = p;
436   gcc_assert (x == num);
437 
438   /* Already sorted.  */
439   if (num == 1)
440     return;
441 
442   /* If there are only 2, just pick swap them if the order isn't correct.  */
443   if (num == 2)
444     {
445       if (cl->sorted[0]->cost > cl->sorted[1]->cost)
446         {
447 	  p = cl->sorted[0];
448 	  cl->sorted[0] = cl->sorted[1];
449 	  cl->sorted[1] = p;
450 	}
451       return;
452     }
453 
454   /* Only call qsort if there are more than 2 items.  */
455   if (num > 2)
456       qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
457 }
458 
459 
460 /* Send debug info for coalesce list CL to file F.  */
461 
462 static void
463 dump_coalesce_list (FILE *f, coalesce_list_p cl)
464 {
465   coalesce_pair_p node;
466   coalesce_pair_iterator ppi;
467   int x;
468   tree var;
469 
470   if (cl->sorted == NULL)
471     {
472       fprintf (f, "Coalesce List:\n");
473       FOR_EACH_PARTITION_PAIR (node, ppi, cl)
474         {
475 	  tree var1 = ssa_name (node->first_element);
476 	  tree var2 = ssa_name (node->second_element);
477 	  print_generic_expr (f, var1, TDF_SLIM);
478 	  fprintf (f, " <-> ");
479 	  print_generic_expr (f, var2, TDF_SLIM);
480 	  fprintf (f, "  (%1d), ", node->cost);
481 	  fprintf (f, "\n");
482 	}
483     }
484   else
485     {
486       fprintf (f, "Sorted Coalesce list:\n");
487       for (x = cl->num_sorted - 1 ; x >=0; x--)
488         {
489 	  node = cl->sorted[x];
490 	  fprintf (f, "(%d) ", node->cost);
491 	  var = ssa_name (node->first_element);
492 	  print_generic_expr (f, var, TDF_SLIM);
493 	  fprintf (f, " <-> ");
494 	  var = ssa_name (node->second_element);
495 	  print_generic_expr (f, var, TDF_SLIM);
496 	  fprintf (f, "\n");
497 	}
498     }
499 }
500 
501 
502 /* This represents a conflict graph.  Implemented as an array of bitmaps.
503    A full matrix is used for conflicts rather than just upper triangular form.
504    this make sit much simpler and faster to perform conflict merges.  */
505 
506 typedef struct ssa_conflicts_d
507 {
508   unsigned size;
509   bitmap *conflicts;
510 } * ssa_conflicts_p;
511 
512 
513 /* Return an empty new conflict graph for SIZE elements.  */
514 
515 static inline ssa_conflicts_p
516 ssa_conflicts_new (unsigned size)
517 {
518   ssa_conflicts_p ptr;
519 
520   ptr = XNEW (struct ssa_conflicts_d);
521   ptr->conflicts = XCNEWVEC (bitmap, size);
522   ptr->size = size;
523   return ptr;
524 }
525 
526 
527 /* Free storage for conflict graph PTR.  */
528 
529 static inline void
530 ssa_conflicts_delete (ssa_conflicts_p ptr)
531 {
532   unsigned x;
533   for (x = 0; x < ptr->size; x++)
534     if (ptr->conflicts[x])
535       BITMAP_FREE (ptr->conflicts[x]);
536 
537   free (ptr->conflicts);
538   free (ptr);
539 }
540 
541 
542 /* Test if elements X and Y conflict in graph PTR.  */
543 
544 static inline bool
545 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
546 {
547   bitmap b;
548 
549 #ifdef ENABLE_CHECKING
550   gcc_assert (x < ptr->size);
551   gcc_assert (y < ptr->size);
552   gcc_assert (x != y);
553 #endif
554 
555   b = ptr->conflicts[x];
556   if (b)
557     /* Avoid the lookup if Y has no conflicts.  */
558     return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
559   else
560     return false;
561 }
562 
563 
564 /* Add a conflict with Y to the bitmap for X in graph PTR.  */
565 
566 static inline void
567 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
568 {
569   /* If there are no conflicts yet, allocate the bitmap and set bit.  */
570   if (!ptr->conflicts[x])
571     ptr->conflicts[x] = BITMAP_ALLOC (NULL);
572   bitmap_set_bit (ptr->conflicts[x], y);
573 }
574 
575 
576 /* Add conflicts between X and Y in graph PTR.  */
577 
578 static inline void
579 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
580 {
581 #ifdef ENABLE_CHECKING
582   gcc_assert (x < ptr->size);
583   gcc_assert (y < ptr->size);
584   gcc_assert (x != y);
585 #endif
586   ssa_conflicts_add_one (ptr, x, y);
587   ssa_conflicts_add_one (ptr, y, x);
588 }
589 
590 
591 /* Merge all Y's conflict into X in graph PTR.  */
592 
593 static inline void
594 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
595 {
596   unsigned z;
597   bitmap_iterator bi;
598 
599   gcc_assert (x != y);
600   if (!(ptr->conflicts[y]))
601     return;
602 
603   /* Add a conflict between X and every one Y has.  If the bitmap doesn't
604      exist, then it has already been coalesced, and we don't need to add a
605      conflict.  */
606   EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
607     if (ptr->conflicts[z])
608       bitmap_set_bit (ptr->conflicts[z], x);
609 
610   if (ptr->conflicts[x])
611     {
612       /* If X has conflicts, add Y's to X.  */
613       bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
614       BITMAP_FREE (ptr->conflicts[y]);
615     }
616   else
617     {
618       /* If X has no conflicts, simply use Y's.  */
619       ptr->conflicts[x] = ptr->conflicts[y];
620       ptr->conflicts[y] = NULL;
621     }
622 }
623 
624 
625 /* Dump a conflicts graph.  */
626 
627 static void
628 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
629 {
630   unsigned x;
631 
632   fprintf (file, "\nConflict graph:\n");
633 
634   for (x = 0; x < ptr->size; x++)
635     if (ptr->conflicts[x])
636       {
637 	fprintf (dump_file, "%d: ", x);
638 	dump_bitmap (file, ptr->conflicts[x]);
639       }
640 }
641 
642 
643 /* This structure is used to efficiently record the current status of live
644    SSA_NAMES when building a conflict graph.
645    LIVE_BASE_VAR has a bit set for each base variable which has at least one
646    ssa version live.
647    LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
648    index, and is used to track what partitions of each base variable are
649    live.  This makes it easy to add conflicts between just live partitions
650    with the same base variable.
651    The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
652    marked as being live.  This delays clearing of these bitmaps until
653    they are actually needed again.  */
654 
655 typedef struct live_track_d
656 {
657   bitmap live_base_var;		/* Indicates if a basevar is live.  */
658   bitmap *live_base_partitions;	/* Live partitions for each basevar.  */
659   var_map map;			/* Var_map being used for partition mapping.  */
660 } * live_track_p;
661 
662 
663 /* This routine will create a new live track structure based on the partitions
664    in MAP.  */
665 
666 static live_track_p
667 new_live_track (var_map map)
668 {
669   live_track_p ptr;
670   int lim, x;
671 
672   /* Make sure there is a partition view in place.  */
673   gcc_assert (map->partition_to_base_index != NULL);
674 
675   ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
676   ptr->map = map;
677   lim = num_basevars (map);
678   ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
679   ptr->live_base_var = BITMAP_ALLOC (NULL);
680   for (x = 0; x < lim; x++)
681     ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
682   return ptr;
683 }
684 
685 
686 /* This routine will free the memory associated with PTR.  */
687 
688 static void
689 delete_live_track (live_track_p ptr)
690 {
691   int x, lim;
692 
693   lim = num_basevars (ptr->map);
694   for (x = 0; x < lim; x++)
695     BITMAP_FREE (ptr->live_base_partitions[x]);
696   BITMAP_FREE (ptr->live_base_var);
697   free (ptr->live_base_partitions);
698   free (ptr);
699 }
700 
701 
702 /* This function will remove PARTITION from the live list in PTR.  */
703 
704 static inline void
705 live_track_remove_partition (live_track_p ptr, int partition)
706 {
707   int root;
708 
709   root = basevar_index (ptr->map, partition);
710   bitmap_clear_bit (ptr->live_base_partitions[root], partition);
711   /* If the element list is empty, make the base variable not live either.  */
712   if (bitmap_empty_p (ptr->live_base_partitions[root]))
713     bitmap_clear_bit (ptr->live_base_var, root);
714 }
715 
716 
717 /* This function will adds PARTITION to the live list in PTR.  */
718 
719 static inline void
720 live_track_add_partition (live_track_p ptr, int partition)
721 {
722   int root;
723 
724   root = basevar_index (ptr->map, partition);
725   /* If this base var wasn't live before, it is now.  Clear the element list
726      since it was delayed until needed.  */
727   if (!bitmap_bit_p (ptr->live_base_var, root))
728     {
729       bitmap_set_bit (ptr->live_base_var, root);
730       bitmap_clear (ptr->live_base_partitions[root]);
731     }
732   bitmap_set_bit (ptr->live_base_partitions[root], partition);
733 
734 }
735 
736 
737 /* Clear the live bit for VAR in PTR.  */
738 
739 static inline void
740 live_track_clear_var (live_track_p ptr, tree var)
741 {
742   int p;
743 
744   p = var_to_partition (ptr->map, var);
745   if (p != NO_PARTITION)
746     live_track_remove_partition (ptr, p);
747 }
748 
749 
750 /* Return TRUE if VAR is live in PTR.  */
751 
752 static inline bool
753 live_track_live_p (live_track_p ptr, tree var)
754 {
755   int p, root;
756 
757   p = var_to_partition (ptr->map, var);
758   if (p != NO_PARTITION)
759     {
760       root = basevar_index (ptr->map, p);
761       if (bitmap_bit_p (ptr->live_base_var, root))
762 	return bitmap_bit_p (ptr->live_base_partitions[root], p);
763     }
764   return false;
765 }
766 
767 
768 /* This routine will add USE to PTR.  USE will be marked as live in both the
769    ssa live map and the live bitmap for the root of USE.  */
770 
771 static inline void
772 live_track_process_use (live_track_p ptr, tree use)
773 {
774   int p;
775 
776   p = var_to_partition (ptr->map, use);
777   if (p == NO_PARTITION)
778     return;
779 
780   /* Mark as live in the appropriate live list.  */
781   live_track_add_partition (ptr, p);
782 }
783 
784 
785 /* This routine will process a DEF in PTR.  DEF will be removed from the live
786    lists, and if there are any other live partitions with the same base
787    variable, conflicts will be added to GRAPH.  */
788 
789 static inline void
790 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
791 {
792   int p, root;
793   bitmap b;
794   unsigned x;
795   bitmap_iterator bi;
796 
797   p = var_to_partition (ptr->map, def);
798   if (p == NO_PARTITION)
799     return;
800 
801   /* Clear the liveness bit.  */
802   live_track_remove_partition (ptr, p);
803 
804   /* If the bitmap isn't empty now, conflicts need to be added.  */
805   root = basevar_index (ptr->map, p);
806   if (bitmap_bit_p (ptr->live_base_var, root))
807     {
808       b = ptr->live_base_partitions[root];
809       EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
810         ssa_conflicts_add (graph, p, x);
811     }
812 }
813 
814 
815 /* Initialize PTR with the partitions set in INIT.  */
816 
817 static inline void
818 live_track_init (live_track_p ptr, bitmap init)
819 {
820   unsigned p;
821   bitmap_iterator bi;
822 
823   /* Mark all live on exit partitions.  */
824   EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
825     live_track_add_partition (ptr, p);
826 }
827 
828 
829 /* This routine will clear all live partitions in PTR.   */
830 
831 static inline void
832 live_track_clear_base_vars (live_track_p ptr)
833 {
834   /* Simply clear the live base list.  Anything marked as live in the element
835      lists will be cleared later if/when the base variable ever comes alive
836      again.  */
837   bitmap_clear (ptr->live_base_var);
838 }
839 
840 
841 /* Build a conflict graph based on LIVEINFO.  Any partitions which are in the
842    partition view of the var_map liveinfo is based on get entries in the
843    conflict graph.  Only conflicts between ssa_name partitions with the same
844    base variable are added.  */
845 
846 static ssa_conflicts_p
847 build_ssa_conflict_graph (tree_live_info_p liveinfo)
848 {
849   ssa_conflicts_p graph;
850   var_map map;
851   basic_block bb;
852   ssa_op_iter iter;
853   live_track_p live;
854 
855   map = live_var_map (liveinfo);
856   graph = ssa_conflicts_new (num_var_partitions (map));
857 
858   live = new_live_track (map);
859 
860   FOR_EACH_BB (bb)
861     {
862       gimple_stmt_iterator gsi;
863 
864       /* Start with live on exit temporaries.  */
865       live_track_init (live, live_on_exit (liveinfo, bb));
866 
867       for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
868         {
869 	  tree var;
870 	  gimple stmt = gsi_stmt (gsi);
871 
872 	  /* A copy between 2 partitions does not introduce an interference
873 	     by itself.  If they did, you would never be able to coalesce
874 	     two things which are copied.  If the two variables really do
875 	     conflict, they will conflict elsewhere in the program.
876 
877 	     This is handled by simply removing the SRC of the copy from the
878 	     live list, and processing the stmt normally.  */
879 	  if (is_gimple_assign (stmt))
880 	    {
881 	      tree lhs = gimple_assign_lhs (stmt);
882 	      tree rhs1 = gimple_assign_rhs1 (stmt);
883 	      if (gimple_assign_copy_p (stmt)
884                   && TREE_CODE (lhs) == SSA_NAME
885                   && TREE_CODE (rhs1) == SSA_NAME)
886 		live_track_clear_var (live, rhs1);
887 	    }
888 	  else if (is_gimple_debug (stmt))
889 	    continue;
890 
891 	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
892 	    live_track_process_def (live, var, graph);
893 
894 	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
895 	    live_track_process_use (live, var);
896 	}
897 
898       /* If result of a PHI is unused, looping over the statements will not
899 	 record any conflicts since the def was never live.  Since the PHI node
900 	 is going to be translated out of SSA form, it will insert a copy.
901 	 There must be a conflict recorded between the result of the PHI and
902 	 any variables that are live.  Otherwise the out-of-ssa translation
903 	 may create incorrect code.  */
904       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
905 	{
906 	  gimple phi = gsi_stmt (gsi);
907 	  tree result = PHI_RESULT (phi);
908 	  if (live_track_live_p (live, result))
909 	    live_track_process_def (live, result, graph);
910 	}
911 
912      live_track_clear_base_vars (live);
913     }
914 
915   delete_live_track (live);
916   return graph;
917 }
918 
919 
920 /* Shortcut routine to print messages to file F of the form:
921    "STR1 EXPR1 STR2 EXPR2 STR3."  */
922 
923 static inline void
924 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
925 	     tree expr2, const char *str3)
926 {
927   fprintf (f, "%s", str1);
928   print_generic_expr (f, expr1, TDF_SLIM);
929   fprintf (f, "%s", str2);
930   print_generic_expr (f, expr2, TDF_SLIM);
931   fprintf (f, "%s", str3);
932 }
933 
934 
935 /* Called if a coalesce across and abnormal edge cannot be performed.  PHI is
936    the phi node at fault, I is the argument index at fault.  A message is
937    printed and compilation is then terminated.  */
938 
939 static inline void
940 abnormal_corrupt (gimple phi, int i)
941 {
942   edge e = gimple_phi_arg_edge (phi, i);
943   tree res = gimple_phi_result (phi);
944   tree arg = gimple_phi_arg_def (phi, i);
945 
946   fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
947 	   e->src->index, e->dest->index);
948   fprintf (stderr, "Argument %d (", i);
949   print_generic_expr (stderr, arg, TDF_SLIM);
950   if (TREE_CODE (arg) != SSA_NAME)
951     fprintf (stderr, ") is not an SSA_NAME.\n");
952   else
953     {
954       gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
955       fprintf (stderr, ") does not have the same base variable as the result ");
956       print_generic_stmt (stderr, res, TDF_SLIM);
957     }
958 
959   internal_error ("SSA corruption");
960 }
961 
962 
963 /* Print a failure to coalesce a MUST_COALESCE pair X and Y.  */
964 
965 static inline void
966 fail_abnormal_edge_coalesce (int x, int y)
967 {
968   fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
969   fprintf (stderr, " which are marked as MUST COALESCE.\n");
970   print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
971   fprintf (stderr, " and  ");
972   print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
973 
974   internal_error ("SSA corruption");
975 }
976 
977 
978 /* This function creates a var_map for the current function as well as creating
979    a coalesce list for use later in the out of ssa process.  */
980 
981 static var_map
982 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
983 {
984   gimple_stmt_iterator gsi;
985   basic_block bb;
986   tree var;
987   gimple stmt;
988   tree first;
989   var_map map;
990   ssa_op_iter iter;
991   int v1, v2, cost;
992   unsigned i;
993 
994 #ifdef ENABLE_CHECKING
995   bitmap used_in_real_ops;
996   bitmap used_in_virtual_ops;
997 
998   used_in_real_ops = BITMAP_ALLOC (NULL);
999   used_in_virtual_ops = BITMAP_ALLOC (NULL);
1000 #endif
1001 
1002   map = init_var_map (num_ssa_names);
1003 
1004   FOR_EACH_BB (bb)
1005     {
1006       tree arg;
1007 
1008       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1009 	{
1010 	  gimple phi = gsi_stmt (gsi);
1011 	  size_t i;
1012 	  int ver;
1013 	  tree res;
1014 	  bool saw_copy = false;
1015 
1016 	  res = gimple_phi_result (phi);
1017 	  ver = SSA_NAME_VERSION (res);
1018 	  register_ssa_partition (map, res);
1019 
1020 	  /* Register ssa_names and coalesces between the args and the result
1021 	     of all PHI.  */
1022 	  for (i = 0; i < gimple_phi_num_args (phi); i++)
1023 	    {
1024 	      edge e = gimple_phi_arg_edge (phi, i);
1025 	      arg = PHI_ARG_DEF (phi, i);
1026 	      if (TREE_CODE (arg) == SSA_NAME)
1027 		register_ssa_partition (map, arg);
1028 	      if (TREE_CODE (arg) == SSA_NAME
1029 		  && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1030 	        {
1031 		  saw_copy = true;
1032 		  bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1033 		  if ((e->flags & EDGE_ABNORMAL) == 0)
1034 		    {
1035 		      int cost = coalesce_cost_edge (e);
1036 		      if (cost == 1 && has_single_use (arg))
1037 		        add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1038 		      else
1039 			add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1040 		    }
1041 		}
1042 	      else
1043 	        if (e->flags & EDGE_ABNORMAL)
1044 		  abnormal_corrupt (phi, i);
1045 	    }
1046 	  if (saw_copy)
1047 	    bitmap_set_bit (used_in_copy, ver);
1048 	}
1049 
1050       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1051         {
1052 	  stmt = gsi_stmt (gsi);
1053 
1054 	  if (is_gimple_debug (stmt))
1055 	    continue;
1056 
1057 	  /* Register USE and DEF operands in each statement.  */
1058 	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1059 	    register_ssa_partition (map, var);
1060 
1061 	  /* Check for copy coalesces.  */
1062 	  switch (gimple_code (stmt))
1063 	    {
1064 	    case GIMPLE_ASSIGN:
1065 	      {
1066 		tree lhs = gimple_assign_lhs (stmt);
1067 		tree rhs1 = gimple_assign_rhs1 (stmt);
1068 
1069 		if (gimple_assign_copy_p (stmt)
1070                     && TREE_CODE (lhs) == SSA_NAME
1071 		    && TREE_CODE (rhs1) == SSA_NAME
1072 		    && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1073 		  {
1074 		    v1 = SSA_NAME_VERSION (lhs);
1075 		    v2 = SSA_NAME_VERSION (rhs1);
1076 		    cost = coalesce_cost_bb (bb);
1077 		    add_coalesce (cl, v1, v2, cost);
1078 		    bitmap_set_bit (used_in_copy, v1);
1079 		    bitmap_set_bit (used_in_copy, v2);
1080 		  }
1081 	      }
1082 	      break;
1083 
1084 	    case GIMPLE_ASM:
1085 	      {
1086 		unsigned long noutputs, i;
1087 		unsigned long ninputs;
1088 		tree *outputs, link;
1089 		noutputs = gimple_asm_noutputs (stmt);
1090 		ninputs = gimple_asm_ninputs (stmt);
1091 		outputs = (tree *) alloca (noutputs * sizeof (tree));
1092 		for (i = 0; i < noutputs; ++i) {
1093 		  link = gimple_asm_output_op (stmt, i);
1094 		  outputs[i] = TREE_VALUE (link);
1095                 }
1096 
1097 		for (i = 0; i < ninputs; ++i)
1098 		  {
1099                     const char *constraint;
1100                     tree input;
1101 		    char *end;
1102 		    unsigned long match;
1103 
1104 		    link = gimple_asm_input_op (stmt, i);
1105 		    constraint
1106 		      = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1107 		    input = TREE_VALUE (link);
1108 
1109 		    if (TREE_CODE (input) != SSA_NAME)
1110 		      continue;
1111 
1112 		    match = strtoul (constraint, &end, 10);
1113 		    if (match >= noutputs || end == constraint)
1114 		      continue;
1115 
1116 		    if (TREE_CODE (outputs[match]) != SSA_NAME)
1117 		      continue;
1118 
1119 		    v1 = SSA_NAME_VERSION (outputs[match]);
1120 		    v2 = SSA_NAME_VERSION (input);
1121 
1122 		    if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1123 		      {
1124 			cost = coalesce_cost (REG_BR_PROB_BASE,
1125 					      optimize_bb_for_size_p (bb));
1126 			add_coalesce (cl, v1, v2, cost);
1127 			bitmap_set_bit (used_in_copy, v1);
1128 			bitmap_set_bit (used_in_copy, v2);
1129 		      }
1130 		  }
1131 		break;
1132 	      }
1133 
1134 	    default:
1135 	      break;
1136 	    }
1137 
1138 #ifdef ENABLE_CHECKING
1139 	  /* Mark real uses and defs.  */
1140 	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1141 	    bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1142 
1143 	  /* Validate that virtual ops don't get used in funny ways.  */
1144 	  if (gimple_vuse (stmt))
1145 	    bitmap_set_bit (used_in_virtual_ops,
1146 			    DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
1147 #endif /* ENABLE_CHECKING */
1148 	}
1149     }
1150 
1151   /* Now process result decls and live on entry variables for entry into
1152      the coalesce list.  */
1153   first = NULL_TREE;
1154   for (i = 1; i < num_ssa_names; i++)
1155     {
1156       var = ssa_name (i);
1157       if (var != NULL_TREE && is_gimple_reg (var))
1158         {
1159 	  /* Add coalesces between all the result decls.  */
1160 	  if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1161 	    {
1162 	      if (first == NULL_TREE)
1163 		first = var;
1164 	      else
1165 		{
1166 		  gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1167 		  v1 = SSA_NAME_VERSION (first);
1168 		  v2 = SSA_NAME_VERSION (var);
1169 		  bitmap_set_bit (used_in_copy, v1);
1170 		  bitmap_set_bit (used_in_copy, v2);
1171 		  cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1172 		  add_coalesce (cl, v1, v2, cost);
1173 		}
1174 	    }
1175 	  /* Mark any default_def variables as being in the coalesce list
1176 	     since they will have to be coalesced with the base variable.  If
1177 	     not marked as present, they won't be in the coalesce view. */
1178 	  if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1179 	      && !has_zero_uses (var))
1180 	    bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1181 	}
1182     }
1183 
1184 #if defined ENABLE_CHECKING
1185   {
1186     unsigned i;
1187     bitmap both = BITMAP_ALLOC (NULL);
1188     bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1189     if (!bitmap_empty_p (both))
1190       {
1191 	bitmap_iterator bi;
1192 
1193 	EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1194 	  fprintf (stderr, "Variable %s used in real and virtual operands\n",
1195 		   get_name (referenced_var (i)));
1196 	internal_error ("SSA corruption");
1197       }
1198 
1199     BITMAP_FREE (used_in_real_ops);
1200     BITMAP_FREE (used_in_virtual_ops);
1201     BITMAP_FREE (both);
1202   }
1203 #endif
1204 
1205   return map;
1206 }
1207 
1208 
1209 /* Attempt to coalesce ssa versions X and Y together using the partition
1210    mapping in MAP and checking conflicts in GRAPH.  Output any debug info to
1211    DEBUG, if it is nun-NULL.  */
1212 
1213 static inline bool
1214 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1215 		  FILE *debug)
1216 {
1217   int z;
1218   tree var1, var2;
1219   int p1, p2;
1220 
1221   p1 = var_to_partition (map, ssa_name (x));
1222   p2 = var_to_partition (map, ssa_name (y));
1223 
1224   if (debug)
1225     {
1226       fprintf (debug, "(%d)", x);
1227       print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1228       fprintf (debug, " & (%d)", y);
1229       print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1230     }
1231 
1232   if (p1 == p2)
1233     {
1234       if (debug)
1235 	fprintf (debug, ": Already Coalesced.\n");
1236       return true;
1237     }
1238 
1239   if (debug)
1240     fprintf (debug, " [map: %d, %d] ", p1, p2);
1241 
1242 
1243   if (!ssa_conflicts_test_p (graph, p1, p2))
1244     {
1245       var1 = partition_to_var (map, p1);
1246       var2 = partition_to_var (map, p2);
1247       z = var_union (map, var1, var2);
1248       if (z == NO_PARTITION)
1249 	{
1250 	  if (debug)
1251 	    fprintf (debug, ": Unable to perform partition union.\n");
1252 	  return false;
1253 	}
1254 
1255       /* z is the new combined partition.  Remove the other partition from
1256 	 the list, and merge the conflicts.  */
1257       if (z == p1)
1258 	ssa_conflicts_merge (graph, p1, p2);
1259       else
1260 	ssa_conflicts_merge (graph, p2, p1);
1261 
1262       if (debug)
1263 	fprintf (debug, ": Success -> %d\n", z);
1264       return true;
1265     }
1266 
1267   if (debug)
1268     fprintf (debug, ": Fail due to conflict\n");
1269 
1270   return false;
1271 }
1272 
1273 
1274 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1275    GRAPH.  Debug output is sent to DEBUG if it is non-NULL.  */
1276 
1277 static void
1278 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1279 		     FILE *debug)
1280 {
1281   int x = 0, y = 0;
1282   tree var1, var2;
1283   int cost;
1284   basic_block bb;
1285   edge e;
1286   edge_iterator ei;
1287 
1288   /* First, coalesce all the copies across abnormal edges.  These are not placed
1289      in the coalesce list because they do not need to be sorted, and simply
1290      consume extra memory/compilation time in large programs.  */
1291 
1292   FOR_EACH_BB (bb)
1293     {
1294       FOR_EACH_EDGE (e, ei, bb->preds)
1295 	if (e->flags & EDGE_ABNORMAL)
1296 	  {
1297 	    gimple_stmt_iterator gsi;
1298 	    for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1299 		 gsi_next (&gsi))
1300 	      {
1301 		gimple phi = gsi_stmt (gsi);
1302 		tree res = PHI_RESULT (phi);
1303 	        tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1304 		int v1 = SSA_NAME_VERSION (res);
1305 		int v2 = SSA_NAME_VERSION (arg);
1306 
1307 		if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1308 		  abnormal_corrupt (phi, e->dest_idx);
1309 
1310 		if (debug)
1311 		  fprintf (debug, "Abnormal coalesce: ");
1312 
1313 		if (!attempt_coalesce (map, graph, v1, v2, debug))
1314 		  fail_abnormal_edge_coalesce (v1, v2);
1315 	      }
1316 	  }
1317     }
1318 
1319   /* Now process the items in the coalesce list.  */
1320 
1321   while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1322     {
1323       var1 = ssa_name (x);
1324       var2 = ssa_name (y);
1325 
1326       /* Assert the coalesces have the same base variable.  */
1327       gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1328 
1329       if (debug)
1330 	fprintf (debug, "Coalesce list: ");
1331       attempt_coalesce (map, graph, x, y, debug);
1332     }
1333 }
1334 
1335 /* Returns a hash code for P.  */
1336 
1337 static hashval_t
1338 hash_ssa_name_by_var (const void *p)
1339 {
1340   const_tree n = (const_tree) p;
1341   return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1342 }
1343 
1344 /* Returns nonzero if P1 and P2 are equal.  */
1345 
1346 static int
1347 eq_ssa_name_by_var (const void *p1, const void *p2)
1348 {
1349   const_tree n1 = (const_tree) p1;
1350   const_tree n2 = (const_tree) p2;
1351   return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1352 }
1353 
1354 /* Reduce the number of copies by coalescing variables in the function.  Return
1355    a partition map with the resulting coalesces.  */
1356 
1357 extern var_map
1358 coalesce_ssa_name (void)
1359 {
1360   tree_live_info_p liveinfo;
1361   ssa_conflicts_p graph;
1362   coalesce_list_p cl;
1363   bitmap used_in_copies = BITMAP_ALLOC (NULL);
1364   var_map map;
1365   unsigned int i;
1366   static htab_t ssa_name_hash;
1367 
1368   cl = create_coalesce_list ();
1369   map = create_outofssa_var_map (cl, used_in_copies);
1370 
1371   /* We need to coalesce all names originating same SSA_NAME_VAR
1372      so debug info remains undisturbed.  */
1373   if (!optimize)
1374     {
1375       ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1376       				   eq_ssa_name_by_var, NULL);
1377       for (i = 1; i < num_ssa_names; i++)
1378 	{
1379 	  tree a = ssa_name (i);
1380 
1381 	  if (a
1382 	      && SSA_NAME_VAR (a)
1383 	      && !DECL_ARTIFICIAL (SSA_NAME_VAR (a))
1384 	      && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1385 	    {
1386 	      tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1387 
1388 	      if (!*slot)
1389 		*slot = a;
1390 	      else
1391 		{
1392 		  add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1393 				MUST_COALESCE_COST - 1);
1394 		  bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1395 		  bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1396 		}
1397 	    }
1398 	}
1399       htab_delete (ssa_name_hash);
1400     }
1401   if (dump_file && (dump_flags & TDF_DETAILS))
1402     dump_var_map (dump_file, map);
1403 
1404   /* Don't calculate live ranges for variables not in the coalesce list.  */
1405   partition_view_bitmap (map, used_in_copies, true);
1406   BITMAP_FREE (used_in_copies);
1407 
1408   if (num_var_partitions (map) < 1)
1409     {
1410       delete_coalesce_list (cl);
1411       return map;
1412     }
1413 
1414   if (dump_file && (dump_flags & TDF_DETAILS))
1415     dump_var_map (dump_file, map);
1416 
1417   liveinfo = calculate_live_ranges (map);
1418 
1419   if (dump_file && (dump_flags & TDF_DETAILS))
1420     dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1421 
1422   /* Build a conflict graph.  */
1423   graph = build_ssa_conflict_graph (liveinfo);
1424   delete_tree_live_info (liveinfo);
1425   if (dump_file && (dump_flags & TDF_DETAILS))
1426     ssa_conflicts_dump (dump_file, graph);
1427 
1428   sort_coalesce_list (cl);
1429 
1430   if (dump_file && (dump_flags & TDF_DETAILS))
1431     {
1432       fprintf (dump_file, "\nAfter sorting:\n");
1433       dump_coalesce_list (dump_file, cl);
1434     }
1435 
1436   /* First, coalesce all live on entry variables to their base variable.
1437      This will ensure the first use is coming from the correct location.  */
1438 
1439   if (dump_file && (dump_flags & TDF_DETAILS))
1440     dump_var_map (dump_file, map);
1441 
1442   /* Now coalesce everything in the list.  */
1443   coalesce_partitions (map, graph, cl,
1444 		       ((dump_flags & TDF_DETAILS) ? dump_file
1445 						   : NULL));
1446 
1447   delete_coalesce_list (cl);
1448   ssa_conflicts_delete (graph);
1449 
1450   return map;
1451 }
1452