1 /* Conditional constant propagation pass for the GNU compiler. 2 Copyright (C) 2000-2013 Free Software Foundation, Inc. 3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org> 4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it 9 under the terms of the GNU General Public License as published by the 10 Free Software Foundation; either version 3, or (at your option) any 11 later version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT 14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 /* Conditional constant propagation (CCP) is based on the SSA 23 propagation engine (tree-ssa-propagate.c). Constant assignments of 24 the form VAR = CST are propagated from the assignments into uses of 25 VAR, which in turn may generate new constants. The simulation uses 26 a four level lattice to keep track of constant values associated 27 with SSA names. Given an SSA name V_i, it may take one of the 28 following values: 29 30 UNINITIALIZED -> the initial state of the value. This value 31 is replaced with a correct initial value 32 the first time the value is used, so the 33 rest of the pass does not need to care about 34 it. Using this value simplifies initialization 35 of the pass, and prevents us from needlessly 36 scanning statements that are never reached. 37 38 UNDEFINED -> V_i is a local variable whose definition 39 has not been processed yet. Therefore we 40 don't yet know if its value is a constant 41 or not. 42 43 CONSTANT -> V_i has been found to hold a constant 44 value C. 45 46 VARYING -> V_i cannot take a constant value, or if it 47 does, it is not possible to determine it 48 at compile time. 49 50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node: 51 52 1- In ccp_visit_stmt, we are interested in assignments whose RHS 53 evaluates into a constant and conditional jumps whose predicate 54 evaluates into a boolean true or false. When an assignment of 55 the form V_i = CONST is found, V_i's lattice value is set to 56 CONSTANT and CONST is associated with it. This causes the 57 propagation engine to add all the SSA edges coming out the 58 assignment into the worklists, so that statements that use V_i 59 can be visited. 60 61 If the statement is a conditional with a constant predicate, we 62 mark the outgoing edges as executable or not executable 63 depending on the predicate's value. This is then used when 64 visiting PHI nodes to know when a PHI argument can be ignored. 65 66 67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the 68 same constant C, then the LHS of the PHI is set to C. This 69 evaluation is known as the "meet operation". Since one of the 70 goals of this evaluation is to optimistically return constant 71 values as often as possible, it uses two main short cuts: 72 73 - If an argument is flowing in through a non-executable edge, it 74 is ignored. This is useful in cases like this: 75 76 if (PRED) 77 a_9 = 3; 78 else 79 a_10 = 100; 80 a_11 = PHI (a_9, a_10) 81 82 If PRED is known to always evaluate to false, then we can 83 assume that a_11 will always take its value from a_10, meaning 84 that instead of consider it VARYING (a_9 and a_10 have 85 different values), we can consider it CONSTANT 100. 86 87 - If an argument has an UNDEFINED value, then it does not affect 88 the outcome of the meet operation. If a variable V_i has an 89 UNDEFINED value, it means that either its defining statement 90 hasn't been visited yet or V_i has no defining statement, in 91 which case the original symbol 'V' is being used 92 uninitialized. Since 'V' is a local variable, the compiler 93 may assume any initial value for it. 94 95 96 After propagation, every variable V_i that ends up with a lattice 97 value of CONSTANT will have the associated constant value in the 98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for 99 final substitution and folding. 100 101 References: 102 103 Constant propagation with conditional branches, 104 Wegman and Zadeck, ACM TOPLAS 13(2):181-210. 105 106 Building an Optimizing Compiler, 107 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9. 108 109 Advanced Compiler Design and Implementation, 110 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */ 111 112 #include "config.h" 113 #include "system.h" 114 #include "coretypes.h" 115 #include "tm.h" 116 #include "tree.h" 117 #include "flags.h" 118 #include "tm_p.h" 119 #include "basic-block.h" 120 #include "function.h" 121 #include "gimple-pretty-print.h" 122 #include "tree-flow.h" 123 #include "tree-pass.h" 124 #include "tree-ssa-propagate.h" 125 #include "value-prof.h" 126 #include "langhooks.h" 127 #include "target.h" 128 #include "diagnostic-core.h" 129 #include "dbgcnt.h" 130 #include "gimple-fold.h" 131 #include "params.h" 132 #include "hash-table.h" 133 134 135 /* Possible lattice values. */ 136 typedef enum 137 { 138 UNINITIALIZED, 139 UNDEFINED, 140 CONSTANT, 141 VARYING 142 } ccp_lattice_t; 143 144 struct prop_value_d { 145 /* Lattice value. */ 146 ccp_lattice_t lattice_val; 147 148 /* Propagated value. */ 149 tree value; 150 151 /* Mask that applies to the propagated value during CCP. For 152 X with a CONSTANT lattice value X & ~mask == value & ~mask. */ 153 double_int mask; 154 }; 155 156 typedef struct prop_value_d prop_value_t; 157 158 /* Array of propagated constant values. After propagation, 159 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If 160 the constant is held in an SSA name representing a memory store 161 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual 162 memory reference used to store (i.e., the LHS of the assignment 163 doing the store). */ 164 static prop_value_t *const_val; 165 static unsigned n_const_val; 166 167 static void canonicalize_float_value (prop_value_t *); 168 static bool ccp_fold_stmt (gimple_stmt_iterator *); 169 170 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */ 171 172 static void 173 dump_lattice_value (FILE *outf, const char *prefix, prop_value_t val) 174 { 175 switch (val.lattice_val) 176 { 177 case UNINITIALIZED: 178 fprintf (outf, "%sUNINITIALIZED", prefix); 179 break; 180 case UNDEFINED: 181 fprintf (outf, "%sUNDEFINED", prefix); 182 break; 183 case VARYING: 184 fprintf (outf, "%sVARYING", prefix); 185 break; 186 case CONSTANT: 187 if (TREE_CODE (val.value) != INTEGER_CST 188 || val.mask.is_zero ()) 189 { 190 fprintf (outf, "%sCONSTANT ", prefix); 191 print_generic_expr (outf, val.value, dump_flags); 192 } 193 else 194 { 195 double_int cval = tree_to_double_int (val.value).and_not (val.mask); 196 fprintf (outf, "%sCONSTANT " HOST_WIDE_INT_PRINT_DOUBLE_HEX, 197 prefix, cval.high, cval.low); 198 fprintf (outf, " (" HOST_WIDE_INT_PRINT_DOUBLE_HEX ")", 199 val.mask.high, val.mask.low); 200 } 201 break; 202 default: 203 gcc_unreachable (); 204 } 205 } 206 207 208 /* Print lattice value VAL to stderr. */ 209 210 void debug_lattice_value (prop_value_t val); 211 212 DEBUG_FUNCTION void 213 debug_lattice_value (prop_value_t val) 214 { 215 dump_lattice_value (stderr, "", val); 216 fprintf (stderr, "\n"); 217 } 218 219 220 /* Compute a default value for variable VAR and store it in the 221 CONST_VAL array. The following rules are used to get default 222 values: 223 224 1- Global and static variables that are declared constant are 225 considered CONSTANT. 226 227 2- Any other value is considered UNDEFINED. This is useful when 228 considering PHI nodes. PHI arguments that are undefined do not 229 change the constant value of the PHI node, which allows for more 230 constants to be propagated. 231 232 3- Variables defined by statements other than assignments and PHI 233 nodes are considered VARYING. 234 235 4- Initial values of variables that are not GIMPLE registers are 236 considered VARYING. */ 237 238 static prop_value_t 239 get_default_value (tree var) 240 { 241 prop_value_t val = { UNINITIALIZED, NULL_TREE, { 0, 0 } }; 242 gimple stmt; 243 244 stmt = SSA_NAME_DEF_STMT (var); 245 246 if (gimple_nop_p (stmt)) 247 { 248 /* Variables defined by an empty statement are those used 249 before being initialized. If VAR is a local variable, we 250 can assume initially that it is UNDEFINED, otherwise we must 251 consider it VARYING. */ 252 if (!virtual_operand_p (var) 253 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL) 254 val.lattice_val = UNDEFINED; 255 else 256 { 257 val.lattice_val = VARYING; 258 val.mask = double_int_minus_one; 259 } 260 } 261 else if (is_gimple_assign (stmt) 262 /* Value-returning GIMPLE_CALL statements assign to 263 a variable, and are treated similarly to GIMPLE_ASSIGN. */ 264 || (is_gimple_call (stmt) 265 && gimple_call_lhs (stmt) != NULL_TREE) 266 || gimple_code (stmt) == GIMPLE_PHI) 267 { 268 tree cst; 269 if (gimple_assign_single_p (stmt) 270 && DECL_P (gimple_assign_rhs1 (stmt)) 271 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt)))) 272 { 273 val.lattice_val = CONSTANT; 274 val.value = cst; 275 } 276 else 277 /* Any other variable defined by an assignment or a PHI node 278 is considered UNDEFINED. */ 279 val.lattice_val = UNDEFINED; 280 } 281 else 282 { 283 /* Otherwise, VAR will never take on a constant value. */ 284 val.lattice_val = VARYING; 285 val.mask = double_int_minus_one; 286 } 287 288 return val; 289 } 290 291 292 /* Get the constant value associated with variable VAR. */ 293 294 static inline prop_value_t * 295 get_value (tree var) 296 { 297 prop_value_t *val; 298 299 if (const_val == NULL 300 || SSA_NAME_VERSION (var) >= n_const_val) 301 return NULL; 302 303 val = &const_val[SSA_NAME_VERSION (var)]; 304 if (val->lattice_val == UNINITIALIZED) 305 *val = get_default_value (var); 306 307 canonicalize_float_value (val); 308 309 return val; 310 } 311 312 /* Return the constant tree value associated with VAR. */ 313 314 static inline tree 315 get_constant_value (tree var) 316 { 317 prop_value_t *val; 318 if (TREE_CODE (var) != SSA_NAME) 319 { 320 if (is_gimple_min_invariant (var)) 321 return var; 322 return NULL_TREE; 323 } 324 val = get_value (var); 325 if (val 326 && val->lattice_val == CONSTANT 327 && (TREE_CODE (val->value) != INTEGER_CST 328 || val->mask.is_zero ())) 329 return val->value; 330 return NULL_TREE; 331 } 332 333 /* Sets the value associated with VAR to VARYING. */ 334 335 static inline void 336 set_value_varying (tree var) 337 { 338 prop_value_t *val = &const_val[SSA_NAME_VERSION (var)]; 339 340 val->lattice_val = VARYING; 341 val->value = NULL_TREE; 342 val->mask = double_int_minus_one; 343 } 344 345 /* For float types, modify the value of VAL to make ccp work correctly 346 for non-standard values (-0, NaN): 347 348 If HONOR_SIGNED_ZEROS is false, and VAL = -0, we canonicalize it to 0. 349 If HONOR_NANS is false, and VAL is NaN, we canonicalize it to UNDEFINED. 350 This is to fix the following problem (see PR 29921): Suppose we have 351 352 x = 0.0 * y 353 354 and we set value of y to NaN. This causes value of x to be set to NaN. 355 When we later determine that y is in fact VARYING, fold uses the fact 356 that HONOR_NANS is false, and we try to change the value of x to 0, 357 causing an ICE. With HONOR_NANS being false, the real appearance of 358 NaN would cause undefined behavior, though, so claiming that y (and x) 359 are UNDEFINED initially is correct. */ 360 361 static void 362 canonicalize_float_value (prop_value_t *val) 363 { 364 enum machine_mode mode; 365 tree type; 366 REAL_VALUE_TYPE d; 367 368 if (val->lattice_val != CONSTANT 369 || TREE_CODE (val->value) != REAL_CST) 370 return; 371 372 d = TREE_REAL_CST (val->value); 373 type = TREE_TYPE (val->value); 374 mode = TYPE_MODE (type); 375 376 if (!HONOR_SIGNED_ZEROS (mode) 377 && REAL_VALUE_MINUS_ZERO (d)) 378 { 379 val->value = build_real (type, dconst0); 380 return; 381 } 382 383 if (!HONOR_NANS (mode) 384 && REAL_VALUE_ISNAN (d)) 385 { 386 val->lattice_val = UNDEFINED; 387 val->value = NULL; 388 return; 389 } 390 } 391 392 /* Return whether the lattice transition is valid. */ 393 394 static bool 395 valid_lattice_transition (prop_value_t old_val, prop_value_t new_val) 396 { 397 /* Lattice transitions must always be monotonically increasing in 398 value. */ 399 if (old_val.lattice_val < new_val.lattice_val) 400 return true; 401 402 if (old_val.lattice_val != new_val.lattice_val) 403 return false; 404 405 if (!old_val.value && !new_val.value) 406 return true; 407 408 /* Now both lattice values are CONSTANT. */ 409 410 /* Allow transitioning from PHI <&x, not executable> == &x 411 to PHI <&x, &y> == common alignment. */ 412 if (TREE_CODE (old_val.value) != INTEGER_CST 413 && TREE_CODE (new_val.value) == INTEGER_CST) 414 return true; 415 416 /* Bit-lattices have to agree in the still valid bits. */ 417 if (TREE_CODE (old_val.value) == INTEGER_CST 418 && TREE_CODE (new_val.value) == INTEGER_CST) 419 return tree_to_double_int (old_val.value).and_not (new_val.mask) 420 == tree_to_double_int (new_val.value).and_not (new_val.mask); 421 422 /* Otherwise constant values have to agree. */ 423 return operand_equal_p (old_val.value, new_val.value, 0); 424 } 425 426 /* Set the value for variable VAR to NEW_VAL. Return true if the new 427 value is different from VAR's previous value. */ 428 429 static bool 430 set_lattice_value (tree var, prop_value_t new_val) 431 { 432 /* We can deal with old UNINITIALIZED values just fine here. */ 433 prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)]; 434 435 canonicalize_float_value (&new_val); 436 437 /* We have to be careful to not go up the bitwise lattice 438 represented by the mask. 439 ??? This doesn't seem to be the best place to enforce this. */ 440 if (new_val.lattice_val == CONSTANT 441 && old_val->lattice_val == CONSTANT 442 && TREE_CODE (new_val.value) == INTEGER_CST 443 && TREE_CODE (old_val->value) == INTEGER_CST) 444 { 445 double_int diff; 446 diff = tree_to_double_int (new_val.value) 447 ^ tree_to_double_int (old_val->value); 448 new_val.mask = new_val.mask | old_val->mask | diff; 449 } 450 451 gcc_assert (valid_lattice_transition (*old_val, new_val)); 452 453 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the 454 caller that this was a non-transition. */ 455 if (old_val->lattice_val != new_val.lattice_val 456 || (new_val.lattice_val == CONSTANT 457 && TREE_CODE (new_val.value) == INTEGER_CST 458 && (TREE_CODE (old_val->value) != INTEGER_CST 459 || new_val.mask != old_val->mask))) 460 { 461 /* ??? We would like to delay creation of INTEGER_CSTs from 462 partially constants here. */ 463 464 if (dump_file && (dump_flags & TDF_DETAILS)) 465 { 466 dump_lattice_value (dump_file, "Lattice value changed to ", new_val); 467 fprintf (dump_file, ". Adding SSA edges to worklist.\n"); 468 } 469 470 *old_val = new_val; 471 472 gcc_assert (new_val.lattice_val != UNINITIALIZED); 473 return true; 474 } 475 476 return false; 477 } 478 479 static prop_value_t get_value_for_expr (tree, bool); 480 static prop_value_t bit_value_binop (enum tree_code, tree, tree, tree); 481 static void bit_value_binop_1 (enum tree_code, tree, double_int *, double_int *, 482 tree, double_int, double_int, 483 tree, double_int, double_int); 484 485 /* Return a double_int that can be used for bitwise simplifications 486 from VAL. */ 487 488 static double_int 489 value_to_double_int (prop_value_t val) 490 { 491 if (val.value 492 && TREE_CODE (val.value) == INTEGER_CST) 493 return tree_to_double_int (val.value); 494 else 495 return double_int_zero; 496 } 497 498 /* Return the value for the address expression EXPR based on alignment 499 information. */ 500 501 static prop_value_t 502 get_value_from_alignment (tree expr) 503 { 504 tree type = TREE_TYPE (expr); 505 prop_value_t val; 506 unsigned HOST_WIDE_INT bitpos; 507 unsigned int align; 508 509 gcc_assert (TREE_CODE (expr) == ADDR_EXPR); 510 511 get_pointer_alignment_1 (expr, &align, &bitpos); 512 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type) 513 ? double_int::mask (TYPE_PRECISION (type)) 514 : double_int_minus_one) 515 .and_not (double_int::from_uhwi (align / BITS_PER_UNIT - 1)); 516 val.lattice_val = val.mask.is_minus_one () ? VARYING : CONSTANT; 517 if (val.lattice_val == CONSTANT) 518 val.value 519 = double_int_to_tree (type, 520 double_int::from_uhwi (bitpos / BITS_PER_UNIT)); 521 else 522 val.value = NULL_TREE; 523 524 return val; 525 } 526 527 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true 528 return constant bits extracted from alignment information for 529 invariant addresses. */ 530 531 static prop_value_t 532 get_value_for_expr (tree expr, bool for_bits_p) 533 { 534 prop_value_t val; 535 536 if (TREE_CODE (expr) == SSA_NAME) 537 { 538 val = *get_value (expr); 539 if (for_bits_p 540 && val.lattice_val == CONSTANT 541 && TREE_CODE (val.value) == ADDR_EXPR) 542 val = get_value_from_alignment (val.value); 543 } 544 else if (is_gimple_min_invariant (expr) 545 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR)) 546 { 547 val.lattice_val = CONSTANT; 548 val.value = expr; 549 val.mask = double_int_zero; 550 canonicalize_float_value (&val); 551 } 552 else if (TREE_CODE (expr) == ADDR_EXPR) 553 val = get_value_from_alignment (expr); 554 else 555 { 556 val.lattice_val = VARYING; 557 val.mask = double_int_minus_one; 558 val.value = NULL_TREE; 559 } 560 return val; 561 } 562 563 /* Return the likely CCP lattice value for STMT. 564 565 If STMT has no operands, then return CONSTANT. 566 567 Else if undefinedness of operands of STMT cause its value to be 568 undefined, then return UNDEFINED. 569 570 Else if any operands of STMT are constants, then return CONSTANT. 571 572 Else return VARYING. */ 573 574 static ccp_lattice_t 575 likely_value (gimple stmt) 576 { 577 bool has_constant_operand, has_undefined_operand, all_undefined_operands; 578 tree use; 579 ssa_op_iter iter; 580 unsigned i; 581 582 enum gimple_code code = gimple_code (stmt); 583 584 /* This function appears to be called only for assignments, calls, 585 conditionals, and switches, due to the logic in visit_stmt. */ 586 gcc_assert (code == GIMPLE_ASSIGN 587 || code == GIMPLE_CALL 588 || code == GIMPLE_COND 589 || code == GIMPLE_SWITCH); 590 591 /* If the statement has volatile operands, it won't fold to a 592 constant value. */ 593 if (gimple_has_volatile_ops (stmt)) 594 return VARYING; 595 596 /* Arrive here for more complex cases. */ 597 has_constant_operand = false; 598 has_undefined_operand = false; 599 all_undefined_operands = true; 600 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) 601 { 602 prop_value_t *val = get_value (use); 603 604 if (val->lattice_val == UNDEFINED) 605 has_undefined_operand = true; 606 else 607 all_undefined_operands = false; 608 609 if (val->lattice_val == CONSTANT) 610 has_constant_operand = true; 611 } 612 613 /* There may be constants in regular rhs operands. For calls we 614 have to ignore lhs, fndecl and static chain, otherwise only 615 the lhs. */ 616 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt); 617 i < gimple_num_ops (stmt); ++i) 618 { 619 tree op = gimple_op (stmt, i); 620 if (!op || TREE_CODE (op) == SSA_NAME) 621 continue; 622 if (is_gimple_min_invariant (op)) 623 has_constant_operand = true; 624 } 625 626 if (has_constant_operand) 627 all_undefined_operands = false; 628 629 /* If the operation combines operands like COMPLEX_EXPR make sure to 630 not mark the result UNDEFINED if only one part of the result is 631 undefined. */ 632 if (has_undefined_operand && all_undefined_operands) 633 return UNDEFINED; 634 else if (code == GIMPLE_ASSIGN && has_undefined_operand) 635 { 636 switch (gimple_assign_rhs_code (stmt)) 637 { 638 /* Unary operators are handled with all_undefined_operands. */ 639 case PLUS_EXPR: 640 case MINUS_EXPR: 641 case POINTER_PLUS_EXPR: 642 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected. 643 Not bitwise operators, one VARYING operand may specify the 644 result completely. Not logical operators for the same reason. 645 Not COMPLEX_EXPR as one VARYING operand makes the result partly 646 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because 647 the undefined operand may be promoted. */ 648 return UNDEFINED; 649 650 case ADDR_EXPR: 651 /* If any part of an address is UNDEFINED, like the index 652 of an ARRAY_EXPR, then treat the result as UNDEFINED. */ 653 return UNDEFINED; 654 655 default: 656 ; 657 } 658 } 659 /* If there was an UNDEFINED operand but the result may be not UNDEFINED 660 fall back to CONSTANT. During iteration UNDEFINED may still drop 661 to CONSTANT. */ 662 if (has_undefined_operand) 663 return CONSTANT; 664 665 /* We do not consider virtual operands here -- load from read-only 666 memory may have only VARYING virtual operands, but still be 667 constant. */ 668 if (has_constant_operand 669 || gimple_references_memory_p (stmt)) 670 return CONSTANT; 671 672 return VARYING; 673 } 674 675 /* Returns true if STMT cannot be constant. */ 676 677 static bool 678 surely_varying_stmt_p (gimple stmt) 679 { 680 /* If the statement has operands that we cannot handle, it cannot be 681 constant. */ 682 if (gimple_has_volatile_ops (stmt)) 683 return true; 684 685 /* If it is a call and does not return a value or is not a 686 builtin and not an indirect call, it is varying. */ 687 if (is_gimple_call (stmt)) 688 { 689 tree fndecl; 690 if (!gimple_call_lhs (stmt) 691 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE 692 && !DECL_BUILT_IN (fndecl))) 693 return true; 694 } 695 696 /* Any other store operation is not interesting. */ 697 else if (gimple_vdef (stmt)) 698 return true; 699 700 /* Anything other than assignments and conditional jumps are not 701 interesting for CCP. */ 702 if (gimple_code (stmt) != GIMPLE_ASSIGN 703 && gimple_code (stmt) != GIMPLE_COND 704 && gimple_code (stmt) != GIMPLE_SWITCH 705 && gimple_code (stmt) != GIMPLE_CALL) 706 return true; 707 708 return false; 709 } 710 711 /* Initialize local data structures for CCP. */ 712 713 static void 714 ccp_initialize (void) 715 { 716 basic_block bb; 717 718 n_const_val = num_ssa_names; 719 const_val = XCNEWVEC (prop_value_t, n_const_val); 720 721 /* Initialize simulation flags for PHI nodes and statements. */ 722 FOR_EACH_BB (bb) 723 { 724 gimple_stmt_iterator i; 725 726 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) 727 { 728 gimple stmt = gsi_stmt (i); 729 bool is_varying; 730 731 /* If the statement is a control insn, then we do not 732 want to avoid simulating the statement once. Failure 733 to do so means that those edges will never get added. */ 734 if (stmt_ends_bb_p (stmt)) 735 is_varying = false; 736 else 737 is_varying = surely_varying_stmt_p (stmt); 738 739 if (is_varying) 740 { 741 tree def; 742 ssa_op_iter iter; 743 744 /* If the statement will not produce a constant, mark 745 all its outputs VARYING. */ 746 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) 747 set_value_varying (def); 748 } 749 prop_set_simulate_again (stmt, !is_varying); 750 } 751 } 752 753 /* Now process PHI nodes. We never clear the simulate_again flag on 754 phi nodes, since we do not know which edges are executable yet, 755 except for phi nodes for virtual operands when we do not do store ccp. */ 756 FOR_EACH_BB (bb) 757 { 758 gimple_stmt_iterator i; 759 760 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i)) 761 { 762 gimple phi = gsi_stmt (i); 763 764 if (virtual_operand_p (gimple_phi_result (phi))) 765 prop_set_simulate_again (phi, false); 766 else 767 prop_set_simulate_again (phi, true); 768 } 769 } 770 } 771 772 /* Debug count support. Reset the values of ssa names 773 VARYING when the total number ssa names analyzed is 774 beyond the debug count specified. */ 775 776 static void 777 do_dbg_cnt (void) 778 { 779 unsigned i; 780 for (i = 0; i < num_ssa_names; i++) 781 { 782 if (!dbg_cnt (ccp)) 783 { 784 const_val[i].lattice_val = VARYING; 785 const_val[i].mask = double_int_minus_one; 786 const_val[i].value = NULL_TREE; 787 } 788 } 789 } 790 791 792 /* Do final substitution of propagated values, cleanup the flowgraph and 793 free allocated storage. 794 795 Return TRUE when something was optimized. */ 796 797 static bool 798 ccp_finalize (void) 799 { 800 bool something_changed; 801 unsigned i; 802 803 do_dbg_cnt (); 804 805 /* Derive alignment and misalignment information from partially 806 constant pointers in the lattice. */ 807 for (i = 1; i < num_ssa_names; ++i) 808 { 809 tree name = ssa_name (i); 810 prop_value_t *val; 811 unsigned int tem, align; 812 813 if (!name 814 || !POINTER_TYPE_P (TREE_TYPE (name))) 815 continue; 816 817 val = get_value (name); 818 if (val->lattice_val != CONSTANT 819 || TREE_CODE (val->value) != INTEGER_CST) 820 continue; 821 822 /* Trailing constant bits specify the alignment, trailing value 823 bits the misalignment. */ 824 tem = val->mask.low; 825 align = (tem & -tem); 826 if (align > 1) 827 set_ptr_info_alignment (get_ptr_info (name), align, 828 TREE_INT_CST_LOW (val->value) & (align - 1)); 829 } 830 831 /* Perform substitutions based on the known constant values. */ 832 something_changed = substitute_and_fold (get_constant_value, 833 ccp_fold_stmt, true); 834 835 free (const_val); 836 const_val = NULL; 837 return something_changed;; 838 } 839 840 841 /* Compute the meet operator between *VAL1 and *VAL2. Store the result 842 in VAL1. 843 844 any M UNDEFINED = any 845 any M VARYING = VARYING 846 Ci M Cj = Ci if (i == j) 847 Ci M Cj = VARYING if (i != j) 848 */ 849 850 static void 851 ccp_lattice_meet (prop_value_t *val1, prop_value_t *val2) 852 { 853 if (val1->lattice_val == UNDEFINED) 854 { 855 /* UNDEFINED M any = any */ 856 *val1 = *val2; 857 } 858 else if (val2->lattice_val == UNDEFINED) 859 { 860 /* any M UNDEFINED = any 861 Nothing to do. VAL1 already contains the value we want. */ 862 ; 863 } 864 else if (val1->lattice_val == VARYING 865 || val2->lattice_val == VARYING) 866 { 867 /* any M VARYING = VARYING. */ 868 val1->lattice_val = VARYING; 869 val1->mask = double_int_minus_one; 870 val1->value = NULL_TREE; 871 } 872 else if (val1->lattice_val == CONSTANT 873 && val2->lattice_val == CONSTANT 874 && TREE_CODE (val1->value) == INTEGER_CST 875 && TREE_CODE (val2->value) == INTEGER_CST) 876 { 877 /* Ci M Cj = Ci if (i == j) 878 Ci M Cj = VARYING if (i != j) 879 880 For INTEGER_CSTs mask unequal bits. If no equal bits remain, 881 drop to varying. */ 882 val1->mask = val1->mask | val2->mask 883 | (tree_to_double_int (val1->value) 884 ^ tree_to_double_int (val2->value)); 885 if (val1->mask.is_minus_one ()) 886 { 887 val1->lattice_val = VARYING; 888 val1->value = NULL_TREE; 889 } 890 } 891 else if (val1->lattice_val == CONSTANT 892 && val2->lattice_val == CONSTANT 893 && simple_cst_equal (val1->value, val2->value) == 1) 894 { 895 /* Ci M Cj = Ci if (i == j) 896 Ci M Cj = VARYING if (i != j) 897 898 VAL1 already contains the value we want for equivalent values. */ 899 } 900 else if (val1->lattice_val == CONSTANT 901 && val2->lattice_val == CONSTANT 902 && (TREE_CODE (val1->value) == ADDR_EXPR 903 || TREE_CODE (val2->value) == ADDR_EXPR)) 904 { 905 /* When not equal addresses are involved try meeting for 906 alignment. */ 907 prop_value_t tem = *val2; 908 if (TREE_CODE (val1->value) == ADDR_EXPR) 909 *val1 = get_value_for_expr (val1->value, true); 910 if (TREE_CODE (val2->value) == ADDR_EXPR) 911 tem = get_value_for_expr (val2->value, true); 912 ccp_lattice_meet (val1, &tem); 913 } 914 else 915 { 916 /* Any other combination is VARYING. */ 917 val1->lattice_val = VARYING; 918 val1->mask = double_int_minus_one; 919 val1->value = NULL_TREE; 920 } 921 } 922 923 924 /* Loop through the PHI_NODE's parameters for BLOCK and compare their 925 lattice values to determine PHI_NODE's lattice value. The value of a 926 PHI node is determined calling ccp_lattice_meet with all the arguments 927 of the PHI node that are incoming via executable edges. */ 928 929 static enum ssa_prop_result 930 ccp_visit_phi_node (gimple phi) 931 { 932 unsigned i; 933 prop_value_t *old_val, new_val; 934 935 if (dump_file && (dump_flags & TDF_DETAILS)) 936 { 937 fprintf (dump_file, "\nVisiting PHI node: "); 938 print_gimple_stmt (dump_file, phi, 0, dump_flags); 939 } 940 941 old_val = get_value (gimple_phi_result (phi)); 942 switch (old_val->lattice_val) 943 { 944 case VARYING: 945 return SSA_PROP_VARYING; 946 947 case CONSTANT: 948 new_val = *old_val; 949 break; 950 951 case UNDEFINED: 952 new_val.lattice_val = UNDEFINED; 953 new_val.value = NULL_TREE; 954 break; 955 956 default: 957 gcc_unreachable (); 958 } 959 960 for (i = 0; i < gimple_phi_num_args (phi); i++) 961 { 962 /* Compute the meet operator over all the PHI arguments flowing 963 through executable edges. */ 964 edge e = gimple_phi_arg_edge (phi, i); 965 966 if (dump_file && (dump_flags & TDF_DETAILS)) 967 { 968 fprintf (dump_file, 969 "\n Argument #%d (%d -> %d %sexecutable)\n", 970 i, e->src->index, e->dest->index, 971 (e->flags & EDGE_EXECUTABLE) ? "" : "not "); 972 } 973 974 /* If the incoming edge is executable, Compute the meet operator for 975 the existing value of the PHI node and the current PHI argument. */ 976 if (e->flags & EDGE_EXECUTABLE) 977 { 978 tree arg = gimple_phi_arg (phi, i)->def; 979 prop_value_t arg_val = get_value_for_expr (arg, false); 980 981 ccp_lattice_meet (&new_val, &arg_val); 982 983 if (dump_file && (dump_flags & TDF_DETAILS)) 984 { 985 fprintf (dump_file, "\t"); 986 print_generic_expr (dump_file, arg, dump_flags); 987 dump_lattice_value (dump_file, "\tValue: ", arg_val); 988 fprintf (dump_file, "\n"); 989 } 990 991 if (new_val.lattice_val == VARYING) 992 break; 993 } 994 } 995 996 if (dump_file && (dump_flags & TDF_DETAILS)) 997 { 998 dump_lattice_value (dump_file, "\n PHI node value: ", new_val); 999 fprintf (dump_file, "\n\n"); 1000 } 1001 1002 /* Make the transition to the new value. */ 1003 if (set_lattice_value (gimple_phi_result (phi), new_val)) 1004 { 1005 if (new_val.lattice_val == VARYING) 1006 return SSA_PROP_VARYING; 1007 else 1008 return SSA_PROP_INTERESTING; 1009 } 1010 else 1011 return SSA_PROP_NOT_INTERESTING; 1012 } 1013 1014 /* Return the constant value for OP or OP otherwise. */ 1015 1016 static tree 1017 valueize_op (tree op) 1018 { 1019 if (TREE_CODE (op) == SSA_NAME) 1020 { 1021 tree tem = get_constant_value (op); 1022 if (tem) 1023 return tem; 1024 } 1025 return op; 1026 } 1027 1028 /* CCP specific front-end to the non-destructive constant folding 1029 routines. 1030 1031 Attempt to simplify the RHS of STMT knowing that one or more 1032 operands are constants. 1033 1034 If simplification is possible, return the simplified RHS, 1035 otherwise return the original RHS or NULL_TREE. */ 1036 1037 static tree 1038 ccp_fold (gimple stmt) 1039 { 1040 location_t loc = gimple_location (stmt); 1041 switch (gimple_code (stmt)) 1042 { 1043 case GIMPLE_COND: 1044 { 1045 /* Handle comparison operators that can appear in GIMPLE form. */ 1046 tree op0 = valueize_op (gimple_cond_lhs (stmt)); 1047 tree op1 = valueize_op (gimple_cond_rhs (stmt)); 1048 enum tree_code code = gimple_cond_code (stmt); 1049 return fold_binary_loc (loc, code, boolean_type_node, op0, op1); 1050 } 1051 1052 case GIMPLE_SWITCH: 1053 { 1054 /* Return the constant switch index. */ 1055 return valueize_op (gimple_switch_index (stmt)); 1056 } 1057 1058 case GIMPLE_ASSIGN: 1059 case GIMPLE_CALL: 1060 return gimple_fold_stmt_to_constant_1 (stmt, valueize_op); 1061 1062 default: 1063 gcc_unreachable (); 1064 } 1065 } 1066 1067 /* Apply the operation CODE in type TYPE to the value, mask pair 1068 RVAL and RMASK representing a value of type RTYPE and set 1069 the value, mask pair *VAL and *MASK to the result. */ 1070 1071 static void 1072 bit_value_unop_1 (enum tree_code code, tree type, 1073 double_int *val, double_int *mask, 1074 tree rtype, double_int rval, double_int rmask) 1075 { 1076 switch (code) 1077 { 1078 case BIT_NOT_EXPR: 1079 *mask = rmask; 1080 *val = ~rval; 1081 break; 1082 1083 case NEGATE_EXPR: 1084 { 1085 double_int temv, temm; 1086 /* Return ~rval + 1. */ 1087 bit_value_unop_1 (BIT_NOT_EXPR, type, &temv, &temm, type, rval, rmask); 1088 bit_value_binop_1 (PLUS_EXPR, type, val, mask, 1089 type, temv, temm, 1090 type, double_int_one, double_int_zero); 1091 break; 1092 } 1093 1094 CASE_CONVERT: 1095 { 1096 bool uns; 1097 1098 /* First extend mask and value according to the original type. */ 1099 uns = TYPE_UNSIGNED (rtype); 1100 *mask = rmask.ext (TYPE_PRECISION (rtype), uns); 1101 *val = rval.ext (TYPE_PRECISION (rtype), uns); 1102 1103 /* Then extend mask and value according to the target type. */ 1104 uns = TYPE_UNSIGNED (type); 1105 *mask = (*mask).ext (TYPE_PRECISION (type), uns); 1106 *val = (*val).ext (TYPE_PRECISION (type), uns); 1107 break; 1108 } 1109 1110 default: 1111 *mask = double_int_minus_one; 1112 break; 1113 } 1114 } 1115 1116 /* Apply the operation CODE in type TYPE to the value, mask pairs 1117 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE 1118 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */ 1119 1120 static void 1121 bit_value_binop_1 (enum tree_code code, tree type, 1122 double_int *val, double_int *mask, 1123 tree r1type, double_int r1val, double_int r1mask, 1124 tree r2type, double_int r2val, double_int r2mask) 1125 { 1126 bool uns = TYPE_UNSIGNED (type); 1127 /* Assume we'll get a constant result. Use an initial varying value, 1128 we fall back to varying in the end if necessary. */ 1129 *mask = double_int_minus_one; 1130 switch (code) 1131 { 1132 case BIT_AND_EXPR: 1133 /* The mask is constant where there is a known not 1134 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */ 1135 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask); 1136 *val = r1val & r2val; 1137 break; 1138 1139 case BIT_IOR_EXPR: 1140 /* The mask is constant where there is a known 1141 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */ 1142 *mask = (r1mask | r2mask) 1143 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask)); 1144 *val = r1val | r2val; 1145 break; 1146 1147 case BIT_XOR_EXPR: 1148 /* m1 | m2 */ 1149 *mask = r1mask | r2mask; 1150 *val = r1val ^ r2val; 1151 break; 1152 1153 case LROTATE_EXPR: 1154 case RROTATE_EXPR: 1155 if (r2mask.is_zero ()) 1156 { 1157 HOST_WIDE_INT shift = r2val.low; 1158 if (code == RROTATE_EXPR) 1159 shift = -shift; 1160 *mask = r1mask.lrotate (shift, TYPE_PRECISION (type)); 1161 *val = r1val.lrotate (shift, TYPE_PRECISION (type)); 1162 } 1163 break; 1164 1165 case LSHIFT_EXPR: 1166 case RSHIFT_EXPR: 1167 /* ??? We can handle partially known shift counts if we know 1168 its sign. That way we can tell that (x << (y | 8)) & 255 1169 is zero. */ 1170 if (r2mask.is_zero ()) 1171 { 1172 HOST_WIDE_INT shift = r2val.low; 1173 if (code == RSHIFT_EXPR) 1174 shift = -shift; 1175 /* We need to know if we are doing a left or a right shift 1176 to properly shift in zeros for left shift and unsigned 1177 right shifts and the sign bit for signed right shifts. 1178 For signed right shifts we shift in varying in case 1179 the sign bit was varying. */ 1180 if (shift > 0) 1181 { 1182 *mask = r1mask.llshift (shift, TYPE_PRECISION (type)); 1183 *val = r1val.llshift (shift, TYPE_PRECISION (type)); 1184 } 1185 else if (shift < 0) 1186 { 1187 shift = -shift; 1188 *mask = r1mask.rshift (shift, TYPE_PRECISION (type), !uns); 1189 *val = r1val.rshift (shift, TYPE_PRECISION (type), !uns); 1190 } 1191 else 1192 { 1193 *mask = r1mask; 1194 *val = r1val; 1195 } 1196 } 1197 break; 1198 1199 case PLUS_EXPR: 1200 case POINTER_PLUS_EXPR: 1201 { 1202 double_int lo, hi; 1203 /* Do the addition with unknown bits set to zero, to give carry-ins of 1204 zero wherever possible. */ 1205 lo = r1val.and_not (r1mask) + r2val.and_not (r2mask); 1206 lo = lo.ext (TYPE_PRECISION (type), uns); 1207 /* Do the addition with unknown bits set to one, to give carry-ins of 1208 one wherever possible. */ 1209 hi = (r1val | r1mask) + (r2val | r2mask); 1210 hi = hi.ext (TYPE_PRECISION (type), uns); 1211 /* Each bit in the result is known if (a) the corresponding bits in 1212 both inputs are known, and (b) the carry-in to that bit position 1213 is known. We can check condition (b) by seeing if we got the same 1214 result with minimised carries as with maximised carries. */ 1215 *mask = r1mask | r2mask | (lo ^ hi); 1216 *mask = (*mask).ext (TYPE_PRECISION (type), uns); 1217 /* It shouldn't matter whether we choose lo or hi here. */ 1218 *val = lo; 1219 break; 1220 } 1221 1222 case MINUS_EXPR: 1223 { 1224 double_int temv, temm; 1225 bit_value_unop_1 (NEGATE_EXPR, r2type, &temv, &temm, 1226 r2type, r2val, r2mask); 1227 bit_value_binop_1 (PLUS_EXPR, type, val, mask, 1228 r1type, r1val, r1mask, 1229 r2type, temv, temm); 1230 break; 1231 } 1232 1233 case MULT_EXPR: 1234 { 1235 /* Just track trailing zeros in both operands and transfer 1236 them to the other. */ 1237 int r1tz = (r1val | r1mask).trailing_zeros (); 1238 int r2tz = (r2val | r2mask).trailing_zeros (); 1239 if (r1tz + r2tz >= HOST_BITS_PER_DOUBLE_INT) 1240 { 1241 *mask = double_int_zero; 1242 *val = double_int_zero; 1243 } 1244 else if (r1tz + r2tz > 0) 1245 { 1246 *mask = ~double_int::mask (r1tz + r2tz); 1247 *mask = (*mask).ext (TYPE_PRECISION (type), uns); 1248 *val = double_int_zero; 1249 } 1250 break; 1251 } 1252 1253 case EQ_EXPR: 1254 case NE_EXPR: 1255 { 1256 double_int m = r1mask | r2mask; 1257 if (r1val.and_not (m) != r2val.and_not (m)) 1258 { 1259 *mask = double_int_zero; 1260 *val = ((code == EQ_EXPR) ? double_int_zero : double_int_one); 1261 } 1262 else 1263 { 1264 /* We know the result of a comparison is always one or zero. */ 1265 *mask = double_int_one; 1266 *val = double_int_zero; 1267 } 1268 break; 1269 } 1270 1271 case GE_EXPR: 1272 case GT_EXPR: 1273 { 1274 double_int tem = r1val; 1275 r1val = r2val; 1276 r2val = tem; 1277 tem = r1mask; 1278 r1mask = r2mask; 1279 r2mask = tem; 1280 code = swap_tree_comparison (code); 1281 } 1282 /* Fallthru. */ 1283 case LT_EXPR: 1284 case LE_EXPR: 1285 { 1286 int minmax, maxmin; 1287 /* If the most significant bits are not known we know nothing. */ 1288 if (r1mask.is_negative () || r2mask.is_negative ()) 1289 break; 1290 1291 /* For comparisons the signedness is in the comparison operands. */ 1292 uns = TYPE_UNSIGNED (r1type); 1293 1294 /* If we know the most significant bits we know the values 1295 value ranges by means of treating varying bits as zero 1296 or one. Do a cross comparison of the max/min pairs. */ 1297 maxmin = (r1val | r1mask).cmp (r2val.and_not (r2mask), uns); 1298 minmax = r1val.and_not (r1mask).cmp (r2val | r2mask, uns); 1299 if (maxmin < 0) /* r1 is less than r2. */ 1300 { 1301 *mask = double_int_zero; 1302 *val = double_int_one; 1303 } 1304 else if (minmax > 0) /* r1 is not less or equal to r2. */ 1305 { 1306 *mask = double_int_zero; 1307 *val = double_int_zero; 1308 } 1309 else if (maxmin == minmax) /* r1 and r2 are equal. */ 1310 { 1311 /* This probably should never happen as we'd have 1312 folded the thing during fully constant value folding. */ 1313 *mask = double_int_zero; 1314 *val = (code == LE_EXPR ? double_int_one : double_int_zero); 1315 } 1316 else 1317 { 1318 /* We know the result of a comparison is always one or zero. */ 1319 *mask = double_int_one; 1320 *val = double_int_zero; 1321 } 1322 break; 1323 } 1324 1325 default:; 1326 } 1327 } 1328 1329 /* Return the propagation value when applying the operation CODE to 1330 the value RHS yielding type TYPE. */ 1331 1332 static prop_value_t 1333 bit_value_unop (enum tree_code code, tree type, tree rhs) 1334 { 1335 prop_value_t rval = get_value_for_expr (rhs, true); 1336 double_int value, mask; 1337 prop_value_t val; 1338 1339 if (rval.lattice_val == UNDEFINED) 1340 return rval; 1341 1342 gcc_assert ((rval.lattice_val == CONSTANT 1343 && TREE_CODE (rval.value) == INTEGER_CST) 1344 || rval.mask.is_minus_one ()); 1345 bit_value_unop_1 (code, type, &value, &mask, 1346 TREE_TYPE (rhs), value_to_double_int (rval), rval.mask); 1347 if (!mask.is_minus_one ()) 1348 { 1349 val.lattice_val = CONSTANT; 1350 val.mask = mask; 1351 /* ??? Delay building trees here. */ 1352 val.value = double_int_to_tree (type, value); 1353 } 1354 else 1355 { 1356 val.lattice_val = VARYING; 1357 val.value = NULL_TREE; 1358 val.mask = double_int_minus_one; 1359 } 1360 return val; 1361 } 1362 1363 /* Return the propagation value when applying the operation CODE to 1364 the values RHS1 and RHS2 yielding type TYPE. */ 1365 1366 static prop_value_t 1367 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2) 1368 { 1369 prop_value_t r1val = get_value_for_expr (rhs1, true); 1370 prop_value_t r2val = get_value_for_expr (rhs2, true); 1371 double_int value, mask; 1372 prop_value_t val; 1373 1374 if (r1val.lattice_val == UNDEFINED 1375 || r2val.lattice_val == UNDEFINED) 1376 { 1377 val.lattice_val = VARYING; 1378 val.value = NULL_TREE; 1379 val.mask = double_int_minus_one; 1380 return val; 1381 } 1382 1383 gcc_assert ((r1val.lattice_val == CONSTANT 1384 && TREE_CODE (r1val.value) == INTEGER_CST) 1385 || r1val.mask.is_minus_one ()); 1386 gcc_assert ((r2val.lattice_val == CONSTANT 1387 && TREE_CODE (r2val.value) == INTEGER_CST) 1388 || r2val.mask.is_minus_one ()); 1389 bit_value_binop_1 (code, type, &value, &mask, 1390 TREE_TYPE (rhs1), value_to_double_int (r1val), r1val.mask, 1391 TREE_TYPE (rhs2), value_to_double_int (r2val), r2val.mask); 1392 if (!mask.is_minus_one ()) 1393 { 1394 val.lattice_val = CONSTANT; 1395 val.mask = mask; 1396 /* ??? Delay building trees here. */ 1397 val.value = double_int_to_tree (type, value); 1398 } 1399 else 1400 { 1401 val.lattice_val = VARYING; 1402 val.value = NULL_TREE; 1403 val.mask = double_int_minus_one; 1404 } 1405 return val; 1406 } 1407 1408 /* Return the propagation value when applying __builtin_assume_aligned to 1409 its arguments. */ 1410 1411 static prop_value_t 1412 bit_value_assume_aligned (gimple stmt) 1413 { 1414 tree ptr = gimple_call_arg (stmt, 0), align, misalign = NULL_TREE; 1415 tree type = TREE_TYPE (ptr); 1416 unsigned HOST_WIDE_INT aligni, misaligni = 0; 1417 prop_value_t ptrval = get_value_for_expr (ptr, true); 1418 prop_value_t alignval; 1419 double_int value, mask; 1420 prop_value_t val; 1421 if (ptrval.lattice_val == UNDEFINED) 1422 return ptrval; 1423 gcc_assert ((ptrval.lattice_val == CONSTANT 1424 && TREE_CODE (ptrval.value) == INTEGER_CST) 1425 || ptrval.mask.is_minus_one ()); 1426 align = gimple_call_arg (stmt, 1); 1427 if (!host_integerp (align, 1)) 1428 return ptrval; 1429 aligni = tree_low_cst (align, 1); 1430 if (aligni <= 1 1431 || (aligni & (aligni - 1)) != 0) 1432 return ptrval; 1433 if (gimple_call_num_args (stmt) > 2) 1434 { 1435 misalign = gimple_call_arg (stmt, 2); 1436 if (!host_integerp (misalign, 1)) 1437 return ptrval; 1438 misaligni = tree_low_cst (misalign, 1); 1439 if (misaligni >= aligni) 1440 return ptrval; 1441 } 1442 align = build_int_cst_type (type, -aligni); 1443 alignval = get_value_for_expr (align, true); 1444 bit_value_binop_1 (BIT_AND_EXPR, type, &value, &mask, 1445 type, value_to_double_int (ptrval), ptrval.mask, 1446 type, value_to_double_int (alignval), alignval.mask); 1447 if (!mask.is_minus_one ()) 1448 { 1449 val.lattice_val = CONSTANT; 1450 val.mask = mask; 1451 gcc_assert ((mask.low & (aligni - 1)) == 0); 1452 gcc_assert ((value.low & (aligni - 1)) == 0); 1453 value.low |= misaligni; 1454 /* ??? Delay building trees here. */ 1455 val.value = double_int_to_tree (type, value); 1456 } 1457 else 1458 { 1459 val.lattice_val = VARYING; 1460 val.value = NULL_TREE; 1461 val.mask = double_int_minus_one; 1462 } 1463 return val; 1464 } 1465 1466 /* Evaluate statement STMT. 1467 Valid only for assignments, calls, conditionals, and switches. */ 1468 1469 static prop_value_t 1470 evaluate_stmt (gimple stmt) 1471 { 1472 prop_value_t val; 1473 tree simplified = NULL_TREE; 1474 ccp_lattice_t likelyvalue = likely_value (stmt); 1475 bool is_constant = false; 1476 unsigned int align; 1477 1478 if (dump_file && (dump_flags & TDF_DETAILS)) 1479 { 1480 fprintf (dump_file, "which is likely "); 1481 switch (likelyvalue) 1482 { 1483 case CONSTANT: 1484 fprintf (dump_file, "CONSTANT"); 1485 break; 1486 case UNDEFINED: 1487 fprintf (dump_file, "UNDEFINED"); 1488 break; 1489 case VARYING: 1490 fprintf (dump_file, "VARYING"); 1491 break; 1492 default:; 1493 } 1494 fprintf (dump_file, "\n"); 1495 } 1496 1497 /* If the statement is likely to have a CONSTANT result, then try 1498 to fold the statement to determine the constant value. */ 1499 /* FIXME. This is the only place that we call ccp_fold. 1500 Since likely_value never returns CONSTANT for calls, we will 1501 not attempt to fold them, including builtins that may profit. */ 1502 if (likelyvalue == CONSTANT) 1503 { 1504 fold_defer_overflow_warnings (); 1505 simplified = ccp_fold (stmt); 1506 is_constant = simplified && is_gimple_min_invariant (simplified); 1507 fold_undefer_overflow_warnings (is_constant, stmt, 0); 1508 if (is_constant) 1509 { 1510 /* The statement produced a constant value. */ 1511 val.lattice_val = CONSTANT; 1512 val.value = simplified; 1513 val.mask = double_int_zero; 1514 } 1515 } 1516 /* If the statement is likely to have a VARYING result, then do not 1517 bother folding the statement. */ 1518 else if (likelyvalue == VARYING) 1519 { 1520 enum gimple_code code = gimple_code (stmt); 1521 if (code == GIMPLE_ASSIGN) 1522 { 1523 enum tree_code subcode = gimple_assign_rhs_code (stmt); 1524 1525 /* Other cases cannot satisfy is_gimple_min_invariant 1526 without folding. */ 1527 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS) 1528 simplified = gimple_assign_rhs1 (stmt); 1529 } 1530 else if (code == GIMPLE_SWITCH) 1531 simplified = gimple_switch_index (stmt); 1532 else 1533 /* These cannot satisfy is_gimple_min_invariant without folding. */ 1534 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND); 1535 is_constant = simplified && is_gimple_min_invariant (simplified); 1536 if (is_constant) 1537 { 1538 /* The statement produced a constant value. */ 1539 val.lattice_val = CONSTANT; 1540 val.value = simplified; 1541 val.mask = double_int_zero; 1542 } 1543 } 1544 1545 /* Resort to simplification for bitwise tracking. */ 1546 if (flag_tree_bit_ccp 1547 && (likelyvalue == CONSTANT || is_gimple_call (stmt)) 1548 && !is_constant) 1549 { 1550 enum gimple_code code = gimple_code (stmt); 1551 val.lattice_val = VARYING; 1552 val.value = NULL_TREE; 1553 val.mask = double_int_minus_one; 1554 if (code == GIMPLE_ASSIGN) 1555 { 1556 enum tree_code subcode = gimple_assign_rhs_code (stmt); 1557 tree rhs1 = gimple_assign_rhs1 (stmt); 1558 switch (get_gimple_rhs_class (subcode)) 1559 { 1560 case GIMPLE_SINGLE_RHS: 1561 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) 1562 || POINTER_TYPE_P (TREE_TYPE (rhs1))) 1563 val = get_value_for_expr (rhs1, true); 1564 break; 1565 1566 case GIMPLE_UNARY_RHS: 1567 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) 1568 || POINTER_TYPE_P (TREE_TYPE (rhs1))) 1569 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt)) 1570 || POINTER_TYPE_P (gimple_expr_type (stmt)))) 1571 val = bit_value_unop (subcode, gimple_expr_type (stmt), rhs1); 1572 break; 1573 1574 case GIMPLE_BINARY_RHS: 1575 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) 1576 || POINTER_TYPE_P (TREE_TYPE (rhs1))) 1577 { 1578 tree lhs = gimple_assign_lhs (stmt); 1579 tree rhs2 = gimple_assign_rhs2 (stmt); 1580 val = bit_value_binop (subcode, 1581 TREE_TYPE (lhs), rhs1, rhs2); 1582 } 1583 break; 1584 1585 default:; 1586 } 1587 } 1588 else if (code == GIMPLE_COND) 1589 { 1590 enum tree_code code = gimple_cond_code (stmt); 1591 tree rhs1 = gimple_cond_lhs (stmt); 1592 tree rhs2 = gimple_cond_rhs (stmt); 1593 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)) 1594 || POINTER_TYPE_P (TREE_TYPE (rhs1))) 1595 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2); 1596 } 1597 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) 1598 { 1599 tree fndecl = gimple_call_fndecl (stmt); 1600 switch (DECL_FUNCTION_CODE (fndecl)) 1601 { 1602 case BUILT_IN_MALLOC: 1603 case BUILT_IN_REALLOC: 1604 case BUILT_IN_CALLOC: 1605 case BUILT_IN_STRDUP: 1606 case BUILT_IN_STRNDUP: 1607 val.lattice_val = CONSTANT; 1608 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); 1609 val.mask = double_int::from_shwi 1610 (~(((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT) 1611 / BITS_PER_UNIT - 1)); 1612 break; 1613 1614 case BUILT_IN_ALLOCA: 1615 case BUILT_IN_ALLOCA_WITH_ALIGN: 1616 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN 1617 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)) 1618 : BIGGEST_ALIGNMENT); 1619 val.lattice_val = CONSTANT; 1620 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0); 1621 val.mask = double_int::from_shwi (~(((HOST_WIDE_INT) align) 1622 / BITS_PER_UNIT - 1)); 1623 break; 1624 1625 /* These builtins return their first argument, unmodified. */ 1626 case BUILT_IN_MEMCPY: 1627 case BUILT_IN_MEMMOVE: 1628 case BUILT_IN_MEMSET: 1629 case BUILT_IN_STRCPY: 1630 case BUILT_IN_STRNCPY: 1631 case BUILT_IN_MEMCPY_CHK: 1632 case BUILT_IN_MEMMOVE_CHK: 1633 case BUILT_IN_MEMSET_CHK: 1634 case BUILT_IN_STRCPY_CHK: 1635 case BUILT_IN_STRNCPY_CHK: 1636 val = get_value_for_expr (gimple_call_arg (stmt, 0), true); 1637 break; 1638 1639 case BUILT_IN_ASSUME_ALIGNED: 1640 val = bit_value_assume_aligned (stmt); 1641 break; 1642 1643 default:; 1644 } 1645 } 1646 is_constant = (val.lattice_val == CONSTANT); 1647 } 1648 1649 if (!is_constant) 1650 { 1651 /* The statement produced a nonconstant value. If the statement 1652 had UNDEFINED operands, then the result of the statement 1653 should be UNDEFINED. Otherwise, the statement is VARYING. */ 1654 if (likelyvalue == UNDEFINED) 1655 { 1656 val.lattice_val = likelyvalue; 1657 val.mask = double_int_zero; 1658 } 1659 else 1660 { 1661 val.lattice_val = VARYING; 1662 val.mask = double_int_minus_one; 1663 } 1664 1665 val.value = NULL_TREE; 1666 } 1667 1668 return val; 1669 } 1670 1671 typedef hash_table <pointer_hash <gimple_statement_d> > gimple_htab; 1672 1673 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before 1674 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */ 1675 1676 static void 1677 insert_clobber_before_stack_restore (tree saved_val, tree var, 1678 gimple_htab *visited) 1679 { 1680 gimple stmt, clobber_stmt; 1681 tree clobber; 1682 imm_use_iterator iter; 1683 gimple_stmt_iterator i; 1684 gimple *slot; 1685 1686 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val) 1687 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE)) 1688 { 1689 clobber = build_constructor (TREE_TYPE (var), 1690 NULL); 1691 TREE_THIS_VOLATILE (clobber) = 1; 1692 clobber_stmt = gimple_build_assign (var, clobber); 1693 1694 i = gsi_for_stmt (stmt); 1695 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT); 1696 } 1697 else if (gimple_code (stmt) == GIMPLE_PHI) 1698 { 1699 if (!visited->is_created ()) 1700 visited->create (10); 1701 1702 slot = visited->find_slot (stmt, INSERT); 1703 if (*slot != NULL) 1704 continue; 1705 1706 *slot = stmt; 1707 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var, 1708 visited); 1709 } 1710 else if (gimple_assign_ssa_name_copy_p (stmt)) 1711 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var, 1712 visited); 1713 else 1714 gcc_assert (is_gimple_debug (stmt)); 1715 } 1716 1717 /* Advance the iterator to the previous non-debug gimple statement in the same 1718 or dominating basic block. */ 1719 1720 static inline void 1721 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i) 1722 { 1723 basic_block dom; 1724 1725 gsi_prev_nondebug (i); 1726 while (gsi_end_p (*i)) 1727 { 1728 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb); 1729 if (dom == NULL || dom == ENTRY_BLOCK_PTR) 1730 return; 1731 1732 *i = gsi_last_bb (dom); 1733 } 1734 } 1735 1736 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert 1737 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE. 1738 1739 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a 1740 previous pass (such as DOM) duplicated it along multiple paths to a BB. In 1741 that case the function gives up without inserting the clobbers. */ 1742 1743 static void 1744 insert_clobbers_for_var (gimple_stmt_iterator i, tree var) 1745 { 1746 gimple stmt; 1747 tree saved_val; 1748 gimple_htab visited; 1749 1750 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i)) 1751 { 1752 stmt = gsi_stmt (i); 1753 1754 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE)) 1755 continue; 1756 1757 saved_val = gimple_call_lhs (stmt); 1758 if (saved_val == NULL_TREE) 1759 continue; 1760 1761 insert_clobber_before_stack_restore (saved_val, var, &visited); 1762 break; 1763 } 1764 1765 if (visited.is_created ()) 1766 visited.dispose (); 1767 } 1768 1769 /* Detects a __builtin_alloca_with_align with constant size argument. Declares 1770 fixed-size array and returns the address, if found, otherwise returns 1771 NULL_TREE. */ 1772 1773 static tree 1774 fold_builtin_alloca_with_align (gimple stmt) 1775 { 1776 unsigned HOST_WIDE_INT size, threshold, n_elem; 1777 tree lhs, arg, block, var, elem_type, array_type; 1778 1779 /* Get lhs. */ 1780 lhs = gimple_call_lhs (stmt); 1781 if (lhs == NULL_TREE) 1782 return NULL_TREE; 1783 1784 /* Detect constant argument. */ 1785 arg = get_constant_value (gimple_call_arg (stmt, 0)); 1786 if (arg == NULL_TREE 1787 || TREE_CODE (arg) != INTEGER_CST 1788 || !host_integerp (arg, 1)) 1789 return NULL_TREE; 1790 1791 size = TREE_INT_CST_LOW (arg); 1792 1793 /* Heuristic: don't fold large allocas. */ 1794 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME); 1795 /* In case the alloca is located at function entry, it has the same lifetime 1796 as a declared array, so we allow a larger size. */ 1797 block = gimple_block (stmt); 1798 if (!(cfun->after_inlining 1799 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)) 1800 threshold /= 10; 1801 if (size > threshold) 1802 return NULL_TREE; 1803 1804 /* Declare array. */ 1805 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1); 1806 n_elem = size * 8 / BITS_PER_UNIT; 1807 array_type = build_array_type_nelts (elem_type, n_elem); 1808 var = create_tmp_var (array_type, NULL); 1809 DECL_ALIGN (var) = TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)); 1810 { 1811 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs); 1812 if (pi != NULL && !pi->pt.anything) 1813 { 1814 bool singleton_p; 1815 unsigned uid; 1816 singleton_p = pt_solution_singleton_p (&pi->pt, &uid); 1817 gcc_assert (singleton_p); 1818 SET_DECL_PT_UID (var, uid); 1819 } 1820 } 1821 1822 /* Fold alloca to the address of the array. */ 1823 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var)); 1824 } 1825 1826 /* Fold the stmt at *GSI with CCP specific information that propagating 1827 and regular folding does not catch. */ 1828 1829 static bool 1830 ccp_fold_stmt (gimple_stmt_iterator *gsi) 1831 { 1832 gimple stmt = gsi_stmt (*gsi); 1833 1834 switch (gimple_code (stmt)) 1835 { 1836 case GIMPLE_COND: 1837 { 1838 prop_value_t val; 1839 /* Statement evaluation will handle type mismatches in constants 1840 more gracefully than the final propagation. This allows us to 1841 fold more conditionals here. */ 1842 val = evaluate_stmt (stmt); 1843 if (val.lattice_val != CONSTANT 1844 || !val.mask.is_zero ()) 1845 return false; 1846 1847 if (dump_file) 1848 { 1849 fprintf (dump_file, "Folding predicate "); 1850 print_gimple_expr (dump_file, stmt, 0, 0); 1851 fprintf (dump_file, " to "); 1852 print_generic_expr (dump_file, val.value, 0); 1853 fprintf (dump_file, "\n"); 1854 } 1855 1856 if (integer_zerop (val.value)) 1857 gimple_cond_make_false (stmt); 1858 else 1859 gimple_cond_make_true (stmt); 1860 1861 return true; 1862 } 1863 1864 case GIMPLE_CALL: 1865 { 1866 tree lhs = gimple_call_lhs (stmt); 1867 int flags = gimple_call_flags (stmt); 1868 tree val; 1869 tree argt; 1870 bool changed = false; 1871 unsigned i; 1872 1873 /* If the call was folded into a constant make sure it goes 1874 away even if we cannot propagate into all uses because of 1875 type issues. */ 1876 if (lhs 1877 && TREE_CODE (lhs) == SSA_NAME 1878 && (val = get_constant_value (lhs)) 1879 /* Don't optimize away calls that have side-effects. */ 1880 && (flags & (ECF_CONST|ECF_PURE)) != 0 1881 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0) 1882 { 1883 tree new_rhs = unshare_expr (val); 1884 bool res; 1885 if (!useless_type_conversion_p (TREE_TYPE (lhs), 1886 TREE_TYPE (new_rhs))) 1887 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); 1888 res = update_call_from_tree (gsi, new_rhs); 1889 gcc_assert (res); 1890 return true; 1891 } 1892 1893 /* Internal calls provide no argument types, so the extra laxity 1894 for normal calls does not apply. */ 1895 if (gimple_call_internal_p (stmt)) 1896 return false; 1897 1898 /* The heuristic of fold_builtin_alloca_with_align differs before and 1899 after inlining, so we don't require the arg to be changed into a 1900 constant for folding, but just to be constant. */ 1901 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)) 1902 { 1903 tree new_rhs = fold_builtin_alloca_with_align (stmt); 1904 if (new_rhs) 1905 { 1906 bool res = update_call_from_tree (gsi, new_rhs); 1907 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0); 1908 gcc_assert (res); 1909 insert_clobbers_for_var (*gsi, var); 1910 return true; 1911 } 1912 } 1913 1914 /* Propagate into the call arguments. Compared to replace_uses_in 1915 this can use the argument slot types for type verification 1916 instead of the current argument type. We also can safely 1917 drop qualifiers here as we are dealing with constants anyway. */ 1918 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt)); 1919 for (i = 0; i < gimple_call_num_args (stmt) && argt; 1920 ++i, argt = TREE_CHAIN (argt)) 1921 { 1922 tree arg = gimple_call_arg (stmt, i); 1923 if (TREE_CODE (arg) == SSA_NAME 1924 && (val = get_constant_value (arg)) 1925 && useless_type_conversion_p 1926 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)), 1927 TYPE_MAIN_VARIANT (TREE_TYPE (val)))) 1928 { 1929 gimple_call_set_arg (stmt, i, unshare_expr (val)); 1930 changed = true; 1931 } 1932 } 1933 1934 return changed; 1935 } 1936 1937 case GIMPLE_ASSIGN: 1938 { 1939 tree lhs = gimple_assign_lhs (stmt); 1940 tree val; 1941 1942 /* If we have a load that turned out to be constant replace it 1943 as we cannot propagate into all uses in all cases. */ 1944 if (gimple_assign_single_p (stmt) 1945 && TREE_CODE (lhs) == SSA_NAME 1946 && (val = get_constant_value (lhs))) 1947 { 1948 tree rhs = unshare_expr (val); 1949 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs))) 1950 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs); 1951 gimple_assign_set_rhs_from_tree (gsi, rhs); 1952 return true; 1953 } 1954 1955 return false; 1956 } 1957 1958 default: 1959 return false; 1960 } 1961 } 1962 1963 /* Visit the assignment statement STMT. Set the value of its LHS to the 1964 value computed by the RHS and store LHS in *OUTPUT_P. If STMT 1965 creates virtual definitions, set the value of each new name to that 1966 of the RHS (if we can derive a constant out of the RHS). 1967 Value-returning call statements also perform an assignment, and 1968 are handled here. */ 1969 1970 static enum ssa_prop_result 1971 visit_assignment (gimple stmt, tree *output_p) 1972 { 1973 prop_value_t val; 1974 enum ssa_prop_result retval; 1975 1976 tree lhs = gimple_get_lhs (stmt); 1977 1978 gcc_assert (gimple_code (stmt) != GIMPLE_CALL 1979 || gimple_call_lhs (stmt) != NULL_TREE); 1980 1981 if (gimple_assign_single_p (stmt) 1982 && gimple_assign_rhs_code (stmt) == SSA_NAME) 1983 /* For a simple copy operation, we copy the lattice values. */ 1984 val = *get_value (gimple_assign_rhs1 (stmt)); 1985 else 1986 /* Evaluate the statement, which could be 1987 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ 1988 val = evaluate_stmt (stmt); 1989 1990 retval = SSA_PROP_NOT_INTERESTING; 1991 1992 /* Set the lattice value of the statement's output. */ 1993 if (TREE_CODE (lhs) == SSA_NAME) 1994 { 1995 /* If STMT is an assignment to an SSA_NAME, we only have one 1996 value to set. */ 1997 if (set_lattice_value (lhs, val)) 1998 { 1999 *output_p = lhs; 2000 if (val.lattice_val == VARYING) 2001 retval = SSA_PROP_VARYING; 2002 else 2003 retval = SSA_PROP_INTERESTING; 2004 } 2005 } 2006 2007 return retval; 2008 } 2009 2010 2011 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING 2012 if it can determine which edge will be taken. Otherwise, return 2013 SSA_PROP_VARYING. */ 2014 2015 static enum ssa_prop_result 2016 visit_cond_stmt (gimple stmt, edge *taken_edge_p) 2017 { 2018 prop_value_t val; 2019 basic_block block; 2020 2021 block = gimple_bb (stmt); 2022 val = evaluate_stmt (stmt); 2023 if (val.lattice_val != CONSTANT 2024 || !val.mask.is_zero ()) 2025 return SSA_PROP_VARYING; 2026 2027 /* Find which edge out of the conditional block will be taken and add it 2028 to the worklist. If no single edge can be determined statically, 2029 return SSA_PROP_VARYING to feed all the outgoing edges to the 2030 propagation engine. */ 2031 *taken_edge_p = find_taken_edge (block, val.value); 2032 if (*taken_edge_p) 2033 return SSA_PROP_INTERESTING; 2034 else 2035 return SSA_PROP_VARYING; 2036 } 2037 2038 2039 /* Evaluate statement STMT. If the statement produces an output value and 2040 its evaluation changes the lattice value of its output, return 2041 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the 2042 output value. 2043 2044 If STMT is a conditional branch and we can determine its truth 2045 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying 2046 value, return SSA_PROP_VARYING. */ 2047 2048 static enum ssa_prop_result 2049 ccp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p) 2050 { 2051 tree def; 2052 ssa_op_iter iter; 2053 2054 if (dump_file && (dump_flags & TDF_DETAILS)) 2055 { 2056 fprintf (dump_file, "\nVisiting statement:\n"); 2057 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 2058 } 2059 2060 switch (gimple_code (stmt)) 2061 { 2062 case GIMPLE_ASSIGN: 2063 /* If the statement is an assignment that produces a single 2064 output value, evaluate its RHS to see if the lattice value of 2065 its output has changed. */ 2066 return visit_assignment (stmt, output_p); 2067 2068 case GIMPLE_CALL: 2069 /* A value-returning call also performs an assignment. */ 2070 if (gimple_call_lhs (stmt) != NULL_TREE) 2071 return visit_assignment (stmt, output_p); 2072 break; 2073 2074 case GIMPLE_COND: 2075 case GIMPLE_SWITCH: 2076 /* If STMT is a conditional branch, see if we can determine 2077 which branch will be taken. */ 2078 /* FIXME. It appears that we should be able to optimize 2079 computed GOTOs here as well. */ 2080 return visit_cond_stmt (stmt, taken_edge_p); 2081 2082 default: 2083 break; 2084 } 2085 2086 /* Any other kind of statement is not interesting for constant 2087 propagation and, therefore, not worth simulating. */ 2088 if (dump_file && (dump_flags & TDF_DETAILS)) 2089 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n"); 2090 2091 /* Definitions made by statements other than assignments to 2092 SSA_NAMEs represent unknown modifications to their outputs. 2093 Mark them VARYING. */ 2094 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) 2095 { 2096 prop_value_t v = { VARYING, NULL_TREE, { -1, (HOST_WIDE_INT) -1 } }; 2097 set_lattice_value (def, v); 2098 } 2099 2100 return SSA_PROP_VARYING; 2101 } 2102 2103 2104 /* Main entry point for SSA Conditional Constant Propagation. */ 2105 2106 static unsigned int 2107 do_ssa_ccp (void) 2108 { 2109 unsigned int todo = 0; 2110 calculate_dominance_info (CDI_DOMINATORS); 2111 ccp_initialize (); 2112 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node); 2113 if (ccp_finalize ()) 2114 todo = (TODO_cleanup_cfg | TODO_update_ssa); 2115 free_dominance_info (CDI_DOMINATORS); 2116 return todo; 2117 } 2118 2119 2120 static bool 2121 gate_ccp (void) 2122 { 2123 return flag_tree_ccp != 0; 2124 } 2125 2126 2127 struct gimple_opt_pass pass_ccp = 2128 { 2129 { 2130 GIMPLE_PASS, 2131 "ccp", /* name */ 2132 OPTGROUP_NONE, /* optinfo_flags */ 2133 gate_ccp, /* gate */ 2134 do_ssa_ccp, /* execute */ 2135 NULL, /* sub */ 2136 NULL, /* next */ 2137 0, /* static_pass_number */ 2138 TV_TREE_CCP, /* tv_id */ 2139 PROP_cfg | PROP_ssa, /* properties_required */ 2140 0, /* properties_provided */ 2141 0, /* properties_destroyed */ 2142 0, /* todo_flags_start */ 2143 TODO_verify_ssa 2144 | TODO_update_address_taken 2145 | TODO_verify_stmts | TODO_ggc_collect/* todo_flags_finish */ 2146 } 2147 }; 2148 2149 2150 2151 /* Try to optimize out __builtin_stack_restore. Optimize it out 2152 if there is another __builtin_stack_restore in the same basic 2153 block and no calls or ASM_EXPRs are in between, or if this block's 2154 only outgoing edge is to EXIT_BLOCK and there are no calls or 2155 ASM_EXPRs after this __builtin_stack_restore. */ 2156 2157 static tree 2158 optimize_stack_restore (gimple_stmt_iterator i) 2159 { 2160 tree callee; 2161 gimple stmt; 2162 2163 basic_block bb = gsi_bb (i); 2164 gimple call = gsi_stmt (i); 2165 2166 if (gimple_code (call) != GIMPLE_CALL 2167 || gimple_call_num_args (call) != 1 2168 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME 2169 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0)))) 2170 return NULL_TREE; 2171 2172 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i)) 2173 { 2174 stmt = gsi_stmt (i); 2175 if (gimple_code (stmt) == GIMPLE_ASM) 2176 return NULL_TREE; 2177 if (gimple_code (stmt) != GIMPLE_CALL) 2178 continue; 2179 2180 callee = gimple_call_fndecl (stmt); 2181 if (!callee 2182 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL 2183 /* All regular builtins are ok, just obviously not alloca. */ 2184 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA 2185 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN) 2186 return NULL_TREE; 2187 2188 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE) 2189 goto second_stack_restore; 2190 } 2191 2192 if (!gsi_end_p (i)) 2193 return NULL_TREE; 2194 2195 /* Allow one successor of the exit block, or zero successors. */ 2196 switch (EDGE_COUNT (bb->succs)) 2197 { 2198 case 0: 2199 break; 2200 case 1: 2201 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR) 2202 return NULL_TREE; 2203 break; 2204 default: 2205 return NULL_TREE; 2206 } 2207 second_stack_restore: 2208 2209 /* If there's exactly one use, then zap the call to __builtin_stack_save. 2210 If there are multiple uses, then the last one should remove the call. 2211 In any case, whether the call to __builtin_stack_save can be removed 2212 or not is irrelevant to removing the call to __builtin_stack_restore. */ 2213 if (has_single_use (gimple_call_arg (call, 0))) 2214 { 2215 gimple stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0)); 2216 if (is_gimple_call (stack_save)) 2217 { 2218 callee = gimple_call_fndecl (stack_save); 2219 if (callee 2220 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL 2221 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE) 2222 { 2223 gimple_stmt_iterator stack_save_gsi; 2224 tree rhs; 2225 2226 stack_save_gsi = gsi_for_stmt (stack_save); 2227 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0); 2228 update_call_from_tree (&stack_save_gsi, rhs); 2229 } 2230 } 2231 } 2232 2233 /* No effect, so the statement will be deleted. */ 2234 return integer_zero_node; 2235 } 2236 2237 /* If va_list type is a simple pointer and nothing special is needed, 2238 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0), 2239 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple 2240 pointer assignment. */ 2241 2242 static tree 2243 optimize_stdarg_builtin (gimple call) 2244 { 2245 tree callee, lhs, rhs, cfun_va_list; 2246 bool va_list_simple_ptr; 2247 location_t loc = gimple_location (call); 2248 2249 if (gimple_code (call) != GIMPLE_CALL) 2250 return NULL_TREE; 2251 2252 callee = gimple_call_fndecl (call); 2253 2254 cfun_va_list = targetm.fn_abi_va_list (callee); 2255 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list) 2256 && (TREE_TYPE (cfun_va_list) == void_type_node 2257 || TREE_TYPE (cfun_va_list) == char_type_node); 2258 2259 switch (DECL_FUNCTION_CODE (callee)) 2260 { 2261 case BUILT_IN_VA_START: 2262 if (!va_list_simple_ptr 2263 || targetm.expand_builtin_va_start != NULL 2264 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG)) 2265 return NULL_TREE; 2266 2267 if (gimple_call_num_args (call) != 2) 2268 return NULL_TREE; 2269 2270 lhs = gimple_call_arg (call, 0); 2271 if (!POINTER_TYPE_P (TREE_TYPE (lhs)) 2272 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs))) 2273 != TYPE_MAIN_VARIANT (cfun_va_list)) 2274 return NULL_TREE; 2275 2276 lhs = build_fold_indirect_ref_loc (loc, lhs); 2277 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG), 2278 1, integer_zero_node); 2279 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs); 2280 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs); 2281 2282 case BUILT_IN_VA_COPY: 2283 if (!va_list_simple_ptr) 2284 return NULL_TREE; 2285 2286 if (gimple_call_num_args (call) != 2) 2287 return NULL_TREE; 2288 2289 lhs = gimple_call_arg (call, 0); 2290 if (!POINTER_TYPE_P (TREE_TYPE (lhs)) 2291 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs))) 2292 != TYPE_MAIN_VARIANT (cfun_va_list)) 2293 return NULL_TREE; 2294 2295 lhs = build_fold_indirect_ref_loc (loc, lhs); 2296 rhs = gimple_call_arg (call, 1); 2297 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs)) 2298 != TYPE_MAIN_VARIANT (cfun_va_list)) 2299 return NULL_TREE; 2300 2301 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs); 2302 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs); 2303 2304 case BUILT_IN_VA_END: 2305 /* No effect, so the statement will be deleted. */ 2306 return integer_zero_node; 2307 2308 default: 2309 gcc_unreachable (); 2310 } 2311 } 2312 2313 /* Attemp to make the block of __builtin_unreachable I unreachable by changing 2314 the incoming jumps. Return true if at least one jump was changed. */ 2315 2316 static bool 2317 optimize_unreachable (gimple_stmt_iterator i) 2318 { 2319 basic_block bb = gsi_bb (i); 2320 gimple_stmt_iterator gsi; 2321 gimple stmt; 2322 edge_iterator ei; 2323 edge e; 2324 bool ret; 2325 2326 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2327 { 2328 stmt = gsi_stmt (gsi); 2329 2330 if (is_gimple_debug (stmt)) 2331 continue; 2332 2333 if (gimple_code (stmt) == GIMPLE_LABEL) 2334 { 2335 /* Verify we do not need to preserve the label. */ 2336 if (FORCED_LABEL (gimple_label_label (stmt))) 2337 return false; 2338 2339 continue; 2340 } 2341 2342 /* Only handle the case that __builtin_unreachable is the first statement 2343 in the block. We rely on DCE to remove stmts without side-effects 2344 before __builtin_unreachable. */ 2345 if (gsi_stmt (gsi) != gsi_stmt (i)) 2346 return false; 2347 } 2348 2349 ret = false; 2350 FOR_EACH_EDGE (e, ei, bb->preds) 2351 { 2352 gsi = gsi_last_bb (e->src); 2353 if (gsi_end_p (gsi)) 2354 continue; 2355 2356 stmt = gsi_stmt (gsi); 2357 if (gimple_code (stmt) == GIMPLE_COND) 2358 { 2359 if (e->flags & EDGE_TRUE_VALUE) 2360 gimple_cond_make_false (stmt); 2361 else if (e->flags & EDGE_FALSE_VALUE) 2362 gimple_cond_make_true (stmt); 2363 else 2364 gcc_unreachable (); 2365 update_stmt (stmt); 2366 } 2367 else 2368 { 2369 /* Todo: handle other cases, f.i. switch statement. */ 2370 continue; 2371 } 2372 2373 ret = true; 2374 } 2375 2376 return ret; 2377 } 2378 2379 /* A simple pass that attempts to fold all builtin functions. This pass 2380 is run after we've propagated as many constants as we can. */ 2381 2382 static unsigned int 2383 execute_fold_all_builtins (void) 2384 { 2385 bool cfg_changed = false; 2386 basic_block bb; 2387 unsigned int todoflags = 0; 2388 2389 FOR_EACH_BB (bb) 2390 { 2391 gimple_stmt_iterator i; 2392 for (i = gsi_start_bb (bb); !gsi_end_p (i); ) 2393 { 2394 gimple stmt, old_stmt; 2395 tree callee, result; 2396 enum built_in_function fcode; 2397 2398 stmt = gsi_stmt (i); 2399 2400 if (gimple_code (stmt) != GIMPLE_CALL) 2401 { 2402 gsi_next (&i); 2403 continue; 2404 } 2405 callee = gimple_call_fndecl (stmt); 2406 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL) 2407 { 2408 gsi_next (&i); 2409 continue; 2410 } 2411 fcode = DECL_FUNCTION_CODE (callee); 2412 2413 result = gimple_fold_builtin (stmt); 2414 2415 if (result) 2416 gimple_remove_stmt_histograms (cfun, stmt); 2417 2418 if (!result) 2419 switch (DECL_FUNCTION_CODE (callee)) 2420 { 2421 case BUILT_IN_CONSTANT_P: 2422 /* Resolve __builtin_constant_p. If it hasn't been 2423 folded to integer_one_node by now, it's fairly 2424 certain that the value simply isn't constant. */ 2425 result = integer_zero_node; 2426 break; 2427 2428 case BUILT_IN_ASSUME_ALIGNED: 2429 /* Remove __builtin_assume_aligned. */ 2430 result = gimple_call_arg (stmt, 0); 2431 break; 2432 2433 case BUILT_IN_STACK_RESTORE: 2434 result = optimize_stack_restore (i); 2435 if (result) 2436 break; 2437 gsi_next (&i); 2438 continue; 2439 2440 case BUILT_IN_UNREACHABLE: 2441 if (optimize_unreachable (i)) 2442 cfg_changed = true; 2443 break; 2444 2445 case BUILT_IN_VA_START: 2446 case BUILT_IN_VA_END: 2447 case BUILT_IN_VA_COPY: 2448 /* These shouldn't be folded before pass_stdarg. */ 2449 result = optimize_stdarg_builtin (stmt); 2450 if (result) 2451 break; 2452 /* FALLTHRU */ 2453 2454 default: 2455 gsi_next (&i); 2456 continue; 2457 } 2458 2459 if (result == NULL_TREE) 2460 break; 2461 2462 if (dump_file && (dump_flags & TDF_DETAILS)) 2463 { 2464 fprintf (dump_file, "Simplified\n "); 2465 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 2466 } 2467 2468 old_stmt = stmt; 2469 if (!update_call_from_tree (&i, result)) 2470 { 2471 gimplify_and_update_call_from_tree (&i, result); 2472 todoflags |= TODO_update_address_taken; 2473 } 2474 2475 stmt = gsi_stmt (i); 2476 update_stmt (stmt); 2477 2478 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt) 2479 && gimple_purge_dead_eh_edges (bb)) 2480 cfg_changed = true; 2481 2482 if (dump_file && (dump_flags & TDF_DETAILS)) 2483 { 2484 fprintf (dump_file, "to\n "); 2485 print_gimple_stmt (dump_file, stmt, 0, dump_flags); 2486 fprintf (dump_file, "\n"); 2487 } 2488 2489 /* Retry the same statement if it changed into another 2490 builtin, there might be new opportunities now. */ 2491 if (gimple_code (stmt) != GIMPLE_CALL) 2492 { 2493 gsi_next (&i); 2494 continue; 2495 } 2496 callee = gimple_call_fndecl (stmt); 2497 if (!callee 2498 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL 2499 || DECL_FUNCTION_CODE (callee) == fcode) 2500 gsi_next (&i); 2501 } 2502 } 2503 2504 /* Delete unreachable blocks. */ 2505 if (cfg_changed) 2506 todoflags |= TODO_cleanup_cfg; 2507 2508 return todoflags; 2509 } 2510 2511 2512 struct gimple_opt_pass pass_fold_builtins = 2513 { 2514 { 2515 GIMPLE_PASS, 2516 "fab", /* name */ 2517 OPTGROUP_NONE, /* optinfo_flags */ 2518 NULL, /* gate */ 2519 execute_fold_all_builtins, /* execute */ 2520 NULL, /* sub */ 2521 NULL, /* next */ 2522 0, /* static_pass_number */ 2523 TV_NONE, /* tv_id */ 2524 PROP_cfg | PROP_ssa, /* properties_required */ 2525 0, /* properties_provided */ 2526 0, /* properties_destroyed */ 2527 0, /* todo_flags_start */ 2528 TODO_verify_ssa 2529 | TODO_update_ssa /* todo_flags_finish */ 2530 } 2531 }; 2532 2533 #if defined(__NetBSD__) && defined(NETBSD_NATIVE) 2534 /* 2535 * This is a big, ugly, temporary hack: 2536 * http://gcc.gnu.org/bugzilla/show_bug.cgi?id=59958 2537 * To make sure we have configured all our targets correctly, mimic the 2538 * #ifdef cascade from src/lib/libc/stdlib/jemalloc.c here and compile 2539 * time assert that the value matches gcc's MALLOC_ABI_ALIGNMENT here. 2540 */ 2541 2542 #if defined(__alpha__) || defined(__amd64__) || defined(__sparc64__) \ 2543 || (defined(__arm__) && defined(__ARM_EABI)) || defined(__powerpc__) \ 2544 || defined(__ia64__) \ 2545 || ((defined(__mips__) || defined(__riscv__)) && defined(_LP64)) 2546 #define JEMALLOC_TINY_MIN_2POW 3 2547 #endif 2548 2549 #ifndef JEMALLOC_TINY_MIN_2POW 2550 #define JEMALLOC_TINY_MIN_2POW 2 2551 #endif 2552 2553 /* make sure we test the (native) 64bit variant for targets supporting -m32 */ 2554 #undef TARGET_64BIT 2555 #ifdef _LP64 2556 #define TARGET_64BIT 1 2557 #else 2558 #ifdef __sh__ 2559 #undef UNITS_PER_WORD 2560 #define UNITS_PER_WORD 4 /* original definition varies depending on cpu */ 2561 #endif 2562 #define TARGET_64BIT 0 2563 #endif 2564 2565 #ifdef __CTASSERT 2566 __CTASSERT((8<<JEMALLOC_TINY_MIN_2POW) == MALLOC_ABI_ALIGNMENT); 2567 #else 2568 #error compiling on an older NetBSD version? 2569 #endif 2570 2571 #endif 2572