1 /* Scalar evolution detector. 2 Copyright (C) 2003-2016 Free Software Foundation, Inc. 3 Contributed by Sebastian Pop <s.pop@laposte.net> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* 22 Description: 23 24 This pass analyzes the evolution of scalar variables in loop 25 structures. The algorithm is based on the SSA representation, 26 and on the loop hierarchy tree. This algorithm is not based on 27 the notion of versions of a variable, as it was the case for the 28 previous implementations of the scalar evolution algorithm, but 29 it assumes that each defined name is unique. 30 31 The notation used in this file is called "chains of recurrences", 32 and has been proposed by Eugene Zima, Robert Van Engelen, and 33 others for describing induction variables in programs. For example 34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0 35 when entering in the loop_1 and has a step 2 in this loop, in other 36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of 37 this chain of recurrence (or chrec [shrek]) can contain the name of 38 other variables, in which case they are called parametric chrecs. 39 For example, "b -> {a, +, 2}_1" means that the initial value of "b" 40 is the value of "a". In most of the cases these parametric chrecs 41 are fully instantiated before their use because symbolic names can 42 hide some difficult cases such as self-references described later 43 (see the Fibonacci example). 44 45 A short sketch of the algorithm is: 46 47 Given a scalar variable to be analyzed, follow the SSA edge to 48 its definition: 49 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side 51 (RHS) of the definition cannot be statically analyzed, the answer 52 of the analyzer is: "don't know". 53 Otherwise, for all the variables that are not yet analyzed in the 54 RHS, try to determine their evolution, and finally try to 55 evaluate the operation of the RHS that gives the evolution 56 function of the analyzed variable. 57 58 - When the definition is a condition-phi-node: determine the 59 evolution function for all the branches of the phi node, and 60 finally merge these evolutions (see chrec_merge). 61 62 - When the definition is a loop-phi-node: determine its initial 63 condition, that is the SSA edge defined in an outer loop, and 64 keep it symbolic. Then determine the SSA edges that are defined 65 in the body of the loop. Follow the inner edges until ending on 66 another loop-phi-node of the same analyzed loop. If the reached 67 loop-phi-node is not the starting loop-phi-node, then we keep 68 this definition under a symbolic form. If the reached 69 loop-phi-node is the same as the starting one, then we compute a 70 symbolic stride on the return path. The result is then the 71 symbolic chrec {initial_condition, +, symbolic_stride}_loop. 72 73 Examples: 74 75 Example 1: Illustration of the basic algorithm. 76 77 | a = 3 78 | loop_1 79 | b = phi (a, c) 80 | c = b + 1 81 | if (c > 10) exit_loop 82 | endloop 83 84 Suppose that we want to know the number of iterations of the 85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We 86 ask the scalar evolution analyzer two questions: what's the 87 scalar evolution (scev) of "c", and what's the scev of "10". For 88 "10" the answer is "10" since it is a scalar constant. For the 89 scalar variable "c", it follows the SSA edge to its definition, 90 "c = b + 1", and then asks again what's the scev of "b". 91 Following the SSA edge, we end on a loop-phi-node "b = phi (a, 92 c)", where the initial condition is "a", and the inner loop edge 93 is "c". The initial condition is kept under a symbolic form (it 94 may be the case that the copy constant propagation has done its 95 work and we end with the constant "3" as one of the edges of the 96 loop-phi-node). The update edge is followed to the end of the 97 loop, and until reaching again the starting loop-phi-node: b -> c 98 -> b. At this point we have drawn a path from "b" to "b" from 99 which we compute the stride in the loop: in this example it is 100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now 101 that the scev for "b" is known, it is possible to compute the 102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to 103 determine the number of iterations in the loop_1, we have to 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some 105 more analysis the scev {4, +, 1}_1, or in other words, this is 106 the function "f (x) = x + 4", where x is the iteration count of 107 the loop_1. Now we have to solve the inequality "x + 4 > 10", 108 and take the smallest iteration number for which the loop is 109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total 110 there are 8 iterations. In terms of loop normalization, we have 111 created a variable that is implicitly defined, "x" or just "_1", 112 and all the other analyzed scalars of the loop are defined in 113 function of this variable: 114 115 a -> 3 116 b -> {3, +, 1}_1 117 c -> {4, +, 1}_1 118 119 or in terms of a C program: 120 121 | a = 3 122 | for (x = 0; x <= 7; x++) 123 | { 124 | b = x + 3 125 | c = x + 4 126 | } 127 128 Example 2a: Illustration of the algorithm on nested loops. 129 130 | loop_1 131 | a = phi (1, b) 132 | c = a + 2 133 | loop_2 10 times 134 | b = phi (c, d) 135 | d = b + 3 136 | endloop 137 | endloop 138 139 For analyzing the scalar evolution of "a", the algorithm follows 140 the SSA edge into the loop's body: "a -> b". "b" is an inner 141 loop-phi-node, and its analysis as in Example 1, gives: 142 143 b -> {c, +, 3}_2 144 d -> {c + 3, +, 3}_2 145 146 Following the SSA edge for the initial condition, we end on "c = a 147 + 2", and then on the starting loop-phi-node "a". From this point, 148 the loop stride is computed: back on "c = a + 2" we get a "+2" in 149 the loop_1, then on the loop-phi-node "b" we compute the overall 150 effect of the inner loop that is "b = c + 30", and we get a "+30" 151 in the loop_1. That means that the overall stride in loop_1 is 152 equal to "+32", and the result is: 153 154 a -> {1, +, 32}_1 155 c -> {3, +, 32}_1 156 157 Example 2b: Multivariate chains of recurrences. 158 159 | loop_1 160 | k = phi (0, k + 1) 161 | loop_2 4 times 162 | j = phi (0, j + 1) 163 | loop_3 4 times 164 | i = phi (0, i + 1) 165 | A[j + k] = ... 166 | endloop 167 | endloop 168 | endloop 169 170 Analyzing the access function of array A with 171 instantiate_parameters (loop_1, "j + k"), we obtain the 172 instantiation and the analysis of the scalar variables "j" and "k" 173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end 174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is 175 {0, +, 1}_1. To obtain the evolution function in loop_3 and 176 instantiate the scalar variables up to loop_1, one has to use: 177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k"). 178 The result of this call is {{0, +, 1}_1, +, 1}_2. 179 180 Example 3: Higher degree polynomials. 181 182 | loop_1 183 | a = phi (2, b) 184 | c = phi (5, d) 185 | b = a + 1 186 | d = c + a 187 | endloop 188 189 a -> {2, +, 1}_1 190 b -> {3, +, 1}_1 191 c -> {5, +, a}_1 192 d -> {5 + a, +, a}_1 193 194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1 195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1 196 197 Example 4: Lucas, Fibonacci, or mixers in general. 198 199 | loop_1 200 | a = phi (1, b) 201 | c = phi (3, d) 202 | b = c 203 | d = c + a 204 | endloop 205 206 a -> (1, c)_1 207 c -> {3, +, a}_1 208 209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the 210 following semantics: during the first iteration of the loop_1, the 211 variable contains the value 1, and then it contains the value "c". 212 Note that this syntax is close to the syntax of the loop-phi-node: 213 "a -> (1, c)_1" vs. "a = phi (1, c)". 214 215 The symbolic chrec representation contains all the semantics of the 216 original code. What is more difficult is to use this information. 217 218 Example 5: Flip-flops, or exchangers. 219 220 | loop_1 221 | a = phi (1, b) 222 | c = phi (3, d) 223 | b = c 224 | d = a 225 | endloop 226 227 a -> (1, c)_1 228 c -> (3, a)_1 229 230 Based on these symbolic chrecs, it is possible to refine this 231 information into the more precise PERIODIC_CHRECs: 232 233 a -> |1, 3|_1 234 c -> |3, 1|_1 235 236 This transformation is not yet implemented. 237 238 Further readings: 239 240 You can find a more detailed description of the algorithm in: 241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf 242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that 243 this is a preliminary report and some of the details of the 244 algorithm have changed. I'm working on a research report that 245 updates the description of the algorithms to reflect the design 246 choices used in this implementation. 247 248 A set of slides show a high level overview of the algorithm and run 249 an example through the scalar evolution analyzer: 250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf 251 252 The slides that I have presented at the GCC Summit'04 are available 253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf 254 */ 255 256 #include "config.h" 257 #include "system.h" 258 #include "coretypes.h" 259 #include "backend.h" 260 #include "rtl.h" 261 #include "tree.h" 262 #include "gimple.h" 263 #include "ssa.h" 264 #include "gimple-pretty-print.h" 265 #include "fold-const.h" 266 #include "gimplify.h" 267 #include "gimple-iterator.h" 268 #include "gimplify-me.h" 269 #include "tree-cfg.h" 270 #include "tree-ssa-loop-ivopts.h" 271 #include "tree-ssa-loop-manip.h" 272 #include "tree-ssa-loop-niter.h" 273 #include "tree-ssa-loop.h" 274 #include "tree-ssa.h" 275 #include "cfgloop.h" 276 #include "tree-chrec.h" 277 #include "tree-affine.h" 278 #include "tree-scalar-evolution.h" 279 #include "dumpfile.h" 280 #include "params.h" 281 #include "tree-ssa-propagate.h" 282 #include "gimple-fold.h" 283 284 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree); 285 static tree analyze_scalar_evolution_for_address_of (struct loop *loop, 286 tree var); 287 288 /* The cached information about an SSA name with version NAME_VERSION, 289 claiming that below basic block with index INSTANTIATED_BELOW, the 290 value of the SSA name can be expressed as CHREC. */ 291 292 struct GTY((for_user)) scev_info_str { 293 unsigned int name_version; 294 int instantiated_below; 295 tree chrec; 296 }; 297 298 /* Counters for the scev database. */ 299 static unsigned nb_set_scev = 0; 300 static unsigned nb_get_scev = 0; 301 302 /* The following trees are unique elements. Thus the comparison of 303 another element to these elements should be done on the pointer to 304 these trees, and not on their value. */ 305 306 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */ 307 tree chrec_not_analyzed_yet; 308 309 /* Reserved to the cases where the analyzer has detected an 310 undecidable property at compile time. */ 311 tree chrec_dont_know; 312 313 /* When the analyzer has detected that a property will never 314 happen, then it qualifies it with chrec_known. */ 315 tree chrec_known; 316 317 struct scev_info_hasher : ggc_ptr_hash<scev_info_str> 318 { 319 static hashval_t hash (scev_info_str *i); 320 static bool equal (const scev_info_str *a, const scev_info_str *b); 321 }; 322 323 static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info; 324 325 326 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */ 327 328 static inline struct scev_info_str * 329 new_scev_info_str (basic_block instantiated_below, tree var) 330 { 331 struct scev_info_str *res; 332 333 res = ggc_alloc<scev_info_str> (); 334 res->name_version = SSA_NAME_VERSION (var); 335 res->chrec = chrec_not_analyzed_yet; 336 res->instantiated_below = instantiated_below->index; 337 338 return res; 339 } 340 341 /* Computes a hash function for database element ELT. */ 342 343 hashval_t 344 scev_info_hasher::hash (scev_info_str *elt) 345 { 346 return elt->name_version ^ elt->instantiated_below; 347 } 348 349 /* Compares database elements E1 and E2. */ 350 351 bool 352 scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2) 353 { 354 return (elt1->name_version == elt2->name_version 355 && elt1->instantiated_below == elt2->instantiated_below); 356 } 357 358 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block. 359 A first query on VAR returns chrec_not_analyzed_yet. */ 360 361 static tree * 362 find_var_scev_info (basic_block instantiated_below, tree var) 363 { 364 struct scev_info_str *res; 365 struct scev_info_str tmp; 366 367 tmp.name_version = SSA_NAME_VERSION (var); 368 tmp.instantiated_below = instantiated_below->index; 369 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT); 370 371 if (!*slot) 372 *slot = new_scev_info_str (instantiated_below, var); 373 res = *slot; 374 375 return &res->chrec; 376 } 377 378 /* Return true when CHREC contains symbolic names defined in 379 LOOP_NB. */ 380 381 bool 382 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb) 383 { 384 int i, n; 385 386 if (chrec == NULL_TREE) 387 return false; 388 389 if (is_gimple_min_invariant (chrec)) 390 return false; 391 392 if (TREE_CODE (chrec) == SSA_NAME) 393 { 394 gimple *def; 395 loop_p def_loop, loop; 396 397 if (SSA_NAME_IS_DEFAULT_DEF (chrec)) 398 return false; 399 400 def = SSA_NAME_DEF_STMT (chrec); 401 def_loop = loop_containing_stmt (def); 402 loop = get_loop (cfun, loop_nb); 403 404 if (def_loop == NULL) 405 return false; 406 407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop)) 408 return true; 409 410 return false; 411 } 412 413 n = TREE_OPERAND_LENGTH (chrec); 414 for (i = 0; i < n; i++) 415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i), 416 loop_nb)) 417 return true; 418 return false; 419 } 420 421 /* Return true when PHI is a loop-phi-node. */ 422 423 static bool 424 loop_phi_node_p (gimple *phi) 425 { 426 /* The implementation of this function is based on the following 427 property: "all the loop-phi-nodes of a loop are contained in the 428 loop's header basic block". */ 429 430 return loop_containing_stmt (phi)->header == gimple_bb (phi); 431 } 432 433 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP. 434 In general, in the case of multivariate evolutions we want to get 435 the evolution in different loops. LOOP specifies the level for 436 which to get the evolution. 437 438 Example: 439 440 | for (j = 0; j < 100; j++) 441 | { 442 | for (k = 0; k < 100; k++) 443 | { 444 | i = k + j; - Here the value of i is a function of j, k. 445 | } 446 | ... = i - Here the value of i is a function of j. 447 | } 448 | ... = i - Here the value of i is a scalar. 449 450 Example: 451 452 | i_0 = ... 453 | loop_1 10 times 454 | i_1 = phi (i_0, i_2) 455 | i_2 = i_1 + 2 456 | endloop 457 458 This loop has the same effect as: 459 LOOP_1 has the same effect as: 460 461 | i_1 = i_0 + 20 462 463 The overall effect of the loop, "i_0 + 20" in the previous example, 464 is obtained by passing in the parameters: LOOP = 1, 465 EVOLUTION_FN = {i_0, +, 2}_1. 466 */ 467 468 tree 469 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn) 470 { 471 bool val = false; 472 473 if (evolution_fn == chrec_dont_know) 474 return chrec_dont_know; 475 476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC) 477 { 478 struct loop *inner_loop = get_chrec_loop (evolution_fn); 479 480 if (inner_loop == loop 481 || flow_loop_nested_p (loop, inner_loop)) 482 { 483 tree nb_iter = number_of_latch_executions (inner_loop); 484 485 if (nb_iter == chrec_dont_know) 486 return chrec_dont_know; 487 else 488 { 489 tree res; 490 491 /* evolution_fn is the evolution function in LOOP. Get 492 its value in the nb_iter-th iteration. */ 493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter); 494 495 if (chrec_contains_symbols_defined_in_loop (res, loop->num)) 496 res = instantiate_parameters (loop, res); 497 498 /* Continue the computation until ending on a parent of LOOP. */ 499 return compute_overall_effect_of_inner_loop (loop, res); 500 } 501 } 502 else 503 return evolution_fn; 504 } 505 506 /* If the evolution function is an invariant, there is nothing to do. */ 507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val) 508 return evolution_fn; 509 510 else 511 return chrec_dont_know; 512 } 513 514 /* Associate CHREC to SCALAR. */ 515 516 static void 517 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec) 518 { 519 tree *scalar_info; 520 521 if (TREE_CODE (scalar) != SSA_NAME) 522 return; 523 524 scalar_info = find_var_scev_info (instantiated_below, scalar); 525 526 if (dump_file) 527 { 528 if (dump_flags & TDF_SCEV) 529 { 530 fprintf (dump_file, "(set_scalar_evolution \n"); 531 fprintf (dump_file, " instantiated_below = %d \n", 532 instantiated_below->index); 533 fprintf (dump_file, " (scalar = "); 534 print_generic_expr (dump_file, scalar, 0); 535 fprintf (dump_file, ")\n (scalar_evolution = "); 536 print_generic_expr (dump_file, chrec, 0); 537 fprintf (dump_file, "))\n"); 538 } 539 if (dump_flags & TDF_STATS) 540 nb_set_scev++; 541 } 542 543 *scalar_info = chrec; 544 } 545 546 /* Retrieve the chrec associated to SCALAR instantiated below 547 INSTANTIATED_BELOW block. */ 548 549 static tree 550 get_scalar_evolution (basic_block instantiated_below, tree scalar) 551 { 552 tree res; 553 554 if (dump_file) 555 { 556 if (dump_flags & TDF_SCEV) 557 { 558 fprintf (dump_file, "(get_scalar_evolution \n"); 559 fprintf (dump_file, " (scalar = "); 560 print_generic_expr (dump_file, scalar, 0); 561 fprintf (dump_file, ")\n"); 562 } 563 if (dump_flags & TDF_STATS) 564 nb_get_scev++; 565 } 566 567 switch (TREE_CODE (scalar)) 568 { 569 case SSA_NAME: 570 res = *find_var_scev_info (instantiated_below, scalar); 571 break; 572 573 case REAL_CST: 574 case FIXED_CST: 575 case INTEGER_CST: 576 res = scalar; 577 break; 578 579 default: 580 res = chrec_not_analyzed_yet; 581 break; 582 } 583 584 if (dump_file && (dump_flags & TDF_SCEV)) 585 { 586 fprintf (dump_file, " (scalar_evolution = "); 587 print_generic_expr (dump_file, res, 0); 588 fprintf (dump_file, "))\n"); 589 } 590 591 return res; 592 } 593 594 /* Helper function for add_to_evolution. Returns the evolution 595 function for an assignment of the form "a = b + c", where "a" and 596 "b" are on the strongly connected component. CHREC_BEFORE is the 597 information that we already have collected up to this point. 598 TO_ADD is the evolution of "c". 599 600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this 601 evolution the expression TO_ADD, otherwise construct an evolution 602 part for this loop. */ 603 604 static tree 605 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add, 606 gimple *at_stmt) 607 { 608 tree type, left, right; 609 struct loop *loop = get_loop (cfun, loop_nb), *chloop; 610 611 switch (TREE_CODE (chrec_before)) 612 { 613 case POLYNOMIAL_CHREC: 614 chloop = get_chrec_loop (chrec_before); 615 if (chloop == loop 616 || flow_loop_nested_p (chloop, loop)) 617 { 618 unsigned var; 619 620 type = chrec_type (chrec_before); 621 622 /* When there is no evolution part in this loop, build it. */ 623 if (chloop != loop) 624 { 625 var = loop_nb; 626 left = chrec_before; 627 right = SCALAR_FLOAT_TYPE_P (type) 628 ? build_real (type, dconst0) 629 : build_int_cst (type, 0); 630 } 631 else 632 { 633 var = CHREC_VARIABLE (chrec_before); 634 left = CHREC_LEFT (chrec_before); 635 right = CHREC_RIGHT (chrec_before); 636 } 637 638 to_add = chrec_convert (type, to_add, at_stmt); 639 right = chrec_convert_rhs (type, right, at_stmt); 640 right = chrec_fold_plus (chrec_type (right), right, to_add); 641 return build_polynomial_chrec (var, left, right); 642 } 643 else 644 { 645 gcc_assert (flow_loop_nested_p (loop, chloop)); 646 647 /* Search the evolution in LOOP_NB. */ 648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), 649 to_add, at_stmt); 650 right = CHREC_RIGHT (chrec_before); 651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt); 652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before), 653 left, right); 654 } 655 656 default: 657 /* These nodes do not depend on a loop. */ 658 if (chrec_before == chrec_dont_know) 659 return chrec_dont_know; 660 661 left = chrec_before; 662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt); 663 return build_polynomial_chrec (loop_nb, left, right); 664 } 665 } 666 667 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension 668 of LOOP_NB. 669 670 Description (provided for completeness, for those who read code in 671 a plane, and for my poor 62 bytes brain that would have forgotten 672 all this in the next two or three months): 673 674 The algorithm of translation of programs from the SSA representation 675 into the chrecs syntax is based on a pattern matching. After having 676 reconstructed the overall tree expression for a loop, there are only 677 two cases that can arise: 678 679 1. a = loop-phi (init, a + expr) 680 2. a = loop-phi (init, expr) 681 682 where EXPR is either a scalar constant with respect to the analyzed 683 loop (this is a degree 0 polynomial), or an expression containing 684 other loop-phi definitions (these are higher degree polynomials). 685 686 Examples: 687 688 1. 689 | init = ... 690 | loop_1 691 | a = phi (init, a + 5) 692 | endloop 693 694 2. 695 | inita = ... 696 | initb = ... 697 | loop_1 698 | a = phi (inita, 2 * b + 3) 699 | b = phi (initb, b + 1) 700 | endloop 701 702 For the first case, the semantics of the SSA representation is: 703 704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j) 705 706 that is, there is a loop index "x" that determines the scalar value 707 of the variable during the loop execution. During the first 708 iteration, the value is that of the initial condition INIT, while 709 during the subsequent iterations, it is the sum of the initial 710 condition with the sum of all the values of EXPR from the initial 711 iteration to the before last considered iteration. 712 713 For the second case, the semantics of the SSA program is: 714 715 | a (x) = init, if x = 0; 716 | expr (x - 1), otherwise. 717 718 The second case corresponds to the PEELED_CHREC, whose syntax is 719 close to the syntax of a loop-phi-node: 720 721 | phi (init, expr) vs. (init, expr)_x 722 723 The proof of the translation algorithm for the first case is a 724 proof by structural induction based on the degree of EXPR. 725 726 Degree 0: 727 When EXPR is a constant with respect to the analyzed loop, or in 728 other words when EXPR is a polynomial of degree 0, the evolution of 729 the variable A in the loop is an affine function with an initial 730 condition INIT, and a step EXPR. In order to show this, we start 731 from the semantics of the SSA representation: 732 733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j) 734 735 and since "expr (j)" is a constant with respect to "j", 736 737 f (x) = init + x * expr 738 739 Finally, based on the semantics of the pure sum chrecs, by 740 identification we get the corresponding chrecs syntax: 741 742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1} 743 f (x) -> {init, +, expr}_x 744 745 Higher degree: 746 Suppose that EXPR is a polynomial of degree N with respect to the 747 analyzed loop_x for which we have already determined that it is 748 written under the chrecs syntax: 749 750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x) 751 752 We start from the semantics of the SSA program: 753 754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j) 755 | 756 | f (x) = init + \sum_{j = 0}^{x - 1} 757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1}) 758 | 759 | f (x) = init + \sum_{j = 0}^{x - 1} 760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k}) 761 | 762 | f (x) = init + \sum_{k = 0}^{n - 1} 763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k}) 764 | 765 | f (x) = init + \sum_{k = 0}^{n - 1} 766 | (b_k * \binom{x}{k + 1}) 767 | 768 | f (x) = init + b_0 * \binom{x}{1} + ... 769 | + b_{n-1} * \binom{x}{n} 770 | 771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ... 772 | + b_{n-1} * \binom{x}{n} 773 | 774 775 And finally from the definition of the chrecs syntax, we identify: 776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x 777 778 This shows the mechanism that stands behind the add_to_evolution 779 function. An important point is that the use of symbolic 780 parameters avoids the need of an analysis schedule. 781 782 Example: 783 784 | inita = ... 785 | initb = ... 786 | loop_1 787 | a = phi (inita, a + 2 + b) 788 | b = phi (initb, b + 1) 789 | endloop 790 791 When analyzing "a", the algorithm keeps "b" symbolically: 792 793 | a -> {inita, +, 2 + b}_1 794 795 Then, after instantiation, the analyzer ends on the evolution: 796 797 | a -> {inita, +, 2 + initb, +, 1}_1 798 799 */ 800 801 static tree 802 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code, 803 tree to_add, gimple *at_stmt) 804 { 805 tree type = chrec_type (to_add); 806 tree res = NULL_TREE; 807 808 if (to_add == NULL_TREE) 809 return chrec_before; 810 811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not 812 instantiated at this point. */ 813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC) 814 /* This should not happen. */ 815 return chrec_dont_know; 816 817 if (dump_file && (dump_flags & TDF_SCEV)) 818 { 819 fprintf (dump_file, "(add_to_evolution \n"); 820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb); 821 fprintf (dump_file, " (chrec_before = "); 822 print_generic_expr (dump_file, chrec_before, 0); 823 fprintf (dump_file, ")\n (to_add = "); 824 print_generic_expr (dump_file, to_add, 0); 825 fprintf (dump_file, ")\n"); 826 } 827 828 if (code == MINUS_EXPR) 829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type) 830 ? build_real (type, dconstm1) 831 : build_int_cst_type (type, -1)); 832 833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt); 834 835 if (dump_file && (dump_flags & TDF_SCEV)) 836 { 837 fprintf (dump_file, " (res = "); 838 print_generic_expr (dump_file, res, 0); 839 fprintf (dump_file, "))\n"); 840 } 841 842 return res; 843 } 844 845 846 847 /* This section selects the loops that will be good candidates for the 848 scalar evolution analysis. For the moment, greedily select all the 849 loop nests we could analyze. */ 850 851 /* For a loop with a single exit edge, return the COND_EXPR that 852 guards the exit edge. If the expression is too difficult to 853 analyze, then give up. */ 854 855 gcond * 856 get_loop_exit_condition (const struct loop *loop) 857 { 858 gcond *res = NULL; 859 edge exit_edge = single_exit (loop); 860 861 if (dump_file && (dump_flags & TDF_SCEV)) 862 fprintf (dump_file, "(get_loop_exit_condition \n "); 863 864 if (exit_edge) 865 { 866 gimple *stmt; 867 868 stmt = last_stmt (exit_edge->src); 869 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) 870 res = cond_stmt; 871 } 872 873 if (dump_file && (dump_flags & TDF_SCEV)) 874 { 875 print_gimple_stmt (dump_file, res, 0, 0); 876 fprintf (dump_file, ")\n"); 877 } 878 879 return res; 880 } 881 882 883 /* Depth first search algorithm. */ 884 885 enum t_bool { 886 t_false, 887 t_true, 888 t_dont_know 889 }; 890 891 892 static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *, 893 tree *, int); 894 895 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1. 896 Return true if the strongly connected component has been found. */ 897 898 static t_bool 899 follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt, 900 tree type, tree rhs0, enum tree_code code, tree rhs1, 901 gphi *halting_phi, tree *evolution_of_loop, 902 int limit) 903 { 904 t_bool res = t_false; 905 tree evol; 906 907 switch (code) 908 { 909 case POINTER_PLUS_EXPR: 910 case PLUS_EXPR: 911 if (TREE_CODE (rhs0) == SSA_NAME) 912 { 913 if (TREE_CODE (rhs1) == SSA_NAME) 914 { 915 /* Match an assignment under the form: 916 "a = b + c". */ 917 918 /* We want only assignments of form "name + name" contribute to 919 LIMIT, as the other cases do not necessarily contribute to 920 the complexity of the expression. */ 921 limit++; 922 923 evol = *evolution_of_loop; 924 evol = add_to_evolution 925 (loop->num, 926 chrec_convert (type, evol, at_stmt), 927 code, rhs1, at_stmt); 928 res = follow_ssa_edge 929 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit); 930 if (res == t_true) 931 *evolution_of_loop = evol; 932 else if (res == t_false) 933 { 934 *evolution_of_loop = add_to_evolution 935 (loop->num, 936 chrec_convert (type, *evolution_of_loop, at_stmt), 937 code, rhs0, at_stmt); 938 res = follow_ssa_edge 939 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi, 940 evolution_of_loop, limit); 941 if (res == t_true) 942 ; 943 else if (res == t_dont_know) 944 *evolution_of_loop = chrec_dont_know; 945 } 946 947 else if (res == t_dont_know) 948 *evolution_of_loop = chrec_dont_know; 949 } 950 951 else 952 { 953 /* Match an assignment under the form: 954 "a = b + ...". */ 955 *evolution_of_loop = add_to_evolution 956 (loop->num, chrec_convert (type, *evolution_of_loop, 957 at_stmt), 958 code, rhs1, at_stmt); 959 res = follow_ssa_edge 960 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, 961 evolution_of_loop, limit); 962 if (res == t_true) 963 ; 964 else if (res == t_dont_know) 965 *evolution_of_loop = chrec_dont_know; 966 } 967 } 968 969 else if (TREE_CODE (rhs1) == SSA_NAME) 970 { 971 /* Match an assignment under the form: 972 "a = ... + c". */ 973 *evolution_of_loop = add_to_evolution 974 (loop->num, chrec_convert (type, *evolution_of_loop, 975 at_stmt), 976 code, rhs0, at_stmt); 977 res = follow_ssa_edge 978 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi, 979 evolution_of_loop, limit); 980 if (res == t_true) 981 ; 982 else if (res == t_dont_know) 983 *evolution_of_loop = chrec_dont_know; 984 } 985 986 else 987 /* Otherwise, match an assignment under the form: 988 "a = ... + ...". */ 989 /* And there is nothing to do. */ 990 res = t_false; 991 break; 992 993 case MINUS_EXPR: 994 /* This case is under the form "opnd0 = rhs0 - rhs1". */ 995 if (TREE_CODE (rhs0) == SSA_NAME) 996 { 997 /* Match an assignment under the form: 998 "a = b - ...". */ 999 1000 /* We want only assignments of form "name - name" contribute to 1001 LIMIT, as the other cases do not necessarily contribute to 1002 the complexity of the expression. */ 1003 if (TREE_CODE (rhs1) == SSA_NAME) 1004 limit++; 1005 1006 *evolution_of_loop = add_to_evolution 1007 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt), 1008 MINUS_EXPR, rhs1, at_stmt); 1009 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, 1010 evolution_of_loop, limit); 1011 if (res == t_true) 1012 ; 1013 else if (res == t_dont_know) 1014 *evolution_of_loop = chrec_dont_know; 1015 } 1016 else 1017 /* Otherwise, match an assignment under the form: 1018 "a = ... - ...". */ 1019 /* And there is nothing to do. */ 1020 res = t_false; 1021 break; 1022 1023 default: 1024 res = t_false; 1025 } 1026 1027 return res; 1028 } 1029 1030 /* Follow the ssa edge into the expression EXPR. 1031 Return true if the strongly connected component has been found. */ 1032 1033 static t_bool 1034 follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr, 1035 gphi *halting_phi, tree *evolution_of_loop, 1036 int limit) 1037 { 1038 enum tree_code code = TREE_CODE (expr); 1039 tree type = TREE_TYPE (expr), rhs0, rhs1; 1040 t_bool res; 1041 1042 /* The EXPR is one of the following cases: 1043 - an SSA_NAME, 1044 - an INTEGER_CST, 1045 - a PLUS_EXPR, 1046 - a POINTER_PLUS_EXPR, 1047 - a MINUS_EXPR, 1048 - an ASSERT_EXPR, 1049 - other cases are not yet handled. */ 1050 1051 switch (code) 1052 { 1053 CASE_CONVERT: 1054 /* This assignment is under the form "a_1 = (cast) rhs. */ 1055 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0), 1056 halting_phi, evolution_of_loop, limit); 1057 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt); 1058 break; 1059 1060 case INTEGER_CST: 1061 /* This assignment is under the form "a_1 = 7". */ 1062 res = t_false; 1063 break; 1064 1065 case SSA_NAME: 1066 /* This assignment is under the form: "a_1 = b_2". */ 1067 res = follow_ssa_edge 1068 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit); 1069 break; 1070 1071 case POINTER_PLUS_EXPR: 1072 case PLUS_EXPR: 1073 case MINUS_EXPR: 1074 /* This case is under the form "rhs0 +- rhs1". */ 1075 rhs0 = TREE_OPERAND (expr, 0); 1076 rhs1 = TREE_OPERAND (expr, 1); 1077 type = TREE_TYPE (rhs0); 1078 STRIP_USELESS_TYPE_CONVERSION (rhs0); 1079 STRIP_USELESS_TYPE_CONVERSION (rhs1); 1080 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1, 1081 halting_phi, evolution_of_loop, limit); 1082 break; 1083 1084 case ADDR_EXPR: 1085 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */ 1086 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF) 1087 { 1088 expr = TREE_OPERAND (expr, 0); 1089 rhs0 = TREE_OPERAND (expr, 0); 1090 rhs1 = TREE_OPERAND (expr, 1); 1091 type = TREE_TYPE (rhs0); 1092 STRIP_USELESS_TYPE_CONVERSION (rhs0); 1093 STRIP_USELESS_TYPE_CONVERSION (rhs1); 1094 res = follow_ssa_edge_binary (loop, at_stmt, type, 1095 rhs0, POINTER_PLUS_EXPR, rhs1, 1096 halting_phi, evolution_of_loop, limit); 1097 } 1098 else 1099 res = t_false; 1100 break; 1101 1102 case ASSERT_EXPR: 1103 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>" 1104 It must be handled as a copy assignment of the form a_1 = a_2. */ 1105 rhs0 = ASSERT_EXPR_VAR (expr); 1106 if (TREE_CODE (rhs0) == SSA_NAME) 1107 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), 1108 halting_phi, evolution_of_loop, limit); 1109 else 1110 res = t_false; 1111 break; 1112 1113 default: 1114 res = t_false; 1115 break; 1116 } 1117 1118 return res; 1119 } 1120 1121 /* Follow the ssa edge into the right hand side of an assignment STMT. 1122 Return true if the strongly connected component has been found. */ 1123 1124 static t_bool 1125 follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt, 1126 gphi *halting_phi, tree *evolution_of_loop, 1127 int limit) 1128 { 1129 enum tree_code code = gimple_assign_rhs_code (stmt); 1130 tree type = gimple_expr_type (stmt), rhs1, rhs2; 1131 t_bool res; 1132 1133 switch (code) 1134 { 1135 CASE_CONVERT: 1136 /* This assignment is under the form "a_1 = (cast) rhs. */ 1137 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt), 1138 halting_phi, evolution_of_loop, limit); 1139 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt); 1140 break; 1141 1142 case POINTER_PLUS_EXPR: 1143 case PLUS_EXPR: 1144 case MINUS_EXPR: 1145 rhs1 = gimple_assign_rhs1 (stmt); 1146 rhs2 = gimple_assign_rhs2 (stmt); 1147 type = TREE_TYPE (rhs1); 1148 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2, 1149 halting_phi, evolution_of_loop, limit); 1150 break; 1151 1152 default: 1153 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) 1154 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt), 1155 halting_phi, evolution_of_loop, limit); 1156 else 1157 res = t_false; 1158 break; 1159 } 1160 1161 return res; 1162 } 1163 1164 /* Checks whether the I-th argument of a PHI comes from a backedge. */ 1165 1166 static bool 1167 backedge_phi_arg_p (gphi *phi, int i) 1168 { 1169 const_edge e = gimple_phi_arg_edge (phi, i); 1170 1171 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care 1172 about updating it anywhere, and this should work as well most of the 1173 time. */ 1174 if (e->flags & EDGE_IRREDUCIBLE_LOOP) 1175 return true; 1176 1177 return false; 1178 } 1179 1180 /* Helper function for one branch of the condition-phi-node. Return 1181 true if the strongly connected component has been found following 1182 this path. */ 1183 1184 static inline t_bool 1185 follow_ssa_edge_in_condition_phi_branch (int i, 1186 struct loop *loop, 1187 gphi *condition_phi, 1188 gphi *halting_phi, 1189 tree *evolution_of_branch, 1190 tree init_cond, int limit) 1191 { 1192 tree branch = PHI_ARG_DEF (condition_phi, i); 1193 *evolution_of_branch = chrec_dont_know; 1194 1195 /* Do not follow back edges (they must belong to an irreducible loop, which 1196 we really do not want to worry about). */ 1197 if (backedge_phi_arg_p (condition_phi, i)) 1198 return t_false; 1199 1200 if (TREE_CODE (branch) == SSA_NAME) 1201 { 1202 *evolution_of_branch = init_cond; 1203 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi, 1204 evolution_of_branch, limit); 1205 } 1206 1207 /* This case occurs when one of the condition branches sets 1208 the variable to a constant: i.e. a phi-node like 1209 "a_2 = PHI <a_7(5), 2(6)>;". 1210 1211 FIXME: This case have to be refined correctly: 1212 in some cases it is possible to say something better than 1213 chrec_dont_know, for example using a wrap-around notation. */ 1214 return t_false; 1215 } 1216 1217 /* This function merges the branches of a condition-phi-node in a 1218 loop. */ 1219 1220 static t_bool 1221 follow_ssa_edge_in_condition_phi (struct loop *loop, 1222 gphi *condition_phi, 1223 gphi *halting_phi, 1224 tree *evolution_of_loop, int limit) 1225 { 1226 int i, n; 1227 tree init = *evolution_of_loop; 1228 tree evolution_of_branch; 1229 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi, 1230 halting_phi, 1231 &evolution_of_branch, 1232 init, limit); 1233 if (res == t_false || res == t_dont_know) 1234 return res; 1235 1236 *evolution_of_loop = evolution_of_branch; 1237 1238 n = gimple_phi_num_args (condition_phi); 1239 for (i = 1; i < n; i++) 1240 { 1241 /* Quickly give up when the evolution of one of the branches is 1242 not known. */ 1243 if (*evolution_of_loop == chrec_dont_know) 1244 return t_true; 1245 1246 /* Increase the limit by the PHI argument number to avoid exponential 1247 time and memory complexity. */ 1248 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi, 1249 halting_phi, 1250 &evolution_of_branch, 1251 init, limit + i); 1252 if (res == t_false || res == t_dont_know) 1253 return res; 1254 1255 *evolution_of_loop = chrec_merge (*evolution_of_loop, 1256 evolution_of_branch); 1257 } 1258 1259 return t_true; 1260 } 1261 1262 /* Follow an SSA edge in an inner loop. It computes the overall 1263 effect of the loop, and following the symbolic initial conditions, 1264 it follows the edges in the parent loop. The inner loop is 1265 considered as a single statement. */ 1266 1267 static t_bool 1268 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop, 1269 gphi *loop_phi_node, 1270 gphi *halting_phi, 1271 tree *evolution_of_loop, int limit) 1272 { 1273 struct loop *loop = loop_containing_stmt (loop_phi_node); 1274 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node)); 1275 1276 /* Sometimes, the inner loop is too difficult to analyze, and the 1277 result of the analysis is a symbolic parameter. */ 1278 if (ev == PHI_RESULT (loop_phi_node)) 1279 { 1280 t_bool res = t_false; 1281 int i, n = gimple_phi_num_args (loop_phi_node); 1282 1283 for (i = 0; i < n; i++) 1284 { 1285 tree arg = PHI_ARG_DEF (loop_phi_node, i); 1286 basic_block bb; 1287 1288 /* Follow the edges that exit the inner loop. */ 1289 bb = gimple_phi_arg_edge (loop_phi_node, i)->src; 1290 if (!flow_bb_inside_loop_p (loop, bb)) 1291 res = follow_ssa_edge_expr (outer_loop, loop_phi_node, 1292 arg, halting_phi, 1293 evolution_of_loop, limit); 1294 if (res == t_true) 1295 break; 1296 } 1297 1298 /* If the path crosses this loop-phi, give up. */ 1299 if (res == t_true) 1300 *evolution_of_loop = chrec_dont_know; 1301 1302 return res; 1303 } 1304 1305 /* Otherwise, compute the overall effect of the inner loop. */ 1306 ev = compute_overall_effect_of_inner_loop (loop, ev); 1307 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi, 1308 evolution_of_loop, limit); 1309 } 1310 1311 /* Follow an SSA edge from a loop-phi-node to itself, constructing a 1312 path that is analyzed on the return walk. */ 1313 1314 static t_bool 1315 follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi, 1316 tree *evolution_of_loop, int limit) 1317 { 1318 struct loop *def_loop; 1319 1320 if (gimple_nop_p (def)) 1321 return t_false; 1322 1323 /* Give up if the path is longer than the MAX that we allow. */ 1324 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY)) 1325 return t_dont_know; 1326 1327 def_loop = loop_containing_stmt (def); 1328 1329 switch (gimple_code (def)) 1330 { 1331 case GIMPLE_PHI: 1332 if (!loop_phi_node_p (def)) 1333 /* DEF is a condition-phi-node. Follow the branches, and 1334 record their evolutions. Finally, merge the collected 1335 information and set the approximation to the main 1336 variable. */ 1337 return follow_ssa_edge_in_condition_phi 1338 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop, 1339 limit); 1340 1341 /* When the analyzed phi is the halting_phi, the 1342 depth-first search is over: we have found a path from 1343 the halting_phi to itself in the loop. */ 1344 if (def == halting_phi) 1345 return t_true; 1346 1347 /* Otherwise, the evolution of the HALTING_PHI depends 1348 on the evolution of another loop-phi-node, i.e. the 1349 evolution function is a higher degree polynomial. */ 1350 if (def_loop == loop) 1351 return t_false; 1352 1353 /* Inner loop. */ 1354 if (flow_loop_nested_p (loop, def_loop)) 1355 return follow_ssa_edge_inner_loop_phi 1356 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop, 1357 limit + 1); 1358 1359 /* Outer loop. */ 1360 return t_false; 1361 1362 case GIMPLE_ASSIGN: 1363 return follow_ssa_edge_in_rhs (loop, def, halting_phi, 1364 evolution_of_loop, limit); 1365 1366 default: 1367 /* At this level of abstraction, the program is just a set 1368 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no 1369 other node to be handled. */ 1370 return t_false; 1371 } 1372 } 1373 1374 1375 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP. 1376 Handle below case and return the corresponding POLYNOMIAL_CHREC: 1377 1378 # i_17 = PHI <i_13(5), 0(3)> 1379 # _20 = PHI <_5(5), start_4(D)(3)> 1380 ... 1381 i_13 = i_17 + 1; 1382 _5 = start_4(D) + i_13; 1383 1384 Though variable _20 appears as a PEELED_CHREC in the form of 1385 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP. 1386 1387 See PR41488. */ 1388 1389 static tree 1390 simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond) 1391 { 1392 aff_tree aff1, aff2; 1393 tree ev, left, right, type, step_val; 1394 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL; 1395 1396 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg)); 1397 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC) 1398 return chrec_dont_know; 1399 1400 left = CHREC_LEFT (ev); 1401 right = CHREC_RIGHT (ev); 1402 type = TREE_TYPE (left); 1403 step_val = chrec_fold_plus (type, init_cond, right); 1404 1405 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP 1406 if "left" equals to "init + right". */ 1407 if (operand_equal_p (left, step_val, 0)) 1408 { 1409 if (dump_file && (dump_flags & TDF_SCEV)) 1410 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n"); 1411 1412 return build_polynomial_chrec (loop->num, init_cond, right); 1413 } 1414 1415 /* Try harder to check if they are equal. */ 1416 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map); 1417 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map); 1418 free_affine_expand_cache (&peeled_chrec_map); 1419 aff_combination_scale (&aff2, -1); 1420 aff_combination_add (&aff1, &aff2); 1421 1422 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP 1423 if "left" equals to "init + right". */ 1424 if (aff_combination_zero_p (&aff1)) 1425 { 1426 if (dump_file && (dump_flags & TDF_SCEV)) 1427 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n"); 1428 1429 return build_polynomial_chrec (loop->num, init_cond, right); 1430 } 1431 return chrec_dont_know; 1432 } 1433 1434 /* Given a LOOP_PHI_NODE, this function determines the evolution 1435 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */ 1436 1437 static tree 1438 analyze_evolution_in_loop (gphi *loop_phi_node, 1439 tree init_cond) 1440 { 1441 int i, n = gimple_phi_num_args (loop_phi_node); 1442 tree evolution_function = chrec_not_analyzed_yet; 1443 struct loop *loop = loop_containing_stmt (loop_phi_node); 1444 basic_block bb; 1445 static bool simplify_peeled_chrec_p = true; 1446 1447 if (dump_file && (dump_flags & TDF_SCEV)) 1448 { 1449 fprintf (dump_file, "(analyze_evolution_in_loop \n"); 1450 fprintf (dump_file, " (loop_phi_node = "); 1451 print_gimple_stmt (dump_file, loop_phi_node, 0, 0); 1452 fprintf (dump_file, ")\n"); 1453 } 1454 1455 for (i = 0; i < n; i++) 1456 { 1457 tree arg = PHI_ARG_DEF (loop_phi_node, i); 1458 gimple *ssa_chain; 1459 tree ev_fn; 1460 t_bool res; 1461 1462 /* Select the edges that enter the loop body. */ 1463 bb = gimple_phi_arg_edge (loop_phi_node, i)->src; 1464 if (!flow_bb_inside_loop_p (loop, bb)) 1465 continue; 1466 1467 if (TREE_CODE (arg) == SSA_NAME) 1468 { 1469 bool val = false; 1470 1471 ssa_chain = SSA_NAME_DEF_STMT (arg); 1472 1473 /* Pass in the initial condition to the follow edge function. */ 1474 ev_fn = init_cond; 1475 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0); 1476 1477 /* If ev_fn has no evolution in the inner loop, and the 1478 init_cond is not equal to ev_fn, then we have an 1479 ambiguity between two possible values, as we cannot know 1480 the number of iterations at this point. */ 1481 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC 1482 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val 1483 && !operand_equal_p (init_cond, ev_fn, 0)) 1484 ev_fn = chrec_dont_know; 1485 } 1486 else 1487 res = t_false; 1488 1489 /* When it is impossible to go back on the same 1490 loop_phi_node by following the ssa edges, the 1491 evolution is represented by a peeled chrec, i.e. the 1492 first iteration, EV_FN has the value INIT_COND, then 1493 all the other iterations it has the value of ARG. 1494 For the moment, PEELED_CHREC nodes are not built. */ 1495 if (res != t_true) 1496 { 1497 ev_fn = chrec_dont_know; 1498 /* Try to recognize POLYNOMIAL_CHREC which appears in 1499 the form of PEELED_CHREC, but guard the process with 1500 a bool variable to keep the analyzer from infinite 1501 recurrence for real PEELED_RECs. */ 1502 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME) 1503 { 1504 simplify_peeled_chrec_p = false; 1505 ev_fn = simplify_peeled_chrec (loop, arg, init_cond); 1506 simplify_peeled_chrec_p = true; 1507 } 1508 } 1509 1510 /* When there are multiple back edges of the loop (which in fact never 1511 happens currently, but nevertheless), merge their evolutions. */ 1512 evolution_function = chrec_merge (evolution_function, ev_fn); 1513 1514 if (evolution_function == chrec_dont_know) 1515 break; 1516 } 1517 1518 if (dump_file && (dump_flags & TDF_SCEV)) 1519 { 1520 fprintf (dump_file, " (evolution_function = "); 1521 print_generic_expr (dump_file, evolution_function, 0); 1522 fprintf (dump_file, "))\n"); 1523 } 1524 1525 return evolution_function; 1526 } 1527 1528 /* Looks to see if VAR is a copy of a constant (via straightforward assignments 1529 or degenerate phi's). If so, returns the constant; else, returns VAR. */ 1530 1531 static tree 1532 follow_copies_to_constant (tree var) 1533 { 1534 tree res = var; 1535 while (TREE_CODE (res) == SSA_NAME) 1536 { 1537 gimple *def = SSA_NAME_DEF_STMT (res); 1538 if (gphi *phi = dyn_cast <gphi *> (def)) 1539 { 1540 if (tree rhs = degenerate_phi_result (phi)) 1541 res = rhs; 1542 else 1543 break; 1544 } 1545 else if (gimple_assign_single_p (def)) 1546 /* Will exit loop if not an SSA_NAME. */ 1547 res = gimple_assign_rhs1 (def); 1548 else 1549 break; 1550 } 1551 if (CONSTANT_CLASS_P (res)) 1552 return res; 1553 return var; 1554 } 1555 1556 /* Given a loop-phi-node, return the initial conditions of the 1557 variable on entry of the loop. When the CCP has propagated 1558 constants into the loop-phi-node, the initial condition is 1559 instantiated, otherwise the initial condition is kept symbolic. 1560 This analyzer does not analyze the evolution outside the current 1561 loop, and leaves this task to the on-demand tree reconstructor. */ 1562 1563 static tree 1564 analyze_initial_condition (gphi *loop_phi_node) 1565 { 1566 int i, n; 1567 tree init_cond = chrec_not_analyzed_yet; 1568 struct loop *loop = loop_containing_stmt (loop_phi_node); 1569 1570 if (dump_file && (dump_flags & TDF_SCEV)) 1571 { 1572 fprintf (dump_file, "(analyze_initial_condition \n"); 1573 fprintf (dump_file, " (loop_phi_node = \n"); 1574 print_gimple_stmt (dump_file, loop_phi_node, 0, 0); 1575 fprintf (dump_file, ")\n"); 1576 } 1577 1578 n = gimple_phi_num_args (loop_phi_node); 1579 for (i = 0; i < n; i++) 1580 { 1581 tree branch = PHI_ARG_DEF (loop_phi_node, i); 1582 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src; 1583 1584 /* When the branch is oriented to the loop's body, it does 1585 not contribute to the initial condition. */ 1586 if (flow_bb_inside_loop_p (loop, bb)) 1587 continue; 1588 1589 if (init_cond == chrec_not_analyzed_yet) 1590 { 1591 init_cond = branch; 1592 continue; 1593 } 1594 1595 if (TREE_CODE (branch) == SSA_NAME) 1596 { 1597 init_cond = chrec_dont_know; 1598 break; 1599 } 1600 1601 init_cond = chrec_merge (init_cond, branch); 1602 } 1603 1604 /* Ooops -- a loop without an entry??? */ 1605 if (init_cond == chrec_not_analyzed_yet) 1606 init_cond = chrec_dont_know; 1607 1608 /* We may not have fully constant propagated IL. Handle degenerate PHIs here 1609 to not miss important early loop unrollings. */ 1610 init_cond = follow_copies_to_constant (init_cond); 1611 1612 if (dump_file && (dump_flags & TDF_SCEV)) 1613 { 1614 fprintf (dump_file, " (init_cond = "); 1615 print_generic_expr (dump_file, init_cond, 0); 1616 fprintf (dump_file, "))\n"); 1617 } 1618 1619 return init_cond; 1620 } 1621 1622 /* Analyze the scalar evolution for LOOP_PHI_NODE. */ 1623 1624 static tree 1625 interpret_loop_phi (struct loop *loop, gphi *loop_phi_node) 1626 { 1627 tree res; 1628 struct loop *phi_loop = loop_containing_stmt (loop_phi_node); 1629 tree init_cond; 1630 1631 if (phi_loop != loop) 1632 { 1633 struct loop *subloop; 1634 tree evolution_fn = analyze_scalar_evolution 1635 (phi_loop, PHI_RESULT (loop_phi_node)); 1636 1637 /* Dive one level deeper. */ 1638 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1); 1639 1640 /* Interpret the subloop. */ 1641 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn); 1642 return res; 1643 } 1644 1645 /* Otherwise really interpret the loop phi. */ 1646 init_cond = analyze_initial_condition (loop_phi_node); 1647 res = analyze_evolution_in_loop (loop_phi_node, init_cond); 1648 1649 /* Verify we maintained the correct initial condition throughout 1650 possible conversions in the SSA chain. */ 1651 if (res != chrec_dont_know) 1652 { 1653 tree new_init = res; 1654 if (CONVERT_EXPR_P (res) 1655 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC) 1656 new_init = fold_convert (TREE_TYPE (res), 1657 CHREC_LEFT (TREE_OPERAND (res, 0))); 1658 else if (TREE_CODE (res) == POLYNOMIAL_CHREC) 1659 new_init = CHREC_LEFT (res); 1660 STRIP_USELESS_TYPE_CONVERSION (new_init); 1661 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC 1662 || !operand_equal_p (init_cond, new_init, 0)) 1663 return chrec_dont_know; 1664 } 1665 1666 return res; 1667 } 1668 1669 /* This function merges the branches of a condition-phi-node, 1670 contained in the outermost loop, and whose arguments are already 1671 analyzed. */ 1672 1673 static tree 1674 interpret_condition_phi (struct loop *loop, gphi *condition_phi) 1675 { 1676 int i, n = gimple_phi_num_args (condition_phi); 1677 tree res = chrec_not_analyzed_yet; 1678 1679 for (i = 0; i < n; i++) 1680 { 1681 tree branch_chrec; 1682 1683 if (backedge_phi_arg_p (condition_phi, i)) 1684 { 1685 res = chrec_dont_know; 1686 break; 1687 } 1688 1689 branch_chrec = analyze_scalar_evolution 1690 (loop, PHI_ARG_DEF (condition_phi, i)); 1691 1692 res = chrec_merge (res, branch_chrec); 1693 if (res == chrec_dont_know) 1694 break; 1695 } 1696 1697 return res; 1698 } 1699 1700 /* Interpret the operation RHS1 OP RHS2. If we didn't 1701 analyze this node before, follow the definitions until ending 1702 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the 1703 return path, this function propagates evolutions (ala constant copy 1704 propagation). OPND1 is not a GIMPLE expression because we could 1705 analyze the effect of an inner loop: see interpret_loop_phi. */ 1706 1707 static tree 1708 interpret_rhs_expr (struct loop *loop, gimple *at_stmt, 1709 tree type, tree rhs1, enum tree_code code, tree rhs2) 1710 { 1711 tree res, chrec1, chrec2, ctype; 1712 gimple *def; 1713 1714 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS) 1715 { 1716 if (is_gimple_min_invariant (rhs1)) 1717 return chrec_convert (type, rhs1, at_stmt); 1718 1719 if (code == SSA_NAME) 1720 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1), 1721 at_stmt); 1722 1723 if (code == ASSERT_EXPR) 1724 { 1725 rhs1 = ASSERT_EXPR_VAR (rhs1); 1726 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1), 1727 at_stmt); 1728 } 1729 } 1730 1731 switch (code) 1732 { 1733 case ADDR_EXPR: 1734 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF 1735 || handled_component_p (TREE_OPERAND (rhs1, 0))) 1736 { 1737 machine_mode mode; 1738 HOST_WIDE_INT bitsize, bitpos; 1739 int unsignedp, reversep; 1740 int volatilep = 0; 1741 tree base, offset; 1742 tree chrec3; 1743 tree unitpos; 1744 1745 base = get_inner_reference (TREE_OPERAND (rhs1, 0), 1746 &bitsize, &bitpos, &offset, &mode, 1747 &unsignedp, &reversep, &volatilep, 1748 false); 1749 1750 if (TREE_CODE (base) == MEM_REF) 1751 { 1752 rhs2 = TREE_OPERAND (base, 1); 1753 rhs1 = TREE_OPERAND (base, 0); 1754 1755 chrec1 = analyze_scalar_evolution (loop, rhs1); 1756 chrec2 = analyze_scalar_evolution (loop, rhs2); 1757 chrec1 = chrec_convert (type, chrec1, at_stmt); 1758 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt); 1759 chrec1 = instantiate_parameters (loop, chrec1); 1760 chrec2 = instantiate_parameters (loop, chrec2); 1761 res = chrec_fold_plus (type, chrec1, chrec2); 1762 } 1763 else 1764 { 1765 chrec1 = analyze_scalar_evolution_for_address_of (loop, base); 1766 chrec1 = chrec_convert (type, chrec1, at_stmt); 1767 res = chrec1; 1768 } 1769 1770 if (offset != NULL_TREE) 1771 { 1772 chrec2 = analyze_scalar_evolution (loop, offset); 1773 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt); 1774 chrec2 = instantiate_parameters (loop, chrec2); 1775 res = chrec_fold_plus (type, res, chrec2); 1776 } 1777 1778 if (bitpos != 0) 1779 { 1780 gcc_assert ((bitpos % BITS_PER_UNIT) == 0); 1781 1782 unitpos = size_int (bitpos / BITS_PER_UNIT); 1783 chrec3 = analyze_scalar_evolution (loop, unitpos); 1784 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt); 1785 chrec3 = instantiate_parameters (loop, chrec3); 1786 res = chrec_fold_plus (type, res, chrec3); 1787 } 1788 } 1789 else 1790 res = chrec_dont_know; 1791 break; 1792 1793 case POINTER_PLUS_EXPR: 1794 chrec1 = analyze_scalar_evolution (loop, rhs1); 1795 chrec2 = analyze_scalar_evolution (loop, rhs2); 1796 chrec1 = chrec_convert (type, chrec1, at_stmt); 1797 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt); 1798 chrec1 = instantiate_parameters (loop, chrec1); 1799 chrec2 = instantiate_parameters (loop, chrec2); 1800 res = chrec_fold_plus (type, chrec1, chrec2); 1801 break; 1802 1803 case PLUS_EXPR: 1804 chrec1 = analyze_scalar_evolution (loop, rhs1); 1805 chrec2 = analyze_scalar_evolution (loop, rhs2); 1806 ctype = type; 1807 /* When the stmt is conditionally executed re-write the CHREC 1808 into a form that has well-defined behavior on overflow. */ 1809 if (at_stmt 1810 && INTEGRAL_TYPE_P (type) 1811 && ! TYPE_OVERFLOW_WRAPS (type) 1812 && ! dominated_by_p (CDI_DOMINATORS, loop->latch, 1813 gimple_bb (at_stmt))) 1814 ctype = unsigned_type_for (type); 1815 chrec1 = chrec_convert (ctype, chrec1, at_stmt); 1816 chrec2 = chrec_convert (ctype, chrec2, at_stmt); 1817 chrec1 = instantiate_parameters (loop, chrec1); 1818 chrec2 = instantiate_parameters (loop, chrec2); 1819 res = chrec_fold_plus (ctype, chrec1, chrec2); 1820 if (type != ctype) 1821 res = chrec_convert (type, res, at_stmt); 1822 break; 1823 1824 case MINUS_EXPR: 1825 chrec1 = analyze_scalar_evolution (loop, rhs1); 1826 chrec2 = analyze_scalar_evolution (loop, rhs2); 1827 ctype = type; 1828 /* When the stmt is conditionally executed re-write the CHREC 1829 into a form that has well-defined behavior on overflow. */ 1830 if (at_stmt 1831 && INTEGRAL_TYPE_P (type) 1832 && ! TYPE_OVERFLOW_WRAPS (type) 1833 && ! dominated_by_p (CDI_DOMINATORS, 1834 loop->latch, gimple_bb (at_stmt))) 1835 ctype = unsigned_type_for (type); 1836 chrec1 = chrec_convert (ctype, chrec1, at_stmt); 1837 chrec2 = chrec_convert (ctype, chrec2, at_stmt); 1838 chrec1 = instantiate_parameters (loop, chrec1); 1839 chrec2 = instantiate_parameters (loop, chrec2); 1840 res = chrec_fold_minus (ctype, chrec1, chrec2); 1841 if (type != ctype) 1842 res = chrec_convert (type, res, at_stmt); 1843 break; 1844 1845 case NEGATE_EXPR: 1846 chrec1 = analyze_scalar_evolution (loop, rhs1); 1847 ctype = type; 1848 /* When the stmt is conditionally executed re-write the CHREC 1849 into a form that has well-defined behavior on overflow. */ 1850 if (at_stmt 1851 && INTEGRAL_TYPE_P (type) 1852 && ! TYPE_OVERFLOW_WRAPS (type) 1853 && ! dominated_by_p (CDI_DOMINATORS, 1854 loop->latch, gimple_bb (at_stmt))) 1855 ctype = unsigned_type_for (type); 1856 chrec1 = chrec_convert (ctype, chrec1, at_stmt); 1857 /* TYPE may be integer, real or complex, so use fold_convert. */ 1858 chrec1 = instantiate_parameters (loop, chrec1); 1859 res = chrec_fold_multiply (ctype, chrec1, 1860 fold_convert (ctype, integer_minus_one_node)); 1861 if (type != ctype) 1862 res = chrec_convert (type, res, at_stmt); 1863 break; 1864 1865 case BIT_NOT_EXPR: 1866 /* Handle ~X as -1 - X. */ 1867 chrec1 = analyze_scalar_evolution (loop, rhs1); 1868 chrec1 = chrec_convert (type, chrec1, at_stmt); 1869 chrec1 = instantiate_parameters (loop, chrec1); 1870 res = chrec_fold_minus (type, 1871 fold_convert (type, integer_minus_one_node), 1872 chrec1); 1873 break; 1874 1875 case MULT_EXPR: 1876 chrec1 = analyze_scalar_evolution (loop, rhs1); 1877 chrec2 = analyze_scalar_evolution (loop, rhs2); 1878 ctype = type; 1879 /* When the stmt is conditionally executed re-write the CHREC 1880 into a form that has well-defined behavior on overflow. */ 1881 if (at_stmt 1882 && INTEGRAL_TYPE_P (type) 1883 && ! TYPE_OVERFLOW_WRAPS (type) 1884 && ! dominated_by_p (CDI_DOMINATORS, 1885 loop->latch, gimple_bb (at_stmt))) 1886 ctype = unsigned_type_for (type); 1887 chrec1 = chrec_convert (ctype, chrec1, at_stmt); 1888 chrec2 = chrec_convert (ctype, chrec2, at_stmt); 1889 chrec1 = instantiate_parameters (loop, chrec1); 1890 chrec2 = instantiate_parameters (loop, chrec2); 1891 res = chrec_fold_multiply (ctype, chrec1, chrec2); 1892 if (type != ctype) 1893 res = chrec_convert (type, res, at_stmt); 1894 break; 1895 1896 case LSHIFT_EXPR: 1897 { 1898 /* Handle A<<B as A * (1<<B). */ 1899 tree uns = unsigned_type_for (type); 1900 chrec1 = analyze_scalar_evolution (loop, rhs1); 1901 chrec2 = analyze_scalar_evolution (loop, rhs2); 1902 chrec1 = chrec_convert (uns, chrec1, at_stmt); 1903 chrec1 = instantiate_parameters (loop, chrec1); 1904 chrec2 = instantiate_parameters (loop, chrec2); 1905 1906 tree one = build_int_cst (uns, 1); 1907 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2); 1908 res = chrec_fold_multiply (uns, chrec1, chrec2); 1909 res = chrec_convert (type, res, at_stmt); 1910 } 1911 break; 1912 1913 CASE_CONVERT: 1914 /* In case we have a truncation of a widened operation that in 1915 the truncated type has undefined overflow behavior analyze 1916 the operation done in an unsigned type of the same precision 1917 as the final truncation. We cannot derive a scalar evolution 1918 for the widened operation but for the truncated result. */ 1919 if (TREE_CODE (type) == INTEGER_TYPE 1920 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE 1921 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1)) 1922 && TYPE_OVERFLOW_UNDEFINED (type) 1923 && TREE_CODE (rhs1) == SSA_NAME 1924 && (def = SSA_NAME_DEF_STMT (rhs1)) 1925 && is_gimple_assign (def) 1926 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary 1927 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST) 1928 { 1929 tree utype = unsigned_type_for (type); 1930 chrec1 = interpret_rhs_expr (loop, at_stmt, utype, 1931 gimple_assign_rhs1 (def), 1932 gimple_assign_rhs_code (def), 1933 gimple_assign_rhs2 (def)); 1934 } 1935 else 1936 chrec1 = analyze_scalar_evolution (loop, rhs1); 1937 res = chrec_convert (type, chrec1, at_stmt); 1938 break; 1939 1940 default: 1941 res = chrec_dont_know; 1942 break; 1943 } 1944 1945 return res; 1946 } 1947 1948 /* Interpret the expression EXPR. */ 1949 1950 static tree 1951 interpret_expr (struct loop *loop, gimple *at_stmt, tree expr) 1952 { 1953 enum tree_code code; 1954 tree type = TREE_TYPE (expr), op0, op1; 1955 1956 if (automatically_generated_chrec_p (expr)) 1957 return expr; 1958 1959 if (TREE_CODE (expr) == POLYNOMIAL_CHREC 1960 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS) 1961 return chrec_dont_know; 1962 1963 extract_ops_from_tree (expr, &code, &op0, &op1); 1964 1965 return interpret_rhs_expr (loop, at_stmt, type, 1966 op0, code, op1); 1967 } 1968 1969 /* Interpret the rhs of the assignment STMT. */ 1970 1971 static tree 1972 interpret_gimple_assign (struct loop *loop, gimple *stmt) 1973 { 1974 tree type = TREE_TYPE (gimple_assign_lhs (stmt)); 1975 enum tree_code code = gimple_assign_rhs_code (stmt); 1976 1977 return interpret_rhs_expr (loop, stmt, type, 1978 gimple_assign_rhs1 (stmt), code, 1979 gimple_assign_rhs2 (stmt)); 1980 } 1981 1982 1983 1984 /* This section contains all the entry points: 1985 - number_of_iterations_in_loop, 1986 - analyze_scalar_evolution, 1987 - instantiate_parameters. 1988 */ 1989 1990 /* Compute and return the evolution function in WRTO_LOOP, the nearest 1991 common ancestor of DEF_LOOP and USE_LOOP. */ 1992 1993 static tree 1994 compute_scalar_evolution_in_loop (struct loop *wrto_loop, 1995 struct loop *def_loop, 1996 tree ev) 1997 { 1998 bool val; 1999 tree res; 2000 2001 if (def_loop == wrto_loop) 2002 return ev; 2003 2004 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1); 2005 res = compute_overall_effect_of_inner_loop (def_loop, ev); 2006 2007 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val) 2008 return res; 2009 2010 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet); 2011 } 2012 2013 /* Helper recursive function. */ 2014 2015 static tree 2016 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res) 2017 { 2018 tree type = TREE_TYPE (var); 2019 gimple *def; 2020 basic_block bb; 2021 struct loop *def_loop; 2022 2023 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE) 2024 return chrec_dont_know; 2025 2026 if (TREE_CODE (var) != SSA_NAME) 2027 return interpret_expr (loop, NULL, var); 2028 2029 def = SSA_NAME_DEF_STMT (var); 2030 bb = gimple_bb (def); 2031 def_loop = bb ? bb->loop_father : NULL; 2032 2033 if (bb == NULL 2034 || !flow_bb_inside_loop_p (loop, bb)) 2035 { 2036 /* Keep symbolic form, but look through obvious copies for constants. */ 2037 res = follow_copies_to_constant (var); 2038 goto set_and_end; 2039 } 2040 2041 if (res != chrec_not_analyzed_yet) 2042 { 2043 if (loop != bb->loop_father) 2044 res = compute_scalar_evolution_in_loop 2045 (find_common_loop (loop, bb->loop_father), bb->loop_father, res); 2046 2047 goto set_and_end; 2048 } 2049 2050 if (loop != def_loop) 2051 { 2052 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet); 2053 res = compute_scalar_evolution_in_loop (loop, def_loop, res); 2054 2055 goto set_and_end; 2056 } 2057 2058 switch (gimple_code (def)) 2059 { 2060 case GIMPLE_ASSIGN: 2061 res = interpret_gimple_assign (loop, def); 2062 break; 2063 2064 case GIMPLE_PHI: 2065 if (loop_phi_node_p (def)) 2066 res = interpret_loop_phi (loop, as_a <gphi *> (def)); 2067 else 2068 res = interpret_condition_phi (loop, as_a <gphi *> (def)); 2069 break; 2070 2071 default: 2072 res = chrec_dont_know; 2073 break; 2074 } 2075 2076 set_and_end: 2077 2078 /* Keep the symbolic form. */ 2079 if (res == chrec_dont_know) 2080 res = var; 2081 2082 if (loop == def_loop) 2083 set_scalar_evolution (block_before_loop (loop), var, res); 2084 2085 return res; 2086 } 2087 2088 /* Analyzes and returns the scalar evolution of the ssa_name VAR in 2089 LOOP. LOOP is the loop in which the variable is used. 2090 2091 Example of use: having a pointer VAR to a SSA_NAME node, STMT a 2092 pointer to the statement that uses this variable, in order to 2093 determine the evolution function of the variable, use the following 2094 calls: 2095 2096 loop_p loop = loop_containing_stmt (stmt); 2097 tree chrec_with_symbols = analyze_scalar_evolution (loop, var); 2098 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols); 2099 */ 2100 2101 tree 2102 analyze_scalar_evolution (struct loop *loop, tree var) 2103 { 2104 tree res; 2105 2106 if (dump_file && (dump_flags & TDF_SCEV)) 2107 { 2108 fprintf (dump_file, "(analyze_scalar_evolution \n"); 2109 fprintf (dump_file, " (loop_nb = %d)\n", loop->num); 2110 fprintf (dump_file, " (scalar = "); 2111 print_generic_expr (dump_file, var, 0); 2112 fprintf (dump_file, ")\n"); 2113 } 2114 2115 res = get_scalar_evolution (block_before_loop (loop), var); 2116 res = analyze_scalar_evolution_1 (loop, var, res); 2117 2118 if (dump_file && (dump_flags & TDF_SCEV)) 2119 fprintf (dump_file, ")\n"); 2120 2121 return res; 2122 } 2123 2124 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */ 2125 2126 static tree 2127 analyze_scalar_evolution_for_address_of (struct loop *loop, tree var) 2128 { 2129 return analyze_scalar_evolution (loop, build_fold_addr_expr (var)); 2130 } 2131 2132 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to 2133 WRTO_LOOP (which should be a superloop of USE_LOOP) 2134 2135 FOLDED_CASTS is set to true if resolve_mixers used 2136 chrec_convert_aggressive (TODO -- not really, we are way too conservative 2137 at the moment in order to keep things simple). 2138 2139 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following 2140 example: 2141 2142 for (i = 0; i < 100; i++) -- loop 1 2143 { 2144 for (j = 0; j < 100; j++) -- loop 2 2145 { 2146 k1 = i; 2147 k2 = j; 2148 2149 use2 (k1, k2); 2150 2151 for (t = 0; t < 100; t++) -- loop 3 2152 use3 (k1, k2); 2153 2154 } 2155 use1 (k1, k2); 2156 } 2157 2158 Both k1 and k2 are invariants in loop3, thus 2159 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1 2160 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2 2161 2162 As they are invariant, it does not matter whether we consider their 2163 usage in loop 3 or loop 2, hence 2164 analyze_scalar_evolution_in_loop (loop2, loop3, k1) = 2165 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i 2166 analyze_scalar_evolution_in_loop (loop2, loop3, k2) = 2167 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2 2168 2169 Similarly for their evolutions with respect to loop 1. The values of K2 2170 in the use in loop 2 vary independently on loop 1, thus we cannot express 2171 the evolution with respect to loop 1: 2172 analyze_scalar_evolution_in_loop (loop1, loop3, k1) = 2173 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1 2174 analyze_scalar_evolution_in_loop (loop1, loop3, k2) = 2175 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know 2176 2177 The value of k2 in the use in loop 1 is known, though: 2178 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1 2179 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100 2180 */ 2181 2182 static tree 2183 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop, 2184 tree version, bool *folded_casts) 2185 { 2186 bool val = false; 2187 tree ev = version, tmp; 2188 2189 /* We cannot just do 2190 2191 tmp = analyze_scalar_evolution (use_loop, version); 2192 ev = resolve_mixers (wrto_loop, tmp, folded_casts); 2193 2194 as resolve_mixers would query the scalar evolution with respect to 2195 wrto_loop. For example, in the situation described in the function 2196 comment, suppose that wrto_loop = loop1, use_loop = loop3 and 2197 version = k2. Then 2198 2199 analyze_scalar_evolution (use_loop, version) = k2 2200 2201 and resolve_mixers (loop1, k2, folded_casts) finds that the value of 2202 k2 in loop 1 is 100, which is a wrong result, since we are interested 2203 in the value in loop 3. 2204 2205 Instead, we need to proceed from use_loop to wrto_loop loop by loop, 2206 each time checking that there is no evolution in the inner loop. */ 2207 2208 if (folded_casts) 2209 *folded_casts = false; 2210 while (1) 2211 { 2212 tmp = analyze_scalar_evolution (use_loop, ev); 2213 ev = resolve_mixers (use_loop, tmp, folded_casts); 2214 2215 if (use_loop == wrto_loop) 2216 return ev; 2217 2218 /* If the value of the use changes in the inner loop, we cannot express 2219 its value in the outer loop (we might try to return interval chrec, 2220 but we do not have a user for it anyway) */ 2221 if (!no_evolution_in_loop_p (ev, use_loop->num, &val) 2222 || !val) 2223 return chrec_dont_know; 2224 2225 use_loop = loop_outer (use_loop); 2226 } 2227 } 2228 2229 2230 /* Hashtable helpers for a temporary hash-table used when 2231 instantiating a CHREC or resolving mixers. For this use 2232 instantiated_below is always the same. */ 2233 2234 struct instantiate_cache_type 2235 { 2236 htab_t map; 2237 vec<scev_info_str> entries; 2238 2239 instantiate_cache_type () : map (NULL), entries (vNULL) {} 2240 ~instantiate_cache_type (); 2241 tree get (unsigned slot) { return entries[slot].chrec; } 2242 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; } 2243 }; 2244 2245 instantiate_cache_type::~instantiate_cache_type () 2246 { 2247 if (map != NULL) 2248 { 2249 htab_delete (map); 2250 entries.release (); 2251 } 2252 } 2253 2254 /* Cache to avoid infinite recursion when instantiating an SSA name. 2255 Live during the outermost instantiate_scev or resolve_mixers call. */ 2256 static instantiate_cache_type *global_cache; 2257 2258 /* Computes a hash function for database element ELT. */ 2259 2260 static inline hashval_t 2261 hash_idx_scev_info (const void *elt_) 2262 { 2263 unsigned idx = ((size_t) elt_) - 2; 2264 return scev_info_hasher::hash (&global_cache->entries[idx]); 2265 } 2266 2267 /* Compares database elements E1 and E2. */ 2268 2269 static inline int 2270 eq_idx_scev_info (const void *e1, const void *e2) 2271 { 2272 unsigned idx1 = ((size_t) e1) - 2; 2273 return scev_info_hasher::equal (&global_cache->entries[idx1], 2274 (const scev_info_str *) e2); 2275 } 2276 2277 /* Returns from CACHE the slot number of the cached chrec for NAME. */ 2278 2279 static unsigned 2280 get_instantiated_value_entry (instantiate_cache_type &cache, 2281 tree name, basic_block instantiate_below) 2282 { 2283 if (!cache.map) 2284 { 2285 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL); 2286 cache.entries.create (10); 2287 } 2288 2289 scev_info_str e; 2290 e.name_version = SSA_NAME_VERSION (name); 2291 e.instantiated_below = instantiate_below->index; 2292 void **slot = htab_find_slot_with_hash (cache.map, &e, 2293 scev_info_hasher::hash (&e), INSERT); 2294 if (!*slot) 2295 { 2296 e.chrec = chrec_not_analyzed_yet; 2297 *slot = (void *)(size_t)(cache.entries.length () + 2); 2298 cache.entries.safe_push (e); 2299 } 2300 2301 return ((size_t)*slot) - 2; 2302 } 2303 2304 2305 /* Return the closed_loop_phi node for VAR. If there is none, return 2306 NULL_TREE. */ 2307 2308 static tree 2309 loop_closed_phi_def (tree var) 2310 { 2311 struct loop *loop; 2312 edge exit; 2313 gphi *phi; 2314 gphi_iterator psi; 2315 2316 if (var == NULL_TREE 2317 || TREE_CODE (var) != SSA_NAME) 2318 return NULL_TREE; 2319 2320 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var)); 2321 exit = single_exit (loop); 2322 if (!exit) 2323 return NULL_TREE; 2324 2325 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi)) 2326 { 2327 phi = psi.phi (); 2328 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var) 2329 return PHI_RESULT (phi); 2330 } 2331 2332 return NULL_TREE; 2333 } 2334 2335 static tree instantiate_scev_r (basic_block, struct loop *, struct loop *, 2336 tree, bool *, int); 2337 2338 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2339 and EVOLUTION_LOOP, that were left under a symbolic form. 2340 2341 CHREC is an SSA_NAME to be instantiated. 2342 2343 CACHE is the cache of already instantiated values. 2344 2345 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2346 conversions that may wrap in signed/pointer type are folded, as long 2347 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2348 then we don't do such fold. 2349 2350 SIZE_EXPR is used for computing the size of the expression to be 2351 instantiated, and to stop if it exceeds some limit. */ 2352 2353 static tree 2354 instantiate_scev_name (basic_block instantiate_below, 2355 struct loop *evolution_loop, struct loop *inner_loop, 2356 tree chrec, 2357 bool *fold_conversions, 2358 int size_expr) 2359 { 2360 tree res; 2361 struct loop *def_loop; 2362 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec)); 2363 2364 /* A parameter (or loop invariant and we do not want to include 2365 evolutions in outer loops), nothing to do. */ 2366 if (!def_bb 2367 || loop_depth (def_bb->loop_father) == 0 2368 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb)) 2369 return chrec; 2370 2371 /* We cache the value of instantiated variable to avoid exponential 2372 time complexity due to reevaluations. We also store the convenient 2373 value in the cache in order to prevent infinite recursion -- we do 2374 not want to instantiate the SSA_NAME if it is in a mixer 2375 structure. This is used for avoiding the instantiation of 2376 recursively defined functions, such as: 2377 2378 | a_2 -> {0, +, 1, +, a_2}_1 */ 2379 2380 unsigned si = get_instantiated_value_entry (*global_cache, 2381 chrec, instantiate_below); 2382 if (global_cache->get (si) != chrec_not_analyzed_yet) 2383 return global_cache->get (si); 2384 2385 /* On recursion return chrec_dont_know. */ 2386 global_cache->set (si, chrec_dont_know); 2387 2388 def_loop = find_common_loop (evolution_loop, def_bb->loop_father); 2389 2390 /* If the analysis yields a parametric chrec, instantiate the 2391 result again. */ 2392 res = analyze_scalar_evolution (def_loop, chrec); 2393 2394 /* Don't instantiate default definitions. */ 2395 if (TREE_CODE (res) == SSA_NAME 2396 && SSA_NAME_IS_DEFAULT_DEF (res)) 2397 ; 2398 2399 /* Don't instantiate loop-closed-ssa phi nodes. */ 2400 else if (TREE_CODE (res) == SSA_NAME 2401 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res))) 2402 > loop_depth (def_loop)) 2403 { 2404 if (res == chrec) 2405 res = loop_closed_phi_def (chrec); 2406 else 2407 res = chrec; 2408 2409 /* When there is no loop_closed_phi_def, it means that the 2410 variable is not used after the loop: try to still compute the 2411 value of the variable when exiting the loop. */ 2412 if (res == NULL_TREE) 2413 { 2414 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec)); 2415 res = analyze_scalar_evolution (loop, chrec); 2416 res = compute_overall_effect_of_inner_loop (loop, res); 2417 res = instantiate_scev_r (instantiate_below, evolution_loop, 2418 inner_loop, res, 2419 fold_conversions, size_expr); 2420 } 2421 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below, 2422 gimple_bb (SSA_NAME_DEF_STMT (res)))) 2423 res = chrec_dont_know; 2424 } 2425 2426 else if (res != chrec_dont_know) 2427 { 2428 if (inner_loop 2429 && def_bb->loop_father != inner_loop 2430 && !flow_loop_nested_p (def_bb->loop_father, inner_loop)) 2431 /* ??? We could try to compute the overall effect of the loop here. */ 2432 res = chrec_dont_know; 2433 else 2434 res = instantiate_scev_r (instantiate_below, evolution_loop, 2435 inner_loop, res, 2436 fold_conversions, size_expr); 2437 } 2438 2439 /* Store the correct value to the cache. */ 2440 global_cache->set (si, res); 2441 return res; 2442 } 2443 2444 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2445 and EVOLUTION_LOOP, that were left under a symbolic form. 2446 2447 CHREC is a polynomial chain of recurrence to be instantiated. 2448 2449 CACHE is the cache of already instantiated values. 2450 2451 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2452 conversions that may wrap in signed/pointer type are folded, as long 2453 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2454 then we don't do such fold. 2455 2456 SIZE_EXPR is used for computing the size of the expression to be 2457 instantiated, and to stop if it exceeds some limit. */ 2458 2459 static tree 2460 instantiate_scev_poly (basic_block instantiate_below, 2461 struct loop *evolution_loop, struct loop *, 2462 tree chrec, bool *fold_conversions, int size_expr) 2463 { 2464 tree op1; 2465 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2466 get_chrec_loop (chrec), 2467 CHREC_LEFT (chrec), fold_conversions, 2468 size_expr); 2469 if (op0 == chrec_dont_know) 2470 return chrec_dont_know; 2471 2472 op1 = instantiate_scev_r (instantiate_below, evolution_loop, 2473 get_chrec_loop (chrec), 2474 CHREC_RIGHT (chrec), fold_conversions, 2475 size_expr); 2476 if (op1 == chrec_dont_know) 2477 return chrec_dont_know; 2478 2479 if (CHREC_LEFT (chrec) != op0 2480 || CHREC_RIGHT (chrec) != op1) 2481 { 2482 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL); 2483 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1); 2484 } 2485 2486 return chrec; 2487 } 2488 2489 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2490 and EVOLUTION_LOOP, that were left under a symbolic form. 2491 2492 "C0 CODE C1" is a binary expression of type TYPE to be instantiated. 2493 2494 CACHE is the cache of already instantiated values. 2495 2496 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2497 conversions that may wrap in signed/pointer type are folded, as long 2498 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2499 then we don't do such fold. 2500 2501 SIZE_EXPR is used for computing the size of the expression to be 2502 instantiated, and to stop if it exceeds some limit. */ 2503 2504 static tree 2505 instantiate_scev_binary (basic_block instantiate_below, 2506 struct loop *evolution_loop, struct loop *inner_loop, 2507 tree chrec, enum tree_code code, 2508 tree type, tree c0, tree c1, 2509 bool *fold_conversions, int size_expr) 2510 { 2511 tree op1; 2512 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop, 2513 c0, fold_conversions, size_expr); 2514 if (op0 == chrec_dont_know) 2515 return chrec_dont_know; 2516 2517 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop, 2518 c1, fold_conversions, size_expr); 2519 if (op1 == chrec_dont_know) 2520 return chrec_dont_know; 2521 2522 if (c0 != op0 2523 || c1 != op1) 2524 { 2525 op0 = chrec_convert (type, op0, NULL); 2526 op1 = chrec_convert_rhs (type, op1, NULL); 2527 2528 switch (code) 2529 { 2530 case POINTER_PLUS_EXPR: 2531 case PLUS_EXPR: 2532 return chrec_fold_plus (type, op0, op1); 2533 2534 case MINUS_EXPR: 2535 return chrec_fold_minus (type, op0, op1); 2536 2537 case MULT_EXPR: 2538 return chrec_fold_multiply (type, op0, op1); 2539 2540 default: 2541 gcc_unreachable (); 2542 } 2543 } 2544 2545 return chrec ? chrec : fold_build2 (code, type, c0, c1); 2546 } 2547 2548 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2549 and EVOLUTION_LOOP, that were left under a symbolic form. 2550 2551 "CHREC" is an array reference to be instantiated. 2552 2553 CACHE is the cache of already instantiated values. 2554 2555 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2556 conversions that may wrap in signed/pointer type are folded, as long 2557 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2558 then we don't do such fold. 2559 2560 SIZE_EXPR is used for computing the size of the expression to be 2561 instantiated, and to stop if it exceeds some limit. */ 2562 2563 static tree 2564 instantiate_array_ref (basic_block instantiate_below, 2565 struct loop *evolution_loop, struct loop *inner_loop, 2566 tree chrec, bool *fold_conversions, int size_expr) 2567 { 2568 tree res; 2569 tree index = TREE_OPERAND (chrec, 1); 2570 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop, 2571 inner_loop, index, 2572 fold_conversions, size_expr); 2573 2574 if (op1 == chrec_dont_know) 2575 return chrec_dont_know; 2576 2577 if (chrec && op1 == index) 2578 return chrec; 2579 2580 res = unshare_expr (chrec); 2581 TREE_OPERAND (res, 1) = op1; 2582 return res; 2583 } 2584 2585 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2586 and EVOLUTION_LOOP, that were left under a symbolic form. 2587 2588 "CHREC" that stands for a convert expression "(TYPE) OP" is to be 2589 instantiated. 2590 2591 CACHE is the cache of already instantiated values. 2592 2593 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2594 conversions that may wrap in signed/pointer type are folded, as long 2595 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2596 then we don't do such fold. 2597 2598 SIZE_EXPR is used for computing the size of the expression to be 2599 instantiated, and to stop if it exceeds some limit. */ 2600 2601 static tree 2602 instantiate_scev_convert (basic_block instantiate_below, 2603 struct loop *evolution_loop, struct loop *inner_loop, 2604 tree chrec, tree type, tree op, 2605 bool *fold_conversions, int size_expr) 2606 { 2607 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2608 inner_loop, op, 2609 fold_conversions, size_expr); 2610 2611 if (op0 == chrec_dont_know) 2612 return chrec_dont_know; 2613 2614 if (fold_conversions) 2615 { 2616 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions); 2617 if (tmp) 2618 return tmp; 2619 2620 /* If we used chrec_convert_aggressive, we can no longer assume that 2621 signed chrecs do not overflow, as chrec_convert does, so avoid 2622 calling it in that case. */ 2623 if (*fold_conversions) 2624 { 2625 if (chrec && op0 == op) 2626 return chrec; 2627 2628 return fold_convert (type, op0); 2629 } 2630 } 2631 2632 return chrec_convert (type, op0, NULL); 2633 } 2634 2635 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2636 and EVOLUTION_LOOP, that were left under a symbolic form. 2637 2638 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated. 2639 Handle ~X as -1 - X. 2640 Handle -X as -1 * X. 2641 2642 CACHE is the cache of already instantiated values. 2643 2644 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2645 conversions that may wrap in signed/pointer type are folded, as long 2646 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2647 then we don't do such fold. 2648 2649 SIZE_EXPR is used for computing the size of the expression to be 2650 instantiated, and to stop if it exceeds some limit. */ 2651 2652 static tree 2653 instantiate_scev_not (basic_block instantiate_below, 2654 struct loop *evolution_loop, struct loop *inner_loop, 2655 tree chrec, 2656 enum tree_code code, tree type, tree op, 2657 bool *fold_conversions, int size_expr) 2658 { 2659 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2660 inner_loop, op, 2661 fold_conversions, size_expr); 2662 2663 if (op0 == chrec_dont_know) 2664 return chrec_dont_know; 2665 2666 if (op != op0) 2667 { 2668 op0 = chrec_convert (type, op0, NULL); 2669 2670 switch (code) 2671 { 2672 case BIT_NOT_EXPR: 2673 return chrec_fold_minus 2674 (type, fold_convert (type, integer_minus_one_node), op0); 2675 2676 case NEGATE_EXPR: 2677 return chrec_fold_multiply 2678 (type, fold_convert (type, integer_minus_one_node), op0); 2679 2680 default: 2681 gcc_unreachable (); 2682 } 2683 } 2684 2685 return chrec ? chrec : fold_build1 (code, type, op0); 2686 } 2687 2688 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2689 and EVOLUTION_LOOP, that were left under a symbolic form. 2690 2691 CHREC is an expression with 3 operands to be instantiated. 2692 2693 CACHE is the cache of already instantiated values. 2694 2695 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2696 conversions that may wrap in signed/pointer type are folded, as long 2697 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2698 then we don't do such fold. 2699 2700 SIZE_EXPR is used for computing the size of the expression to be 2701 instantiated, and to stop if it exceeds some limit. */ 2702 2703 static tree 2704 instantiate_scev_3 (basic_block instantiate_below, 2705 struct loop *evolution_loop, struct loop *inner_loop, 2706 tree chrec, 2707 bool *fold_conversions, int size_expr) 2708 { 2709 tree op1, op2; 2710 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2711 inner_loop, TREE_OPERAND (chrec, 0), 2712 fold_conversions, size_expr); 2713 if (op0 == chrec_dont_know) 2714 return chrec_dont_know; 2715 2716 op1 = instantiate_scev_r (instantiate_below, evolution_loop, 2717 inner_loop, TREE_OPERAND (chrec, 1), 2718 fold_conversions, size_expr); 2719 if (op1 == chrec_dont_know) 2720 return chrec_dont_know; 2721 2722 op2 = instantiate_scev_r (instantiate_below, evolution_loop, 2723 inner_loop, TREE_OPERAND (chrec, 2), 2724 fold_conversions, size_expr); 2725 if (op2 == chrec_dont_know) 2726 return chrec_dont_know; 2727 2728 if (op0 == TREE_OPERAND (chrec, 0) 2729 && op1 == TREE_OPERAND (chrec, 1) 2730 && op2 == TREE_OPERAND (chrec, 2)) 2731 return chrec; 2732 2733 return fold_build3 (TREE_CODE (chrec), 2734 TREE_TYPE (chrec), op0, op1, op2); 2735 } 2736 2737 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2738 and EVOLUTION_LOOP, that were left under a symbolic form. 2739 2740 CHREC is an expression with 2 operands to be instantiated. 2741 2742 CACHE is the cache of already instantiated values. 2743 2744 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2745 conversions that may wrap in signed/pointer type are folded, as long 2746 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2747 then we don't do such fold. 2748 2749 SIZE_EXPR is used for computing the size of the expression to be 2750 instantiated, and to stop if it exceeds some limit. */ 2751 2752 static tree 2753 instantiate_scev_2 (basic_block instantiate_below, 2754 struct loop *evolution_loop, struct loop *inner_loop, 2755 tree chrec, 2756 bool *fold_conversions, int size_expr) 2757 { 2758 tree op1; 2759 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2760 inner_loop, TREE_OPERAND (chrec, 0), 2761 fold_conversions, size_expr); 2762 if (op0 == chrec_dont_know) 2763 return chrec_dont_know; 2764 2765 op1 = instantiate_scev_r (instantiate_below, evolution_loop, 2766 inner_loop, TREE_OPERAND (chrec, 1), 2767 fold_conversions, size_expr); 2768 if (op1 == chrec_dont_know) 2769 return chrec_dont_know; 2770 2771 if (op0 == TREE_OPERAND (chrec, 0) 2772 && op1 == TREE_OPERAND (chrec, 1)) 2773 return chrec; 2774 2775 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1); 2776 } 2777 2778 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2779 and EVOLUTION_LOOP, that were left under a symbolic form. 2780 2781 CHREC is an expression with 2 operands to be instantiated. 2782 2783 CACHE is the cache of already instantiated values. 2784 2785 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2786 conversions that may wrap in signed/pointer type are folded, as long 2787 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2788 then we don't do such fold. 2789 2790 SIZE_EXPR is used for computing the size of the expression to be 2791 instantiated, and to stop if it exceeds some limit. */ 2792 2793 static tree 2794 instantiate_scev_1 (basic_block instantiate_below, 2795 struct loop *evolution_loop, struct loop *inner_loop, 2796 tree chrec, 2797 bool *fold_conversions, int size_expr) 2798 { 2799 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, 2800 inner_loop, TREE_OPERAND (chrec, 0), 2801 fold_conversions, size_expr); 2802 2803 if (op0 == chrec_dont_know) 2804 return chrec_dont_know; 2805 2806 if (op0 == TREE_OPERAND (chrec, 0)) 2807 return chrec; 2808 2809 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0); 2810 } 2811 2812 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW 2813 and EVOLUTION_LOOP, that were left under a symbolic form. 2814 2815 CHREC is the scalar evolution to instantiate. 2816 2817 CACHE is the cache of already instantiated values. 2818 2819 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the 2820 conversions that may wrap in signed/pointer type are folded, as long 2821 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL 2822 then we don't do such fold. 2823 2824 SIZE_EXPR is used for computing the size of the expression to be 2825 instantiated, and to stop if it exceeds some limit. */ 2826 2827 static tree 2828 instantiate_scev_r (basic_block instantiate_below, 2829 struct loop *evolution_loop, struct loop *inner_loop, 2830 tree chrec, 2831 bool *fold_conversions, int size_expr) 2832 { 2833 /* Give up if the expression is larger than the MAX that we allow. */ 2834 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE)) 2835 return chrec_dont_know; 2836 2837 if (chrec == NULL_TREE 2838 || automatically_generated_chrec_p (chrec) 2839 || is_gimple_min_invariant (chrec)) 2840 return chrec; 2841 2842 switch (TREE_CODE (chrec)) 2843 { 2844 case SSA_NAME: 2845 return instantiate_scev_name (instantiate_below, evolution_loop, 2846 inner_loop, chrec, 2847 fold_conversions, size_expr); 2848 2849 case POLYNOMIAL_CHREC: 2850 return instantiate_scev_poly (instantiate_below, evolution_loop, 2851 inner_loop, chrec, 2852 fold_conversions, size_expr); 2853 2854 case POINTER_PLUS_EXPR: 2855 case PLUS_EXPR: 2856 case MINUS_EXPR: 2857 case MULT_EXPR: 2858 return instantiate_scev_binary (instantiate_below, evolution_loop, 2859 inner_loop, chrec, 2860 TREE_CODE (chrec), chrec_type (chrec), 2861 TREE_OPERAND (chrec, 0), 2862 TREE_OPERAND (chrec, 1), 2863 fold_conversions, size_expr); 2864 2865 CASE_CONVERT: 2866 return instantiate_scev_convert (instantiate_below, evolution_loop, 2867 inner_loop, chrec, 2868 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0), 2869 fold_conversions, size_expr); 2870 2871 case NEGATE_EXPR: 2872 case BIT_NOT_EXPR: 2873 return instantiate_scev_not (instantiate_below, evolution_loop, 2874 inner_loop, chrec, 2875 TREE_CODE (chrec), TREE_TYPE (chrec), 2876 TREE_OPERAND (chrec, 0), 2877 fold_conversions, size_expr); 2878 2879 case ADDR_EXPR: 2880 case SCEV_NOT_KNOWN: 2881 return chrec_dont_know; 2882 2883 case SCEV_KNOWN: 2884 return chrec_known; 2885 2886 case ARRAY_REF: 2887 return instantiate_array_ref (instantiate_below, evolution_loop, 2888 inner_loop, chrec, 2889 fold_conversions, size_expr); 2890 2891 default: 2892 break; 2893 } 2894 2895 if (VL_EXP_CLASS_P (chrec)) 2896 return chrec_dont_know; 2897 2898 switch (TREE_CODE_LENGTH (TREE_CODE (chrec))) 2899 { 2900 case 3: 2901 return instantiate_scev_3 (instantiate_below, evolution_loop, 2902 inner_loop, chrec, 2903 fold_conversions, size_expr); 2904 2905 case 2: 2906 return instantiate_scev_2 (instantiate_below, evolution_loop, 2907 inner_loop, chrec, 2908 fold_conversions, size_expr); 2909 2910 case 1: 2911 return instantiate_scev_1 (instantiate_below, evolution_loop, 2912 inner_loop, chrec, 2913 fold_conversions, size_expr); 2914 2915 case 0: 2916 return chrec; 2917 2918 default: 2919 break; 2920 } 2921 2922 /* Too complicated to handle. */ 2923 return chrec_dont_know; 2924 } 2925 2926 /* Analyze all the parameters of the chrec that were left under a 2927 symbolic form. INSTANTIATE_BELOW is the basic block that stops the 2928 recursive instantiation of parameters: a parameter is a variable 2929 that is defined in a basic block that dominates INSTANTIATE_BELOW or 2930 a function parameter. */ 2931 2932 tree 2933 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop, 2934 tree chrec) 2935 { 2936 tree res; 2937 2938 if (dump_file && (dump_flags & TDF_SCEV)) 2939 { 2940 fprintf (dump_file, "(instantiate_scev \n"); 2941 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index); 2942 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num); 2943 fprintf (dump_file, " (chrec = "); 2944 print_generic_expr (dump_file, chrec, 0); 2945 fprintf (dump_file, ")\n"); 2946 } 2947 2948 bool destr = false; 2949 if (!global_cache) 2950 { 2951 global_cache = new instantiate_cache_type; 2952 destr = true; 2953 } 2954 2955 res = instantiate_scev_r (instantiate_below, evolution_loop, 2956 NULL, chrec, NULL, 0); 2957 2958 if (destr) 2959 { 2960 delete global_cache; 2961 global_cache = NULL; 2962 } 2963 2964 if (dump_file && (dump_flags & TDF_SCEV)) 2965 { 2966 fprintf (dump_file, " (res = "); 2967 print_generic_expr (dump_file, res, 0); 2968 fprintf (dump_file, "))\n"); 2969 } 2970 2971 return res; 2972 } 2973 2974 /* Similar to instantiate_parameters, but does not introduce the 2975 evolutions in outer loops for LOOP invariants in CHREC, and does not 2976 care about causing overflows, as long as they do not affect value 2977 of an expression. */ 2978 2979 tree 2980 resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts) 2981 { 2982 bool destr = false; 2983 bool fold_conversions = false; 2984 if (!global_cache) 2985 { 2986 global_cache = new instantiate_cache_type; 2987 destr = true; 2988 } 2989 2990 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL, 2991 chrec, &fold_conversions, 0); 2992 2993 if (folded_casts && !*folded_casts) 2994 *folded_casts = fold_conversions; 2995 2996 if (destr) 2997 { 2998 delete global_cache; 2999 global_cache = NULL; 3000 } 3001 3002 return ret; 3003 } 3004 3005 /* Entry point for the analysis of the number of iterations pass. 3006 This function tries to safely approximate the number of iterations 3007 the loop will run. When this property is not decidable at compile 3008 time, the result is chrec_dont_know. Otherwise the result is a 3009 scalar or a symbolic parameter. When the number of iterations may 3010 be equal to zero and the property cannot be determined at compile 3011 time, the result is a COND_EXPR that represents in a symbolic form 3012 the conditions under which the number of iterations is not zero. 3013 3014 Example of analysis: suppose that the loop has an exit condition: 3015 3016 "if (b > 49) goto end_loop;" 3017 3018 and that in a previous analysis we have determined that the 3019 variable 'b' has an evolution function: 3020 3021 "EF = {23, +, 5}_2". 3022 3023 When we evaluate the function at the point 5, i.e. the value of the 3024 variable 'b' after 5 iterations in the loop, we have EF (5) = 48, 3025 and EF (6) = 53. In this case the value of 'b' on exit is '53' and 3026 the loop body has been executed 6 times. */ 3027 3028 tree 3029 number_of_latch_executions (struct loop *loop) 3030 { 3031 edge exit; 3032 struct tree_niter_desc niter_desc; 3033 tree may_be_zero; 3034 tree res; 3035 3036 /* Determine whether the number of iterations in loop has already 3037 been computed. */ 3038 res = loop->nb_iterations; 3039 if (res) 3040 return res; 3041 3042 may_be_zero = NULL_TREE; 3043 3044 if (dump_file && (dump_flags & TDF_SCEV)) 3045 fprintf (dump_file, "(number_of_iterations_in_loop = \n"); 3046 3047 res = chrec_dont_know; 3048 exit = single_exit (loop); 3049 3050 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false)) 3051 { 3052 may_be_zero = niter_desc.may_be_zero; 3053 res = niter_desc.niter; 3054 } 3055 3056 if (res == chrec_dont_know 3057 || !may_be_zero 3058 || integer_zerop (may_be_zero)) 3059 ; 3060 else if (integer_nonzerop (may_be_zero)) 3061 res = build_int_cst (TREE_TYPE (res), 0); 3062 3063 else if (COMPARISON_CLASS_P (may_be_zero)) 3064 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero, 3065 build_int_cst (TREE_TYPE (res), 0), res); 3066 else 3067 res = chrec_dont_know; 3068 3069 if (dump_file && (dump_flags & TDF_SCEV)) 3070 { 3071 fprintf (dump_file, " (set_nb_iterations_in_loop = "); 3072 print_generic_expr (dump_file, res, 0); 3073 fprintf (dump_file, "))\n"); 3074 } 3075 3076 loop->nb_iterations = res; 3077 return res; 3078 } 3079 3080 3081 /* Counters for the stats. */ 3082 3083 struct chrec_stats 3084 { 3085 unsigned nb_chrecs; 3086 unsigned nb_affine; 3087 unsigned nb_affine_multivar; 3088 unsigned nb_higher_poly; 3089 unsigned nb_chrec_dont_know; 3090 unsigned nb_undetermined; 3091 }; 3092 3093 /* Reset the counters. */ 3094 3095 static inline void 3096 reset_chrecs_counters (struct chrec_stats *stats) 3097 { 3098 stats->nb_chrecs = 0; 3099 stats->nb_affine = 0; 3100 stats->nb_affine_multivar = 0; 3101 stats->nb_higher_poly = 0; 3102 stats->nb_chrec_dont_know = 0; 3103 stats->nb_undetermined = 0; 3104 } 3105 3106 /* Dump the contents of a CHREC_STATS structure. */ 3107 3108 static void 3109 dump_chrecs_stats (FILE *file, struct chrec_stats *stats) 3110 { 3111 fprintf (file, "\n(\n"); 3112 fprintf (file, "-----------------------------------------\n"); 3113 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine); 3114 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar); 3115 fprintf (file, "%d\tdegree greater than 2 polynomials\n", 3116 stats->nb_higher_poly); 3117 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know); 3118 fprintf (file, "-----------------------------------------\n"); 3119 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs); 3120 fprintf (file, "%d\twith undetermined coefficients\n", 3121 stats->nb_undetermined); 3122 fprintf (file, "-----------------------------------------\n"); 3123 fprintf (file, "%d\tchrecs in the scev database\n", 3124 (int) scalar_evolution_info->elements ()); 3125 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev); 3126 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev); 3127 fprintf (file, "-----------------------------------------\n"); 3128 fprintf (file, ")\n\n"); 3129 } 3130 3131 /* Gather statistics about CHREC. */ 3132 3133 static void 3134 gather_chrec_stats (tree chrec, struct chrec_stats *stats) 3135 { 3136 if (dump_file && (dump_flags & TDF_STATS)) 3137 { 3138 fprintf (dump_file, "(classify_chrec "); 3139 print_generic_expr (dump_file, chrec, 0); 3140 fprintf (dump_file, "\n"); 3141 } 3142 3143 stats->nb_chrecs++; 3144 3145 if (chrec == NULL_TREE) 3146 { 3147 stats->nb_undetermined++; 3148 return; 3149 } 3150 3151 switch (TREE_CODE (chrec)) 3152 { 3153 case POLYNOMIAL_CHREC: 3154 if (evolution_function_is_affine_p (chrec)) 3155 { 3156 if (dump_file && (dump_flags & TDF_STATS)) 3157 fprintf (dump_file, " affine_univariate\n"); 3158 stats->nb_affine++; 3159 } 3160 else if (evolution_function_is_affine_multivariate_p (chrec, 0)) 3161 { 3162 if (dump_file && (dump_flags & TDF_STATS)) 3163 fprintf (dump_file, " affine_multivariate\n"); 3164 stats->nb_affine_multivar++; 3165 } 3166 else 3167 { 3168 if (dump_file && (dump_flags & TDF_STATS)) 3169 fprintf (dump_file, " higher_degree_polynomial\n"); 3170 stats->nb_higher_poly++; 3171 } 3172 3173 break; 3174 3175 default: 3176 break; 3177 } 3178 3179 if (chrec_contains_undetermined (chrec)) 3180 { 3181 if (dump_file && (dump_flags & TDF_STATS)) 3182 fprintf (dump_file, " undetermined\n"); 3183 stats->nb_undetermined++; 3184 } 3185 3186 if (dump_file && (dump_flags & TDF_STATS)) 3187 fprintf (dump_file, ")\n"); 3188 } 3189 3190 /* Classify the chrecs of the whole database. */ 3191 3192 void 3193 gather_stats_on_scev_database (void) 3194 { 3195 struct chrec_stats stats; 3196 3197 if (!dump_file) 3198 return; 3199 3200 reset_chrecs_counters (&stats); 3201 3202 hash_table<scev_info_hasher>::iterator iter; 3203 scev_info_str *elt; 3204 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *, 3205 iter) 3206 gather_chrec_stats (elt->chrec, &stats); 3207 3208 dump_chrecs_stats (dump_file, &stats); 3209 } 3210 3211 3212 3213 /* Initializer. */ 3214 3215 static void 3216 initialize_scalar_evolutions_analyzer (void) 3217 { 3218 /* The elements below are unique. */ 3219 if (chrec_dont_know == NULL_TREE) 3220 { 3221 chrec_not_analyzed_yet = NULL_TREE; 3222 chrec_dont_know = make_node (SCEV_NOT_KNOWN); 3223 chrec_known = make_node (SCEV_KNOWN); 3224 TREE_TYPE (chrec_dont_know) = void_type_node; 3225 TREE_TYPE (chrec_known) = void_type_node; 3226 } 3227 } 3228 3229 /* Initialize the analysis of scalar evolutions for LOOPS. */ 3230 3231 void 3232 scev_initialize (void) 3233 { 3234 struct loop *loop; 3235 3236 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100); 3237 3238 initialize_scalar_evolutions_analyzer (); 3239 3240 FOR_EACH_LOOP (loop, 0) 3241 { 3242 loop->nb_iterations = NULL_TREE; 3243 } 3244 } 3245 3246 /* Return true if SCEV is initialized. */ 3247 3248 bool 3249 scev_initialized_p (void) 3250 { 3251 return scalar_evolution_info != NULL; 3252 } 3253 3254 /* Cleans up the information cached by the scalar evolutions analysis 3255 in the hash table. */ 3256 3257 void 3258 scev_reset_htab (void) 3259 { 3260 if (!scalar_evolution_info) 3261 return; 3262 3263 scalar_evolution_info->empty (); 3264 } 3265 3266 /* Cleans up the information cached by the scalar evolutions analysis 3267 in the hash table and in the loop->nb_iterations. */ 3268 3269 void 3270 scev_reset (void) 3271 { 3272 struct loop *loop; 3273 3274 scev_reset_htab (); 3275 3276 FOR_EACH_LOOP (loop, 0) 3277 { 3278 loop->nb_iterations = NULL_TREE; 3279 } 3280 } 3281 3282 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with 3283 respect to WRTO_LOOP and returns its base and step in IV if possible 3284 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP 3285 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be 3286 invariant in LOOP. Otherwise we require it to be an integer constant. 3287 3288 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g. 3289 because it is computed in signed arithmetics). Consequently, adding an 3290 induction variable 3291 3292 for (i = IV->base; ; i += IV->step) 3293 3294 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is 3295 false for the type of the induction variable, or you can prove that i does 3296 not wrap by some other argument. Otherwise, this might introduce undefined 3297 behavior, and 3298 3299 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step)) 3300 3301 must be used instead. */ 3302 3303 bool 3304 simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op, 3305 affine_iv *iv, bool allow_nonconstant_step) 3306 { 3307 enum tree_code code; 3308 tree type, ev, base, e, stop; 3309 wide_int extreme; 3310 bool folded_casts, overflow; 3311 3312 iv->base = NULL_TREE; 3313 iv->step = NULL_TREE; 3314 iv->no_overflow = false; 3315 3316 type = TREE_TYPE (op); 3317 if (!POINTER_TYPE_P (type) 3318 && !INTEGRAL_TYPE_P (type)) 3319 return false; 3320 3321 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op, 3322 &folded_casts); 3323 if (chrec_contains_undetermined (ev) 3324 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num)) 3325 return false; 3326 3327 if (tree_does_not_contain_chrecs (ev)) 3328 { 3329 iv->base = ev; 3330 iv->step = build_int_cst (TREE_TYPE (ev), 0); 3331 iv->no_overflow = true; 3332 return true; 3333 } 3334 3335 if (TREE_CODE (ev) != POLYNOMIAL_CHREC 3336 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num) 3337 return false; 3338 3339 iv->step = CHREC_RIGHT (ev); 3340 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST) 3341 || tree_contains_chrecs (iv->step, NULL)) 3342 return false; 3343 3344 iv->base = CHREC_LEFT (ev); 3345 if (tree_contains_chrecs (iv->base, NULL)) 3346 return false; 3347 3348 iv->no_overflow = (!folded_casts && ANY_INTEGRAL_TYPE_P (type) 3349 && TYPE_OVERFLOW_UNDEFINED (type)); 3350 3351 /* Try to simplify iv base: 3352 3353 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T 3354 == (signed T)(unsigned T)base + step 3355 == base + step 3356 3357 If we can prove operation (base + step) doesn't overflow or underflow. 3358 Specifically, we try to prove below conditions are satisfied: 3359 3360 base <= UPPER_BOUND (type) - step ;;step > 0 3361 base >= LOWER_BOUND (type) - step ;;step < 0 3362 3363 This is done by proving the reverse conditions are false using loop's 3364 initial conditions. 3365 3366 The is necessary to make loop niter, or iv overflow analysis easier 3367 for below example: 3368 3369 int foo (int *a, signed char s, signed char l) 3370 { 3371 signed char i; 3372 for (i = s; i < l; i++) 3373 a[i] = 0; 3374 return 0; 3375 } 3376 3377 Note variable I is firstly converted to type unsigned char, incremented, 3378 then converted back to type signed char. */ 3379 3380 if (wrto_loop->num != use_loop->num) 3381 return true; 3382 3383 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST) 3384 return true; 3385 3386 type = TREE_TYPE (iv->base); 3387 e = TREE_OPERAND (iv->base, 0); 3388 if (TREE_CODE (e) != PLUS_EXPR 3389 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST 3390 || !tree_int_cst_equal (iv->step, 3391 fold_convert (type, TREE_OPERAND (e, 1)))) 3392 return true; 3393 e = TREE_OPERAND (e, 0); 3394 if (!CONVERT_EXPR_P (e)) 3395 return true; 3396 base = TREE_OPERAND (e, 0); 3397 if (!useless_type_conversion_p (type, TREE_TYPE (base))) 3398 return true; 3399 3400 if (tree_int_cst_sign_bit (iv->step)) 3401 { 3402 code = LT_EXPR; 3403 extreme = wi::min_value (type); 3404 } 3405 else 3406 { 3407 code = GT_EXPR; 3408 extreme = wi::max_value (type); 3409 } 3410 overflow = false; 3411 extreme = wi::sub (extreme, iv->step, TYPE_SIGN (type), &overflow); 3412 if (overflow) 3413 return true; 3414 e = fold_build2 (code, boolean_type_node, base, 3415 wide_int_to_tree (type, extreme)); 3416 stop = (TREE_CODE (base) == SSA_NAME) ? base : NULL; 3417 e = simplify_using_initial_conditions (use_loop, e, stop); 3418 if (!integer_zerop (e)) 3419 return true; 3420 3421 if (POINTER_TYPE_P (TREE_TYPE (base))) 3422 code = POINTER_PLUS_EXPR; 3423 else 3424 code = PLUS_EXPR; 3425 3426 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step); 3427 return true; 3428 } 3429 3430 /* Finalize the scalar evolution analysis. */ 3431 3432 void 3433 scev_finalize (void) 3434 { 3435 if (!scalar_evolution_info) 3436 return; 3437 scalar_evolution_info->empty (); 3438 scalar_evolution_info = NULL; 3439 } 3440 3441 /* Returns true if the expression EXPR is considered to be too expensive 3442 for scev_const_prop. */ 3443 3444 bool 3445 expression_expensive_p (tree expr) 3446 { 3447 enum tree_code code; 3448 3449 if (is_gimple_val (expr)) 3450 return false; 3451 3452 code = TREE_CODE (expr); 3453 if (code == TRUNC_DIV_EXPR 3454 || code == CEIL_DIV_EXPR 3455 || code == FLOOR_DIV_EXPR 3456 || code == ROUND_DIV_EXPR 3457 || code == TRUNC_MOD_EXPR 3458 || code == CEIL_MOD_EXPR 3459 || code == FLOOR_MOD_EXPR 3460 || code == ROUND_MOD_EXPR 3461 || code == EXACT_DIV_EXPR) 3462 { 3463 /* Division by power of two is usually cheap, so we allow it. 3464 Forbid anything else. */ 3465 if (!integer_pow2p (TREE_OPERAND (expr, 1))) 3466 return true; 3467 } 3468 3469 switch (TREE_CODE_CLASS (code)) 3470 { 3471 case tcc_binary: 3472 case tcc_comparison: 3473 if (expression_expensive_p (TREE_OPERAND (expr, 1))) 3474 return true; 3475 3476 /* Fallthru. */ 3477 case tcc_unary: 3478 return expression_expensive_p (TREE_OPERAND (expr, 0)); 3479 3480 default: 3481 return true; 3482 } 3483 } 3484 3485 /* Do final value replacement for LOOP. */ 3486 3487 void 3488 final_value_replacement_loop (struct loop *loop) 3489 { 3490 /* If we do not know exact number of iterations of the loop, we cannot 3491 replace the final value. */ 3492 edge exit = single_exit (loop); 3493 if (!exit) 3494 return; 3495 3496 tree niter = number_of_latch_executions (loop); 3497 if (niter == chrec_dont_know) 3498 return; 3499 3500 /* Ensure that it is possible to insert new statements somewhere. */ 3501 if (!single_pred_p (exit->dest)) 3502 split_loop_exit_edge (exit); 3503 3504 /* Set stmt insertion pointer. All stmts are inserted before this point. */ 3505 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest); 3506 3507 struct loop *ex_loop 3508 = superloop_at_depth (loop, 3509 loop_depth (exit->dest->loop_father) + 1); 3510 3511 gphi_iterator psi; 3512 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); ) 3513 { 3514 gphi *phi = psi.phi (); 3515 tree rslt = PHI_RESULT (phi); 3516 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit); 3517 if (virtual_operand_p (def)) 3518 { 3519 gsi_next (&psi); 3520 continue; 3521 } 3522 3523 if (!POINTER_TYPE_P (TREE_TYPE (def)) 3524 && !INTEGRAL_TYPE_P (TREE_TYPE (def))) 3525 { 3526 gsi_next (&psi); 3527 continue; 3528 } 3529 3530 bool folded_casts; 3531 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, 3532 &folded_casts); 3533 def = compute_overall_effect_of_inner_loop (ex_loop, def); 3534 if (!tree_does_not_contain_chrecs (def) 3535 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num) 3536 /* Moving the computation from the loop may prolong life range 3537 of some ssa names, which may cause problems if they appear 3538 on abnormal edges. */ 3539 || contains_abnormal_ssa_name_p (def) 3540 /* Do not emit expensive expressions. The rationale is that 3541 when someone writes a code like 3542 3543 while (n > 45) n -= 45; 3544 3545 he probably knows that n is not large, and does not want it 3546 to be turned into n %= 45. */ 3547 || expression_expensive_p (def)) 3548 { 3549 if (dump_file && (dump_flags & TDF_DETAILS)) 3550 { 3551 fprintf (dump_file, "not replacing:\n "); 3552 print_gimple_stmt (dump_file, phi, 0, 0); 3553 fprintf (dump_file, "\n"); 3554 } 3555 gsi_next (&psi); 3556 continue; 3557 } 3558 3559 /* Eliminate the PHI node and replace it by a computation outside 3560 the loop. */ 3561 if (dump_file) 3562 { 3563 fprintf (dump_file, "\nfinal value replacement:\n "); 3564 print_gimple_stmt (dump_file, phi, 0, 0); 3565 fprintf (dump_file, " with\n "); 3566 } 3567 def = unshare_expr (def); 3568 remove_phi_node (&psi, false); 3569 3570 /* If def's type has undefined overflow and there were folded 3571 casts, rewrite all stmts added for def into arithmetics 3572 with defined overflow behavior. */ 3573 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def)) 3574 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def))) 3575 { 3576 gimple_seq stmts; 3577 gimple_stmt_iterator gsi2; 3578 def = force_gimple_operand (def, &stmts, true, NULL_TREE); 3579 gsi2 = gsi_start (stmts); 3580 while (!gsi_end_p (gsi2)) 3581 { 3582 gimple *stmt = gsi_stmt (gsi2); 3583 gimple_stmt_iterator gsi3 = gsi2; 3584 gsi_next (&gsi2); 3585 gsi_remove (&gsi3, false); 3586 if (is_gimple_assign (stmt) 3587 && arith_code_with_undefined_signed_overflow 3588 (gimple_assign_rhs_code (stmt))) 3589 gsi_insert_seq_before (&gsi, 3590 rewrite_to_defined_overflow (stmt), 3591 GSI_SAME_STMT); 3592 else 3593 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); 3594 } 3595 } 3596 else 3597 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE, 3598 true, GSI_SAME_STMT); 3599 3600 gassign *ass = gimple_build_assign (rslt, def); 3601 gsi_insert_before (&gsi, ass, GSI_SAME_STMT); 3602 if (dump_file) 3603 { 3604 print_gimple_stmt (dump_file, ass, 0, 0); 3605 fprintf (dump_file, "\n"); 3606 } 3607 } 3608 } 3609 3610 /* Replace ssa names for that scev can prove they are constant by the 3611 appropriate constants. Also perform final value replacement in loops, 3612 in case the replacement expressions are cheap. 3613 3614 We only consider SSA names defined by phi nodes; rest is left to the 3615 ordinary constant propagation pass. */ 3616 3617 unsigned int 3618 scev_const_prop (void) 3619 { 3620 basic_block bb; 3621 tree name, type, ev; 3622 gphi *phi; 3623 struct loop *loop; 3624 bitmap ssa_names_to_remove = NULL; 3625 unsigned i; 3626 gphi_iterator psi; 3627 3628 if (number_of_loops (cfun) <= 1) 3629 return 0; 3630 3631 FOR_EACH_BB_FN (bb, cfun) 3632 { 3633 loop = bb->loop_father; 3634 3635 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi)) 3636 { 3637 phi = psi.phi (); 3638 name = PHI_RESULT (phi); 3639 3640 if (virtual_operand_p (name)) 3641 continue; 3642 3643 type = TREE_TYPE (name); 3644 3645 if (!POINTER_TYPE_P (type) 3646 && !INTEGRAL_TYPE_P (type)) 3647 continue; 3648 3649 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name), 3650 NULL); 3651 if (!is_gimple_min_invariant (ev) 3652 || !may_propagate_copy (name, ev)) 3653 continue; 3654 3655 /* Replace the uses of the name. */ 3656 if (name != ev) 3657 { 3658 if (dump_file && (dump_flags & TDF_DETAILS)) 3659 { 3660 fprintf (dump_file, "Replacing uses of: "); 3661 print_generic_expr (dump_file, name, 0); 3662 fprintf (dump_file, " with: "); 3663 print_generic_expr (dump_file, ev, 0); 3664 fprintf (dump_file, "\n"); 3665 } 3666 replace_uses_by (name, ev); 3667 } 3668 3669 if (!ssa_names_to_remove) 3670 ssa_names_to_remove = BITMAP_ALLOC (NULL); 3671 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name)); 3672 } 3673 } 3674 3675 /* Remove the ssa names that were replaced by constants. We do not 3676 remove them directly in the previous cycle, since this 3677 invalidates scev cache. */ 3678 if (ssa_names_to_remove) 3679 { 3680 bitmap_iterator bi; 3681 3682 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi) 3683 { 3684 gimple_stmt_iterator psi; 3685 name = ssa_name (i); 3686 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (name)); 3687 3688 gcc_assert (gimple_code (phi) == GIMPLE_PHI); 3689 psi = gsi_for_stmt (phi); 3690 remove_phi_node (&psi, true); 3691 } 3692 3693 BITMAP_FREE (ssa_names_to_remove); 3694 scev_reset (); 3695 } 3696 3697 /* Now the regular final value replacement. */ 3698 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) 3699 final_value_replacement_loop (loop); 3700 3701 return 0; 3702 } 3703 3704 #include "gt-tree-scalar-evolution.h" 3705