xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-predcom.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Predictive commoning.
2    Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file implements the predictive commoning optimization.  Predictive
21    commoning can be viewed as CSE around a loop, and with some improvements,
22    as generalized strength reduction-- i.e., reusing values computed in
23    earlier iterations of a loop in the later ones.  So far, the pass only
24    handles the most useful case, that is, reusing values of memory references.
25    If you think this is all just a special case of PRE, you are sort of right;
26    however, concentrating on loops is simpler, and makes it possible to
27    incorporate data dependence analysis to detect the opportunities, perform
28    loop unrolling to avoid copies together with renaming immediately,
29    and if needed, we could also take register pressure into account.
30 
31    Let us demonstrate what is done on an example:
32 
33    for (i = 0; i < 100; i++)
34      {
35        a[i+2] = a[i] + a[i+1];
36        b[10] = b[10] + i;
37        c[i] = c[99 - i];
38        d[i] = d[i + 1];
39      }
40 
41    1) We find data references in the loop, and split them to mutually
42       independent groups (i.e., we find components of a data dependence
43       graph).  We ignore read-read dependences whose distance is not constant.
44       (TODO -- we could also ignore antidependences).  In this example, we
45       find the following groups:
46 
47       a[i]{read}, a[i+1]{read}, a[i+2]{write}
48       b[10]{read}, b[10]{write}
49       c[99 - i]{read}, c[i]{write}
50       d[i + 1]{read}, d[i]{write}
51 
52    2) Inside each of the group, we verify several conditions:
53       a) all the references must differ in indices only, and the indices
54 	 must all have the same step
55       b) the references must dominate loop latch (and thus, they must be
56 	 ordered by dominance relation).
57       c) the distance of the indices must be a small multiple of the step
58       We are then able to compute the difference of the references (# of
59       iterations before they point to the same place as the first of them).
60       Also, in case there are writes in the loop, we split the groups into
61       chains whose head is the write whose values are used by the reads in
62       the same chain.  The chains are then processed independently,
63       making the further transformations simpler.  Also, the shorter chains
64       need the same number of registers, but may require lower unrolling
65       factor in order to get rid of the copies on the loop latch.
66 
67       In our example, we get the following chains (the chain for c is invalid).
68 
69       a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70       b[10]{read,+0}, b[10]{write,+0}
71       d[i + 1]{read,+0}, d[i]{write,+1}
72 
73    3) For each read, we determine the read or write whose value it reuses,
74       together with the distance of this reuse.  I.e. we take the last
75       reference before it with distance 0, or the last of the references
76       with the smallest positive distance to the read.  Then, we remove
77       the references that are not used in any of these chains, discard the
78       empty groups, and propagate all the links so that they point to the
79       single root reference of the chain (adjusting their distance
80       appropriately).  Some extra care needs to be taken for references with
81       step 0.  In our example (the numbers indicate the distance of the
82       reuse),
83 
84       a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85       b[10] --> (*) 1, b[10] (*)
86 
87    4) The chains are combined together if possible.  If the corresponding
88       elements of two chains are always combined together with the same
89       operator, we remember just the result of this combination, instead
90       of remembering the values separately.  We may need to perform
91       reassociation to enable combining, for example
92 
93       e[i] + f[i+1] + e[i+1] + f[i]
94 
95       can be reassociated as
96 
97       (e[i] + f[i]) + (e[i+1] + f[i+1])
98 
99       and we can combine the chains for e and f into one chain.
100 
101    5) For each root reference (end of the chain) R, let N be maximum distance
102       of a reference reusing its value.  Variables R0 up to RN are created,
103       together with phi nodes that transfer values from R1 .. RN to
104       R0 .. R(N-1).
105       Initial values are loaded to R0..R(N-1) (in case not all references
106       must necessarily be accessed and they may trap, we may fail here;
107       TODO sometimes, the loads could be guarded by a check for the number
108       of iterations).  Values loaded/stored in roots are also copied to
109       RN.  Other reads are replaced with the appropriate variable Ri.
110       Everything is put to SSA form.
111 
112       As a small improvement, if R0 is dead after the root (i.e., all uses of
113       the value with the maximum distance dominate the root), we can avoid
114       creating RN and use R0 instead of it.
115 
116       In our example, we get (only the parts concerning a and b are shown):
117       for (i = 0; i < 100; i++)
118 	{
119 	  f = phi (a[0], s);
120 	  s = phi (a[1], f);
121 	  x = phi (b[10], x);
122 
123 	  f = f + s;
124 	  a[i+2] = f;
125 	  x = x + i;
126 	  b[10] = x;
127 	}
128 
129    6) Factor F for unrolling is determined as the smallest common multiple of
130       (N + 1) for each root reference (N for references for that we avoided
131       creating RN).  If F and the loop is small enough, loop is unrolled F
132       times.  The stores to RN (R0) in the copies of the loop body are
133       periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134       be coalesced and the copies can be eliminated.
135 
136       TODO -- copy propagation and other optimizations may change the live
137       ranges of the temporary registers and prevent them from being coalesced;
138       this may increase the register pressure.
139 
140       In our case, F = 2 and the (main loop of the) result is
141 
142       for (i = 0; i < ...; i += 2)
143         {
144           f = phi (a[0], f);
145           s = phi (a[1], s);
146           x = phi (b[10], x);
147 
148           f = f + s;
149           a[i+2] = f;
150           x = x + i;
151           b[10] = x;
152 
153           s = s + f;
154           a[i+3] = s;
155           x = x + i;
156           b[10] = x;
157        }
158 
159    TODO -- stores killing other stores can be taken into account, e.g.,
160    for (i = 0; i < n; i++)
161      {
162        a[i] = 1;
163        a[i+2] = 2;
164      }
165 
166    can be replaced with
167 
168    t0 = a[0];
169    t1 = a[1];
170    for (i = 0; i < n; i++)
171      {
172        a[i] = 1;
173        t2 = 2;
174        t0 = t1;
175        t1 = t2;
176      }
177    a[n] = t0;
178    a[n+1] = t1;
179 
180    The interesting part is that this would generalize store motion; still, since
181    sm is performed elsewhere, it does not seem that important.
182 
183    Predictive commoning can be generalized for arbitrary computations (not
184    just memory loads), and also nontrivial transfer functions (e.g., replacing
185    i * i with ii_last + 2 * i + 1), to generalize strength reduction.  */
186 
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "hash-set.h"
192 #include "machmode.h"
193 #include "vec.h"
194 #include "double-int.h"
195 #include "input.h"
196 #include "alias.h"
197 #include "symtab.h"
198 #include "wide-int.h"
199 #include "inchash.h"
200 #include "tree.h"
201 #include "fold-const.h"
202 #include "tm_p.h"
203 #include "cfgloop.h"
204 #include "predict.h"
205 #include "hard-reg-set.h"
206 #include "function.h"
207 #include "dominance.h"
208 #include "cfg.h"
209 #include "basic-block.h"
210 #include "tree-ssa-alias.h"
211 #include "internal-fn.h"
212 #include "tree-eh.h"
213 #include "gimple-expr.h"
214 #include "is-a.h"
215 #include "gimple.h"
216 #include "gimplify.h"
217 #include "gimple-iterator.h"
218 #include "gimplify-me.h"
219 #include "gimple-ssa.h"
220 #include "tree-phinodes.h"
221 #include "ssa-iterators.h"
222 #include "stringpool.h"
223 #include "tree-ssanames.h"
224 #include "tree-ssa-loop-ivopts.h"
225 #include "tree-ssa-loop-manip.h"
226 #include "tree-ssa-loop-niter.h"
227 #include "tree-ssa-loop.h"
228 #include "tree-into-ssa.h"
229 #include "hashtab.h"
230 #include "rtl.h"
231 #include "flags.h"
232 #include "statistics.h"
233 #include "real.h"
234 #include "fixed-value.h"
235 #include "insn-config.h"
236 #include "expmed.h"
237 #include "dojump.h"
238 #include "explow.h"
239 #include "calls.h"
240 #include "emit-rtl.h"
241 #include "varasm.h"
242 #include "stmt.h"
243 #include "expr.h"
244 #include "tree-dfa.h"
245 #include "tree-ssa.h"
246 #include "tree-data-ref.h"
247 #include "tree-scalar-evolution.h"
248 #include "tree-chrec.h"
249 #include "params.h"
250 #include "gimple-pretty-print.h"
251 #include "tree-pass.h"
252 #include "tree-affine.h"
253 #include "tree-inline.h"
254 #include "wide-int-print.h"
255 #include "builtins.h"
256 
257 /* The maximum number of iterations between the considered memory
258    references.  */
259 
260 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
261 
262 /* Data references (or phi nodes that carry data reference values across
263    loop iterations).  */
264 
265 typedef struct dref_d
266 {
267   /* The reference itself.  */
268   struct data_reference *ref;
269 
270   /* The statement in that the reference appears.  */
271   gimple stmt;
272 
273   /* In case that STMT is a phi node, this field is set to the SSA name
274      defined by it in replace_phis_by_defined_names (in order to avoid
275      pointing to phi node that got reallocated in the meantime).  */
276   tree name_defined_by_phi;
277 
278   /* Distance of the reference from the root of the chain (in number of
279      iterations of the loop).  */
280   unsigned distance;
281 
282   /* Number of iterations offset from the first reference in the component.  */
283   widest_int offset;
284 
285   /* Number of the reference in a component, in dominance ordering.  */
286   unsigned pos;
287 
288   /* True if the memory reference is always accessed when the loop is
289      entered.  */
290   unsigned always_accessed : 1;
291 } *dref;
292 
293 
294 /* Type of the chain of the references.  */
295 
296 enum chain_type
297 {
298   /* The addresses of the references in the chain are constant.  */
299   CT_INVARIANT,
300 
301   /* There are only loads in the chain.  */
302   CT_LOAD,
303 
304   /* Root of the chain is store, the rest are loads.  */
305   CT_STORE_LOAD,
306 
307   /* A combination of two chains.  */
308   CT_COMBINATION
309 };
310 
311 /* Chains of data references.  */
312 
313 typedef struct chain
314 {
315   /* Type of the chain.  */
316   enum chain_type type;
317 
318   /* For combination chains, the operator and the two chains that are
319      combined, and the type of the result.  */
320   enum tree_code op;
321   tree rslt_type;
322   struct chain *ch1, *ch2;
323 
324   /* The references in the chain.  */
325   vec<dref> refs;
326 
327   /* The maximum distance of the reference in the chain from the root.  */
328   unsigned length;
329 
330   /* The variables used to copy the value throughout iterations.  */
331   vec<tree> vars;
332 
333   /* Initializers for the variables.  */
334   vec<tree> inits;
335 
336   /* True if there is a use of a variable with the maximal distance
337      that comes after the root in the loop.  */
338   unsigned has_max_use_after : 1;
339 
340   /* True if all the memory references in the chain are always accessed.  */
341   unsigned all_always_accessed : 1;
342 
343   /* True if this chain was combined together with some other chain.  */
344   unsigned combined : 1;
345 } *chain_p;
346 
347 
348 /* Describes the knowledge about the step of the memory references in
349    the component.  */
350 
351 enum ref_step_type
352 {
353   /* The step is zero.  */
354   RS_INVARIANT,
355 
356   /* The step is nonzero.  */
357   RS_NONZERO,
358 
359   /* The step may or may not be nonzero.  */
360   RS_ANY
361 };
362 
363 /* Components of the data dependence graph.  */
364 
365 struct component
366 {
367   /* The references in the component.  */
368   vec<dref> refs;
369 
370   /* What we know about the step of the references in the component.  */
371   enum ref_step_type comp_step;
372 
373   /* Next component in the list.  */
374   struct component *next;
375 };
376 
377 /* Bitmap of ssa names defined by looparound phi nodes covered by chains.  */
378 
379 static bitmap looparound_phis;
380 
381 /* Cache used by tree_to_aff_combination_expand.  */
382 
383 static hash_map<tree, name_expansion *> *name_expansions;
384 
385 /* Dumps data reference REF to FILE.  */
386 
387 extern void dump_dref (FILE *, dref);
388 void
389 dump_dref (FILE *file, dref ref)
390 {
391   if (ref->ref)
392     {
393       fprintf (file, "    ");
394       print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
395       fprintf (file, " (id %u%s)\n", ref->pos,
396 	       DR_IS_READ (ref->ref) ? "" : ", write");
397 
398       fprintf (file, "      offset ");
399       print_decs (ref->offset, file);
400       fprintf (file, "\n");
401 
402       fprintf (file, "      distance %u\n", ref->distance);
403     }
404   else
405     {
406       if (gimple_code (ref->stmt) == GIMPLE_PHI)
407 	fprintf (file, "    looparound ref\n");
408       else
409 	fprintf (file, "    combination ref\n");
410       fprintf (file, "      in statement ");
411       print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
412       fprintf (file, "\n");
413       fprintf (file, "      distance %u\n", ref->distance);
414     }
415 
416 }
417 
418 /* Dumps CHAIN to FILE.  */
419 
420 extern void dump_chain (FILE *, chain_p);
421 void
422 dump_chain (FILE *file, chain_p chain)
423 {
424   dref a;
425   const char *chain_type;
426   unsigned i;
427   tree var;
428 
429   switch (chain->type)
430     {
431     case CT_INVARIANT:
432       chain_type = "Load motion";
433       break;
434 
435     case CT_LOAD:
436       chain_type = "Loads-only";
437       break;
438 
439     case CT_STORE_LOAD:
440       chain_type = "Store-loads";
441       break;
442 
443     case CT_COMBINATION:
444       chain_type = "Combination";
445       break;
446 
447     default:
448       gcc_unreachable ();
449     }
450 
451   fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
452 	   chain->combined ? " (combined)" : "");
453   if (chain->type != CT_INVARIANT)
454     fprintf (file, "  max distance %u%s\n", chain->length,
455 	     chain->has_max_use_after ? "" : ", may reuse first");
456 
457   if (chain->type == CT_COMBINATION)
458     {
459       fprintf (file, "  equal to %p %s %p in type ",
460 	       (void *) chain->ch1, op_symbol_code (chain->op),
461 	       (void *) chain->ch2);
462       print_generic_expr (file, chain->rslt_type, TDF_SLIM);
463       fprintf (file, "\n");
464     }
465 
466   if (chain->vars.exists ())
467     {
468       fprintf (file, "  vars");
469       FOR_EACH_VEC_ELT (chain->vars, i, var)
470 	{
471 	  fprintf (file, " ");
472 	  print_generic_expr (file, var, TDF_SLIM);
473 	}
474       fprintf (file, "\n");
475     }
476 
477   if (chain->inits.exists ())
478     {
479       fprintf (file, "  inits");
480       FOR_EACH_VEC_ELT (chain->inits, i, var)
481 	{
482 	  fprintf (file, " ");
483 	  print_generic_expr (file, var, TDF_SLIM);
484 	}
485       fprintf (file, "\n");
486     }
487 
488   fprintf (file, "  references:\n");
489   FOR_EACH_VEC_ELT (chain->refs, i, a)
490     dump_dref (file, a);
491 
492   fprintf (file, "\n");
493 }
494 
495 /* Dumps CHAINS to FILE.  */
496 
497 extern void dump_chains (FILE *, vec<chain_p> );
498 void
499 dump_chains (FILE *file, vec<chain_p> chains)
500 {
501   chain_p chain;
502   unsigned i;
503 
504   FOR_EACH_VEC_ELT (chains, i, chain)
505     dump_chain (file, chain);
506 }
507 
508 /* Dumps COMP to FILE.  */
509 
510 extern void dump_component (FILE *, struct component *);
511 void
512 dump_component (FILE *file, struct component *comp)
513 {
514   dref a;
515   unsigned i;
516 
517   fprintf (file, "Component%s:\n",
518 	   comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
519   FOR_EACH_VEC_ELT (comp->refs, i, a)
520     dump_dref (file, a);
521   fprintf (file, "\n");
522 }
523 
524 /* Dumps COMPS to FILE.  */
525 
526 extern void dump_components (FILE *, struct component *);
527 void
528 dump_components (FILE *file, struct component *comps)
529 {
530   struct component *comp;
531 
532   for (comp = comps; comp; comp = comp->next)
533     dump_component (file, comp);
534 }
535 
536 /* Frees a chain CHAIN.  */
537 
538 static void
539 release_chain (chain_p chain)
540 {
541   dref ref;
542   unsigned i;
543 
544   if (chain == NULL)
545     return;
546 
547   FOR_EACH_VEC_ELT (chain->refs, i, ref)
548     free (ref);
549 
550   chain->refs.release ();
551   chain->vars.release ();
552   chain->inits.release ();
553 
554   free (chain);
555 }
556 
557 /* Frees CHAINS.  */
558 
559 static void
560 release_chains (vec<chain_p> chains)
561 {
562   unsigned i;
563   chain_p chain;
564 
565   FOR_EACH_VEC_ELT (chains, i, chain)
566     release_chain (chain);
567   chains.release ();
568 }
569 
570 /* Frees a component COMP.  */
571 
572 static void
573 release_component (struct component *comp)
574 {
575   comp->refs.release ();
576   free (comp);
577 }
578 
579 /* Frees list of components COMPS.  */
580 
581 static void
582 release_components (struct component *comps)
583 {
584   struct component *act, *next;
585 
586   for (act = comps; act; act = next)
587     {
588       next = act->next;
589       release_component (act);
590     }
591 }
592 
593 /* Finds a root of tree given by FATHERS containing A, and performs path
594    shortening.  */
595 
596 static unsigned
597 component_of (unsigned fathers[], unsigned a)
598 {
599   unsigned root, n;
600 
601   for (root = a; root != fathers[root]; root = fathers[root])
602     continue;
603 
604   for (; a != root; a = n)
605     {
606       n = fathers[a];
607       fathers[a] = root;
608     }
609 
610   return root;
611 }
612 
613 /* Join operation for DFU.  FATHERS gives the tree, SIZES are sizes of the
614    components, A and B are components to merge.  */
615 
616 static void
617 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
618 {
619   unsigned ca = component_of (fathers, a);
620   unsigned cb = component_of (fathers, b);
621 
622   if (ca == cb)
623     return;
624 
625   if (sizes[ca] < sizes[cb])
626     {
627       sizes[cb] += sizes[ca];
628       fathers[ca] = cb;
629     }
630   else
631     {
632       sizes[ca] += sizes[cb];
633       fathers[cb] = ca;
634     }
635 }
636 
637 /* Returns true if A is a reference that is suitable for predictive commoning
638    in the innermost loop that contains it.  REF_STEP is set according to the
639    step of the reference A.  */
640 
641 static bool
642 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
643 {
644   tree ref = DR_REF (a), step = DR_STEP (a);
645 
646   if (!step
647       || TREE_THIS_VOLATILE (ref)
648       || !is_gimple_reg_type (TREE_TYPE (ref))
649       || tree_could_throw_p (ref))
650     return false;
651 
652   if (integer_zerop (step))
653     *ref_step = RS_INVARIANT;
654   else if (integer_nonzerop (step))
655     *ref_step = RS_NONZERO;
656   else
657     *ref_step = RS_ANY;
658 
659   return true;
660 }
661 
662 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET.  */
663 
664 static void
665 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
666 {
667   tree type = TREE_TYPE (DR_OFFSET (dr));
668   aff_tree delta;
669 
670   tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
671 				  &name_expansions);
672   aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
673   aff_combination_add (offset, &delta);
674 }
675 
676 /* Determines number of iterations of the innermost enclosing loop before B
677    refers to exactly the same location as A and stores it to OFF.  If A and
678    B do not have the same step, they never meet, or anything else fails,
679    returns false, otherwise returns true.  Both A and B are assumed to
680    satisfy suitable_reference_p.  */
681 
682 static bool
683 determine_offset (struct data_reference *a, struct data_reference *b,
684 		  widest_int *off)
685 {
686   aff_tree diff, baseb, step;
687   tree typea, typeb;
688 
689   /* Check that both the references access the location in the same type.  */
690   typea = TREE_TYPE (DR_REF (a));
691   typeb = TREE_TYPE (DR_REF (b));
692   if (!useless_type_conversion_p (typeb, typea))
693     return false;
694 
695   /* Check whether the base address and the step of both references is the
696      same.  */
697   if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
698       || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
699     return false;
700 
701   if (integer_zerop (DR_STEP (a)))
702     {
703       /* If the references have loop invariant address, check that they access
704 	 exactly the same location.  */
705       *off = 0;
706       return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
707 	      && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
708     }
709 
710   /* Compare the offsets of the addresses, and check whether the difference
711      is a multiple of step.  */
712   aff_combination_dr_offset (a, &diff);
713   aff_combination_dr_offset (b, &baseb);
714   aff_combination_scale (&baseb, -1);
715   aff_combination_add (&diff, &baseb);
716 
717   tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
718 				  &step, &name_expansions);
719   return aff_combination_constant_multiple_p (&diff, &step, off);
720 }
721 
722 /* Returns the last basic block in LOOP for that we are sure that
723    it is executed whenever the loop is entered.  */
724 
725 static basic_block
726 last_always_executed_block (struct loop *loop)
727 {
728   unsigned i;
729   vec<edge> exits = get_loop_exit_edges (loop);
730   edge ex;
731   basic_block last = loop->latch;
732 
733   FOR_EACH_VEC_ELT (exits, i, ex)
734     last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
735   exits.release ();
736 
737   return last;
738 }
739 
740 /* Splits dependence graph on DATAREFS described by DEPENDS to components.  */
741 
742 static struct component *
743 split_data_refs_to_components (struct loop *loop,
744 			       vec<data_reference_p> datarefs,
745 			       vec<ddr_p> depends)
746 {
747   unsigned i, n = datarefs.length ();
748   unsigned ca, ia, ib, bad;
749   unsigned *comp_father = XNEWVEC (unsigned, n + 1);
750   unsigned *comp_size = XNEWVEC (unsigned, n + 1);
751   struct component **comps;
752   struct data_reference *dr, *dra, *drb;
753   struct data_dependence_relation *ddr;
754   struct component *comp_list = NULL, *comp;
755   dref dataref;
756   basic_block last_always_executed = last_always_executed_block (loop);
757 
758   FOR_EACH_VEC_ELT (datarefs, i, dr)
759     {
760       if (!DR_REF (dr))
761 	{
762 	  /* A fake reference for call or asm_expr that may clobber memory;
763 	     just fail.  */
764 	  goto end;
765 	}
766       /* predcom pass isn't prepared to handle calls with data references.  */
767       if (is_gimple_call (DR_STMT (dr)))
768 	goto end;
769       dr->aux = (void *) (size_t) i;
770       comp_father[i] = i;
771       comp_size[i] = 1;
772     }
773 
774   /* A component reserved for the "bad" data references.  */
775   comp_father[n] = n;
776   comp_size[n] = 1;
777 
778   FOR_EACH_VEC_ELT (datarefs, i, dr)
779     {
780       enum ref_step_type dummy;
781 
782       if (!suitable_reference_p (dr, &dummy))
783 	{
784 	  ia = (unsigned) (size_t) dr->aux;
785 	  merge_comps (comp_father, comp_size, n, ia);
786 	}
787     }
788 
789   FOR_EACH_VEC_ELT (depends, i, ddr)
790     {
791       widest_int dummy_off;
792 
793       if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
794 	continue;
795 
796       dra = DDR_A (ddr);
797       drb = DDR_B (ddr);
798       ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
799       ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
800       if (ia == ib)
801 	continue;
802 
803       bad = component_of (comp_father, n);
804 
805       /* If both A and B are reads, we may ignore unsuitable dependences.  */
806       if (DR_IS_READ (dra) && DR_IS_READ (drb))
807 	{
808 	  if (ia == bad || ib == bad
809 	      || !determine_offset (dra, drb, &dummy_off))
810 	    continue;
811 	}
812       /* If A is read and B write or vice versa and there is unsuitable
813 	 dependence, instead of merging both components into a component
814 	 that will certainly not pass suitable_component_p, just put the
815 	 read into bad component, perhaps at least the write together with
816 	 all the other data refs in it's component will be optimizable.  */
817       else if (DR_IS_READ (dra) && ib != bad)
818 	{
819 	  if (ia == bad)
820 	    continue;
821 	  else if (!determine_offset (dra, drb, &dummy_off))
822 	    {
823 	      merge_comps (comp_father, comp_size, bad, ia);
824 	      continue;
825 	    }
826 	}
827       else if (DR_IS_READ (drb) && ia != bad)
828 	{
829 	  if (ib == bad)
830 	    continue;
831 	  else if (!determine_offset (dra, drb, &dummy_off))
832 	    {
833 	      merge_comps (comp_father, comp_size, bad, ib);
834 	      continue;
835 	    }
836 	}
837 
838       merge_comps (comp_father, comp_size, ia, ib);
839     }
840 
841   comps = XCNEWVEC (struct component *, n);
842   bad = component_of (comp_father, n);
843   FOR_EACH_VEC_ELT (datarefs, i, dr)
844     {
845       ia = (unsigned) (size_t) dr->aux;
846       ca = component_of (comp_father, ia);
847       if (ca == bad)
848 	continue;
849 
850       comp = comps[ca];
851       if (!comp)
852 	{
853 	  comp = XCNEW (struct component);
854 	  comp->refs.create (comp_size[ca]);
855 	  comps[ca] = comp;
856 	}
857 
858       dataref = XCNEW (struct dref_d);
859       dataref->ref = dr;
860       dataref->stmt = DR_STMT (dr);
861       dataref->offset = 0;
862       dataref->distance = 0;
863 
864       dataref->always_accessed
865 	      = dominated_by_p (CDI_DOMINATORS, last_always_executed,
866 				gimple_bb (dataref->stmt));
867       dataref->pos = comp->refs.length ();
868       comp->refs.quick_push (dataref);
869     }
870 
871   for (i = 0; i < n; i++)
872     {
873       comp = comps[i];
874       if (comp)
875 	{
876 	  comp->next = comp_list;
877 	  comp_list = comp;
878 	}
879     }
880   free (comps);
881 
882 end:
883   free (comp_father);
884   free (comp_size);
885   return comp_list;
886 }
887 
888 /* Returns true if the component COMP satisfies the conditions
889    described in 2) at the beginning of this file.  LOOP is the current
890    loop.  */
891 
892 static bool
893 suitable_component_p (struct loop *loop, struct component *comp)
894 {
895   unsigned i;
896   dref a, first;
897   basic_block ba, bp = loop->header;
898   bool ok, has_write = false;
899 
900   FOR_EACH_VEC_ELT (comp->refs, i, a)
901     {
902       ba = gimple_bb (a->stmt);
903 
904       if (!just_once_each_iteration_p (loop, ba))
905 	return false;
906 
907       gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
908       bp = ba;
909 
910       if (DR_IS_WRITE (a->ref))
911 	has_write = true;
912     }
913 
914   first = comp->refs[0];
915   ok = suitable_reference_p (first->ref, &comp->comp_step);
916   gcc_assert (ok);
917   first->offset = 0;
918 
919   for (i = 1; comp->refs.iterate (i, &a); i++)
920     {
921       if (!determine_offset (first->ref, a->ref, &a->offset))
922 	return false;
923 
924 #ifdef ENABLE_CHECKING
925       {
926 	enum ref_step_type a_step;
927 	ok = suitable_reference_p (a->ref, &a_step);
928 	gcc_assert (ok && a_step == comp->comp_step);
929       }
930 #endif
931     }
932 
933   /* If there is a write inside the component, we must know whether the
934      step is nonzero or not -- we would not otherwise be able to recognize
935      whether the value accessed by reads comes from the OFFSET-th iteration
936      or the previous one.  */
937   if (has_write && comp->comp_step == RS_ANY)
938     return false;
939 
940   return true;
941 }
942 
943 /* Check the conditions on references inside each of components COMPS,
944    and remove the unsuitable components from the list.  The new list
945    of components is returned.  The conditions are described in 2) at
946    the beginning of this file.  LOOP is the current loop.  */
947 
948 static struct component *
949 filter_suitable_components (struct loop *loop, struct component *comps)
950 {
951   struct component **comp, *act;
952 
953   for (comp = &comps; *comp; )
954     {
955       act = *comp;
956       if (suitable_component_p (loop, act))
957 	comp = &act->next;
958       else
959 	{
960 	  dref ref;
961 	  unsigned i;
962 
963 	  *comp = act->next;
964 	  FOR_EACH_VEC_ELT (act->refs, i, ref)
965 	    free (ref);
966 	  release_component (act);
967 	}
968     }
969 
970   return comps;
971 }
972 
973 /* Compares two drefs A and B by their offset and position.  Callback for
974    qsort.  */
975 
976 static int
977 order_drefs (const void *a, const void *b)
978 {
979   const dref *const da = (const dref *) a;
980   const dref *const db = (const dref *) b;
981   int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
982 
983   if (offcmp != 0)
984     return offcmp;
985 
986   return (*da)->pos - (*db)->pos;
987 }
988 
989 /* Returns root of the CHAIN.  */
990 
991 static inline dref
992 get_chain_root (chain_p chain)
993 {
994   return chain->refs[0];
995 }
996 
997 /* Adds REF to the chain CHAIN.  */
998 
999 static void
1000 add_ref_to_chain (chain_p chain, dref ref)
1001 {
1002   dref root = get_chain_root (chain);
1003 
1004   gcc_assert (wi::les_p (root->offset, ref->offset));
1005   widest_int dist = ref->offset - root->offset;
1006   if (wi::leu_p (MAX_DISTANCE, dist))
1007     {
1008       free (ref);
1009       return;
1010     }
1011   gcc_assert (wi::fits_uhwi_p (dist));
1012 
1013   chain->refs.safe_push (ref);
1014 
1015   ref->distance = dist.to_uhwi ();
1016 
1017   if (ref->distance >= chain->length)
1018     {
1019       chain->length = ref->distance;
1020       chain->has_max_use_after = false;
1021     }
1022 
1023   if (ref->distance == chain->length
1024       && ref->pos > root->pos)
1025     chain->has_max_use_after = true;
1026 
1027   chain->all_always_accessed &= ref->always_accessed;
1028 }
1029 
1030 /* Returns the chain for invariant component COMP.  */
1031 
1032 static chain_p
1033 make_invariant_chain (struct component *comp)
1034 {
1035   chain_p chain = XCNEW (struct chain);
1036   unsigned i;
1037   dref ref;
1038 
1039   chain->type = CT_INVARIANT;
1040 
1041   chain->all_always_accessed = true;
1042 
1043   FOR_EACH_VEC_ELT (comp->refs, i, ref)
1044     {
1045       chain->refs.safe_push (ref);
1046       chain->all_always_accessed &= ref->always_accessed;
1047     }
1048 
1049   return chain;
1050 }
1051 
1052 /* Make a new chain rooted at REF.  */
1053 
1054 static chain_p
1055 make_rooted_chain (dref ref)
1056 {
1057   chain_p chain = XCNEW (struct chain);
1058 
1059   chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
1060 
1061   chain->refs.safe_push (ref);
1062   chain->all_always_accessed = ref->always_accessed;
1063 
1064   ref->distance = 0;
1065 
1066   return chain;
1067 }
1068 
1069 /* Returns true if CHAIN is not trivial.  */
1070 
1071 static bool
1072 nontrivial_chain_p (chain_p chain)
1073 {
1074   return chain != NULL && chain->refs.length () > 1;
1075 }
1076 
1077 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1078    is no such name.  */
1079 
1080 static tree
1081 name_for_ref (dref ref)
1082 {
1083   tree name;
1084 
1085   if (is_gimple_assign (ref->stmt))
1086     {
1087       if (!ref->ref || DR_IS_READ (ref->ref))
1088 	name = gimple_assign_lhs (ref->stmt);
1089       else
1090 	name = gimple_assign_rhs1 (ref->stmt);
1091     }
1092   else
1093     name = PHI_RESULT (ref->stmt);
1094 
1095   return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1096 }
1097 
1098 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1099    iterations of the innermost enclosing loop).  */
1100 
1101 static bool
1102 valid_initializer_p (struct data_reference *ref,
1103 		     unsigned distance, struct data_reference *root)
1104 {
1105   aff_tree diff, base, step;
1106   widest_int off;
1107 
1108   /* Both REF and ROOT must be accessing the same object.  */
1109   if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1110     return false;
1111 
1112   /* The initializer is defined outside of loop, hence its address must be
1113      invariant inside the loop.  */
1114   gcc_assert (integer_zerop (DR_STEP (ref)));
1115 
1116   /* If the address of the reference is invariant, initializer must access
1117      exactly the same location.  */
1118   if (integer_zerop (DR_STEP (root)))
1119     return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1120 	    && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1121 
1122   /* Verify that this index of REF is equal to the root's index at
1123      -DISTANCE-th iteration.  */
1124   aff_combination_dr_offset (root, &diff);
1125   aff_combination_dr_offset (ref, &base);
1126   aff_combination_scale (&base, -1);
1127   aff_combination_add (&diff, &base);
1128 
1129   tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1130 				  &step, &name_expansions);
1131   if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1132     return false;
1133 
1134   if (off != distance)
1135     return false;
1136 
1137   return true;
1138 }
1139 
1140 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1141    initial value is correct (equal to initial value of REF shifted by one
1142    iteration), returns the phi node.  Otherwise, NULL_TREE is returned.  ROOT
1143    is the root of the current chain.  */
1144 
1145 static gphi *
1146 find_looparound_phi (struct loop *loop, dref ref, dref root)
1147 {
1148   tree name, init, init_ref;
1149   gphi *phi = NULL;
1150   gimple init_stmt;
1151   edge latch = loop_latch_edge (loop);
1152   struct data_reference init_dr;
1153   gphi_iterator psi;
1154 
1155   if (is_gimple_assign (ref->stmt))
1156     {
1157       if (DR_IS_READ (ref->ref))
1158 	name = gimple_assign_lhs (ref->stmt);
1159       else
1160 	name = gimple_assign_rhs1 (ref->stmt);
1161     }
1162   else
1163     name = PHI_RESULT (ref->stmt);
1164   if (!name)
1165     return NULL;
1166 
1167   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1168     {
1169       phi = psi.phi ();
1170       if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1171 	break;
1172     }
1173 
1174   if (gsi_end_p (psi))
1175     return NULL;
1176 
1177   init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1178   if (TREE_CODE (init) != SSA_NAME)
1179     return NULL;
1180   init_stmt = SSA_NAME_DEF_STMT (init);
1181   if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1182     return NULL;
1183   gcc_assert (gimple_assign_lhs (init_stmt) == init);
1184 
1185   init_ref = gimple_assign_rhs1 (init_stmt);
1186   if (!REFERENCE_CLASS_P (init_ref)
1187       && !DECL_P (init_ref))
1188     return NULL;
1189 
1190   /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1191      loop enclosing PHI).  */
1192   memset (&init_dr, 0, sizeof (struct data_reference));
1193   DR_REF (&init_dr) = init_ref;
1194   DR_STMT (&init_dr) = phi;
1195   if (!dr_analyze_innermost (&init_dr, loop))
1196     return NULL;
1197 
1198   if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1199     return NULL;
1200 
1201   return phi;
1202 }
1203 
1204 /* Adds a reference for the looparound copy of REF in PHI to CHAIN.  */
1205 
1206 static void
1207 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1208 {
1209   dref nw = XCNEW (struct dref_d), aref;
1210   unsigned i;
1211 
1212   nw->stmt = phi;
1213   nw->distance = ref->distance + 1;
1214   nw->always_accessed = 1;
1215 
1216   FOR_EACH_VEC_ELT (chain->refs, i, aref)
1217     if (aref->distance >= nw->distance)
1218       break;
1219   chain->refs.safe_insert (i, nw);
1220 
1221   if (nw->distance > chain->length)
1222     {
1223       chain->length = nw->distance;
1224       chain->has_max_use_after = false;
1225     }
1226 }
1227 
1228 /* For references in CHAIN that are copied around the LOOP (created previously
1229    by PRE, or by user), add the results of such copies to the chain.  This
1230    enables us to remove the copies by unrolling, and may need less registers
1231    (also, it may allow us to combine chains together).  */
1232 
1233 static void
1234 add_looparound_copies (struct loop *loop, chain_p chain)
1235 {
1236   unsigned i;
1237   dref ref, root = get_chain_root (chain);
1238   gphi *phi;
1239 
1240   FOR_EACH_VEC_ELT (chain->refs, i, ref)
1241     {
1242       phi = find_looparound_phi (loop, ref, root);
1243       if (!phi)
1244 	continue;
1245 
1246       bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1247       insert_looparound_copy (chain, ref, phi);
1248     }
1249 }
1250 
1251 /* Find roots of the values and determine distances in the component COMP.
1252    The references are redistributed into CHAINS.  LOOP is the current
1253    loop.  */
1254 
1255 static void
1256 determine_roots_comp (struct loop *loop,
1257 		      struct component *comp,
1258 		      vec<chain_p> *chains)
1259 {
1260   unsigned i;
1261   dref a;
1262   chain_p chain = NULL;
1263   widest_int last_ofs = 0;
1264 
1265   /* Invariants are handled specially.  */
1266   if (comp->comp_step == RS_INVARIANT)
1267     {
1268       chain = make_invariant_chain (comp);
1269       chains->safe_push (chain);
1270       return;
1271     }
1272 
1273   comp->refs.qsort (order_drefs);
1274 
1275   FOR_EACH_VEC_ELT (comp->refs, i, a)
1276     {
1277       if (!chain || DR_IS_WRITE (a->ref)
1278 	  || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1279 	{
1280 	  if (nontrivial_chain_p (chain))
1281 	    {
1282 	      add_looparound_copies (loop, chain);
1283 	      chains->safe_push (chain);
1284 	    }
1285 	  else
1286 	    release_chain (chain);
1287 	  chain = make_rooted_chain (a);
1288 	  last_ofs = a->offset;
1289 	  continue;
1290 	}
1291 
1292       add_ref_to_chain (chain, a);
1293     }
1294 
1295   if (nontrivial_chain_p (chain))
1296     {
1297       add_looparound_copies (loop, chain);
1298       chains->safe_push (chain);
1299     }
1300   else
1301     release_chain (chain);
1302 }
1303 
1304 /* Find roots of the values and determine distances in components COMPS, and
1305    separates the references to CHAINS.  LOOP is the current loop.  */
1306 
1307 static void
1308 determine_roots (struct loop *loop,
1309 		 struct component *comps, vec<chain_p> *chains)
1310 {
1311   struct component *comp;
1312 
1313   for (comp = comps; comp; comp = comp->next)
1314     determine_roots_comp (loop, comp, chains);
1315 }
1316 
1317 /* Replace the reference in statement STMT with temporary variable
1318    NEW_TREE.  If SET is true, NEW_TREE is instead initialized to the value of
1319    the reference in the statement.  IN_LHS is true if the reference
1320    is in the lhs of STMT, false if it is in rhs.  */
1321 
1322 static void
1323 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1324 {
1325   tree val;
1326   gassign *new_stmt;
1327   gimple_stmt_iterator bsi, psi;
1328 
1329   if (gimple_code (stmt) == GIMPLE_PHI)
1330     {
1331       gcc_assert (!in_lhs && !set);
1332 
1333       val = PHI_RESULT (stmt);
1334       bsi = gsi_after_labels (gimple_bb (stmt));
1335       psi = gsi_for_stmt (stmt);
1336       remove_phi_node (&psi, false);
1337 
1338       /* Turn the phi node into GIMPLE_ASSIGN.  */
1339       new_stmt = gimple_build_assign (val, new_tree);
1340       gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1341       return;
1342     }
1343 
1344   /* Since the reference is of gimple_reg type, it should only
1345      appear as lhs or rhs of modify statement.  */
1346   gcc_assert (is_gimple_assign (stmt));
1347 
1348   bsi = gsi_for_stmt (stmt);
1349 
1350   /* If we do not need to initialize NEW_TREE, just replace the use of OLD.  */
1351   if (!set)
1352     {
1353       gcc_assert (!in_lhs);
1354       gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1355       stmt = gsi_stmt (bsi);
1356       update_stmt (stmt);
1357       return;
1358     }
1359 
1360   if (in_lhs)
1361     {
1362       /* We have statement
1363 
1364 	 OLD = VAL
1365 
1366 	 If OLD is a memory reference, then VAL is gimple_val, and we transform
1367 	 this to
1368 
1369 	 OLD = VAL
1370 	 NEW = VAL
1371 
1372 	 Otherwise, we are replacing a combination chain,
1373 	 VAL is the expression that performs the combination, and OLD is an
1374 	 SSA name.  In this case, we transform the assignment to
1375 
1376 	 OLD = VAL
1377 	 NEW = OLD
1378 
1379 	 */
1380 
1381       val = gimple_assign_lhs (stmt);
1382       if (TREE_CODE (val) != SSA_NAME)
1383 	{
1384 	  val = gimple_assign_rhs1 (stmt);
1385 	  gcc_assert (gimple_assign_single_p (stmt));
1386 	  if (TREE_CLOBBER_P (val))
1387 	    val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1388 	  else
1389 	    gcc_assert (gimple_assign_copy_p (stmt));
1390 	}
1391     }
1392   else
1393     {
1394       /* VAL = OLD
1395 
1396 	 is transformed to
1397 
1398 	 VAL = OLD
1399 	 NEW = VAL  */
1400 
1401       val = gimple_assign_lhs (stmt);
1402     }
1403 
1404   new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1405   gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1406 }
1407 
1408 /* Returns a memory reference to DR in the ITER-th iteration of
1409    the loop it was analyzed in.  Append init stmts to STMTS.  */
1410 
1411 static tree
1412 ref_at_iteration (data_reference_p dr, int iter, gimple_seq *stmts)
1413 {
1414   tree off = DR_OFFSET (dr);
1415   tree coff = DR_INIT (dr);
1416   if (iter == 0)
1417     ;
1418   else if (TREE_CODE (DR_STEP (dr)) == INTEGER_CST)
1419     coff = size_binop (PLUS_EXPR, coff,
1420 		       size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1421   else
1422     off = size_binop (PLUS_EXPR, off,
1423 		      size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1424   tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1425   addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
1426 				 is_gimple_mem_ref_addr, NULL_TREE);
1427   tree alias_ptr = fold_convert (reference_alias_ptr_type (DR_REF (dr)), coff);
1428   tree type = build_aligned_type (TREE_TYPE (DR_REF (dr)),
1429 				  get_object_alignment (DR_REF (dr)));
1430   /* While data-ref analysis punts on bit offsets it still handles
1431      bitfield accesses at byte boundaries.  Cope with that.  Note that
1432      we cannot simply re-apply the outer COMPONENT_REF because the
1433      byte-granular portion of it is already applied via DR_INIT and
1434      DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1435      start at offset zero.  */
1436   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
1437       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
1438     {
1439       tree field = TREE_OPERAND (DR_REF (dr), 1);
1440       return build3 (BIT_FIELD_REF, TREE_TYPE (DR_REF (dr)),
1441 		     build2 (MEM_REF, type, addr, alias_ptr),
1442 		     DECL_SIZE (field), bitsize_zero_node);
1443     }
1444   else
1445     return fold_build2 (MEM_REF, type, addr, alias_ptr);
1446 }
1447 
1448 /* Get the initialization expression for the INDEX-th temporary variable
1449    of CHAIN.  */
1450 
1451 static tree
1452 get_init_expr (chain_p chain, unsigned index)
1453 {
1454   if (chain->type == CT_COMBINATION)
1455     {
1456       tree e1 = get_init_expr (chain->ch1, index);
1457       tree e2 = get_init_expr (chain->ch2, index);
1458 
1459       return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1460     }
1461   else
1462     return chain->inits[index];
1463 }
1464 
1465 /* Returns a new temporary variable used for the I-th variable carrying
1466    value of REF.  The variable's uid is marked in TMP_VARS.  */
1467 
1468 static tree
1469 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1470 {
1471   tree type = TREE_TYPE (ref);
1472   /* We never access the components of the temporary variable in predictive
1473      commoning.  */
1474   tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1475   bitmap_set_bit (tmp_vars, DECL_UID (var));
1476   return var;
1477 }
1478 
1479 /* Creates the variables for CHAIN, as well as phi nodes for them and
1480    initialization on entry to LOOP.  Uids of the newly created
1481    temporary variables are marked in TMP_VARS.  */
1482 
1483 static void
1484 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1485 {
1486   unsigned i;
1487   unsigned n = chain->length;
1488   dref root = get_chain_root (chain);
1489   bool reuse_first = !chain->has_max_use_after;
1490   tree ref, init, var, next;
1491   gphi *phi;
1492   gimple_seq stmts;
1493   edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1494 
1495   /* If N == 0, then all the references are within the single iteration.  And
1496      since this is an nonempty chain, reuse_first cannot be true.  */
1497   gcc_assert (n > 0 || !reuse_first);
1498 
1499   chain->vars.create (n + 1);
1500 
1501   if (chain->type == CT_COMBINATION)
1502     ref = gimple_assign_lhs (root->stmt);
1503   else
1504     ref = DR_REF (root->ref);
1505 
1506   for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1507     {
1508       var = predcom_tmp_var (ref, i, tmp_vars);
1509       chain->vars.quick_push (var);
1510     }
1511   if (reuse_first)
1512     chain->vars.quick_push (chain->vars[0]);
1513 
1514   FOR_EACH_VEC_ELT (chain->vars, i, var)
1515     chain->vars[i] = make_ssa_name (var);
1516 
1517   for (i = 0; i < n; i++)
1518     {
1519       var = chain->vars[i];
1520       next = chain->vars[i + 1];
1521       init = get_init_expr (chain, i);
1522 
1523       init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1524       if (stmts)
1525 	gsi_insert_seq_on_edge_immediate (entry, stmts);
1526 
1527       phi = create_phi_node (var, loop->header);
1528       add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1529       add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1530     }
1531 }
1532 
1533 /* Create the variables and initialization statement for root of chain
1534    CHAIN.  Uids of the newly created temporary variables are marked
1535    in TMP_VARS.  */
1536 
1537 static void
1538 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1539 {
1540   dref root = get_chain_root (chain);
1541   bool in_lhs = (chain->type == CT_STORE_LOAD
1542 		 || chain->type == CT_COMBINATION);
1543 
1544   initialize_root_vars (loop, chain, tmp_vars);
1545   replace_ref_with (root->stmt,
1546 		    chain->vars[chain->length],
1547 		    true, in_lhs);
1548 }
1549 
1550 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1551    initialization on entry to LOOP if necessary.  The ssa name for the variable
1552    is stored in VARS.  If WRITTEN is true, also a phi node to copy its value
1553    around the loop is created.  Uid of the newly created temporary variable
1554    is marked in TMP_VARS.  INITS is the list containing the (single)
1555    initializer.  */
1556 
1557 static void
1558 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1559 			 vec<tree> *vars, vec<tree> inits,
1560 			 bitmap tmp_vars)
1561 {
1562   unsigned i;
1563   tree ref = DR_REF (root->ref), init, var, next;
1564   gimple_seq stmts;
1565   gphi *phi;
1566   edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1567 
1568   /* Find the initializer for the variable, and check that it cannot
1569      trap.  */
1570   init = inits[0];
1571 
1572   vars->create (written ? 2 : 1);
1573   var = predcom_tmp_var (ref, 0, tmp_vars);
1574   vars->quick_push (var);
1575   if (written)
1576     vars->quick_push ((*vars)[0]);
1577 
1578   FOR_EACH_VEC_ELT (*vars, i, var)
1579     (*vars)[i] = make_ssa_name (var);
1580 
1581   var = (*vars)[0];
1582 
1583   init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1584   if (stmts)
1585     gsi_insert_seq_on_edge_immediate (entry, stmts);
1586 
1587   if (written)
1588     {
1589       next = (*vars)[1];
1590       phi = create_phi_node (var, loop->header);
1591       add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1592       add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1593     }
1594   else
1595     {
1596       gassign *init_stmt = gimple_build_assign (var, init);
1597       gsi_insert_on_edge_immediate (entry, init_stmt);
1598     }
1599 }
1600 
1601 
1602 /* Execute load motion for references in chain CHAIN.  Uids of the newly
1603    created temporary variables are marked in TMP_VARS.  */
1604 
1605 static void
1606 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1607 {
1608   auto_vec<tree> vars;
1609   dref a;
1610   unsigned n_writes = 0, ridx, i;
1611   tree var;
1612 
1613   gcc_assert (chain->type == CT_INVARIANT);
1614   gcc_assert (!chain->combined);
1615   FOR_EACH_VEC_ELT (chain->refs, i, a)
1616     if (DR_IS_WRITE (a->ref))
1617       n_writes++;
1618 
1619   /* If there are no reads in the loop, there is nothing to do.  */
1620   if (n_writes == chain->refs.length ())
1621     return;
1622 
1623   initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1624 			   &vars, chain->inits, tmp_vars);
1625 
1626   ridx = 0;
1627   FOR_EACH_VEC_ELT (chain->refs, i, a)
1628     {
1629       bool is_read = DR_IS_READ (a->ref);
1630 
1631       if (DR_IS_WRITE (a->ref))
1632 	{
1633 	  n_writes--;
1634 	  if (n_writes)
1635 	    {
1636 	      var = vars[0];
1637 	      var = make_ssa_name (SSA_NAME_VAR (var));
1638 	      vars[0] = var;
1639 	    }
1640 	  else
1641 	    ridx = 1;
1642 	}
1643 
1644       replace_ref_with (a->stmt, vars[ridx],
1645 			!is_read, !is_read);
1646     }
1647 }
1648 
1649 /* Returns the single statement in that NAME is used, excepting
1650    the looparound phi nodes contained in one of the chains.  If there is no
1651    such statement, or more statements, NULL is returned.  */
1652 
1653 static gimple
1654 single_nonlooparound_use (tree name)
1655 {
1656   use_operand_p use;
1657   imm_use_iterator it;
1658   gimple stmt, ret = NULL;
1659 
1660   FOR_EACH_IMM_USE_FAST (use, it, name)
1661     {
1662       stmt = USE_STMT (use);
1663 
1664       if (gimple_code (stmt) == GIMPLE_PHI)
1665 	{
1666 	  /* Ignore uses in looparound phi nodes.  Uses in other phi nodes
1667 	     could not be processed anyway, so just fail for them.  */
1668 	  if (bitmap_bit_p (looparound_phis,
1669 			    SSA_NAME_VERSION (PHI_RESULT (stmt))))
1670 	    continue;
1671 
1672 	  return NULL;
1673 	}
1674       else if (is_gimple_debug (stmt))
1675 	continue;
1676       else if (ret != NULL)
1677 	return NULL;
1678       else
1679 	ret = stmt;
1680     }
1681 
1682   return ret;
1683 }
1684 
1685 /* Remove statement STMT, as well as the chain of assignments in that it is
1686    used.  */
1687 
1688 static void
1689 remove_stmt (gimple stmt)
1690 {
1691   tree name;
1692   gimple next;
1693   gimple_stmt_iterator psi;
1694 
1695   if (gimple_code (stmt) == GIMPLE_PHI)
1696     {
1697       name = PHI_RESULT (stmt);
1698       next = single_nonlooparound_use (name);
1699       reset_debug_uses (stmt);
1700       psi = gsi_for_stmt (stmt);
1701       remove_phi_node (&psi, true);
1702 
1703       if (!next
1704 	  || !gimple_assign_ssa_name_copy_p (next)
1705 	  || gimple_assign_rhs1 (next) != name)
1706 	return;
1707 
1708       stmt = next;
1709     }
1710 
1711   while (1)
1712     {
1713       gimple_stmt_iterator bsi;
1714 
1715       bsi = gsi_for_stmt (stmt);
1716 
1717       name = gimple_assign_lhs (stmt);
1718       gcc_assert (TREE_CODE (name) == SSA_NAME);
1719 
1720       next = single_nonlooparound_use (name);
1721       reset_debug_uses (stmt);
1722 
1723       unlink_stmt_vdef (stmt);
1724       gsi_remove (&bsi, true);
1725       release_defs (stmt);
1726 
1727       if (!next
1728 	  || !gimple_assign_ssa_name_copy_p (next)
1729 	  || gimple_assign_rhs1 (next) != name)
1730 	return;
1731 
1732       stmt = next;
1733     }
1734 }
1735 
1736 /* Perform the predictive commoning optimization for a chain CHAIN.
1737    Uids of the newly created temporary variables are marked in TMP_VARS.*/
1738 
1739 static void
1740 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1741 			     bitmap tmp_vars)
1742 {
1743   unsigned i;
1744   dref a;
1745   tree var;
1746 
1747   if (chain->combined)
1748     {
1749       /* For combined chains, just remove the statements that are used to
1750 	 compute the values of the expression (except for the root one).
1751 	 We delay this until after all chains are processed.  */
1752     }
1753   else
1754     {
1755       /* For non-combined chains, set up the variables that hold its value,
1756 	 and replace the uses of the original references by these
1757 	 variables.  */
1758       initialize_root (loop, chain, tmp_vars);
1759       for (i = 1; chain->refs.iterate (i, &a); i++)
1760 	{
1761 	  var = chain->vars[chain->length - a->distance];
1762 	  replace_ref_with (a->stmt, var, false, false);
1763 	}
1764     }
1765 }
1766 
1767 /* Determines the unroll factor necessary to remove as many temporary variable
1768    copies as possible.  CHAINS is the list of chains that will be
1769    optimized.  */
1770 
1771 static unsigned
1772 determine_unroll_factor (vec<chain_p> chains)
1773 {
1774   chain_p chain;
1775   unsigned factor = 1, af, nfactor, i;
1776   unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1777 
1778   FOR_EACH_VEC_ELT (chains, i, chain)
1779     {
1780       if (chain->type == CT_INVARIANT)
1781 	continue;
1782 
1783       if (chain->combined)
1784 	{
1785 	  /* For combined chains, we can't handle unrolling if we replace
1786 	     looparound PHIs.  */
1787 	  dref a;
1788 	  unsigned j;
1789 	  for (j = 1; chain->refs.iterate (j, &a); j++)
1790 	    if (gimple_code (a->stmt) == GIMPLE_PHI)
1791 	      return 1;
1792 	  continue;
1793 	}
1794 
1795       /* The best unroll factor for this chain is equal to the number of
1796 	 temporary variables that we create for it.  */
1797       af = chain->length;
1798       if (chain->has_max_use_after)
1799 	af++;
1800 
1801       nfactor = factor * af / gcd (factor, af);
1802       if (nfactor <= max)
1803 	factor = nfactor;
1804     }
1805 
1806   return factor;
1807 }
1808 
1809 /* Perform the predictive commoning optimization for CHAINS.
1810    Uids of the newly created temporary variables are marked in TMP_VARS.  */
1811 
1812 static void
1813 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
1814 			bitmap tmp_vars)
1815 {
1816   chain_p chain;
1817   unsigned i;
1818 
1819   FOR_EACH_VEC_ELT (chains, i, chain)
1820     {
1821       if (chain->type == CT_INVARIANT)
1822 	execute_load_motion (loop, chain, tmp_vars);
1823       else
1824 	execute_pred_commoning_chain (loop, chain, tmp_vars);
1825     }
1826 
1827   FOR_EACH_VEC_ELT (chains, i, chain)
1828     {
1829       if (chain->type == CT_INVARIANT)
1830 	;
1831       else if (chain->combined)
1832 	{
1833 	  /* For combined chains, just remove the statements that are used to
1834 	     compute the values of the expression (except for the root one).  */
1835 	  dref a;
1836 	  unsigned j;
1837 	  for (j = 1; chain->refs.iterate (j, &a); j++)
1838 	    remove_stmt (a->stmt);
1839 	}
1840     }
1841 
1842   update_ssa (TODO_update_ssa_only_virtuals);
1843 }
1844 
1845 /* For each reference in CHAINS, if its defining statement is
1846    phi node, record the ssa name that is defined by it.  */
1847 
1848 static void
1849 replace_phis_by_defined_names (vec<chain_p> chains)
1850 {
1851   chain_p chain;
1852   dref a;
1853   unsigned i, j;
1854 
1855   FOR_EACH_VEC_ELT (chains, i, chain)
1856     FOR_EACH_VEC_ELT (chain->refs, j, a)
1857       {
1858 	if (gimple_code (a->stmt) == GIMPLE_PHI)
1859 	  {
1860 	    a->name_defined_by_phi = PHI_RESULT (a->stmt);
1861 	    a->stmt = NULL;
1862 	  }
1863       }
1864 }
1865 
1866 /* For each reference in CHAINS, if name_defined_by_phi is not
1867    NULL, use it to set the stmt field.  */
1868 
1869 static void
1870 replace_names_by_phis (vec<chain_p> chains)
1871 {
1872   chain_p chain;
1873   dref a;
1874   unsigned i, j;
1875 
1876   FOR_EACH_VEC_ELT (chains, i, chain)
1877     FOR_EACH_VEC_ELT (chain->refs, j, a)
1878       if (a->stmt == NULL)
1879 	{
1880 	  a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1881 	  gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1882 	  a->name_defined_by_phi = NULL_TREE;
1883 	}
1884 }
1885 
1886 /* Wrapper over execute_pred_commoning, to pass it as a callback
1887    to tree_transform_and_unroll_loop.  */
1888 
1889 struct epcc_data
1890 {
1891   vec<chain_p> chains;
1892   bitmap tmp_vars;
1893 };
1894 
1895 static void
1896 execute_pred_commoning_cbck (struct loop *loop, void *data)
1897 {
1898   struct epcc_data *const dta = (struct epcc_data *) data;
1899 
1900   /* Restore phi nodes that were replaced by ssa names before
1901      tree_transform_and_unroll_loop (see detailed description in
1902      tree_predictive_commoning_loop).  */
1903   replace_names_by_phis (dta->chains);
1904   execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1905 }
1906 
1907 /* Base NAME and all the names in the chain of phi nodes that use it
1908    on variable VAR.  The phi nodes are recognized by being in the copies of
1909    the header of the LOOP.  */
1910 
1911 static void
1912 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1913 {
1914   gimple stmt, phi;
1915   imm_use_iterator iter;
1916 
1917   replace_ssa_name_symbol (name, var);
1918 
1919   while (1)
1920     {
1921       phi = NULL;
1922       FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1923 	{
1924 	  if (gimple_code (stmt) == GIMPLE_PHI
1925 	      && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1926 	    {
1927 	      phi = stmt;
1928 	      BREAK_FROM_IMM_USE_STMT (iter);
1929 	    }
1930 	}
1931       if (!phi)
1932 	return;
1933 
1934       name = PHI_RESULT (phi);
1935       replace_ssa_name_symbol (name, var);
1936     }
1937 }
1938 
1939 /* Given an unrolled LOOP after predictive commoning, remove the
1940    register copies arising from phi nodes by changing the base
1941    variables of SSA names.  TMP_VARS is the set of the temporary variables
1942    for those we want to perform this.  */
1943 
1944 static void
1945 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1946 {
1947   edge e;
1948   gphi *phi;
1949   gimple stmt;
1950   tree name, use, var;
1951   gphi_iterator psi;
1952 
1953   e = loop_latch_edge (loop);
1954   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1955     {
1956       phi = psi.phi ();
1957       name = PHI_RESULT (phi);
1958       var = SSA_NAME_VAR (name);
1959       if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1960 	continue;
1961       use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1962       gcc_assert (TREE_CODE (use) == SSA_NAME);
1963 
1964       /* Base all the ssa names in the ud and du chain of NAME on VAR.  */
1965       stmt = SSA_NAME_DEF_STMT (use);
1966       while (gimple_code (stmt) == GIMPLE_PHI
1967 	     /* In case we could not unroll the loop enough to eliminate
1968 		all copies, we may reach the loop header before the defining
1969 		statement (in that case, some register copies will be present
1970 		in loop latch in the final code, corresponding to the newly
1971 		created looparound phi nodes).  */
1972 	     && gimple_bb (stmt) != loop->header)
1973 	{
1974 	  gcc_assert (single_pred_p (gimple_bb (stmt)));
1975 	  use = PHI_ARG_DEF (stmt, 0);
1976 	  stmt = SSA_NAME_DEF_STMT (use);
1977 	}
1978 
1979       base_names_in_chain_on (loop, use, var);
1980     }
1981 }
1982 
1983 /* Returns true if CHAIN is suitable to be combined.  */
1984 
1985 static bool
1986 chain_can_be_combined_p (chain_p chain)
1987 {
1988   return (!chain->combined
1989 	  && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1990 }
1991 
1992 /* Returns the modify statement that uses NAME.  Skips over assignment
1993    statements, NAME is replaced with the actual name used in the returned
1994    statement.  */
1995 
1996 static gimple
1997 find_use_stmt (tree *name)
1998 {
1999   gimple stmt;
2000   tree rhs, lhs;
2001 
2002   /* Skip over assignments.  */
2003   while (1)
2004     {
2005       stmt = single_nonlooparound_use (*name);
2006       if (!stmt)
2007 	return NULL;
2008 
2009       if (gimple_code (stmt) != GIMPLE_ASSIGN)
2010 	return NULL;
2011 
2012       lhs = gimple_assign_lhs (stmt);
2013       if (TREE_CODE (lhs) != SSA_NAME)
2014 	return NULL;
2015 
2016       if (gimple_assign_copy_p (stmt))
2017 	{
2018 	  rhs = gimple_assign_rhs1 (stmt);
2019 	  if (rhs != *name)
2020 	    return NULL;
2021 
2022 	  *name = lhs;
2023 	}
2024       else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2025 	       == GIMPLE_BINARY_RHS)
2026 	return stmt;
2027       else
2028 	return NULL;
2029     }
2030 }
2031 
2032 /* Returns true if we may perform reassociation for operation CODE in TYPE.  */
2033 
2034 static bool
2035 may_reassociate_p (tree type, enum tree_code code)
2036 {
2037   if (FLOAT_TYPE_P (type)
2038       && !flag_unsafe_math_optimizations)
2039     return false;
2040 
2041   return (commutative_tree_code (code)
2042 	  && associative_tree_code (code));
2043 }
2044 
2045 /* If the operation used in STMT is associative and commutative, go through the
2046    tree of the same operations and returns its root.  Distance to the root
2047    is stored in DISTANCE.  */
2048 
2049 static gimple
2050 find_associative_operation_root (gimple stmt, unsigned *distance)
2051 {
2052   tree lhs;
2053   gimple next;
2054   enum tree_code code = gimple_assign_rhs_code (stmt);
2055   tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2056   unsigned dist = 0;
2057 
2058   if (!may_reassociate_p (type, code))
2059     return NULL;
2060 
2061   while (1)
2062     {
2063       lhs = gimple_assign_lhs (stmt);
2064       gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2065 
2066       next = find_use_stmt (&lhs);
2067       if (!next
2068 	  || gimple_assign_rhs_code (next) != code)
2069 	break;
2070 
2071       stmt = next;
2072       dist++;
2073     }
2074 
2075   if (distance)
2076     *distance = dist;
2077   return stmt;
2078 }
2079 
2080 /* Returns the common statement in that NAME1 and NAME2 have a use.  If there
2081    is no such statement, returns NULL_TREE.  In case the operation used on
2082    NAME1 and NAME2 is associative and commutative, returns the root of the
2083    tree formed by this operation instead of the statement that uses NAME1 or
2084    NAME2.  */
2085 
2086 static gimple
2087 find_common_use_stmt (tree *name1, tree *name2)
2088 {
2089   gimple stmt1, stmt2;
2090 
2091   stmt1 = find_use_stmt (name1);
2092   if (!stmt1)
2093     return NULL;
2094 
2095   stmt2 = find_use_stmt (name2);
2096   if (!stmt2)
2097     return NULL;
2098 
2099   if (stmt1 == stmt2)
2100     return stmt1;
2101 
2102   stmt1 = find_associative_operation_root (stmt1, NULL);
2103   if (!stmt1)
2104     return NULL;
2105   stmt2 = find_associative_operation_root (stmt2, NULL);
2106   if (!stmt2)
2107     return NULL;
2108 
2109   return (stmt1 == stmt2 ? stmt1 : NULL);
2110 }
2111 
2112 /* Checks whether R1 and R2 are combined together using CODE, with the result
2113    in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2114    if it is true.  If CODE is ERROR_MARK, set these values instead.  */
2115 
2116 static bool
2117 combinable_refs_p (dref r1, dref r2,
2118 		   enum tree_code *code, bool *swap, tree *rslt_type)
2119 {
2120   enum tree_code acode;
2121   bool aswap;
2122   tree atype;
2123   tree name1, name2;
2124   gimple stmt;
2125 
2126   name1 = name_for_ref (r1);
2127   name2 = name_for_ref (r2);
2128   gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2129 
2130   stmt = find_common_use_stmt (&name1, &name2);
2131 
2132   if (!stmt
2133       /* A simple post-dominance check - make sure the combination
2134          is executed under the same condition as the references.  */
2135       || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2136 	  && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2137     return false;
2138 
2139   acode = gimple_assign_rhs_code (stmt);
2140   aswap = (!commutative_tree_code (acode)
2141 	   && gimple_assign_rhs1 (stmt) != name1);
2142   atype = TREE_TYPE (gimple_assign_lhs (stmt));
2143 
2144   if (*code == ERROR_MARK)
2145     {
2146       *code = acode;
2147       *swap = aswap;
2148       *rslt_type = atype;
2149       return true;
2150     }
2151 
2152   return (*code == acode
2153 	  && *swap == aswap
2154 	  && *rslt_type == atype);
2155 }
2156 
2157 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2158    an assignment of the remaining operand.  */
2159 
2160 static void
2161 remove_name_from_operation (gimple stmt, tree op)
2162 {
2163   tree other_op;
2164   gimple_stmt_iterator si;
2165 
2166   gcc_assert (is_gimple_assign (stmt));
2167 
2168   if (gimple_assign_rhs1 (stmt) == op)
2169     other_op = gimple_assign_rhs2 (stmt);
2170   else
2171     other_op = gimple_assign_rhs1 (stmt);
2172 
2173   si = gsi_for_stmt (stmt);
2174   gimple_assign_set_rhs_from_tree (&si, other_op);
2175 
2176   /* We should not have reallocated STMT.  */
2177   gcc_assert (gsi_stmt (si) == stmt);
2178 
2179   update_stmt (stmt);
2180 }
2181 
2182 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2183    are combined in a single statement, and returns this statement.  */
2184 
2185 static gimple
2186 reassociate_to_the_same_stmt (tree name1, tree name2)
2187 {
2188   gimple stmt1, stmt2, root1, root2, s1, s2;
2189   gassign *new_stmt, *tmp_stmt;
2190   tree new_name, tmp_name, var, r1, r2;
2191   unsigned dist1, dist2;
2192   enum tree_code code;
2193   tree type = TREE_TYPE (name1);
2194   gimple_stmt_iterator bsi;
2195 
2196   stmt1 = find_use_stmt (&name1);
2197   stmt2 = find_use_stmt (&name2);
2198   root1 = find_associative_operation_root (stmt1, &dist1);
2199   root2 = find_associative_operation_root (stmt2, &dist2);
2200   code = gimple_assign_rhs_code (stmt1);
2201 
2202   gcc_assert (root1 && root2 && root1 == root2
2203 	      && code == gimple_assign_rhs_code (stmt2));
2204 
2205   /* Find the root of the nearest expression in that both NAME1 and NAME2
2206      are used.  */
2207   r1 = name1;
2208   s1 = stmt1;
2209   r2 = name2;
2210   s2 = stmt2;
2211 
2212   while (dist1 > dist2)
2213     {
2214       s1 = find_use_stmt (&r1);
2215       r1 = gimple_assign_lhs (s1);
2216       dist1--;
2217     }
2218   while (dist2 > dist1)
2219     {
2220       s2 = find_use_stmt (&r2);
2221       r2 = gimple_assign_lhs (s2);
2222       dist2--;
2223     }
2224 
2225   while (s1 != s2)
2226     {
2227       s1 = find_use_stmt (&r1);
2228       r1 = gimple_assign_lhs (s1);
2229       s2 = find_use_stmt (&r2);
2230       r2 = gimple_assign_lhs (s2);
2231     }
2232 
2233   /* Remove NAME1 and NAME2 from the statements in that they are used
2234      currently.  */
2235   remove_name_from_operation (stmt1, name1);
2236   remove_name_from_operation (stmt2, name2);
2237 
2238   /* Insert the new statement combining NAME1 and NAME2 before S1, and
2239      combine it with the rhs of S1.  */
2240   var = create_tmp_reg (type, "predreastmp");
2241   new_name = make_ssa_name (var);
2242   new_stmt = gimple_build_assign (new_name, code, name1, name2);
2243 
2244   var = create_tmp_reg (type, "predreastmp");
2245   tmp_name = make_ssa_name (var);
2246 
2247   /* Rhs of S1 may now be either a binary expression with operation
2248      CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2249      so that name1 or name2 was removed from it).  */
2250   tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
2251 				  gimple_assign_rhs1 (s1),
2252 				  gimple_assign_rhs2 (s1));
2253 
2254   bsi = gsi_for_stmt (s1);
2255   gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2256   s1 = gsi_stmt (bsi);
2257   update_stmt (s1);
2258 
2259   gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2260   gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2261 
2262   return new_stmt;
2263 }
2264 
2265 /* Returns the statement that combines references R1 and R2.  In case R1
2266    and R2 are not used in the same statement, but they are used with an
2267    associative and commutative operation in the same expression, reassociate
2268    the expression so that they are used in the same statement.  */
2269 
2270 static gimple
2271 stmt_combining_refs (dref r1, dref r2)
2272 {
2273   gimple stmt1, stmt2;
2274   tree name1 = name_for_ref (r1);
2275   tree name2 = name_for_ref (r2);
2276 
2277   stmt1 = find_use_stmt (&name1);
2278   stmt2 = find_use_stmt (&name2);
2279   if (stmt1 == stmt2)
2280     return stmt1;
2281 
2282   return reassociate_to_the_same_stmt (name1, name2);
2283 }
2284 
2285 /* Tries to combine chains CH1 and CH2 together.  If this succeeds, the
2286    description of the new chain is returned, otherwise we return NULL.  */
2287 
2288 static chain_p
2289 combine_chains (chain_p ch1, chain_p ch2)
2290 {
2291   dref r1, r2, nw;
2292   enum tree_code op = ERROR_MARK;
2293   bool swap = false;
2294   chain_p new_chain;
2295   unsigned i;
2296   gimple root_stmt;
2297   tree rslt_type = NULL_TREE;
2298 
2299   if (ch1 == ch2)
2300     return NULL;
2301   if (ch1->length != ch2->length)
2302     return NULL;
2303 
2304   if (ch1->refs.length () != ch2->refs.length ())
2305     return NULL;
2306 
2307   for (i = 0; (ch1->refs.iterate (i, &r1)
2308 	       && ch2->refs.iterate (i, &r2)); i++)
2309     {
2310       if (r1->distance != r2->distance)
2311 	return NULL;
2312 
2313       if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2314 	return NULL;
2315     }
2316 
2317   if (swap)
2318     {
2319       chain_p tmp = ch1;
2320       ch1 = ch2;
2321       ch2 = tmp;
2322     }
2323 
2324   new_chain = XCNEW (struct chain);
2325   new_chain->type = CT_COMBINATION;
2326   new_chain->op = op;
2327   new_chain->ch1 = ch1;
2328   new_chain->ch2 = ch2;
2329   new_chain->rslt_type = rslt_type;
2330   new_chain->length = ch1->length;
2331 
2332   for (i = 0; (ch1->refs.iterate (i, &r1)
2333 	       && ch2->refs.iterate (i, &r2)); i++)
2334     {
2335       nw = XCNEW (struct dref_d);
2336       nw->stmt = stmt_combining_refs (r1, r2);
2337       nw->distance = r1->distance;
2338 
2339       new_chain->refs.safe_push (nw);
2340     }
2341 
2342   new_chain->has_max_use_after = false;
2343   root_stmt = get_chain_root (new_chain)->stmt;
2344   for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2345     {
2346       if (nw->distance == new_chain->length
2347 	  && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2348 	{
2349 	  new_chain->has_max_use_after = true;
2350 	  break;
2351 	}
2352     }
2353 
2354   ch1->combined = true;
2355   ch2->combined = true;
2356   return new_chain;
2357 }
2358 
2359 /* Try to combine the CHAINS.  */
2360 
2361 static void
2362 try_combine_chains (vec<chain_p> *chains)
2363 {
2364   unsigned i, j;
2365   chain_p ch1, ch2, cch;
2366   auto_vec<chain_p> worklist;
2367 
2368   FOR_EACH_VEC_ELT (*chains, i, ch1)
2369     if (chain_can_be_combined_p (ch1))
2370       worklist.safe_push (ch1);
2371 
2372   while (!worklist.is_empty ())
2373     {
2374       ch1 = worklist.pop ();
2375       if (!chain_can_be_combined_p (ch1))
2376 	continue;
2377 
2378       FOR_EACH_VEC_ELT (*chains, j, ch2)
2379 	{
2380 	  if (!chain_can_be_combined_p (ch2))
2381 	    continue;
2382 
2383 	  cch = combine_chains (ch1, ch2);
2384 	  if (cch)
2385 	    {
2386 	      worklist.safe_push (cch);
2387 	      chains->safe_push (cch);
2388 	      break;
2389 	    }
2390 	}
2391     }
2392 }
2393 
2394 /* Prepare initializers for CHAIN in LOOP.  Returns false if this is
2395    impossible because one of these initializers may trap, true otherwise.  */
2396 
2397 static bool
2398 prepare_initializers_chain (struct loop *loop, chain_p chain)
2399 {
2400   unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2401   struct data_reference *dr = get_chain_root (chain)->ref;
2402   tree init;
2403   dref laref;
2404   edge entry = loop_preheader_edge (loop);
2405 
2406   /* Find the initializers for the variables, and check that they cannot
2407      trap.  */
2408   chain->inits.create (n);
2409   for (i = 0; i < n; i++)
2410     chain->inits.quick_push (NULL_TREE);
2411 
2412   /* If we have replaced some looparound phi nodes, use their initializers
2413      instead of creating our own.  */
2414   FOR_EACH_VEC_ELT (chain->refs, i, laref)
2415     {
2416       if (gimple_code (laref->stmt) != GIMPLE_PHI)
2417 	continue;
2418 
2419       gcc_assert (laref->distance > 0);
2420       chain->inits[n - laref->distance]
2421 	= PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2422     }
2423 
2424   for (i = 0; i < n; i++)
2425     {
2426       gimple_seq stmts = NULL;
2427 
2428       if (chain->inits[i] != NULL_TREE)
2429 	continue;
2430 
2431       init = ref_at_iteration (dr, (int) i - n, &stmts);
2432       if (!chain->all_always_accessed && tree_could_trap_p (init))
2433 	{
2434 	  gimple_seq_discard (stmts);
2435 	  return false;
2436 	}
2437 
2438       if (stmts)
2439 	gsi_insert_seq_on_edge_immediate (entry, stmts);
2440 
2441       chain->inits[i] = init;
2442     }
2443 
2444   return true;
2445 }
2446 
2447 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2448    be used because the initializers might trap.  */
2449 
2450 static void
2451 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2452 {
2453   chain_p chain;
2454   unsigned i;
2455 
2456   for (i = 0; i < chains.length (); )
2457     {
2458       chain = chains[i];
2459       if (prepare_initializers_chain (loop, chain))
2460 	i++;
2461       else
2462 	{
2463 	  release_chain (chain);
2464 	  chains.unordered_remove (i);
2465 	}
2466     }
2467 }
2468 
2469 /* Performs predictive commoning for LOOP.  Returns true if LOOP was
2470    unrolled.  */
2471 
2472 static bool
2473 tree_predictive_commoning_loop (struct loop *loop)
2474 {
2475   vec<data_reference_p> datarefs;
2476   vec<ddr_p> dependences;
2477   struct component *components;
2478   vec<chain_p> chains = vNULL;
2479   unsigned unroll_factor;
2480   struct tree_niter_desc desc;
2481   bool unroll = false;
2482   edge exit;
2483   bitmap tmp_vars;
2484 
2485   if (dump_file && (dump_flags & TDF_DETAILS))
2486     fprintf (dump_file, "Processing loop %d\n",  loop->num);
2487 
2488   /* Find the data references and split them into components according to their
2489      dependence relations.  */
2490   auto_vec<loop_p, 3> loop_nest;
2491   dependences.create (10);
2492   datarefs.create (10);
2493   if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2494 					   &dependences))
2495     {
2496       if (dump_file && (dump_flags & TDF_DETAILS))
2497 	fprintf (dump_file, "Cannot analyze data dependencies\n");
2498       free_data_refs (datarefs);
2499       free_dependence_relations (dependences);
2500       return false;
2501     }
2502 
2503   if (dump_file && (dump_flags & TDF_DETAILS))
2504     dump_data_dependence_relations (dump_file, dependences);
2505 
2506   components = split_data_refs_to_components (loop, datarefs, dependences);
2507   loop_nest.release ();
2508   free_dependence_relations (dependences);
2509   if (!components)
2510     {
2511       free_data_refs (datarefs);
2512       free_affine_expand_cache (&name_expansions);
2513       return false;
2514     }
2515 
2516   if (dump_file && (dump_flags & TDF_DETAILS))
2517     {
2518       fprintf (dump_file, "Initial state:\n\n");
2519       dump_components (dump_file, components);
2520     }
2521 
2522   /* Find the suitable components and split them into chains.  */
2523   components = filter_suitable_components (loop, components);
2524 
2525   tmp_vars = BITMAP_ALLOC (NULL);
2526   looparound_phis = BITMAP_ALLOC (NULL);
2527   determine_roots (loop, components, &chains);
2528   release_components (components);
2529 
2530   if (!chains.exists ())
2531     {
2532       if (dump_file && (dump_flags & TDF_DETAILS))
2533 	fprintf (dump_file,
2534 		 "Predictive commoning failed: no suitable chains\n");
2535       goto end;
2536     }
2537   prepare_initializers (loop, chains);
2538 
2539   /* Try to combine the chains that are always worked with together.  */
2540   try_combine_chains (&chains);
2541 
2542   if (dump_file && (dump_flags & TDF_DETAILS))
2543     {
2544       fprintf (dump_file, "Before commoning:\n\n");
2545       dump_chains (dump_file, chains);
2546     }
2547 
2548   /* Determine the unroll factor, and if the loop should be unrolled, ensure
2549      that its number of iterations is divisible by the factor.  */
2550   unroll_factor = determine_unroll_factor (chains);
2551   scev_reset ();
2552   unroll = (unroll_factor > 1
2553 	    && can_unroll_loop_p (loop, unroll_factor, &desc));
2554   exit = single_dom_exit (loop);
2555 
2556   /* Execute the predictive commoning transformations, and possibly unroll the
2557      loop.  */
2558   if (unroll)
2559     {
2560       struct epcc_data dta;
2561 
2562       if (dump_file && (dump_flags & TDF_DETAILS))
2563 	fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2564 
2565       dta.chains = chains;
2566       dta.tmp_vars = tmp_vars;
2567 
2568       update_ssa (TODO_update_ssa_only_virtuals);
2569 
2570       /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2571 	 execute_pred_commoning_cbck is called may cause phi nodes to be
2572 	 reallocated, which is a problem since CHAINS may point to these
2573 	 statements.  To fix this, we store the ssa names defined by the
2574 	 phi nodes here instead of the phi nodes themselves, and restore
2575 	 the phi nodes in execute_pred_commoning_cbck.  A bit hacky.  */
2576       replace_phis_by_defined_names (chains);
2577 
2578       tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2579 				      execute_pred_commoning_cbck, &dta);
2580       eliminate_temp_copies (loop, tmp_vars);
2581     }
2582   else
2583     {
2584       if (dump_file && (dump_flags & TDF_DETAILS))
2585 	fprintf (dump_file,
2586 		 "Executing predictive commoning without unrolling.\n");
2587       execute_pred_commoning (loop, chains, tmp_vars);
2588     }
2589 
2590 end: ;
2591   release_chains (chains);
2592   free_data_refs (datarefs);
2593   BITMAP_FREE (tmp_vars);
2594   BITMAP_FREE (looparound_phis);
2595 
2596   free_affine_expand_cache (&name_expansions);
2597 
2598   return unroll;
2599 }
2600 
2601 /* Runs predictive commoning.  */
2602 
2603 unsigned
2604 tree_predictive_commoning (void)
2605 {
2606   bool unrolled = false;
2607   struct loop *loop;
2608   unsigned ret = 0;
2609 
2610   initialize_original_copy_tables ();
2611   FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
2612     if (optimize_loop_for_speed_p (loop))
2613       {
2614 	unrolled |= tree_predictive_commoning_loop (loop);
2615       }
2616 
2617   if (unrolled)
2618     {
2619       scev_reset ();
2620       ret = TODO_cleanup_cfg;
2621     }
2622   free_original_copy_tables ();
2623 
2624   return ret;
2625 }
2626 
2627 /* Predictive commoning Pass.  */
2628 
2629 static unsigned
2630 run_tree_predictive_commoning (struct function *fun)
2631 {
2632   if (number_of_loops (fun) <= 1)
2633     return 0;
2634 
2635   return tree_predictive_commoning ();
2636 }
2637 
2638 namespace {
2639 
2640 const pass_data pass_data_predcom =
2641 {
2642   GIMPLE_PASS, /* type */
2643   "pcom", /* name */
2644   OPTGROUP_LOOP, /* optinfo_flags */
2645   TV_PREDCOM, /* tv_id */
2646   PROP_cfg, /* properties_required */
2647   0, /* properties_provided */
2648   0, /* properties_destroyed */
2649   0, /* todo_flags_start */
2650   TODO_update_ssa_only_virtuals, /* todo_flags_finish */
2651 };
2652 
2653 class pass_predcom : public gimple_opt_pass
2654 {
2655 public:
2656   pass_predcom (gcc::context *ctxt)
2657     : gimple_opt_pass (pass_data_predcom, ctxt)
2658   {}
2659 
2660   /* opt_pass methods: */
2661   virtual bool gate (function *) { return flag_predictive_commoning != 0; }
2662   virtual unsigned int execute (function *fun)
2663     {
2664       return run_tree_predictive_commoning (fun);
2665     }
2666 
2667 }; // class pass_predcom
2668 
2669 } // anon namespace
2670 
2671 gimple_opt_pass *
2672 make_pass_predcom (gcc::context *ctxt)
2673 {
2674   return new pass_predcom (ctxt);
2675 }
2676 
2677 
2678