xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-predcom.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Predictive commoning.
2    Copyright (C) 2005, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* This file implements the predictive commoning optimization.  Predictive
22    commoning can be viewed as CSE around a loop, and with some improvements,
23    as generalized strength reduction-- i.e., reusing values computed in
24    earlier iterations of a loop in the later ones.  So far, the pass only
25    handles the most useful case, that is, reusing values of memory references.
26    If you think this is all just a special case of PRE, you are sort of right;
27    however, concentrating on loops is simpler, and makes it possible to
28    incorporate data dependence analysis to detect the opportunities, perform
29    loop unrolling to avoid copies together with renaming immediately,
30    and if needed, we could also take register pressure into account.
31 
32    Let us demonstrate what is done on an example:
33 
34    for (i = 0; i < 100; i++)
35      {
36        a[i+2] = a[i] + a[i+1];
37        b[10] = b[10] + i;
38        c[i] = c[99 - i];
39        d[i] = d[i + 1];
40      }
41 
42    1) We find data references in the loop, and split them to mutually
43       independent groups (i.e., we find components of a data dependence
44       graph).  We ignore read-read dependences whose distance is not constant.
45       (TODO -- we could also ignore antidependences).  In this example, we
46       find the following groups:
47 
48       a[i]{read}, a[i+1]{read}, a[i+2]{write}
49       b[10]{read}, b[10]{write}
50       c[99 - i]{read}, c[i]{write}
51       d[i + 1]{read}, d[i]{write}
52 
53    2) Inside each of the group, we verify several conditions:
54       a) all the references must differ in indices only, and the indices
55 	 must all have the same step
56       b) the references must dominate loop latch (and thus, they must be
57 	 ordered by dominance relation).
58       c) the distance of the indices must be a small multiple of the step
59       We are then able to compute the difference of the references (# of
60       iterations before they point to the same place as the first of them).
61       Also, in case there are writes in the loop, we split the groups into
62       chains whose head is the write whose values are used by the reads in
63       the same chain.  The chains are then processed independently,
64       making the further transformations simpler.  Also, the shorter chains
65       need the same number of registers, but may require lower unrolling
66       factor in order to get rid of the copies on the loop latch.
67 
68       In our example, we get the following chains (the chain for c is invalid).
69 
70       a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71       b[10]{read,+0}, b[10]{write,+0}
72       d[i + 1]{read,+0}, d[i]{write,+1}
73 
74    3) For each read, we determine the read or write whose value it reuses,
75       together with the distance of this reuse.  I.e. we take the last
76       reference before it with distance 0, or the last of the references
77       with the smallest positive distance to the read.  Then, we remove
78       the references that are not used in any of these chains, discard the
79       empty groups, and propagate all the links so that they point to the
80       single root reference of the chain (adjusting their distance
81       appropriately).  Some extra care needs to be taken for references with
82       step 0.  In our example (the numbers indicate the distance of the
83       reuse),
84 
85       a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86       b[10] --> (*) 1, b[10] (*)
87 
88    4) The chains are combined together if possible.  If the corresponding
89       elements of two chains are always combined together with the same
90       operator, we remember just the result of this combination, instead
91       of remembering the values separately.  We may need to perform
92       reassociation to enable combining, for example
93 
94       e[i] + f[i+1] + e[i+1] + f[i]
95 
96       can be reassociated as
97 
98       (e[i] + f[i]) + (e[i+1] + f[i+1])
99 
100       and we can combine the chains for e and f into one chain.
101 
102    5) For each root reference (end of the chain) R, let N be maximum distance
103       of a reference reusing its value.  Variables R0 upto RN are created,
104       together with phi nodes that transfer values from R1 .. RN to
105       R0 .. R(N-1).
106       Initial values are loaded to R0..R(N-1) (in case not all references
107       must necessarily be accessed and they may trap, we may fail here;
108       TODO sometimes, the loads could be guarded by a check for the number
109       of iterations).  Values loaded/stored in roots are also copied to
110       RN.  Other reads are replaced with the appropriate variable Ri.
111       Everything is put to SSA form.
112 
113       As a small improvement, if R0 is dead after the root (i.e., all uses of
114       the value with the maximum distance dominate the root), we can avoid
115       creating RN and use R0 instead of it.
116 
117       In our example, we get (only the parts concerning a and b are shown):
118       for (i = 0; i < 100; i++)
119 	{
120 	  f = phi (a[0], s);
121 	  s = phi (a[1], f);
122 	  x = phi (b[10], x);
123 
124 	  f = f + s;
125 	  a[i+2] = f;
126 	  x = x + i;
127 	  b[10] = x;
128 	}
129 
130    6) Factor F for unrolling is determined as the smallest common multiple of
131       (N + 1) for each root reference (N for references for that we avoided
132       creating RN).  If F and the loop is small enough, loop is unrolled F
133       times.  The stores to RN (R0) in the copies of the loop body are
134       periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135       be coalesced and the copies can be eliminated.
136 
137       TODO -- copy propagation and other optimizations may change the live
138       ranges of the temporary registers and prevent them from being coalesced;
139       this may increase the register pressure.
140 
141       In our case, F = 2 and the (main loop of the) result is
142 
143       for (i = 0; i < ...; i += 2)
144         {
145           f = phi (a[0], f);
146           s = phi (a[1], s);
147           x = phi (b[10], x);
148 
149           f = f + s;
150           a[i+2] = f;
151           x = x + i;
152           b[10] = x;
153 
154           s = s + f;
155           a[i+3] = s;
156           x = x + i;
157           b[10] = x;
158        }
159 
160    TODO -- stores killing other stores can be taken into account, e.g.,
161    for (i = 0; i < n; i++)
162      {
163        a[i] = 1;
164        a[i+2] = 2;
165      }
166 
167    can be replaced with
168 
169    t0 = a[0];
170    t1 = a[1];
171    for (i = 0; i < n; i++)
172      {
173        a[i] = 1;
174        t2 = 2;
175        t0 = t1;
176        t1 = t2;
177      }
178    a[n] = t0;
179    a[n+1] = t1;
180 
181    The interesting part is that this would generalize store motion; still, since
182    sm is performed elsewhere, it does not seem that important.
183 
184    Predictive commoning can be generalized for arbitrary computations (not
185    just memory loads), and also nontrivial transfer functions (e.g., replacing
186    i * i with ii_last + 2 * i + 1), to generalize strength reduction.  */
187 
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "diagnostic.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
205 
206 /* The maximum number of iterations between the considered memory
207    references.  */
208 
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210 
211 /* Data references (or phi nodes that carry data reference values across
212    loop iterations).  */
213 
214 typedef struct dref_d
215 {
216   /* The reference itself.  */
217   struct data_reference *ref;
218 
219   /* The statement in that the reference appears.  */
220   gimple stmt;
221 
222   /* In case that STMT is a phi node, this field is set to the SSA name
223      defined by it in replace_phis_by_defined_names (in order to avoid
224      pointing to phi node that got reallocated in the meantime).  */
225   tree name_defined_by_phi;
226 
227   /* Distance of the reference from the root of the chain (in number of
228      iterations of the loop).  */
229   unsigned distance;
230 
231   /* Number of iterations offset from the first reference in the component.  */
232   double_int offset;
233 
234   /* Number of the reference in a component, in dominance ordering.  */
235   unsigned pos;
236 
237   /* True if the memory reference is always accessed when the loop is
238      entered.  */
239   unsigned always_accessed : 1;
240 } *dref;
241 
242 DEF_VEC_P (dref);
243 DEF_VEC_ALLOC_P (dref, heap);
244 
245 /* Type of the chain of the references.  */
246 
247 enum chain_type
248 {
249   /* The addresses of the references in the chain are constant.  */
250   CT_INVARIANT,
251 
252   /* There are only loads in the chain.  */
253   CT_LOAD,
254 
255   /* Root of the chain is store, the rest are loads.  */
256   CT_STORE_LOAD,
257 
258   /* A combination of two chains.  */
259   CT_COMBINATION
260 };
261 
262 /* Chains of data references.  */
263 
264 typedef struct chain
265 {
266   /* Type of the chain.  */
267   enum chain_type type;
268 
269   /* For combination chains, the operator and the two chains that are
270      combined, and the type of the result.  */
271   enum tree_code op;
272   tree rslt_type;
273   struct chain *ch1, *ch2;
274 
275   /* The references in the chain.  */
276   VEC(dref,heap) *refs;
277 
278   /* The maximum distance of the reference in the chain from the root.  */
279   unsigned length;
280 
281   /* The variables used to copy the value throughout iterations.  */
282   VEC(tree,heap) *vars;
283 
284   /* Initializers for the variables.  */
285   VEC(tree,heap) *inits;
286 
287   /* True if there is a use of a variable with the maximal distance
288      that comes after the root in the loop.  */
289   unsigned has_max_use_after : 1;
290 
291   /* True if all the memory references in the chain are always accessed.  */
292   unsigned all_always_accessed : 1;
293 
294   /* True if this chain was combined together with some other chain.  */
295   unsigned combined : 1;
296 } *chain_p;
297 
298 DEF_VEC_P (chain_p);
299 DEF_VEC_ALLOC_P (chain_p, heap);
300 
301 /* Describes the knowledge about the step of the memory references in
302    the component.  */
303 
304 enum ref_step_type
305 {
306   /* The step is zero.  */
307   RS_INVARIANT,
308 
309   /* The step is nonzero.  */
310   RS_NONZERO,
311 
312   /* The step may or may not be nonzero.  */
313   RS_ANY
314 };
315 
316 /* Components of the data dependence graph.  */
317 
318 struct component
319 {
320   /* The references in the component.  */
321   VEC(dref,heap) *refs;
322 
323   /* What we know about the step of the references in the component.  */
324   enum ref_step_type comp_step;
325 
326   /* Next component in the list.  */
327   struct component *next;
328 };
329 
330 /* Bitmap of ssa names defined by looparound phi nodes covered by chains.  */
331 
332 static bitmap looparound_phis;
333 
334 /* Cache used by tree_to_aff_combination_expand.  */
335 
336 static struct pointer_map_t *name_expansions;
337 
338 /* Dumps data reference REF to FILE.  */
339 
340 extern void dump_dref (FILE *, dref);
341 void
342 dump_dref (FILE *file, dref ref)
343 {
344   if (ref->ref)
345     {
346       fprintf (file, "    ");
347       print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348       fprintf (file, " (id %u%s)\n", ref->pos,
349 	       DR_IS_READ (ref->ref) ? "" : ", write");
350 
351       fprintf (file, "      offset ");
352       dump_double_int (file, ref->offset, false);
353       fprintf (file, "\n");
354 
355       fprintf (file, "      distance %u\n", ref->distance);
356     }
357   else
358     {
359       if (gimple_code (ref->stmt) == GIMPLE_PHI)
360 	fprintf (file, "    looparound ref\n");
361       else
362 	fprintf (file, "    combination ref\n");
363       fprintf (file, "      in statement ");
364       print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
365       fprintf (file, "\n");
366       fprintf (file, "      distance %u\n", ref->distance);
367     }
368 
369 }
370 
371 /* Dumps CHAIN to FILE.  */
372 
373 extern void dump_chain (FILE *, chain_p);
374 void
375 dump_chain (FILE *file, chain_p chain)
376 {
377   dref a;
378   const char *chain_type;
379   unsigned i;
380   tree var;
381 
382   switch (chain->type)
383     {
384     case CT_INVARIANT:
385       chain_type = "Load motion";
386       break;
387 
388     case CT_LOAD:
389       chain_type = "Loads-only";
390       break;
391 
392     case CT_STORE_LOAD:
393       chain_type = "Store-loads";
394       break;
395 
396     case CT_COMBINATION:
397       chain_type = "Combination";
398       break;
399 
400     default:
401       gcc_unreachable ();
402     }
403 
404   fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 	   chain->combined ? " (combined)" : "");
406   if (chain->type != CT_INVARIANT)
407     fprintf (file, "  max distance %u%s\n", chain->length,
408 	     chain->has_max_use_after ? "" : ", may reuse first");
409 
410   if (chain->type == CT_COMBINATION)
411     {
412       fprintf (file, "  equal to %p %s %p in type ",
413 	       (void *) chain->ch1, op_symbol_code (chain->op),
414 	       (void *) chain->ch2);
415       print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416       fprintf (file, "\n");
417     }
418 
419   if (chain->vars)
420     {
421       fprintf (file, "  vars");
422       for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
423 	{
424 	  fprintf (file, " ");
425 	  print_generic_expr (file, var, TDF_SLIM);
426 	}
427       fprintf (file, "\n");
428     }
429 
430   if (chain->inits)
431     {
432       fprintf (file, "  inits");
433       for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
434 	{
435 	  fprintf (file, " ");
436 	  print_generic_expr (file, var, TDF_SLIM);
437 	}
438       fprintf (file, "\n");
439     }
440 
441   fprintf (file, "  references:\n");
442   for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
443     dump_dref (file, a);
444 
445   fprintf (file, "\n");
446 }
447 
448 /* Dumps CHAINS to FILE.  */
449 
450 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451 void
452 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453 {
454   chain_p chain;
455   unsigned i;
456 
457   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
458     dump_chain (file, chain);
459 }
460 
461 /* Dumps COMP to FILE.  */
462 
463 extern void dump_component (FILE *, struct component *);
464 void
465 dump_component (FILE *file, struct component *comp)
466 {
467   dref a;
468   unsigned i;
469 
470   fprintf (file, "Component%s:\n",
471 	   comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
472   for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
473     dump_dref (file, a);
474   fprintf (file, "\n");
475 }
476 
477 /* Dumps COMPS to FILE.  */
478 
479 extern void dump_components (FILE *, struct component *);
480 void
481 dump_components (FILE *file, struct component *comps)
482 {
483   struct component *comp;
484 
485   for (comp = comps; comp; comp = comp->next)
486     dump_component (file, comp);
487 }
488 
489 /* Frees a chain CHAIN.  */
490 
491 static void
492 release_chain (chain_p chain)
493 {
494   dref ref;
495   unsigned i;
496 
497   if (chain == NULL)
498     return;
499 
500   for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
501     free (ref);
502 
503   VEC_free (dref, heap, chain->refs);
504   VEC_free (tree, heap, chain->vars);
505   VEC_free (tree, heap, chain->inits);
506 
507   free (chain);
508 }
509 
510 /* Frees CHAINS.  */
511 
512 static void
513 release_chains (VEC (chain_p, heap) *chains)
514 {
515   unsigned i;
516   chain_p chain;
517 
518   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
519     release_chain (chain);
520   VEC_free (chain_p, heap, chains);
521 }
522 
523 /* Frees a component COMP.  */
524 
525 static void
526 release_component (struct component *comp)
527 {
528   VEC_free (dref, heap, comp->refs);
529   free (comp);
530 }
531 
532 /* Frees list of components COMPS.  */
533 
534 static void
535 release_components (struct component *comps)
536 {
537   struct component *act, *next;
538 
539   for (act = comps; act; act = next)
540     {
541       next = act->next;
542       release_component (act);
543     }
544 }
545 
546 /* Finds a root of tree given by FATHERS containing A, and performs path
547    shortening.  */
548 
549 static unsigned
550 component_of (unsigned fathers[], unsigned a)
551 {
552   unsigned root, n;
553 
554   for (root = a; root != fathers[root]; root = fathers[root])
555     continue;
556 
557   for (; a != root; a = n)
558     {
559       n = fathers[a];
560       fathers[a] = root;
561     }
562 
563   return root;
564 }
565 
566 /* Join operation for DFU.  FATHERS gives the tree, SIZES are sizes of the
567    components, A and B are components to merge.  */
568 
569 static void
570 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571 {
572   unsigned ca = component_of (fathers, a);
573   unsigned cb = component_of (fathers, b);
574 
575   if (ca == cb)
576     return;
577 
578   if (sizes[ca] < sizes[cb])
579     {
580       sizes[cb] += sizes[ca];
581       fathers[ca] = cb;
582     }
583   else
584     {
585       sizes[ca] += sizes[cb];
586       fathers[cb] = ca;
587     }
588 }
589 
590 /* Returns true if A is a reference that is suitable for predictive commoning
591    in the innermost loop that contains it.  REF_STEP is set according to the
592    step of the reference A.  */
593 
594 static bool
595 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596 {
597   tree ref = DR_REF (a), step = DR_STEP (a);
598 
599   if (!step
600       || !is_gimple_reg_type (TREE_TYPE (ref))
601       || tree_could_throw_p (ref))
602     return false;
603 
604   if (integer_zerop (step))
605     *ref_step = RS_INVARIANT;
606   else if (integer_nonzerop (step))
607     *ref_step = RS_NONZERO;
608   else
609     *ref_step = RS_ANY;
610 
611   return true;
612 }
613 
614 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET.  */
615 
616 static void
617 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
618 {
619   aff_tree delta;
620 
621   tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
622 				  &name_expansions);
623   aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
624   aff_combination_add (offset, &delta);
625 }
626 
627 /* Determines number of iterations of the innermost enclosing loop before B
628    refers to exactly the same location as A and stores it to OFF.  If A and
629    B do not have the same step, they never meet, or anything else fails,
630    returns false, otherwise returns true.  Both A and B are assumed to
631    satisfy suitable_reference_p.  */
632 
633 static bool
634 determine_offset (struct data_reference *a, struct data_reference *b,
635 		  double_int *off)
636 {
637   aff_tree diff, baseb, step;
638   tree typea, typeb;
639 
640   /* Check that both the references access the location in the same type.  */
641   typea = TREE_TYPE (DR_REF (a));
642   typeb = TREE_TYPE (DR_REF (b));
643   if (!useless_type_conversion_p (typeb, typea))
644     return false;
645 
646   /* Check whether the base address and the step of both references is the
647      same.  */
648   if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
649       || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
650     return false;
651 
652   if (integer_zerop (DR_STEP (a)))
653     {
654       /* If the references have loop invariant address, check that they access
655 	 exactly the same location.  */
656       *off = double_int_zero;
657       return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
658 	      && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
659     }
660 
661   /* Compare the offsets of the addresses, and check whether the difference
662      is a multiple of step.  */
663   aff_combination_dr_offset (a, &diff);
664   aff_combination_dr_offset (b, &baseb);
665   aff_combination_scale (&baseb, double_int_minus_one);
666   aff_combination_add (&diff, &baseb);
667 
668   tree_to_aff_combination_expand (DR_STEP (a), sizetype,
669 				  &step, &name_expansions);
670   return aff_combination_constant_multiple_p (&diff, &step, off);
671 }
672 
673 /* Returns the last basic block in LOOP for that we are sure that
674    it is executed whenever the loop is entered.  */
675 
676 static basic_block
677 last_always_executed_block (struct loop *loop)
678 {
679   unsigned i;
680   VEC (edge, heap) *exits = get_loop_exit_edges (loop);
681   edge ex;
682   basic_block last = loop->latch;
683 
684   for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
685     last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
686   VEC_free (edge, heap, exits);
687 
688   return last;
689 }
690 
691 /* Splits dependence graph on DATAREFS described by DEPENDS to components.  */
692 
693 static struct component *
694 split_data_refs_to_components (struct loop *loop,
695 			       VEC (data_reference_p, heap) *datarefs,
696 			       VEC (ddr_p, heap) *depends)
697 {
698   unsigned i, n = VEC_length (data_reference_p, datarefs);
699   unsigned ca, ia, ib, bad;
700   unsigned *comp_father = XNEWVEC (unsigned, n + 1);
701   unsigned *comp_size = XNEWVEC (unsigned, n + 1);
702   struct component **comps;
703   struct data_reference *dr, *dra, *drb;
704   struct data_dependence_relation *ddr;
705   struct component *comp_list = NULL, *comp;
706   dref dataref;
707   basic_block last_always_executed = last_always_executed_block (loop);
708 
709   for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
710     {
711       if (!DR_REF (dr))
712 	{
713 	  /* A fake reference for call or asm_expr that may clobber memory;
714 	     just fail.  */
715 	  goto end;
716 	}
717       dr->aux = (void *) (size_t) i;
718       comp_father[i] = i;
719       comp_size[i] = 1;
720     }
721 
722   /* A component reserved for the "bad" data references.  */
723   comp_father[n] = n;
724   comp_size[n] = 1;
725 
726   for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
727     {
728       enum ref_step_type dummy;
729 
730       if (!suitable_reference_p (dr, &dummy))
731 	{
732 	  ia = (unsigned) (size_t) dr->aux;
733 	  merge_comps (comp_father, comp_size, n, ia);
734 	}
735     }
736 
737   for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
738     {
739       double_int dummy_off;
740 
741       if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
742 	continue;
743 
744       dra = DDR_A (ddr);
745       drb = DDR_B (ddr);
746       ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
747       ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
748       if (ia == ib)
749 	continue;
750 
751       bad = component_of (comp_father, n);
752 
753       /* If both A and B are reads, we may ignore unsuitable dependences.  */
754       if (DR_IS_READ (dra) && DR_IS_READ (drb)
755 	  && (ia == bad || ib == bad
756 	      || !determine_offset (dra, drb, &dummy_off)))
757 	continue;
758 
759       merge_comps (comp_father, comp_size, ia, ib);
760     }
761 
762   comps = XCNEWVEC (struct component *, n);
763   bad = component_of (comp_father, n);
764   for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
765     {
766       ia = (unsigned) (size_t) dr->aux;
767       ca = component_of (comp_father, ia);
768       if (ca == bad)
769 	continue;
770 
771       comp = comps[ca];
772       if (!comp)
773 	{
774 	  comp = XCNEW (struct component);
775 	  comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
776 	  comps[ca] = comp;
777 	}
778 
779       dataref = XCNEW (struct dref_d);
780       dataref->ref = dr;
781       dataref->stmt = DR_STMT (dr);
782       dataref->offset = double_int_zero;
783       dataref->distance = 0;
784 
785       dataref->always_accessed
786 	      = dominated_by_p (CDI_DOMINATORS, last_always_executed,
787 				gimple_bb (dataref->stmt));
788       dataref->pos = VEC_length (dref, comp->refs);
789       VEC_quick_push (dref, comp->refs, dataref);
790     }
791 
792   for (i = 0; i < n; i++)
793     {
794       comp = comps[i];
795       if (comp)
796 	{
797 	  comp->next = comp_list;
798 	  comp_list = comp;
799 	}
800     }
801   free (comps);
802 
803 end:
804   free (comp_father);
805   free (comp_size);
806   return comp_list;
807 }
808 
809 /* Returns true if the component COMP satisfies the conditions
810    described in 2) at the beginning of this file.  LOOP is the current
811    loop.  */
812 
813 static bool
814 suitable_component_p (struct loop *loop, struct component *comp)
815 {
816   unsigned i;
817   dref a, first;
818   basic_block ba, bp = loop->header;
819   bool ok, has_write = false;
820 
821   for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
822     {
823       ba = gimple_bb (a->stmt);
824 
825       if (!just_once_each_iteration_p (loop, ba))
826 	return false;
827 
828       gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
829       bp = ba;
830 
831       if (!DR_IS_READ (a->ref))
832 	has_write = true;
833     }
834 
835   first = VEC_index (dref, comp->refs, 0);
836   ok = suitable_reference_p (first->ref, &comp->comp_step);
837   gcc_assert (ok);
838   first->offset = double_int_zero;
839 
840   for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
841     {
842       if (!determine_offset (first->ref, a->ref, &a->offset))
843 	return false;
844 
845 #ifdef ENABLE_CHECKING
846       {
847 	enum ref_step_type a_step;
848 	ok = suitable_reference_p (a->ref, &a_step);
849 	gcc_assert (ok && a_step == comp->comp_step);
850       }
851 #endif
852     }
853 
854   /* If there is a write inside the component, we must know whether the
855      step is nonzero or not -- we would not otherwise be able to recognize
856      whether the value accessed by reads comes from the OFFSET-th iteration
857      or the previous one.  */
858   if (has_write && comp->comp_step == RS_ANY)
859     return false;
860 
861   return true;
862 }
863 
864 /* Check the conditions on references inside each of components COMPS,
865    and remove the unsuitable components from the list.  The new list
866    of components is returned.  The conditions are described in 2) at
867    the beginning of this file.  LOOP is the current loop.  */
868 
869 static struct component *
870 filter_suitable_components (struct loop *loop, struct component *comps)
871 {
872   struct component **comp, *act;
873 
874   for (comp = &comps; *comp; )
875     {
876       act = *comp;
877       if (suitable_component_p (loop, act))
878 	comp = &act->next;
879       else
880 	{
881 	  dref ref;
882 	  unsigned i;
883 
884 	  *comp = act->next;
885 	  for (i = 0; VEC_iterate (dref, act->refs, i, ref); i++)
886 	    free (ref);
887 	  release_component (act);
888 	}
889     }
890 
891   return comps;
892 }
893 
894 /* Compares two drefs A and B by their offset and position.  Callback for
895    qsort.  */
896 
897 static int
898 order_drefs (const void *a, const void *b)
899 {
900   const dref *const da = (const dref *) a;
901   const dref *const db = (const dref *) b;
902   int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
903 
904   if (offcmp != 0)
905     return offcmp;
906 
907   return (*da)->pos - (*db)->pos;
908 }
909 
910 /* Returns root of the CHAIN.  */
911 
912 static inline dref
913 get_chain_root (chain_p chain)
914 {
915   return VEC_index (dref, chain->refs, 0);
916 }
917 
918 /* Adds REF to the chain CHAIN.  */
919 
920 static void
921 add_ref_to_chain (chain_p chain, dref ref)
922 {
923   dref root = get_chain_root (chain);
924   double_int dist;
925 
926   gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
927   dist = double_int_add (ref->offset, double_int_neg (root->offset));
928   if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
929     {
930       free (ref);
931       return;
932     }
933   gcc_assert (double_int_fits_in_uhwi_p (dist));
934 
935   VEC_safe_push (dref, heap, chain->refs, ref);
936 
937   ref->distance = double_int_to_uhwi (dist);
938 
939   if (ref->distance >= chain->length)
940     {
941       chain->length = ref->distance;
942       chain->has_max_use_after = false;
943     }
944 
945   if (ref->distance == chain->length
946       && ref->pos > root->pos)
947     chain->has_max_use_after = true;
948 
949   chain->all_always_accessed &= ref->always_accessed;
950 }
951 
952 /* Returns the chain for invariant component COMP.  */
953 
954 static chain_p
955 make_invariant_chain (struct component *comp)
956 {
957   chain_p chain = XCNEW (struct chain);
958   unsigned i;
959   dref ref;
960 
961   chain->type = CT_INVARIANT;
962 
963   chain->all_always_accessed = true;
964 
965   for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
966     {
967       VEC_safe_push (dref, heap, chain->refs, ref);
968       chain->all_always_accessed &= ref->always_accessed;
969     }
970 
971   return chain;
972 }
973 
974 /* Make a new chain rooted at REF.  */
975 
976 static chain_p
977 make_rooted_chain (dref ref)
978 {
979   chain_p chain = XCNEW (struct chain);
980 
981   chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
982 
983   VEC_safe_push (dref, heap, chain->refs, ref);
984   chain->all_always_accessed = ref->always_accessed;
985 
986   ref->distance = 0;
987 
988   return chain;
989 }
990 
991 /* Returns true if CHAIN is not trivial.  */
992 
993 static bool
994 nontrivial_chain_p (chain_p chain)
995 {
996   return chain != NULL && VEC_length (dref, chain->refs) > 1;
997 }
998 
999 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1000    is no such name.  */
1001 
1002 static tree
1003 name_for_ref (dref ref)
1004 {
1005   tree name;
1006 
1007   if (is_gimple_assign (ref->stmt))
1008     {
1009       if (!ref->ref || DR_IS_READ (ref->ref))
1010 	name = gimple_assign_lhs (ref->stmt);
1011       else
1012 	name = gimple_assign_rhs1 (ref->stmt);
1013     }
1014   else
1015     name = PHI_RESULT (ref->stmt);
1016 
1017   return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1018 }
1019 
1020 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1021    iterations of the innermost enclosing loop).  */
1022 
1023 static bool
1024 valid_initializer_p (struct data_reference *ref,
1025 		     unsigned distance, struct data_reference *root)
1026 {
1027   aff_tree diff, base, step;
1028   double_int off;
1029 
1030   /* Both REF and ROOT must be accessing the same object.  */
1031   if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1032     return false;
1033 
1034   /* The initializer is defined outside of loop, hence its address must be
1035      invariant inside the loop.  */
1036   gcc_assert (integer_zerop (DR_STEP (ref)));
1037 
1038   /* If the address of the reference is invariant, initializer must access
1039      exactly the same location.  */
1040   if (integer_zerop (DR_STEP (root)))
1041     return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1042 	    && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1043 
1044   /* Verify that this index of REF is equal to the root's index at
1045      -DISTANCE-th iteration.  */
1046   aff_combination_dr_offset (root, &diff);
1047   aff_combination_dr_offset (ref, &base);
1048   aff_combination_scale (&base, double_int_minus_one);
1049   aff_combination_add (&diff, &base);
1050 
1051   tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1052 				  &name_expansions);
1053   if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1054     return false;
1055 
1056   if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1057     return false;
1058 
1059   return true;
1060 }
1061 
1062 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1063    initial value is correct (equal to initial value of REF shifted by one
1064    iteration), returns the phi node.  Otherwise, NULL_TREE is returned.  ROOT
1065    is the root of the current chain.  */
1066 
1067 static gimple
1068 find_looparound_phi (struct loop *loop, dref ref, dref root)
1069 {
1070   tree name, init, init_ref;
1071   gimple phi = NULL, init_stmt;
1072   edge latch = loop_latch_edge (loop);
1073   struct data_reference init_dr;
1074   gimple_stmt_iterator psi;
1075 
1076   if (is_gimple_assign (ref->stmt))
1077     {
1078       if (DR_IS_READ (ref->ref))
1079 	name = gimple_assign_lhs (ref->stmt);
1080       else
1081 	name = gimple_assign_rhs1 (ref->stmt);
1082     }
1083   else
1084     name = PHI_RESULT (ref->stmt);
1085   if (!name)
1086     return NULL;
1087 
1088   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1089     {
1090       phi = gsi_stmt (psi);
1091       if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1092 	break;
1093     }
1094 
1095   if (gsi_end_p (psi))
1096     return NULL;
1097 
1098   init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1099   if (TREE_CODE (init) != SSA_NAME)
1100     return NULL;
1101   init_stmt = SSA_NAME_DEF_STMT (init);
1102   if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1103     return NULL;
1104   gcc_assert (gimple_assign_lhs (init_stmt) == init);
1105 
1106   init_ref = gimple_assign_rhs1 (init_stmt);
1107   if (!REFERENCE_CLASS_P (init_ref)
1108       && !DECL_P (init_ref))
1109     return NULL;
1110 
1111   /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1112      loop enclosing PHI).  */
1113   memset (&init_dr, 0, sizeof (struct data_reference));
1114   DR_REF (&init_dr) = init_ref;
1115   DR_STMT (&init_dr) = phi;
1116   if (!dr_analyze_innermost (&init_dr))
1117     return NULL;
1118 
1119   if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1120     return NULL;
1121 
1122   return phi;
1123 }
1124 
1125 /* Adds a reference for the looparound copy of REF in PHI to CHAIN.  */
1126 
1127 static void
1128 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1129 {
1130   dref nw = XCNEW (struct dref_d), aref;
1131   unsigned i;
1132 
1133   nw->stmt = phi;
1134   nw->distance = ref->distance + 1;
1135   nw->always_accessed = 1;
1136 
1137   for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
1138     if (aref->distance >= nw->distance)
1139       break;
1140   VEC_safe_insert (dref, heap, chain->refs, i, nw);
1141 
1142   if (nw->distance > chain->length)
1143     {
1144       chain->length = nw->distance;
1145       chain->has_max_use_after = false;
1146     }
1147 }
1148 
1149 /* For references in CHAIN that are copied around the LOOP (created previously
1150    by PRE, or by user), add the results of such copies to the chain.  This
1151    enables us to remove the copies by unrolling, and may need less registers
1152    (also, it may allow us to combine chains together).  */
1153 
1154 static void
1155 add_looparound_copies (struct loop *loop, chain_p chain)
1156 {
1157   unsigned i;
1158   dref ref, root = get_chain_root (chain);
1159   gimple phi;
1160 
1161   for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
1162     {
1163       phi = find_looparound_phi (loop, ref, root);
1164       if (!phi)
1165 	continue;
1166 
1167       bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1168       insert_looparound_copy (chain, ref, phi);
1169     }
1170 }
1171 
1172 /* Find roots of the values and determine distances in the component COMP.
1173    The references are redistributed into CHAINS.  LOOP is the current
1174    loop.  */
1175 
1176 static void
1177 determine_roots_comp (struct loop *loop,
1178 		      struct component *comp,
1179 		      VEC (chain_p, heap) **chains)
1180 {
1181   unsigned i;
1182   dref a;
1183   chain_p chain = NULL;
1184   double_int last_ofs = double_int_zero;
1185 
1186   /* Invariants are handled specially.  */
1187   if (comp->comp_step == RS_INVARIANT)
1188     {
1189       chain = make_invariant_chain (comp);
1190       VEC_safe_push (chain_p, heap, *chains, chain);
1191       return;
1192     }
1193 
1194   qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1195 	 sizeof (dref), order_drefs);
1196 
1197   for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
1198     {
1199       if (!chain || !DR_IS_READ (a->ref)
1200 	  || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1201 			      double_int_add (a->offset,
1202 					      double_int_neg (last_ofs))) <= 0)
1203 	{
1204 	  if (nontrivial_chain_p (chain))
1205 	    {
1206 	      add_looparound_copies (loop, chain);
1207 	      VEC_safe_push (chain_p, heap, *chains, chain);
1208 	    }
1209 	  else
1210 	    release_chain (chain);
1211 	  chain = make_rooted_chain (a);
1212 	  last_ofs = a->offset;
1213 	  continue;
1214 	}
1215 
1216       add_ref_to_chain (chain, a);
1217     }
1218 
1219   if (nontrivial_chain_p (chain))
1220     {
1221       add_looparound_copies (loop, chain);
1222       VEC_safe_push (chain_p, heap, *chains, chain);
1223     }
1224   else
1225     release_chain (chain);
1226 }
1227 
1228 /* Find roots of the values and determine distances in components COMPS, and
1229    separates the references to CHAINS.  LOOP is the current loop.  */
1230 
1231 static void
1232 determine_roots (struct loop *loop,
1233 		 struct component *comps, VEC (chain_p, heap) **chains)
1234 {
1235   struct component *comp;
1236 
1237   for (comp = comps; comp; comp = comp->next)
1238     determine_roots_comp (loop, comp, chains);
1239 }
1240 
1241 /* Replace the reference in statement STMT with temporary variable
1242    NEW_TREE.  If SET is true, NEW_TREE is instead initialized to the value of
1243    the reference in the statement.  IN_LHS is true if the reference
1244    is in the lhs of STMT, false if it is in rhs.  */
1245 
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1248 {
1249   tree val;
1250   gimple new_stmt;
1251   gimple_stmt_iterator bsi, psi;
1252 
1253   if (gimple_code (stmt) == GIMPLE_PHI)
1254     {
1255       gcc_assert (!in_lhs && !set);
1256 
1257       val = PHI_RESULT (stmt);
1258       bsi = gsi_after_labels (gimple_bb (stmt));
1259       psi = gsi_for_stmt (stmt);
1260       remove_phi_node (&psi, false);
1261 
1262       /* Turn the phi node into GIMPLE_ASSIGN.  */
1263       new_stmt = gimple_build_assign (val, new_tree);
1264       gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265       return;
1266     }
1267 
1268   /* Since the reference is of gimple_reg type, it should only
1269      appear as lhs or rhs of modify statement.  */
1270   gcc_assert (is_gimple_assign (stmt));
1271 
1272   bsi = gsi_for_stmt (stmt);
1273 
1274   /* If we do not need to initialize NEW_TREE, just replace the use of OLD.  */
1275   if (!set)
1276     {
1277       gcc_assert (!in_lhs);
1278       gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279       stmt = gsi_stmt (bsi);
1280       update_stmt (stmt);
1281       return;
1282     }
1283 
1284   if (in_lhs)
1285     {
1286       /* We have statement
1287 
1288 	 OLD = VAL
1289 
1290 	 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 	 this to
1292 
1293 	 OLD = VAL
1294 	 NEW = VAL
1295 
1296 	 Otherwise, we are replacing a combination chain,
1297 	 VAL is the expression that performs the combination, and OLD is an
1298 	 SSA name.  In this case, we transform the assignment to
1299 
1300 	 OLD = VAL
1301 	 NEW = OLD
1302 
1303 	 */
1304 
1305       val = gimple_assign_lhs (stmt);
1306       if (TREE_CODE (val) != SSA_NAME)
1307 	{
1308 	  gcc_assert (gimple_assign_copy_p (stmt));
1309 	  val = gimple_assign_rhs1 (stmt);
1310 	}
1311     }
1312   else
1313     {
1314       /* VAL = OLD
1315 
1316 	 is transformed to
1317 
1318 	 VAL = OLD
1319 	 NEW = VAL  */
1320 
1321       val = gimple_assign_lhs (stmt);
1322     }
1323 
1324   new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1325   gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1326 }
1327 
1328 /* Returns the reference to the address of REF in the ITER-th iteration of
1329    LOOP, or NULL if we fail to determine it (ITER may be negative).  We
1330    try to preserve the original shape of the reference (not rewrite it
1331    as an indirect ref to the address), to make tree_could_trap_p in
1332    prepare_initializers_chain return false more often.  */
1333 
1334 static tree
1335 ref_at_iteration (struct loop *loop, tree ref, int iter)
1336 {
1337   tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1338   affine_iv iv;
1339   bool ok;
1340 
1341   if (handled_component_p (ref))
1342     {
1343       op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1344       if (!op0)
1345 	return NULL_TREE;
1346     }
1347   else if (!INDIRECT_REF_P (ref))
1348     return unshare_expr (ref);
1349 
1350   if (INDIRECT_REF_P (ref))
1351     {
1352       /* Take care for INDIRECT_REF and MISALIGNED_INDIRECT_REF at
1353          the same time.  */
1354       ret = copy_node (ref);
1355       idx = TREE_OPERAND (ref, 0);
1356       idx_p = &TREE_OPERAND (ret, 0);
1357     }
1358   else if (TREE_CODE (ref) == COMPONENT_REF)
1359     {
1360       /* Check that the offset is loop invariant.  */
1361       if (TREE_OPERAND (ref, 2)
1362 	  && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1363 	return NULL_TREE;
1364 
1365       return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1366 		     unshare_expr (TREE_OPERAND (ref, 1)),
1367 		     unshare_expr (TREE_OPERAND (ref, 2)));
1368     }
1369   else if (TREE_CODE (ref) == ARRAY_REF)
1370     {
1371       /* Check that the lower bound and the step are loop invariant.  */
1372       if (TREE_OPERAND (ref, 2)
1373 	  && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1374 	return NULL_TREE;
1375       if (TREE_OPERAND (ref, 3)
1376 	  && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1377 	return NULL_TREE;
1378 
1379       ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1380 		    unshare_expr (TREE_OPERAND (ref, 2)),
1381 		    unshare_expr (TREE_OPERAND (ref, 3)));
1382       idx = TREE_OPERAND (ref, 1);
1383       idx_p = &TREE_OPERAND (ret, 1);
1384     }
1385   else
1386     return NULL_TREE;
1387 
1388   ok = simple_iv (loop, loop, idx, &iv, true);
1389   if (!ok)
1390     return NULL_TREE;
1391   iv.base = expand_simple_operations (iv.base);
1392   if (integer_zerop (iv.step))
1393     *idx_p = unshare_expr (iv.base);
1394   else
1395     {
1396       type = TREE_TYPE (iv.base);
1397       if (POINTER_TYPE_P (type))
1398 	{
1399 	  val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1400 			     size_int (iter));
1401 	  val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1402 	}
1403       else
1404 	{
1405 	  val = fold_build2 (MULT_EXPR, type, iv.step,
1406 			     build_int_cst_type (type, iter));
1407 	  val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1408 	}
1409       *idx_p = unshare_expr (val);
1410     }
1411 
1412   return ret;
1413 }
1414 
1415 /* Get the initialization expression for the INDEX-th temporary variable
1416    of CHAIN.  */
1417 
1418 static tree
1419 get_init_expr (chain_p chain, unsigned index)
1420 {
1421   if (chain->type == CT_COMBINATION)
1422     {
1423       tree e1 = get_init_expr (chain->ch1, index);
1424       tree e2 = get_init_expr (chain->ch2, index);
1425 
1426       return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1427     }
1428   else
1429     return VEC_index (tree, chain->inits, index);
1430 }
1431 
1432 /* Marks all virtual operands of statement STMT for renaming.  */
1433 
1434 void
1435 mark_virtual_ops_for_renaming (gimple stmt)
1436 {
1437   tree var;
1438 
1439   if (gimple_code (stmt) == GIMPLE_PHI)
1440     {
1441       var = PHI_RESULT (stmt);
1442       if (is_gimple_reg (var))
1443 	return;
1444 
1445       if (TREE_CODE (var) == SSA_NAME)
1446 	var = SSA_NAME_VAR (var);
1447       mark_sym_for_renaming (var);
1448       return;
1449     }
1450 
1451   update_stmt (stmt);
1452   if (gimple_vuse (stmt))
1453     mark_sym_for_renaming (gimple_vop (cfun));
1454 }
1455 
1456 /* Returns a new temporary variable used for the I-th variable carrying
1457    value of REF.  The variable's uid is marked in TMP_VARS.  */
1458 
1459 static tree
1460 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1461 {
1462   tree type = TREE_TYPE (ref);
1463   tree var = create_tmp_var (type, get_lsm_tmp_name (ref, i));
1464 
1465   /* We never access the components of the temporary variable in predictive
1466      commoning.  */
1467   if (TREE_CODE (type) == COMPLEX_TYPE
1468       || TREE_CODE (type) == VECTOR_TYPE)
1469     DECL_GIMPLE_REG_P (var) = 1;
1470 
1471   add_referenced_var (var);
1472   bitmap_set_bit (tmp_vars, DECL_UID (var));
1473   return var;
1474 }
1475 
1476 /* Creates the variables for CHAIN, as well as phi nodes for them and
1477    initialization on entry to LOOP.  Uids of the newly created
1478    temporary variables are marked in TMP_VARS.  */
1479 
1480 static void
1481 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1482 {
1483   unsigned i;
1484   unsigned n = chain->length;
1485   dref root = get_chain_root (chain);
1486   bool reuse_first = !chain->has_max_use_after;
1487   tree ref, init, var, next;
1488   gimple phi;
1489   gimple_seq stmts;
1490   edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1491 
1492   /* If N == 0, then all the references are within the single iteration.  And
1493      since this is an nonempty chain, reuse_first cannot be true.  */
1494   gcc_assert (n > 0 || !reuse_first);
1495 
1496   chain->vars = VEC_alloc (tree, heap, n + 1);
1497 
1498   if (chain->type == CT_COMBINATION)
1499     ref = gimple_assign_lhs (root->stmt);
1500   else
1501     ref = DR_REF (root->ref);
1502 
1503   for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1504     {
1505       var = predcom_tmp_var (ref, i, tmp_vars);
1506       VEC_quick_push (tree, chain->vars, var);
1507     }
1508   if (reuse_first)
1509     VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1510 
1511   for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
1512     VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1513 
1514   for (i = 0; i < n; i++)
1515     {
1516       var = VEC_index (tree, chain->vars, i);
1517       next = VEC_index (tree, chain->vars, i + 1);
1518       init = get_init_expr (chain, i);
1519 
1520       init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1521       if (stmts)
1522 	gsi_insert_seq_on_edge_immediate (entry, stmts);
1523 
1524       phi = create_phi_node (var, loop->header);
1525       SSA_NAME_DEF_STMT (var) = phi;
1526       add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1527       add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1528     }
1529 }
1530 
1531 /* Create the variables and initialization statement for root of chain
1532    CHAIN.  Uids of the newly created temporary variables are marked
1533    in TMP_VARS.  */
1534 
1535 static void
1536 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1537 {
1538   dref root = get_chain_root (chain);
1539   bool in_lhs = (chain->type == CT_STORE_LOAD
1540 		 || chain->type == CT_COMBINATION);
1541 
1542   initialize_root_vars (loop, chain, tmp_vars);
1543   replace_ref_with (root->stmt,
1544 		    VEC_index (tree, chain->vars, chain->length),
1545 		    true, in_lhs);
1546 }
1547 
1548 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1549    initialization on entry to LOOP if necessary.  The ssa name for the variable
1550    is stored in VARS.  If WRITTEN is true, also a phi node to copy its value
1551    around the loop is created.  Uid of the newly created temporary variable
1552    is marked in TMP_VARS.  INITS is the list containing the (single)
1553    initializer.  */
1554 
1555 static void
1556 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1557 			 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1558 			 bitmap tmp_vars)
1559 {
1560   unsigned i;
1561   tree ref = DR_REF (root->ref), init, var, next;
1562   gimple_seq stmts;
1563   gimple phi;
1564   edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1565 
1566   /* Find the initializer for the variable, and check that it cannot
1567      trap.  */
1568   init = VEC_index (tree, inits, 0);
1569 
1570   *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1571   var = predcom_tmp_var (ref, 0, tmp_vars);
1572   VEC_quick_push (tree, *vars, var);
1573   if (written)
1574     VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1575 
1576   for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
1577     VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1578 
1579   var = VEC_index (tree, *vars, 0);
1580 
1581   init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1582   if (stmts)
1583     gsi_insert_seq_on_edge_immediate (entry, stmts);
1584 
1585   if (written)
1586     {
1587       next = VEC_index (tree, *vars, 1);
1588       phi = create_phi_node (var, loop->header);
1589       SSA_NAME_DEF_STMT (var) = phi;
1590       add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1591       add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1592     }
1593   else
1594     {
1595       gimple init_stmt = gimple_build_assign (var, init);
1596       mark_virtual_ops_for_renaming (init_stmt);
1597       gsi_insert_on_edge_immediate (entry, init_stmt);
1598     }
1599 }
1600 
1601 
1602 /* Execute load motion for references in chain CHAIN.  Uids of the newly
1603    created temporary variables are marked in TMP_VARS.  */
1604 
1605 static void
1606 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1607 {
1608   VEC (tree, heap) *vars;
1609   dref a;
1610   unsigned n_writes = 0, ridx, i;
1611   tree var;
1612 
1613   gcc_assert (chain->type == CT_INVARIANT);
1614   gcc_assert (!chain->combined);
1615   for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1616     if (!DR_IS_READ (a->ref))
1617       n_writes++;
1618 
1619   /* If there are no reads in the loop, there is nothing to do.  */
1620   if (n_writes == VEC_length (dref, chain->refs))
1621     return;
1622 
1623   initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1624 			   &vars, chain->inits, tmp_vars);
1625 
1626   ridx = 0;
1627   for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1628     {
1629       bool is_read = DR_IS_READ (a->ref);
1630       mark_virtual_ops_for_renaming (a->stmt);
1631 
1632       if (!DR_IS_READ (a->ref))
1633 	{
1634 	  n_writes--;
1635 	  if (n_writes)
1636 	    {
1637 	      var = VEC_index (tree, vars, 0);
1638 	      var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1639 	      VEC_replace (tree, vars, 0, var);
1640 	    }
1641 	  else
1642 	    ridx = 1;
1643 	}
1644 
1645       replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1646 			!is_read, !is_read);
1647     }
1648 
1649   VEC_free (tree, heap, vars);
1650 }
1651 
1652 /* Returns the single statement in that NAME is used, excepting
1653    the looparound phi nodes contained in one of the chains.  If there is no
1654    such statement, or more statements, NULL is returned.  */
1655 
1656 static gimple
1657 single_nonlooparound_use (tree name)
1658 {
1659   use_operand_p use;
1660   imm_use_iterator it;
1661   gimple stmt, ret = NULL;
1662 
1663   FOR_EACH_IMM_USE_FAST (use, it, name)
1664     {
1665       stmt = USE_STMT (use);
1666 
1667       if (gimple_code (stmt) == GIMPLE_PHI)
1668 	{
1669 	  /* Ignore uses in looparound phi nodes.  Uses in other phi nodes
1670 	     could not be processed anyway, so just fail for them.  */
1671 	  if (bitmap_bit_p (looparound_phis,
1672 			    SSA_NAME_VERSION (PHI_RESULT (stmt))))
1673 	    continue;
1674 
1675 	  return NULL;
1676 	}
1677       else if (ret != NULL)
1678 	return NULL;
1679       else
1680 	ret = stmt;
1681     }
1682 
1683   return ret;
1684 }
1685 
1686 /* Remove statement STMT, as well as the chain of assignments in that it is
1687    used.  */
1688 
1689 static void
1690 remove_stmt (gimple stmt)
1691 {
1692   tree name;
1693   gimple next;
1694   gimple_stmt_iterator psi;
1695 
1696   if (gimple_code (stmt) == GIMPLE_PHI)
1697     {
1698       name = PHI_RESULT (stmt);
1699       next = single_nonlooparound_use (name);
1700       psi = gsi_for_stmt (stmt);
1701       remove_phi_node (&psi, true);
1702 
1703       if (!next
1704 	  || !gimple_assign_ssa_name_copy_p (next)
1705 	  || gimple_assign_rhs1 (next) != name)
1706 	return;
1707 
1708       stmt = next;
1709     }
1710 
1711   while (1)
1712     {
1713       gimple_stmt_iterator bsi;
1714 
1715       bsi = gsi_for_stmt (stmt);
1716 
1717       name = gimple_assign_lhs (stmt);
1718       gcc_assert (TREE_CODE (name) == SSA_NAME);
1719 
1720       next = single_nonlooparound_use (name);
1721 
1722       mark_virtual_ops_for_renaming (stmt);
1723       gsi_remove (&bsi, true);
1724       release_defs (stmt);
1725 
1726       if (!next
1727 	  || !gimple_assign_ssa_name_copy_p (next)
1728 	  || gimple_assign_rhs1 (next) != name)
1729 	return;
1730 
1731       stmt = next;
1732     }
1733 }
1734 
1735 /* Perform the predictive commoning optimization for a chain CHAIN.
1736    Uids of the newly created temporary variables are marked in TMP_VARS.*/
1737 
1738 static void
1739 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1740 			     bitmap tmp_vars)
1741 {
1742   unsigned i;
1743   dref a, root;
1744   tree var;
1745 
1746   if (chain->combined)
1747     {
1748       /* For combined chains, just remove the statements that are used to
1749 	 compute the values of the expression (except for the root one).  */
1750       for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1751 	remove_stmt (a->stmt);
1752     }
1753   else
1754     {
1755       /* For non-combined chains, set up the variables that hold its value,
1756 	 and replace the uses of the original references by these
1757 	 variables.  */
1758       root = get_chain_root (chain);
1759       mark_virtual_ops_for_renaming (root->stmt);
1760 
1761       initialize_root (loop, chain, tmp_vars);
1762       for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1763 	{
1764 	  mark_virtual_ops_for_renaming (a->stmt);
1765 	  var = VEC_index (tree, chain->vars, chain->length - a->distance);
1766 	  replace_ref_with (a->stmt, var, false, false);
1767 	}
1768     }
1769 }
1770 
1771 /* Determines the unroll factor necessary to remove as many temporary variable
1772    copies as possible.  CHAINS is the list of chains that will be
1773    optimized.  */
1774 
1775 static unsigned
1776 determine_unroll_factor (VEC (chain_p, heap) *chains)
1777 {
1778   chain_p chain;
1779   unsigned factor = 1, af, nfactor, i;
1780   unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1781 
1782   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1783     {
1784       if (chain->type == CT_INVARIANT || chain->combined)
1785 	continue;
1786 
1787       /* The best unroll factor for this chain is equal to the number of
1788 	 temporary variables that we create for it.  */
1789       af = chain->length;
1790       if (chain->has_max_use_after)
1791 	af++;
1792 
1793       nfactor = factor * af / gcd (factor, af);
1794       if (nfactor <= max)
1795 	factor = nfactor;
1796     }
1797 
1798   return factor;
1799 }
1800 
1801 /* Perform the predictive commoning optimization for CHAINS.
1802    Uids of the newly created temporary variables are marked in TMP_VARS.  */
1803 
1804 static void
1805 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1806 			bitmap tmp_vars)
1807 {
1808   chain_p chain;
1809   unsigned i;
1810 
1811   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1812     {
1813       if (chain->type == CT_INVARIANT)
1814 	execute_load_motion (loop, chain, tmp_vars);
1815       else
1816 	execute_pred_commoning_chain (loop, chain, tmp_vars);
1817     }
1818 
1819   update_ssa (TODO_update_ssa_only_virtuals);
1820 }
1821 
1822 /* For each reference in CHAINS, if its defining statement is
1823    phi node, record the ssa name that is defined by it.  */
1824 
1825 static void
1826 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1827 {
1828   chain_p chain;
1829   dref a;
1830   unsigned i, j;
1831 
1832   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1833     for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1834       {
1835 	if (gimple_code (a->stmt) == GIMPLE_PHI)
1836 	  {
1837 	    a->name_defined_by_phi = PHI_RESULT (a->stmt);
1838 	    a->stmt = NULL;
1839 	  }
1840       }
1841 }
1842 
1843 /* For each reference in CHAINS, if name_defined_by_phi is not
1844    NULL, use it to set the stmt field.  */
1845 
1846 static void
1847 replace_names_by_phis (VEC (chain_p, heap) *chains)
1848 {
1849   chain_p chain;
1850   dref a;
1851   unsigned i, j;
1852 
1853   for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1854     for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1855       if (a->stmt == NULL)
1856 	{
1857 	  a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1858 	  gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1859 	  a->name_defined_by_phi = NULL_TREE;
1860 	}
1861 }
1862 
1863 /* Wrapper over execute_pred_commoning, to pass it as a callback
1864    to tree_transform_and_unroll_loop.  */
1865 
1866 struct epcc_data
1867 {
1868   VEC (chain_p, heap) *chains;
1869   bitmap tmp_vars;
1870 };
1871 
1872 static void
1873 execute_pred_commoning_cbck (struct loop *loop, void *data)
1874 {
1875   struct epcc_data *const dta = (struct epcc_data *) data;
1876 
1877   /* Restore phi nodes that were replaced by ssa names before
1878      tree_transform_and_unroll_loop (see detailed description in
1879      tree_predictive_commoning_loop).  */
1880   replace_names_by_phis (dta->chains);
1881   execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1882 }
1883 
1884 /* Base NAME and all the names in the chain of phi nodes that use it
1885    on variable VAR.  The phi nodes are recognized by being in the copies of
1886    the header of the LOOP.  */
1887 
1888 static void
1889 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1890 {
1891   gimple stmt, phi;
1892   imm_use_iterator iter;
1893 
1894   SSA_NAME_VAR (name) = var;
1895 
1896   while (1)
1897     {
1898       phi = NULL;
1899       FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1900 	{
1901 	  if (gimple_code (stmt) == GIMPLE_PHI
1902 	      && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1903 	    {
1904 	      phi = stmt;
1905 	      BREAK_FROM_IMM_USE_STMT (iter);
1906 	    }
1907 	}
1908       if (!phi)
1909 	return;
1910 
1911       name = PHI_RESULT (phi);
1912       SSA_NAME_VAR (name) = var;
1913     }
1914 }
1915 
1916 /* Given an unrolled LOOP after predictive commoning, remove the
1917    register copies arising from phi nodes by changing the base
1918    variables of SSA names.  TMP_VARS is the set of the temporary variables
1919    for those we want to perform this.  */
1920 
1921 static void
1922 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1923 {
1924   edge e;
1925   gimple phi, stmt;
1926   tree name, use, var;
1927   gimple_stmt_iterator psi;
1928 
1929   e = loop_latch_edge (loop);
1930   for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1931     {
1932       phi = gsi_stmt (psi);
1933       name = PHI_RESULT (phi);
1934       var = SSA_NAME_VAR (name);
1935       if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1936 	continue;
1937       use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1938       gcc_assert (TREE_CODE (use) == SSA_NAME);
1939 
1940       /* Base all the ssa names in the ud and du chain of NAME on VAR.  */
1941       stmt = SSA_NAME_DEF_STMT (use);
1942       while (gimple_code (stmt) == GIMPLE_PHI
1943 	     /* In case we could not unroll the loop enough to eliminate
1944 		all copies, we may reach the loop header before the defining
1945 		statement (in that case, some register copies will be present
1946 		in loop latch in the final code, corresponding to the newly
1947 		created looparound phi nodes).  */
1948 	     && gimple_bb (stmt) != loop->header)
1949 	{
1950 	  gcc_assert (single_pred_p (gimple_bb (stmt)));
1951 	  use = PHI_ARG_DEF (stmt, 0);
1952 	  stmt = SSA_NAME_DEF_STMT (use);
1953 	}
1954 
1955       base_names_in_chain_on (loop, use, var);
1956     }
1957 }
1958 
1959 /* Returns true if CHAIN is suitable to be combined.  */
1960 
1961 static bool
1962 chain_can_be_combined_p (chain_p chain)
1963 {
1964   return (!chain->combined
1965 	  && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1966 }
1967 
1968 /* Returns the modify statement that uses NAME.  Skips over assignment
1969    statements, NAME is replaced with the actual name used in the returned
1970    statement.  */
1971 
1972 static gimple
1973 find_use_stmt (tree *name)
1974 {
1975   gimple stmt;
1976   tree rhs, lhs;
1977 
1978   /* Skip over assignments.  */
1979   while (1)
1980     {
1981       stmt = single_nonlooparound_use (*name);
1982       if (!stmt)
1983 	return NULL;
1984 
1985       if (gimple_code (stmt) != GIMPLE_ASSIGN)
1986 	return NULL;
1987 
1988       lhs = gimple_assign_lhs (stmt);
1989       if (TREE_CODE (lhs) != SSA_NAME)
1990 	return NULL;
1991 
1992       if (gimple_assign_copy_p (stmt))
1993 	{
1994 	  rhs = gimple_assign_rhs1 (stmt);
1995 	  if (rhs != *name)
1996 	    return NULL;
1997 
1998 	  *name = lhs;
1999 	}
2000       else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2001 	       == GIMPLE_BINARY_RHS)
2002 	return stmt;
2003       else
2004 	return NULL;
2005     }
2006 }
2007 
2008 /* Returns true if we may perform reassociation for operation CODE in TYPE.  */
2009 
2010 static bool
2011 may_reassociate_p (tree type, enum tree_code code)
2012 {
2013   if (FLOAT_TYPE_P (type)
2014       && !flag_unsafe_math_optimizations)
2015     return false;
2016 
2017   return (commutative_tree_code (code)
2018 	  && associative_tree_code (code));
2019 }
2020 
2021 /* If the operation used in STMT is associative and commutative, go through the
2022    tree of the same operations and returns its root.  Distance to the root
2023    is stored in DISTANCE.  */
2024 
2025 static gimple
2026 find_associative_operation_root (gimple stmt, unsigned *distance)
2027 {
2028   tree lhs;
2029   gimple next;
2030   enum tree_code code = gimple_assign_rhs_code (stmt);
2031   tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2032   unsigned dist = 0;
2033 
2034   if (!may_reassociate_p (type, code))
2035     return NULL;
2036 
2037   while (1)
2038     {
2039       lhs = gimple_assign_lhs (stmt);
2040       gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2041 
2042       next = find_use_stmt (&lhs);
2043       if (!next
2044 	  || gimple_assign_rhs_code (next) != code)
2045 	break;
2046 
2047       stmt = next;
2048       dist++;
2049     }
2050 
2051   if (distance)
2052     *distance = dist;
2053   return stmt;
2054 }
2055 
2056 /* Returns the common statement in that NAME1 and NAME2 have a use.  If there
2057    is no such statement, returns NULL_TREE.  In case the operation used on
2058    NAME1 and NAME2 is associative and commutative, returns the root of the
2059    tree formed by this operation instead of the statement that uses NAME1 or
2060    NAME2.  */
2061 
2062 static gimple
2063 find_common_use_stmt (tree *name1, tree *name2)
2064 {
2065   gimple stmt1, stmt2;
2066 
2067   stmt1 = find_use_stmt (name1);
2068   if (!stmt1)
2069     return NULL;
2070 
2071   stmt2 = find_use_stmt (name2);
2072   if (!stmt2)
2073     return NULL;
2074 
2075   if (stmt1 == stmt2)
2076     return stmt1;
2077 
2078   stmt1 = find_associative_operation_root (stmt1, NULL);
2079   if (!stmt1)
2080     return NULL;
2081   stmt2 = find_associative_operation_root (stmt2, NULL);
2082   if (!stmt2)
2083     return NULL;
2084 
2085   return (stmt1 == stmt2 ? stmt1 : NULL);
2086 }
2087 
2088 /* Checks whether R1 and R2 are combined together using CODE, with the result
2089    in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2090    if it is true.  If CODE is ERROR_MARK, set these values instead.  */
2091 
2092 static bool
2093 combinable_refs_p (dref r1, dref r2,
2094 		   enum tree_code *code, bool *swap, tree *rslt_type)
2095 {
2096   enum tree_code acode;
2097   bool aswap;
2098   tree atype;
2099   tree name1, name2;
2100   gimple stmt;
2101 
2102   name1 = name_for_ref (r1);
2103   name2 = name_for_ref (r2);
2104   gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2105 
2106   stmt = find_common_use_stmt (&name1, &name2);
2107 
2108   if (!stmt)
2109     return false;
2110 
2111   acode = gimple_assign_rhs_code (stmt);
2112   aswap = (!commutative_tree_code (acode)
2113 	   && gimple_assign_rhs1 (stmt) != name1);
2114   atype = TREE_TYPE (gimple_assign_lhs (stmt));
2115 
2116   if (*code == ERROR_MARK)
2117     {
2118       *code = acode;
2119       *swap = aswap;
2120       *rslt_type = atype;
2121       return true;
2122     }
2123 
2124   return (*code == acode
2125 	  && *swap == aswap
2126 	  && *rslt_type == atype);
2127 }
2128 
2129 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2130    an assignment of the remaining operand.  */
2131 
2132 static void
2133 remove_name_from_operation (gimple stmt, tree op)
2134 {
2135   tree other_op;
2136   gimple_stmt_iterator si;
2137 
2138   gcc_assert (is_gimple_assign (stmt));
2139 
2140   if (gimple_assign_rhs1 (stmt) == op)
2141     other_op = gimple_assign_rhs2 (stmt);
2142   else
2143     other_op = gimple_assign_rhs1 (stmt);
2144 
2145   si = gsi_for_stmt (stmt);
2146   gimple_assign_set_rhs_from_tree (&si, other_op);
2147 
2148   /* We should not have reallocated STMT.  */
2149   gcc_assert (gsi_stmt (si) == stmt);
2150 
2151   update_stmt (stmt);
2152 }
2153 
2154 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2155    are combined in a single statement, and returns this statement.  */
2156 
2157 static gimple
2158 reassociate_to_the_same_stmt (tree name1, tree name2)
2159 {
2160   gimple stmt1, stmt2, root1, root2, s1, s2;
2161   gimple new_stmt, tmp_stmt;
2162   tree new_name, tmp_name, var, r1, r2;
2163   unsigned dist1, dist2;
2164   enum tree_code code;
2165   tree type = TREE_TYPE (name1);
2166   gimple_stmt_iterator bsi;
2167 
2168   stmt1 = find_use_stmt (&name1);
2169   stmt2 = find_use_stmt (&name2);
2170   root1 = find_associative_operation_root (stmt1, &dist1);
2171   root2 = find_associative_operation_root (stmt2, &dist2);
2172   code = gimple_assign_rhs_code (stmt1);
2173 
2174   gcc_assert (root1 && root2 && root1 == root2
2175 	      && code == gimple_assign_rhs_code (stmt2));
2176 
2177   /* Find the root of the nearest expression in that both NAME1 and NAME2
2178      are used.  */
2179   r1 = name1;
2180   s1 = stmt1;
2181   r2 = name2;
2182   s2 = stmt2;
2183 
2184   while (dist1 > dist2)
2185     {
2186       s1 = find_use_stmt (&r1);
2187       r1 = gimple_assign_lhs (s1);
2188       dist1--;
2189     }
2190   while (dist2 > dist1)
2191     {
2192       s2 = find_use_stmt (&r2);
2193       r2 = gimple_assign_lhs (s2);
2194       dist2--;
2195     }
2196 
2197   while (s1 != s2)
2198     {
2199       s1 = find_use_stmt (&r1);
2200       r1 = gimple_assign_lhs (s1);
2201       s2 = find_use_stmt (&r2);
2202       r2 = gimple_assign_lhs (s2);
2203     }
2204 
2205   /* Remove NAME1 and NAME2 from the statements in that they are used
2206      currently.  */
2207   remove_name_from_operation (stmt1, name1);
2208   remove_name_from_operation (stmt2, name2);
2209 
2210   /* Insert the new statement combining NAME1 and NAME2 before S1, and
2211      combine it with the rhs of S1.  */
2212   var = create_tmp_var (type, "predreastmp");
2213   if (TREE_CODE (type) == COMPLEX_TYPE
2214       || TREE_CODE (type) == VECTOR_TYPE)
2215     DECL_GIMPLE_REG_P (var) = 1;
2216   add_referenced_var (var);
2217   new_name = make_ssa_name (var, NULL);
2218   new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2219 
2220   var = create_tmp_var (type, "predreastmp");
2221   if (TREE_CODE (type) == COMPLEX_TYPE
2222       || TREE_CODE (type) == VECTOR_TYPE)
2223     DECL_GIMPLE_REG_P (var) = 1;
2224   add_referenced_var (var);
2225   tmp_name = make_ssa_name (var, NULL);
2226 
2227   /* Rhs of S1 may now be either a binary expression with operation
2228      CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2229      so that name1 or name2 was removed from it).  */
2230   tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2231 					   tmp_name,
2232 					   gimple_assign_rhs1 (s1),
2233 					   gimple_assign_rhs2 (s1));
2234 
2235   bsi = gsi_for_stmt (s1);
2236   gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2237   s1 = gsi_stmt (bsi);
2238   update_stmt (s1);
2239 
2240   gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2241   gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2242 
2243   return new_stmt;
2244 }
2245 
2246 /* Returns the statement that combines references R1 and R2.  In case R1
2247    and R2 are not used in the same statement, but they are used with an
2248    associative and commutative operation in the same expression, reassociate
2249    the expression so that they are used in the same statement.  */
2250 
2251 static gimple
2252 stmt_combining_refs (dref r1, dref r2)
2253 {
2254   gimple stmt1, stmt2;
2255   tree name1 = name_for_ref (r1);
2256   tree name2 = name_for_ref (r2);
2257 
2258   stmt1 = find_use_stmt (&name1);
2259   stmt2 = find_use_stmt (&name2);
2260   if (stmt1 == stmt2)
2261     return stmt1;
2262 
2263   return reassociate_to_the_same_stmt (name1, name2);
2264 }
2265 
2266 /* Tries to combine chains CH1 and CH2 together.  If this succeeds, the
2267    description of the new chain is returned, otherwise we return NULL.  */
2268 
2269 static chain_p
2270 combine_chains (chain_p ch1, chain_p ch2)
2271 {
2272   dref r1, r2, nw;
2273   enum tree_code op = ERROR_MARK;
2274   bool swap = false;
2275   chain_p new_chain;
2276   unsigned i;
2277   gimple root_stmt;
2278   tree rslt_type = NULL_TREE;
2279 
2280   if (ch1 == ch2)
2281     return NULL;
2282   if (ch1->length != ch2->length)
2283     return NULL;
2284 
2285   if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2286     return NULL;
2287 
2288   for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2289 	       && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2290     {
2291       if (r1->distance != r2->distance)
2292 	return NULL;
2293 
2294       if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2295 	return NULL;
2296     }
2297 
2298   if (swap)
2299     {
2300       chain_p tmp = ch1;
2301       ch1 = ch2;
2302       ch2 = tmp;
2303     }
2304 
2305   new_chain = XCNEW (struct chain);
2306   new_chain->type = CT_COMBINATION;
2307   new_chain->op = op;
2308   new_chain->ch1 = ch1;
2309   new_chain->ch2 = ch2;
2310   new_chain->rslt_type = rslt_type;
2311   new_chain->length = ch1->length;
2312 
2313   for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2314 	       && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2315     {
2316       nw = XCNEW (struct dref_d);
2317       nw->stmt = stmt_combining_refs (r1, r2);
2318       nw->distance = r1->distance;
2319 
2320       VEC_safe_push (dref, heap, new_chain->refs, nw);
2321     }
2322 
2323   new_chain->has_max_use_after = false;
2324   root_stmt = get_chain_root (new_chain)->stmt;
2325   for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2326     {
2327       if (nw->distance == new_chain->length
2328 	  && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2329 	{
2330 	  new_chain->has_max_use_after = true;
2331 	  break;
2332 	}
2333     }
2334 
2335   ch1->combined = true;
2336   ch2->combined = true;
2337   return new_chain;
2338 }
2339 
2340 /* Try to combine the CHAINS.  */
2341 
2342 static void
2343 try_combine_chains (VEC (chain_p, heap) **chains)
2344 {
2345   unsigned i, j;
2346   chain_p ch1, ch2, cch;
2347   VEC (chain_p, heap) *worklist = NULL;
2348 
2349   for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
2350     if (chain_can_be_combined_p (ch1))
2351       VEC_safe_push (chain_p, heap, worklist, ch1);
2352 
2353   while (!VEC_empty (chain_p, worklist))
2354     {
2355       ch1 = VEC_pop (chain_p, worklist);
2356       if (!chain_can_be_combined_p (ch1))
2357 	continue;
2358 
2359       for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
2360 	{
2361 	  if (!chain_can_be_combined_p (ch2))
2362 	    continue;
2363 
2364 	  cch = combine_chains (ch1, ch2);
2365 	  if (cch)
2366 	    {
2367 	      VEC_safe_push (chain_p, heap, worklist, cch);
2368 	      VEC_safe_push (chain_p, heap, *chains, cch);
2369 	      break;
2370 	    }
2371 	}
2372     }
2373 }
2374 
2375 /* Prepare initializers for CHAIN in LOOP.  Returns false if this is
2376    impossible because one of these initializers may trap, true otherwise.  */
2377 
2378 static bool
2379 prepare_initializers_chain (struct loop *loop, chain_p chain)
2380 {
2381   unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2382   struct data_reference *dr = get_chain_root (chain)->ref;
2383   tree init;
2384   gimple_seq stmts;
2385   dref laref;
2386   edge entry = loop_preheader_edge (loop);
2387 
2388   /* Find the initializers for the variables, and check that they cannot
2389      trap.  */
2390   chain->inits = VEC_alloc (tree, heap, n);
2391   for (i = 0; i < n; i++)
2392     VEC_quick_push (tree, chain->inits, NULL_TREE);
2393 
2394   /* If we have replaced some looparound phi nodes, use their initializers
2395      instead of creating our own.  */
2396   for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
2397     {
2398       if (gimple_code (laref->stmt) != GIMPLE_PHI)
2399 	continue;
2400 
2401       gcc_assert (laref->distance > 0);
2402       VEC_replace (tree, chain->inits, n - laref->distance,
2403 		   PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2404     }
2405 
2406   for (i = 0; i < n; i++)
2407     {
2408       if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2409 	continue;
2410 
2411       init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2412       if (!init)
2413 	return false;
2414 
2415       if (!chain->all_always_accessed && tree_could_trap_p (init))
2416 	return false;
2417 
2418       init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2419       if (stmts)
2420 	gsi_insert_seq_on_edge_immediate (entry, stmts);
2421 
2422       VEC_replace (tree, chain->inits, i, init);
2423     }
2424 
2425   return true;
2426 }
2427 
2428 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2429    be used because the initializers might trap.  */
2430 
2431 static void
2432 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2433 {
2434   chain_p chain;
2435   unsigned i;
2436 
2437   for (i = 0; i < VEC_length (chain_p, chains); )
2438     {
2439       chain = VEC_index (chain_p, chains, i);
2440       if (prepare_initializers_chain (loop, chain))
2441 	i++;
2442       else
2443 	{
2444 	  release_chain (chain);
2445 	  VEC_unordered_remove (chain_p, chains, i);
2446 	}
2447     }
2448 }
2449 
2450 /* Performs predictive commoning for LOOP.  Returns true if LOOP was
2451    unrolled.  */
2452 
2453 static bool
2454 tree_predictive_commoning_loop (struct loop *loop)
2455 {
2456   VEC (data_reference_p, heap) *datarefs;
2457   VEC (ddr_p, heap) *dependences;
2458   struct component *components;
2459   VEC (chain_p, heap) *chains = NULL;
2460   unsigned unroll_factor;
2461   struct tree_niter_desc desc;
2462   bool unroll = false;
2463   edge exit;
2464   bitmap tmp_vars;
2465 
2466   if (dump_file && (dump_flags & TDF_DETAILS))
2467     fprintf (dump_file, "Processing loop %d\n",  loop->num);
2468 
2469   /* Find the data references and split them into components according to their
2470      dependence relations.  */
2471   datarefs = VEC_alloc (data_reference_p, heap, 10);
2472   dependences = VEC_alloc (ddr_p, heap, 10);
2473   compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2474   if (dump_file && (dump_flags & TDF_DETAILS))
2475     dump_data_dependence_relations (dump_file, dependences);
2476 
2477   components = split_data_refs_to_components (loop, datarefs, dependences);
2478   free_dependence_relations (dependences);
2479   if (!components)
2480     {
2481       free_data_refs (datarefs);
2482       return false;
2483     }
2484 
2485   if (dump_file && (dump_flags & TDF_DETAILS))
2486     {
2487       fprintf (dump_file, "Initial state:\n\n");
2488       dump_components (dump_file, components);
2489     }
2490 
2491   /* Find the suitable components and split them into chains.  */
2492   components = filter_suitable_components (loop, components);
2493 
2494   tmp_vars = BITMAP_ALLOC (NULL);
2495   looparound_phis = BITMAP_ALLOC (NULL);
2496   determine_roots (loop, components, &chains);
2497   release_components (components);
2498 
2499   if (!chains)
2500     {
2501       if (dump_file && (dump_flags & TDF_DETAILS))
2502 	fprintf (dump_file,
2503 		 "Predictive commoning failed: no suitable chains\n");
2504       goto end;
2505     }
2506   prepare_initializers (loop, chains);
2507 
2508   /* Try to combine the chains that are always worked with together.  */
2509   try_combine_chains (&chains);
2510 
2511   if (dump_file && (dump_flags & TDF_DETAILS))
2512     {
2513       fprintf (dump_file, "Before commoning:\n\n");
2514       dump_chains (dump_file, chains);
2515     }
2516 
2517   /* Determine the unroll factor, and if the loop should be unrolled, ensure
2518      that its number of iterations is divisible by the factor.  */
2519   unroll_factor = determine_unroll_factor (chains);
2520   scev_reset ();
2521   unroll = (unroll_factor > 1
2522 	    && can_unroll_loop_p (loop, unroll_factor, &desc));
2523   exit = single_dom_exit (loop);
2524 
2525   /* Execute the predictive commoning transformations, and possibly unroll the
2526      loop.  */
2527   if (unroll)
2528     {
2529       struct epcc_data dta;
2530 
2531       if (dump_file && (dump_flags & TDF_DETAILS))
2532 	fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2533 
2534       dta.chains = chains;
2535       dta.tmp_vars = tmp_vars;
2536 
2537       update_ssa (TODO_update_ssa_only_virtuals);
2538 
2539       /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2540 	 execute_pred_commoning_cbck is called may cause phi nodes to be
2541 	 reallocated, which is a problem since CHAINS may point to these
2542 	 statements.  To fix this, we store the ssa names defined by the
2543 	 phi nodes here instead of the phi nodes themselves, and restore
2544 	 the phi nodes in execute_pred_commoning_cbck.  A bit hacky.  */
2545       replace_phis_by_defined_names (chains);
2546 
2547       tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2548 				      execute_pred_commoning_cbck, &dta);
2549       eliminate_temp_copies (loop, tmp_vars);
2550     }
2551   else
2552     {
2553       if (dump_file && (dump_flags & TDF_DETAILS))
2554 	fprintf (dump_file,
2555 		 "Executing predictive commoning without unrolling.\n");
2556       execute_pred_commoning (loop, chains, tmp_vars);
2557     }
2558 
2559 end: ;
2560   release_chains (chains);
2561   free_data_refs (datarefs);
2562   BITMAP_FREE (tmp_vars);
2563   BITMAP_FREE (looparound_phis);
2564 
2565   free_affine_expand_cache (&name_expansions);
2566 
2567   return unroll;
2568 }
2569 
2570 /* Runs predictive commoning.  */
2571 
2572 unsigned
2573 tree_predictive_commoning (void)
2574 {
2575   bool unrolled = false;
2576   struct loop *loop;
2577   loop_iterator li;
2578   unsigned ret = 0;
2579 
2580   initialize_original_copy_tables ();
2581   FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2582     if (optimize_loop_for_speed_p (loop))
2583       {
2584 	unrolled |= tree_predictive_commoning_loop (loop);
2585       }
2586 
2587   if (unrolled)
2588     {
2589       scev_reset ();
2590       ret = TODO_cleanup_cfg;
2591     }
2592   free_original_copy_tables ();
2593 
2594   return ret;
2595 }
2596