xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-parloops.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Loop autoparallelization.
2    Copyright (C) 2006-2015 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4    Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "options.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "predict.h"
38 #include "tm.h"
39 #include "hard-reg-set.h"
40 #include "input.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "basic-block.h"
45 #include "tree-ssa-alias.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimplify.h"
51 #include "gimple-iterator.h"
52 #include "gimplify-me.h"
53 #include "gimple-walk.h"
54 #include "stor-layout.h"
55 #include "tree-nested.h"
56 #include "gimple-ssa.h"
57 #include "tree-cfg.h"
58 #include "tree-phinodes.h"
59 #include "ssa-iterators.h"
60 #include "stringpool.h"
61 #include "tree-ssanames.h"
62 #include "tree-ssa-loop-ivopts.h"
63 #include "tree-ssa-loop-manip.h"
64 #include "tree-ssa-loop-niter.h"
65 #include "tree-ssa-loop.h"
66 #include "tree-into-ssa.h"
67 #include "cfgloop.h"
68 #include "tree-data-ref.h"
69 #include "tree-scalar-evolution.h"
70 #include "gimple-pretty-print.h"
71 #include "tree-pass.h"
72 #include "langhooks.h"
73 #include "tree-vectorizer.h"
74 #include "tree-hasher.h"
75 #include "tree-parloops.h"
76 #include "omp-low.h"
77 #include "tree-nested.h"
78 #include "plugin-api.h"
79 #include "ipa-ref.h"
80 #include "cgraph.h"
81 
82 /* This pass tries to distribute iterations of loops into several threads.
83    The implementation is straightforward -- for each loop we test whether its
84    iterations are independent, and if it is the case (and some additional
85    conditions regarding profitability and correctness are satisfied), we
86    add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
87    machinery do its job.
88 
89    The most of the complexity is in bringing the code into shape expected
90    by the omp expanders:
91    -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
92       variable and that the exit test is at the start of the loop body
93    -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
94       variables by accesses through pointers, and breaking up ssa chains
95       by storing the values incoming to the parallelized loop to a structure
96       passed to the new function as an argument (something similar is done
97       in omp gimplification, unfortunately only a small part of the code
98       can be shared).
99 
100    TODO:
101    -- if there are several parallelizable loops in a function, it may be
102       possible to generate the threads just once (using synchronization to
103       ensure that cross-loop dependences are obeyed).
104    -- handling of common reduction patterns for outer loops.
105 
106    More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC  */
107 /*
108   Reduction handling:
109   currently we use vect_force_simple_reduction() to detect reduction patterns.
110   The code transformation will be introduced by an example.
111 
112 
113 parloop
114 {
115   int sum=1;
116 
117   for (i = 0; i < N; i++)
118    {
119     x[i] = i + 3;
120     sum+=x[i];
121    }
122 }
123 
124 gimple-like code:
125 header_bb:
126 
127   # sum_29 = PHI <sum_11(5), 1(3)>
128   # i_28 = PHI <i_12(5), 0(3)>
129   D.1795_8 = i_28 + 3;
130   x[i_28] = D.1795_8;
131   sum_11 = D.1795_8 + sum_29;
132   i_12 = i_28 + 1;
133   if (N_6(D) > i_12)
134     goto header_bb;
135 
136 
137 exit_bb:
138 
139   # sum_21 = PHI <sum_11(4)>
140   printf (&"%d"[0], sum_21);
141 
142 
143 after reduction transformation (only relevant parts):
144 
145 parloop
146 {
147 
148 ....
149 
150 
151   # Storing the initial value given by the user.  #
152 
153   .paral_data_store.32.sum.27 = 1;
154 
155   #pragma omp parallel num_threads(4)
156 
157   #pragma omp for schedule(static)
158 
159   # The neutral element corresponding to the particular
160   reduction's operation, e.g. 0 for PLUS_EXPR,
161   1 for MULT_EXPR, etc. replaces the user's initial value.  #
162 
163   # sum.27_29 = PHI <sum.27_11, 0>
164 
165   sum.27_11 = D.1827_8 + sum.27_29;
166 
167   GIMPLE_OMP_CONTINUE
168 
169   # Adding this reduction phi is done at create_phi_for_local_result() #
170   # sum.27_56 = PHI <sum.27_11, 0>
171   GIMPLE_OMP_RETURN
172 
173   # Creating the atomic operation is done at
174   create_call_for_reduction_1()  #
175 
176   #pragma omp atomic_load
177   D.1839_59 = *&.paral_data_load.33_51->reduction.23;
178   D.1840_60 = sum.27_56 + D.1839_59;
179   #pragma omp atomic_store (D.1840_60);
180 
181   GIMPLE_OMP_RETURN
182 
183  # collecting the result after the join of the threads is done at
184   create_loads_for_reductions().
185   The value computed by the threads is loaded from the
186   shared struct.  #
187 
188 
189   .paral_data_load.33_52 = &.paral_data_store.32;
190   sum_37 =  .paral_data_load.33_52->sum.27;
191   sum_43 = D.1795_41 + sum_37;
192 
193   exit bb:
194   # sum_21 = PHI <sum_43, sum_26>
195   printf (&"%d"[0], sum_21);
196 
197 ...
198 
199 }
200 
201 */
202 
203 /* Minimal number of iterations of a loop that should be executed in each
204    thread.  */
205 #define MIN_PER_THREAD 100
206 
207 /* Element of the hashtable, representing a
208    reduction in the current loop.  */
209 struct reduction_info
210 {
211   gimple reduc_stmt;		/* reduction statement.  */
212   gimple reduc_phi;		/* The phi node defining the reduction.  */
213   enum tree_code reduction_code;/* code for the reduction operation.  */
214   unsigned reduc_version;	/* SSA_NAME_VERSION of original reduc_phi
215 				   result.  */
216   gphi *keep_res;		/* The PHI_RESULT of this phi is the resulting value
217 				   of the reduction variable when existing the loop. */
218   tree initial_value;		/* The initial value of the reduction var before entering the loop.  */
219   tree field;			/*  the name of the field in the parloop data structure intended for reduction.  */
220   tree init;			/* reduction initialization value.  */
221   gphi *new_phi;		/* (helper field) Newly created phi node whose result
222 				   will be passed to the atomic operation.  Represents
223 				   the local result each thread computed for the reduction
224 				   operation.  */
225 };
226 
227 /* Reduction info hashtable helpers.  */
228 
229 struct reduction_hasher : typed_free_remove <reduction_info>
230 {
231   typedef reduction_info value_type;
232   typedef reduction_info compare_type;
233   static inline hashval_t hash (const value_type *);
234   static inline bool equal (const value_type *, const compare_type *);
235 };
236 
237 /* Equality and hash functions for hashtab code.  */
238 
239 inline bool
240 reduction_hasher::equal (const value_type *a, const compare_type *b)
241 {
242   return (a->reduc_phi == b->reduc_phi);
243 }
244 
245 inline hashval_t
246 reduction_hasher::hash (const value_type *a)
247 {
248   return a->reduc_version;
249 }
250 
251 typedef hash_table<reduction_hasher> reduction_info_table_type;
252 
253 
254 static struct reduction_info *
255 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
256 {
257   struct reduction_info tmpred, *red;
258 
259   if (reduction_list->elements () == 0 || phi == NULL)
260     return NULL;
261 
262   tmpred.reduc_phi = phi;
263   tmpred.reduc_version = gimple_uid (phi);
264   red = reduction_list->find (&tmpred);
265 
266   return red;
267 }
268 
269 /* Element of hashtable of names to copy.  */
270 
271 struct name_to_copy_elt
272 {
273   unsigned version;	/* The version of the name to copy.  */
274   tree new_name;	/* The new name used in the copy.  */
275   tree field;		/* The field of the structure used to pass the
276 			   value.  */
277 };
278 
279 /* Name copies hashtable helpers.  */
280 
281 struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt>
282 {
283   typedef name_to_copy_elt value_type;
284   typedef name_to_copy_elt compare_type;
285   static inline hashval_t hash (const value_type *);
286   static inline bool equal (const value_type *, const compare_type *);
287 };
288 
289 /* Equality and hash functions for hashtab code.  */
290 
291 inline bool
292 name_to_copy_hasher::equal (const value_type *a, const compare_type *b)
293 {
294   return a->version == b->version;
295 }
296 
297 inline hashval_t
298 name_to_copy_hasher::hash (const value_type *a)
299 {
300   return (hashval_t) a->version;
301 }
302 
303 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
304 
305 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
306    matrix.  Rather than use floats, we simply keep a single DENOMINATOR that
307    represents the denominator for every element in the matrix.  */
308 typedef struct lambda_trans_matrix_s
309 {
310   lambda_matrix matrix;
311   int rowsize;
312   int colsize;
313   int denominator;
314 } *lambda_trans_matrix;
315 #define LTM_MATRIX(T) ((T)->matrix)
316 #define LTM_ROWSIZE(T) ((T)->rowsize)
317 #define LTM_COLSIZE(T) ((T)->colsize)
318 #define LTM_DENOMINATOR(T) ((T)->denominator)
319 
320 /* Allocate a new transformation matrix.  */
321 
322 static lambda_trans_matrix
323 lambda_trans_matrix_new (int colsize, int rowsize,
324 			 struct obstack * lambda_obstack)
325 {
326   lambda_trans_matrix ret;
327 
328   ret = (lambda_trans_matrix)
329     obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
330   LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
331   LTM_ROWSIZE (ret) = rowsize;
332   LTM_COLSIZE (ret) = colsize;
333   LTM_DENOMINATOR (ret) = 1;
334   return ret;
335 }
336 
337 /* Multiply a vector VEC by a matrix MAT.
338    MAT is an M*N matrix, and VEC is a vector with length N.  The result
339    is stored in DEST which must be a vector of length M.  */
340 
341 static void
342 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
343 			   lambda_vector vec, lambda_vector dest)
344 {
345   int i, j;
346 
347   lambda_vector_clear (dest, m);
348   for (i = 0; i < m; i++)
349     for (j = 0; j < n; j++)
350       dest[i] += matrix[i][j] * vec[j];
351 }
352 
353 /* Return true if TRANS is a legal transformation matrix that respects
354    the dependence vectors in DISTS and DIRS.  The conservative answer
355    is false.
356 
357    "Wolfe proves that a unimodular transformation represented by the
358    matrix T is legal when applied to a loop nest with a set of
359    lexicographically non-negative distance vectors RDG if and only if
360    for each vector d in RDG, (T.d >= 0) is lexicographically positive.
361    i.e.: if and only if it transforms the lexicographically positive
362    distance vectors to lexicographically positive vectors.  Note that
363    a unimodular matrix must transform the zero vector (and only it) to
364    the zero vector." S.Muchnick.  */
365 
366 static bool
367 lambda_transform_legal_p (lambda_trans_matrix trans,
368 			  int nb_loops,
369 			  vec<ddr_p> dependence_relations)
370 {
371   unsigned int i, j;
372   lambda_vector distres;
373   struct data_dependence_relation *ddr;
374 
375   gcc_assert (LTM_COLSIZE (trans) == nb_loops
376 	      && LTM_ROWSIZE (trans) == nb_loops);
377 
378   /* When there are no dependences, the transformation is correct.  */
379   if (dependence_relations.length () == 0)
380     return true;
381 
382   ddr = dependence_relations[0];
383   if (ddr == NULL)
384     return true;
385 
386   /* When there is an unknown relation in the dependence_relations, we
387      know that it is no worth looking at this loop nest: give up.  */
388   if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
389     return false;
390 
391   distres = lambda_vector_new (nb_loops);
392 
393   /* For each distance vector in the dependence graph.  */
394   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
395     {
396       /* Don't care about relations for which we know that there is no
397 	 dependence, nor about read-read (aka. output-dependences):
398 	 these data accesses can happen in any order.  */
399       if (DDR_ARE_DEPENDENT (ddr) == chrec_known
400 	  || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
401 	continue;
402 
403       /* Conservatively answer: "this transformation is not valid".  */
404       if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
405 	return false;
406 
407       /* If the dependence could not be captured by a distance vector,
408 	 conservatively answer that the transform is not valid.  */
409       if (DDR_NUM_DIST_VECTS (ddr) == 0)
410 	return false;
411 
412       /* Compute trans.dist_vect */
413       for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
414 	{
415 	  lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
416 				     DDR_DIST_VECT (ddr, j), distres);
417 
418 	  if (!lambda_vector_lexico_pos (distres, nb_loops))
419 	    return false;
420 	}
421     }
422   return true;
423 }
424 
425 /* Data dependency analysis. Returns true if the iterations of LOOP
426    are independent on each other (that is, if we can execute them
427    in parallel).  */
428 
429 static bool
430 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
431 {
432   vec<ddr_p> dependence_relations;
433   vec<data_reference_p> datarefs;
434   lambda_trans_matrix trans;
435   bool ret = false;
436 
437   if (dump_file && (dump_flags & TDF_DETAILS))
438   {
439     fprintf (dump_file, "Considering loop %d\n", loop->num);
440     if (!loop->inner)
441       fprintf (dump_file, "loop is innermost\n");
442     else
443       fprintf (dump_file, "loop NOT innermost\n");
444    }
445 
446   /* Check for problems with dependences.  If the loop can be reversed,
447      the iterations are independent.  */
448   auto_vec<loop_p, 3> loop_nest;
449   datarefs.create (10);
450   dependence_relations.create (100);
451   if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
452 					   &dependence_relations))
453     {
454       if (dump_file && (dump_flags & TDF_DETAILS))
455 	fprintf (dump_file, "  FAILED: cannot analyze data dependencies\n");
456       ret = false;
457       goto end;
458     }
459   if (dump_file && (dump_flags & TDF_DETAILS))
460     dump_data_dependence_relations (dump_file, dependence_relations);
461 
462   trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
463   LTM_MATRIX (trans)[0][0] = -1;
464 
465   if (lambda_transform_legal_p (trans, 1, dependence_relations))
466     {
467       ret = true;
468       if (dump_file && (dump_flags & TDF_DETAILS))
469 	fprintf (dump_file, "  SUCCESS: may be parallelized\n");
470     }
471   else if (dump_file && (dump_flags & TDF_DETAILS))
472     fprintf (dump_file,
473 	     "  FAILED: data dependencies exist across iterations\n");
474 
475  end:
476   free_dependence_relations (dependence_relations);
477   free_data_refs (datarefs);
478 
479   return ret;
480 }
481 
482 /* Return true when LOOP contains basic blocks marked with the
483    BB_IRREDUCIBLE_LOOP flag.  */
484 
485 static inline bool
486 loop_has_blocks_with_irreducible_flag (struct loop *loop)
487 {
488   unsigned i;
489   basic_block *bbs = get_loop_body_in_dom_order (loop);
490   bool res = true;
491 
492   for (i = 0; i < loop->num_nodes; i++)
493     if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
494       goto end;
495 
496   res = false;
497  end:
498   free (bbs);
499   return res;
500 }
501 
502 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
503    The assignment statement is placed on edge ENTRY.  DECL_ADDRESS maps decls
504    to their addresses that can be reused.  The address of OBJ is known to
505    be invariant in the whole function.  Other needed statements are placed
506    right before GSI.  */
507 
508 static tree
509 take_address_of (tree obj, tree type, edge entry,
510 		 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
511 {
512   int uid;
513   tree *var_p, name, addr;
514   gassign *stmt;
515   gimple_seq stmts;
516 
517   /* Since the address of OBJ is invariant, the trees may be shared.
518      Avoid rewriting unrelated parts of the code.  */
519   obj = unshare_expr (obj);
520   for (var_p = &obj;
521        handled_component_p (*var_p);
522        var_p = &TREE_OPERAND (*var_p, 0))
523     continue;
524 
525   /* Canonicalize the access to base on a MEM_REF.  */
526   if (DECL_P (*var_p))
527     *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
528 
529   /* Assign a canonical SSA name to the address of the base decl used
530      in the address and share it for all accesses and addresses based
531      on it.  */
532   uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
533   int_tree_map elt;
534   elt.uid = uid;
535   int_tree_map *slot = decl_address->find_slot (elt, INSERT);
536   if (!slot->to)
537     {
538       if (gsi == NULL)
539 	return NULL;
540       addr = TREE_OPERAND (*var_p, 0);
541       const char *obj_name
542 	= get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
543       if (obj_name)
544 	name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
545       else
546 	name = make_ssa_name (TREE_TYPE (addr));
547       stmt = gimple_build_assign (name, addr);
548       gsi_insert_on_edge_immediate (entry, stmt);
549 
550       slot->uid = uid;
551       slot->to = name;
552     }
553   else
554     name = slot->to;
555 
556   /* Express the address in terms of the canonical SSA name.  */
557   TREE_OPERAND (*var_p, 0) = name;
558   if (gsi == NULL)
559     return build_fold_addr_expr_with_type (obj, type);
560 
561   name = force_gimple_operand (build_addr (obj, current_function_decl),
562 			       &stmts, true, NULL_TREE);
563   if (!gimple_seq_empty_p (stmts))
564     gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
565 
566   if (!useless_type_conversion_p (type, TREE_TYPE (name)))
567     {
568       name = force_gimple_operand (fold_convert (type, name), &stmts, true,
569 				   NULL_TREE);
570       if (!gimple_seq_empty_p (stmts))
571 	gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
572     }
573 
574   return name;
575 }
576 
577 /* Callback for htab_traverse.  Create the initialization statement
578    for reduction described in SLOT, and place it at the preheader of
579    the loop described in DATA.  */
580 
581 int
582 initialize_reductions (reduction_info **slot, struct loop *loop)
583 {
584   tree init, c;
585   tree bvar, type, arg;
586   edge e;
587 
588   struct reduction_info *const reduc = *slot;
589 
590   /* Create initialization in preheader:
591      reduction_variable = initialization value of reduction.  */
592 
593   /* In the phi node at the header, replace the argument coming
594      from the preheader with the reduction initialization value.  */
595 
596   /* Create a new variable to initialize the reduction.  */
597   type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
598   bvar = create_tmp_var (type, "reduction");
599 
600   c = build_omp_clause (gimple_location (reduc->reduc_stmt),
601 			OMP_CLAUSE_REDUCTION);
602   OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
603   OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
604 
605   init = omp_reduction_init (c, TREE_TYPE (bvar));
606   reduc->init = init;
607 
608   /* Replace the argument representing the initialization value
609      with the initialization value for the reduction (neutral
610      element for the particular operation, e.g. 0 for PLUS_EXPR,
611      1 for MULT_EXPR, etc).
612      Keep the old value in a new variable "reduction_initial",
613      that will be taken in consideration after the parallel
614      computing is done.  */
615 
616   e = loop_preheader_edge (loop);
617   arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
618   /* Create new variable to hold the initial value.  */
619 
620   SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
621 	   (reduc->reduc_phi, loop_preheader_edge (loop)), init);
622   reduc->initial_value = arg;
623   return 1;
624 }
625 
626 struct elv_data
627 {
628   struct walk_stmt_info info;
629   edge entry;
630   int_tree_htab_type *decl_address;
631   gimple_stmt_iterator *gsi;
632   bool changed;
633   bool reset;
634 };
635 
636 /* Eliminates references to local variables in *TP out of the single
637    entry single exit region starting at DTA->ENTRY.
638    DECL_ADDRESS contains addresses of the references that had their
639    address taken already.  If the expression is changed, CHANGED is
640    set to true.  Callback for walk_tree.  */
641 
642 static tree
643 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
644 {
645   struct elv_data *const dta = (struct elv_data *) data;
646   tree t = *tp, var, addr, addr_type, type, obj;
647 
648   if (DECL_P (t))
649     {
650       *walk_subtrees = 0;
651 
652       if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
653 	return NULL_TREE;
654 
655       type = TREE_TYPE (t);
656       addr_type = build_pointer_type (type);
657       addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
658 			      dta->gsi);
659       if (dta->gsi == NULL && addr == NULL_TREE)
660 	{
661 	  dta->reset = true;
662 	  return NULL_TREE;
663 	}
664 
665       *tp = build_simple_mem_ref (addr);
666 
667       dta->changed = true;
668       return NULL_TREE;
669     }
670 
671   if (TREE_CODE (t) == ADDR_EXPR)
672     {
673       /* ADDR_EXPR may appear in two contexts:
674 	 -- as a gimple operand, when the address taken is a function invariant
675 	 -- as gimple rhs, when the resulting address in not a function
676 	    invariant
677 	 We do not need to do anything special in the latter case (the base of
678 	 the memory reference whose address is taken may be replaced in the
679 	 DECL_P case).  The former case is more complicated, as we need to
680 	 ensure that the new address is still a gimple operand.  Thus, it
681 	 is not sufficient to replace just the base of the memory reference --
682 	 we need to move the whole computation of the address out of the
683 	 loop.  */
684       if (!is_gimple_val (t))
685 	return NULL_TREE;
686 
687       *walk_subtrees = 0;
688       obj = TREE_OPERAND (t, 0);
689       var = get_base_address (obj);
690       if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
691 	return NULL_TREE;
692 
693       addr_type = TREE_TYPE (t);
694       addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
695 			      dta->gsi);
696       if (dta->gsi == NULL && addr == NULL_TREE)
697 	{
698 	  dta->reset = true;
699 	  return NULL_TREE;
700 	}
701       *tp = addr;
702 
703       dta->changed = true;
704       return NULL_TREE;
705     }
706 
707   if (!EXPR_P (t))
708     *walk_subtrees = 0;
709 
710   return NULL_TREE;
711 }
712 
713 /* Moves the references to local variables in STMT at *GSI out of the single
714    entry single exit region starting at ENTRY.  DECL_ADDRESS contains
715    addresses of the references that had their address taken
716    already.  */
717 
718 static void
719 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
720 				int_tree_htab_type *decl_address)
721 {
722   struct elv_data dta;
723   gimple stmt = gsi_stmt (*gsi);
724 
725   memset (&dta.info, '\0', sizeof (dta.info));
726   dta.entry = entry;
727   dta.decl_address = decl_address;
728   dta.changed = false;
729   dta.reset = false;
730 
731   if (gimple_debug_bind_p (stmt))
732     {
733       dta.gsi = NULL;
734       walk_tree (gimple_debug_bind_get_value_ptr (stmt),
735 		 eliminate_local_variables_1, &dta.info, NULL);
736       if (dta.reset)
737 	{
738 	  gimple_debug_bind_reset_value (stmt);
739 	  dta.changed = true;
740 	}
741     }
742   else if (gimple_clobber_p (stmt))
743     {
744       unlink_stmt_vdef (stmt);
745       stmt = gimple_build_nop ();
746       gsi_replace (gsi, stmt, false);
747       dta.changed = true;
748     }
749   else
750     {
751       dta.gsi = gsi;
752       walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
753     }
754 
755   if (dta.changed)
756     update_stmt (stmt);
757 }
758 
759 /* Eliminates the references to local variables from the single entry
760    single exit region between the ENTRY and EXIT edges.
761 
762    This includes:
763    1) Taking address of a local variable -- these are moved out of the
764    region (and temporary variable is created to hold the address if
765    necessary).
766 
767    2) Dereferencing a local variable -- these are replaced with indirect
768    references.  */
769 
770 static void
771 eliminate_local_variables (edge entry, edge exit)
772 {
773   basic_block bb;
774   auto_vec<basic_block, 3> body;
775   unsigned i;
776   gimple_stmt_iterator gsi;
777   bool has_debug_stmt = false;
778   int_tree_htab_type decl_address (10);
779   basic_block entry_bb = entry->src;
780   basic_block exit_bb = exit->dest;
781 
782   gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
783 
784   FOR_EACH_VEC_ELT (body, i, bb)
785     if (bb != entry_bb && bb != exit_bb)
786       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
787 	if (is_gimple_debug (gsi_stmt (gsi)))
788 	  {
789 	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
790 	      has_debug_stmt = true;
791 	  }
792 	else
793 	  eliminate_local_variables_stmt (entry, &gsi, &decl_address);
794 
795   if (has_debug_stmt)
796     FOR_EACH_VEC_ELT (body, i, bb)
797       if (bb != entry_bb && bb != exit_bb)
798 	for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
799 	  if (gimple_debug_bind_p (gsi_stmt (gsi)))
800 	    eliminate_local_variables_stmt (entry, &gsi, &decl_address);
801 }
802 
803 /* Returns true if expression EXPR is not defined between ENTRY and
804    EXIT, i.e. if all its operands are defined outside of the region.  */
805 
806 static bool
807 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
808 {
809   basic_block entry_bb = entry->src;
810   basic_block exit_bb = exit->dest;
811   basic_block def_bb;
812 
813   if (is_gimple_min_invariant (expr))
814     return true;
815 
816   if (TREE_CODE (expr) == SSA_NAME)
817     {
818       def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
819       if (def_bb
820 	  && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
821 	  && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
822 	return false;
823 
824       return true;
825     }
826 
827   return false;
828 }
829 
830 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
831    The copies are stored to NAME_COPIES, if NAME was already duplicated,
832    its duplicate stored in NAME_COPIES is returned.
833 
834    Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
835    duplicated, storing the copies in DECL_COPIES.  */
836 
837 static tree
838 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
839 			       int_tree_htab_type *decl_copies,
840 			       bool copy_name_p)
841 {
842   tree copy, var, var_copy;
843   unsigned idx, uid, nuid;
844   struct int_tree_map ielt;
845   struct name_to_copy_elt elt, *nelt;
846   name_to_copy_elt **slot;
847   int_tree_map *dslot;
848 
849   if (TREE_CODE (name) != SSA_NAME)
850     return name;
851 
852   idx = SSA_NAME_VERSION (name);
853   elt.version = idx;
854   slot = name_copies->find_slot_with_hash (&elt, idx,
855 					   copy_name_p ? INSERT : NO_INSERT);
856   if (slot && *slot)
857     return (*slot)->new_name;
858 
859   if (copy_name_p)
860     {
861       copy = duplicate_ssa_name (name, NULL);
862       nelt = XNEW (struct name_to_copy_elt);
863       nelt->version = idx;
864       nelt->new_name = copy;
865       nelt->field = NULL_TREE;
866       *slot = nelt;
867     }
868   else
869     {
870       gcc_assert (!slot);
871       copy = name;
872     }
873 
874   var = SSA_NAME_VAR (name);
875   if (!var)
876     return copy;
877 
878   uid = DECL_UID (var);
879   ielt.uid = uid;
880   dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
881   if (!dslot->to)
882     {
883       var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
884       DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
885       dslot->uid = uid;
886       dslot->to = var_copy;
887 
888       /* Ensure that when we meet this decl next time, we won't duplicate
889          it again.  */
890       nuid = DECL_UID (var_copy);
891       ielt.uid = nuid;
892       dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
893       gcc_assert (!dslot->to);
894       dslot->uid = nuid;
895       dslot->to = var_copy;
896     }
897   else
898     var_copy = dslot->to;
899 
900   replace_ssa_name_symbol (copy, var_copy);
901   return copy;
902 }
903 
904 /* Finds the ssa names used in STMT that are defined outside the
905    region between ENTRY and EXIT and replaces such ssa names with
906    their duplicates.  The duplicates are stored to NAME_COPIES.  Base
907    decls of all ssa names used in STMT (including those defined in
908    LOOP) are replaced with the new temporary variables; the
909    replacement decls are stored in DECL_COPIES.  */
910 
911 static void
912 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
913 			       name_to_copy_table_type *name_copies,
914 			       int_tree_htab_type *decl_copies)
915 {
916   use_operand_p use;
917   def_operand_p def;
918   ssa_op_iter oi;
919   tree name, copy;
920   bool copy_name_p;
921 
922   FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
923   {
924     name = DEF_FROM_PTR (def);
925     gcc_assert (TREE_CODE (name) == SSA_NAME);
926     copy = separate_decls_in_region_name (name, name_copies, decl_copies,
927 					  false);
928     gcc_assert (copy == name);
929   }
930 
931   FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
932   {
933     name = USE_FROM_PTR (use);
934     if (TREE_CODE (name) != SSA_NAME)
935       continue;
936 
937     copy_name_p = expr_invariant_in_region_p (entry, exit, name);
938     copy = separate_decls_in_region_name (name, name_copies, decl_copies,
939 					  copy_name_p);
940     SET_USE (use, copy);
941   }
942 }
943 
944 /* Finds the ssa names used in STMT that are defined outside the
945    region between ENTRY and EXIT and replaces such ssa names with
946    their duplicates.  The duplicates are stored to NAME_COPIES.  Base
947    decls of all ssa names used in STMT (including those defined in
948    LOOP) are replaced with the new temporary variables; the
949    replacement decls are stored in DECL_COPIES.  */
950 
951 static bool
952 separate_decls_in_region_debug (gimple stmt,
953 				name_to_copy_table_type *name_copies,
954 				int_tree_htab_type *decl_copies)
955 {
956   use_operand_p use;
957   ssa_op_iter oi;
958   tree var, name;
959   struct int_tree_map ielt;
960   struct name_to_copy_elt elt;
961   name_to_copy_elt **slot;
962   int_tree_map *dslot;
963 
964   if (gimple_debug_bind_p (stmt))
965     var = gimple_debug_bind_get_var (stmt);
966   else if (gimple_debug_source_bind_p (stmt))
967     var = gimple_debug_source_bind_get_var (stmt);
968   else
969     return true;
970   if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
971     return true;
972   gcc_assert (DECL_P (var) && SSA_VAR_P (var));
973   ielt.uid = DECL_UID (var);
974   dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
975   if (!dslot)
976     return true;
977   if (gimple_debug_bind_p (stmt))
978     gimple_debug_bind_set_var (stmt, dslot->to);
979   else if (gimple_debug_source_bind_p (stmt))
980     gimple_debug_source_bind_set_var (stmt, dslot->to);
981 
982   FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
983   {
984     name = USE_FROM_PTR (use);
985     if (TREE_CODE (name) != SSA_NAME)
986       continue;
987 
988     elt.version = SSA_NAME_VERSION (name);
989     slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
990     if (!slot)
991       {
992 	gimple_debug_bind_reset_value (stmt);
993 	update_stmt (stmt);
994 	break;
995       }
996 
997     SET_USE (use, (*slot)->new_name);
998   }
999 
1000   return false;
1001 }
1002 
1003 /* Callback for htab_traverse.  Adds a field corresponding to the reduction
1004    specified in SLOT. The type is passed in DATA.  */
1005 
1006 int
1007 add_field_for_reduction (reduction_info **slot, tree type)
1008 {
1009 
1010   struct reduction_info *const red = *slot;
1011   tree var = gimple_assign_lhs (red->reduc_stmt);
1012   tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
1013 			   SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
1014 
1015   insert_field_into_struct (type, field);
1016 
1017   red->field = field;
1018 
1019   return 1;
1020 }
1021 
1022 /* Callback for htab_traverse.  Adds a field corresponding to a ssa name
1023    described in SLOT. The type is passed in DATA.  */
1024 
1025 int
1026 add_field_for_name (name_to_copy_elt **slot, tree type)
1027 {
1028   struct name_to_copy_elt *const elt = *slot;
1029   tree name = ssa_name (elt->version);
1030   tree field = build_decl (UNKNOWN_LOCATION,
1031 			   FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1032 			   TREE_TYPE (name));
1033 
1034   insert_field_into_struct (type, field);
1035   elt->field = field;
1036 
1037   return 1;
1038 }
1039 
1040 /* Callback for htab_traverse.  A local result is the intermediate result
1041    computed by a single
1042    thread, or the initial value in case no iteration was executed.
1043    This function creates a phi node reflecting these values.
1044    The phi's result will be stored in NEW_PHI field of the
1045    reduction's data structure.  */
1046 
1047 int
1048 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1049 {
1050   struct reduction_info *const reduc = *slot;
1051   edge e;
1052   gphi *new_phi;
1053   basic_block store_bb;
1054   tree local_res;
1055   source_location locus;
1056 
1057   /* STORE_BB is the block where the phi
1058      should be stored.  It is the destination of the loop exit.
1059      (Find the fallthru edge from GIMPLE_OMP_CONTINUE).  */
1060   store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1061 
1062   /* STORE_BB has two predecessors.  One coming from  the loop
1063      (the reduction's result is computed at the loop),
1064      and another coming from a block preceding the loop,
1065      when no iterations
1066      are executed (the initial value should be taken).  */
1067   if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1068     e = EDGE_PRED (store_bb, 1);
1069   else
1070     e = EDGE_PRED (store_bb, 0);
1071   local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt));
1072   locus = gimple_location (reduc->reduc_stmt);
1073   new_phi = create_phi_node (local_res, store_bb);
1074   add_phi_arg (new_phi, reduc->init, e, locus);
1075   add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1076 	       FALLTHRU_EDGE (loop->latch), locus);
1077   reduc->new_phi = new_phi;
1078 
1079   return 1;
1080 }
1081 
1082 struct clsn_data
1083 {
1084   tree store;
1085   tree load;
1086 
1087   basic_block store_bb;
1088   basic_block load_bb;
1089 };
1090 
1091 /* Callback for htab_traverse.  Create an atomic instruction for the
1092    reduction described in SLOT.
1093    DATA annotates the place in memory the atomic operation relates to,
1094    and the basic block it needs to be generated in.  */
1095 
1096 int
1097 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1098 {
1099   struct reduction_info *const reduc = *slot;
1100   gimple_stmt_iterator gsi;
1101   tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1102   tree load_struct;
1103   basic_block bb;
1104   basic_block new_bb;
1105   edge e;
1106   tree t, addr, ref, x;
1107   tree tmp_load, name;
1108   gimple load;
1109 
1110   load_struct = build_simple_mem_ref (clsn_data->load);
1111   t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1112 
1113   addr = build_addr (t, current_function_decl);
1114 
1115   /* Create phi node.  */
1116   bb = clsn_data->load_bb;
1117 
1118   gsi = gsi_last_bb (bb);
1119   e = split_block (bb, gsi_stmt (gsi));
1120   new_bb = e->dest;
1121 
1122   tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)));
1123   tmp_load = make_ssa_name (tmp_load);
1124   load = gimple_build_omp_atomic_load (tmp_load, addr);
1125   SSA_NAME_DEF_STMT (tmp_load) = load;
1126   gsi = gsi_start_bb (new_bb);
1127   gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1128 
1129   e = split_block (new_bb, load);
1130   new_bb = e->dest;
1131   gsi = gsi_start_bb (new_bb);
1132   ref = tmp_load;
1133   x = fold_build2 (reduc->reduction_code,
1134 		   TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1135 		   PHI_RESULT (reduc->new_phi));
1136 
1137   name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1138 				   GSI_CONTINUE_LINKING);
1139 
1140   gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1141   return 1;
1142 }
1143 
1144 /* Create the atomic operation at the join point of the threads.
1145    REDUCTION_LIST describes the reductions in the LOOP.
1146    LD_ST_DATA describes the shared data structure where
1147    shared data is stored in and loaded from.  */
1148 static void
1149 create_call_for_reduction (struct loop *loop,
1150 			   reduction_info_table_type *reduction_list,
1151 			   struct clsn_data *ld_st_data)
1152 {
1153   reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1154   /* Find the fallthru edge from GIMPLE_OMP_CONTINUE.  */
1155   ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1156   reduction_list
1157     ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1158 }
1159 
1160 /* Callback for htab_traverse.  Loads the final reduction value at the
1161    join point of all threads, and inserts it in the right place.  */
1162 
1163 int
1164 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1165 {
1166   struct reduction_info *const red = *slot;
1167   gimple stmt;
1168   gimple_stmt_iterator gsi;
1169   tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1170   tree load_struct;
1171   tree name;
1172   tree x;
1173 
1174   gsi = gsi_after_labels (clsn_data->load_bb);
1175   load_struct = build_simple_mem_ref (clsn_data->load);
1176   load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1177 			NULL_TREE);
1178 
1179   x = load_struct;
1180   name = PHI_RESULT (red->keep_res);
1181   stmt = gimple_build_assign (name, x);
1182 
1183   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1184 
1185   for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1186        !gsi_end_p (gsi); gsi_next (&gsi))
1187     if (gsi_stmt (gsi) == red->keep_res)
1188       {
1189 	remove_phi_node (&gsi, false);
1190 	return 1;
1191       }
1192   gcc_unreachable ();
1193 }
1194 
1195 /* Load the reduction result that was stored in LD_ST_DATA.
1196    REDUCTION_LIST describes the list of reductions that the
1197    loads should be generated for.  */
1198 static void
1199 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1200 				  struct clsn_data *ld_st_data)
1201 {
1202   gimple_stmt_iterator gsi;
1203   tree t;
1204   gimple stmt;
1205 
1206   gsi = gsi_after_labels (ld_st_data->load_bb);
1207   t = build_fold_addr_expr (ld_st_data->store);
1208   stmt = gimple_build_assign (ld_st_data->load, t);
1209 
1210   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1211 
1212   reduction_list
1213     ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1214 
1215 }
1216 
1217 /* Callback for htab_traverse.  Store the neutral value for the
1218   particular reduction's operation, e.g. 0 for PLUS_EXPR,
1219   1 for MULT_EXPR, etc. into the reduction field.
1220   The reduction is specified in SLOT. The store information is
1221   passed in DATA.  */
1222 
1223 int
1224 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1225 {
1226   struct reduction_info *const red = *slot;
1227   tree t;
1228   gimple stmt;
1229   gimple_stmt_iterator gsi;
1230   tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1231 
1232   gsi = gsi_last_bb (clsn_data->store_bb);
1233   t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1234   stmt = gimple_build_assign (t, red->initial_value);
1235   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1236 
1237   return 1;
1238 }
1239 
1240 /* Callback for htab_traverse.  Creates loads to a field of LOAD in LOAD_BB and
1241    store to a field of STORE in STORE_BB for the ssa name and its duplicate
1242    specified in SLOT.  */
1243 
1244 int
1245 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1246 				  struct clsn_data *clsn_data)
1247 {
1248   struct name_to_copy_elt *const elt = *slot;
1249   tree t;
1250   gimple stmt;
1251   gimple_stmt_iterator gsi;
1252   tree type = TREE_TYPE (elt->new_name);
1253   tree load_struct;
1254 
1255   gsi = gsi_last_bb (clsn_data->store_bb);
1256   t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1257   stmt = gimple_build_assign (t, ssa_name (elt->version));
1258   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1259 
1260   gsi = gsi_last_bb (clsn_data->load_bb);
1261   load_struct = build_simple_mem_ref (clsn_data->load);
1262   t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1263   stmt = gimple_build_assign (elt->new_name, t);
1264   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1265 
1266   return 1;
1267 }
1268 
1269 /* Moves all the variables used in LOOP and defined outside of it (including
1270    the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1271    name) to a structure created for this purpose.  The code
1272 
1273    while (1)
1274      {
1275        use (a);
1276        use (b);
1277      }
1278 
1279    is transformed this way:
1280 
1281    bb0:
1282    old.a = a;
1283    old.b = b;
1284 
1285    bb1:
1286    a' = new->a;
1287    b' = new->b;
1288    while (1)
1289      {
1290        use (a');
1291        use (b');
1292      }
1293 
1294    `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT.  The
1295    pointer `new' is intentionally not initialized (the loop will be split to a
1296    separate function later, and `new' will be initialized from its arguments).
1297    LD_ST_DATA holds information about the shared data structure used to pass
1298    information among the threads.  It is initialized here, and
1299    gen_parallel_loop will pass it to create_call_for_reduction that
1300    needs this information.  REDUCTION_LIST describes the reductions
1301    in LOOP.  */
1302 
1303 static void
1304 separate_decls_in_region (edge entry, edge exit,
1305 			  reduction_info_table_type *reduction_list,
1306 			  tree *arg_struct, tree *new_arg_struct,
1307 			  struct clsn_data *ld_st_data)
1308 
1309 {
1310   basic_block bb1 = split_edge (entry);
1311   basic_block bb0 = single_pred (bb1);
1312   name_to_copy_table_type name_copies (10);
1313   int_tree_htab_type decl_copies (10);
1314   unsigned i;
1315   tree type, type_name, nvar;
1316   gimple_stmt_iterator gsi;
1317   struct clsn_data clsn_data;
1318   auto_vec<basic_block, 3> body;
1319   basic_block bb;
1320   basic_block entry_bb = bb1;
1321   basic_block exit_bb = exit->dest;
1322   bool has_debug_stmt = false;
1323 
1324   entry = single_succ_edge (entry_bb);
1325   gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1326 
1327   FOR_EACH_VEC_ELT (body, i, bb)
1328     {
1329       if (bb != entry_bb && bb != exit_bb)
1330 	{
1331 	  for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1332 	    separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1333 					   &name_copies, &decl_copies);
1334 
1335 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1336 	    {
1337 	      gimple stmt = gsi_stmt (gsi);
1338 
1339 	      if (is_gimple_debug (stmt))
1340 		has_debug_stmt = true;
1341 	      else
1342 		separate_decls_in_region_stmt (entry, exit, stmt,
1343 					       &name_copies, &decl_copies);
1344 	    }
1345 	}
1346     }
1347 
1348   /* Now process debug bind stmts.  We must not create decls while
1349      processing debug stmts, so we defer their processing so as to
1350      make sure we will have debug info for as many variables as
1351      possible (all of those that were dealt with in the loop above),
1352      and discard those for which we know there's nothing we can
1353      do.  */
1354   if (has_debug_stmt)
1355     FOR_EACH_VEC_ELT (body, i, bb)
1356       if (bb != entry_bb && bb != exit_bb)
1357 	{
1358 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1359 	    {
1360 	      gimple stmt = gsi_stmt (gsi);
1361 
1362 	      if (is_gimple_debug (stmt))
1363 		{
1364 		  if (separate_decls_in_region_debug (stmt, &name_copies,
1365 						      &decl_copies))
1366 		    {
1367 		      gsi_remove (&gsi, true);
1368 		      continue;
1369 		    }
1370 		}
1371 
1372 	      gsi_next (&gsi);
1373 	    }
1374 	}
1375 
1376   if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1377     {
1378       /* It may happen that there is nothing to copy (if there are only
1379          loop carried and external variables in the loop).  */
1380       *arg_struct = NULL;
1381       *new_arg_struct = NULL;
1382     }
1383   else
1384     {
1385       /* Create the type for the structure to store the ssa names to.  */
1386       type = lang_hooks.types.make_type (RECORD_TYPE);
1387       type_name = build_decl (UNKNOWN_LOCATION,
1388 			      TYPE_DECL, create_tmp_var_name (".paral_data"),
1389 			      type);
1390       TYPE_NAME (type) = type_name;
1391 
1392       name_copies.traverse <tree, add_field_for_name> (type);
1393       if (reduction_list && reduction_list->elements () > 0)
1394 	{
1395 	  /* Create the fields for reductions.  */
1396 	  reduction_list->traverse <tree, add_field_for_reduction> (type);
1397 	}
1398       layout_type (type);
1399 
1400       /* Create the loads and stores.  */
1401       *arg_struct = create_tmp_var (type, ".paral_data_store");
1402       nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1403       *new_arg_struct = make_ssa_name (nvar);
1404 
1405       ld_st_data->store = *arg_struct;
1406       ld_st_data->load = *new_arg_struct;
1407       ld_st_data->store_bb = bb0;
1408       ld_st_data->load_bb = bb1;
1409 
1410       name_copies
1411 	.traverse <struct clsn_data *, create_loads_and_stores_for_name>
1412 		  (ld_st_data);
1413 
1414       /* Load the calculation from memory (after the join of the threads).  */
1415 
1416       if (reduction_list && reduction_list->elements () > 0)
1417 	{
1418 	  reduction_list
1419 	    ->traverse <struct clsn_data *, create_stores_for_reduction>
1420 	    (ld_st_data);
1421 	  clsn_data.load = make_ssa_name (nvar);
1422 	  clsn_data.load_bb = exit->dest;
1423 	  clsn_data.store = ld_st_data->store;
1424 	  create_final_loads_for_reduction (reduction_list, &clsn_data);
1425 	}
1426     }
1427 }
1428 
1429 /* Returns true if FN was created to run in parallel.  */
1430 
1431 bool
1432 parallelized_function_p (tree fndecl)
1433 {
1434   cgraph_node *node = cgraph_node::get (fndecl);
1435   gcc_assert (node != NULL);
1436   return node->parallelized_function;
1437 }
1438 
1439 /* Creates and returns an empty function that will receive the body of
1440    a parallelized loop.  */
1441 
1442 static tree
1443 create_loop_fn (location_t loc)
1444 {
1445   char buf[100];
1446   char *tname;
1447   tree decl, type, name, t;
1448   struct function *act_cfun = cfun;
1449   static unsigned loopfn_num;
1450 
1451   loc = LOCATION_LOCUS (loc);
1452   snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1453   ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1454   clean_symbol_name (tname);
1455   name = get_identifier (tname);
1456   type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1457 
1458   decl = build_decl (loc, FUNCTION_DECL, name, type);
1459   TREE_STATIC (decl) = 1;
1460   TREE_USED (decl) = 1;
1461   DECL_ARTIFICIAL (decl) = 1;
1462   DECL_IGNORED_P (decl) = 0;
1463   TREE_PUBLIC (decl) = 0;
1464   DECL_UNINLINABLE (decl) = 1;
1465   DECL_EXTERNAL (decl) = 0;
1466   DECL_CONTEXT (decl) = NULL_TREE;
1467   DECL_INITIAL (decl) = make_node (BLOCK);
1468 
1469   t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1470   DECL_ARTIFICIAL (t) = 1;
1471   DECL_IGNORED_P (t) = 1;
1472   DECL_RESULT (decl) = t;
1473 
1474   t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1475 		  ptr_type_node);
1476   DECL_ARTIFICIAL (t) = 1;
1477   DECL_ARG_TYPE (t) = ptr_type_node;
1478   DECL_CONTEXT (t) = decl;
1479   TREE_USED (t) = 1;
1480   DECL_ARGUMENTS (decl) = t;
1481 
1482   allocate_struct_function (decl, false);
1483 
1484   /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1485      it.  */
1486   set_cfun (act_cfun);
1487 
1488   return decl;
1489 }
1490 
1491 /* Moves the exit condition of LOOP to the beginning of its header, and
1492    duplicates the part of the last iteration that gets disabled to the
1493    exit of the loop.  NIT is the number of iterations of the loop
1494    (used to initialize the variables in the duplicated part).
1495 
1496    TODO: the common case is that latch of the loop is empty and immediately
1497    follows the loop exit.  In this case, it would be better not to copy the
1498    body of the loop, but only move the entry of the loop directly before the
1499    exit check and increase the number of iterations of the loop by one.
1500    This may need some additional preconditioning in case NIT = ~0.
1501    REDUCTION_LIST describes the reductions in LOOP.  */
1502 
1503 static void
1504 transform_to_exit_first_loop (struct loop *loop,
1505 			      reduction_info_table_type *reduction_list,
1506 			      tree nit)
1507 {
1508   basic_block *bbs, *nbbs, ex_bb, orig_header;
1509   unsigned n;
1510   bool ok;
1511   edge exit = single_dom_exit (loop), hpred;
1512   tree control, control_name, res, t;
1513   gphi *phi, *nphi;
1514   gassign *stmt;
1515   gcond *cond_stmt, *cond_nit;
1516   tree nit_1;
1517 
1518   split_block_after_labels (loop->header);
1519   orig_header = single_succ (loop->header);
1520   hpred = single_succ_edge (loop->header);
1521 
1522   cond_stmt = as_a <gcond *> (last_stmt (exit->src));
1523   control = gimple_cond_lhs (cond_stmt);
1524   gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1525 
1526   /* Make sure that we have phi nodes on exit for all loop header phis
1527      (create_parallel_loop requires that).  */
1528   for (gphi_iterator gsi = gsi_start_phis (loop->header);
1529        !gsi_end_p (gsi);
1530        gsi_next (&gsi))
1531     {
1532       phi = gsi.phi ();
1533       res = PHI_RESULT (phi);
1534       t = copy_ssa_name (res, phi);
1535       SET_PHI_RESULT (phi, t);
1536       nphi = create_phi_node (res, orig_header);
1537       add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1538 
1539       if (res == control)
1540 	{
1541 	  gimple_cond_set_lhs (cond_stmt, t);
1542 	  update_stmt (cond_stmt);
1543 	  control = t;
1544 	}
1545     }
1546 
1547   bbs = get_loop_body_in_dom_order (loop);
1548 
1549   for (n = 0; bbs[n] != exit->src; n++)
1550    continue;
1551   nbbs = XNEWVEC (basic_block, n);
1552   ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1553 				   bbs + 1, n, nbbs);
1554   gcc_assert (ok);
1555   free (bbs);
1556   ex_bb = nbbs[0];
1557   free (nbbs);
1558 
1559   /* Other than reductions, the only gimple reg that should be copied
1560      out of the loop is the control variable.  */
1561   exit = single_dom_exit (loop);
1562   control_name = NULL_TREE;
1563   for (gphi_iterator gsi = gsi_start_phis (ex_bb);
1564        !gsi_end_p (gsi); )
1565     {
1566       phi = gsi.phi ();
1567       res = PHI_RESULT (phi);
1568       if (virtual_operand_p (res))
1569 	{
1570 	  gsi_next (&gsi);
1571 	  continue;
1572 	}
1573 
1574       /* Check if it is a part of reduction.  If it is,
1575          keep the phi at the reduction's keep_res field.  The
1576          PHI_RESULT of this phi is the resulting value of the reduction
1577          variable when exiting the loop.  */
1578 
1579       if (reduction_list->elements () > 0)
1580 	{
1581 	  struct reduction_info *red;
1582 
1583 	  tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1584 	  red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1585 	  if (red)
1586 	    {
1587 	      red->keep_res = phi;
1588 	      gsi_next (&gsi);
1589 	      continue;
1590 	    }
1591 	}
1592       gcc_assert (control_name == NULL_TREE
1593 		  && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1594       control_name = res;
1595       remove_phi_node (&gsi, false);
1596     }
1597   gcc_assert (control_name != NULL_TREE);
1598 
1599   /* Initialize the control variable to number of iterations
1600      according to the rhs of the exit condition.  */
1601   gimple_stmt_iterator gsi = gsi_after_labels (ex_bb);
1602   cond_nit = as_a <gcond *> (last_stmt (exit->src));
1603   nit_1 =  gimple_cond_rhs (cond_nit);
1604   nit_1 = force_gimple_operand_gsi (&gsi,
1605 				  fold_convert (TREE_TYPE (control_name), nit_1),
1606 				  false, NULL_TREE, false, GSI_SAME_STMT);
1607   stmt = gimple_build_assign (control_name, nit_1);
1608   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1609 }
1610 
1611 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1612    LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1613    NEW_DATA is the variable that should be initialized from the argument
1614    of LOOP_FN.  N_THREADS is the requested number of threads.  Returns the
1615    basic block containing GIMPLE_OMP_PARALLEL tree.  */
1616 
1617 static basic_block
1618 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1619 		      tree new_data, unsigned n_threads, location_t loc)
1620 {
1621   gimple_stmt_iterator gsi;
1622   basic_block bb, paral_bb, for_bb, ex_bb;
1623   tree t, param;
1624   gomp_parallel *omp_par_stmt;
1625   gimple omp_return_stmt1, omp_return_stmt2;
1626   gimple phi;
1627   gcond *cond_stmt;
1628   gomp_for *for_stmt;
1629   gomp_continue *omp_cont_stmt;
1630   tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1631   edge exit, nexit, guard, end, e;
1632 
1633   /* Prepare the GIMPLE_OMP_PARALLEL statement.  */
1634   bb = loop_preheader_edge (loop)->src;
1635   paral_bb = single_pred (bb);
1636   gsi = gsi_last_bb (paral_bb);
1637 
1638   t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1639   OMP_CLAUSE_NUM_THREADS_EXPR (t)
1640     = build_int_cst (integer_type_node, n_threads);
1641   omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1642   gimple_set_location (omp_par_stmt, loc);
1643 
1644   gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT);
1645 
1646   /* Initialize NEW_DATA.  */
1647   if (data)
1648     {
1649       gassign *assign_stmt;
1650 
1651       gsi = gsi_after_labels (bb);
1652 
1653       param = make_ssa_name (DECL_ARGUMENTS (loop_fn));
1654       assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1655       gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1656 
1657       assign_stmt = gimple_build_assign (new_data,
1658 				  fold_convert (TREE_TYPE (new_data), param));
1659       gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT);
1660     }
1661 
1662   /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL.  */
1663   bb = split_loop_exit_edge (single_dom_exit (loop));
1664   gsi = gsi_last_bb (bb);
1665   omp_return_stmt1 = gimple_build_omp_return (false);
1666   gimple_set_location (omp_return_stmt1, loc);
1667   gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT);
1668 
1669   /* Extract data for GIMPLE_OMP_FOR.  */
1670   gcc_assert (loop->header == single_dom_exit (loop)->src);
1671   cond_stmt = as_a <gcond *> (last_stmt (loop->header));
1672 
1673   cvar = gimple_cond_lhs (cond_stmt);
1674   cvar_base = SSA_NAME_VAR (cvar);
1675   phi = SSA_NAME_DEF_STMT (cvar);
1676   cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1677   initvar = copy_ssa_name (cvar);
1678   SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1679 	   initvar);
1680   cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1681 
1682   gsi = gsi_last_nondebug_bb (loop->latch);
1683   gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1684   gsi_remove (&gsi, true);
1685 
1686   /* Prepare cfg.  */
1687   for_bb = split_edge (loop_preheader_edge (loop));
1688   ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1689   extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1690   gcc_assert (exit == single_dom_exit (loop));
1691 
1692   guard = make_edge (for_bb, ex_bb, 0);
1693   single_succ_edge (loop->latch)->flags = 0;
1694   end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1695   for (gphi_iterator gpi = gsi_start_phis (ex_bb);
1696        !gsi_end_p (gpi); gsi_next (&gpi))
1697     {
1698       source_location locus;
1699       tree def;
1700       gphi *phi = gpi.phi ();
1701       gphi *stmt;
1702 
1703       stmt = as_a <gphi *> (
1704 	       SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit)));
1705 
1706       def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1707       locus = gimple_phi_arg_location_from_edge (stmt,
1708 						 loop_preheader_edge (loop));
1709       add_phi_arg (phi, def, guard, locus);
1710 
1711       def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1712       locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1713       add_phi_arg (phi, def, end, locus);
1714     }
1715   e = redirect_edge_and_branch (exit, nexit->dest);
1716   PENDING_STMT (e) = NULL;
1717 
1718   /* Emit GIMPLE_OMP_FOR.  */
1719   gimple_cond_set_lhs (cond_stmt, cvar_base);
1720   type = TREE_TYPE (cvar);
1721   t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1722   OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1723 
1724   for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
1725   gimple_set_location (for_stmt, loc);
1726   gimple_omp_for_set_index (for_stmt, 0, initvar);
1727   gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1728   gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1729   gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1730   gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1731 						cvar_base,
1732 						build_int_cst (type, 1)));
1733 
1734   gsi = gsi_last_bb (for_bb);
1735   gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1736   SSA_NAME_DEF_STMT (initvar) = for_stmt;
1737 
1738   /* Emit GIMPLE_OMP_CONTINUE.  */
1739   gsi = gsi_last_bb (loop->latch);
1740   omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar);
1741   gimple_set_location (omp_cont_stmt, loc);
1742   gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT);
1743   SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt;
1744 
1745   /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR.  */
1746   gsi = gsi_last_bb (ex_bb);
1747   omp_return_stmt2 = gimple_build_omp_return (true);
1748   gimple_set_location (omp_return_stmt2, loc);
1749   gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT);
1750 
1751   /* After the above dom info is hosed.  Re-compute it.  */
1752   free_dominance_info (CDI_DOMINATORS);
1753   calculate_dominance_info (CDI_DOMINATORS);
1754 
1755   return paral_bb;
1756 }
1757 
1758 /* Generates code to execute the iterations of LOOP in N_THREADS
1759    threads in parallel.
1760 
1761    NITER describes number of iterations of LOOP.
1762    REDUCTION_LIST describes the reductions existent in the LOOP.  */
1763 
1764 static void
1765 gen_parallel_loop (struct loop *loop,
1766 		   reduction_info_table_type *reduction_list,
1767 		   unsigned n_threads, struct tree_niter_desc *niter)
1768 {
1769   tree many_iterations_cond, type, nit;
1770   tree arg_struct, new_arg_struct;
1771   gimple_seq stmts;
1772   edge entry, exit;
1773   struct clsn_data clsn_data;
1774   unsigned prob;
1775   location_t loc;
1776   gimple cond_stmt;
1777   unsigned int m_p_thread=2;
1778 
1779   /* From
1780 
1781      ---------------------------------------------------------------------
1782      loop
1783        {
1784 	 IV = phi (INIT, IV + STEP)
1785 	 BODY1;
1786 	 if (COND)
1787 	   break;
1788 	 BODY2;
1789        }
1790      ---------------------------------------------------------------------
1791 
1792      with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1793      we generate the following code:
1794 
1795      ---------------------------------------------------------------------
1796 
1797      if (MAY_BE_ZERO
1798      || NITER < MIN_PER_THREAD * N_THREADS)
1799      goto original;
1800 
1801      BODY1;
1802      store all local loop-invariant variables used in body of the loop to DATA.
1803      GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1804      load the variables from DATA.
1805      GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1806      BODY2;
1807      BODY1;
1808      GIMPLE_OMP_CONTINUE;
1809      GIMPLE_OMP_RETURN         -- GIMPLE_OMP_FOR
1810      GIMPLE_OMP_RETURN         -- GIMPLE_OMP_PARALLEL
1811      goto end;
1812 
1813      original:
1814      loop
1815        {
1816 	 IV = phi (INIT, IV + STEP)
1817 	 BODY1;
1818 	 if (COND)
1819 	   break;
1820 	 BODY2;
1821        }
1822 
1823      end:
1824 
1825    */
1826 
1827   /* Create two versions of the loop -- in the old one, we know that the
1828      number of iterations is large enough, and we will transform it into the
1829      loop that will be split to loop_fn, the new one will be used for the
1830      remaining iterations.  */
1831 
1832   /* We should compute a better number-of-iterations value for outer loops.
1833      That is, if we have
1834 
1835     for (i = 0; i < n; ++i)
1836       for (j = 0; j < m; ++j)
1837         ...
1838 
1839     we should compute nit = n * m, not nit = n.
1840     Also may_be_zero handling would need to be adjusted.  */
1841 
1842   type = TREE_TYPE (niter->niter);
1843   nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1844 			      NULL_TREE);
1845   if (stmts)
1846     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1847 
1848   if (loop->inner)
1849     m_p_thread=2;
1850   else
1851     m_p_thread=MIN_PER_THREAD;
1852 
1853    many_iterations_cond =
1854      fold_build2 (GE_EXPR, boolean_type_node,
1855                 nit, build_int_cst (type, m_p_thread * n_threads));
1856 
1857   many_iterations_cond
1858     = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1859 		   invert_truthvalue (unshare_expr (niter->may_be_zero)),
1860 		   many_iterations_cond);
1861   many_iterations_cond
1862     = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1863   if (stmts)
1864     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1865   if (!is_gimple_condexpr (many_iterations_cond))
1866     {
1867       many_iterations_cond
1868 	= force_gimple_operand (many_iterations_cond, &stmts,
1869 				true, NULL_TREE);
1870       if (stmts)
1871 	gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1872     }
1873 
1874   initialize_original_copy_tables ();
1875 
1876   /* We assume that the loop usually iterates a lot.  */
1877   prob = 4 * REG_BR_PROB_BASE / 5;
1878   loop_version (loop, many_iterations_cond, NULL,
1879 		prob, prob, REG_BR_PROB_BASE - prob, true);
1880   update_ssa (TODO_update_ssa);
1881   free_original_copy_tables ();
1882 
1883   /* Base all the induction variables in LOOP on a single control one.  */
1884   canonicalize_loop_ivs (loop, &nit, true);
1885 
1886   /* Ensure that the exit condition is the first statement in the loop.  */
1887   transform_to_exit_first_loop (loop, reduction_list, nit);
1888 
1889   /* Generate initializations for reductions.  */
1890   if (reduction_list->elements () > 0)
1891     reduction_list->traverse <struct loop *, initialize_reductions> (loop);
1892 
1893   /* Eliminate the references to local variables from the loop.  */
1894   gcc_assert (single_exit (loop));
1895   entry = loop_preheader_edge (loop);
1896   exit = single_dom_exit (loop);
1897 
1898   eliminate_local_variables (entry, exit);
1899   /* In the old loop, move all variables non-local to the loop to a structure
1900      and back, and create separate decls for the variables used in loop.  */
1901   separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1902 			    &new_arg_struct, &clsn_data);
1903 
1904   /* Create the parallel constructs.  */
1905   loc = UNKNOWN_LOCATION;
1906   cond_stmt = last_stmt (loop->header);
1907   if (cond_stmt)
1908     loc = gimple_location (cond_stmt);
1909   create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1910 			new_arg_struct, n_threads, loc);
1911   if (reduction_list->elements () > 0)
1912     create_call_for_reduction (loop, reduction_list, &clsn_data);
1913 
1914   scev_reset ();
1915 
1916   /* Cancel the loop (it is simpler to do it here rather than to teach the
1917      expander to do it).  */
1918   cancel_loop_tree (loop);
1919 
1920   /* Free loop bound estimations that could contain references to
1921      removed statements.  */
1922   FOR_EACH_LOOP (loop, 0)
1923     free_numbers_of_iterations_estimates_loop (loop);
1924 }
1925 
1926 /* Returns true when LOOP contains vector phi nodes.  */
1927 
1928 static bool
1929 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1930 {
1931   unsigned i;
1932   basic_block *bbs = get_loop_body_in_dom_order (loop);
1933   gphi_iterator gsi;
1934   bool res = true;
1935 
1936   for (i = 0; i < loop->num_nodes; i++)
1937     for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1938       if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE)
1939 	goto end;
1940 
1941   res = false;
1942  end:
1943   free (bbs);
1944   return res;
1945 }
1946 
1947 /* Create a reduction_info struct, initialize it with REDUC_STMT
1948    and PHI, insert it to the REDUCTION_LIST.  */
1949 
1950 static void
1951 build_new_reduction (reduction_info_table_type *reduction_list,
1952 		     gimple reduc_stmt, gphi *phi)
1953 {
1954   reduction_info **slot;
1955   struct reduction_info *new_reduction;
1956 
1957   gcc_assert (reduc_stmt);
1958 
1959   if (dump_file && (dump_flags & TDF_DETAILS))
1960     {
1961       fprintf (dump_file,
1962 	       "Detected reduction. reduction stmt is: \n");
1963       print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1964       fprintf (dump_file, "\n");
1965     }
1966 
1967   new_reduction = XCNEW (struct reduction_info);
1968 
1969   new_reduction->reduc_stmt = reduc_stmt;
1970   new_reduction->reduc_phi = phi;
1971   new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1972   new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1973   slot = reduction_list->find_slot (new_reduction, INSERT);
1974   *slot = new_reduction;
1975 }
1976 
1977 /* Callback for htab_traverse.  Sets gimple_uid of reduc_phi stmts.  */
1978 
1979 int
1980 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
1981 {
1982   struct reduction_info *const red = *slot;
1983   gimple_set_uid (red->reduc_phi, red->reduc_version);
1984   return 1;
1985 }
1986 
1987 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST.  */
1988 
1989 static void
1990 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
1991 {
1992   gphi_iterator gsi;
1993   loop_vec_info simple_loop_info;
1994 
1995   simple_loop_info = vect_analyze_loop_form (loop);
1996 
1997   for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1998     {
1999       gphi *phi = gsi.phi ();
2000       affine_iv iv;
2001       tree res = PHI_RESULT (phi);
2002       bool double_reduc;
2003 
2004       if (virtual_operand_p (res))
2005 	continue;
2006 
2007       if (!simple_iv (loop, loop, res, &iv, true)
2008 	&& simple_loop_info)
2009 	{
2010            gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
2011 							    phi, true,
2012 							    &double_reduc);
2013 	   if (reduc_stmt && !double_reduc)
2014               build_new_reduction (reduction_list, reduc_stmt, phi);
2015         }
2016     }
2017   destroy_loop_vec_info (simple_loop_info, true);
2018 
2019   /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2020      and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2021      only now.  */
2022   reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2023 }
2024 
2025 /* Try to initialize NITER for code generation part.  */
2026 
2027 static bool
2028 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2029 {
2030   edge exit = single_dom_exit (loop);
2031 
2032   gcc_assert (exit);
2033 
2034   /* We need to know # of iterations, and there should be no uses of values
2035      defined inside loop outside of it, unless the values are invariants of
2036      the loop.  */
2037   if (!number_of_iterations_exit (loop, exit, niter, false))
2038     {
2039       if (dump_file && (dump_flags & TDF_DETAILS))
2040 	fprintf (dump_file, "  FAILED: number of iterations not known\n");
2041       return false;
2042     }
2043 
2044   return true;
2045 }
2046 
2047 /* Try to initialize REDUCTION_LIST for code generation part.
2048    REDUCTION_LIST describes the reductions.  */
2049 
2050 static bool
2051 try_create_reduction_list (loop_p loop,
2052 			   reduction_info_table_type *reduction_list)
2053 {
2054   edge exit = single_dom_exit (loop);
2055   gphi_iterator gsi;
2056 
2057   gcc_assert (exit);
2058 
2059   gather_scalar_reductions (loop, reduction_list);
2060 
2061 
2062   for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2063     {
2064       gphi *phi = gsi.phi ();
2065       struct reduction_info *red;
2066       imm_use_iterator imm_iter;
2067       use_operand_p use_p;
2068       gimple reduc_phi;
2069       tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2070 
2071       if (!virtual_operand_p (val))
2072 	{
2073 	  if (dump_file && (dump_flags & TDF_DETAILS))
2074 	    {
2075 	      fprintf (dump_file, "phi is ");
2076 	      print_gimple_stmt (dump_file, phi, 0, 0);
2077 	      fprintf (dump_file, "arg of phi to exit:   value ");
2078 	      print_generic_expr (dump_file, val, 0);
2079 	      fprintf (dump_file, " used outside loop\n");
2080 	      fprintf (dump_file,
2081 		       "  checking if it a part of reduction pattern:  \n");
2082 	    }
2083 	  if (reduction_list->elements () == 0)
2084 	    {
2085 	      if (dump_file && (dump_flags & TDF_DETAILS))
2086 		fprintf (dump_file,
2087 			 "  FAILED: it is not a part of reduction.\n");
2088 	      return false;
2089 	    }
2090 	  reduc_phi = NULL;
2091 	  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2092 	    {
2093 	      if (!gimple_debug_bind_p (USE_STMT (use_p))
2094 		  && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2095 		{
2096 		  reduc_phi = USE_STMT (use_p);
2097 		  break;
2098 		}
2099 	    }
2100 	  red = reduction_phi (reduction_list, reduc_phi);
2101 	  if (red == NULL)
2102 	    {
2103 	      if (dump_file && (dump_flags & TDF_DETAILS))
2104 		fprintf (dump_file,
2105 			 "  FAILED: it is not a part of reduction.\n");
2106 	      return false;
2107 	    }
2108 	  if (dump_file && (dump_flags & TDF_DETAILS))
2109 	    {
2110 	      fprintf (dump_file, "reduction phi is  ");
2111 	      print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2112 	      fprintf (dump_file, "reduction stmt is  ");
2113 	      print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2114 	    }
2115 	}
2116     }
2117 
2118   /* The iterations of the loop may communicate only through bivs whose
2119      iteration space can be distributed efficiently.  */
2120   for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2121     {
2122       gphi *phi = gsi.phi ();
2123       tree def = PHI_RESULT (phi);
2124       affine_iv iv;
2125 
2126       if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2127 	{
2128 	  struct reduction_info *red;
2129 
2130 	  red = reduction_phi (reduction_list, phi);
2131 	  if (red == NULL)
2132 	    {
2133 	      if (dump_file && (dump_flags & TDF_DETAILS))
2134 		fprintf (dump_file,
2135 			 "  FAILED: scalar dependency between iterations\n");
2136 	      return false;
2137 	    }
2138 	}
2139     }
2140 
2141 
2142   return true;
2143 }
2144 
2145 /* Detect parallel loops and generate parallel code using libgomp
2146    primitives.  Returns true if some loop was parallelized, false
2147    otherwise.  */
2148 
2149 static bool
2150 parallelize_loops (void)
2151 {
2152   unsigned n_threads = flag_tree_parallelize_loops;
2153   bool changed = false;
2154   struct loop *loop;
2155   struct tree_niter_desc niter_desc;
2156   struct obstack parloop_obstack;
2157   HOST_WIDE_INT estimated;
2158   source_location loop_loc;
2159 
2160   /* Do not parallelize loops in the functions created by parallelization.  */
2161   if (parallelized_function_p (cfun->decl))
2162     return false;
2163   if (cfun->has_nonlocal_label)
2164     return false;
2165 
2166   gcc_obstack_init (&parloop_obstack);
2167   reduction_info_table_type reduction_list (10);
2168   init_stmt_vec_info_vec ();
2169 
2170   FOR_EACH_LOOP (loop, 0)
2171     {
2172       reduction_list.empty ();
2173       if (dump_file && (dump_flags & TDF_DETAILS))
2174       {
2175         fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2176 	if (loop->inner)
2177 	  fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2178 	else
2179 	  fprintf (dump_file, "loop %d is innermost\n",loop->num);
2180       }
2181 
2182       /* If we use autopar in graphite pass, we use its marked dependency
2183       checking results.  */
2184       if (flag_loop_parallelize_all && !loop->can_be_parallel)
2185       {
2186         if (dump_file && (dump_flags & TDF_DETAILS))
2187 	   fprintf (dump_file, "loop is not parallel according to graphite\n");
2188 	continue;
2189       }
2190 
2191       if (!single_dom_exit (loop))
2192       {
2193 
2194         if (dump_file && (dump_flags & TDF_DETAILS))
2195 	  fprintf (dump_file, "loop is !single_dom_exit\n");
2196 
2197 	continue;
2198       }
2199 
2200       if (/* And of course, the loop must be parallelizable.  */
2201 	  !can_duplicate_loop_p (loop)
2202 	  || loop_has_blocks_with_irreducible_flag (loop)
2203 	  || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2204 	  /* FIXME: the check for vector phi nodes could be removed.  */
2205 	  || loop_has_vector_phi_nodes (loop))
2206 	continue;
2207 
2208       estimated = estimated_stmt_executions_int (loop);
2209       if (estimated == -1)
2210 	estimated = max_stmt_executions_int (loop);
2211       /* FIXME: Bypass this check as graphite doesn't update the
2212 	 count and frequency correctly now.  */
2213       if (!flag_loop_parallelize_all
2214 	  && ((estimated != -1
2215 	       && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2216 	      /* Do not bother with loops in cold areas.  */
2217 	      || optimize_loop_nest_for_size_p (loop)))
2218 	continue;
2219 
2220       if (!try_get_loop_niter (loop, &niter_desc))
2221 	continue;
2222 
2223       if (!try_create_reduction_list (loop, &reduction_list))
2224 	continue;
2225 
2226       if (!flag_loop_parallelize_all
2227 	  && !loop_parallel_p (loop, &parloop_obstack))
2228 	continue;
2229 
2230       changed = true;
2231       if (dump_file && (dump_flags & TDF_DETAILS))
2232       {
2233 	if (loop->inner)
2234 	  fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2235 	else
2236 	  fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2237 	loop_loc = find_loop_location (loop);
2238 	if (loop_loc != UNKNOWN_LOCATION)
2239 	  fprintf (dump_file, "\nloop at %s:%d: ",
2240 		   LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2241       }
2242       gen_parallel_loop (loop, &reduction_list,
2243 			 n_threads, &niter_desc);
2244     }
2245 
2246   free_stmt_vec_info_vec ();
2247   obstack_free (&parloop_obstack, NULL);
2248 
2249   /* Parallelization will cause new function calls to be inserted through
2250      which local variables will escape.  Reset the points-to solution
2251      for ESCAPED.  */
2252   if (changed)
2253     pt_solution_reset (&cfun->gimple_df->escaped);
2254 
2255   return changed;
2256 }
2257 
2258 /* Parallelization.  */
2259 
2260 namespace {
2261 
2262 const pass_data pass_data_parallelize_loops =
2263 {
2264   GIMPLE_PASS, /* type */
2265   "parloops", /* name */
2266   OPTGROUP_LOOP, /* optinfo_flags */
2267   TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2268   ( PROP_cfg | PROP_ssa ), /* properties_required */
2269   0, /* properties_provided */
2270   0, /* properties_destroyed */
2271   0, /* todo_flags_start */
2272   0, /* todo_flags_finish */
2273 };
2274 
2275 class pass_parallelize_loops : public gimple_opt_pass
2276 {
2277 public:
2278   pass_parallelize_loops (gcc::context *ctxt)
2279     : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2280   {}
2281 
2282   /* opt_pass methods: */
2283   virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2284   virtual unsigned int execute (function *);
2285 
2286 }; // class pass_parallelize_loops
2287 
2288 unsigned
2289 pass_parallelize_loops::execute (function *fun)
2290 {
2291   if (number_of_loops (fun) <= 1)
2292     return 0;
2293 
2294   if (parallelize_loops ())
2295     {
2296       fun->curr_properties &= ~(PROP_gimple_eomp);
2297       return TODO_update_ssa;
2298     }
2299 
2300   return 0;
2301 }
2302 
2303 } // anon namespace
2304 
2305 gimple_opt_pass *
2306 make_pass_parallelize_loops (gcc::context *ctxt)
2307 {
2308   return new pass_parallelize_loops (ctxt);
2309 }
2310