1 /* Loop autoparallelization. 2 Copyright (C) 2006-2019 Free Software Foundation, Inc. 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> 4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>. 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "backend.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "cfghooks.h" 29 #include "tree-pass.h" 30 #include "ssa.h" 31 #include "cgraph.h" 32 #include "gimple-pretty-print.h" 33 #include "fold-const.h" 34 #include "gimplify.h" 35 #include "gimple-iterator.h" 36 #include "gimplify-me.h" 37 #include "gimple-walk.h" 38 #include "stor-layout.h" 39 #include "tree-nested.h" 40 #include "tree-cfg.h" 41 #include "tree-ssa-loop-ivopts.h" 42 #include "tree-ssa-loop-manip.h" 43 #include "tree-ssa-loop-niter.h" 44 #include "tree-ssa-loop.h" 45 #include "tree-into-ssa.h" 46 #include "cfgloop.h" 47 #include "tree-scalar-evolution.h" 48 #include "langhooks.h" 49 #include "tree-vectorizer.h" 50 #include "tree-hasher.h" 51 #include "tree-parloops.h" 52 #include "omp-general.h" 53 #include "omp-low.h" 54 #include "tree-ssa.h" 55 #include "params.h" 56 #include "params-enum.h" 57 #include "tree-ssa-alias.h" 58 #include "tree-eh.h" 59 #include "gomp-constants.h" 60 #include "tree-dfa.h" 61 #include "stringpool.h" 62 #include "attribs.h" 63 64 /* This pass tries to distribute iterations of loops into several threads. 65 The implementation is straightforward -- for each loop we test whether its 66 iterations are independent, and if it is the case (and some additional 67 conditions regarding profitability and correctness are satisfied), we 68 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion 69 machinery do its job. 70 71 The most of the complexity is in bringing the code into shape expected 72 by the omp expanders: 73 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction 74 variable and that the exit test is at the start of the loop body 75 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable 76 variables by accesses through pointers, and breaking up ssa chains 77 by storing the values incoming to the parallelized loop to a structure 78 passed to the new function as an argument (something similar is done 79 in omp gimplification, unfortunately only a small part of the code 80 can be shared). 81 82 TODO: 83 -- if there are several parallelizable loops in a function, it may be 84 possible to generate the threads just once (using synchronization to 85 ensure that cross-loop dependences are obeyed). 86 -- handling of common reduction patterns for outer loops. 87 88 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */ 89 /* 90 Reduction handling: 91 currently we use vect_force_simple_reduction() to detect reduction patterns. 92 The code transformation will be introduced by an example. 93 94 95 parloop 96 { 97 int sum=1; 98 99 for (i = 0; i < N; i++) 100 { 101 x[i] = i + 3; 102 sum+=x[i]; 103 } 104 } 105 106 gimple-like code: 107 header_bb: 108 109 # sum_29 = PHI <sum_11(5), 1(3)> 110 # i_28 = PHI <i_12(5), 0(3)> 111 D.1795_8 = i_28 + 3; 112 x[i_28] = D.1795_8; 113 sum_11 = D.1795_8 + sum_29; 114 i_12 = i_28 + 1; 115 if (N_6(D) > i_12) 116 goto header_bb; 117 118 119 exit_bb: 120 121 # sum_21 = PHI <sum_11(4)> 122 printf (&"%d"[0], sum_21); 123 124 125 after reduction transformation (only relevant parts): 126 127 parloop 128 { 129 130 .... 131 132 133 # Storing the initial value given by the user. # 134 135 .paral_data_store.32.sum.27 = 1; 136 137 #pragma omp parallel num_threads(4) 138 139 #pragma omp for schedule(static) 140 141 # The neutral element corresponding to the particular 142 reduction's operation, e.g. 0 for PLUS_EXPR, 143 1 for MULT_EXPR, etc. replaces the user's initial value. # 144 145 # sum.27_29 = PHI <sum.27_11, 0> 146 147 sum.27_11 = D.1827_8 + sum.27_29; 148 149 GIMPLE_OMP_CONTINUE 150 151 # Adding this reduction phi is done at create_phi_for_local_result() # 152 # sum.27_56 = PHI <sum.27_11, 0> 153 GIMPLE_OMP_RETURN 154 155 # Creating the atomic operation is done at 156 create_call_for_reduction_1() # 157 158 #pragma omp atomic_load 159 D.1839_59 = *&.paral_data_load.33_51->reduction.23; 160 D.1840_60 = sum.27_56 + D.1839_59; 161 #pragma omp atomic_store (D.1840_60); 162 163 GIMPLE_OMP_RETURN 164 165 # collecting the result after the join of the threads is done at 166 create_loads_for_reductions(). 167 The value computed by the threads is loaded from the 168 shared struct. # 169 170 171 .paral_data_load.33_52 = &.paral_data_store.32; 172 sum_37 = .paral_data_load.33_52->sum.27; 173 sum_43 = D.1795_41 + sum_37; 174 175 exit bb: 176 # sum_21 = PHI <sum_43, sum_26> 177 printf (&"%d"[0], sum_21); 178 179 ... 180 181 } 182 183 */ 184 185 /* Minimal number of iterations of a loop that should be executed in each 186 thread. */ 187 #define MIN_PER_THREAD PARAM_VALUE (PARAM_PARLOOPS_MIN_PER_THREAD) 188 189 /* Element of the hashtable, representing a 190 reduction in the current loop. */ 191 struct reduction_info 192 { 193 gimple *reduc_stmt; /* reduction statement. */ 194 gimple *reduc_phi; /* The phi node defining the reduction. */ 195 enum tree_code reduction_code;/* code for the reduction operation. */ 196 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi 197 result. */ 198 gphi *keep_res; /* The PHI_RESULT of this phi is the resulting value 199 of the reduction variable when existing the loop. */ 200 tree initial_value; /* The initial value of the reduction var before entering the loop. */ 201 tree field; /* the name of the field in the parloop data structure intended for reduction. */ 202 tree reduc_addr; /* The address of the reduction variable for 203 openacc reductions. */ 204 tree init; /* reduction initialization value. */ 205 gphi *new_phi; /* (helper field) Newly created phi node whose result 206 will be passed to the atomic operation. Represents 207 the local result each thread computed for the reduction 208 operation. */ 209 }; 210 211 /* Reduction info hashtable helpers. */ 212 213 struct reduction_hasher : free_ptr_hash <reduction_info> 214 { 215 static inline hashval_t hash (const reduction_info *); 216 static inline bool equal (const reduction_info *, const reduction_info *); 217 }; 218 219 /* Equality and hash functions for hashtab code. */ 220 221 inline bool 222 reduction_hasher::equal (const reduction_info *a, const reduction_info *b) 223 { 224 return (a->reduc_phi == b->reduc_phi); 225 } 226 227 inline hashval_t 228 reduction_hasher::hash (const reduction_info *a) 229 { 230 return a->reduc_version; 231 } 232 233 typedef hash_table<reduction_hasher> reduction_info_table_type; 234 235 236 static struct reduction_info * 237 reduction_phi (reduction_info_table_type *reduction_list, gimple *phi) 238 { 239 struct reduction_info tmpred, *red; 240 241 if (reduction_list->elements () == 0 || phi == NULL) 242 return NULL; 243 244 if (gimple_uid (phi) == (unsigned int)-1 245 || gimple_uid (phi) == 0) 246 return NULL; 247 248 tmpred.reduc_phi = phi; 249 tmpred.reduc_version = gimple_uid (phi); 250 red = reduction_list->find (&tmpred); 251 gcc_assert (red == NULL || red->reduc_phi == phi); 252 253 return red; 254 } 255 256 /* Element of hashtable of names to copy. */ 257 258 struct name_to_copy_elt 259 { 260 unsigned version; /* The version of the name to copy. */ 261 tree new_name; /* The new name used in the copy. */ 262 tree field; /* The field of the structure used to pass the 263 value. */ 264 }; 265 266 /* Name copies hashtable helpers. */ 267 268 struct name_to_copy_hasher : free_ptr_hash <name_to_copy_elt> 269 { 270 static inline hashval_t hash (const name_to_copy_elt *); 271 static inline bool equal (const name_to_copy_elt *, const name_to_copy_elt *); 272 }; 273 274 /* Equality and hash functions for hashtab code. */ 275 276 inline bool 277 name_to_copy_hasher::equal (const name_to_copy_elt *a, const name_to_copy_elt *b) 278 { 279 return a->version == b->version; 280 } 281 282 inline hashval_t 283 name_to_copy_hasher::hash (const name_to_copy_elt *a) 284 { 285 return (hashval_t) a->version; 286 } 287 288 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type; 289 290 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE 291 matrix. Rather than use floats, we simply keep a single DENOMINATOR that 292 represents the denominator for every element in the matrix. */ 293 typedef struct lambda_trans_matrix_s 294 { 295 lambda_matrix matrix; 296 int rowsize; 297 int colsize; 298 int denominator; 299 } *lambda_trans_matrix; 300 #define LTM_MATRIX(T) ((T)->matrix) 301 #define LTM_ROWSIZE(T) ((T)->rowsize) 302 #define LTM_COLSIZE(T) ((T)->colsize) 303 #define LTM_DENOMINATOR(T) ((T)->denominator) 304 305 /* Allocate a new transformation matrix. */ 306 307 static lambda_trans_matrix 308 lambda_trans_matrix_new (int colsize, int rowsize, 309 struct obstack * lambda_obstack) 310 { 311 lambda_trans_matrix ret; 312 313 ret = (lambda_trans_matrix) 314 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s)); 315 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack); 316 LTM_ROWSIZE (ret) = rowsize; 317 LTM_COLSIZE (ret) = colsize; 318 LTM_DENOMINATOR (ret) = 1; 319 return ret; 320 } 321 322 /* Multiply a vector VEC by a matrix MAT. 323 MAT is an M*N matrix, and VEC is a vector with length N. The result 324 is stored in DEST which must be a vector of length M. */ 325 326 static void 327 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n, 328 lambda_vector vec, lambda_vector dest) 329 { 330 int i, j; 331 332 lambda_vector_clear (dest, m); 333 for (i = 0; i < m; i++) 334 for (j = 0; j < n; j++) 335 dest[i] += matrix[i][j] * vec[j]; 336 } 337 338 /* Return true if TRANS is a legal transformation matrix that respects 339 the dependence vectors in DISTS and DIRS. The conservative answer 340 is false. 341 342 "Wolfe proves that a unimodular transformation represented by the 343 matrix T is legal when applied to a loop nest with a set of 344 lexicographically non-negative distance vectors RDG if and only if 345 for each vector d in RDG, (T.d >= 0) is lexicographically positive. 346 i.e.: if and only if it transforms the lexicographically positive 347 distance vectors to lexicographically positive vectors. Note that 348 a unimodular matrix must transform the zero vector (and only it) to 349 the zero vector." S.Muchnick. */ 350 351 static bool 352 lambda_transform_legal_p (lambda_trans_matrix trans, 353 int nb_loops, 354 vec<ddr_p> dependence_relations) 355 { 356 unsigned int i, j; 357 lambda_vector distres; 358 struct data_dependence_relation *ddr; 359 360 gcc_assert (LTM_COLSIZE (trans) == nb_loops 361 && LTM_ROWSIZE (trans) == nb_loops); 362 363 /* When there are no dependences, the transformation is correct. */ 364 if (dependence_relations.length () == 0) 365 return true; 366 367 ddr = dependence_relations[0]; 368 if (ddr == NULL) 369 return true; 370 371 /* When there is an unknown relation in the dependence_relations, we 372 know that it is no worth looking at this loop nest: give up. */ 373 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) 374 return false; 375 376 distres = lambda_vector_new (nb_loops); 377 378 /* For each distance vector in the dependence graph. */ 379 FOR_EACH_VEC_ELT (dependence_relations, i, ddr) 380 { 381 /* Don't care about relations for which we know that there is no 382 dependence, nor about read-read (aka. output-dependences): 383 these data accesses can happen in any order. */ 384 if (DDR_ARE_DEPENDENT (ddr) == chrec_known 385 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))) 386 continue; 387 388 /* Conservatively answer: "this transformation is not valid". */ 389 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) 390 return false; 391 392 /* If the dependence could not be captured by a distance vector, 393 conservatively answer that the transform is not valid. */ 394 if (DDR_NUM_DIST_VECTS (ddr) == 0) 395 return false; 396 397 /* Compute trans.dist_vect */ 398 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++) 399 { 400 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops, 401 DDR_DIST_VECT (ddr, j), distres); 402 403 if (!lambda_vector_lexico_pos (distres, nb_loops)) 404 return false; 405 } 406 } 407 return true; 408 } 409 410 /* Data dependency analysis. Returns true if the iterations of LOOP 411 are independent on each other (that is, if we can execute them 412 in parallel). */ 413 414 static bool 415 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack) 416 { 417 vec<ddr_p> dependence_relations; 418 vec<data_reference_p> datarefs; 419 lambda_trans_matrix trans; 420 bool ret = false; 421 422 if (dump_file && (dump_flags & TDF_DETAILS)) 423 { 424 fprintf (dump_file, "Considering loop %d\n", loop->num); 425 if (!loop->inner) 426 fprintf (dump_file, "loop is innermost\n"); 427 else 428 fprintf (dump_file, "loop NOT innermost\n"); 429 } 430 431 /* Check for problems with dependences. If the loop can be reversed, 432 the iterations are independent. */ 433 auto_vec<loop_p, 3> loop_nest; 434 datarefs.create (10); 435 dependence_relations.create (100); 436 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs, 437 &dependence_relations)) 438 { 439 if (dump_file && (dump_flags & TDF_DETAILS)) 440 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n"); 441 ret = false; 442 goto end; 443 } 444 if (dump_file && (dump_flags & TDF_DETAILS)) 445 dump_data_dependence_relations (dump_file, dependence_relations); 446 447 trans = lambda_trans_matrix_new (1, 1, parloop_obstack); 448 LTM_MATRIX (trans)[0][0] = -1; 449 450 if (lambda_transform_legal_p (trans, 1, dependence_relations)) 451 { 452 ret = true; 453 if (dump_file && (dump_flags & TDF_DETAILS)) 454 fprintf (dump_file, " SUCCESS: may be parallelized\n"); 455 } 456 else if (dump_file && (dump_flags & TDF_DETAILS)) 457 fprintf (dump_file, 458 " FAILED: data dependencies exist across iterations\n"); 459 460 end: 461 free_dependence_relations (dependence_relations); 462 free_data_refs (datarefs); 463 464 return ret; 465 } 466 467 /* Return true when LOOP contains basic blocks marked with the 468 BB_IRREDUCIBLE_LOOP flag. */ 469 470 static inline bool 471 loop_has_blocks_with_irreducible_flag (struct loop *loop) 472 { 473 unsigned i; 474 basic_block *bbs = get_loop_body_in_dom_order (loop); 475 bool res = true; 476 477 for (i = 0; i < loop->num_nodes; i++) 478 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP) 479 goto end; 480 481 res = false; 482 end: 483 free (bbs); 484 return res; 485 } 486 487 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name. 488 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls 489 to their addresses that can be reused. The address of OBJ is known to 490 be invariant in the whole function. Other needed statements are placed 491 right before GSI. */ 492 493 static tree 494 take_address_of (tree obj, tree type, edge entry, 495 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi) 496 { 497 int uid; 498 tree *var_p, name, addr; 499 gassign *stmt; 500 gimple_seq stmts; 501 502 /* Since the address of OBJ is invariant, the trees may be shared. 503 Avoid rewriting unrelated parts of the code. */ 504 obj = unshare_expr (obj); 505 for (var_p = &obj; 506 handled_component_p (*var_p); 507 var_p = &TREE_OPERAND (*var_p, 0)) 508 continue; 509 510 /* Canonicalize the access to base on a MEM_REF. */ 511 if (DECL_P (*var_p)) 512 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p)); 513 514 /* Assign a canonical SSA name to the address of the base decl used 515 in the address and share it for all accesses and addresses based 516 on it. */ 517 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); 518 int_tree_map elt; 519 elt.uid = uid; 520 int_tree_map *slot = decl_address->find_slot (elt, INSERT); 521 if (!slot->to) 522 { 523 if (gsi == NULL) 524 return NULL; 525 addr = TREE_OPERAND (*var_p, 0); 526 const char *obj_name 527 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0)); 528 if (obj_name) 529 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name); 530 else 531 name = make_ssa_name (TREE_TYPE (addr)); 532 stmt = gimple_build_assign (name, addr); 533 gsi_insert_on_edge_immediate (entry, stmt); 534 535 slot->uid = uid; 536 slot->to = name; 537 } 538 else 539 name = slot->to; 540 541 /* Express the address in terms of the canonical SSA name. */ 542 TREE_OPERAND (*var_p, 0) = name; 543 if (gsi == NULL) 544 return build_fold_addr_expr_with_type (obj, type); 545 546 name = force_gimple_operand (build_addr (obj), 547 &stmts, true, NULL_TREE); 548 if (!gimple_seq_empty_p (stmts)) 549 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); 550 551 if (!useless_type_conversion_p (type, TREE_TYPE (name))) 552 { 553 name = force_gimple_operand (fold_convert (type, name), &stmts, true, 554 NULL_TREE); 555 if (!gimple_seq_empty_p (stmts)) 556 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); 557 } 558 559 return name; 560 } 561 562 static tree 563 reduc_stmt_res (gimple *stmt) 564 { 565 return (gimple_code (stmt) == GIMPLE_PHI 566 ? gimple_phi_result (stmt) 567 : gimple_assign_lhs (stmt)); 568 } 569 570 /* Callback for htab_traverse. Create the initialization statement 571 for reduction described in SLOT, and place it at the preheader of 572 the loop described in DATA. */ 573 574 int 575 initialize_reductions (reduction_info **slot, struct loop *loop) 576 { 577 tree init; 578 tree type, arg; 579 edge e; 580 581 struct reduction_info *const reduc = *slot; 582 583 /* Create initialization in preheader: 584 reduction_variable = initialization value of reduction. */ 585 586 /* In the phi node at the header, replace the argument coming 587 from the preheader with the reduction initialization value. */ 588 589 /* Initialize the reduction. */ 590 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); 591 init = omp_reduction_init_op (gimple_location (reduc->reduc_stmt), 592 reduc->reduction_code, type); 593 reduc->init = init; 594 595 /* Replace the argument representing the initialization value 596 with the initialization value for the reduction (neutral 597 element for the particular operation, e.g. 0 for PLUS_EXPR, 598 1 for MULT_EXPR, etc). 599 Keep the old value in a new variable "reduction_initial", 600 that will be taken in consideration after the parallel 601 computing is done. */ 602 603 e = loop_preheader_edge (loop); 604 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e); 605 /* Create new variable to hold the initial value. */ 606 607 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE 608 (reduc->reduc_phi, loop_preheader_edge (loop)), init); 609 reduc->initial_value = arg; 610 return 1; 611 } 612 613 struct elv_data 614 { 615 struct walk_stmt_info info; 616 edge entry; 617 int_tree_htab_type *decl_address; 618 gimple_stmt_iterator *gsi; 619 bool changed; 620 bool reset; 621 }; 622 623 /* Eliminates references to local variables in *TP out of the single 624 entry single exit region starting at DTA->ENTRY. 625 DECL_ADDRESS contains addresses of the references that had their 626 address taken already. If the expression is changed, CHANGED is 627 set to true. Callback for walk_tree. */ 628 629 static tree 630 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data) 631 { 632 struct elv_data *const dta = (struct elv_data *) data; 633 tree t = *tp, var, addr, addr_type, type, obj; 634 635 if (DECL_P (t)) 636 { 637 *walk_subtrees = 0; 638 639 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t)) 640 return NULL_TREE; 641 642 type = TREE_TYPE (t); 643 addr_type = build_pointer_type (type); 644 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address, 645 dta->gsi); 646 if (dta->gsi == NULL && addr == NULL_TREE) 647 { 648 dta->reset = true; 649 return NULL_TREE; 650 } 651 652 *tp = build_simple_mem_ref (addr); 653 654 dta->changed = true; 655 return NULL_TREE; 656 } 657 658 if (TREE_CODE (t) == ADDR_EXPR) 659 { 660 /* ADDR_EXPR may appear in two contexts: 661 -- as a gimple operand, when the address taken is a function invariant 662 -- as gimple rhs, when the resulting address in not a function 663 invariant 664 We do not need to do anything special in the latter case (the base of 665 the memory reference whose address is taken may be replaced in the 666 DECL_P case). The former case is more complicated, as we need to 667 ensure that the new address is still a gimple operand. Thus, it 668 is not sufficient to replace just the base of the memory reference -- 669 we need to move the whole computation of the address out of the 670 loop. */ 671 if (!is_gimple_val (t)) 672 return NULL_TREE; 673 674 *walk_subtrees = 0; 675 obj = TREE_OPERAND (t, 0); 676 var = get_base_address (obj); 677 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var)) 678 return NULL_TREE; 679 680 addr_type = TREE_TYPE (t); 681 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address, 682 dta->gsi); 683 if (dta->gsi == NULL && addr == NULL_TREE) 684 { 685 dta->reset = true; 686 return NULL_TREE; 687 } 688 *tp = addr; 689 690 dta->changed = true; 691 return NULL_TREE; 692 } 693 694 if (!EXPR_P (t)) 695 *walk_subtrees = 0; 696 697 return NULL_TREE; 698 } 699 700 /* Moves the references to local variables in STMT at *GSI out of the single 701 entry single exit region starting at ENTRY. DECL_ADDRESS contains 702 addresses of the references that had their address taken 703 already. */ 704 705 static void 706 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi, 707 int_tree_htab_type *decl_address) 708 { 709 struct elv_data dta; 710 gimple *stmt = gsi_stmt (*gsi); 711 712 memset (&dta.info, '\0', sizeof (dta.info)); 713 dta.entry = entry; 714 dta.decl_address = decl_address; 715 dta.changed = false; 716 dta.reset = false; 717 718 if (gimple_debug_bind_p (stmt)) 719 { 720 dta.gsi = NULL; 721 walk_tree (gimple_debug_bind_get_value_ptr (stmt), 722 eliminate_local_variables_1, &dta.info, NULL); 723 if (dta.reset) 724 { 725 gimple_debug_bind_reset_value (stmt); 726 dta.changed = true; 727 } 728 } 729 else if (gimple_clobber_p (stmt)) 730 { 731 unlink_stmt_vdef (stmt); 732 stmt = gimple_build_nop (); 733 gsi_replace (gsi, stmt, false); 734 dta.changed = true; 735 } 736 else 737 { 738 dta.gsi = gsi; 739 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info); 740 } 741 742 if (dta.changed) 743 update_stmt (stmt); 744 } 745 746 /* Eliminates the references to local variables from the single entry 747 single exit region between the ENTRY and EXIT edges. 748 749 This includes: 750 1) Taking address of a local variable -- these are moved out of the 751 region (and temporary variable is created to hold the address if 752 necessary). 753 754 2) Dereferencing a local variable -- these are replaced with indirect 755 references. */ 756 757 static void 758 eliminate_local_variables (edge entry, edge exit) 759 { 760 basic_block bb; 761 auto_vec<basic_block, 3> body; 762 unsigned i; 763 gimple_stmt_iterator gsi; 764 bool has_debug_stmt = false; 765 int_tree_htab_type decl_address (10); 766 basic_block entry_bb = entry->src; 767 basic_block exit_bb = exit->dest; 768 769 gather_blocks_in_sese_region (entry_bb, exit_bb, &body); 770 771 FOR_EACH_VEC_ELT (body, i, bb) 772 if (bb != entry_bb && bb != exit_bb) 773 { 774 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 775 if (is_gimple_debug (gsi_stmt (gsi))) 776 { 777 if (gimple_debug_bind_p (gsi_stmt (gsi))) 778 has_debug_stmt = true; 779 } 780 else 781 eliminate_local_variables_stmt (entry, &gsi, &decl_address); 782 } 783 784 if (has_debug_stmt) 785 FOR_EACH_VEC_ELT (body, i, bb) 786 if (bb != entry_bb && bb != exit_bb) 787 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 788 if (gimple_debug_bind_p (gsi_stmt (gsi))) 789 eliminate_local_variables_stmt (entry, &gsi, &decl_address); 790 } 791 792 /* Returns true if expression EXPR is not defined between ENTRY and 793 EXIT, i.e. if all its operands are defined outside of the region. */ 794 795 static bool 796 expr_invariant_in_region_p (edge entry, edge exit, tree expr) 797 { 798 basic_block entry_bb = entry->src; 799 basic_block exit_bb = exit->dest; 800 basic_block def_bb; 801 802 if (is_gimple_min_invariant (expr)) 803 return true; 804 805 if (TREE_CODE (expr) == SSA_NAME) 806 { 807 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr)); 808 if (def_bb 809 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb) 810 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb)) 811 return false; 812 813 return true; 814 } 815 816 return false; 817 } 818 819 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME. 820 The copies are stored to NAME_COPIES, if NAME was already duplicated, 821 its duplicate stored in NAME_COPIES is returned. 822 823 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also 824 duplicated, storing the copies in DECL_COPIES. */ 825 826 static tree 827 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies, 828 int_tree_htab_type *decl_copies, 829 bool copy_name_p) 830 { 831 tree copy, var, var_copy; 832 unsigned idx, uid, nuid; 833 struct int_tree_map ielt; 834 struct name_to_copy_elt elt, *nelt; 835 name_to_copy_elt **slot; 836 int_tree_map *dslot; 837 838 if (TREE_CODE (name) != SSA_NAME) 839 return name; 840 841 idx = SSA_NAME_VERSION (name); 842 elt.version = idx; 843 slot = name_copies->find_slot_with_hash (&elt, idx, 844 copy_name_p ? INSERT : NO_INSERT); 845 if (slot && *slot) 846 return (*slot)->new_name; 847 848 if (copy_name_p) 849 { 850 copy = duplicate_ssa_name (name, NULL); 851 nelt = XNEW (struct name_to_copy_elt); 852 nelt->version = idx; 853 nelt->new_name = copy; 854 nelt->field = NULL_TREE; 855 *slot = nelt; 856 } 857 else 858 { 859 gcc_assert (!slot); 860 copy = name; 861 } 862 863 var = SSA_NAME_VAR (name); 864 if (!var) 865 return copy; 866 867 uid = DECL_UID (var); 868 ielt.uid = uid; 869 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT); 870 if (!dslot->to) 871 { 872 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var)); 873 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var); 874 dslot->uid = uid; 875 dslot->to = var_copy; 876 877 /* Ensure that when we meet this decl next time, we won't duplicate 878 it again. */ 879 nuid = DECL_UID (var_copy); 880 ielt.uid = nuid; 881 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT); 882 gcc_assert (!dslot->to); 883 dslot->uid = nuid; 884 dslot->to = var_copy; 885 } 886 else 887 var_copy = dslot->to; 888 889 replace_ssa_name_symbol (copy, var_copy); 890 return copy; 891 } 892 893 /* Finds the ssa names used in STMT that are defined outside the 894 region between ENTRY and EXIT and replaces such ssa names with 895 their duplicates. The duplicates are stored to NAME_COPIES. Base 896 decls of all ssa names used in STMT (including those defined in 897 LOOP) are replaced with the new temporary variables; the 898 replacement decls are stored in DECL_COPIES. */ 899 900 static void 901 separate_decls_in_region_stmt (edge entry, edge exit, gimple *stmt, 902 name_to_copy_table_type *name_copies, 903 int_tree_htab_type *decl_copies) 904 { 905 use_operand_p use; 906 def_operand_p def; 907 ssa_op_iter oi; 908 tree name, copy; 909 bool copy_name_p; 910 911 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF) 912 { 913 name = DEF_FROM_PTR (def); 914 gcc_assert (TREE_CODE (name) == SSA_NAME); 915 copy = separate_decls_in_region_name (name, name_copies, decl_copies, 916 false); 917 gcc_assert (copy == name); 918 } 919 920 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) 921 { 922 name = USE_FROM_PTR (use); 923 if (TREE_CODE (name) != SSA_NAME) 924 continue; 925 926 copy_name_p = expr_invariant_in_region_p (entry, exit, name); 927 copy = separate_decls_in_region_name (name, name_copies, decl_copies, 928 copy_name_p); 929 SET_USE (use, copy); 930 } 931 } 932 933 /* Finds the ssa names used in STMT that are defined outside the 934 region between ENTRY and EXIT and replaces such ssa names with 935 their duplicates. The duplicates are stored to NAME_COPIES. Base 936 decls of all ssa names used in STMT (including those defined in 937 LOOP) are replaced with the new temporary variables; the 938 replacement decls are stored in DECL_COPIES. */ 939 940 static bool 941 separate_decls_in_region_debug (gimple *stmt, 942 name_to_copy_table_type *name_copies, 943 int_tree_htab_type *decl_copies) 944 { 945 use_operand_p use; 946 ssa_op_iter oi; 947 tree var, name; 948 struct int_tree_map ielt; 949 struct name_to_copy_elt elt; 950 name_to_copy_elt **slot; 951 int_tree_map *dslot; 952 953 if (gimple_debug_bind_p (stmt)) 954 var = gimple_debug_bind_get_var (stmt); 955 else if (gimple_debug_source_bind_p (stmt)) 956 var = gimple_debug_source_bind_get_var (stmt); 957 else 958 return true; 959 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL) 960 return true; 961 gcc_assert (DECL_P (var) && SSA_VAR_P (var)); 962 ielt.uid = DECL_UID (var); 963 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT); 964 if (!dslot) 965 return true; 966 if (gimple_debug_bind_p (stmt)) 967 gimple_debug_bind_set_var (stmt, dslot->to); 968 else if (gimple_debug_source_bind_p (stmt)) 969 gimple_debug_source_bind_set_var (stmt, dslot->to); 970 971 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE) 972 { 973 name = USE_FROM_PTR (use); 974 if (TREE_CODE (name) != SSA_NAME) 975 continue; 976 977 elt.version = SSA_NAME_VERSION (name); 978 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT); 979 if (!slot) 980 { 981 gimple_debug_bind_reset_value (stmt); 982 update_stmt (stmt); 983 break; 984 } 985 986 SET_USE (use, (*slot)->new_name); 987 } 988 989 return false; 990 } 991 992 /* Callback for htab_traverse. Adds a field corresponding to the reduction 993 specified in SLOT. The type is passed in DATA. */ 994 995 int 996 add_field_for_reduction (reduction_info **slot, tree type) 997 { 998 999 struct reduction_info *const red = *slot; 1000 tree var = reduc_stmt_res (red->reduc_stmt); 1001 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL, 1002 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var)); 1003 1004 insert_field_into_struct (type, field); 1005 1006 red->field = field; 1007 1008 return 1; 1009 } 1010 1011 /* Callback for htab_traverse. Adds a field corresponding to a ssa name 1012 described in SLOT. The type is passed in DATA. */ 1013 1014 int 1015 add_field_for_name (name_to_copy_elt **slot, tree type) 1016 { 1017 struct name_to_copy_elt *const elt = *slot; 1018 tree name = ssa_name (elt->version); 1019 tree field = build_decl (UNKNOWN_LOCATION, 1020 FIELD_DECL, SSA_NAME_IDENTIFIER (name), 1021 TREE_TYPE (name)); 1022 1023 insert_field_into_struct (type, field); 1024 elt->field = field; 1025 1026 return 1; 1027 } 1028 1029 /* Callback for htab_traverse. A local result is the intermediate result 1030 computed by a single 1031 thread, or the initial value in case no iteration was executed. 1032 This function creates a phi node reflecting these values. 1033 The phi's result will be stored in NEW_PHI field of the 1034 reduction's data structure. */ 1035 1036 int 1037 create_phi_for_local_result (reduction_info **slot, struct loop *loop) 1038 { 1039 struct reduction_info *const reduc = *slot; 1040 edge e; 1041 gphi *new_phi; 1042 basic_block store_bb, continue_bb; 1043 tree local_res; 1044 location_t locus; 1045 1046 /* STORE_BB is the block where the phi 1047 should be stored. It is the destination of the loop exit. 1048 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */ 1049 continue_bb = single_pred (loop->latch); 1050 store_bb = FALLTHRU_EDGE (continue_bb)->dest; 1051 1052 /* STORE_BB has two predecessors. One coming from the loop 1053 (the reduction's result is computed at the loop), 1054 and another coming from a block preceding the loop, 1055 when no iterations 1056 are executed (the initial value should be taken). */ 1057 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (continue_bb)) 1058 e = EDGE_PRED (store_bb, 1); 1059 else 1060 e = EDGE_PRED (store_bb, 0); 1061 tree lhs = reduc_stmt_res (reduc->reduc_stmt); 1062 local_res = copy_ssa_name (lhs); 1063 locus = gimple_location (reduc->reduc_stmt); 1064 new_phi = create_phi_node (local_res, store_bb); 1065 add_phi_arg (new_phi, reduc->init, e, locus); 1066 add_phi_arg (new_phi, lhs, FALLTHRU_EDGE (continue_bb), locus); 1067 reduc->new_phi = new_phi; 1068 1069 return 1; 1070 } 1071 1072 struct clsn_data 1073 { 1074 tree store; 1075 tree load; 1076 1077 basic_block store_bb; 1078 basic_block load_bb; 1079 }; 1080 1081 /* Callback for htab_traverse. Create an atomic instruction for the 1082 reduction described in SLOT. 1083 DATA annotates the place in memory the atomic operation relates to, 1084 and the basic block it needs to be generated in. */ 1085 1086 int 1087 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data) 1088 { 1089 struct reduction_info *const reduc = *slot; 1090 gimple_stmt_iterator gsi; 1091 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi)); 1092 tree load_struct; 1093 basic_block bb; 1094 basic_block new_bb; 1095 edge e; 1096 tree t, addr, ref, x; 1097 tree tmp_load, name; 1098 gimple *load; 1099 1100 if (reduc->reduc_addr == NULL_TREE) 1101 { 1102 load_struct = build_simple_mem_ref (clsn_data->load); 1103 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE); 1104 1105 addr = build_addr (t); 1106 } 1107 else 1108 { 1109 /* Set the address for the atomic store. */ 1110 addr = reduc->reduc_addr; 1111 1112 /* Remove the non-atomic store '*addr = sum'. */ 1113 tree res = PHI_RESULT (reduc->keep_res); 1114 use_operand_p use_p; 1115 gimple *stmt; 1116 bool single_use_p = single_imm_use (res, &use_p, &stmt); 1117 gcc_assert (single_use_p); 1118 replace_uses_by (gimple_vdef (stmt), 1119 gimple_vuse (stmt)); 1120 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 1121 gsi_remove (&gsi, true); 1122 } 1123 1124 /* Create phi node. */ 1125 bb = clsn_data->load_bb; 1126 1127 gsi = gsi_last_bb (bb); 1128 e = split_block (bb, gsi_stmt (gsi)); 1129 new_bb = e->dest; 1130 1131 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr))); 1132 tmp_load = make_ssa_name (tmp_load); 1133 load = gimple_build_omp_atomic_load (tmp_load, addr, 1134 OMP_MEMORY_ORDER_RELAXED); 1135 SSA_NAME_DEF_STMT (tmp_load) = load; 1136 gsi = gsi_start_bb (new_bb); 1137 gsi_insert_after (&gsi, load, GSI_NEW_STMT); 1138 1139 e = split_block (new_bb, load); 1140 new_bb = e->dest; 1141 gsi = gsi_start_bb (new_bb); 1142 ref = tmp_load; 1143 x = fold_build2 (reduc->reduction_code, 1144 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref, 1145 PHI_RESULT (reduc->new_phi)); 1146 1147 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true, 1148 GSI_CONTINUE_LINKING); 1149 1150 gimple *store = gimple_build_omp_atomic_store (name, 1151 OMP_MEMORY_ORDER_RELAXED); 1152 gsi_insert_after (&gsi, store, GSI_NEW_STMT); 1153 return 1; 1154 } 1155 1156 /* Create the atomic operation at the join point of the threads. 1157 REDUCTION_LIST describes the reductions in the LOOP. 1158 LD_ST_DATA describes the shared data structure where 1159 shared data is stored in and loaded from. */ 1160 static void 1161 create_call_for_reduction (struct loop *loop, 1162 reduction_info_table_type *reduction_list, 1163 struct clsn_data *ld_st_data) 1164 { 1165 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop); 1166 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */ 1167 basic_block continue_bb = single_pred (loop->latch); 1168 ld_st_data->load_bb = FALLTHRU_EDGE (continue_bb)->dest; 1169 reduction_list 1170 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data); 1171 } 1172 1173 /* Callback for htab_traverse. Loads the final reduction value at the 1174 join point of all threads, and inserts it in the right place. */ 1175 1176 int 1177 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data) 1178 { 1179 struct reduction_info *const red = *slot; 1180 gimple *stmt; 1181 gimple_stmt_iterator gsi; 1182 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt)); 1183 tree load_struct; 1184 tree name; 1185 tree x; 1186 1187 /* If there's no exit phi, the result of the reduction is unused. */ 1188 if (red->keep_res == NULL) 1189 return 1; 1190 1191 gsi = gsi_after_labels (clsn_data->load_bb); 1192 load_struct = build_simple_mem_ref (clsn_data->load); 1193 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field, 1194 NULL_TREE); 1195 1196 x = load_struct; 1197 name = PHI_RESULT (red->keep_res); 1198 stmt = gimple_build_assign (name, x); 1199 1200 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 1201 1202 for (gsi = gsi_start_phis (gimple_bb (red->keep_res)); 1203 !gsi_end_p (gsi); gsi_next (&gsi)) 1204 if (gsi_stmt (gsi) == red->keep_res) 1205 { 1206 remove_phi_node (&gsi, false); 1207 return 1; 1208 } 1209 gcc_unreachable (); 1210 } 1211 1212 /* Load the reduction result that was stored in LD_ST_DATA. 1213 REDUCTION_LIST describes the list of reductions that the 1214 loads should be generated for. */ 1215 static void 1216 create_final_loads_for_reduction (reduction_info_table_type *reduction_list, 1217 struct clsn_data *ld_st_data) 1218 { 1219 gimple_stmt_iterator gsi; 1220 tree t; 1221 gimple *stmt; 1222 1223 gsi = gsi_after_labels (ld_st_data->load_bb); 1224 t = build_fold_addr_expr (ld_st_data->store); 1225 stmt = gimple_build_assign (ld_st_data->load, t); 1226 1227 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 1228 1229 reduction_list 1230 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data); 1231 1232 } 1233 1234 /* Callback for htab_traverse. Store the neutral value for the 1235 particular reduction's operation, e.g. 0 for PLUS_EXPR, 1236 1 for MULT_EXPR, etc. into the reduction field. 1237 The reduction is specified in SLOT. The store information is 1238 passed in DATA. */ 1239 1240 int 1241 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data) 1242 { 1243 struct reduction_info *const red = *slot; 1244 tree t; 1245 gimple *stmt; 1246 gimple_stmt_iterator gsi; 1247 tree type = TREE_TYPE (reduc_stmt_res (red->reduc_stmt)); 1248 1249 gsi = gsi_last_bb (clsn_data->store_bb); 1250 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE); 1251 stmt = gimple_build_assign (t, red->initial_value); 1252 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 1253 1254 return 1; 1255 } 1256 1257 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and 1258 store to a field of STORE in STORE_BB for the ssa name and its duplicate 1259 specified in SLOT. */ 1260 1261 int 1262 create_loads_and_stores_for_name (name_to_copy_elt **slot, 1263 struct clsn_data *clsn_data) 1264 { 1265 struct name_to_copy_elt *const elt = *slot; 1266 tree t; 1267 gimple *stmt; 1268 gimple_stmt_iterator gsi; 1269 tree type = TREE_TYPE (elt->new_name); 1270 tree load_struct; 1271 1272 gsi = gsi_last_bb (clsn_data->store_bb); 1273 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE); 1274 stmt = gimple_build_assign (t, ssa_name (elt->version)); 1275 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 1276 1277 gsi = gsi_last_bb (clsn_data->load_bb); 1278 load_struct = build_simple_mem_ref (clsn_data->load); 1279 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE); 1280 stmt = gimple_build_assign (elt->new_name, t); 1281 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 1282 1283 return 1; 1284 } 1285 1286 /* Moves all the variables used in LOOP and defined outside of it (including 1287 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa 1288 name) to a structure created for this purpose. The code 1289 1290 while (1) 1291 { 1292 use (a); 1293 use (b); 1294 } 1295 1296 is transformed this way: 1297 1298 bb0: 1299 old.a = a; 1300 old.b = b; 1301 1302 bb1: 1303 a' = new->a; 1304 b' = new->b; 1305 while (1) 1306 { 1307 use (a'); 1308 use (b'); 1309 } 1310 1311 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The 1312 pointer `new' is intentionally not initialized (the loop will be split to a 1313 separate function later, and `new' will be initialized from its arguments). 1314 LD_ST_DATA holds information about the shared data structure used to pass 1315 information among the threads. It is initialized here, and 1316 gen_parallel_loop will pass it to create_call_for_reduction that 1317 needs this information. REDUCTION_LIST describes the reductions 1318 in LOOP. */ 1319 1320 static void 1321 separate_decls_in_region (edge entry, edge exit, 1322 reduction_info_table_type *reduction_list, 1323 tree *arg_struct, tree *new_arg_struct, 1324 struct clsn_data *ld_st_data) 1325 1326 { 1327 basic_block bb1 = split_edge (entry); 1328 basic_block bb0 = single_pred (bb1); 1329 name_to_copy_table_type name_copies (10); 1330 int_tree_htab_type decl_copies (10); 1331 unsigned i; 1332 tree type, type_name, nvar; 1333 gimple_stmt_iterator gsi; 1334 struct clsn_data clsn_data; 1335 auto_vec<basic_block, 3> body; 1336 basic_block bb; 1337 basic_block entry_bb = bb1; 1338 basic_block exit_bb = exit->dest; 1339 bool has_debug_stmt = false; 1340 1341 entry = single_succ_edge (entry_bb); 1342 gather_blocks_in_sese_region (entry_bb, exit_bb, &body); 1343 1344 FOR_EACH_VEC_ELT (body, i, bb) 1345 { 1346 if (bb != entry_bb && bb != exit_bb) 1347 { 1348 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1349 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi), 1350 &name_copies, &decl_copies); 1351 1352 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1353 { 1354 gimple *stmt = gsi_stmt (gsi); 1355 1356 if (is_gimple_debug (stmt)) 1357 has_debug_stmt = true; 1358 else 1359 separate_decls_in_region_stmt (entry, exit, stmt, 1360 &name_copies, &decl_copies); 1361 } 1362 } 1363 } 1364 1365 /* Now process debug bind stmts. We must not create decls while 1366 processing debug stmts, so we defer their processing so as to 1367 make sure we will have debug info for as many variables as 1368 possible (all of those that were dealt with in the loop above), 1369 and discard those for which we know there's nothing we can 1370 do. */ 1371 if (has_debug_stmt) 1372 FOR_EACH_VEC_ELT (body, i, bb) 1373 if (bb != entry_bb && bb != exit_bb) 1374 { 1375 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) 1376 { 1377 gimple *stmt = gsi_stmt (gsi); 1378 1379 if (is_gimple_debug (stmt)) 1380 { 1381 if (separate_decls_in_region_debug (stmt, &name_copies, 1382 &decl_copies)) 1383 { 1384 gsi_remove (&gsi, true); 1385 continue; 1386 } 1387 } 1388 1389 gsi_next (&gsi); 1390 } 1391 } 1392 1393 if (name_copies.elements () == 0 && reduction_list->elements () == 0) 1394 { 1395 /* It may happen that there is nothing to copy (if there are only 1396 loop carried and external variables in the loop). */ 1397 *arg_struct = NULL; 1398 *new_arg_struct = NULL; 1399 } 1400 else 1401 { 1402 /* Create the type for the structure to store the ssa names to. */ 1403 type = lang_hooks.types.make_type (RECORD_TYPE); 1404 type_name = build_decl (UNKNOWN_LOCATION, 1405 TYPE_DECL, create_tmp_var_name (".paral_data"), 1406 type); 1407 TYPE_NAME (type) = type_name; 1408 1409 name_copies.traverse <tree, add_field_for_name> (type); 1410 if (reduction_list && reduction_list->elements () > 0) 1411 { 1412 /* Create the fields for reductions. */ 1413 reduction_list->traverse <tree, add_field_for_reduction> (type); 1414 } 1415 layout_type (type); 1416 1417 /* Create the loads and stores. */ 1418 *arg_struct = create_tmp_var (type, ".paral_data_store"); 1419 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load"); 1420 *new_arg_struct = make_ssa_name (nvar); 1421 1422 ld_st_data->store = *arg_struct; 1423 ld_st_data->load = *new_arg_struct; 1424 ld_st_data->store_bb = bb0; 1425 ld_st_data->load_bb = bb1; 1426 1427 name_copies 1428 .traverse <struct clsn_data *, create_loads_and_stores_for_name> 1429 (ld_st_data); 1430 1431 /* Load the calculation from memory (after the join of the threads). */ 1432 1433 if (reduction_list && reduction_list->elements () > 0) 1434 { 1435 reduction_list 1436 ->traverse <struct clsn_data *, create_stores_for_reduction> 1437 (ld_st_data); 1438 clsn_data.load = make_ssa_name (nvar); 1439 clsn_data.load_bb = exit->dest; 1440 clsn_data.store = ld_st_data->store; 1441 create_final_loads_for_reduction (reduction_list, &clsn_data); 1442 } 1443 } 1444 } 1445 1446 /* Returns true if FN was created to run in parallel. */ 1447 1448 bool 1449 parallelized_function_p (tree fndecl) 1450 { 1451 cgraph_node *node = cgraph_node::get (fndecl); 1452 gcc_assert (node != NULL); 1453 return node->parallelized_function; 1454 } 1455 1456 /* Creates and returns an empty function that will receive the body of 1457 a parallelized loop. */ 1458 1459 static tree 1460 create_loop_fn (location_t loc) 1461 { 1462 char buf[100]; 1463 char *tname; 1464 tree decl, type, name, t; 1465 struct function *act_cfun = cfun; 1466 static unsigned loopfn_num; 1467 1468 loc = LOCATION_LOCUS (loc); 1469 snprintf (buf, 100, "%s.$loopfn", current_function_name ()); 1470 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++); 1471 clean_symbol_name (tname); 1472 name = get_identifier (tname); 1473 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE); 1474 1475 decl = build_decl (loc, FUNCTION_DECL, name, type); 1476 TREE_STATIC (decl) = 1; 1477 TREE_USED (decl) = 1; 1478 DECL_ARTIFICIAL (decl) = 1; 1479 DECL_IGNORED_P (decl) = 0; 1480 TREE_PUBLIC (decl) = 0; 1481 DECL_UNINLINABLE (decl) = 1; 1482 DECL_EXTERNAL (decl) = 0; 1483 DECL_CONTEXT (decl) = NULL_TREE; 1484 DECL_INITIAL (decl) = make_node (BLOCK); 1485 BLOCK_SUPERCONTEXT (DECL_INITIAL (decl)) = decl; 1486 1487 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node); 1488 DECL_ARTIFICIAL (t) = 1; 1489 DECL_IGNORED_P (t) = 1; 1490 DECL_RESULT (decl) = t; 1491 1492 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"), 1493 ptr_type_node); 1494 DECL_ARTIFICIAL (t) = 1; 1495 DECL_ARG_TYPE (t) = ptr_type_node; 1496 DECL_CONTEXT (t) = decl; 1497 TREE_USED (t) = 1; 1498 DECL_ARGUMENTS (decl) = t; 1499 1500 allocate_struct_function (decl, false); 1501 1502 /* The call to allocate_struct_function clobbers CFUN, so we need to restore 1503 it. */ 1504 set_cfun (act_cfun); 1505 1506 return decl; 1507 } 1508 1509 /* Replace uses of NAME by VAL in block BB. */ 1510 1511 static void 1512 replace_uses_in_bb_by (tree name, tree val, basic_block bb) 1513 { 1514 gimple *use_stmt; 1515 imm_use_iterator imm_iter; 1516 1517 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, name) 1518 { 1519 if (gimple_bb (use_stmt) != bb) 1520 continue; 1521 1522 use_operand_p use_p; 1523 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter) 1524 SET_USE (use_p, val); 1525 } 1526 } 1527 1528 /* Do transformation from: 1529 1530 <bb preheader>: 1531 ... 1532 goto <bb header> 1533 1534 <bb header>: 1535 ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)> 1536 sum_a = PHI <sum_init (preheader), sum_b (latch)> 1537 ... 1538 use (ivtmp_a) 1539 ... 1540 sum_b = sum_a + sum_update 1541 ... 1542 if (ivtmp_a < n) 1543 goto <bb latch>; 1544 else 1545 goto <bb exit>; 1546 1547 <bb latch>: 1548 ivtmp_b = ivtmp_a + 1; 1549 goto <bb header> 1550 1551 <bb exit>: 1552 sum_z = PHI <sum_b (cond[1]), ...> 1553 1554 [1] Where <bb cond> is single_pred (bb latch); In the simplest case, 1555 that's <bb header>. 1556 1557 to: 1558 1559 <bb preheader>: 1560 ... 1561 goto <bb newheader> 1562 1563 <bb header>: 1564 ivtmp_a = PHI <ivtmp_c (latch)> 1565 sum_a = PHI <sum_c (latch)> 1566 ... 1567 use (ivtmp_a) 1568 ... 1569 sum_b = sum_a + sum_update 1570 ... 1571 goto <bb latch>; 1572 1573 <bb newheader>: 1574 ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)> 1575 sum_c = PHI <sum_init (preheader), sum_b (latch)> 1576 if (ivtmp_c < n + 1) 1577 goto <bb header>; 1578 else 1579 goto <bb newexit>; 1580 1581 <bb latch>: 1582 ivtmp_b = ivtmp_a + 1; 1583 goto <bb newheader> 1584 1585 <bb newexit>: 1586 sum_y = PHI <sum_c (newheader)> 1587 1588 <bb exit>: 1589 sum_z = PHI <sum_y (newexit), ...> 1590 1591 1592 In unified diff format: 1593 1594 <bb preheader>: 1595 ... 1596 - goto <bb header> 1597 + goto <bb newheader> 1598 1599 <bb header>: 1600 - ivtmp_a = PHI <ivtmp_init (preheader), ivtmp_b (latch)> 1601 - sum_a = PHI <sum_init (preheader), sum_b (latch)> 1602 + ivtmp_a = PHI <ivtmp_c (latch)> 1603 + sum_a = PHI <sum_c (latch)> 1604 ... 1605 use (ivtmp_a) 1606 ... 1607 sum_b = sum_a + sum_update 1608 ... 1609 - if (ivtmp_a < n) 1610 - goto <bb latch>; 1611 + goto <bb latch>; 1612 + 1613 + <bb newheader>: 1614 + ivtmp_c = PHI <ivtmp_init (preheader), ivtmp_b (latch)> 1615 + sum_c = PHI <sum_init (preheader), sum_b (latch)> 1616 + if (ivtmp_c < n + 1) 1617 + goto <bb header>; 1618 else 1619 goto <bb exit>; 1620 1621 <bb latch>: 1622 ivtmp_b = ivtmp_a + 1; 1623 - goto <bb header> 1624 + goto <bb newheader> 1625 1626 + <bb newexit>: 1627 + sum_y = PHI <sum_c (newheader)> 1628 1629 <bb exit>: 1630 - sum_z = PHI <sum_b (cond[1]), ...> 1631 + sum_z = PHI <sum_y (newexit), ...> 1632 1633 Note: the example does not show any virtual phis, but these are handled more 1634 or less as reductions. 1635 1636 1637 Moves the exit condition of LOOP to the beginning of its header. 1638 REDUCTION_LIST describes the reductions in LOOP. BOUND is the new loop 1639 bound. */ 1640 1641 static void 1642 transform_to_exit_first_loop_alt (struct loop *loop, 1643 reduction_info_table_type *reduction_list, 1644 tree bound) 1645 { 1646 basic_block header = loop->header; 1647 basic_block latch = loop->latch; 1648 edge exit = single_dom_exit (loop); 1649 basic_block exit_block = exit->dest; 1650 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src)); 1651 tree control = gimple_cond_lhs (cond_stmt); 1652 edge e; 1653 1654 /* Rewriting virtuals into loop-closed ssa normal form makes this 1655 transformation simpler. It also ensures that the virtuals are in 1656 loop-closed ssa normal from after the transformation, which is required by 1657 create_parallel_loop. */ 1658 rewrite_virtuals_into_loop_closed_ssa (loop); 1659 1660 /* Create the new_header block. */ 1661 basic_block new_header = split_block_before_cond_jump (exit->src); 1662 edge edge_at_split = single_pred_edge (new_header); 1663 1664 /* Redirect entry edge to new_header. */ 1665 edge entry = loop_preheader_edge (loop); 1666 e = redirect_edge_and_branch (entry, new_header); 1667 gcc_assert (e == entry); 1668 1669 /* Redirect post_inc_edge to new_header. */ 1670 edge post_inc_edge = single_succ_edge (latch); 1671 e = redirect_edge_and_branch (post_inc_edge, new_header); 1672 gcc_assert (e == post_inc_edge); 1673 1674 /* Redirect post_cond_edge to header. */ 1675 edge post_cond_edge = single_pred_edge (latch); 1676 e = redirect_edge_and_branch (post_cond_edge, header); 1677 gcc_assert (e == post_cond_edge); 1678 1679 /* Redirect edge_at_split to latch. */ 1680 e = redirect_edge_and_branch (edge_at_split, latch); 1681 gcc_assert (e == edge_at_split); 1682 1683 /* Set the new loop bound. */ 1684 gimple_cond_set_rhs (cond_stmt, bound); 1685 update_stmt (cond_stmt); 1686 1687 /* Repair the ssa. */ 1688 vec<edge_var_map> *v = redirect_edge_var_map_vector (post_inc_edge); 1689 edge_var_map *vm; 1690 gphi_iterator gsi; 1691 int i; 1692 for (gsi = gsi_start_phis (header), i = 0; 1693 !gsi_end_p (gsi) && v->iterate (i, &vm); 1694 gsi_next (&gsi), i++) 1695 { 1696 gphi *phi = gsi.phi (); 1697 tree res_a = PHI_RESULT (phi); 1698 1699 /* Create new phi. */ 1700 tree res_c = copy_ssa_name (res_a, phi); 1701 gphi *nphi = create_phi_node (res_c, new_header); 1702 1703 /* Replace ivtmp_a with ivtmp_c in condition 'if (ivtmp_a < n)'. */ 1704 replace_uses_in_bb_by (res_a, res_c, new_header); 1705 1706 /* Replace ivtmp/sum_b with ivtmp/sum_c in header phi. */ 1707 add_phi_arg (phi, res_c, post_cond_edge, UNKNOWN_LOCATION); 1708 1709 /* Replace sum_b with sum_c in exit phi. */ 1710 tree res_b = redirect_edge_var_map_def (vm); 1711 replace_uses_in_bb_by (res_b, res_c, exit_block); 1712 1713 struct reduction_info *red = reduction_phi (reduction_list, phi); 1714 gcc_assert (virtual_operand_p (res_a) 1715 || res_a == control 1716 || red != NULL); 1717 1718 if (red) 1719 { 1720 /* Register the new reduction phi. */ 1721 red->reduc_phi = nphi; 1722 gimple_set_uid (red->reduc_phi, red->reduc_version); 1723 } 1724 } 1725 gcc_assert (gsi_end_p (gsi) && !v->iterate (i, &vm)); 1726 1727 /* Set the preheader argument of the new phis to ivtmp/sum_init. */ 1728 flush_pending_stmts (entry); 1729 1730 /* Set the latch arguments of the new phis to ivtmp/sum_b. */ 1731 flush_pending_stmts (post_inc_edge); 1732 1733 1734 basic_block new_exit_block = NULL; 1735 if (!single_pred_p (exit->dest)) 1736 { 1737 /* Create a new empty exit block, inbetween the new loop header and the 1738 old exit block. The function separate_decls_in_region needs this block 1739 to insert code that is active on loop exit, but not any other path. */ 1740 new_exit_block = split_edge (exit); 1741 } 1742 1743 /* Insert and register the reduction exit phis. */ 1744 for (gphi_iterator gsi = gsi_start_phis (exit_block); 1745 !gsi_end_p (gsi); 1746 gsi_next (&gsi)) 1747 { 1748 gphi *phi = gsi.phi (); 1749 gphi *nphi = NULL; 1750 tree res_z = PHI_RESULT (phi); 1751 tree res_c; 1752 1753 if (new_exit_block != NULL) 1754 { 1755 /* Now that we have a new exit block, duplicate the phi of the old 1756 exit block in the new exit block to preserve loop-closed ssa. */ 1757 edge succ_new_exit_block = single_succ_edge (new_exit_block); 1758 edge pred_new_exit_block = single_pred_edge (new_exit_block); 1759 tree res_y = copy_ssa_name (res_z, phi); 1760 nphi = create_phi_node (res_y, new_exit_block); 1761 res_c = PHI_ARG_DEF_FROM_EDGE (phi, succ_new_exit_block); 1762 add_phi_arg (nphi, res_c, pred_new_exit_block, UNKNOWN_LOCATION); 1763 add_phi_arg (phi, res_y, succ_new_exit_block, UNKNOWN_LOCATION); 1764 } 1765 else 1766 res_c = PHI_ARG_DEF_FROM_EDGE (phi, exit); 1767 1768 if (virtual_operand_p (res_z)) 1769 continue; 1770 1771 gimple *reduc_phi = SSA_NAME_DEF_STMT (res_c); 1772 struct reduction_info *red = reduction_phi (reduction_list, reduc_phi); 1773 if (red != NULL) 1774 red->keep_res = (nphi != NULL 1775 ? nphi 1776 : phi); 1777 } 1778 1779 /* We're going to cancel the loop at the end of gen_parallel_loop, but until 1780 then we're still using some fields, so only bother about fields that are 1781 still used: header and latch. 1782 The loop has a new header bb, so we update it. The latch bb stays the 1783 same. */ 1784 loop->header = new_header; 1785 1786 /* Recalculate dominance info. */ 1787 free_dominance_info (CDI_DOMINATORS); 1788 calculate_dominance_info (CDI_DOMINATORS); 1789 1790 checking_verify_ssa (true, true); 1791 } 1792 1793 /* Tries to moves the exit condition of LOOP to the beginning of its header 1794 without duplication of the loop body. NIT is the number of iterations of the 1795 loop. REDUCTION_LIST describes the reductions in LOOP. Return true if 1796 transformation is successful. */ 1797 1798 static bool 1799 try_transform_to_exit_first_loop_alt (struct loop *loop, 1800 reduction_info_table_type *reduction_list, 1801 tree nit) 1802 { 1803 /* Check whether the latch contains a single statement. */ 1804 if (!gimple_seq_nondebug_singleton_p (bb_seq (loop->latch))) 1805 return false; 1806 1807 /* Check whether the latch contains no phis. */ 1808 if (phi_nodes (loop->latch) != NULL) 1809 return false; 1810 1811 /* Check whether the latch contains the loop iv increment. */ 1812 edge back = single_succ_edge (loop->latch); 1813 edge exit = single_dom_exit (loop); 1814 gcond *cond_stmt = as_a <gcond *> (last_stmt (exit->src)); 1815 tree control = gimple_cond_lhs (cond_stmt); 1816 gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (control)); 1817 tree inc_res = gimple_phi_arg_def (phi, back->dest_idx); 1818 if (gimple_bb (SSA_NAME_DEF_STMT (inc_res)) != loop->latch) 1819 return false; 1820 1821 /* Check whether there's no code between the loop condition and the latch. */ 1822 if (!single_pred_p (loop->latch) 1823 || single_pred (loop->latch) != exit->src) 1824 return false; 1825 1826 tree alt_bound = NULL_TREE; 1827 tree nit_type = TREE_TYPE (nit); 1828 1829 /* Figure out whether nit + 1 overflows. */ 1830 if (TREE_CODE (nit) == INTEGER_CST) 1831 { 1832 if (!tree_int_cst_equal (nit, TYPE_MAX_VALUE (nit_type))) 1833 { 1834 alt_bound = fold_build2_loc (UNKNOWN_LOCATION, PLUS_EXPR, nit_type, 1835 nit, build_one_cst (nit_type)); 1836 1837 gcc_assert (TREE_CODE (alt_bound) == INTEGER_CST); 1838 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound); 1839 return true; 1840 } 1841 else 1842 { 1843 /* Todo: Figure out if we can trigger this, if it's worth to handle 1844 optimally, and if we can handle it optimally. */ 1845 return false; 1846 } 1847 } 1848 1849 gcc_assert (TREE_CODE (nit) == SSA_NAME); 1850 1851 /* Variable nit is the loop bound as returned by canonicalize_loop_ivs, for an 1852 iv with base 0 and step 1 that is incremented in the latch, like this: 1853 1854 <bb header>: 1855 # iv_1 = PHI <0 (preheader), iv_2 (latch)> 1856 ... 1857 if (iv_1 < nit) 1858 goto <bb latch>; 1859 else 1860 goto <bb exit>; 1861 1862 <bb latch>: 1863 iv_2 = iv_1 + 1; 1864 goto <bb header>; 1865 1866 The range of iv_1 is [0, nit]. The latch edge is taken for 1867 iv_1 == [0, nit - 1] and the exit edge is taken for iv_1 == nit. So the 1868 number of latch executions is equal to nit. 1869 1870 The function max_loop_iterations gives us the maximum number of latch 1871 executions, so it gives us the maximum value of nit. */ 1872 widest_int nit_max; 1873 if (!max_loop_iterations (loop, &nit_max)) 1874 return false; 1875 1876 /* Check if nit + 1 overflows. */ 1877 widest_int type_max = wi::to_widest (TYPE_MAX_VALUE (nit_type)); 1878 if (nit_max >= type_max) 1879 return false; 1880 1881 gimple *def = SSA_NAME_DEF_STMT (nit); 1882 1883 /* Try to find nit + 1, in the form of n in an assignment nit = n - 1. */ 1884 if (def 1885 && is_gimple_assign (def) 1886 && gimple_assign_rhs_code (def) == PLUS_EXPR) 1887 { 1888 tree op1 = gimple_assign_rhs1 (def); 1889 tree op2 = gimple_assign_rhs2 (def); 1890 if (integer_minus_onep (op1)) 1891 alt_bound = op2; 1892 else if (integer_minus_onep (op2)) 1893 alt_bound = op1; 1894 } 1895 1896 /* If not found, insert nit + 1. */ 1897 if (alt_bound == NULL_TREE) 1898 { 1899 alt_bound = fold_build2 (PLUS_EXPR, nit_type, nit, 1900 build_int_cst_type (nit_type, 1)); 1901 1902 gimple_stmt_iterator gsi = gsi_last_bb (loop_preheader_edge (loop)->src); 1903 1904 alt_bound 1905 = force_gimple_operand_gsi (&gsi, alt_bound, true, NULL_TREE, false, 1906 GSI_CONTINUE_LINKING); 1907 } 1908 1909 transform_to_exit_first_loop_alt (loop, reduction_list, alt_bound); 1910 return true; 1911 } 1912 1913 /* Moves the exit condition of LOOP to the beginning of its header. NIT is the 1914 number of iterations of the loop. REDUCTION_LIST describes the reductions in 1915 LOOP. */ 1916 1917 static void 1918 transform_to_exit_first_loop (struct loop *loop, 1919 reduction_info_table_type *reduction_list, 1920 tree nit) 1921 { 1922 basic_block *bbs, *nbbs, ex_bb, orig_header; 1923 unsigned n; 1924 bool ok; 1925 edge exit = single_dom_exit (loop), hpred; 1926 tree control, control_name, res, t; 1927 gphi *phi, *nphi; 1928 gassign *stmt; 1929 gcond *cond_stmt, *cond_nit; 1930 tree nit_1; 1931 1932 split_block_after_labels (loop->header); 1933 orig_header = single_succ (loop->header); 1934 hpred = single_succ_edge (loop->header); 1935 1936 cond_stmt = as_a <gcond *> (last_stmt (exit->src)); 1937 control = gimple_cond_lhs (cond_stmt); 1938 gcc_assert (gimple_cond_rhs (cond_stmt) == nit); 1939 1940 /* Make sure that we have phi nodes on exit for all loop header phis 1941 (create_parallel_loop requires that). */ 1942 for (gphi_iterator gsi = gsi_start_phis (loop->header); 1943 !gsi_end_p (gsi); 1944 gsi_next (&gsi)) 1945 { 1946 phi = gsi.phi (); 1947 res = PHI_RESULT (phi); 1948 t = copy_ssa_name (res, phi); 1949 SET_PHI_RESULT (phi, t); 1950 nphi = create_phi_node (res, orig_header); 1951 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION); 1952 1953 if (res == control) 1954 { 1955 gimple_cond_set_lhs (cond_stmt, t); 1956 update_stmt (cond_stmt); 1957 control = t; 1958 } 1959 } 1960 1961 bbs = get_loop_body_in_dom_order (loop); 1962 1963 for (n = 0; bbs[n] != exit->src; n++) 1964 continue; 1965 nbbs = XNEWVEC (basic_block, n); 1966 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit, 1967 bbs + 1, n, nbbs); 1968 gcc_assert (ok); 1969 free (bbs); 1970 ex_bb = nbbs[0]; 1971 free (nbbs); 1972 1973 /* Other than reductions, the only gimple reg that should be copied 1974 out of the loop is the control variable. */ 1975 exit = single_dom_exit (loop); 1976 control_name = NULL_TREE; 1977 for (gphi_iterator gsi = gsi_start_phis (ex_bb); 1978 !gsi_end_p (gsi); ) 1979 { 1980 phi = gsi.phi (); 1981 res = PHI_RESULT (phi); 1982 if (virtual_operand_p (res)) 1983 { 1984 gsi_next (&gsi); 1985 continue; 1986 } 1987 1988 /* Check if it is a part of reduction. If it is, 1989 keep the phi at the reduction's keep_res field. The 1990 PHI_RESULT of this phi is the resulting value of the reduction 1991 variable when exiting the loop. */ 1992 1993 if (reduction_list->elements () > 0) 1994 { 1995 struct reduction_info *red; 1996 1997 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); 1998 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val)); 1999 if (red) 2000 { 2001 red->keep_res = phi; 2002 gsi_next (&gsi); 2003 continue; 2004 } 2005 } 2006 gcc_assert (control_name == NULL_TREE 2007 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control)); 2008 control_name = res; 2009 remove_phi_node (&gsi, false); 2010 } 2011 gcc_assert (control_name != NULL_TREE); 2012 2013 /* Initialize the control variable to number of iterations 2014 according to the rhs of the exit condition. */ 2015 gimple_stmt_iterator gsi = gsi_after_labels (ex_bb); 2016 cond_nit = as_a <gcond *> (last_stmt (exit->src)); 2017 nit_1 = gimple_cond_rhs (cond_nit); 2018 nit_1 = force_gimple_operand_gsi (&gsi, 2019 fold_convert (TREE_TYPE (control_name), nit_1), 2020 false, NULL_TREE, false, GSI_SAME_STMT); 2021 stmt = gimple_build_assign (control_name, nit_1); 2022 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 2023 } 2024 2025 /* Create the parallel constructs for LOOP as described in gen_parallel_loop. 2026 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL. 2027 NEW_DATA is the variable that should be initialized from the argument 2028 of LOOP_FN. N_THREADS is the requested number of threads, which can be 0 if 2029 that number is to be determined later. */ 2030 2031 static void 2032 create_parallel_loop (struct loop *loop, tree loop_fn, tree data, 2033 tree new_data, unsigned n_threads, location_t loc, 2034 bool oacc_kernels_p) 2035 { 2036 gimple_stmt_iterator gsi; 2037 basic_block for_bb, ex_bb, continue_bb; 2038 tree t, param; 2039 gomp_parallel *omp_par_stmt; 2040 gimple *omp_return_stmt1, *omp_return_stmt2; 2041 gimple *phi; 2042 gcond *cond_stmt; 2043 gomp_for *for_stmt; 2044 gomp_continue *omp_cont_stmt; 2045 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type; 2046 edge exit, nexit, guard, end, e; 2047 2048 if (oacc_kernels_p) 2049 { 2050 gcc_checking_assert (lookup_attribute ("oacc kernels", 2051 DECL_ATTRIBUTES (cfun->decl))); 2052 /* Indicate to later processing that this is a parallelized OpenACC 2053 kernels construct. */ 2054 DECL_ATTRIBUTES (cfun->decl) 2055 = tree_cons (get_identifier ("oacc kernels parallelized"), 2056 NULL_TREE, DECL_ATTRIBUTES (cfun->decl)); 2057 } 2058 else 2059 { 2060 /* Prepare the GIMPLE_OMP_PARALLEL statement. */ 2061 2062 basic_block bb = loop_preheader_edge (loop)->src; 2063 basic_block paral_bb = single_pred (bb); 2064 gsi = gsi_last_bb (paral_bb); 2065 2066 gcc_checking_assert (n_threads != 0); 2067 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS); 2068 OMP_CLAUSE_NUM_THREADS_EXPR (t) 2069 = build_int_cst (integer_type_node, n_threads); 2070 omp_par_stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data); 2071 gimple_set_location (omp_par_stmt, loc); 2072 2073 gsi_insert_after (&gsi, omp_par_stmt, GSI_NEW_STMT); 2074 2075 /* Initialize NEW_DATA. */ 2076 if (data) 2077 { 2078 gassign *assign_stmt; 2079 2080 gsi = gsi_after_labels (bb); 2081 2082 param = make_ssa_name (DECL_ARGUMENTS (loop_fn)); 2083 assign_stmt = gimple_build_assign (param, build_fold_addr_expr (data)); 2084 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); 2085 2086 assign_stmt = gimple_build_assign (new_data, 2087 fold_convert (TREE_TYPE (new_data), param)); 2088 gsi_insert_before (&gsi, assign_stmt, GSI_SAME_STMT); 2089 } 2090 2091 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */ 2092 bb = split_loop_exit_edge (single_dom_exit (loop)); 2093 gsi = gsi_last_bb (bb); 2094 omp_return_stmt1 = gimple_build_omp_return (false); 2095 gimple_set_location (omp_return_stmt1, loc); 2096 gsi_insert_after (&gsi, omp_return_stmt1, GSI_NEW_STMT); 2097 } 2098 2099 /* Extract data for GIMPLE_OMP_FOR. */ 2100 gcc_assert (loop->header == single_dom_exit (loop)->src); 2101 cond_stmt = as_a <gcond *> (last_stmt (loop->header)); 2102 2103 cvar = gimple_cond_lhs (cond_stmt); 2104 cvar_base = SSA_NAME_VAR (cvar); 2105 phi = SSA_NAME_DEF_STMT (cvar); 2106 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop)); 2107 initvar = copy_ssa_name (cvar); 2108 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)), 2109 initvar); 2110 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); 2111 2112 gsi = gsi_last_nondebug_bb (loop->latch); 2113 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next)); 2114 gsi_remove (&gsi, true); 2115 2116 /* Prepare cfg. */ 2117 for_bb = split_edge (loop_preheader_edge (loop)); 2118 ex_bb = split_loop_exit_edge (single_dom_exit (loop)); 2119 extract_true_false_edges_from_block (loop->header, &nexit, &exit); 2120 gcc_assert (exit == single_dom_exit (loop)); 2121 2122 guard = make_edge (for_bb, ex_bb, 0); 2123 /* FIXME: What is the probability? */ 2124 guard->probability = profile_probability::guessed_never (); 2125 /* Split the latch edge, so LOOPS_HAVE_SIMPLE_LATCHES is still valid. */ 2126 loop->latch = split_edge (single_succ_edge (loop->latch)); 2127 single_pred_edge (loop->latch)->flags = 0; 2128 end = make_single_succ_edge (single_pred (loop->latch), ex_bb, EDGE_FALLTHRU); 2129 rescan_loop_exit (end, true, false); 2130 2131 for (gphi_iterator gpi = gsi_start_phis (ex_bb); 2132 !gsi_end_p (gpi); gsi_next (&gpi)) 2133 { 2134 location_t locus; 2135 gphi *phi = gpi.phi (); 2136 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit); 2137 gimple *def_stmt = SSA_NAME_DEF_STMT (def); 2138 2139 /* If the exit phi is not connected to a header phi in the same loop, this 2140 value is not modified in the loop, and we're done with this phi. */ 2141 if (!(gimple_code (def_stmt) == GIMPLE_PHI 2142 && gimple_bb (def_stmt) == loop->header)) 2143 { 2144 locus = gimple_phi_arg_location_from_edge (phi, exit); 2145 add_phi_arg (phi, def, guard, locus); 2146 add_phi_arg (phi, def, end, locus); 2147 continue; 2148 } 2149 2150 gphi *stmt = as_a <gphi *> (def_stmt); 2151 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)); 2152 locus = gimple_phi_arg_location_from_edge (stmt, 2153 loop_preheader_edge (loop)); 2154 add_phi_arg (phi, def, guard, locus); 2155 2156 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)); 2157 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop)); 2158 add_phi_arg (phi, def, end, locus); 2159 } 2160 e = redirect_edge_and_branch (exit, nexit->dest); 2161 PENDING_STMT (e) = NULL; 2162 2163 /* Emit GIMPLE_OMP_FOR. */ 2164 if (oacc_kernels_p) 2165 /* Parallelized OpenACC kernels constructs use gang parallelism. See also 2166 omp-offload.c:execute_oacc_device_lower. */ 2167 t = build_omp_clause (loc, OMP_CLAUSE_GANG); 2168 else 2169 { 2170 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE); 2171 int chunk_size = PARAM_VALUE (PARAM_PARLOOPS_CHUNK_SIZE); 2172 enum PARAM_PARLOOPS_SCHEDULE_KIND schedule_type \ 2173 = (enum PARAM_PARLOOPS_SCHEDULE_KIND) PARAM_VALUE (PARAM_PARLOOPS_SCHEDULE); 2174 switch (schedule_type) 2175 { 2176 case PARAM_PARLOOPS_SCHEDULE_KIND_static: 2177 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC; 2178 break; 2179 case PARAM_PARLOOPS_SCHEDULE_KIND_dynamic: 2180 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_DYNAMIC; 2181 break; 2182 case PARAM_PARLOOPS_SCHEDULE_KIND_guided: 2183 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_GUIDED; 2184 break; 2185 case PARAM_PARLOOPS_SCHEDULE_KIND_auto: 2186 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_AUTO; 2187 chunk_size = 0; 2188 break; 2189 case PARAM_PARLOOPS_SCHEDULE_KIND_runtime: 2190 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_RUNTIME; 2191 chunk_size = 0; 2192 break; 2193 default: 2194 gcc_unreachable (); 2195 } 2196 if (chunk_size != 0) 2197 OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (t) 2198 = build_int_cst (integer_type_node, chunk_size); 2199 } 2200 2201 for_stmt = gimple_build_omp_for (NULL, 2202 (oacc_kernels_p 2203 ? GF_OMP_FOR_KIND_OACC_LOOP 2204 : GF_OMP_FOR_KIND_FOR), 2205 t, 1, NULL); 2206 2207 gimple_cond_set_lhs (cond_stmt, cvar_base); 2208 type = TREE_TYPE (cvar); 2209 gimple_set_location (for_stmt, loc); 2210 gimple_omp_for_set_index (for_stmt, 0, initvar); 2211 gimple_omp_for_set_initial (for_stmt, 0, cvar_init); 2212 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt)); 2213 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt)); 2214 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type, 2215 cvar_base, 2216 build_int_cst (type, 1))); 2217 2218 gsi = gsi_last_bb (for_bb); 2219 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT); 2220 SSA_NAME_DEF_STMT (initvar) = for_stmt; 2221 2222 /* Emit GIMPLE_OMP_CONTINUE. */ 2223 continue_bb = single_pred (loop->latch); 2224 gsi = gsi_last_bb (continue_bb); 2225 omp_cont_stmt = gimple_build_omp_continue (cvar_next, cvar); 2226 gimple_set_location (omp_cont_stmt, loc); 2227 gsi_insert_after (&gsi, omp_cont_stmt, GSI_NEW_STMT); 2228 SSA_NAME_DEF_STMT (cvar_next) = omp_cont_stmt; 2229 2230 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */ 2231 gsi = gsi_last_bb (ex_bb); 2232 omp_return_stmt2 = gimple_build_omp_return (true); 2233 gimple_set_location (omp_return_stmt2, loc); 2234 gsi_insert_after (&gsi, omp_return_stmt2, GSI_NEW_STMT); 2235 2236 /* After the above dom info is hosed. Re-compute it. */ 2237 free_dominance_info (CDI_DOMINATORS); 2238 calculate_dominance_info (CDI_DOMINATORS); 2239 } 2240 2241 /* Return number of phis in bb. If COUNT_VIRTUAL_P is false, don't count the 2242 virtual phi. */ 2243 2244 static unsigned int 2245 num_phis (basic_block bb, bool count_virtual_p) 2246 { 2247 unsigned int nr_phis = 0; 2248 gphi_iterator gsi; 2249 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2250 { 2251 if (!count_virtual_p && virtual_operand_p (PHI_RESULT (gsi.phi ()))) 2252 continue; 2253 2254 nr_phis++; 2255 } 2256 2257 return nr_phis; 2258 } 2259 2260 /* Generates code to execute the iterations of LOOP in N_THREADS 2261 threads in parallel, which can be 0 if that number is to be determined 2262 later. 2263 2264 NITER describes number of iterations of LOOP. 2265 REDUCTION_LIST describes the reductions existent in the LOOP. */ 2266 2267 static void 2268 gen_parallel_loop (struct loop *loop, 2269 reduction_info_table_type *reduction_list, 2270 unsigned n_threads, struct tree_niter_desc *niter, 2271 bool oacc_kernels_p) 2272 { 2273 tree many_iterations_cond, type, nit; 2274 tree arg_struct, new_arg_struct; 2275 gimple_seq stmts; 2276 edge entry, exit; 2277 struct clsn_data clsn_data; 2278 location_t loc; 2279 gimple *cond_stmt; 2280 unsigned int m_p_thread=2; 2281 2282 /* From 2283 2284 --------------------------------------------------------------------- 2285 loop 2286 { 2287 IV = phi (INIT, IV + STEP) 2288 BODY1; 2289 if (COND) 2290 break; 2291 BODY2; 2292 } 2293 --------------------------------------------------------------------- 2294 2295 with # of iterations NITER (possibly with MAY_BE_ZERO assumption), 2296 we generate the following code: 2297 2298 --------------------------------------------------------------------- 2299 2300 if (MAY_BE_ZERO 2301 || NITER < MIN_PER_THREAD * N_THREADS) 2302 goto original; 2303 2304 BODY1; 2305 store all local loop-invariant variables used in body of the loop to DATA. 2306 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA); 2307 load the variables from DATA. 2308 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static)) 2309 BODY2; 2310 BODY1; 2311 GIMPLE_OMP_CONTINUE; 2312 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR 2313 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL 2314 goto end; 2315 2316 original: 2317 loop 2318 { 2319 IV = phi (INIT, IV + STEP) 2320 BODY1; 2321 if (COND) 2322 break; 2323 BODY2; 2324 } 2325 2326 end: 2327 2328 */ 2329 2330 /* Create two versions of the loop -- in the old one, we know that the 2331 number of iterations is large enough, and we will transform it into the 2332 loop that will be split to loop_fn, the new one will be used for the 2333 remaining iterations. */ 2334 2335 /* We should compute a better number-of-iterations value for outer loops. 2336 That is, if we have 2337 2338 for (i = 0; i < n; ++i) 2339 for (j = 0; j < m; ++j) 2340 ... 2341 2342 we should compute nit = n * m, not nit = n. 2343 Also may_be_zero handling would need to be adjusted. */ 2344 2345 type = TREE_TYPE (niter->niter); 2346 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true, 2347 NULL_TREE); 2348 if (stmts) 2349 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 2350 2351 if (!oacc_kernels_p) 2352 { 2353 if (loop->inner) 2354 m_p_thread=2; 2355 else 2356 m_p_thread=MIN_PER_THREAD; 2357 2358 gcc_checking_assert (n_threads != 0); 2359 many_iterations_cond = 2360 fold_build2 (GE_EXPR, boolean_type_node, 2361 nit, build_int_cst (type, m_p_thread * n_threads - 1)); 2362 2363 many_iterations_cond 2364 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, 2365 invert_truthvalue (unshare_expr (niter->may_be_zero)), 2366 many_iterations_cond); 2367 many_iterations_cond 2368 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE); 2369 if (stmts) 2370 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts); 2371 if (!is_gimple_condexpr (many_iterations_cond)) 2372 { 2373 many_iterations_cond 2374 = force_gimple_operand (many_iterations_cond, &stmts, 2375 true, NULL_TREE); 2376 if (stmts) 2377 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), 2378 stmts); 2379 } 2380 2381 initialize_original_copy_tables (); 2382 2383 /* We assume that the loop usually iterates a lot. */ 2384 loop_version (loop, many_iterations_cond, NULL, 2385 profile_probability::likely (), 2386 profile_probability::unlikely (), 2387 profile_probability::likely (), 2388 profile_probability::unlikely (), true); 2389 update_ssa (TODO_update_ssa); 2390 free_original_copy_tables (); 2391 } 2392 2393 /* Base all the induction variables in LOOP on a single control one. */ 2394 canonicalize_loop_ivs (loop, &nit, true); 2395 if (num_phis (loop->header, false) != reduction_list->elements () + 1) 2396 { 2397 /* The call to canonicalize_loop_ivs above failed to "base all the 2398 induction variables in LOOP on a single control one". Do damage 2399 control. */ 2400 basic_block preheader = loop_preheader_edge (loop)->src; 2401 basic_block cond_bb = single_pred (preheader); 2402 gcond *cond = as_a <gcond *> (gsi_stmt (gsi_last_bb (cond_bb))); 2403 gimple_cond_make_true (cond); 2404 update_stmt (cond); 2405 /* We've gotten rid of the duplicate loop created by loop_version, but 2406 we can't undo whatever canonicalize_loop_ivs has done. 2407 TODO: Fix this properly by ensuring that the call to 2408 canonicalize_loop_ivs succeeds. */ 2409 if (dump_file 2410 && (dump_flags & TDF_DETAILS)) 2411 fprintf (dump_file, "canonicalize_loop_ivs failed for loop %d," 2412 " aborting transformation\n", loop->num); 2413 return; 2414 } 2415 2416 /* Ensure that the exit condition is the first statement in the loop. 2417 The common case is that latch of the loop is empty (apart from the 2418 increment) and immediately follows the loop exit test. Attempt to move the 2419 entry of the loop directly before the exit check and increase the number of 2420 iterations of the loop by one. */ 2421 if (try_transform_to_exit_first_loop_alt (loop, reduction_list, nit)) 2422 { 2423 if (dump_file 2424 && (dump_flags & TDF_DETAILS)) 2425 fprintf (dump_file, 2426 "alternative exit-first loop transform succeeded" 2427 " for loop %d\n", loop->num); 2428 } 2429 else 2430 { 2431 if (oacc_kernels_p) 2432 n_threads = 1; 2433 2434 /* Fall back on the method that handles more cases, but duplicates the 2435 loop body: move the exit condition of LOOP to the beginning of its 2436 header, and duplicate the part of the last iteration that gets disabled 2437 to the exit of the loop. */ 2438 transform_to_exit_first_loop (loop, reduction_list, nit); 2439 } 2440 2441 /* Generate initializations for reductions. */ 2442 if (reduction_list->elements () > 0) 2443 reduction_list->traverse <struct loop *, initialize_reductions> (loop); 2444 2445 /* Eliminate the references to local variables from the loop. */ 2446 gcc_assert (single_exit (loop)); 2447 entry = loop_preheader_edge (loop); 2448 exit = single_dom_exit (loop); 2449 2450 /* This rewrites the body in terms of new variables. This has already 2451 been done for oacc_kernels_p in pass_lower_omp/lower_omp (). */ 2452 if (!oacc_kernels_p) 2453 { 2454 eliminate_local_variables (entry, exit); 2455 /* In the old loop, move all variables non-local to the loop to a 2456 structure and back, and create separate decls for the variables used in 2457 loop. */ 2458 separate_decls_in_region (entry, exit, reduction_list, &arg_struct, 2459 &new_arg_struct, &clsn_data); 2460 } 2461 else 2462 { 2463 arg_struct = NULL_TREE; 2464 new_arg_struct = NULL_TREE; 2465 clsn_data.load = NULL_TREE; 2466 clsn_data.load_bb = exit->dest; 2467 clsn_data.store = NULL_TREE; 2468 clsn_data.store_bb = NULL; 2469 } 2470 2471 /* Create the parallel constructs. */ 2472 loc = UNKNOWN_LOCATION; 2473 cond_stmt = last_stmt (loop->header); 2474 if (cond_stmt) 2475 loc = gimple_location (cond_stmt); 2476 create_parallel_loop (loop, create_loop_fn (loc), arg_struct, new_arg_struct, 2477 n_threads, loc, oacc_kernels_p); 2478 if (reduction_list->elements () > 0) 2479 create_call_for_reduction (loop, reduction_list, &clsn_data); 2480 2481 scev_reset (); 2482 2483 /* Free loop bound estimations that could contain references to 2484 removed statements. */ 2485 free_numbers_of_iterations_estimates (cfun); 2486 } 2487 2488 /* Returns true when LOOP contains vector phi nodes. */ 2489 2490 static bool 2491 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED) 2492 { 2493 unsigned i; 2494 basic_block *bbs = get_loop_body_in_dom_order (loop); 2495 gphi_iterator gsi; 2496 bool res = true; 2497 2498 for (i = 0; i < loop->num_nodes; i++) 2499 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 2500 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi.phi ()))) == VECTOR_TYPE) 2501 goto end; 2502 2503 res = false; 2504 end: 2505 free (bbs); 2506 return res; 2507 } 2508 2509 /* Create a reduction_info struct, initialize it with REDUC_STMT 2510 and PHI, insert it to the REDUCTION_LIST. */ 2511 2512 static void 2513 build_new_reduction (reduction_info_table_type *reduction_list, 2514 gimple *reduc_stmt, gphi *phi) 2515 { 2516 reduction_info **slot; 2517 struct reduction_info *new_reduction; 2518 enum tree_code reduction_code; 2519 2520 gcc_assert (reduc_stmt); 2521 2522 if (gimple_code (reduc_stmt) == GIMPLE_PHI) 2523 { 2524 tree op1 = PHI_ARG_DEF (reduc_stmt, 0); 2525 gimple *def1 = SSA_NAME_DEF_STMT (op1); 2526 reduction_code = gimple_assign_rhs_code (def1); 2527 } 2528 else 2529 reduction_code = gimple_assign_rhs_code (reduc_stmt); 2530 /* Check for OpenMP supported reduction. */ 2531 switch (reduction_code) 2532 { 2533 case PLUS_EXPR: 2534 case MULT_EXPR: 2535 case MAX_EXPR: 2536 case MIN_EXPR: 2537 case BIT_IOR_EXPR: 2538 case BIT_XOR_EXPR: 2539 case BIT_AND_EXPR: 2540 case TRUTH_OR_EXPR: 2541 case TRUTH_XOR_EXPR: 2542 case TRUTH_AND_EXPR: 2543 break; 2544 default: 2545 return; 2546 } 2547 2548 if (dump_file && (dump_flags & TDF_DETAILS)) 2549 { 2550 fprintf (dump_file, 2551 "Detected reduction. reduction stmt is:\n"); 2552 print_gimple_stmt (dump_file, reduc_stmt, 0); 2553 fprintf (dump_file, "\n"); 2554 } 2555 2556 new_reduction = XCNEW (struct reduction_info); 2557 2558 new_reduction->reduc_stmt = reduc_stmt; 2559 new_reduction->reduc_phi = phi; 2560 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi)); 2561 new_reduction->reduction_code = reduction_code; 2562 slot = reduction_list->find_slot (new_reduction, INSERT); 2563 *slot = new_reduction; 2564 } 2565 2566 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */ 2567 2568 int 2569 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED) 2570 { 2571 struct reduction_info *const red = *slot; 2572 gimple_set_uid (red->reduc_phi, red->reduc_version); 2573 return 1; 2574 } 2575 2576 /* Return true if the type of reduction performed by STMT_INFO is suitable 2577 for this pass. */ 2578 2579 static bool 2580 valid_reduction_p (stmt_vec_info stmt_info) 2581 { 2582 /* Parallelization would reassociate the operation, which isn't 2583 allowed for in-order reductions. */ 2584 vect_reduction_type reduc_type = STMT_VINFO_REDUC_TYPE (stmt_info); 2585 return reduc_type != FOLD_LEFT_REDUCTION; 2586 } 2587 2588 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */ 2589 2590 static void 2591 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list) 2592 { 2593 gphi_iterator gsi; 2594 loop_vec_info simple_loop_info; 2595 auto_vec<gphi *, 4> double_reduc_phis; 2596 auto_vec<gimple *, 4> double_reduc_stmts; 2597 2598 vec_info_shared shared; 2599 simple_loop_info = vect_analyze_loop_form (loop, &shared); 2600 if (simple_loop_info == NULL) 2601 goto gather_done; 2602 2603 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) 2604 { 2605 gphi *phi = gsi.phi (); 2606 affine_iv iv; 2607 tree res = PHI_RESULT (phi); 2608 bool double_reduc; 2609 2610 if (virtual_operand_p (res)) 2611 continue; 2612 2613 if (simple_iv (loop, loop, res, &iv, true)) 2614 continue; 2615 2616 stmt_vec_info reduc_stmt_info 2617 = vect_force_simple_reduction (simple_loop_info, 2618 simple_loop_info->lookup_stmt (phi), 2619 &double_reduc, true); 2620 if (!reduc_stmt_info || !valid_reduction_p (reduc_stmt_info)) 2621 continue; 2622 2623 if (double_reduc) 2624 { 2625 if (loop->inner->inner != NULL) 2626 continue; 2627 2628 double_reduc_phis.safe_push (phi); 2629 double_reduc_stmts.safe_push (reduc_stmt_info->stmt); 2630 continue; 2631 } 2632 2633 build_new_reduction (reduction_list, reduc_stmt_info->stmt, phi); 2634 } 2635 delete simple_loop_info; 2636 2637 if (!double_reduc_phis.is_empty ()) 2638 { 2639 vec_info_shared shared; 2640 simple_loop_info = vect_analyze_loop_form (loop->inner, &shared); 2641 if (simple_loop_info) 2642 { 2643 gphi *phi; 2644 unsigned int i; 2645 2646 FOR_EACH_VEC_ELT (double_reduc_phis, i, phi) 2647 { 2648 affine_iv iv; 2649 tree res = PHI_RESULT (phi); 2650 bool double_reduc; 2651 2652 use_operand_p use_p; 2653 gimple *inner_stmt; 2654 bool single_use_p = single_imm_use (res, &use_p, &inner_stmt); 2655 gcc_assert (single_use_p); 2656 if (gimple_code (inner_stmt) != GIMPLE_PHI) 2657 continue; 2658 gphi *inner_phi = as_a <gphi *> (inner_stmt); 2659 if (simple_iv (loop->inner, loop->inner, PHI_RESULT (inner_phi), 2660 &iv, true)) 2661 continue; 2662 2663 stmt_vec_info inner_phi_info 2664 = simple_loop_info->lookup_stmt (inner_phi); 2665 stmt_vec_info inner_reduc_stmt_info 2666 = vect_force_simple_reduction (simple_loop_info, 2667 inner_phi_info, 2668 &double_reduc, true); 2669 gcc_assert (!double_reduc); 2670 if (!inner_reduc_stmt_info 2671 || !valid_reduction_p (inner_reduc_stmt_info)) 2672 continue; 2673 2674 build_new_reduction (reduction_list, double_reduc_stmts[i], phi); 2675 } 2676 delete simple_loop_info; 2677 } 2678 } 2679 2680 gather_done: 2681 if (reduction_list->elements () == 0) 2682 return; 2683 2684 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form 2685 and delete simple_loop_info, we can set gimple_uid of reduc_phi stmts only 2686 now. */ 2687 basic_block bb; 2688 FOR_EACH_BB_FN (bb, cfun) 2689 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2690 gimple_set_uid (gsi_stmt (gsi), (unsigned int)-1); 2691 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL); 2692 } 2693 2694 /* Try to initialize NITER for code generation part. */ 2695 2696 static bool 2697 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter) 2698 { 2699 edge exit = single_dom_exit (loop); 2700 2701 gcc_assert (exit); 2702 2703 /* We need to know # of iterations, and there should be no uses of values 2704 defined inside loop outside of it, unless the values are invariants of 2705 the loop. */ 2706 if (!number_of_iterations_exit (loop, exit, niter, false)) 2707 { 2708 if (dump_file && (dump_flags & TDF_DETAILS)) 2709 fprintf (dump_file, " FAILED: number of iterations not known\n"); 2710 return false; 2711 } 2712 2713 return true; 2714 } 2715 2716 /* Return the default def of the first function argument. */ 2717 2718 static tree 2719 get_omp_data_i_param (void) 2720 { 2721 tree decl = DECL_ARGUMENTS (cfun->decl); 2722 gcc_assert (DECL_CHAIN (decl) == NULL_TREE); 2723 return ssa_default_def (cfun, decl); 2724 } 2725 2726 /* For PHI in loop header of LOOP, look for pattern: 2727 2728 <bb preheader> 2729 .omp_data_i = &.omp_data_arr; 2730 addr = .omp_data_i->sum; 2731 sum_a = *addr; 2732 2733 <bb header>: 2734 sum_b = PHI <sum_a (preheader), sum_c (latch)> 2735 2736 and return addr. Otherwise, return NULL_TREE. */ 2737 2738 static tree 2739 find_reduc_addr (struct loop *loop, gphi *phi) 2740 { 2741 edge e = loop_preheader_edge (loop); 2742 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e); 2743 gimple *stmt = SSA_NAME_DEF_STMT (arg); 2744 if (!gimple_assign_single_p (stmt)) 2745 return NULL_TREE; 2746 tree memref = gimple_assign_rhs1 (stmt); 2747 if (TREE_CODE (memref) != MEM_REF) 2748 return NULL_TREE; 2749 tree addr = TREE_OPERAND (memref, 0); 2750 2751 gimple *stmt2 = SSA_NAME_DEF_STMT (addr); 2752 if (!gimple_assign_single_p (stmt2)) 2753 return NULL_TREE; 2754 tree compref = gimple_assign_rhs1 (stmt2); 2755 if (TREE_CODE (compref) != COMPONENT_REF) 2756 return NULL_TREE; 2757 tree addr2 = TREE_OPERAND (compref, 0); 2758 if (TREE_CODE (addr2) != MEM_REF) 2759 return NULL_TREE; 2760 addr2 = TREE_OPERAND (addr2, 0); 2761 if (TREE_CODE (addr2) != SSA_NAME 2762 || addr2 != get_omp_data_i_param ()) 2763 return NULL_TREE; 2764 2765 return addr; 2766 } 2767 2768 /* Try to initialize REDUCTION_LIST for code generation part. 2769 REDUCTION_LIST describes the reductions. */ 2770 2771 static bool 2772 try_create_reduction_list (loop_p loop, 2773 reduction_info_table_type *reduction_list, 2774 bool oacc_kernels_p) 2775 { 2776 edge exit = single_dom_exit (loop); 2777 gphi_iterator gsi; 2778 2779 gcc_assert (exit); 2780 2781 /* Try to get rid of exit phis. */ 2782 final_value_replacement_loop (loop); 2783 2784 gather_scalar_reductions (loop, reduction_list); 2785 2786 2787 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 2788 { 2789 gphi *phi = gsi.phi (); 2790 struct reduction_info *red; 2791 imm_use_iterator imm_iter; 2792 use_operand_p use_p; 2793 gimple *reduc_phi; 2794 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit); 2795 2796 if (!virtual_operand_p (val)) 2797 { 2798 if (TREE_CODE (val) != SSA_NAME) 2799 { 2800 if (dump_file && (dump_flags & TDF_DETAILS)) 2801 fprintf (dump_file, 2802 " FAILED: exit PHI argument invariant.\n"); 2803 return false; 2804 } 2805 2806 if (dump_file && (dump_flags & TDF_DETAILS)) 2807 { 2808 fprintf (dump_file, "phi is "); 2809 print_gimple_stmt (dump_file, phi, 0); 2810 fprintf (dump_file, "arg of phi to exit: value "); 2811 print_generic_expr (dump_file, val); 2812 fprintf (dump_file, " used outside loop\n"); 2813 fprintf (dump_file, 2814 " checking if it is part of reduction pattern:\n"); 2815 } 2816 if (reduction_list->elements () == 0) 2817 { 2818 if (dump_file && (dump_flags & TDF_DETAILS)) 2819 fprintf (dump_file, 2820 " FAILED: it is not a part of reduction.\n"); 2821 return false; 2822 } 2823 reduc_phi = NULL; 2824 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val) 2825 { 2826 if (!gimple_debug_bind_p (USE_STMT (use_p)) 2827 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))) 2828 { 2829 reduc_phi = USE_STMT (use_p); 2830 break; 2831 } 2832 } 2833 red = reduction_phi (reduction_list, reduc_phi); 2834 if (red == NULL) 2835 { 2836 if (dump_file && (dump_flags & TDF_DETAILS)) 2837 fprintf (dump_file, 2838 " FAILED: it is not a part of reduction.\n"); 2839 return false; 2840 } 2841 if (red->keep_res != NULL) 2842 { 2843 if (dump_file && (dump_flags & TDF_DETAILS)) 2844 fprintf (dump_file, 2845 " FAILED: reduction has multiple exit phis.\n"); 2846 return false; 2847 } 2848 red->keep_res = phi; 2849 if (dump_file && (dump_flags & TDF_DETAILS)) 2850 { 2851 fprintf (dump_file, "reduction phi is "); 2852 print_gimple_stmt (dump_file, red->reduc_phi, 0); 2853 fprintf (dump_file, "reduction stmt is "); 2854 print_gimple_stmt (dump_file, red->reduc_stmt, 0); 2855 } 2856 } 2857 } 2858 2859 /* The iterations of the loop may communicate only through bivs whose 2860 iteration space can be distributed efficiently. */ 2861 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi)) 2862 { 2863 gphi *phi = gsi.phi (); 2864 tree def = PHI_RESULT (phi); 2865 affine_iv iv; 2866 2867 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true)) 2868 { 2869 struct reduction_info *red; 2870 2871 red = reduction_phi (reduction_list, phi); 2872 if (red == NULL) 2873 { 2874 if (dump_file && (dump_flags & TDF_DETAILS)) 2875 fprintf (dump_file, 2876 " FAILED: scalar dependency between iterations\n"); 2877 return false; 2878 } 2879 } 2880 } 2881 2882 if (oacc_kernels_p) 2883 { 2884 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); 2885 gsi_next (&gsi)) 2886 { 2887 gphi *phi = gsi.phi (); 2888 tree def = PHI_RESULT (phi); 2889 affine_iv iv; 2890 2891 if (!virtual_operand_p (def) 2892 && !simple_iv (loop, loop, def, &iv, true)) 2893 { 2894 tree addr = find_reduc_addr (loop, phi); 2895 if (addr == NULL_TREE) 2896 return false; 2897 struct reduction_info *red = reduction_phi (reduction_list, phi); 2898 red->reduc_addr = addr; 2899 } 2900 } 2901 } 2902 2903 return true; 2904 } 2905 2906 /* Return true if LOOP contains phis with ADDR_EXPR in args. */ 2907 2908 static bool 2909 loop_has_phi_with_address_arg (struct loop *loop) 2910 { 2911 basic_block *bbs = get_loop_body (loop); 2912 bool res = false; 2913 2914 unsigned i, j; 2915 gphi_iterator gsi; 2916 for (i = 0; i < loop->num_nodes; i++) 2917 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi)) 2918 { 2919 gphi *phi = gsi.phi (); 2920 for (j = 0; j < gimple_phi_num_args (phi); j++) 2921 { 2922 tree arg = gimple_phi_arg_def (phi, j); 2923 if (TREE_CODE (arg) == ADDR_EXPR) 2924 { 2925 /* This should be handled by eliminate_local_variables, but that 2926 function currently ignores phis. */ 2927 res = true; 2928 goto end; 2929 } 2930 } 2931 } 2932 end: 2933 free (bbs); 2934 2935 return res; 2936 } 2937 2938 /* Return true if memory ref REF (corresponding to the stmt at GSI in 2939 REGIONS_BB[I]) conflicts with the statements in REGIONS_BB[I] after gsi, 2940 or the statements in REGIONS_BB[I + n]. REF_IS_STORE indicates if REF is a 2941 store. Ignore conflicts with SKIP_STMT. */ 2942 2943 static bool 2944 ref_conflicts_with_region (gimple_stmt_iterator gsi, ao_ref *ref, 2945 bool ref_is_store, vec<basic_block> region_bbs, 2946 unsigned int i, gimple *skip_stmt) 2947 { 2948 basic_block bb = region_bbs[i]; 2949 gsi_next (&gsi); 2950 2951 while (true) 2952 { 2953 for (; !gsi_end_p (gsi); 2954 gsi_next (&gsi)) 2955 { 2956 gimple *stmt = gsi_stmt (gsi); 2957 if (stmt == skip_stmt) 2958 { 2959 if (dump_file) 2960 { 2961 fprintf (dump_file, "skipping reduction store: "); 2962 print_gimple_stmt (dump_file, stmt, 0); 2963 } 2964 continue; 2965 } 2966 2967 if (!gimple_vdef (stmt) 2968 && !gimple_vuse (stmt)) 2969 continue; 2970 2971 if (gimple_code (stmt) == GIMPLE_RETURN) 2972 continue; 2973 2974 if (ref_is_store) 2975 { 2976 if (ref_maybe_used_by_stmt_p (stmt, ref)) 2977 { 2978 if (dump_file) 2979 { 2980 fprintf (dump_file, "Stmt "); 2981 print_gimple_stmt (dump_file, stmt, 0); 2982 } 2983 return true; 2984 } 2985 } 2986 else 2987 { 2988 if (stmt_may_clobber_ref_p_1 (stmt, ref)) 2989 { 2990 if (dump_file) 2991 { 2992 fprintf (dump_file, "Stmt "); 2993 print_gimple_stmt (dump_file, stmt, 0); 2994 } 2995 return true; 2996 } 2997 } 2998 } 2999 i++; 3000 if (i == region_bbs.length ()) 3001 break; 3002 bb = region_bbs[i]; 3003 gsi = gsi_start_bb (bb); 3004 } 3005 3006 return false; 3007 } 3008 3009 /* Return true if the bbs in REGION_BBS but not in in_loop_bbs can be executed 3010 in parallel with REGION_BBS containing the loop. Return the stores of 3011 reduction results in REDUCTION_STORES. */ 3012 3013 static bool 3014 oacc_entry_exit_ok_1 (bitmap in_loop_bbs, vec<basic_block> region_bbs, 3015 reduction_info_table_type *reduction_list, 3016 bitmap reduction_stores) 3017 { 3018 tree omp_data_i = get_omp_data_i_param (); 3019 3020 unsigned i; 3021 basic_block bb; 3022 FOR_EACH_VEC_ELT (region_bbs, i, bb) 3023 { 3024 if (bitmap_bit_p (in_loop_bbs, bb->index)) 3025 continue; 3026 3027 gimple_stmt_iterator gsi; 3028 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 3029 gsi_next (&gsi)) 3030 { 3031 gimple *stmt = gsi_stmt (gsi); 3032 gimple *skip_stmt = NULL; 3033 3034 if (is_gimple_debug (stmt) 3035 || gimple_code (stmt) == GIMPLE_COND) 3036 continue; 3037 3038 ao_ref ref; 3039 bool ref_is_store = false; 3040 if (gimple_assign_load_p (stmt)) 3041 { 3042 tree rhs = gimple_assign_rhs1 (stmt); 3043 tree base = get_base_address (rhs); 3044 if (TREE_CODE (base) == MEM_REF 3045 && operand_equal_p (TREE_OPERAND (base, 0), omp_data_i, 0)) 3046 continue; 3047 3048 tree lhs = gimple_assign_lhs (stmt); 3049 if (TREE_CODE (lhs) == SSA_NAME 3050 && has_single_use (lhs)) 3051 { 3052 use_operand_p use_p; 3053 gimple *use_stmt; 3054 single_imm_use (lhs, &use_p, &use_stmt); 3055 if (gimple_code (use_stmt) == GIMPLE_PHI) 3056 { 3057 struct reduction_info *red; 3058 red = reduction_phi (reduction_list, use_stmt); 3059 tree val = PHI_RESULT (red->keep_res); 3060 if (has_single_use (val)) 3061 { 3062 single_imm_use (val, &use_p, &use_stmt); 3063 if (gimple_store_p (use_stmt)) 3064 { 3065 unsigned int id 3066 = SSA_NAME_VERSION (gimple_vdef (use_stmt)); 3067 bitmap_set_bit (reduction_stores, id); 3068 skip_stmt = use_stmt; 3069 if (dump_file) 3070 { 3071 fprintf (dump_file, "found reduction load: "); 3072 print_gimple_stmt (dump_file, stmt, 0); 3073 } 3074 } 3075 } 3076 } 3077 } 3078 3079 ao_ref_init (&ref, rhs); 3080 } 3081 else if (gimple_store_p (stmt)) 3082 { 3083 ao_ref_init (&ref, gimple_assign_lhs (stmt)); 3084 ref_is_store = true; 3085 } 3086 else if (gimple_code (stmt) == GIMPLE_OMP_RETURN) 3087 continue; 3088 else if (!gimple_has_side_effects (stmt) 3089 && !gimple_could_trap_p (stmt) 3090 && !stmt_could_throw_p (cfun, stmt) 3091 && !gimple_vdef (stmt) 3092 && !gimple_vuse (stmt)) 3093 continue; 3094 else if (gimple_call_internal_p (stmt, IFN_GOACC_DIM_POS)) 3095 continue; 3096 else if (gimple_code (stmt) == GIMPLE_RETURN) 3097 continue; 3098 else 3099 { 3100 if (dump_file) 3101 { 3102 fprintf (dump_file, "Unhandled stmt in entry/exit: "); 3103 print_gimple_stmt (dump_file, stmt, 0); 3104 } 3105 return false; 3106 } 3107 3108 if (ref_conflicts_with_region (gsi, &ref, ref_is_store, region_bbs, 3109 i, skip_stmt)) 3110 { 3111 if (dump_file) 3112 { 3113 fprintf (dump_file, "conflicts with entry/exit stmt: "); 3114 print_gimple_stmt (dump_file, stmt, 0); 3115 } 3116 return false; 3117 } 3118 } 3119 } 3120 3121 return true; 3122 } 3123 3124 /* Find stores inside REGION_BBS and outside IN_LOOP_BBS, and guard them with 3125 gang_pos == 0, except when the stores are REDUCTION_STORES. Return true 3126 if any changes were made. */ 3127 3128 static bool 3129 oacc_entry_exit_single_gang (bitmap in_loop_bbs, vec<basic_block> region_bbs, 3130 bitmap reduction_stores) 3131 { 3132 tree gang_pos = NULL_TREE; 3133 bool changed = false; 3134 3135 unsigned i; 3136 basic_block bb; 3137 FOR_EACH_VEC_ELT (region_bbs, i, bb) 3138 { 3139 if (bitmap_bit_p (in_loop_bbs, bb->index)) 3140 continue; 3141 3142 gimple_stmt_iterator gsi; 3143 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) 3144 { 3145 gimple *stmt = gsi_stmt (gsi); 3146 3147 if (!gimple_store_p (stmt)) 3148 { 3149 /* Update gsi to point to next stmt. */ 3150 gsi_next (&gsi); 3151 continue; 3152 } 3153 3154 if (bitmap_bit_p (reduction_stores, 3155 SSA_NAME_VERSION (gimple_vdef (stmt)))) 3156 { 3157 if (dump_file) 3158 { 3159 fprintf (dump_file, 3160 "skipped reduction store for single-gang" 3161 " neutering: "); 3162 print_gimple_stmt (dump_file, stmt, 0); 3163 } 3164 3165 /* Update gsi to point to next stmt. */ 3166 gsi_next (&gsi); 3167 continue; 3168 } 3169 3170 changed = true; 3171 3172 if (gang_pos == NULL_TREE) 3173 { 3174 tree arg = build_int_cst (integer_type_node, GOMP_DIM_GANG); 3175 gcall *gang_single 3176 = gimple_build_call_internal (IFN_GOACC_DIM_POS, 1, arg); 3177 gang_pos = make_ssa_name (integer_type_node); 3178 gimple_call_set_lhs (gang_single, gang_pos); 3179 gimple_stmt_iterator start 3180 = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 3181 tree vuse = ssa_default_def (cfun, gimple_vop (cfun)); 3182 gimple_set_vuse (gang_single, vuse); 3183 gsi_insert_before (&start, gang_single, GSI_SAME_STMT); 3184 } 3185 3186 if (dump_file) 3187 { 3188 fprintf (dump_file, 3189 "found store that needs single-gang neutering: "); 3190 print_gimple_stmt (dump_file, stmt, 0); 3191 } 3192 3193 { 3194 /* Split block before store. */ 3195 gimple_stmt_iterator gsi2 = gsi; 3196 gsi_prev (&gsi2); 3197 edge e; 3198 if (gsi_end_p (gsi2)) 3199 { 3200 e = split_block_after_labels (bb); 3201 gsi2 = gsi_last_bb (bb); 3202 } 3203 else 3204 e = split_block (bb, gsi_stmt (gsi2)); 3205 basic_block bb2 = e->dest; 3206 3207 /* Split block after store. */ 3208 gimple_stmt_iterator gsi3 = gsi_start_bb (bb2); 3209 edge e2 = split_block (bb2, gsi_stmt (gsi3)); 3210 basic_block bb3 = e2->dest; 3211 3212 gimple *cond 3213 = gimple_build_cond (EQ_EXPR, gang_pos, integer_zero_node, 3214 NULL_TREE, NULL_TREE); 3215 gsi_insert_after (&gsi2, cond, GSI_NEW_STMT); 3216 3217 edge e3 = make_edge (bb, bb3, EDGE_FALSE_VALUE); 3218 /* FIXME: What is the probability? */ 3219 e3->probability = profile_probability::guessed_never (); 3220 e->flags = EDGE_TRUE_VALUE; 3221 3222 tree vdef = gimple_vdef (stmt); 3223 tree vuse = gimple_vuse (stmt); 3224 3225 tree phi_res = copy_ssa_name (vdef); 3226 gphi *new_phi = create_phi_node (phi_res, bb3); 3227 replace_uses_by (vdef, phi_res); 3228 add_phi_arg (new_phi, vuse, e3, UNKNOWN_LOCATION); 3229 add_phi_arg (new_phi, vdef, e2, UNKNOWN_LOCATION); 3230 3231 /* Update gsi to point to next stmt. */ 3232 bb = bb3; 3233 gsi = gsi_start_bb (bb); 3234 } 3235 } 3236 } 3237 3238 return changed; 3239 } 3240 3241 /* Return true if the statements before and after the LOOP can be executed in 3242 parallel with the function containing the loop. Resolve conflicting stores 3243 outside LOOP by guarding them such that only a single gang executes them. */ 3244 3245 static bool 3246 oacc_entry_exit_ok (struct loop *loop, 3247 reduction_info_table_type *reduction_list) 3248 { 3249 basic_block *loop_bbs = get_loop_body_in_dom_order (loop); 3250 vec<basic_block> region_bbs 3251 = get_all_dominated_blocks (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun)); 3252 3253 bitmap in_loop_bbs = BITMAP_ALLOC (NULL); 3254 bitmap_clear (in_loop_bbs); 3255 for (unsigned int i = 0; i < loop->num_nodes; i++) 3256 bitmap_set_bit (in_loop_bbs, loop_bbs[i]->index); 3257 3258 bitmap reduction_stores = BITMAP_ALLOC (NULL); 3259 bool res = oacc_entry_exit_ok_1 (in_loop_bbs, region_bbs, reduction_list, 3260 reduction_stores); 3261 3262 if (res) 3263 { 3264 bool changed = oacc_entry_exit_single_gang (in_loop_bbs, region_bbs, 3265 reduction_stores); 3266 if (changed) 3267 { 3268 free_dominance_info (CDI_DOMINATORS); 3269 calculate_dominance_info (CDI_DOMINATORS); 3270 } 3271 } 3272 3273 region_bbs.release (); 3274 free (loop_bbs); 3275 3276 BITMAP_FREE (in_loop_bbs); 3277 BITMAP_FREE (reduction_stores); 3278 3279 return res; 3280 } 3281 3282 /* Detect parallel loops and generate parallel code using libgomp 3283 primitives. Returns true if some loop was parallelized, false 3284 otherwise. */ 3285 3286 static bool 3287 parallelize_loops (bool oacc_kernels_p) 3288 { 3289 unsigned n_threads; 3290 bool changed = false; 3291 struct loop *loop; 3292 struct loop *skip_loop = NULL; 3293 struct tree_niter_desc niter_desc; 3294 struct obstack parloop_obstack; 3295 HOST_WIDE_INT estimated; 3296 3297 /* Do not parallelize loops in the functions created by parallelization. */ 3298 if (!oacc_kernels_p 3299 && parallelized_function_p (cfun->decl)) 3300 return false; 3301 3302 /* Do not parallelize loops in offloaded functions. */ 3303 if (!oacc_kernels_p 3304 && oacc_get_fn_attrib (cfun->decl) != NULL) 3305 return false; 3306 3307 if (cfun->has_nonlocal_label) 3308 return false; 3309 3310 /* For OpenACC kernels, n_threads will be determined later; otherwise, it's 3311 the argument to -ftree-parallelize-loops. */ 3312 if (oacc_kernels_p) 3313 n_threads = 0; 3314 else 3315 n_threads = flag_tree_parallelize_loops; 3316 3317 gcc_obstack_init (&parloop_obstack); 3318 reduction_info_table_type reduction_list (10); 3319 3320 calculate_dominance_info (CDI_DOMINATORS); 3321 3322 FOR_EACH_LOOP (loop, 0) 3323 { 3324 if (loop == skip_loop) 3325 { 3326 if (!loop->in_oacc_kernels_region 3327 && dump_file && (dump_flags & TDF_DETAILS)) 3328 fprintf (dump_file, 3329 "Skipping loop %d as inner loop of parallelized loop\n", 3330 loop->num); 3331 3332 skip_loop = loop->inner; 3333 continue; 3334 } 3335 else 3336 skip_loop = NULL; 3337 3338 reduction_list.empty (); 3339 3340 if (oacc_kernels_p) 3341 { 3342 if (!loop->in_oacc_kernels_region) 3343 continue; 3344 3345 /* Don't try to parallelize inner loops in an oacc kernels region. */ 3346 if (loop->inner) 3347 skip_loop = loop->inner; 3348 3349 if (dump_file && (dump_flags & TDF_DETAILS)) 3350 fprintf (dump_file, 3351 "Trying loop %d with header bb %d in oacc kernels" 3352 " region\n", loop->num, loop->header->index); 3353 } 3354 3355 if (dump_file && (dump_flags & TDF_DETAILS)) 3356 { 3357 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num); 3358 if (loop->inner) 3359 fprintf (dump_file, "loop %d is not innermost\n",loop->num); 3360 else 3361 fprintf (dump_file, "loop %d is innermost\n",loop->num); 3362 } 3363 3364 if (!single_dom_exit (loop)) 3365 { 3366 3367 if (dump_file && (dump_flags & TDF_DETAILS)) 3368 fprintf (dump_file, "loop is !single_dom_exit\n"); 3369 3370 continue; 3371 } 3372 3373 if (/* And of course, the loop must be parallelizable. */ 3374 !can_duplicate_loop_p (loop) 3375 || loop_has_blocks_with_irreducible_flag (loop) 3376 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP) 3377 /* FIXME: the check for vector phi nodes could be removed. */ 3378 || loop_has_vector_phi_nodes (loop)) 3379 continue; 3380 3381 estimated = estimated_loop_iterations_int (loop); 3382 if (estimated == -1) 3383 estimated = get_likely_max_loop_iterations_int (loop); 3384 /* FIXME: Bypass this check as graphite doesn't update the 3385 count and frequency correctly now. */ 3386 if (!flag_loop_parallelize_all 3387 && !oacc_kernels_p 3388 && ((estimated != -1 3389 && (estimated 3390 < ((HOST_WIDE_INT) n_threads 3391 * (loop->inner ? 2 : MIN_PER_THREAD) - 1))) 3392 /* Do not bother with loops in cold areas. */ 3393 || optimize_loop_nest_for_size_p (loop))) 3394 continue; 3395 3396 if (!try_get_loop_niter (loop, &niter_desc)) 3397 continue; 3398 3399 if (!try_create_reduction_list (loop, &reduction_list, oacc_kernels_p)) 3400 continue; 3401 3402 if (loop_has_phi_with_address_arg (loop)) 3403 continue; 3404 3405 if (!loop->can_be_parallel 3406 && !loop_parallel_p (loop, &parloop_obstack)) 3407 continue; 3408 3409 if (oacc_kernels_p 3410 && !oacc_entry_exit_ok (loop, &reduction_list)) 3411 { 3412 if (dump_file) 3413 fprintf (dump_file, "entry/exit not ok: FAILED\n"); 3414 continue; 3415 } 3416 3417 changed = true; 3418 skip_loop = loop->inner; 3419 3420 if (dump_enabled_p ()) 3421 { 3422 dump_user_location_t loop_loc = find_loop_location (loop); 3423 if (loop->inner) 3424 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc, 3425 "parallelizing outer loop %d\n", loop->num); 3426 else 3427 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loop_loc, 3428 "parallelizing inner loop %d\n", loop->num); 3429 } 3430 3431 gen_parallel_loop (loop, &reduction_list, 3432 n_threads, &niter_desc, oacc_kernels_p); 3433 } 3434 3435 obstack_free (&parloop_obstack, NULL); 3436 3437 /* Parallelization will cause new function calls to be inserted through 3438 which local variables will escape. Reset the points-to solution 3439 for ESCAPED. */ 3440 if (changed) 3441 pt_solution_reset (&cfun->gimple_df->escaped); 3442 3443 return changed; 3444 } 3445 3446 /* Parallelization. */ 3447 3448 namespace { 3449 3450 const pass_data pass_data_parallelize_loops = 3451 { 3452 GIMPLE_PASS, /* type */ 3453 "parloops", /* name */ 3454 OPTGROUP_LOOP, /* optinfo_flags */ 3455 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */ 3456 ( PROP_cfg | PROP_ssa ), /* properties_required */ 3457 0, /* properties_provided */ 3458 0, /* properties_destroyed */ 3459 0, /* todo_flags_start */ 3460 0, /* todo_flags_finish */ 3461 }; 3462 3463 class pass_parallelize_loops : public gimple_opt_pass 3464 { 3465 public: 3466 pass_parallelize_loops (gcc::context *ctxt) 3467 : gimple_opt_pass (pass_data_parallelize_loops, ctxt), 3468 oacc_kernels_p (false) 3469 {} 3470 3471 /* opt_pass methods: */ 3472 virtual bool gate (function *) 3473 { 3474 if (oacc_kernels_p) 3475 return flag_openacc; 3476 else 3477 return flag_tree_parallelize_loops > 1; 3478 } 3479 virtual unsigned int execute (function *); 3480 opt_pass * clone () { return new pass_parallelize_loops (m_ctxt); } 3481 void set_pass_param (unsigned int n, bool param) 3482 { 3483 gcc_assert (n == 0); 3484 oacc_kernels_p = param; 3485 } 3486 3487 private: 3488 bool oacc_kernels_p; 3489 }; // class pass_parallelize_loops 3490 3491 unsigned 3492 pass_parallelize_loops::execute (function *fun) 3493 { 3494 tree nthreads = builtin_decl_explicit (BUILT_IN_OMP_GET_NUM_THREADS); 3495 if (nthreads == NULL_TREE) 3496 return 0; 3497 3498 bool in_loop_pipeline = scev_initialized_p (); 3499 if (!in_loop_pipeline) 3500 loop_optimizer_init (LOOPS_NORMAL 3501 | LOOPS_HAVE_RECORDED_EXITS); 3502 3503 if (number_of_loops (fun) <= 1) 3504 return 0; 3505 3506 if (!in_loop_pipeline) 3507 { 3508 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 3509 scev_initialize (); 3510 } 3511 3512 unsigned int todo = 0; 3513 if (parallelize_loops (oacc_kernels_p)) 3514 { 3515 fun->curr_properties &= ~(PROP_gimple_eomp); 3516 3517 checking_verify_loop_structure (); 3518 3519 todo |= TODO_update_ssa; 3520 } 3521 3522 if (!in_loop_pipeline) 3523 { 3524 scev_finalize (); 3525 loop_optimizer_finalize (); 3526 } 3527 3528 return todo; 3529 } 3530 3531 } // anon namespace 3532 3533 gimple_opt_pass * 3534 make_pass_parallelize_loops (gcc::context *ctxt) 3535 { 3536 return new pass_parallelize_loops (ctxt); 3537 } 3538