1 /* Convert a program in SSA form into Normal form. 2 Copyright (C) 2004-2018 Free Software Foundation, Inc. 3 Contributed by Andrew Macleod <amacleod@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "cfghooks.h" 29 #include "ssa.h" 30 #include "memmodel.h" 31 #include "emit-rtl.h" 32 #include "gimple-pretty-print.h" 33 #include "diagnostic-core.h" 34 #include "stor-layout.h" 35 #include "cfgrtl.h" 36 #include "cfganal.h" 37 #include "tree-eh.h" 38 #include "gimple-iterator.h" 39 #include "tree-cfg.h" 40 #include "dumpfile.h" 41 #include "tree-ssa-live.h" 42 #include "tree-ssa-ter.h" 43 #include "tree-ssa-coalesce.h" 44 #include "tree-outof-ssa.h" 45 #include "dojump.h" 46 47 /* FIXME: A lot of code here deals with expanding to RTL. All that code 48 should be in cfgexpand.c. */ 49 #include "explow.h" 50 #include "expr.h" 51 52 /* Return TRUE if expression STMT is suitable for replacement. */ 53 54 bool 55 ssa_is_replaceable_p (gimple *stmt) 56 { 57 use_operand_p use_p; 58 tree def; 59 gimple *use_stmt; 60 61 /* Only consider modify stmts. */ 62 if (!is_gimple_assign (stmt)) 63 return false; 64 65 /* If the statement may throw an exception, it cannot be replaced. */ 66 if (stmt_could_throw_p (stmt)) 67 return false; 68 69 /* Punt if there is more than 1 def. */ 70 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF); 71 if (!def) 72 return false; 73 74 /* Only consider definitions which have a single use. */ 75 if (!single_imm_use (def, &use_p, &use_stmt)) 76 return false; 77 78 /* Used in this block, but at the TOP of the block, not the end. */ 79 if (gimple_code (use_stmt) == GIMPLE_PHI) 80 return false; 81 82 /* There must be no VDEFs. */ 83 if (gimple_vdef (stmt)) 84 return false; 85 86 /* Float expressions must go through memory if float-store is on. */ 87 if (flag_float_store 88 && FLOAT_TYPE_P (gimple_expr_type (stmt))) 89 return false; 90 91 /* An assignment with a register variable on the RHS is not 92 replaceable. */ 93 if (gimple_assign_rhs_code (stmt) == VAR_DECL 94 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt))) 95 return false; 96 97 /* No function calls can be replaced. */ 98 if (is_gimple_call (stmt)) 99 return false; 100 101 /* Leave any stmt with volatile operands alone as well. */ 102 if (gimple_has_volatile_ops (stmt)) 103 return false; 104 105 return true; 106 } 107 108 109 /* Used to hold all the components required to do SSA PHI elimination. 110 The node and pred/succ list is a simple linear list of nodes and 111 edges represented as pairs of nodes. 112 113 The predecessor and successor list: Nodes are entered in pairs, where 114 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent 115 predecessors, all the odd elements are successors. 116 117 Rationale: 118 When implemented as bitmaps, very large programs SSA->Normal times were 119 being dominated by clearing the interference graph. 120 121 Typically this list of edges is extremely small since it only includes 122 PHI results and uses from a single edge which have not coalesced with 123 each other. This means that no virtual PHI nodes are included, and 124 empirical evidence suggests that the number of edges rarely exceed 125 3, and in a bootstrap of GCC, the maximum size encountered was 7. 126 This also limits the number of possible nodes that are involved to 127 rarely more than 6, and in the bootstrap of gcc, the maximum number 128 of nodes encountered was 12. */ 129 130 struct elim_graph 131 { 132 elim_graph (var_map map); 133 134 /* Size of the elimination vectors. */ 135 int size; 136 137 /* List of nodes in the elimination graph. */ 138 auto_vec<int> nodes; 139 140 /* The predecessor and successor edge list. */ 141 auto_vec<int> edge_list; 142 143 /* Source locus on each edge */ 144 auto_vec<source_location> edge_locus; 145 146 /* Visited vector. */ 147 auto_sbitmap visited; 148 149 /* Stack for visited nodes. */ 150 auto_vec<int> stack; 151 152 /* The variable partition map. */ 153 var_map map; 154 155 /* Edge being eliminated by this graph. */ 156 edge e; 157 158 /* List of constant copies to emit. These are pushed on in pairs. */ 159 auto_vec<int> const_dests; 160 auto_vec<tree> const_copies; 161 162 /* Source locations for any constant copies. */ 163 auto_vec<source_location> copy_locus; 164 }; 165 166 167 /* For an edge E find out a good source location to associate with 168 instructions inserted on edge E. If E has an implicit goto set, 169 use its location. Otherwise search instructions in predecessors 170 of E for a location, and use that one. That makes sense because 171 we insert on edges for PHI nodes, and effects of PHIs happen on 172 the end of the predecessor conceptually. */ 173 174 static void 175 set_location_for_edge (edge e) 176 { 177 if (e->goto_locus) 178 { 179 set_curr_insn_location (e->goto_locus); 180 } 181 else 182 { 183 basic_block bb = e->src; 184 gimple_stmt_iterator gsi; 185 186 do 187 { 188 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 189 { 190 gimple *stmt = gsi_stmt (gsi); 191 if (is_gimple_debug (stmt)) 192 continue; 193 if (gimple_has_location (stmt) || gimple_block (stmt)) 194 { 195 set_curr_insn_location (gimple_location (stmt)); 196 return; 197 } 198 } 199 /* Nothing found in this basic block. Make a half-assed attempt 200 to continue with another block. */ 201 if (single_pred_p (bb)) 202 bb = single_pred (bb); 203 else 204 bb = e->src; 205 } 206 while (bb != e->src); 207 } 208 } 209 210 /* Emit insns to copy SRC into DEST converting SRC if necessary. As 211 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from 212 which we deduce the size to copy in that case. */ 213 214 static inline rtx_insn * 215 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp) 216 { 217 start_sequence (); 218 219 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest)) 220 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp); 221 if (GET_MODE (src) == BLKmode) 222 { 223 gcc_assert (GET_MODE (dest) == BLKmode); 224 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL); 225 } 226 else 227 emit_move_insn (dest, src); 228 do_pending_stack_adjust (); 229 230 rtx_insn *seq = get_insns (); 231 end_sequence (); 232 233 return seq; 234 } 235 236 /* Insert a copy instruction from partition SRC to DEST onto edge E. */ 237 238 static void 239 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus) 240 { 241 tree var; 242 if (dump_file && (dump_flags & TDF_DETAILS)) 243 { 244 fprintf (dump_file, 245 "Inserting a partition copy on edge BB%d->BB%d : " 246 "PART.%d = PART.%d", 247 e->src->index, 248 e->dest->index, dest, src); 249 fprintf (dump_file, "\n"); 250 } 251 252 gcc_assert (SA.partition_to_pseudo[dest]); 253 gcc_assert (SA.partition_to_pseudo[src]); 254 255 set_location_for_edge (e); 256 /* If a locus is provided, override the default. */ 257 if (locus) 258 set_curr_insn_location (locus); 259 260 var = partition_to_var (SA.map, src); 261 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]), 262 copy_rtx (SA.partition_to_pseudo[src]), 263 TYPE_UNSIGNED (TREE_TYPE (var)), 264 var); 265 266 insert_insn_on_edge (seq, e); 267 } 268 269 /* Insert a copy instruction from expression SRC to partition DEST 270 onto edge E. */ 271 272 static void 273 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus) 274 { 275 rtx dest_rtx, seq, x; 276 machine_mode dest_mode, src_mode; 277 int unsignedp; 278 279 if (dump_file && (dump_flags & TDF_DETAILS)) 280 { 281 fprintf (dump_file, 282 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ", 283 e->src->index, 284 e->dest->index, dest); 285 print_generic_expr (dump_file, src, TDF_SLIM); 286 fprintf (dump_file, "\n"); 287 } 288 289 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]); 290 gcc_assert (dest_rtx); 291 292 set_location_for_edge (e); 293 /* If a locus is provided, override the default. */ 294 if (locus) 295 set_curr_insn_location (locus); 296 297 start_sequence (); 298 299 tree name = partition_to_var (SA.map, dest); 300 src_mode = TYPE_MODE (TREE_TYPE (src)); 301 dest_mode = GET_MODE (dest_rtx); 302 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name))); 303 gcc_assert (!REG_P (dest_rtx) 304 || dest_mode == promote_ssa_mode (name, &unsignedp)); 305 306 if (src_mode != dest_mode) 307 { 308 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL); 309 x = convert_modes (dest_mode, src_mode, x, unsignedp); 310 } 311 else if (src_mode == BLKmode) 312 { 313 x = dest_rtx; 314 store_expr (src, x, 0, false, false); 315 } 316 else 317 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL); 318 319 if (x != dest_rtx) 320 emit_move_insn (dest_rtx, x); 321 do_pending_stack_adjust (); 322 323 seq = get_insns (); 324 end_sequence (); 325 326 insert_insn_on_edge (seq, e); 327 } 328 329 /* Insert a copy instruction from RTL expression SRC to partition DEST 330 onto edge E. */ 331 332 static void 333 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp, 334 source_location locus) 335 { 336 if (dump_file && (dump_flags & TDF_DETAILS)) 337 { 338 fprintf (dump_file, 339 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ", 340 e->src->index, 341 e->dest->index, dest); 342 print_simple_rtl (dump_file, src); 343 fprintf (dump_file, "\n"); 344 } 345 346 gcc_assert (SA.partition_to_pseudo[dest]); 347 348 set_location_for_edge (e); 349 /* If a locus is provided, override the default. */ 350 if (locus) 351 set_curr_insn_location (locus); 352 353 /* We give the destination as sizeexp in case src/dest are BLKmode 354 mems. Usually we give the source. As we result from SSA names 355 the left and right size should be the same (and no WITH_SIZE_EXPR 356 involved), so it doesn't matter. */ 357 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]), 358 src, unsignedsrcp, 359 partition_to_var (SA.map, dest)); 360 361 insert_insn_on_edge (seq, e); 362 } 363 364 /* Insert a copy instruction from partition SRC to RTL lvalue DEST 365 onto edge E. */ 366 367 static void 368 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus) 369 { 370 tree var; 371 if (dump_file && (dump_flags & TDF_DETAILS)) 372 { 373 fprintf (dump_file, 374 "Inserting a temp copy on edge BB%d->BB%d : ", 375 e->src->index, 376 e->dest->index); 377 print_simple_rtl (dump_file, dest); 378 fprintf (dump_file, "= PART.%d\n", src); 379 } 380 381 gcc_assert (SA.partition_to_pseudo[src]); 382 383 set_location_for_edge (e); 384 /* If a locus is provided, override the default. */ 385 if (locus) 386 set_curr_insn_location (locus); 387 388 var = partition_to_var (SA.map, src); 389 rtx_insn *seq = emit_partition_copy (dest, 390 copy_rtx (SA.partition_to_pseudo[src]), 391 TYPE_UNSIGNED (TREE_TYPE (var)), 392 var); 393 394 insert_insn_on_edge (seq, e); 395 } 396 397 398 /* Create an elimination graph for map. */ 399 400 elim_graph::elim_graph (var_map map) : 401 nodes (30), edge_list (20), edge_locus (10), visited (map->num_partitions), 402 stack (30), map (map), const_dests (20), const_copies (20), copy_locus (10) 403 { 404 } 405 406 407 /* Empty elimination graph G. */ 408 409 static inline void 410 clear_elim_graph (elim_graph *g) 411 { 412 g->nodes.truncate (0); 413 g->edge_list.truncate (0); 414 g->edge_locus.truncate (0); 415 } 416 417 418 /* Return the number of nodes in graph G. */ 419 420 static inline int 421 elim_graph_size (elim_graph *g) 422 { 423 return g->nodes.length (); 424 } 425 426 427 /* Add NODE to graph G, if it doesn't exist already. */ 428 429 static inline void 430 elim_graph_add_node (elim_graph *g, int node) 431 { 432 int x; 433 int t; 434 435 FOR_EACH_VEC_ELT (g->nodes, x, t) 436 if (t == node) 437 return; 438 g->nodes.safe_push (node); 439 } 440 441 442 /* Add the edge PRED->SUCC to graph G. */ 443 444 static inline void 445 elim_graph_add_edge (elim_graph *g, int pred, int succ, source_location locus) 446 { 447 g->edge_list.safe_push (pred); 448 g->edge_list.safe_push (succ); 449 g->edge_locus.safe_push (locus); 450 } 451 452 453 /* Remove an edge from graph G for which NODE is the predecessor, and 454 return the successor node. -1 is returned if there is no such edge. */ 455 456 static inline int 457 elim_graph_remove_succ_edge (elim_graph *g, int node, source_location *locus) 458 { 459 int y; 460 unsigned x; 461 for (x = 0; x < g->edge_list.length (); x += 2) 462 if (g->edge_list[x] == node) 463 { 464 g->edge_list[x] = -1; 465 y = g->edge_list[x + 1]; 466 g->edge_list[x + 1] = -1; 467 *locus = g->edge_locus[x / 2]; 468 g->edge_locus[x / 2] = UNKNOWN_LOCATION; 469 return y; 470 } 471 *locus = UNKNOWN_LOCATION; 472 return -1; 473 } 474 475 476 /* Find all the nodes in GRAPH which are successors to NODE in the 477 edge list. VAR will hold the partition number found. CODE is the 478 code fragment executed for every node found. */ 479 480 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \ 481 do { \ 482 unsigned x_; \ 483 int y_; \ 484 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \ 485 { \ 486 y_ = (GRAPH)->edge_list[x_]; \ 487 if (y_ != (NODE)) \ 488 continue; \ 489 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \ 490 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \ 491 CODE; \ 492 } \ 493 } while (0) 494 495 496 /* Find all the nodes which are predecessors of NODE in the edge list for 497 GRAPH. VAR will hold the partition number found. CODE is the 498 code fragment executed for every node found. */ 499 500 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \ 501 do { \ 502 unsigned x_; \ 503 int y_; \ 504 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \ 505 { \ 506 y_ = (GRAPH)->edge_list[x_ + 1]; \ 507 if (y_ != (NODE)) \ 508 continue; \ 509 (void) ((VAR) = (GRAPH)->edge_list[x_]); \ 510 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \ 511 CODE; \ 512 } \ 513 } while (0) 514 515 516 /* Add T to elimination graph G. */ 517 518 static inline void 519 eliminate_name (elim_graph *g, int T) 520 { 521 elim_graph_add_node (g, T); 522 } 523 524 /* Return true if this phi argument T should have a copy queued when using 525 var_map MAP. PHI nodes should contain only ssa_names and invariants. A 526 test for ssa_name is definitely simpler, but don't let invalid contents 527 slip through in the meantime. */ 528 529 static inline bool 530 queue_phi_copy_p (var_map map, tree t) 531 { 532 if (TREE_CODE (t) == SSA_NAME) 533 { 534 if (var_to_partition (map, t) == NO_PARTITION) 535 return true; 536 return false; 537 } 538 gcc_checking_assert (is_gimple_min_invariant (t)); 539 return true; 540 } 541 542 /* Build elimination graph G for basic block BB on incoming PHI edge 543 G->e. */ 544 545 static void 546 eliminate_build (elim_graph *g) 547 { 548 tree Ti; 549 int p0, pi; 550 gphi_iterator gsi; 551 552 clear_elim_graph (g); 553 554 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 555 { 556 gphi *phi = gsi.phi (); 557 source_location locus; 558 559 p0 = var_to_partition (g->map, gimple_phi_result (phi)); 560 /* Ignore results which are not in partitions. */ 561 if (p0 == NO_PARTITION) 562 continue; 563 564 Ti = PHI_ARG_DEF (phi, g->e->dest_idx); 565 locus = gimple_phi_arg_location_from_edge (phi, g->e); 566 567 /* If this argument is a constant, or a SSA_NAME which is being 568 left in SSA form, just queue a copy to be emitted on this 569 edge. */ 570 if (queue_phi_copy_p (g->map, Ti)) 571 { 572 /* Save constant copies until all other copies have been emitted 573 on this edge. */ 574 g->const_dests.safe_push (p0); 575 g->const_copies.safe_push (Ti); 576 g->copy_locus.safe_push (locus); 577 } 578 else 579 { 580 pi = var_to_partition (g->map, Ti); 581 if (p0 != pi) 582 { 583 eliminate_name (g, p0); 584 eliminate_name (g, pi); 585 elim_graph_add_edge (g, p0, pi, locus); 586 } 587 } 588 } 589 } 590 591 592 /* Push successors of T onto the elimination stack for G. */ 593 594 static void 595 elim_forward (elim_graph *g, int T) 596 { 597 int S; 598 source_location locus; 599 600 bitmap_set_bit (g->visited, T); 601 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus, 602 { 603 if (!bitmap_bit_p (g->visited, S)) 604 elim_forward (g, S); 605 }); 606 g->stack.safe_push (T); 607 } 608 609 610 /* Return 1 if there unvisited predecessors of T in graph G. */ 611 612 static int 613 elim_unvisited_predecessor (elim_graph *g, int T) 614 { 615 int P; 616 source_location locus; 617 618 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 619 { 620 if (!bitmap_bit_p (g->visited, P)) 621 return 1; 622 }); 623 return 0; 624 } 625 626 /* Process predecessors first, and insert a copy. */ 627 628 static void 629 elim_backward (elim_graph *g, int T) 630 { 631 int P; 632 source_location locus; 633 634 bitmap_set_bit (g->visited, T); 635 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 636 { 637 if (!bitmap_bit_p (g->visited, P)) 638 { 639 elim_backward (g, P); 640 insert_partition_copy_on_edge (g->e, P, T, locus); 641 } 642 }); 643 } 644 645 /* Allocate a new pseudo register usable for storing values sitting 646 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */ 647 648 static rtx 649 get_temp_reg (tree name) 650 { 651 tree type = TREE_TYPE (name); 652 int unsignedp; 653 machine_mode reg_mode = promote_ssa_mode (name, &unsignedp); 654 if (reg_mode == BLKmode) 655 return assign_temp (type, 0, 0); 656 rtx x = gen_reg_rtx (reg_mode); 657 if (POINTER_TYPE_P (type)) 658 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type))); 659 return x; 660 } 661 662 /* Insert required copies for T in graph G. Check for a strongly connected 663 region, and create a temporary to break the cycle if one is found. */ 664 665 static void 666 elim_create (elim_graph *g, int T) 667 { 668 int P, S; 669 source_location locus; 670 671 if (elim_unvisited_predecessor (g, T)) 672 { 673 tree var = partition_to_var (g->map, T); 674 rtx U = get_temp_reg (var); 675 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var)); 676 677 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION); 678 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 679 { 680 if (!bitmap_bit_p (g->visited, P)) 681 { 682 elim_backward (g, P); 683 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus); 684 } 685 }); 686 } 687 else 688 { 689 S = elim_graph_remove_succ_edge (g, T, &locus); 690 if (S != -1) 691 { 692 bitmap_set_bit (g->visited, T); 693 insert_partition_copy_on_edge (g->e, T, S, locus); 694 } 695 } 696 } 697 698 699 /* Eliminate all the phi nodes on edge E in graph G. */ 700 701 static void 702 eliminate_phi (edge e, elim_graph *g) 703 { 704 int x; 705 706 gcc_assert (g->const_copies.length () == 0); 707 gcc_assert (g->copy_locus.length () == 0); 708 709 /* Abnormal edges already have everything coalesced. */ 710 if (e->flags & EDGE_ABNORMAL) 711 return; 712 713 g->e = e; 714 715 eliminate_build (g); 716 717 if (elim_graph_size (g) != 0) 718 { 719 int part; 720 721 bitmap_clear (g->visited); 722 g->stack.truncate (0); 723 724 FOR_EACH_VEC_ELT (g->nodes, x, part) 725 { 726 if (!bitmap_bit_p (g->visited, part)) 727 elim_forward (g, part); 728 } 729 730 bitmap_clear (g->visited); 731 while (g->stack.length () > 0) 732 { 733 x = g->stack.pop (); 734 if (!bitmap_bit_p (g->visited, x)) 735 elim_create (g, x); 736 } 737 } 738 739 /* If there are any pending constant copies, issue them now. */ 740 while (g->const_copies.length () > 0) 741 { 742 int dest; 743 tree src; 744 source_location locus; 745 746 src = g->const_copies.pop (); 747 dest = g->const_dests.pop (); 748 locus = g->copy_locus.pop (); 749 insert_value_copy_on_edge (e, dest, src, locus); 750 } 751 } 752 753 754 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME, 755 check to see if this allows another PHI node to be removed. */ 756 757 static void 758 remove_gimple_phi_args (gphi *phi) 759 { 760 use_operand_p arg_p; 761 ssa_op_iter iter; 762 763 if (dump_file && (dump_flags & TDF_DETAILS)) 764 { 765 fprintf (dump_file, "Removing Dead PHI definition: "); 766 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 767 } 768 769 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE) 770 { 771 tree arg = USE_FROM_PTR (arg_p); 772 if (TREE_CODE (arg) == SSA_NAME) 773 { 774 /* Remove the reference to the existing argument. */ 775 SET_USE (arg_p, NULL_TREE); 776 if (has_zero_uses (arg)) 777 { 778 gimple *stmt; 779 gimple_stmt_iterator gsi; 780 781 stmt = SSA_NAME_DEF_STMT (arg); 782 783 /* Also remove the def if it is a PHI node. */ 784 if (gimple_code (stmt) == GIMPLE_PHI) 785 { 786 remove_gimple_phi_args (as_a <gphi *> (stmt)); 787 gsi = gsi_for_stmt (stmt); 788 remove_phi_node (&gsi, true); 789 } 790 791 } 792 } 793 } 794 } 795 796 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */ 797 798 static void 799 eliminate_useless_phis (void) 800 { 801 basic_block bb; 802 gphi_iterator gsi; 803 tree result; 804 805 FOR_EACH_BB_FN (bb, cfun) 806 { 807 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) 808 { 809 gphi *phi = gsi.phi (); 810 result = gimple_phi_result (phi); 811 if (virtual_operand_p (result)) 812 { 813 /* There should be no arguments which are not virtual, or the 814 results will be incorrect. */ 815 if (flag_checking) 816 for (size_t i = 0; i < gimple_phi_num_args (phi); i++) 817 { 818 tree arg = PHI_ARG_DEF (phi, i); 819 if (TREE_CODE (arg) == SSA_NAME 820 && !virtual_operand_p (arg)) 821 { 822 fprintf (stderr, "Argument of PHI is not virtual ("); 823 print_generic_expr (stderr, arg, TDF_SLIM); 824 fprintf (stderr, "), but the result is :"); 825 print_gimple_stmt (stderr, phi, 0, TDF_SLIM); 826 internal_error ("SSA corruption"); 827 } 828 } 829 830 remove_phi_node (&gsi, true); 831 } 832 else 833 { 834 /* Also remove real PHIs with no uses. */ 835 if (has_zero_uses (result)) 836 { 837 remove_gimple_phi_args (phi); 838 remove_phi_node (&gsi, true); 839 } 840 else 841 gsi_next (&gsi); 842 } 843 } 844 } 845 } 846 847 848 /* This function will rewrite the current program using the variable mapping 849 found in MAP. If the replacement vector VALUES is provided, any 850 occurrences of partitions with non-null entries in the vector will be 851 replaced with the expression in the vector instead of its mapped 852 variable. */ 853 854 static void 855 rewrite_trees (var_map map) 856 { 857 if (!flag_checking) 858 return; 859 860 basic_block bb; 861 /* Search for PHIs where the destination has no partition, but one 862 or more arguments has a partition. This should not happen and can 863 create incorrect code. */ 864 FOR_EACH_BB_FN (bb, cfun) 865 { 866 gphi_iterator gsi; 867 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 868 { 869 gphi *phi = gsi.phi (); 870 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi)); 871 if (T0 == NULL_TREE) 872 { 873 size_t i; 874 for (i = 0; i < gimple_phi_num_args (phi); i++) 875 { 876 tree arg = PHI_ARG_DEF (phi, i); 877 878 if (TREE_CODE (arg) == SSA_NAME 879 && var_to_partition (map, arg) != NO_PARTITION) 880 { 881 fprintf (stderr, "Argument of PHI is in a partition :("); 882 print_generic_expr (stderr, arg, TDF_SLIM); 883 fprintf (stderr, "), but the result is not :"); 884 print_gimple_stmt (stderr, phi, 0, TDF_SLIM); 885 internal_error ("SSA corruption"); 886 } 887 } 888 } 889 } 890 } 891 } 892 893 /* Given the out-of-ssa info object SA (with prepared partitions) 894 eliminate all phi nodes in all basic blocks. Afterwards no 895 basic block will have phi nodes anymore and there are possibly 896 some RTL instructions inserted on edges. */ 897 898 void 899 expand_phi_nodes (struct ssaexpand *sa) 900 { 901 basic_block bb; 902 elim_graph g (sa->map); 903 904 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb, 905 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 906 if (!gimple_seq_empty_p (phi_nodes (bb))) 907 { 908 edge e; 909 edge_iterator ei; 910 FOR_EACH_EDGE (e, ei, bb->preds) 911 eliminate_phi (e, &g); 912 set_phi_nodes (bb, NULL); 913 /* We can't redirect EH edges in RTL land, so we need to do this 914 here. Redirection happens only when splitting is necessary, 915 which it is only for critical edges, normally. For EH edges 916 it might also be necessary when the successor has more than 917 one predecessor. In that case the edge is either required to 918 be fallthru (which EH edges aren't), or the predecessor needs 919 to end with a jump (which again, isn't the case with EH edges). 920 Hence, split all EH edges on which we inserted instructions 921 and whose successor has multiple predecessors. */ 922 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 923 { 924 if (e->insns.r && (e->flags & EDGE_EH) 925 && !single_pred_p (e->dest)) 926 { 927 rtx_insn *insns = e->insns.r; 928 basic_block bb; 929 e->insns.r = NULL; 930 bb = split_edge (e); 931 single_pred_edge (bb)->insns.r = insns; 932 } 933 else 934 ei_next (&ei); 935 } 936 } 937 } 938 939 940 /* Remove the ssa-names in the current function and translate them into normal 941 compiler variables. PERFORM_TER is true if Temporary Expression Replacement 942 should also be used. */ 943 944 static void 945 remove_ssa_form (bool perform_ter, struct ssaexpand *sa) 946 { 947 bitmap values = NULL; 948 var_map map; 949 950 map = coalesce_ssa_name (); 951 952 /* Return to viewing the variable list as just all reference variables after 953 coalescing has been performed. */ 954 partition_view_normal (map); 955 956 if (dump_file && (dump_flags & TDF_DETAILS)) 957 { 958 fprintf (dump_file, "After Coalescing:\n"); 959 dump_var_map (dump_file, map); 960 } 961 962 if (perform_ter) 963 { 964 values = find_replaceable_exprs (map); 965 if (values && dump_file && (dump_flags & TDF_DETAILS)) 966 dump_replaceable_exprs (dump_file, values); 967 } 968 969 rewrite_trees (map); 970 971 sa->map = map; 972 sa->values = values; 973 sa->partitions_for_parm_default_defs = get_parm_default_def_partitions (map); 974 sa->partitions_for_undefined_values = get_undefined_value_partitions (map); 975 } 976 977 978 /* If not already done so for basic block BB, assign increasing uids 979 to each of its instructions. */ 980 981 static void 982 maybe_renumber_stmts_bb (basic_block bb) 983 { 984 unsigned i = 0; 985 gimple_stmt_iterator gsi; 986 987 if (!bb->aux) 988 return; 989 bb->aux = NULL; 990 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 991 { 992 gimple *stmt = gsi_stmt (gsi); 993 gimple_set_uid (stmt, i); 994 i++; 995 } 996 } 997 998 999 /* Return true if we can determine that the SSA_NAMEs RESULT (a result 1000 of a PHI node) and ARG (one of its arguments) conflict. Return false 1001 otherwise, also when we simply aren't sure. */ 1002 1003 static bool 1004 trivially_conflicts_p (basic_block bb, tree result, tree arg) 1005 { 1006 use_operand_p use; 1007 imm_use_iterator imm_iter; 1008 gimple *defa = SSA_NAME_DEF_STMT (arg); 1009 1010 /* If ARG isn't defined in the same block it's too complicated for 1011 our little mind. */ 1012 if (gimple_bb (defa) != bb) 1013 return false; 1014 1015 FOR_EACH_IMM_USE_FAST (use, imm_iter, result) 1016 { 1017 gimple *use_stmt = USE_STMT (use); 1018 if (is_gimple_debug (use_stmt)) 1019 continue; 1020 /* Now, if there's a use of RESULT that lies outside this basic block, 1021 then there surely is a conflict with ARG. */ 1022 if (gimple_bb (use_stmt) != bb) 1023 return true; 1024 if (gimple_code (use_stmt) == GIMPLE_PHI) 1025 continue; 1026 /* The use now is in a real stmt of BB, so if ARG was defined 1027 in a PHI node (like RESULT) both conflict. */ 1028 if (gimple_code (defa) == GIMPLE_PHI) 1029 return true; 1030 maybe_renumber_stmts_bb (bb); 1031 /* If the use of RESULT occurs after the definition of ARG, 1032 the two conflict too. */ 1033 if (gimple_uid (defa) < gimple_uid (use_stmt)) 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 1041 /* Search every PHI node for arguments associated with backedges which 1042 we can trivially determine will need a copy (the argument is either 1043 not an SSA_NAME or the argument has a different underlying variable 1044 than the PHI result). 1045 1046 Insert a copy from the PHI argument to a new destination at the 1047 end of the block with the backedge to the top of the loop. Update 1048 the PHI argument to reference this new destination. */ 1049 1050 static void 1051 insert_backedge_copies (void) 1052 { 1053 basic_block bb; 1054 gphi_iterator gsi; 1055 1056 mark_dfs_back_edges (); 1057 1058 FOR_EACH_BB_FN (bb, cfun) 1059 { 1060 /* Mark block as possibly needing calculation of UIDs. */ 1061 bb->aux = &bb->aux; 1062 1063 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1064 { 1065 gphi *phi = gsi.phi (); 1066 tree result = gimple_phi_result (phi); 1067 size_t i; 1068 1069 if (virtual_operand_p (result)) 1070 continue; 1071 1072 for (i = 0; i < gimple_phi_num_args (phi); i++) 1073 { 1074 tree arg = gimple_phi_arg_def (phi, i); 1075 edge e = gimple_phi_arg_edge (phi, i); 1076 1077 /* If the argument is not an SSA_NAME, then we will need a 1078 constant initialization. If the argument is an SSA_NAME with 1079 a different underlying variable then a copy statement will be 1080 needed. */ 1081 if ((e->flags & EDGE_DFS_BACK) 1082 && (TREE_CODE (arg) != SSA_NAME 1083 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result) 1084 || trivially_conflicts_p (bb, result, arg))) 1085 { 1086 tree name; 1087 gassign *stmt; 1088 gimple *last = NULL; 1089 gimple_stmt_iterator gsi2; 1090 1091 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src); 1092 if (!gsi_end_p (gsi2)) 1093 last = gsi_stmt (gsi2); 1094 1095 /* In theory the only way we ought to get back to the 1096 start of a loop should be with a COND_EXPR or GOTO_EXPR. 1097 However, better safe than sorry. 1098 If the block ends with a control statement or 1099 something that might throw, then we have to 1100 insert this assignment before the last 1101 statement. Else insert it after the last statement. */ 1102 if (last && stmt_ends_bb_p (last)) 1103 { 1104 /* If the last statement in the block is the definition 1105 site of the PHI argument, then we can't insert 1106 anything after it. */ 1107 if (TREE_CODE (arg) == SSA_NAME 1108 && SSA_NAME_DEF_STMT (arg) == last) 1109 continue; 1110 } 1111 1112 /* Create a new instance of the underlying variable of the 1113 PHI result. */ 1114 name = copy_ssa_name (result); 1115 stmt = gimple_build_assign (name, 1116 gimple_phi_arg_def (phi, i)); 1117 1118 /* copy location if present. */ 1119 if (gimple_phi_arg_has_location (phi, i)) 1120 gimple_set_location (stmt, 1121 gimple_phi_arg_location (phi, i)); 1122 1123 /* Insert the new statement into the block and update 1124 the PHI node. */ 1125 if (last && stmt_ends_bb_p (last)) 1126 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT); 1127 else 1128 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT); 1129 SET_PHI_ARG_DEF (phi, i, name); 1130 } 1131 } 1132 } 1133 1134 /* Unmark this block again. */ 1135 bb->aux = NULL; 1136 } 1137 } 1138 1139 /* Free all memory associated with going out of SSA form. SA is 1140 the outof-SSA info object. */ 1141 1142 void 1143 finish_out_of_ssa (struct ssaexpand *sa) 1144 { 1145 free (sa->partition_to_pseudo); 1146 if (sa->values) 1147 BITMAP_FREE (sa->values); 1148 delete_var_map (sa->map); 1149 BITMAP_FREE (sa->partitions_for_parm_default_defs); 1150 BITMAP_FREE (sa->partitions_for_undefined_values); 1151 memset (sa, 0, sizeof *sa); 1152 } 1153 1154 /* Take the current function out of SSA form, translating PHIs as described in 1155 R. Morgan, ``Building an Optimizing Compiler'', 1156 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */ 1157 1158 unsigned int 1159 rewrite_out_of_ssa (struct ssaexpand *sa) 1160 { 1161 /* If elimination of a PHI requires inserting a copy on a backedge, 1162 then we will have to split the backedge which has numerous 1163 undesirable performance effects. 1164 1165 A significant number of such cases can be handled here by inserting 1166 copies into the loop itself. */ 1167 insert_backedge_copies (); 1168 1169 1170 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */ 1171 eliminate_useless_phis (); 1172 1173 if (dump_file && (dump_flags & TDF_DETAILS)) 1174 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS); 1175 1176 remove_ssa_form (flag_tree_ter, sa); 1177 1178 if (dump_file && (dump_flags & TDF_DETAILS)) 1179 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS); 1180 1181 return 0; 1182 } 1183