xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-loop-distribution.c (revision 4724848cf0da353df257f730694b7882798e5daf)
1 /* Loop distribution.
2    Copyright (C) 2006-2020 Free Software Foundation, Inc.
3    Contributed by Georges-Andre Silber <Georges-Andre.Silber@ensmp.fr>
4    and Sebastian Pop <sebastian.pop@amd.com>.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This pass performs loop distribution: for example, the loop
23 
24    |DO I = 2, N
25    |    A(I) = B(I) + C
26    |    D(I) = A(I-1)*E
27    |ENDDO
28 
29    is transformed to
30 
31    |DOALL I = 2, N
32    |   A(I) = B(I) + C
33    |ENDDO
34    |
35    |DOALL I = 2, N
36    |   D(I) = A(I-1)*E
37    |ENDDO
38 
39    Loop distribution is the dual of loop fusion.  It separates statements
40    of a loop (or loop nest) into multiple loops (or loop nests) with the
41    same loop header.  The major goal is to separate statements which may
42    be vectorized from those that can't.  This pass implements distribution
43    in the following steps:
44 
45      1) Seed partitions with specific type statements.  For now we support
46 	two types seed statements: statement defining variable used outside
47 	of loop; statement storing to memory.
48      2) Build reduced dependence graph (RDG) for loop to be distributed.
49 	The vertices (RDG:V) model all statements in the loop and the edges
50 	(RDG:E) model flow and control dependencies between statements.
51      3) Apart from RDG, compute data dependencies between memory references.
52      4) Starting from seed statement, build up partition by adding depended
53 	statements according to RDG's dependence information.  Partition is
54 	classified as parallel type if it can be executed paralleled; or as
55 	sequential type if it can't.  Parallel type partition is further
56 	classified as different builtin kinds if it can be implemented as
57 	builtin function calls.
58      5) Build partition dependence graph (PG) based on data dependencies.
59 	The vertices (PG:V) model all partitions and the edges (PG:E) model
60 	all data dependencies between every partitions pair.  In general,
61 	data dependence is either compilation time known or unknown.  In C
62 	family languages, there exists quite amount compilation time unknown
63 	dependencies because of possible alias relation of data references.
64 	We categorize PG's edge to two types: "true" edge that represents
65 	compilation time known data dependencies; "alias" edge for all other
66 	data dependencies.
67      6) Traverse subgraph of PG as if all "alias" edges don't exist.  Merge
68 	partitions in each strong connected component (SCC) correspondingly.
69 	Build new PG for merged partitions.
70      7) Traverse PG again and this time with both "true" and "alias" edges
71 	included.  We try to break SCCs by removing some edges.  Because
72 	SCCs by "true" edges are all fused in step 6), we can break SCCs
73 	by removing some "alias" edges.  It's NP-hard to choose optimal
74 	edge set, fortunately simple approximation is good enough for us
75 	given the small problem scale.
76      8) Collect all data dependencies of the removed "alias" edges.  Create
77 	runtime alias checks for collected data dependencies.
78      9) Version loop under the condition of runtime alias checks.  Given
79 	loop distribution generally introduces additional overhead, it is
80 	only useful if vectorization is achieved in distributed loop.  We
81 	version loop with internal function call IFN_LOOP_DIST_ALIAS.  If
82 	no distributed loop can be vectorized, we simply remove distributed
83 	loops and recover to the original one.
84 
85    TODO:
86      1) We only distribute innermost two-level loop nest now.  We should
87 	extend it for arbitrary loop nests in the future.
88      2) We only fuse partitions in SCC now.  A better fusion algorithm is
89 	desired to minimize loop overhead, maximize parallelism and maximize
90 	data reuse.  */
91 
92 #include "config.h"
93 #include "system.h"
94 #include "coretypes.h"
95 #include "backend.h"
96 #include "tree.h"
97 #include "gimple.h"
98 #include "cfghooks.h"
99 #include "tree-pass.h"
100 #include "ssa.h"
101 #include "gimple-pretty-print.h"
102 #include "fold-const.h"
103 #include "cfganal.h"
104 #include "gimple-iterator.h"
105 #include "gimplify-me.h"
106 #include "stor-layout.h"
107 #include "tree-cfg.h"
108 #include "tree-ssa-loop-manip.h"
109 #include "tree-ssa-loop-ivopts.h"
110 #include "tree-ssa-loop.h"
111 #include "tree-into-ssa.h"
112 #include "tree-ssa.h"
113 #include "cfgloop.h"
114 #include "tree-scalar-evolution.h"
115 #include "tree-vectorizer.h"
116 #include "tree-eh.h"
117 #include "gimple-fold.h"
118 #include "tree-affine.h"
119 
120 
121 #define MAX_DATAREFS_NUM \
122 	((unsigned) param_loop_max_datarefs_for_datadeps)
123 
124 /* Threshold controlling number of distributed partitions.  Given it may
125    be unnecessary if a memory stream cost model is invented in the future,
126    we define it as a temporary macro, rather than a parameter.  */
127 #define NUM_PARTITION_THRESHOLD (4)
128 
129 /* Hashtable helpers.  */
130 
131 struct ddr_hasher : nofree_ptr_hash <struct data_dependence_relation>
132 {
133   static inline hashval_t hash (const data_dependence_relation *);
134   static inline bool equal (const data_dependence_relation *,
135 			    const data_dependence_relation *);
136 };
137 
138 /* Hash function for data dependence.  */
139 
140 inline hashval_t
141 ddr_hasher::hash (const data_dependence_relation *ddr)
142 {
143   inchash::hash h;
144   h.add_ptr (DDR_A (ddr));
145   h.add_ptr (DDR_B (ddr));
146   return h.end ();
147 }
148 
149 /* Hash table equality function for data dependence.  */
150 
151 inline bool
152 ddr_hasher::equal (const data_dependence_relation *ddr1,
153 		   const data_dependence_relation *ddr2)
154 {
155   return (DDR_A (ddr1) == DDR_A (ddr2) && DDR_B (ddr1) == DDR_B (ddr2));
156 }
157 
158 
159 
160 #define DR_INDEX(dr)      ((uintptr_t) (dr)->aux)
161 
162 /* A Reduced Dependence Graph (RDG) vertex representing a statement.  */
163 struct rdg_vertex
164 {
165   /* The statement represented by this vertex.  */
166   gimple *stmt;
167 
168   /* Vector of data-references in this statement.  */
169   vec<data_reference_p> datarefs;
170 
171   /* True when the statement contains a write to memory.  */
172   bool has_mem_write;
173 
174   /* True when the statement contains a read from memory.  */
175   bool has_mem_reads;
176 };
177 
178 #define RDGV_STMT(V)     ((struct rdg_vertex *) ((V)->data))->stmt
179 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
180 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
181 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
182 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
183 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
184 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
185 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
186 
187 /* Data dependence type.  */
188 
189 enum rdg_dep_type
190 {
191   /* Read After Write (RAW).  */
192   flow_dd = 'f',
193 
194   /* Control dependence (execute conditional on).  */
195   control_dd = 'c'
196 };
197 
198 /* Dependence information attached to an edge of the RDG.  */
199 
200 struct rdg_edge
201 {
202   /* Type of the dependence.  */
203   enum rdg_dep_type type;
204 };
205 
206 #define RDGE_TYPE(E)        ((struct rdg_edge *) ((E)->data))->type
207 
208 /* Kind of distributed loop.  */
209 enum partition_kind {
210     PKIND_NORMAL,
211     /* Partial memset stands for a paritition can be distributed into a loop
212        of memset calls, rather than a single memset call.  It's handled just
213        like a normal parition, i.e, distributed as separate loop, no memset
214        call is generated.
215 
216        Note: This is a hacking fix trying to distribute ZERO-ing stmt in a
217        loop nest as deep as possible.  As a result, parloop achieves better
218        parallelization by parallelizing deeper loop nest.  This hack should
219        be unnecessary and removed once distributed memset can be understood
220        and analyzed in data reference analysis.  See PR82604 for more.  */
221     PKIND_PARTIAL_MEMSET,
222     PKIND_MEMSET, PKIND_MEMCPY, PKIND_MEMMOVE
223 };
224 
225 /* Type of distributed loop.  */
226 enum partition_type {
227     /* The distributed loop can be executed parallelly.  */
228     PTYPE_PARALLEL = 0,
229     /* The distributed loop has to be executed sequentially.  */
230     PTYPE_SEQUENTIAL
231 };
232 
233 /* Builtin info for loop distribution.  */
234 struct builtin_info
235 {
236   /* data-references a kind != PKIND_NORMAL partition is about.  */
237   data_reference_p dst_dr;
238   data_reference_p src_dr;
239   /* Base address and size of memory objects operated by the builtin.  Note
240      both dest and source memory objects must have the same size.  */
241   tree dst_base;
242   tree src_base;
243   tree size;
244   /* Base and offset part of dst_base after stripping constant offset.  This
245      is only used in memset builtin distribution for now.  */
246   tree dst_base_base;
247   unsigned HOST_WIDE_INT dst_base_offset;
248 };
249 
250 /* Partition for loop distribution.  */
251 struct partition
252 {
253   /* Statements of the partition.  */
254   bitmap stmts;
255   /* True if the partition defines variable which is used outside of loop.  */
256   bool reduction_p;
257   location_t loc;
258   enum partition_kind kind;
259   enum partition_type type;
260   /* Data references in the partition.  */
261   bitmap datarefs;
262   /* Information of builtin parition.  */
263   struct builtin_info *builtin;
264 };
265 
266 /* Partitions are fused because of different reasons.  */
267 enum fuse_type
268 {
269   FUSE_NON_BUILTIN = 0,
270   FUSE_REDUCTION = 1,
271   FUSE_SHARE_REF = 2,
272   FUSE_SAME_SCC = 3,
273   FUSE_FINALIZE = 4
274 };
275 
276 /* Description on different fusing reason.  */
277 static const char *fuse_message[] = {
278   "they are non-builtins",
279   "they have reductions",
280   "they have shared memory refs",
281   "they are in the same dependence scc",
282   "there is no point to distribute loop"};
283 
284 
285 /* Dump vertex I in RDG to FILE.  */
286 
287 static void
288 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
289 {
290   struct vertex *v = &(rdg->vertices[i]);
291   struct graph_edge *e;
292 
293   fprintf (file, "(vertex %d: (%s%s) (in:", i,
294 	   RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
295 	   RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
296 
297   if (v->pred)
298     for (e = v->pred; e; e = e->pred_next)
299       fprintf (file, " %d", e->src);
300 
301   fprintf (file, ") (out:");
302 
303   if (v->succ)
304     for (e = v->succ; e; e = e->succ_next)
305       fprintf (file, " %d", e->dest);
306 
307   fprintf (file, ")\n");
308   print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
309   fprintf (file, ")\n");
310 }
311 
312 /* Call dump_rdg_vertex on stderr.  */
313 
314 DEBUG_FUNCTION void
315 debug_rdg_vertex (struct graph *rdg, int i)
316 {
317   dump_rdg_vertex (stderr, rdg, i);
318 }
319 
320 /* Dump the reduced dependence graph RDG to FILE.  */
321 
322 static void
323 dump_rdg (FILE *file, struct graph *rdg)
324 {
325   fprintf (file, "(rdg\n");
326   for (int i = 0; i < rdg->n_vertices; i++)
327     dump_rdg_vertex (file, rdg, i);
328   fprintf (file, ")\n");
329 }
330 
331 /* Call dump_rdg on stderr.  */
332 
333 DEBUG_FUNCTION void
334 debug_rdg (struct graph *rdg)
335 {
336   dump_rdg (stderr, rdg);
337 }
338 
339 static void
340 dot_rdg_1 (FILE *file, struct graph *rdg)
341 {
342   int i;
343   pretty_printer buffer;
344   pp_needs_newline (&buffer) = false;
345   buffer.buffer->stream = file;
346 
347   fprintf (file, "digraph RDG {\n");
348 
349   for (i = 0; i < rdg->n_vertices; i++)
350     {
351       struct vertex *v = &(rdg->vertices[i]);
352       struct graph_edge *e;
353 
354       fprintf (file, "%d [label=\"[%d] ", i, i);
355       pp_gimple_stmt_1 (&buffer, RDGV_STMT (v), 0, TDF_SLIM);
356       pp_flush (&buffer);
357       fprintf (file, "\"]\n");
358 
359       /* Highlight reads from memory.  */
360       if (RDG_MEM_READS_STMT (rdg, i))
361        fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
362 
363       /* Highlight stores to memory.  */
364       if (RDG_MEM_WRITE_STMT (rdg, i))
365        fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
366 
367       if (v->succ)
368        for (e = v->succ; e; e = e->succ_next)
369          switch (RDGE_TYPE (e))
370            {
371            case flow_dd:
372              /* These are the most common dependences: don't print these. */
373              fprintf (file, "%d -> %d \n", i, e->dest);
374              break;
375 
376 	   case control_dd:
377              fprintf (file, "%d -> %d [label=control] \n", i, e->dest);
378              break;
379 
380            default:
381              gcc_unreachable ();
382            }
383     }
384 
385   fprintf (file, "}\n\n");
386 }
387 
388 /* Display the Reduced Dependence Graph using dotty.  */
389 
390 DEBUG_FUNCTION void
391 dot_rdg (struct graph *rdg)
392 {
393   /* When debugging, you may want to enable the following code.  */
394 #ifdef HAVE_POPEN
395   FILE *file = popen ("dot -Tx11", "w");
396   if (!file)
397     return;
398   dot_rdg_1 (file, rdg);
399   fflush (file);
400   close (fileno (file));
401   pclose (file);
402 #else
403   dot_rdg_1 (stderr, rdg);
404 #endif
405 }
406 
407 /* Returns the index of STMT in RDG.  */
408 
409 static int
410 rdg_vertex_for_stmt (struct graph *rdg ATTRIBUTE_UNUSED, gimple *stmt)
411 {
412   int index = gimple_uid (stmt);
413   gcc_checking_assert (index == -1 || RDG_STMT (rdg, index) == stmt);
414   return index;
415 }
416 
417 /* Creates dependence edges in RDG for all the uses of DEF.  IDEF is
418    the index of DEF in RDG.  */
419 
420 static void
421 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
422 {
423   use_operand_p imm_use_p;
424   imm_use_iterator iterator;
425 
426   FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
427     {
428       struct graph_edge *e;
429       int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
430 
431       if (use < 0)
432 	continue;
433 
434       e = add_edge (rdg, idef, use);
435       e->data = XNEW (struct rdg_edge);
436       RDGE_TYPE (e) = flow_dd;
437     }
438 }
439 
440 /* Creates an edge for the control dependences of BB to the vertex V.  */
441 
442 static void
443 create_edge_for_control_dependence (struct graph *rdg, basic_block bb,
444 				    int v, control_dependences *cd)
445 {
446   bitmap_iterator bi;
447   unsigned edge_n;
448   EXECUTE_IF_SET_IN_BITMAP (cd->get_edges_dependent_on (bb->index),
449 			    0, edge_n, bi)
450     {
451       basic_block cond_bb = cd->get_edge_src (edge_n);
452       gimple *stmt = last_stmt (cond_bb);
453       if (stmt && is_ctrl_stmt (stmt))
454 	{
455 	  struct graph_edge *e;
456 	  int c = rdg_vertex_for_stmt (rdg, stmt);
457 	  if (c < 0)
458 	    continue;
459 
460 	  e = add_edge (rdg, c, v);
461 	  e->data = XNEW (struct rdg_edge);
462 	  RDGE_TYPE (e) = control_dd;
463 	}
464     }
465 }
466 
467 /* Creates the edges of the reduced dependence graph RDG.  */
468 
469 static void
470 create_rdg_flow_edges (struct graph *rdg)
471 {
472   int i;
473   def_operand_p def_p;
474   ssa_op_iter iter;
475 
476   for (i = 0; i < rdg->n_vertices; i++)
477     FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
478 			      iter, SSA_OP_DEF)
479       create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
480 }
481 
482 /* Creates the edges of the reduced dependence graph RDG.  */
483 
484 static void
485 create_rdg_cd_edges (struct graph *rdg, control_dependences *cd, loop_p loop)
486 {
487   int i;
488 
489   for (i = 0; i < rdg->n_vertices; i++)
490     {
491       gimple *stmt = RDG_STMT (rdg, i);
492       if (gimple_code (stmt) == GIMPLE_PHI)
493 	{
494 	  edge_iterator ei;
495 	  edge e;
496 	  FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
497 	    if (flow_bb_inside_loop_p (loop, e->src))
498 	      create_edge_for_control_dependence (rdg, e->src, i, cd);
499 	}
500       else
501 	create_edge_for_control_dependence (rdg, gimple_bb (stmt), i, cd);
502     }
503 }
504 
505 
506 class loop_distribution
507 {
508   private:
509   /* The loop (nest) to be distributed.  */
510   vec<loop_p> loop_nest;
511 
512   /* Vector of data references in the loop to be distributed.  */
513   vec<data_reference_p> datarefs_vec;
514 
515   /* If there is nonaddressable data reference in above vector.  */
516   bool has_nonaddressable_dataref_p;
517 
518   /* Store index of data reference in aux field.  */
519 
520   /* Hash table for data dependence relation in the loop to be distributed.  */
521   hash_table<ddr_hasher> *ddrs_table;
522 
523   /* Array mapping basic block's index to its topological order.  */
524   int *bb_top_order_index;
525   /* And size of the array.  */
526   int bb_top_order_index_size;
527 
528   /* Build the vertices of the reduced dependence graph RDG.  Return false
529      if that failed.  */
530   bool create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts, loop_p loop);
531 
532   /* Initialize STMTS with all the statements of LOOP.  We use topological
533      order to discover all statements.  The order is important because
534      generate_loops_for_partition is using the same traversal for identifying
535      statements in loop copies.  */
536   void stmts_from_loop (class loop *loop, vec<gimple *> *stmts);
537 
538 
539   /* Build the Reduced Dependence Graph (RDG) with one vertex per statement of
540      LOOP, and one edge per flow dependence or control dependence from control
541      dependence CD.  During visiting each statement, data references are also
542      collected and recorded in global data DATAREFS_VEC.  */
543   struct graph * build_rdg (class loop *loop, control_dependences *cd);
544 
545 /* Merge PARTITION into the partition DEST.  RDG is the reduced dependence
546    graph and we update type for result partition if it is non-NULL.  */
547   void partition_merge_into (struct graph *rdg,
548 			     partition *dest, partition *partition,
549 			     enum fuse_type ft);
550 
551 
552   /* Return data dependence relation for data references A and B.  The two
553      data references must be in lexicographic order wrto reduced dependence
554      graph RDG.  We firstly try to find ddr from global ddr hash table.  If
555      it doesn't exist, compute the ddr and cache it.  */
556   data_dependence_relation * get_data_dependence (struct graph *rdg,
557 						  data_reference_p a,
558 						  data_reference_p b);
559 
560 
561   /* In reduced dependence graph RDG for loop distribution, return true if
562      dependence between references DR1 and DR2 leads to a dependence cycle
563      and such dependence cycle can't be resolved by runtime alias check.  */
564   bool data_dep_in_cycle_p (struct graph *rdg, data_reference_p dr1,
565 			    data_reference_p dr2);
566 
567 
568   /* Given reduced dependence graph RDG, PARTITION1 and PARTITION2, update
569      PARTITION1's type after merging PARTITION2 into PARTITION1.  */
570   void update_type_for_merge (struct graph *rdg,
571 			      partition *partition1, partition *partition2);
572 
573 
574   /* Returns a partition with all the statements needed for computing
575      the vertex V of the RDG, also including the loop exit conditions.  */
576   partition *build_rdg_partition_for_vertex (struct graph *rdg, int v);
577 
578   /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
579      if it forms builtin memcpy or memmove call.  */
580   void classify_builtin_ldst (loop_p loop, struct graph *rdg, partition *partition,
581 			      data_reference_p dst_dr, data_reference_p src_dr);
582 
583   /* Classifies the builtin kind we can generate for PARTITION of RDG and LOOP.
584      For the moment we detect memset, memcpy and memmove patterns.  Bitmap
585      STMT_IN_ALL_PARTITIONS contains statements belonging to all partitions.
586      Returns true if there is a reduction in all partitions and we
587      possibly did not mark PARTITION as having one for this reason.  */
588 
589   bool
590   classify_partition (loop_p loop,
591 		      struct graph *rdg, partition *partition,
592 		      bitmap stmt_in_all_partitions);
593 
594 
595   /* Returns true when PARTITION1 and PARTITION2 access the same memory
596      object in RDG.  */
597   bool share_memory_accesses (struct graph *rdg,
598 			      partition *partition1, partition *partition2);
599 
600   /* For each seed statement in STARTING_STMTS, this function builds
601      partition for it by adding depended statements according to RDG.
602      All partitions are recorded in PARTITIONS.  */
603   void rdg_build_partitions (struct graph *rdg,
604 			     vec<gimple *> starting_stmts,
605 			     vec<partition *> *partitions);
606 
607   /* Compute partition dependence created by the data references in DRS1
608      and DRS2, modify and return DIR according to that.  IF ALIAS_DDR is
609      not NULL, we record dependence introduced by possible alias between
610      two data references in ALIAS_DDRS; otherwise, we simply ignore such
611      dependence as if it doesn't exist at all.  */
612   int pg_add_dependence_edges (struct graph *rdg, int dir, bitmap drs1,
613 			       bitmap drs2, vec<ddr_p> *alias_ddrs);
614 
615 
616   /* Build and return partition dependence graph for PARTITIONS.  RDG is
617      reduced dependence graph for the loop to be distributed.  If IGNORE_ALIAS_P
618      is true, data dependence caused by possible alias between references
619      is ignored, as if it doesn't exist at all; otherwise all depdendences
620      are considered.  */
621   struct graph *build_partition_graph (struct graph *rdg,
622 				       vec<struct partition *> *partitions,
623 				       bool ignore_alias_p);
624 
625   /* Given reduced dependence graph RDG merge strong connected components
626      of PARTITIONS.  If IGNORE_ALIAS_P is true, data dependence caused by
627      possible alias between references is ignored, as if it doesn't exist
628      at all; otherwise all depdendences are considered.  */
629   void merge_dep_scc_partitions (struct graph *rdg, vec<struct partition *>
630 				 *partitions, bool ignore_alias_p);
631 
632 /* This is the main function breaking strong conected components in
633    PARTITIONS giving reduced depdendence graph RDG.  Store data dependence
634    relations for runtime alias check in ALIAS_DDRS.  */
635   void break_alias_scc_partitions (struct graph *rdg, vec<struct partition *>
636 				   *partitions, vec<ddr_p> *alias_ddrs);
637 
638 
639   /* Fuse PARTITIONS of LOOP if necessary before finalizing distribution.
640      ALIAS_DDRS contains ddrs which need runtime alias check.  */
641   void finalize_partitions (class loop *loop, vec<struct partition *>
642 			    *partitions, vec<ddr_p> *alias_ddrs);
643 
644   /* Distributes the code from LOOP in such a way that producer statements
645      are placed before consumer statements.  Tries to separate only the
646      statements from STMTS into separate loops.  Returns the number of
647      distributed loops.  Set NB_CALLS to number of generated builtin calls.
648      Set *DESTROY_P to whether LOOP needs to be destroyed.  */
649   int distribute_loop (class loop *loop, vec<gimple *> stmts,
650 		       control_dependences *cd, int *nb_calls, bool *destroy_p,
651 		       bool only_patterns_p);
652 
653   /* Compute topological order for basic blocks.  Topological order is
654      needed because data dependence is computed for data references in
655      lexicographical order.  */
656   void bb_top_order_init (void);
657 
658   void bb_top_order_destroy (void);
659 
660   public:
661 
662   /* Getter for bb_top_order.  */
663 
664   inline int get_bb_top_order_index_size (void)
665     {
666       return bb_top_order_index_size;
667     }
668 
669   inline int get_bb_top_order_index (int i)
670     {
671       return bb_top_order_index[i];
672     }
673 
674   unsigned int execute (function *fun);
675 };
676 
677 
678 /* If X has a smaller topological sort number than Y, returns -1;
679    if greater, returns 1.  */
680 static int
681 bb_top_order_cmp_r (const void *x, const void *y, void *loop)
682 {
683   loop_distribution *_loop =
684     (loop_distribution *) loop;
685 
686   basic_block bb1 = *(const basic_block *) x;
687   basic_block bb2 = *(const basic_block *) y;
688 
689   int bb_top_order_index_size = _loop->get_bb_top_order_index_size ();
690 
691   gcc_assert (bb1->index < bb_top_order_index_size
692 	      && bb2->index < bb_top_order_index_size);
693   gcc_assert (bb1 == bb2
694 	      || _loop->get_bb_top_order_index(bb1->index)
695 		 != _loop->get_bb_top_order_index(bb2->index));
696 
697   return (_loop->get_bb_top_order_index(bb1->index) -
698 	  _loop->get_bb_top_order_index(bb2->index));
699 }
700 
701 bool
702 loop_distribution::create_rdg_vertices (struct graph *rdg, vec<gimple *> stmts,
703 					loop_p loop)
704 {
705   int i;
706   gimple *stmt;
707 
708   FOR_EACH_VEC_ELT (stmts, i, stmt)
709     {
710       struct vertex *v = &(rdg->vertices[i]);
711 
712       /* Record statement to vertex mapping.  */
713       gimple_set_uid (stmt, i);
714 
715       v->data = XNEW (struct rdg_vertex);
716       RDGV_STMT (v) = stmt;
717       RDGV_DATAREFS (v).create (0);
718       RDGV_HAS_MEM_WRITE (v) = false;
719       RDGV_HAS_MEM_READS (v) = false;
720       if (gimple_code (stmt) == GIMPLE_PHI)
721 	continue;
722 
723       unsigned drp = datarefs_vec.length ();
724       if (!find_data_references_in_stmt (loop, stmt, &datarefs_vec))
725 	return false;
726       for (unsigned j = drp; j < datarefs_vec.length (); ++j)
727 	{
728 	  data_reference_p dr = datarefs_vec[j];
729 	  if (DR_IS_READ (dr))
730 	    RDGV_HAS_MEM_READS (v) = true;
731 	  else
732 	    RDGV_HAS_MEM_WRITE (v) = true;
733 	  RDGV_DATAREFS (v).safe_push (dr);
734 	  has_nonaddressable_dataref_p |= may_be_nonaddressable_p (dr->ref);
735 	}
736     }
737   return true;
738 }
739 
740 void
741 loop_distribution::stmts_from_loop (class loop *loop, vec<gimple *> *stmts)
742 {
743   unsigned int i;
744   basic_block *bbs = get_loop_body_in_custom_order (loop, this, bb_top_order_cmp_r);
745 
746   for (i = 0; i < loop->num_nodes; i++)
747     {
748       basic_block bb = bbs[i];
749 
750       for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
751 	   gsi_next (&bsi))
752 	if (!virtual_operand_p (gimple_phi_result (bsi.phi ())))
753 	  stmts->safe_push (bsi.phi ());
754 
755       for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
756 	   gsi_next (&bsi))
757 	{
758 	  gimple *stmt = gsi_stmt (bsi);
759 	  if (gimple_code (stmt) != GIMPLE_LABEL && !is_gimple_debug (stmt))
760 	    stmts->safe_push (stmt);
761 	}
762     }
763 
764   free (bbs);
765 }
766 
767 /* Free the reduced dependence graph RDG.  */
768 
769 static void
770 free_rdg (struct graph *rdg)
771 {
772   int i;
773 
774   for (i = 0; i < rdg->n_vertices; i++)
775     {
776       struct vertex *v = &(rdg->vertices[i]);
777       struct graph_edge *e;
778 
779       for (e = v->succ; e; e = e->succ_next)
780 	free (e->data);
781 
782       if (v->data)
783 	{
784 	  gimple_set_uid (RDGV_STMT (v), -1);
785 	  (RDGV_DATAREFS (v)).release ();
786 	  free (v->data);
787 	}
788     }
789 
790   free_graph (rdg);
791 }
792 
793 struct graph *
794 loop_distribution::build_rdg (class loop *loop, control_dependences *cd)
795 {
796   struct graph *rdg;
797 
798   /* Create the RDG vertices from the stmts of the loop nest.  */
799   auto_vec<gimple *, 10> stmts;
800   stmts_from_loop (loop, &stmts);
801   rdg = new_graph (stmts.length ());
802   if (!create_rdg_vertices (rdg, stmts, loop))
803     {
804       free_rdg (rdg);
805       return NULL;
806     }
807   stmts.release ();
808 
809   create_rdg_flow_edges (rdg);
810   if (cd)
811     create_rdg_cd_edges (rdg, cd, loop);
812 
813   return rdg;
814 }
815 
816 
817 /* Allocate and initialize a partition from BITMAP.  */
818 
819 static partition *
820 partition_alloc (void)
821 {
822   partition *partition = XCNEW (struct partition);
823   partition->stmts = BITMAP_ALLOC (NULL);
824   partition->reduction_p = false;
825   partition->loc = UNKNOWN_LOCATION;
826   partition->kind = PKIND_NORMAL;
827   partition->type = PTYPE_PARALLEL;
828   partition->datarefs = BITMAP_ALLOC (NULL);
829   return partition;
830 }
831 
832 /* Free PARTITION.  */
833 
834 static void
835 partition_free (partition *partition)
836 {
837   BITMAP_FREE (partition->stmts);
838   BITMAP_FREE (partition->datarefs);
839   if (partition->builtin)
840     free (partition->builtin);
841 
842   free (partition);
843 }
844 
845 /* Returns true if the partition can be generated as a builtin.  */
846 
847 static bool
848 partition_builtin_p (partition *partition)
849 {
850   return partition->kind > PKIND_PARTIAL_MEMSET;
851 }
852 
853 /* Returns true if the partition contains a reduction.  */
854 
855 static bool
856 partition_reduction_p (partition *partition)
857 {
858   return partition->reduction_p;
859 }
860 
861 void
862 loop_distribution::partition_merge_into (struct graph *rdg,
863 		      partition *dest, partition *partition, enum fuse_type ft)
864 {
865   if (dump_file && (dump_flags & TDF_DETAILS))
866     {
867       fprintf (dump_file, "Fuse partitions because %s:\n", fuse_message[ft]);
868       fprintf (dump_file, "  Part 1: ");
869       dump_bitmap (dump_file, dest->stmts);
870       fprintf (dump_file, "  Part 2: ");
871       dump_bitmap (dump_file, partition->stmts);
872     }
873 
874   dest->kind = PKIND_NORMAL;
875   if (dest->type == PTYPE_PARALLEL)
876     dest->type = partition->type;
877 
878   bitmap_ior_into (dest->stmts, partition->stmts);
879   if (partition_reduction_p (partition))
880     dest->reduction_p = true;
881 
882   /* Further check if any data dependence prevents us from executing the
883      new partition parallelly.  */
884   if (dest->type == PTYPE_PARALLEL && rdg != NULL)
885     update_type_for_merge (rdg, dest, partition);
886 
887   bitmap_ior_into (dest->datarefs, partition->datarefs);
888 }
889 
890 
891 /* Returns true when DEF is an SSA_NAME defined in LOOP and used after
892    the LOOP.  */
893 
894 static bool
895 ssa_name_has_uses_outside_loop_p (tree def, loop_p loop)
896 {
897   imm_use_iterator imm_iter;
898   use_operand_p use_p;
899 
900   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
901     {
902       if (is_gimple_debug (USE_STMT (use_p)))
903 	continue;
904 
905       basic_block use_bb = gimple_bb (USE_STMT (use_p));
906       if (!flow_bb_inside_loop_p (loop, use_bb))
907 	return true;
908     }
909 
910   return false;
911 }
912 
913 /* Returns true when STMT defines a scalar variable used after the
914    loop LOOP.  */
915 
916 static bool
917 stmt_has_scalar_dependences_outside_loop (loop_p loop, gimple *stmt)
918 {
919   def_operand_p def_p;
920   ssa_op_iter op_iter;
921 
922   if (gimple_code (stmt) == GIMPLE_PHI)
923     return ssa_name_has_uses_outside_loop_p (gimple_phi_result (stmt), loop);
924 
925   FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
926     if (ssa_name_has_uses_outside_loop_p (DEF_FROM_PTR (def_p), loop))
927       return true;
928 
929   return false;
930 }
931 
932 /* Return a copy of LOOP placed before LOOP.  */
933 
934 static class loop *
935 copy_loop_before (class loop *loop)
936 {
937   class loop *res;
938   edge preheader = loop_preheader_edge (loop);
939 
940   initialize_original_copy_tables ();
941   res = slpeel_tree_duplicate_loop_to_edge_cfg (loop, NULL, preheader);
942   gcc_assert (res != NULL);
943   free_original_copy_tables ();
944   delete_update_ssa ();
945 
946   return res;
947 }
948 
949 /* Creates an empty basic block after LOOP.  */
950 
951 static void
952 create_bb_after_loop (class loop *loop)
953 {
954   edge exit = single_exit (loop);
955 
956   if (!exit)
957     return;
958 
959   split_edge (exit);
960 }
961 
962 /* Generate code for PARTITION from the code in LOOP.  The loop is
963    copied when COPY_P is true.  All the statements not flagged in the
964    PARTITION bitmap are removed from the loop or from its copy.  The
965    statements are indexed in sequence inside a basic block, and the
966    basic blocks of a loop are taken in dom order.  */
967 
968 static void
969 generate_loops_for_partition (class loop *loop, partition *partition,
970 			      bool copy_p)
971 {
972   unsigned i;
973   basic_block *bbs;
974 
975   if (copy_p)
976     {
977       int orig_loop_num = loop->orig_loop_num;
978       loop = copy_loop_before (loop);
979       gcc_assert (loop != NULL);
980       loop->orig_loop_num = orig_loop_num;
981       create_preheader (loop, CP_SIMPLE_PREHEADERS);
982       create_bb_after_loop (loop);
983     }
984   else
985     {
986       /* Origin number is set to the new versioned loop's num.  */
987       gcc_assert (loop->orig_loop_num != loop->num);
988     }
989 
990   /* Remove stmts not in the PARTITION bitmap.  */
991   bbs = get_loop_body_in_dom_order (loop);
992 
993   if (MAY_HAVE_DEBUG_BIND_STMTS)
994     for (i = 0; i < loop->num_nodes; i++)
995       {
996 	basic_block bb = bbs[i];
997 
998 	for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
999 	     gsi_next (&bsi))
1000 	  {
1001 	    gphi *phi = bsi.phi ();
1002 	    if (!virtual_operand_p (gimple_phi_result (phi))
1003 		&& !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1004 	      reset_debug_uses (phi);
1005 	  }
1006 
1007 	for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1008 	  {
1009 	    gimple *stmt = gsi_stmt (bsi);
1010 	    if (gimple_code (stmt) != GIMPLE_LABEL
1011 		&& !is_gimple_debug (stmt)
1012 		&& !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1013 	      reset_debug_uses (stmt);
1014 	  }
1015       }
1016 
1017   for (i = 0; i < loop->num_nodes; i++)
1018     {
1019       basic_block bb = bbs[i];
1020       edge inner_exit = NULL;
1021 
1022       if (loop != bb->loop_father)
1023 	inner_exit = single_exit (bb->loop_father);
1024 
1025       for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);)
1026 	{
1027 	  gphi *phi = bsi.phi ();
1028 	  if (!virtual_operand_p (gimple_phi_result (phi))
1029 	      && !bitmap_bit_p (partition->stmts, gimple_uid (phi)))
1030 	    remove_phi_node (&bsi, true);
1031 	  else
1032 	    gsi_next (&bsi);
1033 	}
1034 
1035       for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);)
1036 	{
1037 	  gimple *stmt = gsi_stmt (bsi);
1038 	  if (gimple_code (stmt) != GIMPLE_LABEL
1039 	      && !is_gimple_debug (stmt)
1040 	      && !bitmap_bit_p (partition->stmts, gimple_uid (stmt)))
1041 	    {
1042 	      /* In distribution of loop nest, if bb is inner loop's exit_bb,
1043 		 we choose its exit edge/path in order to avoid generating
1044 		 infinite loop.  For all other cases, we choose an arbitrary
1045 		 path through the empty CFG part that this unnecessary
1046 		 control stmt controls.  */
1047 	      if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
1048 		{
1049 		  if (inner_exit && inner_exit->flags & EDGE_TRUE_VALUE)
1050 		    gimple_cond_make_true (cond_stmt);
1051 		  else
1052 		    gimple_cond_make_false (cond_stmt);
1053 		  update_stmt (stmt);
1054 		}
1055 	      else if (gimple_code (stmt) == GIMPLE_SWITCH)
1056 		{
1057 		  gswitch *switch_stmt = as_a <gswitch *> (stmt);
1058 		  gimple_switch_set_index
1059 		      (switch_stmt, CASE_LOW (gimple_switch_label (switch_stmt, 1)));
1060 		  update_stmt (stmt);
1061 		}
1062 	      else
1063 		{
1064 		  unlink_stmt_vdef (stmt);
1065 		  gsi_remove (&bsi, true);
1066 		  release_defs (stmt);
1067 		  continue;
1068 		}
1069 	    }
1070 	  gsi_next (&bsi);
1071 	}
1072     }
1073 
1074   free (bbs);
1075 }
1076 
1077 /* If VAL memory representation contains the same value in all bytes,
1078    return that value, otherwise return -1.
1079    E.g. for 0x24242424 return 0x24, for IEEE double
1080    747708026454360457216.0 return 0x44, etc.  */
1081 
1082 static int
1083 const_with_all_bytes_same (tree val)
1084 {
1085   unsigned char buf[64];
1086   int i, len;
1087 
1088   if (integer_zerop (val)
1089       || (TREE_CODE (val) == CONSTRUCTOR
1090           && !TREE_CLOBBER_P (val)
1091           && CONSTRUCTOR_NELTS (val) == 0))
1092     return 0;
1093 
1094   if (real_zerop (val))
1095     {
1096       /* Only return 0 for +0.0, not for -0.0, which doesn't have
1097 	 an all bytes same memory representation.  Don't transform
1098 	 -0.0 stores into +0.0 even for !HONOR_SIGNED_ZEROS.  */
1099       switch (TREE_CODE (val))
1100 	{
1101 	case REAL_CST:
1102 	  if (!real_isneg (TREE_REAL_CST_PTR (val)))
1103 	    return 0;
1104 	  break;
1105 	case COMPLEX_CST:
1106 	  if (!const_with_all_bytes_same (TREE_REALPART (val))
1107 	      && !const_with_all_bytes_same (TREE_IMAGPART (val)))
1108 	    return 0;
1109 	  break;
1110 	case VECTOR_CST:
1111 	  {
1112 	    unsigned int count = vector_cst_encoded_nelts (val);
1113 	    unsigned int j;
1114 	    for (j = 0; j < count; ++j)
1115 	      if (const_with_all_bytes_same (VECTOR_CST_ENCODED_ELT (val, j)))
1116 		break;
1117 	    if (j == count)
1118 	      return 0;
1119 	    break;
1120 	  }
1121 	default:
1122 	  break;
1123 	}
1124     }
1125 
1126   if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
1127     return -1;
1128 
1129   len = native_encode_expr (val, buf, sizeof (buf));
1130   if (len == 0)
1131     return -1;
1132   for (i = 1; i < len; i++)
1133     if (buf[i] != buf[0])
1134       return -1;
1135   return buf[0];
1136 }
1137 
1138 /* Generate a call to memset for PARTITION in LOOP.  */
1139 
1140 static void
1141 generate_memset_builtin (class loop *loop, partition *partition)
1142 {
1143   gimple_stmt_iterator gsi;
1144   tree mem, fn, nb_bytes;
1145   tree val;
1146   struct builtin_info *builtin = partition->builtin;
1147   gimple *fn_call;
1148 
1149   /* The new statements will be placed before LOOP.  */
1150   gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1151 
1152   nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1153   nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1154 				       false, GSI_CONTINUE_LINKING);
1155   mem = rewrite_to_non_trapping_overflow (builtin->dst_base);
1156   mem = force_gimple_operand_gsi (&gsi, mem, true, NULL_TREE,
1157 				  false, GSI_CONTINUE_LINKING);
1158 
1159   /* This exactly matches the pattern recognition in classify_partition.  */
1160   val = gimple_assign_rhs1 (DR_STMT (builtin->dst_dr));
1161   /* Handle constants like 0x15151515 and similarly
1162      floating point constants etc. where all bytes are the same.  */
1163   int bytev = const_with_all_bytes_same (val);
1164   if (bytev != -1)
1165     val = build_int_cst (integer_type_node, bytev);
1166   else if (TREE_CODE (val) == INTEGER_CST)
1167     val = fold_convert (integer_type_node, val);
1168   else if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (val)))
1169     {
1170       tree tem = make_ssa_name (integer_type_node);
1171       gimple *cstmt = gimple_build_assign (tem, NOP_EXPR, val);
1172       gsi_insert_after (&gsi, cstmt, GSI_CONTINUE_LINKING);
1173       val = tem;
1174     }
1175 
1176   fn = build_fold_addr_expr (builtin_decl_implicit (BUILT_IN_MEMSET));
1177   fn_call = gimple_build_call (fn, 3, mem, val, nb_bytes);
1178   gimple_set_location (fn_call, partition->loc);
1179   gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1180   fold_stmt (&gsi);
1181 
1182   if (dump_file && (dump_flags & TDF_DETAILS))
1183     {
1184       fprintf (dump_file, "generated memset");
1185       if (bytev == 0)
1186 	fprintf (dump_file, " zero\n");
1187       else
1188 	fprintf (dump_file, "\n");
1189     }
1190 }
1191 
1192 /* Generate a call to memcpy for PARTITION in LOOP.  */
1193 
1194 static void
1195 generate_memcpy_builtin (class loop *loop, partition *partition)
1196 {
1197   gimple_stmt_iterator gsi;
1198   gimple *fn_call;
1199   tree dest, src, fn, nb_bytes;
1200   enum built_in_function kind;
1201   struct builtin_info *builtin = partition->builtin;
1202 
1203   /* The new statements will be placed before LOOP.  */
1204   gsi = gsi_last_bb (loop_preheader_edge (loop)->src);
1205 
1206   nb_bytes = rewrite_to_non_trapping_overflow (builtin->size);
1207   nb_bytes = force_gimple_operand_gsi (&gsi, nb_bytes, true, NULL_TREE,
1208 				       false, GSI_CONTINUE_LINKING);
1209   dest = rewrite_to_non_trapping_overflow (builtin->dst_base);
1210   src = rewrite_to_non_trapping_overflow (builtin->src_base);
1211   if (partition->kind == PKIND_MEMCPY
1212       || ! ptr_derefs_may_alias_p (dest, src))
1213     kind = BUILT_IN_MEMCPY;
1214   else
1215     kind = BUILT_IN_MEMMOVE;
1216   /* Try harder if we're copying a constant size.  */
1217   if (kind == BUILT_IN_MEMMOVE && poly_int_tree_p (nb_bytes))
1218     {
1219       aff_tree asrc, adest;
1220       tree_to_aff_combination (src, ptr_type_node, &asrc);
1221       tree_to_aff_combination (dest, ptr_type_node, &adest);
1222       aff_combination_scale (&adest, -1);
1223       aff_combination_add (&asrc, &adest);
1224       if (aff_comb_cannot_overlap_p (&asrc, wi::to_poly_widest (nb_bytes),
1225 				     wi::to_poly_widest (nb_bytes)))
1226 	kind = BUILT_IN_MEMCPY;
1227     }
1228 
1229   dest = force_gimple_operand_gsi (&gsi, dest, true, NULL_TREE,
1230 				   false, GSI_CONTINUE_LINKING);
1231   src = force_gimple_operand_gsi (&gsi, src, true, NULL_TREE,
1232 				  false, GSI_CONTINUE_LINKING);
1233   fn = build_fold_addr_expr (builtin_decl_implicit (kind));
1234   fn_call = gimple_build_call (fn, 3, dest, src, nb_bytes);
1235   gimple_set_location (fn_call, partition->loc);
1236   gsi_insert_after (&gsi, fn_call, GSI_CONTINUE_LINKING);
1237   fold_stmt (&gsi);
1238 
1239   if (dump_file && (dump_flags & TDF_DETAILS))
1240     {
1241       if (kind == BUILT_IN_MEMCPY)
1242 	fprintf (dump_file, "generated memcpy\n");
1243       else
1244 	fprintf (dump_file, "generated memmove\n");
1245     }
1246 }
1247 
1248 /* Remove and destroy the loop LOOP.  */
1249 
1250 static void
1251 destroy_loop (class loop *loop)
1252 {
1253   unsigned nbbs = loop->num_nodes;
1254   edge exit = single_exit (loop);
1255   basic_block src = loop_preheader_edge (loop)->src, dest = exit->dest;
1256   basic_block *bbs;
1257   unsigned i;
1258 
1259   bbs = get_loop_body_in_dom_order (loop);
1260 
1261   gimple_stmt_iterator dst_gsi = gsi_after_labels (exit->dest);
1262   bool safe_p = single_pred_p (exit->dest);
1263   for (unsigned i = 0; i < nbbs; ++i)
1264     {
1265       /* We have made sure to not leave any dangling uses of SSA
1266          names defined in the loop.  With the exception of virtuals.
1267 	 Make sure we replace all uses of virtual defs that will remain
1268 	 outside of the loop with the bare symbol as delete_basic_block
1269 	 will release them.  */
1270       for (gphi_iterator gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi);
1271 	   gsi_next (&gsi))
1272 	{
1273 	  gphi *phi = gsi.phi ();
1274 	  if (virtual_operand_p (gimple_phi_result (phi)))
1275 	    mark_virtual_phi_result_for_renaming (phi);
1276 	}
1277       for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1278 	{
1279 	  gimple *stmt = gsi_stmt (gsi);
1280 	  tree vdef = gimple_vdef (stmt);
1281 	  if (vdef && TREE_CODE (vdef) == SSA_NAME)
1282 	    mark_virtual_operand_for_renaming (vdef);
1283 	  /* Also move and eventually reset debug stmts.  We can leave
1284 	     constant values in place in case the stmt dominates the exit.
1285 	     ???  Non-constant values from the last iteration can be
1286 	     replaced with final values if we can compute them.  */
1287 	  if (gimple_debug_bind_p (stmt))
1288 	    {
1289 	      tree val = gimple_debug_bind_get_value (stmt);
1290 	      gsi_move_before (&gsi, &dst_gsi);
1291 	      if (val
1292 		  && (!safe_p
1293 		      || !is_gimple_min_invariant (val)
1294 		      || !dominated_by_p (CDI_DOMINATORS, exit->src, bbs[i])))
1295 		{
1296 		  gimple_debug_bind_reset_value (stmt);
1297 		  update_stmt (stmt);
1298 		}
1299 	    }
1300 	  else
1301 	    gsi_next (&gsi);
1302 	}
1303     }
1304 
1305   redirect_edge_pred (exit, src);
1306   exit->flags &= ~(EDGE_TRUE_VALUE|EDGE_FALSE_VALUE);
1307   exit->flags |= EDGE_FALLTHRU;
1308   cancel_loop_tree (loop);
1309   rescan_loop_exit (exit, false, true);
1310 
1311   i = nbbs;
1312   do
1313     {
1314       --i;
1315       delete_basic_block (bbs[i]);
1316     }
1317   while (i != 0);
1318 
1319   free (bbs);
1320 
1321   set_immediate_dominator (CDI_DOMINATORS, dest,
1322 			   recompute_dominator (CDI_DOMINATORS, dest));
1323 }
1324 
1325 /* Generates code for PARTITION.  Return whether LOOP needs to be destroyed.  */
1326 
1327 static bool
1328 generate_code_for_partition (class loop *loop,
1329 			     partition *partition, bool copy_p)
1330 {
1331   switch (partition->kind)
1332     {
1333     case PKIND_NORMAL:
1334     case PKIND_PARTIAL_MEMSET:
1335       /* Reductions all have to be in the last partition.  */
1336       gcc_assert (!partition_reduction_p (partition)
1337 		  || !copy_p);
1338       generate_loops_for_partition (loop, partition, copy_p);
1339       return false;
1340 
1341     case PKIND_MEMSET:
1342       generate_memset_builtin (loop, partition);
1343       break;
1344 
1345     case PKIND_MEMCPY:
1346     case PKIND_MEMMOVE:
1347       generate_memcpy_builtin (loop, partition);
1348       break;
1349 
1350     default:
1351       gcc_unreachable ();
1352     }
1353 
1354   /* Common tail for partitions we turn into a call.  If this was the last
1355      partition for which we generate code, we have to destroy the loop.  */
1356   if (!copy_p)
1357     return true;
1358   return false;
1359 }
1360 
1361 data_dependence_relation *
1362 loop_distribution::get_data_dependence (struct graph *rdg, data_reference_p a,
1363 					data_reference_p b)
1364 {
1365   struct data_dependence_relation ent, **slot;
1366   struct data_dependence_relation *ddr;
1367 
1368   gcc_assert (DR_IS_WRITE (a) || DR_IS_WRITE (b));
1369   gcc_assert (rdg_vertex_for_stmt (rdg, DR_STMT (a))
1370 	      <= rdg_vertex_for_stmt (rdg, DR_STMT (b)));
1371   ent.a = a;
1372   ent.b = b;
1373   slot = ddrs_table->find_slot (&ent, INSERT);
1374   if (*slot == NULL)
1375     {
1376       ddr = initialize_data_dependence_relation (a, b, loop_nest);
1377       compute_affine_dependence (ddr, loop_nest[0]);
1378       *slot = ddr;
1379     }
1380 
1381   return *slot;
1382 }
1383 
1384 bool
1385 loop_distribution::data_dep_in_cycle_p (struct graph *rdg,
1386 					data_reference_p dr1,
1387 					data_reference_p dr2)
1388 {
1389   struct data_dependence_relation *ddr;
1390 
1391   /* Re-shuffle data-refs to be in topological order.  */
1392   if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
1393       > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
1394     std::swap (dr1, dr2);
1395 
1396   ddr = get_data_dependence (rdg, dr1, dr2);
1397 
1398   /* In case of no data dependence.  */
1399   if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1400     return false;
1401   /* For unknown data dependence or known data dependence which can't be
1402      expressed in classic distance vector, we check if it can be resolved
1403      by runtime alias check.  If yes, we still consider data dependence
1404      as won't introduce data dependence cycle.  */
1405   else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1406 	   || DDR_NUM_DIST_VECTS (ddr) == 0)
1407     return !runtime_alias_check_p (ddr, NULL, true);
1408   else if (DDR_NUM_DIST_VECTS (ddr) > 1)
1409     return true;
1410   else if (DDR_REVERSED_P (ddr)
1411 	   || lambda_vector_zerop (DDR_DIST_VECT (ddr, 0), 1))
1412     return false;
1413 
1414   return true;
1415 }
1416 
1417 void
1418 loop_distribution::update_type_for_merge (struct graph *rdg,
1419 					   partition *partition1,
1420 					   partition *partition2)
1421 {
1422   unsigned i, j;
1423   bitmap_iterator bi, bj;
1424   data_reference_p dr1, dr2;
1425 
1426   EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1427     {
1428       unsigned start = (partition1 == partition2) ? i + 1 : 0;
1429 
1430       dr1 = datarefs_vec[i];
1431       EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, start, j, bj)
1432 	{
1433 	  dr2 = datarefs_vec[j];
1434 	  if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
1435 	    continue;
1436 
1437 	  /* Partition can only be executed sequentially if there is any
1438 	     data dependence cycle.  */
1439 	  if (data_dep_in_cycle_p (rdg, dr1, dr2))
1440 	    {
1441 	      partition1->type = PTYPE_SEQUENTIAL;
1442 	      return;
1443 	    }
1444 	}
1445     }
1446 }
1447 
1448 partition *
1449 loop_distribution::build_rdg_partition_for_vertex (struct graph *rdg, int v)
1450 {
1451   partition *partition = partition_alloc ();
1452   auto_vec<int, 3> nodes;
1453   unsigned i, j;
1454   int x;
1455   data_reference_p dr;
1456 
1457   graphds_dfs (rdg, &v, 1, &nodes, false, NULL);
1458 
1459   FOR_EACH_VEC_ELT (nodes, i, x)
1460     {
1461       bitmap_set_bit (partition->stmts, x);
1462 
1463       for (j = 0; RDG_DATAREFS (rdg, x).iterate (j, &dr); ++j)
1464 	{
1465 	  unsigned idx = (unsigned) DR_INDEX (dr);
1466 	  gcc_assert (idx < datarefs_vec.length ());
1467 
1468 	  /* Partition can only be executed sequentially if there is any
1469 	     unknown data reference.  */
1470 	  if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr)
1471 	      || !DR_INIT (dr) || !DR_STEP (dr))
1472 	    partition->type = PTYPE_SEQUENTIAL;
1473 
1474 	  bitmap_set_bit (partition->datarefs, idx);
1475 	}
1476     }
1477 
1478   if (partition->type == PTYPE_SEQUENTIAL)
1479     return partition;
1480 
1481   /* Further check if any data dependence prevents us from executing the
1482      partition parallelly.  */
1483   update_type_for_merge (rdg, partition, partition);
1484 
1485   return partition;
1486 }
1487 
1488 /* Given PARTITION of LOOP and RDG, record single load/store data references
1489    for builtin partition in SRC_DR/DST_DR, return false if there is no such
1490    data references.  */
1491 
1492 static bool
1493 find_single_drs (class loop *loop, struct graph *rdg, partition *partition,
1494 		 data_reference_p *dst_dr, data_reference_p *src_dr)
1495 {
1496   unsigned i;
1497   data_reference_p single_ld = NULL, single_st = NULL;
1498   bitmap_iterator bi;
1499 
1500   EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1501     {
1502       gimple *stmt = RDG_STMT (rdg, i);
1503       data_reference_p dr;
1504 
1505       if (gimple_code (stmt) == GIMPLE_PHI)
1506 	continue;
1507 
1508       /* Any scalar stmts are ok.  */
1509       if (!gimple_vuse (stmt))
1510 	continue;
1511 
1512       /* Otherwise just regular loads/stores.  */
1513       if (!gimple_assign_single_p (stmt))
1514 	return false;
1515 
1516       /* But exactly one store and/or load.  */
1517       for (unsigned j = 0; RDG_DATAREFS (rdg, i).iterate (j, &dr); ++j)
1518 	{
1519 	  tree type = TREE_TYPE (DR_REF (dr));
1520 
1521 	  /* The memset, memcpy and memmove library calls are only
1522 	     able to deal with generic address space.  */
1523 	  if (!ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type)))
1524 	    return false;
1525 
1526 	  if (DR_IS_READ (dr))
1527 	    {
1528 	      if (single_ld != NULL)
1529 		return false;
1530 	      single_ld = dr;
1531 	    }
1532 	  else
1533 	    {
1534 	      if (single_st != NULL)
1535 		return false;
1536 	      single_st = dr;
1537 	    }
1538 	}
1539     }
1540 
1541   if (!single_st)
1542     return false;
1543 
1544   /* Bail out if this is a bitfield memory reference.  */
1545   if (TREE_CODE (DR_REF (single_st)) == COMPONENT_REF
1546       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_st), 1)))
1547     return false;
1548 
1549   /* Data reference must be executed exactly once per iteration of each
1550      loop in the loop nest.  We only need to check dominance information
1551      against the outermost one in a perfect loop nest because a bb can't
1552      dominate outermost loop's latch without dominating inner loop's.  */
1553   basic_block bb_st = gimple_bb (DR_STMT (single_st));
1554   if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_st))
1555     return false;
1556 
1557   if (single_ld)
1558     {
1559       gimple *store = DR_STMT (single_st), *load = DR_STMT (single_ld);
1560       /* Direct aggregate copy or via an SSA name temporary.  */
1561       if (load != store
1562 	  && gimple_assign_lhs (load) != gimple_assign_rhs1 (store))
1563 	return false;
1564 
1565       /* Bail out if this is a bitfield memory reference.  */
1566       if (TREE_CODE (DR_REF (single_ld)) == COMPONENT_REF
1567 	  && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (single_ld), 1)))
1568 	return false;
1569 
1570       /* Load and store must be in the same loop nest.  */
1571       basic_block bb_ld = gimple_bb (DR_STMT (single_ld));
1572       if (bb_st->loop_father != bb_ld->loop_father)
1573 	return false;
1574 
1575       /* Data reference must be executed exactly once per iteration.
1576 	 Same as single_st, we only need to check against the outermost
1577 	 loop.  */
1578       if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb_ld))
1579 	return false;
1580 
1581       edge e = single_exit (bb_st->loop_father);
1582       bool dom_ld = dominated_by_p (CDI_DOMINATORS, e->src, bb_ld);
1583       bool dom_st = dominated_by_p (CDI_DOMINATORS, e->src, bb_st);
1584       if (dom_ld != dom_st)
1585 	return false;
1586     }
1587 
1588   *src_dr = single_ld;
1589   *dst_dr = single_st;
1590   return true;
1591 }
1592 
1593 /* Given data reference DR in LOOP_NEST, this function checks the enclosing
1594    loops from inner to outer to see if loop's step equals to access size at
1595    each level of loop.  Return 2 if we can prove this at all level loops;
1596    record access base and size in BASE and SIZE; save loop's step at each
1597    level of loop in STEPS if it is not null.  For example:
1598 
1599      int arr[100][100][100];
1600      for (i = 0; i < 100; i++)       ;steps[2] = 40000
1601        for (j = 100; j > 0; j--)     ;steps[1] = -400
1602 	 for (k = 0; k < 100; k++)   ;steps[0] = 4
1603 	   arr[i][j - 1][k] = 0;     ;base = &arr, size = 4000000
1604 
1605    Return 1 if we can prove the equality at the innermost loop, but not all
1606    level loops.  In this case, no information is recorded.
1607 
1608    Return 0 if no equality can be proven at any level loops.  */
1609 
1610 static int
1611 compute_access_range (loop_p loop_nest, data_reference_p dr, tree *base,
1612 		      tree *size, vec<tree> *steps = NULL)
1613 {
1614   location_t loc = gimple_location (DR_STMT (dr));
1615   basic_block bb = gimple_bb (DR_STMT (dr));
1616   class loop *loop = bb->loop_father;
1617   tree ref = DR_REF (dr);
1618   tree access_base = build_fold_addr_expr (ref);
1619   tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1620   int res = 0;
1621 
1622   do {
1623       tree scev_fn = analyze_scalar_evolution (loop, access_base);
1624       if (TREE_CODE (scev_fn) != POLYNOMIAL_CHREC)
1625 	return res;
1626 
1627       access_base = CHREC_LEFT (scev_fn);
1628       if (tree_contains_chrecs (access_base, NULL))
1629 	return res;
1630 
1631       tree scev_step = CHREC_RIGHT (scev_fn);
1632       /* Only support constant steps.  */
1633       if (TREE_CODE (scev_step) != INTEGER_CST)
1634 	return res;
1635 
1636       enum ev_direction access_dir = scev_direction (scev_fn);
1637       if (access_dir == EV_DIR_UNKNOWN)
1638 	return res;
1639 
1640       if (steps != NULL)
1641 	steps->safe_push (scev_step);
1642 
1643       scev_step = fold_convert_loc (loc, sizetype, scev_step);
1644       /* Compute absolute value of scev step.  */
1645       if (access_dir == EV_DIR_DECREASES)
1646 	scev_step = fold_build1_loc (loc, NEGATE_EXPR, sizetype, scev_step);
1647 
1648       /* At each level of loop, scev step must equal to access size.  In other
1649 	 words, DR must access consecutive memory between loop iterations.  */
1650       if (!operand_equal_p (scev_step, access_size, 0))
1651 	return res;
1652 
1653       /* Access stride can be computed for data reference at least for the
1654 	 innermost loop.  */
1655       res = 1;
1656 
1657       /* Compute DR's execution times in loop.  */
1658       tree niters = number_of_latch_executions (loop);
1659       niters = fold_convert_loc (loc, sizetype, niters);
1660       if (dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src, bb))
1661 	niters = size_binop_loc (loc, PLUS_EXPR, niters, size_one_node);
1662 
1663       /* Compute DR's overall access size in loop.  */
1664       access_size = fold_build2_loc (loc, MULT_EXPR, sizetype,
1665 				     niters, scev_step);
1666       /* Adjust base address in case of negative step.  */
1667       if (access_dir == EV_DIR_DECREASES)
1668 	{
1669 	  tree adj = fold_build2_loc (loc, MINUS_EXPR, sizetype,
1670 				      scev_step, access_size);
1671 	  access_base = fold_build_pointer_plus_loc (loc, access_base, adj);
1672 	}
1673   } while (loop != loop_nest && (loop = loop_outer (loop)) != NULL);
1674 
1675   *base = access_base;
1676   *size = access_size;
1677   /* Access stride can be computed for data reference at each level loop.  */
1678   return 2;
1679 }
1680 
1681 /* Allocate and return builtin struct.  Record information like DST_DR,
1682    SRC_DR, DST_BASE, SRC_BASE and SIZE in the allocated struct.  */
1683 
1684 static struct builtin_info *
1685 alloc_builtin (data_reference_p dst_dr, data_reference_p src_dr,
1686 	       tree dst_base, tree src_base, tree size)
1687 {
1688   struct builtin_info *builtin = XNEW (struct builtin_info);
1689   builtin->dst_dr = dst_dr;
1690   builtin->src_dr = src_dr;
1691   builtin->dst_base = dst_base;
1692   builtin->src_base = src_base;
1693   builtin->size = size;
1694   return builtin;
1695 }
1696 
1697 /* Given data reference DR in loop nest LOOP, classify if it forms builtin
1698    memset call.  */
1699 
1700 static void
1701 classify_builtin_st (loop_p loop, partition *partition, data_reference_p dr)
1702 {
1703   gimple *stmt = DR_STMT (dr);
1704   tree base, size, rhs = gimple_assign_rhs1 (stmt);
1705 
1706   if (const_with_all_bytes_same (rhs) == -1
1707       && (!INTEGRAL_TYPE_P (TREE_TYPE (rhs))
1708 	  || (TYPE_MODE (TREE_TYPE (rhs))
1709 	      != TYPE_MODE (unsigned_char_type_node))))
1710     return;
1711 
1712   if (TREE_CODE (rhs) == SSA_NAME
1713       && !SSA_NAME_IS_DEFAULT_DEF (rhs)
1714       && flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (rhs))))
1715     return;
1716 
1717   int res = compute_access_range (loop, dr, &base, &size);
1718   if (res == 0)
1719     return;
1720   if (res == 1)
1721     {
1722       partition->kind = PKIND_PARTIAL_MEMSET;
1723       return;
1724     }
1725 
1726   poly_uint64 base_offset;
1727   unsigned HOST_WIDE_INT const_base_offset;
1728   tree base_base = strip_offset (base, &base_offset);
1729   if (!base_offset.is_constant (&const_base_offset))
1730     return;
1731 
1732   struct builtin_info *builtin;
1733   builtin = alloc_builtin (dr, NULL, base, NULL_TREE, size);
1734   builtin->dst_base_base = base_base;
1735   builtin->dst_base_offset = const_base_offset;
1736   partition->builtin = builtin;
1737   partition->kind = PKIND_MEMSET;
1738 }
1739 
1740 /* Given data references DST_DR and SRC_DR in loop nest LOOP and RDG, classify
1741    if it forms builtin memcpy or memmove call.  */
1742 
1743 void
1744 loop_distribution::classify_builtin_ldst (loop_p loop, struct graph *rdg,
1745 					  partition *partition,
1746 					  data_reference_p dst_dr,
1747 					  data_reference_p src_dr)
1748 {
1749   tree base, size, src_base, src_size;
1750   auto_vec<tree> dst_steps, src_steps;
1751 
1752   /* Compute access range of both load and store.  */
1753   int res = compute_access_range (loop, dst_dr, &base, &size, &dst_steps);
1754   if (res != 2)
1755     return;
1756   res = compute_access_range (loop, src_dr, &src_base, &src_size, &src_steps);
1757   if (res != 2)
1758     return;
1759 
1760   /* They much have the same access size.  */
1761   if (!operand_equal_p (size, src_size, 0))
1762     return;
1763 
1764   /* Load and store in loop nest must access memory in the same way, i.e,
1765      their must have the same steps in each loop of the nest.  */
1766   if (dst_steps.length () != src_steps.length ())
1767     return;
1768   for (unsigned i = 0; i < dst_steps.length (); ++i)
1769     if (!operand_equal_p (dst_steps[i], src_steps[i], 0))
1770       return;
1771 
1772   /* Now check that if there is a dependence.  */
1773   ddr_p ddr = get_data_dependence (rdg, src_dr, dst_dr);
1774 
1775   /* Classify as memmove if no dependence between load and store.  */
1776   if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1777     {
1778       partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1779       partition->kind = PKIND_MEMMOVE;
1780       return;
1781     }
1782 
1783   /* Can't do memmove in case of unknown dependence or dependence without
1784      classical distance vector.  */
1785   if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
1786       || DDR_NUM_DIST_VECTS (ddr) == 0)
1787     return;
1788 
1789   unsigned i;
1790   lambda_vector dist_v;
1791   int num_lev = (DDR_LOOP_NEST (ddr)).length ();
1792   FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1793     {
1794       unsigned dep_lev = dependence_level (dist_v, num_lev);
1795       /* Can't do memmove if load depends on store.  */
1796       if (dep_lev > 0 && dist_v[dep_lev - 1] > 0 && !DDR_REVERSED_P (ddr))
1797 	return;
1798     }
1799 
1800   partition->builtin = alloc_builtin (dst_dr, src_dr, base, src_base, size);
1801   partition->kind = PKIND_MEMMOVE;
1802   return;
1803 }
1804 
1805 bool
1806 loop_distribution::classify_partition (loop_p loop,
1807 				       struct graph *rdg, partition *partition,
1808 				       bitmap stmt_in_all_partitions)
1809 {
1810   bitmap_iterator bi;
1811   unsigned i;
1812   data_reference_p single_ld = NULL, single_st = NULL;
1813   bool volatiles_p = false, has_reduction = false;
1814 
1815   EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, bi)
1816     {
1817       gimple *stmt = RDG_STMT (rdg, i);
1818 
1819       if (gimple_has_volatile_ops (stmt))
1820 	volatiles_p = true;
1821 
1822       /* If the stmt is not included by all partitions and there is uses
1823 	 outside of the loop, then mark the partition as reduction.  */
1824       if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
1825 	{
1826 	  /* Due to limitation in the transform phase we have to fuse all
1827 	     reduction partitions.  As a result, this could cancel valid
1828 	     loop distribution especially for loop that induction variable
1829 	     is used outside of loop.  To workaround this issue, we skip
1830 	     marking partition as reudction if the reduction stmt belongs
1831 	     to all partitions.  In such case, reduction will be computed
1832 	     correctly no matter how partitions are fused/distributed.  */
1833 	  if (!bitmap_bit_p (stmt_in_all_partitions, i))
1834 	    partition->reduction_p = true;
1835 	  else
1836 	    has_reduction = true;
1837 	}
1838     }
1839 
1840   /* Simple workaround to prevent classifying the partition as builtin
1841      if it contains any use outside of loop.  For the case where all
1842      partitions have the reduction this simple workaround is delayed
1843      to only affect the last partition.  */
1844   if (partition->reduction_p)
1845      return has_reduction;
1846 
1847   /* Perform general partition disqualification for builtins.  */
1848   if (volatiles_p
1849       || !flag_tree_loop_distribute_patterns)
1850     return has_reduction;
1851 
1852   /* Find single load/store data references for builtin partition.  */
1853   if (!find_single_drs (loop, rdg, partition, &single_st, &single_ld))
1854     return has_reduction;
1855 
1856   partition->loc = gimple_location (DR_STMT (single_st));
1857 
1858   /* Classify the builtin kind.  */
1859   if (single_ld == NULL)
1860     classify_builtin_st (loop, partition, single_st);
1861   else
1862     classify_builtin_ldst (loop, rdg, partition, single_st, single_ld);
1863   return has_reduction;
1864 }
1865 
1866 bool
1867 loop_distribution::share_memory_accesses (struct graph *rdg,
1868 		       partition *partition1, partition *partition2)
1869 {
1870   unsigned i, j;
1871   bitmap_iterator bi, bj;
1872   data_reference_p dr1, dr2;
1873 
1874   /* First check whether in the intersection of the two partitions are
1875      any loads or stores.  Common loads are the situation that happens
1876      most often.  */
1877   EXECUTE_IF_AND_IN_BITMAP (partition1->stmts, partition2->stmts, 0, i, bi)
1878     if (RDG_MEM_WRITE_STMT (rdg, i)
1879 	|| RDG_MEM_READS_STMT (rdg, i))
1880       return true;
1881 
1882   /* Then check whether the two partitions access the same memory object.  */
1883   EXECUTE_IF_SET_IN_BITMAP (partition1->datarefs, 0, i, bi)
1884     {
1885       dr1 = datarefs_vec[i];
1886 
1887       if (!DR_BASE_ADDRESS (dr1)
1888 	  || !DR_OFFSET (dr1) || !DR_INIT (dr1) || !DR_STEP (dr1))
1889 	continue;
1890 
1891       EXECUTE_IF_SET_IN_BITMAP (partition2->datarefs, 0, j, bj)
1892 	{
1893 	  dr2 = datarefs_vec[j];
1894 
1895 	  if (!DR_BASE_ADDRESS (dr2)
1896 	      || !DR_OFFSET (dr2) || !DR_INIT (dr2) || !DR_STEP (dr2))
1897 	    continue;
1898 
1899 	  if (operand_equal_p (DR_BASE_ADDRESS (dr1), DR_BASE_ADDRESS (dr2), 0)
1900 	      && operand_equal_p (DR_OFFSET (dr1), DR_OFFSET (dr2), 0)
1901 	      && operand_equal_p (DR_INIT (dr1), DR_INIT (dr2), 0)
1902 	      && operand_equal_p (DR_STEP (dr1), DR_STEP (dr2), 0))
1903 	    return true;
1904 	}
1905     }
1906 
1907   return false;
1908 }
1909 
1910 /* For each seed statement in STARTING_STMTS, this function builds
1911    partition for it by adding depended statements according to RDG.
1912    All partitions are recorded in PARTITIONS.  */
1913 
1914 void
1915 loop_distribution::rdg_build_partitions (struct graph *rdg,
1916 					 vec<gimple *> starting_stmts,
1917 					 vec<partition *> *partitions)
1918 {
1919   auto_bitmap processed;
1920   int i;
1921   gimple *stmt;
1922 
1923   FOR_EACH_VEC_ELT (starting_stmts, i, stmt)
1924     {
1925       int v = rdg_vertex_for_stmt (rdg, stmt);
1926 
1927       if (dump_file && (dump_flags & TDF_DETAILS))
1928 	fprintf (dump_file,
1929 		 "ldist asked to generate code for vertex %d\n", v);
1930 
1931       /* If the vertex is already contained in another partition so
1932          is the partition rooted at it.  */
1933       if (bitmap_bit_p (processed, v))
1934 	continue;
1935 
1936       partition *partition = build_rdg_partition_for_vertex (rdg, v);
1937       bitmap_ior_into (processed, partition->stmts);
1938 
1939       if (dump_file && (dump_flags & TDF_DETAILS))
1940 	{
1941 	  fprintf (dump_file, "ldist creates useful %s partition:\n",
1942 		   partition->type == PTYPE_PARALLEL ? "parallel" : "sequent");
1943 	  bitmap_print (dump_file, partition->stmts, "  ", "\n");
1944 	}
1945 
1946       partitions->safe_push (partition);
1947     }
1948 
1949   /* All vertices should have been assigned to at least one partition now,
1950      other than vertices belonging to dead code.  */
1951 }
1952 
1953 /* Dump to FILE the PARTITIONS.  */
1954 
1955 static void
1956 dump_rdg_partitions (FILE *file, vec<partition *> partitions)
1957 {
1958   int i;
1959   partition *partition;
1960 
1961   FOR_EACH_VEC_ELT (partitions, i, partition)
1962     debug_bitmap_file (file, partition->stmts);
1963 }
1964 
1965 /* Debug PARTITIONS.  */
1966 extern void debug_rdg_partitions (vec<partition *> );
1967 
1968 DEBUG_FUNCTION void
1969 debug_rdg_partitions (vec<partition *> partitions)
1970 {
1971   dump_rdg_partitions (stderr, partitions);
1972 }
1973 
1974 /* Returns the number of read and write operations in the RDG.  */
1975 
1976 static int
1977 number_of_rw_in_rdg (struct graph *rdg)
1978 {
1979   int i, res = 0;
1980 
1981   for (i = 0; i < rdg->n_vertices; i++)
1982     {
1983       if (RDG_MEM_WRITE_STMT (rdg, i))
1984 	++res;
1985 
1986       if (RDG_MEM_READS_STMT (rdg, i))
1987 	++res;
1988     }
1989 
1990   return res;
1991 }
1992 
1993 /* Returns the number of read and write operations in a PARTITION of
1994    the RDG.  */
1995 
1996 static int
1997 number_of_rw_in_partition (struct graph *rdg, partition *partition)
1998 {
1999   int res = 0;
2000   unsigned i;
2001   bitmap_iterator ii;
2002 
2003   EXECUTE_IF_SET_IN_BITMAP (partition->stmts, 0, i, ii)
2004     {
2005       if (RDG_MEM_WRITE_STMT (rdg, i))
2006 	++res;
2007 
2008       if (RDG_MEM_READS_STMT (rdg, i))
2009 	++res;
2010     }
2011 
2012   return res;
2013 }
2014 
2015 /* Returns true when one of the PARTITIONS contains all the read or
2016    write operations of RDG.  */
2017 
2018 static bool
2019 partition_contains_all_rw (struct graph *rdg,
2020 			   vec<partition *> partitions)
2021 {
2022   int i;
2023   partition *partition;
2024   int nrw = number_of_rw_in_rdg (rdg);
2025 
2026   FOR_EACH_VEC_ELT (partitions, i, partition)
2027     if (nrw == number_of_rw_in_partition (rdg, partition))
2028       return true;
2029 
2030   return false;
2031 }
2032 
2033 int
2034 loop_distribution::pg_add_dependence_edges (struct graph *rdg, int dir,
2035 			 bitmap drs1, bitmap drs2, vec<ddr_p> *alias_ddrs)
2036 {
2037   unsigned i, j;
2038   bitmap_iterator bi, bj;
2039   data_reference_p dr1, dr2, saved_dr1;
2040 
2041   /* dependence direction - 0 is no dependence, -1 is back,
2042      1 is forth, 2 is both (we can stop then, merging will occur).  */
2043   EXECUTE_IF_SET_IN_BITMAP (drs1, 0, i, bi)
2044     {
2045       dr1 = datarefs_vec[i];
2046 
2047       EXECUTE_IF_SET_IN_BITMAP (drs2, 0, j, bj)
2048 	{
2049 	  int res, this_dir = 1;
2050 	  ddr_p ddr;
2051 
2052 	  dr2 = datarefs_vec[j];
2053 
2054 	  /* Skip all <read, read> data dependence.  */
2055 	  if (DR_IS_READ (dr1) && DR_IS_READ (dr2))
2056 	    continue;
2057 
2058 	  saved_dr1 = dr1;
2059 	  /* Re-shuffle data-refs to be in topological order.  */
2060 	  if (rdg_vertex_for_stmt (rdg, DR_STMT (dr1))
2061 	      > rdg_vertex_for_stmt (rdg, DR_STMT (dr2)))
2062 	    {
2063 	      std::swap (dr1, dr2);
2064 	      this_dir = -this_dir;
2065 	    }
2066 	  ddr = get_data_dependence (rdg, dr1, dr2);
2067 	  if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2068 	    {
2069 	      this_dir = 0;
2070 	      res = data_ref_compare_tree (DR_BASE_ADDRESS (dr1),
2071 					   DR_BASE_ADDRESS (dr2));
2072 	      /* Be conservative.  If data references are not well analyzed,
2073 		 or the two data references have the same base address and
2074 		 offset, add dependence and consider it alias to each other.
2075 		 In other words, the dependence cannot be resolved by
2076 		 runtime alias check.  */
2077 	      if (!DR_BASE_ADDRESS (dr1) || !DR_BASE_ADDRESS (dr2)
2078 		  || !DR_OFFSET (dr1) || !DR_OFFSET (dr2)
2079 		  || !DR_INIT (dr1) || !DR_INIT (dr2)
2080 		  || !DR_STEP (dr1) || !tree_fits_uhwi_p (DR_STEP (dr1))
2081 		  || !DR_STEP (dr2) || !tree_fits_uhwi_p (DR_STEP (dr2))
2082 		  || res == 0)
2083 		this_dir = 2;
2084 	      /* Data dependence could be resolved by runtime alias check,
2085 		 record it in ALIAS_DDRS.  */
2086 	      else if (alias_ddrs != NULL)
2087 		alias_ddrs->safe_push (ddr);
2088 	      /* Or simply ignore it.  */
2089 	    }
2090 	  else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
2091 	    {
2092 	      if (DDR_REVERSED_P (ddr))
2093 		this_dir = -this_dir;
2094 
2095 	      /* Known dependences can still be unordered througout the
2096 		 iteration space, see gcc.dg/tree-ssa/ldist-16.c and
2097 		 gcc.dg/tree-ssa/pr94969.c.  */
2098 	      if (DDR_NUM_DIST_VECTS (ddr) != 1)
2099 		this_dir = 2;
2100 	      /* If the overlap is exact preserve stmt order.  */
2101 	      else if (lambda_vector_zerop (DDR_DIST_VECT (ddr, 0),
2102 					    DDR_NB_LOOPS (ddr)))
2103 		;
2104 	      /* Else as the distance vector is lexicographic positive swap
2105 		 the dependence direction.  */
2106 	      else
2107 		this_dir = -this_dir;
2108 	    }
2109 	  else
2110 	    this_dir = 0;
2111 	  if (this_dir == 2)
2112 	    return 2;
2113 	  else if (dir == 0)
2114 	    dir = this_dir;
2115 	  else if (this_dir != 0 && dir != this_dir)
2116 	    return 2;
2117 	  /* Shuffle "back" dr1.  */
2118 	  dr1 = saved_dr1;
2119 	}
2120     }
2121   return dir;
2122 }
2123 
2124 /* Compare postorder number of the partition graph vertices V1 and V2.  */
2125 
2126 static int
2127 pgcmp (const void *v1_, const void *v2_)
2128 {
2129   const vertex *v1 = (const vertex *)v1_;
2130   const vertex *v2 = (const vertex *)v2_;
2131   return v2->post - v1->post;
2132 }
2133 
2134 /* Data attached to vertices of partition dependence graph.  */
2135 struct pg_vdata
2136 {
2137   /* ID of the corresponding partition.  */
2138   int id;
2139   /* The partition.  */
2140   struct partition *partition;
2141 };
2142 
2143 /* Data attached to edges of partition dependence graph.  */
2144 struct pg_edata
2145 {
2146   /* If the dependence edge can be resolved by runtime alias check,
2147      this vector contains data dependence relations for runtime alias
2148      check.  On the other hand, if the dependence edge is introduced
2149      because of compilation time known data dependence, this vector
2150      contains nothing.  */
2151   vec<ddr_p> alias_ddrs;
2152 };
2153 
2154 /* Callback data for traversing edges in graph.  */
2155 struct pg_edge_callback_data
2156 {
2157   /* Bitmap contains strong connected components should be merged.  */
2158   bitmap sccs_to_merge;
2159   /* Array constains component information for all vertices.  */
2160   int *vertices_component;
2161   /* Array constains postorder information for all vertices.  */
2162   int *vertices_post;
2163   /* Vector to record all data dependence relations which are needed
2164      to break strong connected components by runtime alias checks.  */
2165   vec<ddr_p> *alias_ddrs;
2166 };
2167 
2168 /* Initialize vertice's data for partition dependence graph PG with
2169    PARTITIONS.  */
2170 
2171 static void
2172 init_partition_graph_vertices (struct graph *pg,
2173 			       vec<struct partition *> *partitions)
2174 {
2175   int i;
2176   partition *partition;
2177   struct pg_vdata *data;
2178 
2179   for (i = 0; partitions->iterate (i, &partition); ++i)
2180     {
2181       data = new pg_vdata;
2182       pg->vertices[i].data = data;
2183       data->id = i;
2184       data->partition = partition;
2185     }
2186 }
2187 
2188 /* Add edge <I, J> to partition dependence graph PG.  Attach vector of data
2189    dependence relations to the EDGE if DDRS isn't NULL.  */
2190 
2191 static void
2192 add_partition_graph_edge (struct graph *pg, int i, int j, vec<ddr_p> *ddrs)
2193 {
2194   struct graph_edge *e = add_edge (pg, i, j);
2195 
2196   /* If the edge is attached with data dependence relations, it means this
2197      dependence edge can be resolved by runtime alias checks.  */
2198   if (ddrs != NULL)
2199     {
2200       struct pg_edata *data = new pg_edata;
2201 
2202       gcc_assert (ddrs->length () > 0);
2203       e->data = data;
2204       data->alias_ddrs = vNULL;
2205       data->alias_ddrs.safe_splice (*ddrs);
2206     }
2207 }
2208 
2209 /* Callback function for graph travesal algorithm.  It returns true
2210    if edge E should skipped when traversing the graph.  */
2211 
2212 static bool
2213 pg_skip_alias_edge (struct graph_edge *e)
2214 {
2215   struct pg_edata *data = (struct pg_edata *)e->data;
2216   return (data != NULL && data->alias_ddrs.length () > 0);
2217 }
2218 
2219 /* Callback function freeing data attached to edge E of graph.  */
2220 
2221 static void
2222 free_partition_graph_edata_cb (struct graph *, struct graph_edge *e, void *)
2223 {
2224   if (e->data != NULL)
2225     {
2226       struct pg_edata *data = (struct pg_edata *)e->data;
2227       data->alias_ddrs.release ();
2228       delete data;
2229     }
2230 }
2231 
2232 /* Free data attached to vertice of partition dependence graph PG.  */
2233 
2234 static void
2235 free_partition_graph_vdata (struct graph *pg)
2236 {
2237   int i;
2238   struct pg_vdata *data;
2239 
2240   for (i = 0; i < pg->n_vertices; ++i)
2241     {
2242       data = (struct pg_vdata *)pg->vertices[i].data;
2243       delete data;
2244     }
2245 }
2246 
2247 /* Build and return partition dependence graph for PARTITIONS.  RDG is
2248    reduced dependence graph for the loop to be distributed.  If IGNORE_ALIAS_P
2249    is true, data dependence caused by possible alias between references
2250    is ignored, as if it doesn't exist at all; otherwise all depdendences
2251    are considered.  */
2252 
2253 struct graph *
2254 loop_distribution::build_partition_graph (struct graph *rdg,
2255 					  vec<struct partition *> *partitions,
2256 					  bool ignore_alias_p)
2257 {
2258   int i, j;
2259   struct partition *partition1, *partition2;
2260   graph *pg = new_graph (partitions->length ());
2261   auto_vec<ddr_p> alias_ddrs, *alias_ddrs_p;
2262 
2263   alias_ddrs_p = ignore_alias_p ? NULL : &alias_ddrs;
2264 
2265   init_partition_graph_vertices (pg, partitions);
2266 
2267   for (i = 0; partitions->iterate (i, &partition1); ++i)
2268     {
2269       for (j = i + 1; partitions->iterate (j, &partition2); ++j)
2270 	{
2271 	  /* dependence direction - 0 is no dependence, -1 is back,
2272 	     1 is forth, 2 is both (we can stop then, merging will occur).  */
2273 	  int dir = 0;
2274 
2275 	  /* If the first partition has reduction, add back edge; if the
2276 	     second partition has reduction, add forth edge.  This makes
2277 	     sure that reduction partition will be sorted as the last one.  */
2278 	  if (partition_reduction_p (partition1))
2279 	    dir = -1;
2280 	  else if (partition_reduction_p (partition2))
2281 	    dir = 1;
2282 
2283 	  /* Cleanup the temporary vector.  */
2284 	  alias_ddrs.truncate (0);
2285 
2286 	  dir = pg_add_dependence_edges (rdg, dir, partition1->datarefs,
2287 					 partition2->datarefs, alias_ddrs_p);
2288 
2289 	  /* Add edge to partition graph if there exists dependence.  There
2290 	     are two types of edges.  One type edge is caused by compilation
2291 	     time known dependence, this type cannot be resolved by runtime
2292 	     alias check.  The other type can be resolved by runtime alias
2293 	     check.  */
2294 	  if (dir == 1 || dir == 2
2295 	      || alias_ddrs.length () > 0)
2296 	    {
2297 	      /* Attach data dependence relations to edge that can be resolved
2298 		 by runtime alias check.  */
2299 	      bool alias_edge_p = (dir != 1 && dir != 2);
2300 	      add_partition_graph_edge (pg, i, j,
2301 					(alias_edge_p) ? &alias_ddrs : NULL);
2302 	    }
2303 	  if (dir == -1 || dir == 2
2304 	      || alias_ddrs.length () > 0)
2305 	    {
2306 	      /* Attach data dependence relations to edge that can be resolved
2307 		 by runtime alias check.  */
2308 	      bool alias_edge_p = (dir != -1 && dir != 2);
2309 	      add_partition_graph_edge (pg, j, i,
2310 					(alias_edge_p) ? &alias_ddrs : NULL);
2311 	    }
2312 	}
2313     }
2314   return pg;
2315 }
2316 
2317 /* Sort partitions in PG in descending post order and store them in
2318    PARTITIONS.  */
2319 
2320 static void
2321 sort_partitions_by_post_order (struct graph *pg,
2322 			       vec<struct partition *> *partitions)
2323 {
2324   int i;
2325   struct pg_vdata *data;
2326 
2327   /* Now order the remaining nodes in descending postorder.  */
2328   qsort (pg->vertices, pg->n_vertices, sizeof (vertex), pgcmp);
2329   partitions->truncate (0);
2330   for (i = 0; i < pg->n_vertices; ++i)
2331     {
2332       data = (struct pg_vdata *)pg->vertices[i].data;
2333       if (data->partition)
2334 	partitions->safe_push (data->partition);
2335     }
2336 }
2337 
2338 void
2339 loop_distribution::merge_dep_scc_partitions (struct graph *rdg,
2340 					     vec<struct partition *> *partitions,
2341 					     bool ignore_alias_p)
2342 {
2343   struct partition *partition1, *partition2;
2344   struct pg_vdata *data;
2345   graph *pg = build_partition_graph (rdg, partitions, ignore_alias_p);
2346   int i, j, num_sccs = graphds_scc (pg, NULL);
2347 
2348   /* Strong connected compoenent means dependence cycle, we cannot distribute
2349      them.  So fuse them together.  */
2350   if ((unsigned) num_sccs < partitions->length ())
2351     {
2352       for (i = 0; i < num_sccs; ++i)
2353 	{
2354 	  for (j = 0; partitions->iterate (j, &partition1); ++j)
2355 	    if (pg->vertices[j].component == i)
2356 	      break;
2357 	  for (j = j + 1; partitions->iterate (j, &partition2); ++j)
2358 	    if (pg->vertices[j].component == i)
2359 	      {
2360 		partition_merge_into (NULL, partition1,
2361 				      partition2, FUSE_SAME_SCC);
2362 		partition1->type = PTYPE_SEQUENTIAL;
2363 		(*partitions)[j] = NULL;
2364 		partition_free (partition2);
2365 		data = (struct pg_vdata *)pg->vertices[j].data;
2366 		data->partition = NULL;
2367 	      }
2368 	}
2369     }
2370 
2371   sort_partitions_by_post_order (pg, partitions);
2372   gcc_assert (partitions->length () == (unsigned)num_sccs);
2373   free_partition_graph_vdata (pg);
2374   free_graph (pg);
2375 }
2376 
2377 /* Callback function for traversing edge E in graph G.  DATA is private
2378    callback data.  */
2379 
2380 static void
2381 pg_collect_alias_ddrs (struct graph *g, struct graph_edge *e, void *data)
2382 {
2383   int i, j, component;
2384   struct pg_edge_callback_data *cbdata;
2385   struct pg_edata *edata = (struct pg_edata *) e->data;
2386 
2387   /* If the edge doesn't have attached data dependence, it represents
2388      compilation time known dependences.  This type dependence cannot
2389      be resolved by runtime alias check.  */
2390   if (edata == NULL || edata->alias_ddrs.length () == 0)
2391     return;
2392 
2393   cbdata = (struct pg_edge_callback_data *) data;
2394   i = e->src;
2395   j = e->dest;
2396   component = cbdata->vertices_component[i];
2397   /* Vertices are topologically sorted according to compilation time
2398      known dependences, so we can break strong connected components
2399      by removing edges of the opposite direction, i.e, edges pointing
2400      from vertice with smaller post number to vertice with bigger post
2401      number.  */
2402   if (g->vertices[i].post < g->vertices[j].post
2403       /* We only need to remove edges connecting vertices in the same
2404 	 strong connected component to break it.  */
2405       && component == cbdata->vertices_component[j]
2406       /* Check if we want to break the strong connected component or not.  */
2407       && !bitmap_bit_p (cbdata->sccs_to_merge, component))
2408     cbdata->alias_ddrs->safe_splice (edata->alias_ddrs);
2409 }
2410 
2411 /* This is the main function breaking strong conected components in
2412    PARTITIONS giving reduced depdendence graph RDG.  Store data dependence
2413    relations for runtime alias check in ALIAS_DDRS.  */
2414 void
2415 loop_distribution::break_alias_scc_partitions (struct graph *rdg,
2416 					       vec<struct partition *> *partitions,
2417 					       vec<ddr_p> *alias_ddrs)
2418 {
2419   int i, j, k, num_sccs, num_sccs_no_alias = 0;
2420   /* Build partition dependence graph.  */
2421   graph *pg = build_partition_graph (rdg, partitions, false);
2422 
2423   alias_ddrs->truncate (0);
2424   /* Find strong connected components in the graph, with all dependence edges
2425      considered.  */
2426   num_sccs = graphds_scc (pg, NULL);
2427   /* All SCCs now can be broken by runtime alias checks because SCCs caused by
2428      compilation time known dependences are merged before this function.  */
2429   if ((unsigned) num_sccs < partitions->length ())
2430     {
2431       struct pg_edge_callback_data cbdata;
2432       auto_bitmap sccs_to_merge;
2433       auto_vec<enum partition_type> scc_types;
2434       struct partition *partition, *first;
2435 
2436       /* If all partitions in a SCC have the same type, we can simply merge the
2437 	 SCC.  This loop finds out such SCCS and record them in bitmap.  */
2438       bitmap_set_range (sccs_to_merge, 0, (unsigned) num_sccs);
2439       for (i = 0; i < num_sccs; ++i)
2440 	{
2441 	  for (j = 0; partitions->iterate (j, &first); ++j)
2442 	    if (pg->vertices[j].component == i)
2443 	      break;
2444 
2445 	  bool same_type = true, all_builtins = partition_builtin_p (first);
2446 	  for (++j; partitions->iterate (j, &partition); ++j)
2447 	    {
2448 	      if (pg->vertices[j].component != i)
2449 		continue;
2450 
2451 	      if (first->type != partition->type)
2452 		{
2453 		  same_type = false;
2454 		  break;
2455 		}
2456 	      all_builtins &= partition_builtin_p (partition);
2457 	    }
2458 	  /* Merge SCC if all partitions in SCC have the same type, though the
2459 	     result partition is sequential, because vectorizer can do better
2460 	     runtime alias check.  One expecption is all partitions in SCC are
2461 	     builtins.  */
2462 	  if (!same_type || all_builtins)
2463 	    bitmap_clear_bit (sccs_to_merge, i);
2464 	}
2465 
2466       /* Initialize callback data for traversing.  */
2467       cbdata.sccs_to_merge = sccs_to_merge;
2468       cbdata.alias_ddrs = alias_ddrs;
2469       cbdata.vertices_component = XNEWVEC (int, pg->n_vertices);
2470       cbdata.vertices_post = XNEWVEC (int, pg->n_vertices);
2471       /* Record the component information which will be corrupted by next
2472 	 graph scc finding call.  */
2473       for (i = 0; i < pg->n_vertices; ++i)
2474 	cbdata.vertices_component[i] = pg->vertices[i].component;
2475 
2476       /* Collect data dependences for runtime alias checks to break SCCs.  */
2477       if (bitmap_count_bits (sccs_to_merge) != (unsigned) num_sccs)
2478 	{
2479 	  /* Record the postorder information which will be corrupted by next
2480 	     graph SCC finding call.  */
2481 	  for (i = 0; i < pg->n_vertices; ++i)
2482 	    cbdata.vertices_post[i] = pg->vertices[i].post;
2483 
2484 	  /* Run SCC finding algorithm again, with alias dependence edges
2485 	     skipped.  This is to topologically sort partitions according to
2486 	     compilation time known dependence.  Note the topological order
2487 	     is stored in the form of pg's post order number.  */
2488 	  num_sccs_no_alias = graphds_scc (pg, NULL, pg_skip_alias_edge);
2489 	  gcc_assert (partitions->length () == (unsigned) num_sccs_no_alias);
2490 	  /* With topological order, we can construct two subgraphs L and R.
2491 	     L contains edge <x, y> where x < y in terms of post order, while
2492 	     R contains edge <x, y> where x > y.  Edges for compilation time
2493 	     known dependence all fall in R, so we break SCCs by removing all
2494 	     (alias) edges of in subgraph L.  */
2495 	  for_each_edge (pg, pg_collect_alias_ddrs, &cbdata);
2496 	}
2497 
2498       /* For SCC that doesn't need to be broken, merge it.  */
2499       for (i = 0; i < num_sccs; ++i)
2500 	{
2501 	  if (!bitmap_bit_p (sccs_to_merge, i))
2502 	    continue;
2503 
2504 	  for (j = 0; partitions->iterate (j, &first); ++j)
2505 	    if (cbdata.vertices_component[j] == i)
2506 	      break;
2507 	  for (k = j + 1; partitions->iterate (k, &partition); ++k)
2508 	    {
2509 	      struct pg_vdata *data;
2510 
2511 	      if (cbdata.vertices_component[k] != i)
2512 		continue;
2513 
2514 	      partition_merge_into (NULL, first, partition, FUSE_SAME_SCC);
2515 	      (*partitions)[k] = NULL;
2516 	      partition_free (partition);
2517 	      data = (struct pg_vdata *)pg->vertices[k].data;
2518 	      gcc_assert (data->id == k);
2519 	      data->partition = NULL;
2520 	      /* The result partition of merged SCC must be sequential.  */
2521 	      first->type = PTYPE_SEQUENTIAL;
2522 	    }
2523 	}
2524       /* Restore the postorder information if it's corrupted in finding SCC
2525 	 with alias dependence edges skipped.  If reduction partition's SCC is
2526 	 broken by runtime alias checks, we force a negative post order to it
2527 	 making sure it will be scheduled in the last.  */
2528       if (num_sccs_no_alias > 0)
2529 	{
2530 	  j = -1;
2531 	  for (i = 0; i < pg->n_vertices; ++i)
2532 	    {
2533 	      pg->vertices[i].post = cbdata.vertices_post[i];
2534 	      struct pg_vdata *data = (struct pg_vdata *)pg->vertices[i].data;
2535 	      if (data->partition && partition_reduction_p (data->partition))
2536 		{
2537 		  gcc_assert (j == -1);
2538 		  j = i;
2539 		}
2540 	    }
2541 	  if (j >= 0)
2542 	    pg->vertices[j].post = -1;
2543 	}
2544 
2545       free (cbdata.vertices_component);
2546       free (cbdata.vertices_post);
2547     }
2548 
2549   sort_partitions_by_post_order (pg, partitions);
2550   free_partition_graph_vdata (pg);
2551   for_each_edge (pg, free_partition_graph_edata_cb, NULL);
2552   free_graph (pg);
2553 
2554   if (dump_file && (dump_flags & TDF_DETAILS))
2555     {
2556       fprintf (dump_file, "Possible alias data dependence to break:\n");
2557       dump_data_dependence_relations (dump_file, *alias_ddrs);
2558     }
2559 }
2560 
2561 /* Compute and return an expression whose value is the segment length which
2562    will be accessed by DR in NITERS iterations.  */
2563 
2564 static tree
2565 data_ref_segment_size (struct data_reference *dr, tree niters)
2566 {
2567   niters = size_binop (MINUS_EXPR,
2568 		       fold_convert (sizetype, niters),
2569 		       size_one_node);
2570   return size_binop (MULT_EXPR,
2571 		     fold_convert (sizetype, DR_STEP (dr)),
2572 		     fold_convert (sizetype, niters));
2573 }
2574 
2575 /* Return true if LOOP's latch is dominated by statement for data reference
2576    DR.  */
2577 
2578 static inline bool
2579 latch_dominated_by_data_ref (class loop *loop, data_reference *dr)
2580 {
2581   return dominated_by_p (CDI_DOMINATORS, single_exit (loop)->src,
2582 			 gimple_bb (DR_STMT (dr)));
2583 }
2584 
2585 /* Compute alias check pairs and store them in COMP_ALIAS_PAIRS for LOOP's
2586    data dependence relations ALIAS_DDRS.  */
2587 
2588 static void
2589 compute_alias_check_pairs (class loop *loop, vec<ddr_p> *alias_ddrs,
2590 			   vec<dr_with_seg_len_pair_t> *comp_alias_pairs)
2591 {
2592   unsigned int i;
2593   unsigned HOST_WIDE_INT factor = 1;
2594   tree niters_plus_one, niters = number_of_latch_executions (loop);
2595 
2596   gcc_assert (niters != NULL_TREE && niters != chrec_dont_know);
2597   niters = fold_convert (sizetype, niters);
2598   niters_plus_one = size_binop (PLUS_EXPR, niters, size_one_node);
2599 
2600   if (dump_file && (dump_flags & TDF_DETAILS))
2601     fprintf (dump_file, "Creating alias check pairs:\n");
2602 
2603   /* Iterate all data dependence relations and compute alias check pairs.  */
2604   for (i = 0; i < alias_ddrs->length (); i++)
2605     {
2606       ddr_p ddr = (*alias_ddrs)[i];
2607       struct data_reference *dr_a = DDR_A (ddr);
2608       struct data_reference *dr_b = DDR_B (ddr);
2609       tree seg_length_a, seg_length_b;
2610 
2611       if (latch_dominated_by_data_ref (loop, dr_a))
2612 	seg_length_a = data_ref_segment_size (dr_a, niters_plus_one);
2613       else
2614 	seg_length_a = data_ref_segment_size (dr_a, niters);
2615 
2616       if (latch_dominated_by_data_ref (loop, dr_b))
2617 	seg_length_b = data_ref_segment_size (dr_b, niters_plus_one);
2618       else
2619 	seg_length_b = data_ref_segment_size (dr_b, niters);
2620 
2621       unsigned HOST_WIDE_INT access_size_a
2622 	= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a))));
2623       unsigned HOST_WIDE_INT access_size_b
2624 	= tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b))));
2625       unsigned int align_a = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_a)));
2626       unsigned int align_b = TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_b)));
2627 
2628       dr_with_seg_len_pair_t dr_with_seg_len_pair
2629 	(dr_with_seg_len (dr_a, seg_length_a, access_size_a, align_a),
2630 	 dr_with_seg_len (dr_b, seg_length_b, access_size_b, align_b),
2631 	 /* ??? Would WELL_ORDERED be safe?  */
2632 	 dr_with_seg_len_pair_t::REORDERED);
2633 
2634       comp_alias_pairs->safe_push (dr_with_seg_len_pair);
2635     }
2636 
2637   if (tree_fits_uhwi_p (niters))
2638     factor = tree_to_uhwi (niters);
2639 
2640   /* Prune alias check pairs.  */
2641   prune_runtime_alias_test_list (comp_alias_pairs, factor);
2642   if (dump_file && (dump_flags & TDF_DETAILS))
2643     fprintf (dump_file,
2644 	     "Improved number of alias checks from %d to %d\n",
2645 	     alias_ddrs->length (), comp_alias_pairs->length ());
2646 }
2647 
2648 /* Given data dependence relations in ALIAS_DDRS, generate runtime alias
2649    checks and version LOOP under condition of these runtime alias checks.  */
2650 
2651 static void
2652 version_loop_by_alias_check (vec<struct partition *> *partitions,
2653 			     class loop *loop, vec<ddr_p> *alias_ddrs)
2654 {
2655   profile_probability prob;
2656   basic_block cond_bb;
2657   class loop *nloop;
2658   tree lhs, arg0, cond_expr = NULL_TREE;
2659   gimple_seq cond_stmts = NULL;
2660   gimple *call_stmt = NULL;
2661   auto_vec<dr_with_seg_len_pair_t> comp_alias_pairs;
2662 
2663   /* Generate code for runtime alias checks if necessary.  */
2664   gcc_assert (alias_ddrs->length () > 0);
2665 
2666   if (dump_file && (dump_flags & TDF_DETAILS))
2667     fprintf (dump_file,
2668 	     "Version loop <%d> with runtime alias check\n", loop->num);
2669 
2670   compute_alias_check_pairs (loop, alias_ddrs, &comp_alias_pairs);
2671   create_runtime_alias_checks (loop, &comp_alias_pairs, &cond_expr);
2672   cond_expr = force_gimple_operand_1 (cond_expr, &cond_stmts,
2673 				      is_gimple_val, NULL_TREE);
2674 
2675   /* Depend on vectorizer to fold IFN_LOOP_DIST_ALIAS.  */
2676   bool cancelable_p = flag_tree_loop_vectorize;
2677   if (cancelable_p)
2678     {
2679       unsigned i = 0;
2680       struct partition *partition;
2681       for (; partitions->iterate (i, &partition); ++i)
2682 	if (!partition_builtin_p (partition))
2683 	  break;
2684 
2685      /* If all partitions are builtins, distributing it would be profitable and
2686 	we don't want to cancel the runtime alias checks.  */
2687       if (i == partitions->length ())
2688 	cancelable_p = false;
2689     }
2690 
2691   /* Generate internal function call for loop distribution alias check if the
2692      runtime alias check should be cancelable.  */
2693   if (cancelable_p)
2694     {
2695       call_stmt = gimple_build_call_internal (IFN_LOOP_DIST_ALIAS,
2696 					      2, NULL_TREE, cond_expr);
2697       lhs = make_ssa_name (boolean_type_node);
2698       gimple_call_set_lhs (call_stmt, lhs);
2699     }
2700   else
2701     lhs = cond_expr;
2702 
2703   prob = profile_probability::guessed_always ().apply_scale (9, 10);
2704   initialize_original_copy_tables ();
2705   nloop = loop_version (loop, lhs, &cond_bb, prob, prob.invert (),
2706 			prob, prob.invert (), true);
2707   free_original_copy_tables ();
2708   /* Record the original loop number in newly generated loops.  In case of
2709      distribution, the original loop will be distributed and the new loop
2710      is kept.  */
2711   loop->orig_loop_num = nloop->num;
2712   nloop->orig_loop_num = nloop->num;
2713   nloop->dont_vectorize = true;
2714   nloop->force_vectorize = false;
2715 
2716   if (call_stmt)
2717     {
2718       /* Record new loop's num in IFN_LOOP_DIST_ALIAS because the original
2719 	 loop could be destroyed.  */
2720       arg0 = build_int_cst (integer_type_node, loop->orig_loop_num);
2721       gimple_call_set_arg (call_stmt, 0, arg0);
2722       gimple_seq_add_stmt_without_update (&cond_stmts, call_stmt);
2723     }
2724 
2725   if (cond_stmts)
2726     {
2727       gimple_stmt_iterator cond_gsi = gsi_last_bb (cond_bb);
2728       gsi_insert_seq_before (&cond_gsi, cond_stmts, GSI_SAME_STMT);
2729     }
2730   update_ssa (TODO_update_ssa);
2731 }
2732 
2733 /* Return true if loop versioning is needed to distrubute PARTITIONS.
2734    ALIAS_DDRS are data dependence relations for runtime alias check.  */
2735 
2736 static inline bool
2737 version_for_distribution_p (vec<struct partition *> *partitions,
2738 			    vec<ddr_p> *alias_ddrs)
2739 {
2740   /* No need to version loop if we have only one partition.  */
2741   if (partitions->length () == 1)
2742     return false;
2743 
2744   /* Need to version loop if runtime alias check is necessary.  */
2745   return (alias_ddrs->length () > 0);
2746 }
2747 
2748 /* Compare base offset of builtin mem* partitions P1 and P2.  */
2749 
2750 static int
2751 offset_cmp (const void *vp1, const void *vp2)
2752 {
2753   struct partition *p1 = *(struct partition *const *) vp1;
2754   struct partition *p2 = *(struct partition *const *) vp2;
2755   unsigned HOST_WIDE_INT o1 = p1->builtin->dst_base_offset;
2756   unsigned HOST_WIDE_INT o2 = p2->builtin->dst_base_offset;
2757   return (o2 < o1) - (o1 < o2);
2758 }
2759 
2760 /* Fuse adjacent memset builtin PARTITIONS if possible.  This is a special
2761    case optimization transforming below code:
2762 
2763      __builtin_memset (&obj, 0, 100);
2764      _1 = &obj + 100;
2765      __builtin_memset (_1, 0, 200);
2766      _2 = &obj + 300;
2767      __builtin_memset (_2, 0, 100);
2768 
2769    into:
2770 
2771      __builtin_memset (&obj, 0, 400);
2772 
2773    Note we don't have dependence information between different partitions
2774    at this point, as a result, we can't handle nonadjacent memset builtin
2775    partitions since dependence might be broken.  */
2776 
2777 static void
2778 fuse_memset_builtins (vec<struct partition *> *partitions)
2779 {
2780   unsigned i, j;
2781   struct partition *part1, *part2;
2782   tree rhs1, rhs2;
2783 
2784   for (i = 0; partitions->iterate (i, &part1);)
2785     {
2786       if (part1->kind != PKIND_MEMSET)
2787 	{
2788 	  i++;
2789 	  continue;
2790 	}
2791 
2792       /* Find sub-array of memset builtins of the same base.  Index range
2793 	 of the sub-array is [i, j) with "j > i".  */
2794       for (j = i + 1; partitions->iterate (j, &part2); ++j)
2795 	{
2796 	  if (part2->kind != PKIND_MEMSET
2797 	      || !operand_equal_p (part1->builtin->dst_base_base,
2798 				   part2->builtin->dst_base_base, 0))
2799 	    break;
2800 
2801 	  /* Memset calls setting different values can't be merged.  */
2802 	  rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2803 	  rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2804 	  if (!operand_equal_p (rhs1, rhs2, 0))
2805 	    break;
2806 	}
2807 
2808       /* Stable sort is required in order to avoid breaking dependence.  */
2809       gcc_stablesort (&(*partitions)[i], j - i, sizeof (*partitions)[i],
2810 		      offset_cmp);
2811       /* Continue with next partition.  */
2812       i = j;
2813     }
2814 
2815   /* Merge all consecutive memset builtin partitions.  */
2816   for (i = 0; i < partitions->length () - 1;)
2817     {
2818       part1 = (*partitions)[i];
2819       if (part1->kind != PKIND_MEMSET)
2820 	{
2821 	  i++;
2822 	  continue;
2823 	}
2824 
2825       part2 = (*partitions)[i + 1];
2826       /* Only merge memset partitions of the same base and with constant
2827 	 access sizes.  */
2828       if (part2->kind != PKIND_MEMSET
2829 	  || TREE_CODE (part1->builtin->size) != INTEGER_CST
2830 	  || TREE_CODE (part2->builtin->size) != INTEGER_CST
2831 	  || !operand_equal_p (part1->builtin->dst_base_base,
2832 			       part2->builtin->dst_base_base, 0))
2833 	{
2834 	  i++;
2835 	  continue;
2836 	}
2837       rhs1 = gimple_assign_rhs1 (DR_STMT (part1->builtin->dst_dr));
2838       rhs2 = gimple_assign_rhs1 (DR_STMT (part2->builtin->dst_dr));
2839       int bytev1 = const_with_all_bytes_same (rhs1);
2840       int bytev2 = const_with_all_bytes_same (rhs2);
2841       /* Only merge memset partitions of the same value.  */
2842       if (bytev1 != bytev2 || bytev1 == -1)
2843 	{
2844 	  i++;
2845 	  continue;
2846 	}
2847       wide_int end1 = wi::add (part1->builtin->dst_base_offset,
2848 			       wi::to_wide (part1->builtin->size));
2849       /* Only merge adjacent memset partitions.  */
2850       if (wi::ne_p (end1, part2->builtin->dst_base_offset))
2851 	{
2852 	  i++;
2853 	  continue;
2854 	}
2855       /* Merge partitions[i] and partitions[i+1].  */
2856       part1->builtin->size = fold_build2 (PLUS_EXPR, sizetype,
2857 					  part1->builtin->size,
2858 					  part2->builtin->size);
2859       partition_free (part2);
2860       partitions->ordered_remove (i + 1);
2861     }
2862 }
2863 
2864 void
2865 loop_distribution::finalize_partitions (class loop *loop,
2866 					vec<struct partition *> *partitions,
2867 					vec<ddr_p> *alias_ddrs)
2868 {
2869   unsigned i;
2870   struct partition *partition, *a;
2871 
2872   if (partitions->length () == 1
2873       || alias_ddrs->length () > 0)
2874     return;
2875 
2876   unsigned num_builtin = 0, num_normal = 0, num_partial_memset = 0;
2877   bool same_type_p = true;
2878   enum partition_type type = ((*partitions)[0])->type;
2879   for (i = 0; partitions->iterate (i, &partition); ++i)
2880     {
2881       same_type_p &= (type == partition->type);
2882       if (partition_builtin_p (partition))
2883 	{
2884 	  num_builtin++;
2885 	  continue;
2886 	}
2887       num_normal++;
2888       if (partition->kind == PKIND_PARTIAL_MEMSET)
2889 	num_partial_memset++;
2890     }
2891 
2892   /* Don't distribute current loop into too many loops given we don't have
2893      memory stream cost model.  Be even more conservative in case of loop
2894      nest distribution.  */
2895   if ((same_type_p && num_builtin == 0
2896        && (loop->inner == NULL || num_normal != 2 || num_partial_memset != 1))
2897       || (loop->inner != NULL
2898 	  && i >= NUM_PARTITION_THRESHOLD && num_normal > 1)
2899       || (loop->inner == NULL
2900 	  && i >= NUM_PARTITION_THRESHOLD && num_normal > num_builtin))
2901     {
2902       a = (*partitions)[0];
2903       for (i = 1; partitions->iterate (i, &partition); ++i)
2904 	{
2905 	  partition_merge_into (NULL, a, partition, FUSE_FINALIZE);
2906 	  partition_free (partition);
2907 	}
2908       partitions->truncate (1);
2909     }
2910 
2911   /* Fuse memset builtins if possible.  */
2912   if (partitions->length () > 1)
2913     fuse_memset_builtins (partitions);
2914 }
2915 
2916 /* Distributes the code from LOOP in such a way that producer statements
2917    are placed before consumer statements.  Tries to separate only the
2918    statements from STMTS into separate loops.  Returns the number of
2919    distributed loops.  Set NB_CALLS to number of generated builtin calls.
2920    Set *DESTROY_P to whether LOOP needs to be destroyed.  */
2921 
2922 int
2923 loop_distribution::distribute_loop (class loop *loop, vec<gimple *> stmts,
2924 		 control_dependences *cd, int *nb_calls, bool *destroy_p,
2925 		 bool only_patterns_p)
2926 {
2927   ddrs_table = new hash_table<ddr_hasher> (389);
2928   struct graph *rdg;
2929   partition *partition;
2930   int i, nbp;
2931 
2932   *destroy_p = false;
2933   *nb_calls = 0;
2934   loop_nest.create (0);
2935   if (!find_loop_nest (loop, &loop_nest))
2936     {
2937       loop_nest.release ();
2938       delete ddrs_table;
2939       return 0;
2940     }
2941 
2942   datarefs_vec.create (20);
2943   has_nonaddressable_dataref_p = false;
2944   rdg = build_rdg (loop, cd);
2945   if (!rdg)
2946     {
2947       if (dump_file && (dump_flags & TDF_DETAILS))
2948 	fprintf (dump_file,
2949 		 "Loop %d not distributed: failed to build the RDG.\n",
2950 		 loop->num);
2951 
2952       loop_nest.release ();
2953       free_data_refs (datarefs_vec);
2954       delete ddrs_table;
2955       return 0;
2956     }
2957 
2958   if (datarefs_vec.length () > MAX_DATAREFS_NUM)
2959     {
2960       if (dump_file && (dump_flags & TDF_DETAILS))
2961 	fprintf (dump_file,
2962 		 "Loop %d not distributed: too many memory references.\n",
2963 		 loop->num);
2964 
2965       free_rdg (rdg);
2966       loop_nest.release ();
2967       free_data_refs (datarefs_vec);
2968       delete ddrs_table;
2969       return 0;
2970     }
2971 
2972   data_reference_p dref;
2973   for (i = 0; datarefs_vec.iterate (i, &dref); ++i)
2974     dref->aux = (void *) (uintptr_t) i;
2975 
2976   if (dump_file && (dump_flags & TDF_DETAILS))
2977     dump_rdg (dump_file, rdg);
2978 
2979   auto_vec<struct partition *, 3> partitions;
2980   rdg_build_partitions (rdg, stmts, &partitions);
2981 
2982   auto_vec<ddr_p> alias_ddrs;
2983 
2984   auto_bitmap stmt_in_all_partitions;
2985   bitmap_copy (stmt_in_all_partitions, partitions[0]->stmts);
2986   for (i = 1; partitions.iterate (i, &partition); ++i)
2987     bitmap_and_into (stmt_in_all_partitions, partitions[i]->stmts);
2988 
2989   bool any_builtin = false;
2990   bool reduction_in_all = false;
2991   FOR_EACH_VEC_ELT (partitions, i, partition)
2992     {
2993       reduction_in_all
2994 	|= classify_partition (loop, rdg, partition, stmt_in_all_partitions);
2995       any_builtin |= partition_builtin_p (partition);
2996     }
2997 
2998   /* If we are only distributing patterns but did not detect any,
2999      simply bail out.  */
3000   if (only_patterns_p
3001       && !any_builtin)
3002     {
3003       nbp = 0;
3004       goto ldist_done;
3005     }
3006 
3007   /* If we are only distributing patterns fuse all partitions that
3008      were not classified as builtins.  This also avoids chopping
3009      a loop into pieces, separated by builtin calls.  That is, we
3010      only want no or a single loop body remaining.  */
3011   struct partition *into;
3012   if (only_patterns_p)
3013     {
3014       for (i = 0; partitions.iterate (i, &into); ++i)
3015 	if (!partition_builtin_p (into))
3016 	  break;
3017       for (++i; partitions.iterate (i, &partition); ++i)
3018 	if (!partition_builtin_p (partition))
3019 	  {
3020 	    partition_merge_into (NULL, into, partition, FUSE_NON_BUILTIN);
3021 	    partitions.unordered_remove (i);
3022 	    partition_free (partition);
3023 	    i--;
3024 	  }
3025     }
3026 
3027   /* Due to limitations in the transform phase we have to fuse all
3028      reduction partitions into the last partition so the existing
3029      loop will contain all loop-closed PHI nodes.  */
3030   for (i = 0; partitions.iterate (i, &into); ++i)
3031     if (partition_reduction_p (into))
3032       break;
3033   for (i = i + 1; partitions.iterate (i, &partition); ++i)
3034     if (partition_reduction_p (partition))
3035       {
3036 	partition_merge_into (rdg, into, partition, FUSE_REDUCTION);
3037 	partitions.unordered_remove (i);
3038 	partition_free (partition);
3039 	i--;
3040       }
3041 
3042   /* Apply our simple cost model - fuse partitions with similar
3043      memory accesses.  */
3044   for (i = 0; partitions.iterate (i, &into); ++i)
3045     {
3046       bool changed = false;
3047       if (partition_builtin_p (into) || into->kind == PKIND_PARTIAL_MEMSET)
3048 	continue;
3049       for (int j = i + 1;
3050 	   partitions.iterate (j, &partition); ++j)
3051 	{
3052 	  if (share_memory_accesses (rdg, into, partition))
3053 	    {
3054 	      partition_merge_into (rdg, into, partition, FUSE_SHARE_REF);
3055 	      partitions.unordered_remove (j);
3056 	      partition_free (partition);
3057 	      j--;
3058 	      changed = true;
3059 	    }
3060 	}
3061       /* If we fused 0 1 2 in step 1 to 0,2 1 as 0 and 2 have similar
3062          accesses when 1 and 2 have similar accesses but not 0 and 1
3063 	 then in the next iteration we will fail to consider merging
3064 	 1 into 0,2.  So try again if we did any merging into 0.  */
3065       if (changed)
3066 	i--;
3067     }
3068 
3069   /* Put a non-builtin partition last if we need to preserve a reduction.
3070      ???  This is a workaround that makes sort_partitions_by_post_order do
3071      the correct thing while in reality it should sort each component
3072      separately and then put the component with a reduction or a non-builtin
3073      last.  */
3074   if (reduction_in_all
3075       && partition_builtin_p (partitions.last()))
3076     FOR_EACH_VEC_ELT (partitions, i, partition)
3077       if (!partition_builtin_p (partition))
3078 	{
3079 	  partitions.unordered_remove (i);
3080 	  partitions.quick_push (partition);
3081 	  break;
3082 	}
3083 
3084   /* Build the partition dependency graph and fuse partitions in strong
3085      connected component.  */
3086   if (partitions.length () > 1)
3087     {
3088       /* Don't support loop nest distribution under runtime alias check
3089 	 since it's not likely to enable many vectorization opportunities.
3090 	 Also if loop has any data reference which may be not addressable
3091 	 since alias check needs to take, compare address of the object.  */
3092       if (loop->inner || has_nonaddressable_dataref_p)
3093 	merge_dep_scc_partitions (rdg, &partitions, false);
3094       else
3095 	{
3096 	  merge_dep_scc_partitions (rdg, &partitions, true);
3097 	  if (partitions.length () > 1)
3098 	    break_alias_scc_partitions (rdg, &partitions, &alias_ddrs);
3099 	}
3100     }
3101 
3102   finalize_partitions (loop, &partitions, &alias_ddrs);
3103 
3104   /* If there is a reduction in all partitions make sure the last one
3105      is not classified for builtin code generation.  */
3106   if (reduction_in_all)
3107     {
3108       partition = partitions.last ();
3109       if (only_patterns_p
3110 	  && partition_builtin_p (partition)
3111 	  && !partition_builtin_p (partitions[0]))
3112 	{
3113 	  nbp = 0;
3114 	  goto ldist_done;
3115 	}
3116       partition->kind = PKIND_NORMAL;
3117     }
3118 
3119   nbp = partitions.length ();
3120   if (nbp == 0
3121       || (nbp == 1 && !partition_builtin_p (partitions[0]))
3122       || (nbp > 1 && partition_contains_all_rw (rdg, partitions)))
3123     {
3124       nbp = 0;
3125       goto ldist_done;
3126     }
3127 
3128   if (version_for_distribution_p (&partitions, &alias_ddrs))
3129     version_loop_by_alias_check (&partitions, loop, &alias_ddrs);
3130 
3131   if (dump_file && (dump_flags & TDF_DETAILS))
3132     {
3133       fprintf (dump_file,
3134 	       "distribute loop <%d> into partitions:\n", loop->num);
3135       dump_rdg_partitions (dump_file, partitions);
3136     }
3137 
3138   FOR_EACH_VEC_ELT (partitions, i, partition)
3139     {
3140       if (partition_builtin_p (partition))
3141 	(*nb_calls)++;
3142       *destroy_p |= generate_code_for_partition (loop, partition, i < nbp - 1);
3143     }
3144 
3145  ldist_done:
3146   loop_nest.release ();
3147   free_data_refs (datarefs_vec);
3148   for (hash_table<ddr_hasher>::iterator iter = ddrs_table->begin ();
3149        iter != ddrs_table->end (); ++iter)
3150     {
3151       free_dependence_relation (*iter);
3152       *iter = NULL;
3153     }
3154   delete ddrs_table;
3155 
3156   FOR_EACH_VEC_ELT (partitions, i, partition)
3157     partition_free (partition);
3158 
3159   free_rdg (rdg);
3160   return nbp - *nb_calls;
3161 }
3162 
3163 
3164 void loop_distribution::bb_top_order_init (void)
3165 {
3166   int rpo_num;
3167   int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
3168   edge entry = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3169   bitmap exit_bbs = BITMAP_ALLOC (NULL);
3170 
3171   bb_top_order_index = XNEWVEC (int, last_basic_block_for_fn (cfun));
3172   bb_top_order_index_size = last_basic_block_for_fn (cfun);
3173 
3174   entry->flags &= ~EDGE_DFS_BACK;
3175   bitmap_set_bit (exit_bbs, EXIT_BLOCK);
3176   rpo_num = rev_post_order_and_mark_dfs_back_seme (cfun, entry, exit_bbs, true,
3177 						   rpo, NULL);
3178   BITMAP_FREE (exit_bbs);
3179 
3180   for (int i = 0; i < rpo_num; i++)
3181     bb_top_order_index[rpo[i]] = i;
3182 
3183   free (rpo);
3184 }
3185 
3186 void loop_distribution::bb_top_order_destroy ()
3187 {
3188   free (bb_top_order_index);
3189   bb_top_order_index = NULL;
3190   bb_top_order_index_size = 0;
3191 }
3192 
3193 
3194 /* Given LOOP, this function records seed statements for distribution in
3195    WORK_LIST.  Return false if there is nothing for distribution.  */
3196 
3197 static bool
3198 find_seed_stmts_for_distribution (class loop *loop, vec<gimple *> *work_list)
3199 {
3200   basic_block *bbs = get_loop_body_in_dom_order (loop);
3201 
3202   /* Initialize the worklist with stmts we seed the partitions with.  */
3203   for (unsigned i = 0; i < loop->num_nodes; ++i)
3204     {
3205       /* In irreducible sub-regions we don't know how to redirect
3206 	 conditions, so fail.  See PR100492.  */
3207       if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
3208 	{
3209 	  if (dump_file && (dump_flags & TDF_DETAILS))
3210 	    fprintf (dump_file, "loop %d contains an irreducible region.\n",
3211 		     loop->num);
3212 	  work_list->truncate (0);
3213 	  break;
3214 	}
3215       for (gphi_iterator gsi = gsi_start_phis (bbs[i]);
3216 	   !gsi_end_p (gsi); gsi_next (&gsi))
3217 	{
3218 	  gphi *phi = gsi.phi ();
3219 	  if (virtual_operand_p (gimple_phi_result (phi)))
3220 	    continue;
3221 	  /* Distribute stmts which have defs that are used outside of
3222 	     the loop.  */
3223 	  if (!stmt_has_scalar_dependences_outside_loop (loop, phi))
3224 	    continue;
3225 	  work_list->safe_push (phi);
3226 	}
3227       for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
3228 	   !gsi_end_p (gsi); gsi_next (&gsi))
3229 	{
3230 	  gimple *stmt = gsi_stmt (gsi);
3231 
3232 	  /* Ignore clobbers, they do not have true side effects.  */
3233 	  if (gimple_clobber_p (stmt))
3234 	    continue;
3235 
3236 	  /* If there is a stmt with side-effects bail out - we
3237 	     cannot and should not distribute this loop.  */
3238 	  if (gimple_has_side_effects (stmt))
3239 	    {
3240 	      free (bbs);
3241 	      return false;
3242 	    }
3243 
3244 	  /* Distribute stmts which have defs that are used outside of
3245 	     the loop.  */
3246 	  if (stmt_has_scalar_dependences_outside_loop (loop, stmt))
3247 	    ;
3248 	  /* Otherwise only distribute stores for now.  */
3249 	  else if (!gimple_vdef (stmt))
3250 	    continue;
3251 
3252 	  work_list->safe_push (stmt);
3253 	}
3254     }
3255   free (bbs);
3256   return work_list->length () > 0;
3257 }
3258 
3259 /* Given innermost LOOP, return the outermost enclosing loop that forms a
3260    perfect loop nest.  */
3261 
3262 static class loop *
3263 prepare_perfect_loop_nest (class loop *loop)
3264 {
3265   class loop *outer = loop_outer (loop);
3266   tree niters = number_of_latch_executions (loop);
3267 
3268   /* TODO: We only support the innermost 3-level loop nest distribution
3269      because of compilation time issue for now.  This should be relaxed
3270      in the future.  Note we only allow 3-level loop nest distribution
3271      when parallelizing loops.  */
3272   while ((loop->inner == NULL
3273 	  || (loop->inner->inner == NULL && flag_tree_parallelize_loops > 1))
3274 	 && loop_outer (outer)
3275 	 && outer->inner == loop && loop->next == NULL
3276 	 && single_exit (outer)
3277 	 && !chrec_contains_symbols_defined_in_loop (niters, outer->num)
3278 	 && (niters = number_of_latch_executions (outer)) != NULL_TREE
3279 	 && niters != chrec_dont_know)
3280     {
3281       loop = outer;
3282       outer = loop_outer (loop);
3283     }
3284 
3285   return loop;
3286 }
3287 
3288 
3289 unsigned int
3290 loop_distribution::execute (function *fun)
3291 {
3292   class loop *loop;
3293   bool changed = false;
3294   basic_block bb;
3295   control_dependences *cd = NULL;
3296   auto_vec<loop_p> loops_to_be_destroyed;
3297 
3298   if (number_of_loops (fun) <= 1)
3299     return 0;
3300 
3301   bb_top_order_init ();
3302 
3303   FOR_ALL_BB_FN (bb, fun)
3304     {
3305       gimple_stmt_iterator gsi;
3306       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3307 	gimple_set_uid (gsi_stmt (gsi), -1);
3308       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3309 	gimple_set_uid (gsi_stmt (gsi), -1);
3310     }
3311 
3312   /* We can at the moment only distribute non-nested loops, thus restrict
3313      walking to innermost loops.  */
3314   FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
3315     {
3316       /* Don't distribute multiple exit edges loop, or cold loop when
3317          not doing pattern detection.  */
3318       if (!single_exit (loop)
3319 	  || (!flag_tree_loop_distribute_patterns
3320 	      && !optimize_loop_for_speed_p (loop)))
3321 	continue;
3322 
3323       /* Don't distribute loop if niters is unknown.  */
3324       tree niters = number_of_latch_executions (loop);
3325       if (niters == NULL_TREE || niters == chrec_dont_know)
3326 	continue;
3327 
3328       /* Get the perfect loop nest for distribution.  */
3329       loop = prepare_perfect_loop_nest (loop);
3330       for (; loop; loop = loop->inner)
3331 	{
3332 	  auto_vec<gimple *> work_list;
3333 	  if (!find_seed_stmts_for_distribution (loop, &work_list))
3334 	    break;
3335 
3336 	  const char *str = loop->inner ? " nest" : "";
3337 	  dump_user_location_t loc = find_loop_location (loop);
3338 	  if (!cd)
3339 	    {
3340 	      calculate_dominance_info (CDI_DOMINATORS);
3341 	      calculate_dominance_info (CDI_POST_DOMINATORS);
3342 	      cd = new control_dependences ();
3343 	      free_dominance_info (CDI_POST_DOMINATORS);
3344 	    }
3345 
3346 	  bool destroy_p;
3347 	  int nb_generated_loops, nb_generated_calls;
3348 	  nb_generated_loops
3349 	    = distribute_loop (loop, work_list, cd, &nb_generated_calls,
3350 			       &destroy_p, (!optimize_loop_for_speed_p (loop)
3351 					    || !flag_tree_loop_distribution));
3352 	  if (destroy_p)
3353 	    loops_to_be_destroyed.safe_push (loop);
3354 
3355 	  if (nb_generated_loops + nb_generated_calls > 0)
3356 	    {
3357 	      changed = true;
3358 	      if (dump_enabled_p ())
3359 		dump_printf_loc (MSG_OPTIMIZED_LOCATIONS,
3360 				 loc, "Loop%s %d distributed: split to %d loops "
3361 				 "and %d library calls.\n", str, loop->num,
3362 				 nb_generated_loops, nb_generated_calls);
3363 
3364 	      break;
3365 	    }
3366 
3367 	  if (dump_file && (dump_flags & TDF_DETAILS))
3368 	    fprintf (dump_file, "Loop%s %d not distributed.\n", str, loop->num);
3369 	}
3370     }
3371 
3372   if (cd)
3373     delete cd;
3374 
3375   if (bb_top_order_index != NULL)
3376     bb_top_order_destroy ();
3377 
3378   if (changed)
3379     {
3380       /* Destroy loop bodies that could not be reused.  Do this late as we
3381 	 otherwise can end up refering to stale data in control dependences.  */
3382       unsigned i;
3383       FOR_EACH_VEC_ELT (loops_to_be_destroyed, i, loop)
3384 	destroy_loop (loop);
3385 
3386       /* Cached scalar evolutions now may refer to wrong or non-existing
3387 	 loops.  */
3388       scev_reset_htab ();
3389       mark_virtual_operands_for_renaming (fun);
3390       rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
3391     }
3392 
3393   checking_verify_loop_structure ();
3394 
3395   return changed ? TODO_cleanup_cfg : 0;
3396 }
3397 
3398 
3399 /* Distribute all loops in the current function.  */
3400 
3401 namespace {
3402 
3403 const pass_data pass_data_loop_distribution =
3404 {
3405   GIMPLE_PASS, /* type */
3406   "ldist", /* name */
3407   OPTGROUP_LOOP, /* optinfo_flags */
3408   TV_TREE_LOOP_DISTRIBUTION, /* tv_id */
3409   ( PROP_cfg | PROP_ssa ), /* properties_required */
3410   0, /* properties_provided */
3411   0, /* properties_destroyed */
3412   0, /* todo_flags_start */
3413   0, /* todo_flags_finish */
3414 };
3415 
3416 class pass_loop_distribution : public gimple_opt_pass
3417 {
3418 public:
3419   pass_loop_distribution (gcc::context *ctxt)
3420     : gimple_opt_pass (pass_data_loop_distribution, ctxt)
3421   {}
3422 
3423   /* opt_pass methods: */
3424   virtual bool gate (function *)
3425     {
3426       return flag_tree_loop_distribution
3427 	|| flag_tree_loop_distribute_patterns;
3428     }
3429 
3430   virtual unsigned int execute (function *);
3431 
3432 }; // class pass_loop_distribution
3433 
3434 unsigned int
3435 pass_loop_distribution::execute (function *fun)
3436 {
3437   return loop_distribution ().execute (fun);
3438 }
3439 
3440 } // anon namespace
3441 
3442 gimple_opt_pass *
3443 make_pass_loop_distribution (gcc::context *ctxt)
3444 {
3445   return new pass_loop_distribution (ctxt);
3446 }
3447