1 /* Rewrite a program in Normal form into SSA. 2 Copyright (C) 2001-2016 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "rtl.h" 26 #include "tree.h" 27 #include "gimple.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "gimple-pretty-print.h" 31 #include "diagnostic-core.h" 32 #include "langhooks.h" 33 #include "cfganal.h" 34 #include "gimple-iterator.h" 35 #include "tree-cfg.h" 36 #include "tree-into-ssa.h" 37 #include "tree-dfa.h" 38 #include "tree-ssa.h" 39 #include "domwalk.h" 40 41 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y)) 42 43 /* This file builds the SSA form for a function as described in: 44 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently 45 Computing Static Single Assignment Form and the Control Dependence 46 Graph. ACM Transactions on Programming Languages and Systems, 47 13(4):451-490, October 1991. */ 48 49 /* Structure to map a variable VAR to the set of blocks that contain 50 definitions for VAR. */ 51 struct def_blocks 52 { 53 /* Blocks that contain definitions of VAR. Bit I will be set if the 54 Ith block contains a definition of VAR. */ 55 bitmap def_blocks; 56 57 /* Blocks that contain a PHI node for VAR. */ 58 bitmap phi_blocks; 59 60 /* Blocks where VAR is live-on-entry. Similar semantics as 61 DEF_BLOCKS. */ 62 bitmap livein_blocks; 63 }; 64 65 /* Stack of trees used to restore the global currdefs to its original 66 state after completing rewriting of a block and its dominator 67 children. Its elements have the following properties: 68 69 - An SSA_NAME (N) indicates that the current definition of the 70 underlying variable should be set to the given SSA_NAME. If the 71 symbol associated with the SSA_NAME is not a GIMPLE register, the 72 next slot in the stack must be a _DECL node (SYM). In this case, 73 the name N in the previous slot is the current reaching 74 definition for SYM. 75 76 - A _DECL node indicates that the underlying variable has no 77 current definition. 78 79 - A NULL node at the top entry is used to mark the last slot 80 associated with the current block. */ 81 static vec<tree> block_defs_stack; 82 83 84 /* Set of existing SSA names being replaced by update_ssa. */ 85 static sbitmap old_ssa_names; 86 87 /* Set of new SSA names being added by update_ssa. Note that both 88 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of 89 the operations done on them are presence tests. */ 90 static sbitmap new_ssa_names; 91 92 static sbitmap interesting_blocks; 93 94 /* Set of SSA names that have been marked to be released after they 95 were registered in the replacement table. They will be finally 96 released after we finish updating the SSA web. */ 97 bitmap names_to_release; 98 99 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds 100 the to basic block with index I. Allocated once per compilation, *not* 101 released between different functions. */ 102 static vec< vec<gphi *> > phis_to_rewrite; 103 104 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */ 105 static bitmap blocks_with_phis_to_rewrite; 106 107 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need 108 to grow as the callers to create_new_def_for will create new names on 109 the fly. 110 FIXME. Currently set to 1/3 to avoid frequent reallocations but still 111 need to find a reasonable growth strategy. */ 112 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3)) 113 114 115 /* The function the SSA updating data structures have been initialized for. 116 NULL if they need to be initialized by create_new_def_for. */ 117 static struct function *update_ssa_initialized_fn = NULL; 118 119 /* Global data to attach to the main dominator walk structure. */ 120 struct mark_def_sites_global_data 121 { 122 /* This bitmap contains the variables which are set before they 123 are used in a basic block. */ 124 bitmap kills; 125 }; 126 127 /* It is advantageous to avoid things like life analysis for variables which 128 do not need PHI nodes. This enum describes whether or not a particular 129 variable may need a PHI node. */ 130 131 enum need_phi_state { 132 /* This is the default. If we are still in this state after finding 133 all the definition and use sites, then we will assume the variable 134 needs PHI nodes. This is probably an overly conservative assumption. */ 135 NEED_PHI_STATE_UNKNOWN, 136 137 /* This state indicates that we have seen one or more sets of the 138 variable in a single basic block and that the sets dominate all 139 uses seen so far. If after finding all definition and use sites 140 we are still in this state, then the variable does not need any 141 PHI nodes. */ 142 NEED_PHI_STATE_NO, 143 144 /* This state indicates that we have either seen multiple definitions of 145 the variable in multiple blocks, or that we encountered a use in a 146 block that was not dominated by the block containing the set(s) of 147 this variable. This variable is assumed to need PHI nodes. */ 148 NEED_PHI_STATE_MAYBE 149 }; 150 151 /* Information stored for both SSA names and decls. */ 152 struct common_info 153 { 154 /* This field indicates whether or not the variable may need PHI nodes. 155 See the enum's definition for more detailed information about the 156 states. */ 157 ENUM_BITFIELD (need_phi_state) need_phi_state : 2; 158 159 /* The current reaching definition replacing this var. */ 160 tree current_def; 161 162 /* Definitions for this var. */ 163 struct def_blocks def_blocks; 164 }; 165 166 /* Information stored for decls. */ 167 struct var_info 168 { 169 /* The variable. */ 170 tree var; 171 172 /* Information stored for both SSA names and decls. */ 173 common_info info; 174 }; 175 176 177 /* VAR_INFOS hashtable helpers. */ 178 179 struct var_info_hasher : free_ptr_hash <var_info> 180 { 181 static inline hashval_t hash (const value_type &); 182 static inline bool equal (const value_type &, const compare_type &); 183 }; 184 185 inline hashval_t 186 var_info_hasher::hash (const value_type &p) 187 { 188 return DECL_UID (p->var); 189 } 190 191 inline bool 192 var_info_hasher::equal (const value_type &p1, const compare_type &p2) 193 { 194 return p1->var == p2->var; 195 } 196 197 198 /* Each entry in VAR_INFOS contains an element of type STRUCT 199 VAR_INFO_D. */ 200 static hash_table<var_info_hasher> *var_infos; 201 202 203 /* Information stored for SSA names. */ 204 struct ssa_name_info 205 { 206 /* Age of this record (so that info_for_ssa_name table can be cleared 207 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields 208 are assumed to be null. */ 209 unsigned age; 210 211 /* Replacement mappings, allocated from update_ssa_obstack. */ 212 bitmap repl_set; 213 214 /* Information stored for both SSA names and decls. */ 215 common_info info; 216 }; 217 218 static vec<ssa_name_info *> info_for_ssa_name; 219 static unsigned current_info_for_ssa_name_age; 220 221 static bitmap_obstack update_ssa_obstack; 222 223 /* The set of blocks affected by update_ssa. */ 224 static bitmap blocks_to_update; 225 226 /* The main entry point to the SSA renamer (rewrite_blocks) may be 227 called several times to do different, but related, tasks. 228 Initially, we need it to rename the whole program into SSA form. 229 At other times, we may need it to only rename into SSA newly 230 exposed symbols. Finally, we can also call it to incrementally fix 231 an already built SSA web. */ 232 enum rewrite_mode { 233 /* Convert the whole function into SSA form. */ 234 REWRITE_ALL, 235 236 /* Incrementally update the SSA web by replacing existing SSA 237 names with new ones. See update_ssa for details. */ 238 REWRITE_UPDATE 239 }; 240 241 /* The set of symbols we ought to re-write into SSA form in update_ssa. */ 242 static bitmap symbols_to_rename_set; 243 static vec<tree> symbols_to_rename; 244 245 /* Mark SYM for renaming. */ 246 247 static void 248 mark_for_renaming (tree sym) 249 { 250 if (!symbols_to_rename_set) 251 symbols_to_rename_set = BITMAP_ALLOC (NULL); 252 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym))) 253 symbols_to_rename.safe_push (sym); 254 } 255 256 /* Return true if SYM is marked for renaming. */ 257 258 static bool 259 marked_for_renaming (tree sym) 260 { 261 if (!symbols_to_rename_set || sym == NULL_TREE) 262 return false; 263 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym)); 264 } 265 266 267 /* Return true if STMT needs to be rewritten. When renaming a subset 268 of the variables, not all statements will be processed. This is 269 decided in mark_def_sites. */ 270 271 static inline bool 272 rewrite_uses_p (gimple *stmt) 273 { 274 return gimple_visited_p (stmt); 275 } 276 277 278 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */ 279 280 static inline void 281 set_rewrite_uses (gimple *stmt, bool rewrite_p) 282 { 283 gimple_set_visited (stmt, rewrite_p); 284 } 285 286 287 /* Return true if the DEFs created by statement STMT should be 288 registered when marking new definition sites. This is slightly 289 different than rewrite_uses_p: it's used by update_ssa to 290 distinguish statements that need to have both uses and defs 291 processed from those that only need to have their defs processed. 292 Statements that define new SSA names only need to have their defs 293 registered, but they don't need to have their uses renamed. */ 294 295 static inline bool 296 register_defs_p (gimple *stmt) 297 { 298 return gimple_plf (stmt, GF_PLF_1) != 0; 299 } 300 301 302 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */ 303 304 static inline void 305 set_register_defs (gimple *stmt, bool register_defs_p) 306 { 307 gimple_set_plf (stmt, GF_PLF_1, register_defs_p); 308 } 309 310 311 /* Get the information associated with NAME. */ 312 313 static inline ssa_name_info * 314 get_ssa_name_ann (tree name) 315 { 316 unsigned ver = SSA_NAME_VERSION (name); 317 unsigned len = info_for_ssa_name.length (); 318 struct ssa_name_info *info; 319 320 /* Re-allocate the vector at most once per update/into-SSA. */ 321 if (ver >= len) 322 info_for_ssa_name.safe_grow_cleared (num_ssa_names); 323 324 /* But allocate infos lazily. */ 325 info = info_for_ssa_name[ver]; 326 if (!info) 327 { 328 info = XCNEW (struct ssa_name_info); 329 info->age = current_info_for_ssa_name_age; 330 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN; 331 info_for_ssa_name[ver] = info; 332 } 333 334 if (info->age < current_info_for_ssa_name_age) 335 { 336 info->age = current_info_for_ssa_name_age; 337 info->repl_set = NULL; 338 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN; 339 info->info.current_def = NULL_TREE; 340 info->info.def_blocks.def_blocks = NULL; 341 info->info.def_blocks.phi_blocks = NULL; 342 info->info.def_blocks.livein_blocks = NULL; 343 } 344 345 return info; 346 } 347 348 /* Return and allocate the auxiliar information for DECL. */ 349 350 static inline var_info * 351 get_var_info (tree decl) 352 { 353 var_info vi; 354 var_info **slot; 355 vi.var = decl; 356 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT); 357 if (*slot == NULL) 358 { 359 var_info *v = XCNEW (var_info); 360 v->var = decl; 361 *slot = v; 362 return v; 363 } 364 return *slot; 365 } 366 367 368 /* Clears info for SSA names. */ 369 370 static void 371 clear_ssa_name_info (void) 372 { 373 current_info_for_ssa_name_age++; 374 375 /* If current_info_for_ssa_name_age wraps we use stale information. 376 Asser that this does not happen. */ 377 gcc_assert (current_info_for_ssa_name_age != 0); 378 } 379 380 381 /* Get access to the auxiliar information stored per SSA name or decl. */ 382 383 static inline common_info * 384 get_common_info (tree var) 385 { 386 if (TREE_CODE (var) == SSA_NAME) 387 return &get_ssa_name_ann (var)->info; 388 else 389 return &get_var_info (var)->info; 390 } 391 392 393 /* Return the current definition for VAR. */ 394 395 tree 396 get_current_def (tree var) 397 { 398 return get_common_info (var)->current_def; 399 } 400 401 402 /* Sets current definition of VAR to DEF. */ 403 404 void 405 set_current_def (tree var, tree def) 406 { 407 get_common_info (var)->current_def = def; 408 } 409 410 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for 411 all statements in basic block BB. */ 412 413 static void 414 initialize_flags_in_bb (basic_block bb) 415 { 416 gimple *stmt; 417 gimple_stmt_iterator gsi; 418 419 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 420 { 421 gimple *phi = gsi_stmt (gsi); 422 set_rewrite_uses (phi, false); 423 set_register_defs (phi, false); 424 } 425 426 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 427 { 428 stmt = gsi_stmt (gsi); 429 430 /* We are going to use the operand cache API, such as 431 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand 432 cache for each statement should be up-to-date. */ 433 gcc_checking_assert (!gimple_modified_p (stmt)); 434 set_rewrite_uses (stmt, false); 435 set_register_defs (stmt, false); 436 } 437 } 438 439 /* Mark block BB as interesting for update_ssa. */ 440 441 static void 442 mark_block_for_update (basic_block bb) 443 { 444 gcc_checking_assert (blocks_to_update != NULL); 445 if (!bitmap_set_bit (blocks_to_update, bb->index)) 446 return; 447 initialize_flags_in_bb (bb); 448 } 449 450 /* Return the set of blocks where variable VAR is defined and the blocks 451 where VAR is live on entry (livein). If no entry is found in 452 DEF_BLOCKS, a new one is created and returned. */ 453 454 static inline def_blocks * 455 get_def_blocks_for (common_info *info) 456 { 457 def_blocks *db_p = &info->def_blocks; 458 if (!db_p->def_blocks) 459 { 460 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack); 461 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack); 462 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack); 463 } 464 465 return db_p; 466 } 467 468 469 /* Mark block BB as the definition site for variable VAR. PHI_P is true if 470 VAR is defined by a PHI node. */ 471 472 static void 473 set_def_block (tree var, basic_block bb, bool phi_p) 474 { 475 def_blocks *db_p; 476 common_info *info; 477 478 info = get_common_info (var); 479 db_p = get_def_blocks_for (info); 480 481 /* Set the bit corresponding to the block where VAR is defined. */ 482 bitmap_set_bit (db_p->def_blocks, bb->index); 483 if (phi_p) 484 bitmap_set_bit (db_p->phi_blocks, bb->index); 485 486 /* Keep track of whether or not we may need to insert PHI nodes. 487 488 If we are in the UNKNOWN state, then this is the first definition 489 of VAR. Additionally, we have not seen any uses of VAR yet, so 490 we do not need a PHI node for this variable at this time (i.e., 491 transition to NEED_PHI_STATE_NO). 492 493 If we are in any other state, then we either have multiple definitions 494 of this variable occurring in different blocks or we saw a use of the 495 variable which was not dominated by the block containing the 496 definition(s). In this case we may need a PHI node, so enter 497 state NEED_PHI_STATE_MAYBE. */ 498 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN) 499 info->need_phi_state = NEED_PHI_STATE_NO; 500 else 501 info->need_phi_state = NEED_PHI_STATE_MAYBE; 502 } 503 504 505 /* Mark block BB as having VAR live at the entry to BB. */ 506 507 static void 508 set_livein_block (tree var, basic_block bb) 509 { 510 common_info *info; 511 def_blocks *db_p; 512 513 info = get_common_info (var); 514 db_p = get_def_blocks_for (info); 515 516 /* Set the bit corresponding to the block where VAR is live in. */ 517 bitmap_set_bit (db_p->livein_blocks, bb->index); 518 519 /* Keep track of whether or not we may need to insert PHI nodes. 520 521 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated 522 by the single block containing the definition(s) of this variable. If 523 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to 524 NEED_PHI_STATE_MAYBE. */ 525 if (info->need_phi_state == NEED_PHI_STATE_NO) 526 { 527 int def_block_index = bitmap_first_set_bit (db_p->def_blocks); 528 529 if (def_block_index == -1 530 || ! dominated_by_p (CDI_DOMINATORS, bb, 531 BASIC_BLOCK_FOR_FN (cfun, def_block_index))) 532 info->need_phi_state = NEED_PHI_STATE_MAYBE; 533 } 534 else 535 info->need_phi_state = NEED_PHI_STATE_MAYBE; 536 } 537 538 539 /* Return true if NAME is in OLD_SSA_NAMES. */ 540 541 static inline bool 542 is_old_name (tree name) 543 { 544 unsigned ver = SSA_NAME_VERSION (name); 545 if (!old_ssa_names) 546 return false; 547 return (ver < SBITMAP_SIZE (old_ssa_names) 548 && bitmap_bit_p (old_ssa_names, ver)); 549 } 550 551 552 /* Return true if NAME is in NEW_SSA_NAMES. */ 553 554 static inline bool 555 is_new_name (tree name) 556 { 557 unsigned ver = SSA_NAME_VERSION (name); 558 if (!new_ssa_names) 559 return false; 560 return (ver < SBITMAP_SIZE (new_ssa_names) 561 && bitmap_bit_p (new_ssa_names, ver)); 562 } 563 564 565 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */ 566 567 static inline bitmap 568 names_replaced_by (tree new_tree) 569 { 570 return get_ssa_name_ann (new_tree)->repl_set; 571 } 572 573 574 /* Add OLD to REPL_TBL[NEW_TREE].SET. */ 575 576 static inline void 577 add_to_repl_tbl (tree new_tree, tree old) 578 { 579 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set; 580 if (!*set) 581 *set = BITMAP_ALLOC (&update_ssa_obstack); 582 bitmap_set_bit (*set, SSA_NAME_VERSION (old)); 583 } 584 585 586 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL 587 represents the set of names O_1 ... O_j replaced by N_i. This is 588 used by update_ssa and its helpers to introduce new SSA names in an 589 already formed SSA web. */ 590 591 static void 592 add_new_name_mapping (tree new_tree, tree old) 593 { 594 /* OLD and NEW_TREE must be different SSA names for the same symbol. */ 595 gcc_checking_assert (new_tree != old 596 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old)); 597 598 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our 599 caller may have created new names since the set was created. */ 600 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1) 601 { 602 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR; 603 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0); 604 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0); 605 } 606 607 /* Update the REPL_TBL table. */ 608 add_to_repl_tbl (new_tree, old); 609 610 /* If OLD had already been registered as a new name, then all the 611 names that OLD replaces should also be replaced by NEW_TREE. */ 612 if (is_new_name (old)) 613 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old)); 614 615 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES, 616 respectively. */ 617 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree)); 618 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old)); 619 } 620 621 622 /* Call back for walk_dominator_tree used to collect definition sites 623 for every variable in the function. For every statement S in block 624 BB: 625 626 1- Variables defined by S in the DEFS of S are marked in the bitmap 627 KILLS. 628 629 2- If S uses a variable VAR and there is no preceding kill of VAR, 630 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR. 631 632 This information is used to determine which variables are live 633 across block boundaries to reduce the number of PHI nodes 634 we create. */ 635 636 static void 637 mark_def_sites (basic_block bb, gimple *stmt, bitmap kills) 638 { 639 tree def; 640 use_operand_p use_p; 641 ssa_op_iter iter; 642 643 /* Since this is the first time that we rewrite the program into SSA 644 form, force an operand scan on every statement. */ 645 update_stmt (stmt); 646 647 gcc_checking_assert (blocks_to_update == NULL); 648 set_register_defs (stmt, false); 649 set_rewrite_uses (stmt, false); 650 651 if (is_gimple_debug (stmt)) 652 { 653 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) 654 { 655 tree sym = USE_FROM_PTR (use_p); 656 gcc_checking_assert (DECL_P (sym)); 657 set_rewrite_uses (stmt, true); 658 } 659 if (rewrite_uses_p (stmt)) 660 bitmap_set_bit (interesting_blocks, bb->index); 661 return; 662 } 663 664 /* If a variable is used before being set, then the variable is live 665 across a block boundary, so mark it live-on-entry to BB. */ 666 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) 667 { 668 tree sym = USE_FROM_PTR (use_p); 669 gcc_checking_assert (DECL_P (sym)); 670 if (!bitmap_bit_p (kills, DECL_UID (sym))) 671 set_livein_block (sym, bb); 672 set_rewrite_uses (stmt, true); 673 } 674 675 /* Now process the defs. Mark BB as the definition block and add 676 each def to the set of killed symbols. */ 677 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS) 678 { 679 gcc_checking_assert (DECL_P (def)); 680 set_def_block (def, bb, false); 681 bitmap_set_bit (kills, DECL_UID (def)); 682 set_register_defs (stmt, true); 683 } 684 685 /* If we found the statement interesting then also mark the block BB 686 as interesting. */ 687 if (rewrite_uses_p (stmt) || register_defs_p (stmt)) 688 bitmap_set_bit (interesting_blocks, bb->index); 689 } 690 691 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals 692 in the dfs numbering of the dominance tree. */ 693 694 struct dom_dfsnum 695 { 696 /* Basic block whose index this entry corresponds to. */ 697 unsigned bb_index; 698 699 /* The dfs number of this node. */ 700 unsigned dfs_num; 701 }; 702 703 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback 704 for qsort. */ 705 706 static int 707 cmp_dfsnum (const void *a, const void *b) 708 { 709 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a; 710 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b; 711 712 return (int) da->dfs_num - (int) db->dfs_num; 713 } 714 715 /* Among the intervals starting at the N points specified in DEFS, find 716 the one that contains S, and return its bb_index. */ 717 718 static unsigned 719 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s) 720 { 721 unsigned f = 0, t = n, m; 722 723 while (t > f + 1) 724 { 725 m = (f + t) / 2; 726 if (defs[m].dfs_num <= s) 727 f = m; 728 else 729 t = m; 730 } 731 732 return defs[f].bb_index; 733 } 734 735 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES. 736 KILLS is a bitmap of blocks where the value is defined before any use. */ 737 738 static void 739 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses) 740 { 741 bitmap_iterator bi; 742 unsigned i, b, p, u, top; 743 bitmap live_phis; 744 basic_block def_bb, use_bb; 745 edge e; 746 edge_iterator ei; 747 bitmap to_remove; 748 struct dom_dfsnum *defs; 749 unsigned n_defs, adef; 750 751 if (bitmap_empty_p (uses)) 752 { 753 bitmap_clear (phis); 754 return; 755 } 756 757 /* The phi must dominate a use, or an argument of a live phi. Also, we 758 do not create any phi nodes in def blocks, unless they are also livein. */ 759 to_remove = BITMAP_ALLOC (NULL); 760 bitmap_and_compl (to_remove, kills, uses); 761 bitmap_and_compl_into (phis, to_remove); 762 if (bitmap_empty_p (phis)) 763 { 764 BITMAP_FREE (to_remove); 765 return; 766 } 767 768 /* We want to remove the unnecessary phi nodes, but we do not want to compute 769 liveness information, as that may be linear in the size of CFG, and if 770 there are lot of different variables to rewrite, this may lead to quadratic 771 behavior. 772 773 Instead, we basically emulate standard dce. We put all uses to worklist, 774 then for each of them find the nearest def that dominates them. If this 775 def is a phi node, we mark it live, and if it was not live before, we 776 add the predecessors of its basic block to the worklist. 777 778 To quickly locate the nearest def that dominates use, we use dfs numbering 779 of the dominance tree (that is already available in order to speed up 780 queries). For each def, we have the interval given by the dfs number on 781 entry to and on exit from the corresponding subtree in the dominance tree. 782 The nearest dominator for a given use is the smallest of these intervals 783 that contains entry and exit dfs numbers for the basic block with the use. 784 If we store the bounds for all the uses to an array and sort it, we can 785 locate the nearest dominating def in logarithmic time by binary search.*/ 786 bitmap_ior (to_remove, kills, phis); 787 n_defs = bitmap_count_bits (to_remove); 788 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1); 789 defs[0].bb_index = 1; 790 defs[0].dfs_num = 0; 791 adef = 1; 792 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi) 793 { 794 def_bb = BASIC_BLOCK_FOR_FN (cfun, i); 795 defs[adef].bb_index = i; 796 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb); 797 defs[adef + 1].bb_index = i; 798 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb); 799 adef += 2; 800 } 801 BITMAP_FREE (to_remove); 802 gcc_assert (adef == 2 * n_defs + 1); 803 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum); 804 gcc_assert (defs[0].bb_index == 1); 805 806 /* Now each DEFS entry contains the number of the basic block to that the 807 dfs number corresponds. Change them to the number of basic block that 808 corresponds to the interval following the dfs number. Also, for the 809 dfs_out numbers, increase the dfs number by one (so that it corresponds 810 to the start of the following interval, not to the end of the current 811 one). We use WORKLIST as a stack. */ 812 auto_vec<int> worklist (n_defs + 1); 813 worklist.quick_push (1); 814 top = 1; 815 n_defs = 1; 816 for (i = 1; i < adef; i++) 817 { 818 b = defs[i].bb_index; 819 if (b == top) 820 { 821 /* This is a closing element. Interval corresponding to the top 822 of the stack after removing it follows. */ 823 worklist.pop (); 824 top = worklist[worklist.length () - 1]; 825 defs[n_defs].bb_index = top; 826 defs[n_defs].dfs_num = defs[i].dfs_num + 1; 827 } 828 else 829 { 830 /* Opening element. Nothing to do, just push it to the stack and move 831 it to the correct position. */ 832 defs[n_defs].bb_index = defs[i].bb_index; 833 defs[n_defs].dfs_num = defs[i].dfs_num; 834 worklist.quick_push (b); 835 top = b; 836 } 837 838 /* If this interval starts at the same point as the previous one, cancel 839 the previous one. */ 840 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num) 841 defs[n_defs - 1].bb_index = defs[n_defs].bb_index; 842 else 843 n_defs++; 844 } 845 worklist.pop (); 846 gcc_assert (worklist.is_empty ()); 847 848 /* Now process the uses. */ 849 live_phis = BITMAP_ALLOC (NULL); 850 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi) 851 { 852 worklist.safe_push (i); 853 } 854 855 while (!worklist.is_empty ()) 856 { 857 b = worklist.pop (); 858 if (b == ENTRY_BLOCK) 859 continue; 860 861 /* If there is a phi node in USE_BB, it is made live. Otherwise, 862 find the def that dominates the immediate dominator of USE_BB 863 (the kill in USE_BB does not dominate the use). */ 864 if (bitmap_bit_p (phis, b)) 865 p = b; 866 else 867 { 868 use_bb = get_immediate_dominator (CDI_DOMINATORS, 869 BASIC_BLOCK_FOR_FN (cfun, b)); 870 p = find_dfsnum_interval (defs, n_defs, 871 bb_dom_dfs_in (CDI_DOMINATORS, use_bb)); 872 if (!bitmap_bit_p (phis, p)) 873 continue; 874 } 875 876 /* If the phi node is already live, there is nothing to do. */ 877 if (!bitmap_set_bit (live_phis, p)) 878 continue; 879 880 /* Add the new uses to the worklist. */ 881 def_bb = BASIC_BLOCK_FOR_FN (cfun, p); 882 FOR_EACH_EDGE (e, ei, def_bb->preds) 883 { 884 u = e->src->index; 885 if (bitmap_bit_p (uses, u)) 886 continue; 887 888 /* In case there is a kill directly in the use block, do not record 889 the use (this is also necessary for correctness, as we assume that 890 uses dominated by a def directly in their block have been filtered 891 out before). */ 892 if (bitmap_bit_p (kills, u)) 893 continue; 894 895 bitmap_set_bit (uses, u); 896 worklist.safe_push (u); 897 } 898 } 899 900 bitmap_copy (phis, live_phis); 901 BITMAP_FREE (live_phis); 902 free (defs); 903 } 904 905 /* Return the set of blocks where variable VAR is defined and the blocks 906 where VAR is live on entry (livein). Return NULL, if no entry is 907 found in DEF_BLOCKS. */ 908 909 static inline def_blocks * 910 find_def_blocks_for (tree var) 911 { 912 def_blocks *p = &get_common_info (var)->def_blocks; 913 if (!p->def_blocks) 914 return NULL; 915 return p; 916 } 917 918 919 /* Marks phi node PHI in basic block BB for rewrite. */ 920 921 static void 922 mark_phi_for_rewrite (basic_block bb, gphi *phi) 923 { 924 vec<gphi *> phis; 925 unsigned n, idx = bb->index; 926 927 if (rewrite_uses_p (phi)) 928 return; 929 930 set_rewrite_uses (phi, true); 931 932 if (!blocks_with_phis_to_rewrite) 933 return; 934 935 bitmap_set_bit (blocks_with_phis_to_rewrite, idx); 936 937 n = (unsigned) last_basic_block_for_fn (cfun) + 1; 938 if (phis_to_rewrite.length () < n) 939 phis_to_rewrite.safe_grow_cleared (n); 940 941 phis = phis_to_rewrite[idx]; 942 phis.reserve (10); 943 944 phis.safe_push (phi); 945 phis_to_rewrite[idx] = phis; 946 } 947 948 /* Insert PHI nodes for variable VAR using the iterated dominance 949 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this 950 function assumes that the caller is incrementally updating the 951 existing SSA form, in which case VAR may be an SSA name instead of 952 a symbol. 953 954 PHI_INSERTION_POINTS is updated to reflect nodes that already had a 955 PHI node for VAR. On exit, only the nodes that received a PHI node 956 for VAR will be present in PHI_INSERTION_POINTS. */ 957 958 static void 959 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p) 960 { 961 unsigned bb_index; 962 edge e; 963 gphi *phi; 964 basic_block bb; 965 bitmap_iterator bi; 966 def_blocks *def_map = find_def_blocks_for (var); 967 968 /* Remove the blocks where we already have PHI nodes for VAR. */ 969 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks); 970 971 /* Remove obviously useless phi nodes. */ 972 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks, 973 def_map->livein_blocks); 974 975 /* And insert the PHI nodes. */ 976 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi) 977 { 978 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index); 979 if (update_p) 980 mark_block_for_update (bb); 981 982 if (dump_file && (dump_flags & TDF_DETAILS)) 983 { 984 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index); 985 print_generic_expr (dump_file, var, TDF_SLIM); 986 fprintf (dump_file, "\n"); 987 } 988 phi = NULL; 989 990 if (TREE_CODE (var) == SSA_NAME) 991 { 992 /* If we are rewriting SSA names, create the LHS of the PHI 993 node by duplicating VAR. This is useful in the case of 994 pointers, to also duplicate pointer attributes (alias 995 information, in particular). */ 996 edge_iterator ei; 997 tree new_lhs; 998 999 gcc_checking_assert (update_p); 1000 new_lhs = duplicate_ssa_name (var, NULL); 1001 phi = create_phi_node (new_lhs, bb); 1002 add_new_name_mapping (new_lhs, var); 1003 1004 /* Add VAR to every argument slot of PHI. We need VAR in 1005 every argument so that rewrite_update_phi_arguments knows 1006 which name is this PHI node replacing. If VAR is a 1007 symbol marked for renaming, this is not necessary, the 1008 renamer will use the symbol on the LHS to get its 1009 reaching definition. */ 1010 FOR_EACH_EDGE (e, ei, bb->preds) 1011 add_phi_arg (phi, var, e, UNKNOWN_LOCATION); 1012 } 1013 else 1014 { 1015 tree tracked_var; 1016 1017 gcc_checking_assert (DECL_P (var)); 1018 phi = create_phi_node (var, bb); 1019 1020 tracked_var = target_for_debug_bind (var); 1021 if (tracked_var) 1022 { 1023 gimple *note = gimple_build_debug_bind (tracked_var, 1024 PHI_RESULT (phi), 1025 phi); 1026 gimple_stmt_iterator si = gsi_after_labels (bb); 1027 gsi_insert_before (&si, note, GSI_SAME_STMT); 1028 } 1029 } 1030 1031 /* Mark this PHI node as interesting for update_ssa. */ 1032 set_register_defs (phi, true); 1033 mark_phi_for_rewrite (bb, phi); 1034 } 1035 } 1036 1037 /* Sort var_infos after DECL_UID of their var. */ 1038 1039 static int 1040 insert_phi_nodes_compare_var_infos (const void *a, const void *b) 1041 { 1042 const var_info *defa = *(var_info * const *)a; 1043 const var_info *defb = *(var_info * const *)b; 1044 if (DECL_UID (defa->var) < DECL_UID (defb->var)) 1045 return -1; 1046 else 1047 return 1; 1048 } 1049 1050 /* Insert PHI nodes at the dominance frontier of blocks with variable 1051 definitions. DFS contains the dominance frontier information for 1052 the flowgraph. */ 1053 1054 static void 1055 insert_phi_nodes (bitmap_head *dfs) 1056 { 1057 hash_table<var_info_hasher>::iterator hi; 1058 unsigned i; 1059 var_info *info; 1060 1061 timevar_push (TV_TREE_INSERT_PHI_NODES); 1062 1063 auto_vec<var_info *> vars (var_infos->elements ()); 1064 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi) 1065 if (info->info.need_phi_state != NEED_PHI_STATE_NO) 1066 vars.quick_push (info); 1067 1068 /* Do two stages to avoid code generation differences for UID 1069 differences but no UID ordering differences. */ 1070 vars.qsort (insert_phi_nodes_compare_var_infos); 1071 1072 FOR_EACH_VEC_ELT (vars, i, info) 1073 { 1074 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs); 1075 insert_phi_nodes_for (info->var, idf, false); 1076 BITMAP_FREE (idf); 1077 } 1078 1079 timevar_pop (TV_TREE_INSERT_PHI_NODES); 1080 } 1081 1082 1083 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and 1084 register DEF (an SSA_NAME) to be a new definition for SYM. */ 1085 1086 static void 1087 register_new_def (tree def, tree sym) 1088 { 1089 common_info *info = get_common_info (sym); 1090 tree currdef; 1091 1092 /* If this variable is set in a single basic block and all uses are 1093 dominated by the set(s) in that single basic block, then there is 1094 no reason to record anything for this variable in the block local 1095 definition stacks. Doing so just wastes time and memory. 1096 1097 This is the same test to prune the set of variables which may 1098 need PHI nodes. So we just use that information since it's already 1099 computed and available for us to use. */ 1100 if (info->need_phi_state == NEED_PHI_STATE_NO) 1101 { 1102 info->current_def = def; 1103 return; 1104 } 1105 1106 currdef = info->current_def; 1107 1108 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose 1109 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM 1110 in the stack so that we know which symbol is being defined by 1111 this SSA name when we unwind the stack. */ 1112 if (currdef && !is_gimple_reg (sym)) 1113 block_defs_stack.safe_push (sym); 1114 1115 /* Push the current reaching definition into BLOCK_DEFS_STACK. This 1116 stack is later used by the dominator tree callbacks to restore 1117 the reaching definitions for all the variables defined in the 1118 block after a recursive visit to all its immediately dominated 1119 blocks. If there is no current reaching definition, then just 1120 record the underlying _DECL node. */ 1121 block_defs_stack.safe_push (currdef ? currdef : sym); 1122 1123 /* Set the current reaching definition for SYM to be DEF. */ 1124 info->current_def = def; 1125 } 1126 1127 1128 /* Perform a depth-first traversal of the dominator tree looking for 1129 variables to rename. BB is the block where to start searching. 1130 Renaming is a five step process: 1131 1132 1- Every definition made by PHI nodes at the start of the blocks is 1133 registered as the current definition for the corresponding variable. 1134 1135 2- Every statement in BB is rewritten. USE and VUSE operands are 1136 rewritten with their corresponding reaching definition. DEF and 1137 VDEF targets are registered as new definitions. 1138 1139 3- All the PHI nodes in successor blocks of BB are visited. The 1140 argument corresponding to BB is replaced with its current reaching 1141 definition. 1142 1143 4- Recursively rewrite every dominator child block of BB. 1144 1145 5- Restore (in reverse order) the current reaching definition for every 1146 new definition introduced in this block. This is done so that when 1147 we return from the recursive call, all the current reaching 1148 definitions are restored to the names that were valid in the 1149 dominator parent of BB. */ 1150 1151 /* Return the current definition for variable VAR. If none is found, 1152 create a new SSA name to act as the zeroth definition for VAR. */ 1153 1154 static tree 1155 get_reaching_def (tree var) 1156 { 1157 common_info *info = get_common_info (var); 1158 tree currdef; 1159 1160 /* Lookup the current reaching definition for VAR. */ 1161 currdef = info->current_def; 1162 1163 /* If there is no reaching definition for VAR, create and register a 1164 default definition for it (if needed). */ 1165 if (currdef == NULL_TREE) 1166 { 1167 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var); 1168 currdef = get_or_create_ssa_default_def (cfun, sym); 1169 } 1170 1171 /* Return the current reaching definition for VAR, or the default 1172 definition, if we had to create one. */ 1173 return currdef; 1174 } 1175 1176 1177 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */ 1178 1179 static void 1180 rewrite_debug_stmt_uses (gimple *stmt) 1181 { 1182 use_operand_p use_p; 1183 ssa_op_iter iter; 1184 bool update = false; 1185 1186 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) 1187 { 1188 tree var = USE_FROM_PTR (use_p), def; 1189 common_info *info = get_common_info (var); 1190 gcc_checking_assert (DECL_P (var)); 1191 def = info->current_def; 1192 if (!def) 1193 { 1194 if (TREE_CODE (var) == PARM_DECL 1195 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))) 1196 { 1197 gimple_stmt_iterator gsi 1198 = 1199 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 1200 int lim; 1201 /* Search a few source bind stmts at the start of first bb to 1202 see if a DEBUG_EXPR_DECL can't be reused. */ 1203 for (lim = 32; 1204 !gsi_end_p (gsi) && lim > 0; 1205 gsi_next (&gsi), lim--) 1206 { 1207 gimple *gstmt = gsi_stmt (gsi); 1208 if (!gimple_debug_source_bind_p (gstmt)) 1209 break; 1210 if (gimple_debug_source_bind_get_value (gstmt) == var) 1211 { 1212 def = gimple_debug_source_bind_get_var (gstmt); 1213 if (TREE_CODE (def) == DEBUG_EXPR_DECL) 1214 break; 1215 else 1216 def = NULL_TREE; 1217 } 1218 } 1219 /* If not, add a new source bind stmt. */ 1220 if (def == NULL_TREE) 1221 { 1222 gimple *def_temp; 1223 def = make_node (DEBUG_EXPR_DECL); 1224 def_temp = gimple_build_debug_source_bind (def, var, NULL); 1225 DECL_ARTIFICIAL (def) = 1; 1226 TREE_TYPE (def) = TREE_TYPE (var); 1227 DECL_MODE (def) = DECL_MODE (var); 1228 gsi = 1229 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 1230 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT); 1231 } 1232 update = true; 1233 } 1234 } 1235 else 1236 { 1237 /* Check if info->current_def can be trusted. */ 1238 basic_block bb = gimple_bb (stmt); 1239 basic_block def_bb 1240 = SSA_NAME_IS_DEFAULT_DEF (def) 1241 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def)); 1242 1243 /* If definition is in current bb, it is fine. */ 1244 if (bb == def_bb) 1245 ; 1246 /* If definition bb doesn't dominate the current bb, 1247 it can't be used. */ 1248 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb)) 1249 def = NULL; 1250 /* If there is just one definition and dominates the current 1251 bb, it is fine. */ 1252 else if (info->need_phi_state == NEED_PHI_STATE_NO) 1253 ; 1254 else 1255 { 1256 def_blocks *db_p = get_def_blocks_for (info); 1257 1258 /* If there are some non-debug uses in the current bb, 1259 it is fine. */ 1260 if (bitmap_bit_p (db_p->livein_blocks, bb->index)) 1261 ; 1262 /* Otherwise give up for now. */ 1263 else 1264 def = NULL; 1265 } 1266 } 1267 if (def == NULL) 1268 { 1269 gimple_debug_bind_reset_value (stmt); 1270 update_stmt (stmt); 1271 return; 1272 } 1273 SET_USE (use_p, def); 1274 } 1275 if (update) 1276 update_stmt (stmt); 1277 } 1278 1279 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in 1280 the block with its immediate reaching definitions. Update the current 1281 definition of a variable when a new real or virtual definition is found. */ 1282 1283 static void 1284 rewrite_stmt (gimple_stmt_iterator *si) 1285 { 1286 use_operand_p use_p; 1287 def_operand_p def_p; 1288 ssa_op_iter iter; 1289 gimple *stmt = gsi_stmt (*si); 1290 1291 /* If mark_def_sites decided that we don't need to rewrite this 1292 statement, ignore it. */ 1293 gcc_assert (blocks_to_update == NULL); 1294 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt)) 1295 return; 1296 1297 if (dump_file && (dump_flags & TDF_DETAILS)) 1298 { 1299 fprintf (dump_file, "Renaming statement "); 1300 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1301 fprintf (dump_file, "\n"); 1302 } 1303 1304 /* Step 1. Rewrite USES in the statement. */ 1305 if (rewrite_uses_p (stmt)) 1306 { 1307 if (is_gimple_debug (stmt)) 1308 rewrite_debug_stmt_uses (stmt); 1309 else 1310 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) 1311 { 1312 tree var = USE_FROM_PTR (use_p); 1313 gcc_checking_assert (DECL_P (var)); 1314 SET_USE (use_p, get_reaching_def (var)); 1315 } 1316 } 1317 1318 /* Step 2. Register the statement's DEF operands. */ 1319 if (register_defs_p (stmt)) 1320 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS) 1321 { 1322 tree var = DEF_FROM_PTR (def_p); 1323 tree name; 1324 tree tracked_var; 1325 1326 gcc_checking_assert (DECL_P (var)); 1327 1328 if (gimple_clobber_p (stmt) 1329 && is_gimple_reg (var)) 1330 { 1331 /* If we rewrite a DECL into SSA form then drop its 1332 clobber stmts and replace uses with a new default def. */ 1333 gcc_checking_assert (TREE_CODE (var) == VAR_DECL 1334 && !gimple_vdef (stmt)); 1335 gsi_replace (si, gimple_build_nop (), true); 1336 register_new_def (get_or_create_ssa_default_def (cfun, var), var); 1337 break; 1338 } 1339 1340 name = make_ssa_name (var, stmt); 1341 SET_DEF (def_p, name); 1342 register_new_def (DEF_FROM_PTR (def_p), var); 1343 1344 tracked_var = target_for_debug_bind (var); 1345 if (tracked_var) 1346 { 1347 gimple *note = gimple_build_debug_bind (tracked_var, name, stmt); 1348 gsi_insert_after (si, note, GSI_SAME_STMT); 1349 } 1350 } 1351 } 1352 1353 1354 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for 1355 PHI nodes. For every PHI node found, add a new argument containing the 1356 current reaching definition for the variable and the edge through which 1357 that definition is reaching the PHI node. */ 1358 1359 static void 1360 rewrite_add_phi_arguments (basic_block bb) 1361 { 1362 edge e; 1363 edge_iterator ei; 1364 1365 FOR_EACH_EDGE (e, ei, bb->succs) 1366 { 1367 gphi *phi; 1368 gphi_iterator gsi; 1369 1370 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); 1371 gsi_next (&gsi)) 1372 { 1373 tree currdef, res; 1374 location_t loc; 1375 1376 phi = gsi.phi (); 1377 res = gimple_phi_result (phi); 1378 currdef = get_reaching_def (SSA_NAME_VAR (res)); 1379 /* Virtual operand PHI args do not need a location. */ 1380 if (virtual_operand_p (res)) 1381 loc = UNKNOWN_LOCATION; 1382 else 1383 loc = gimple_location (SSA_NAME_DEF_STMT (currdef)); 1384 add_phi_arg (phi, currdef, e, loc); 1385 } 1386 } 1387 } 1388 1389 class rewrite_dom_walker : public dom_walker 1390 { 1391 public: 1392 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {} 1393 1394 virtual edge before_dom_children (basic_block); 1395 virtual void after_dom_children (basic_block); 1396 }; 1397 1398 /* SSA Rewriting Step 1. Initialization, create a block local stack 1399 of reaching definitions for new SSA names produced in this block 1400 (BLOCK_DEFS). Register new definitions for every PHI node in the 1401 block. */ 1402 1403 edge 1404 rewrite_dom_walker::before_dom_children (basic_block bb) 1405 { 1406 if (dump_file && (dump_flags & TDF_DETAILS)) 1407 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index); 1408 1409 /* Mark the unwind point for this block. */ 1410 block_defs_stack.safe_push (NULL_TREE); 1411 1412 /* Step 1. Register new definitions for every PHI node in the block. 1413 Conceptually, all the PHI nodes are executed in parallel and each PHI 1414 node introduces a new version for the associated variable. */ 1415 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 1416 gsi_next (&gsi)) 1417 { 1418 tree result = gimple_phi_result (gsi_stmt (gsi)); 1419 register_new_def (result, SSA_NAME_VAR (result)); 1420 } 1421 1422 /* Step 2. Rewrite every variable used in each statement in the block 1423 with its immediate reaching definitions. Update the current definition 1424 of a variable when a new real or virtual definition is found. */ 1425 if (bitmap_bit_p (interesting_blocks, bb->index)) 1426 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 1427 gsi_next (&gsi)) 1428 rewrite_stmt (&gsi); 1429 1430 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes. 1431 For every PHI node found, add a new argument containing the current 1432 reaching definition for the variable and the edge through which that 1433 definition is reaching the PHI node. */ 1434 rewrite_add_phi_arguments (bb); 1435 1436 return NULL; 1437 } 1438 1439 1440 1441 /* Called after visiting all the statements in basic block BB and all 1442 of its dominator children. Restore CURRDEFS to its original value. */ 1443 1444 void 1445 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED) 1446 { 1447 /* Restore CURRDEFS to its original state. */ 1448 while (block_defs_stack.length () > 0) 1449 { 1450 tree tmp = block_defs_stack.pop (); 1451 tree saved_def, var; 1452 1453 if (tmp == NULL_TREE) 1454 break; 1455 1456 if (TREE_CODE (tmp) == SSA_NAME) 1457 { 1458 /* If we recorded an SSA_NAME, then make the SSA_NAME the 1459 current definition of its underlying variable. Note that 1460 if the SSA_NAME is not for a GIMPLE register, the symbol 1461 being defined is stored in the next slot in the stack. 1462 This mechanism is needed because an SSA name for a 1463 non-register symbol may be the definition for more than 1464 one symbol (e.g., SFTs, aliased variables, etc). */ 1465 saved_def = tmp; 1466 var = SSA_NAME_VAR (saved_def); 1467 if (!is_gimple_reg (var)) 1468 var = block_defs_stack.pop (); 1469 } 1470 else 1471 { 1472 /* If we recorded anything else, it must have been a _DECL 1473 node and its current reaching definition must have been 1474 NULL. */ 1475 saved_def = NULL; 1476 var = tmp; 1477 } 1478 1479 get_common_info (var)->current_def = saved_def; 1480 } 1481 } 1482 1483 1484 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */ 1485 1486 DEBUG_FUNCTION void 1487 debug_decl_set (bitmap set) 1488 { 1489 dump_decl_set (stderr, set); 1490 fprintf (stderr, "\n"); 1491 } 1492 1493 1494 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the 1495 stack up to a maximum of N levels. If N is -1, the whole stack is 1496 dumped. New levels are created when the dominator tree traversal 1497 used for renaming enters a new sub-tree. */ 1498 1499 void 1500 dump_defs_stack (FILE *file, int n) 1501 { 1502 int i, j; 1503 1504 fprintf (file, "\n\nRenaming stack"); 1505 if (n > 0) 1506 fprintf (file, " (up to %d levels)", n); 1507 fprintf (file, "\n\n"); 1508 1509 i = 1; 1510 fprintf (file, "Level %d (current level)\n", i); 1511 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--) 1512 { 1513 tree name, var; 1514 1515 name = block_defs_stack[j]; 1516 if (name == NULL_TREE) 1517 { 1518 i++; 1519 if (n > 0 && i > n) 1520 break; 1521 fprintf (file, "\nLevel %d\n", i); 1522 continue; 1523 } 1524 1525 if (DECL_P (name)) 1526 { 1527 var = name; 1528 name = NULL_TREE; 1529 } 1530 else 1531 { 1532 var = SSA_NAME_VAR (name); 1533 if (!is_gimple_reg (var)) 1534 { 1535 j--; 1536 var = block_defs_stack[j]; 1537 } 1538 } 1539 1540 fprintf (file, " Previous CURRDEF ("); 1541 print_generic_expr (file, var, 0); 1542 fprintf (file, ") = "); 1543 if (name) 1544 print_generic_expr (file, name, 0); 1545 else 1546 fprintf (file, "<NIL>"); 1547 fprintf (file, "\n"); 1548 } 1549 } 1550 1551 1552 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the 1553 stack up to a maximum of N levels. If N is -1, the whole stack is 1554 dumped. New levels are created when the dominator tree traversal 1555 used for renaming enters a new sub-tree. */ 1556 1557 DEBUG_FUNCTION void 1558 debug_defs_stack (int n) 1559 { 1560 dump_defs_stack (stderr, n); 1561 } 1562 1563 1564 /* Dump the current reaching definition of every symbol to FILE. */ 1565 1566 void 1567 dump_currdefs (FILE *file) 1568 { 1569 unsigned i; 1570 tree var; 1571 1572 if (symbols_to_rename.is_empty ()) 1573 return; 1574 1575 fprintf (file, "\n\nCurrent reaching definitions\n\n"); 1576 FOR_EACH_VEC_ELT (symbols_to_rename, i, var) 1577 { 1578 common_info *info = get_common_info (var); 1579 fprintf (file, "CURRDEF ("); 1580 print_generic_expr (file, var, 0); 1581 fprintf (file, ") = "); 1582 if (info->current_def) 1583 print_generic_expr (file, info->current_def, 0); 1584 else 1585 fprintf (file, "<NIL>"); 1586 fprintf (file, "\n"); 1587 } 1588 } 1589 1590 1591 /* Dump the current reaching definition of every symbol to stderr. */ 1592 1593 DEBUG_FUNCTION void 1594 debug_currdefs (void) 1595 { 1596 dump_currdefs (stderr); 1597 } 1598 1599 1600 /* Dump SSA information to FILE. */ 1601 1602 void 1603 dump_tree_ssa (FILE *file) 1604 { 1605 const char *funcname 1606 = lang_hooks.decl_printable_name (current_function_decl, 2); 1607 1608 fprintf (file, "SSA renaming information for %s\n\n", funcname); 1609 1610 dump_var_infos (file); 1611 dump_defs_stack (file, -1); 1612 dump_currdefs (file); 1613 dump_tree_ssa_stats (file); 1614 } 1615 1616 1617 /* Dump SSA information to stderr. */ 1618 1619 DEBUG_FUNCTION void 1620 debug_tree_ssa (void) 1621 { 1622 dump_tree_ssa (stderr); 1623 } 1624 1625 1626 /* Dump statistics for the hash table HTAB. */ 1627 1628 static void 1629 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab) 1630 { 1631 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n", 1632 (long) htab.size (), 1633 (long) htab.elements (), 1634 htab.collisions ()); 1635 } 1636 1637 1638 /* Dump SSA statistics on FILE. */ 1639 1640 void 1641 dump_tree_ssa_stats (FILE *file) 1642 { 1643 if (var_infos) 1644 { 1645 fprintf (file, "\nHash table statistics:\n"); 1646 fprintf (file, " var_infos: "); 1647 htab_statistics (file, *var_infos); 1648 fprintf (file, "\n"); 1649 } 1650 } 1651 1652 1653 /* Dump SSA statistics on stderr. */ 1654 1655 DEBUG_FUNCTION void 1656 debug_tree_ssa_stats (void) 1657 { 1658 dump_tree_ssa_stats (stderr); 1659 } 1660 1661 1662 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */ 1663 1664 int 1665 debug_var_infos_r (var_info **slot, FILE *file) 1666 { 1667 var_info *info = *slot; 1668 1669 fprintf (file, "VAR: "); 1670 print_generic_expr (file, info->var, dump_flags); 1671 bitmap_print (file, info->info.def_blocks.def_blocks, 1672 ", DEF_BLOCKS: { ", "}"); 1673 bitmap_print (file, info->info.def_blocks.livein_blocks, 1674 ", LIVEIN_BLOCKS: { ", "}"); 1675 bitmap_print (file, info->info.def_blocks.phi_blocks, 1676 ", PHI_BLOCKS: { ", "}\n"); 1677 1678 return 1; 1679 } 1680 1681 1682 /* Dump the VAR_INFOS hash table on FILE. */ 1683 1684 void 1685 dump_var_infos (FILE *file) 1686 { 1687 fprintf (file, "\n\nDefinition and live-in blocks:\n\n"); 1688 if (var_infos) 1689 var_infos->traverse <FILE *, debug_var_infos_r> (file); 1690 } 1691 1692 1693 /* Dump the VAR_INFOS hash table on stderr. */ 1694 1695 DEBUG_FUNCTION void 1696 debug_var_infos (void) 1697 { 1698 dump_var_infos (stderr); 1699 } 1700 1701 1702 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */ 1703 1704 static inline void 1705 register_new_update_single (tree new_name, tree old_name) 1706 { 1707 common_info *info = get_common_info (old_name); 1708 tree currdef = info->current_def; 1709 1710 /* Push the current reaching definition into BLOCK_DEFS_STACK. 1711 This stack is later used by the dominator tree callbacks to 1712 restore the reaching definitions for all the variables 1713 defined in the block after a recursive visit to all its 1714 immediately dominated blocks. */ 1715 block_defs_stack.reserve (2); 1716 block_defs_stack.quick_push (currdef); 1717 block_defs_stack.quick_push (old_name); 1718 1719 /* Set the current reaching definition for OLD_NAME to be 1720 NEW_NAME. */ 1721 info->current_def = new_name; 1722 } 1723 1724 1725 /* Register NEW_NAME to be the new reaching definition for all the 1726 names in OLD_NAMES. Used by the incremental SSA update routines to 1727 replace old SSA names with new ones. */ 1728 1729 static inline void 1730 register_new_update_set (tree new_name, bitmap old_names) 1731 { 1732 bitmap_iterator bi; 1733 unsigned i; 1734 1735 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi) 1736 register_new_update_single (new_name, ssa_name (i)); 1737 } 1738 1739 1740 1741 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or 1742 it is a symbol marked for renaming, replace it with USE_P's current 1743 reaching definition. */ 1744 1745 static inline void 1746 maybe_replace_use (use_operand_p use_p) 1747 { 1748 tree rdef = NULL_TREE; 1749 tree use = USE_FROM_PTR (use_p); 1750 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use); 1751 1752 if (marked_for_renaming (sym)) 1753 rdef = get_reaching_def (sym); 1754 else if (is_old_name (use)) 1755 rdef = get_reaching_def (use); 1756 1757 if (rdef && rdef != use) 1758 SET_USE (use_p, rdef); 1759 } 1760 1761 1762 /* Same as maybe_replace_use, but without introducing default stmts, 1763 returning false to indicate a need to do so. */ 1764 1765 static inline bool 1766 maybe_replace_use_in_debug_stmt (use_operand_p use_p) 1767 { 1768 tree rdef = NULL_TREE; 1769 tree use = USE_FROM_PTR (use_p); 1770 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use); 1771 1772 if (marked_for_renaming (sym)) 1773 rdef = get_var_info (sym)->info.current_def; 1774 else if (is_old_name (use)) 1775 { 1776 rdef = get_ssa_name_ann (use)->info.current_def; 1777 /* We can't assume that, if there's no current definition, the 1778 default one should be used. It could be the case that we've 1779 rearranged blocks so that the earlier definition no longer 1780 dominates the use. */ 1781 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use)) 1782 rdef = use; 1783 } 1784 else 1785 rdef = use; 1786 1787 if (rdef && rdef != use) 1788 SET_USE (use_p, rdef); 1789 1790 return rdef != NULL_TREE; 1791 } 1792 1793 1794 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES 1795 or OLD_SSA_NAMES, or if it is a symbol marked for renaming, 1796 register it as the current definition for the names replaced by 1797 DEF_P. Returns whether the statement should be removed. */ 1798 1799 static inline bool 1800 maybe_register_def (def_operand_p def_p, gimple *stmt, 1801 gimple_stmt_iterator gsi) 1802 { 1803 tree def = DEF_FROM_PTR (def_p); 1804 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def); 1805 bool to_delete = false; 1806 1807 /* If DEF is a naked symbol that needs renaming, create a new 1808 name for it. */ 1809 if (marked_for_renaming (sym)) 1810 { 1811 if (DECL_P (def)) 1812 { 1813 if (gimple_clobber_p (stmt) && is_gimple_reg (sym)) 1814 { 1815 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL); 1816 /* Replace clobber stmts with a default def. This new use of a 1817 default definition may make it look like SSA_NAMEs have 1818 conflicting lifetimes, so we need special code to let them 1819 coalesce properly. */ 1820 to_delete = true; 1821 def = get_or_create_ssa_default_def (cfun, sym); 1822 } 1823 else 1824 def = make_ssa_name (def, stmt); 1825 SET_DEF (def_p, def); 1826 1827 tree tracked_var = target_for_debug_bind (sym); 1828 if (tracked_var) 1829 { 1830 gimple *note = gimple_build_debug_bind (tracked_var, def, stmt); 1831 /* If stmt ends the bb, insert the debug stmt on the single 1832 non-EH edge from the stmt. */ 1833 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt)) 1834 { 1835 basic_block bb = gsi_bb (gsi); 1836 edge_iterator ei; 1837 edge e, ef = NULL; 1838 FOR_EACH_EDGE (e, ei, bb->succs) 1839 if (!(e->flags & EDGE_EH)) 1840 { 1841 gcc_checking_assert (!ef); 1842 ef = e; 1843 } 1844 /* If there are other predecessors to ef->dest, then 1845 there must be PHI nodes for the modified 1846 variable, and therefore there will be debug bind 1847 stmts after the PHI nodes. The debug bind notes 1848 we'd insert would force the creation of a new 1849 block (diverging codegen) and be redundant with 1850 the post-PHI bind stmts, so don't add them. 1851 1852 As for the exit edge, there wouldn't be redundant 1853 bind stmts, but there wouldn't be a PC to bind 1854 them to either, so avoid diverging the CFG. */ 1855 if (ef && single_pred_p (ef->dest) 1856 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 1857 { 1858 /* If there were PHI nodes in the node, we'd 1859 have to make sure the value we're binding 1860 doesn't need rewriting. But there shouldn't 1861 be PHI nodes in a single-predecessor block, 1862 so we just add the note. */ 1863 gsi_insert_on_edge_immediate (ef, note); 1864 } 1865 } 1866 else 1867 gsi_insert_after (&gsi, note, GSI_SAME_STMT); 1868 } 1869 } 1870 1871 register_new_update_single (def, sym); 1872 } 1873 else 1874 { 1875 /* If DEF is a new name, register it as a new definition 1876 for all the names replaced by DEF. */ 1877 if (is_new_name (def)) 1878 register_new_update_set (def, names_replaced_by (def)); 1879 1880 /* If DEF is an old name, register DEF as a new 1881 definition for itself. */ 1882 if (is_old_name (def)) 1883 register_new_update_single (def, def); 1884 } 1885 1886 return to_delete; 1887 } 1888 1889 1890 /* Update every variable used in the statement pointed-to by SI. The 1891 statement is assumed to be in SSA form already. Names in 1892 OLD_SSA_NAMES used by SI will be updated to their current reaching 1893 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI 1894 will be registered as a new definition for their corresponding name 1895 in OLD_SSA_NAMES. Returns whether STMT should be removed. */ 1896 1897 static bool 1898 rewrite_update_stmt (gimple *stmt, gimple_stmt_iterator gsi) 1899 { 1900 use_operand_p use_p; 1901 def_operand_p def_p; 1902 ssa_op_iter iter; 1903 1904 /* Only update marked statements. */ 1905 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt)) 1906 return false; 1907 1908 if (dump_file && (dump_flags & TDF_DETAILS)) 1909 { 1910 fprintf (dump_file, "Updating SSA information for statement "); 1911 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); 1912 } 1913 1914 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying 1915 symbol is marked for renaming. */ 1916 if (rewrite_uses_p (stmt)) 1917 { 1918 if (is_gimple_debug (stmt)) 1919 { 1920 bool failed = false; 1921 1922 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) 1923 if (!maybe_replace_use_in_debug_stmt (use_p)) 1924 { 1925 failed = true; 1926 break; 1927 } 1928 1929 if (failed) 1930 { 1931 /* DOM sometimes threads jumps in such a way that a 1932 debug stmt ends up referencing a SSA variable that no 1933 longer dominates the debug stmt, but such that all 1934 incoming definitions refer to the same definition in 1935 an earlier dominator. We could try to recover that 1936 definition somehow, but this will have to do for now. 1937 1938 Introducing a default definition, which is what 1939 maybe_replace_use() would do in such cases, may 1940 modify code generation, for the otherwise-unused 1941 default definition would never go away, modifying SSA 1942 version numbers all over. */ 1943 gimple_debug_bind_reset_value (stmt); 1944 update_stmt (stmt); 1945 } 1946 } 1947 else 1948 { 1949 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES) 1950 maybe_replace_use (use_p); 1951 } 1952 } 1953 1954 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES. 1955 Also register definitions for names whose underlying symbol is 1956 marked for renaming. */ 1957 bool to_delete = false; 1958 if (register_defs_p (stmt)) 1959 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS) 1960 to_delete |= maybe_register_def (def_p, stmt, gsi); 1961 1962 return to_delete; 1963 } 1964 1965 1966 /* Visit all the successor blocks of BB looking for PHI nodes. For 1967 every PHI node found, check if any of its arguments is in 1968 OLD_SSA_NAMES. If so, and if the argument has a current reaching 1969 definition, replace it. */ 1970 1971 static void 1972 rewrite_update_phi_arguments (basic_block bb) 1973 { 1974 edge e; 1975 edge_iterator ei; 1976 unsigned i; 1977 1978 FOR_EACH_EDGE (e, ei, bb->succs) 1979 { 1980 gphi *phi; 1981 vec<gphi *> phis; 1982 1983 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index)) 1984 continue; 1985 1986 phis = phis_to_rewrite[e->dest->index]; 1987 FOR_EACH_VEC_ELT (phis, i, phi) 1988 { 1989 tree arg, lhs_sym, reaching_def = NULL; 1990 use_operand_p arg_p; 1991 1992 gcc_checking_assert (rewrite_uses_p (phi)); 1993 1994 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e); 1995 arg = USE_FROM_PTR (arg_p); 1996 1997 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME) 1998 continue; 1999 2000 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi)); 2001 2002 if (arg == NULL_TREE) 2003 { 2004 /* When updating a PHI node for a recently introduced 2005 symbol we may find NULL arguments. That's why we 2006 take the symbol from the LHS of the PHI node. */ 2007 reaching_def = get_reaching_def (lhs_sym); 2008 2009 } 2010 else 2011 { 2012 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg); 2013 2014 if (marked_for_renaming (sym)) 2015 reaching_def = get_reaching_def (sym); 2016 else if (is_old_name (arg)) 2017 reaching_def = get_reaching_def (arg); 2018 } 2019 2020 /* Update the argument if there is a reaching def. */ 2021 if (reaching_def) 2022 { 2023 source_location locus; 2024 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p); 2025 2026 SET_USE (arg_p, reaching_def); 2027 2028 /* Virtual operands do not need a location. */ 2029 if (virtual_operand_p (reaching_def)) 2030 locus = UNKNOWN_LOCATION; 2031 else 2032 { 2033 gimple *stmt = SSA_NAME_DEF_STMT (reaching_def); 2034 gphi *other_phi = dyn_cast <gphi *> (stmt); 2035 2036 /* Single element PHI nodes behave like copies, so get the 2037 location from the phi argument. */ 2038 if (other_phi 2039 && gimple_phi_num_args (other_phi) == 1) 2040 locus = gimple_phi_arg_location (other_phi, 0); 2041 else 2042 locus = gimple_location (stmt); 2043 } 2044 2045 gimple_phi_arg_set_location (phi, arg_i, locus); 2046 } 2047 2048 2049 if (e->flags & EDGE_ABNORMAL) 2050 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1; 2051 } 2052 } 2053 } 2054 2055 class rewrite_update_dom_walker : public dom_walker 2056 { 2057 public: 2058 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {} 2059 2060 virtual edge before_dom_children (basic_block); 2061 virtual void after_dom_children (basic_block); 2062 }; 2063 2064 /* Initialization of block data structures for the incremental SSA 2065 update pass. Create a block local stack of reaching definitions 2066 for new SSA names produced in this block (BLOCK_DEFS). Register 2067 new definitions for every PHI node in the block. */ 2068 2069 edge 2070 rewrite_update_dom_walker::before_dom_children (basic_block bb) 2071 { 2072 bool is_abnormal_phi; 2073 2074 if (dump_file && (dump_flags & TDF_DETAILS)) 2075 fprintf (dump_file, "Registering new PHI nodes in block #%d\n", 2076 bb->index); 2077 2078 /* Mark the unwind point for this block. */ 2079 block_defs_stack.safe_push (NULL_TREE); 2080 2081 if (!bitmap_bit_p (blocks_to_update, bb->index)) 2082 return NULL; 2083 2084 /* Mark the LHS if any of the arguments flows through an abnormal 2085 edge. */ 2086 is_abnormal_phi = bb_has_abnormal_pred (bb); 2087 2088 /* If any of the PHI nodes is a replacement for a name in 2089 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then 2090 register it as a new definition for its corresponding name. Also 2091 register definitions for names whose underlying symbols are 2092 marked for renaming. */ 2093 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 2094 gsi_next (&gsi)) 2095 { 2096 tree lhs, lhs_sym; 2097 gphi *phi = gsi.phi (); 2098 2099 if (!register_defs_p (phi)) 2100 continue; 2101 2102 lhs = gimple_phi_result (phi); 2103 lhs_sym = SSA_NAME_VAR (lhs); 2104 2105 if (marked_for_renaming (lhs_sym)) 2106 register_new_update_single (lhs, lhs_sym); 2107 else 2108 { 2109 2110 /* If LHS is a new name, register a new definition for all 2111 the names replaced by LHS. */ 2112 if (is_new_name (lhs)) 2113 register_new_update_set (lhs, names_replaced_by (lhs)); 2114 2115 /* If LHS is an OLD name, register it as a new definition 2116 for itself. */ 2117 if (is_old_name (lhs)) 2118 register_new_update_single (lhs, lhs); 2119 } 2120 2121 if (is_abnormal_phi) 2122 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1; 2123 } 2124 2125 /* Step 2. Rewrite every variable used in each statement in the block. */ 2126 if (bitmap_bit_p (interesting_blocks, bb->index)) 2127 { 2128 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index)); 2129 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) 2130 if (rewrite_update_stmt (gsi_stmt (gsi), gsi)) 2131 gsi_remove (&gsi, true); 2132 else 2133 gsi_next (&gsi); 2134 } 2135 2136 /* Step 3. Update PHI nodes. */ 2137 rewrite_update_phi_arguments (bb); 2138 2139 return NULL; 2140 } 2141 2142 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore 2143 the current reaching definition of every name re-written in BB to 2144 the original reaching definition before visiting BB. This 2145 unwinding must be done in the opposite order to what is done in 2146 register_new_update_set. */ 2147 2148 void 2149 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED) 2150 { 2151 while (block_defs_stack.length () > 0) 2152 { 2153 tree var = block_defs_stack.pop (); 2154 tree saved_def; 2155 2156 /* NULL indicates the unwind stop point for this block (see 2157 rewrite_update_enter_block). */ 2158 if (var == NULL) 2159 return; 2160 2161 saved_def = block_defs_stack.pop (); 2162 get_common_info (var)->current_def = saved_def; 2163 } 2164 } 2165 2166 2167 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA 2168 form. 2169 2170 ENTRY indicates the block where to start. Every block dominated by 2171 ENTRY will be rewritten. 2172 2173 WHAT indicates what actions will be taken by the renamer (see enum 2174 rewrite_mode). 2175 2176 BLOCKS are the set of interesting blocks for the dominator walker 2177 to process. If this set is NULL, then all the nodes dominated 2178 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that 2179 are not present in BLOCKS are ignored. */ 2180 2181 static void 2182 rewrite_blocks (basic_block entry, enum rewrite_mode what) 2183 { 2184 /* Rewrite all the basic blocks in the program. */ 2185 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS); 2186 2187 block_defs_stack.create (10); 2188 2189 /* Recursively walk the dominator tree rewriting each statement in 2190 each basic block. */ 2191 if (what == REWRITE_ALL) 2192 rewrite_dom_walker (CDI_DOMINATORS).walk (entry); 2193 else if (what == REWRITE_UPDATE) 2194 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry); 2195 else 2196 gcc_unreachable (); 2197 2198 /* Debugging dumps. */ 2199 if (dump_file && (dump_flags & TDF_STATS)) 2200 { 2201 dump_dfa_stats (dump_file); 2202 if (var_infos) 2203 dump_tree_ssa_stats (dump_file); 2204 } 2205 2206 block_defs_stack.release (); 2207 2208 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS); 2209 } 2210 2211 class mark_def_dom_walker : public dom_walker 2212 { 2213 public: 2214 mark_def_dom_walker (cdi_direction direction); 2215 ~mark_def_dom_walker (); 2216 2217 virtual edge before_dom_children (basic_block); 2218 2219 private: 2220 /* Notice that this bitmap is indexed using variable UIDs, so it must be 2221 large enough to accommodate all the variables referenced in the 2222 function, not just the ones we are renaming. */ 2223 bitmap m_kills; 2224 }; 2225 2226 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction) 2227 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL)) 2228 { 2229 } 2230 2231 mark_def_dom_walker::~mark_def_dom_walker () 2232 { 2233 BITMAP_FREE (m_kills); 2234 } 2235 2236 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap 2237 at the start of each block, and call mark_def_sites for each statement. */ 2238 2239 edge 2240 mark_def_dom_walker::before_dom_children (basic_block bb) 2241 { 2242 gimple_stmt_iterator gsi; 2243 2244 bitmap_clear (m_kills); 2245 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 2246 mark_def_sites (bb, gsi_stmt (gsi), m_kills); 2247 return NULL; 2248 } 2249 2250 /* Initialize internal data needed during renaming. */ 2251 2252 static void 2253 init_ssa_renamer (void) 2254 { 2255 cfun->gimple_df->in_ssa_p = false; 2256 2257 /* Allocate memory for the DEF_BLOCKS hash table. */ 2258 gcc_assert (!var_infos); 2259 var_infos = new hash_table<var_info_hasher> 2260 (vec_safe_length (cfun->local_decls)); 2261 2262 bitmap_obstack_initialize (&update_ssa_obstack); 2263 } 2264 2265 2266 /* Deallocate internal data structures used by the renamer. */ 2267 2268 static void 2269 fini_ssa_renamer (void) 2270 { 2271 delete var_infos; 2272 var_infos = NULL; 2273 2274 bitmap_obstack_release (&update_ssa_obstack); 2275 2276 cfun->gimple_df->ssa_renaming_needed = 0; 2277 cfun->gimple_df->rename_vops = 0; 2278 cfun->gimple_df->in_ssa_p = true; 2279 } 2280 2281 /* Main entry point into the SSA builder. The renaming process 2282 proceeds in four main phases: 2283 2284 1- Compute dominance frontier and immediate dominators, needed to 2285 insert PHI nodes and rename the function in dominator tree 2286 order. 2287 2288 2- Find and mark all the blocks that define variables. 2289 2290 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes). 2291 2292 4- Rename all the blocks (rewrite_blocks) and statements in the program. 2293 2294 Steps 3 and 4 are done using the dominator tree walker 2295 (walk_dominator_tree). */ 2296 2297 namespace { 2298 2299 const pass_data pass_data_build_ssa = 2300 { 2301 GIMPLE_PASS, /* type */ 2302 "ssa", /* name */ 2303 OPTGROUP_NONE, /* optinfo_flags */ 2304 TV_TREE_SSA_OTHER, /* tv_id */ 2305 PROP_cfg, /* properties_required */ 2306 PROP_ssa, /* properties_provided */ 2307 0, /* properties_destroyed */ 2308 0, /* todo_flags_start */ 2309 TODO_remove_unused_locals, /* todo_flags_finish */ 2310 }; 2311 2312 class pass_build_ssa : public gimple_opt_pass 2313 { 2314 public: 2315 pass_build_ssa (gcc::context *ctxt) 2316 : gimple_opt_pass (pass_data_build_ssa, ctxt) 2317 {} 2318 2319 /* opt_pass methods: */ 2320 virtual bool gate (function *fun) 2321 { 2322 /* Do nothing for funcions that was produced already in SSA form. */ 2323 return !(fun->curr_properties & PROP_ssa); 2324 } 2325 2326 virtual unsigned int execute (function *); 2327 2328 }; // class pass_build_ssa 2329 2330 unsigned int 2331 pass_build_ssa::execute (function *fun) 2332 { 2333 bitmap_head *dfs; 2334 basic_block bb; 2335 unsigned i; 2336 2337 /* Initialize operand data structures. */ 2338 init_ssa_operands (fun); 2339 2340 /* Initialize internal data needed by the renamer. */ 2341 init_ssa_renamer (); 2342 2343 /* Initialize the set of interesting blocks. The callback 2344 mark_def_sites will add to this set those blocks that the renamer 2345 should process. */ 2346 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun)); 2347 bitmap_clear (interesting_blocks); 2348 2349 /* Initialize dominance frontier. */ 2350 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun)); 2351 FOR_EACH_BB_FN (bb, fun) 2352 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack); 2353 2354 /* 1- Compute dominance frontiers. */ 2355 calculate_dominance_info (CDI_DOMINATORS); 2356 compute_dominance_frontiers (dfs); 2357 2358 /* 2- Find and mark definition sites. */ 2359 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr); 2360 2361 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */ 2362 insert_phi_nodes (dfs); 2363 2364 /* 4- Rename all the blocks. */ 2365 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL); 2366 2367 /* Free allocated memory. */ 2368 FOR_EACH_BB_FN (bb, fun) 2369 bitmap_clear (&dfs[bb->index]); 2370 free (dfs); 2371 2372 sbitmap_free (interesting_blocks); 2373 2374 fini_ssa_renamer (); 2375 2376 /* Try to get rid of all gimplifier generated temporaries by making 2377 its SSA names anonymous. This way we can garbage collect them 2378 all after removing unused locals which we do in our TODO. */ 2379 for (i = 1; i < num_ssa_names; ++i) 2380 { 2381 tree decl, name = ssa_name (i); 2382 if (!name 2383 || SSA_NAME_IS_DEFAULT_DEF (name)) 2384 continue; 2385 decl = SSA_NAME_VAR (name); 2386 if (decl 2387 && TREE_CODE (decl) == VAR_DECL 2388 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl) 2389 && DECL_IGNORED_P (decl)) 2390 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl)); 2391 } 2392 2393 return 0; 2394 } 2395 2396 } // anon namespace 2397 2398 gimple_opt_pass * 2399 make_pass_build_ssa (gcc::context *ctxt) 2400 { 2401 return new pass_build_ssa (ctxt); 2402 } 2403 2404 2405 /* Mark the definition of VAR at STMT and BB as interesting for the 2406 renamer. BLOCKS is the set of blocks that need updating. */ 2407 2408 static void 2409 mark_def_interesting (tree var, gimple *stmt, basic_block bb, 2410 bool insert_phi_p) 2411 { 2412 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index)); 2413 set_register_defs (stmt, true); 2414 2415 if (insert_phi_p) 2416 { 2417 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI; 2418 2419 set_def_block (var, bb, is_phi_p); 2420 2421 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition 2422 site for both itself and all the old names replaced by it. */ 2423 if (TREE_CODE (var) == SSA_NAME && is_new_name (var)) 2424 { 2425 bitmap_iterator bi; 2426 unsigned i; 2427 bitmap set = names_replaced_by (var); 2428 if (set) 2429 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi) 2430 set_def_block (ssa_name (i), bb, is_phi_p); 2431 } 2432 } 2433 } 2434 2435 2436 /* Mark the use of VAR at STMT and BB as interesting for the 2437 renamer. INSERT_PHI_P is true if we are going to insert new PHI 2438 nodes. */ 2439 2440 static inline void 2441 mark_use_interesting (tree var, gimple *stmt, basic_block bb, 2442 bool insert_phi_p) 2443 { 2444 basic_block def_bb = gimple_bb (stmt); 2445 2446 mark_block_for_update (def_bb); 2447 mark_block_for_update (bb); 2448 2449 if (gimple_code (stmt) == GIMPLE_PHI) 2450 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt)); 2451 else 2452 { 2453 set_rewrite_uses (stmt, true); 2454 2455 if (is_gimple_debug (stmt)) 2456 return; 2457 } 2458 2459 /* If VAR has not been defined in BB, then it is live-on-entry 2460 to BB. Note that we cannot just use the block holding VAR's 2461 definition because if VAR is one of the names in OLD_SSA_NAMES, 2462 it will have several definitions (itself and all the names that 2463 replace it). */ 2464 if (insert_phi_p) 2465 { 2466 def_blocks *db_p = get_def_blocks_for (get_common_info (var)); 2467 if (!bitmap_bit_p (db_p->def_blocks, bb->index)) 2468 set_livein_block (var, bb); 2469 } 2470 } 2471 2472 2473 /* Do a dominator walk starting at BB processing statements that 2474 reference symbols in SSA operands. This is very similar to 2475 mark_def_sites, but the scan handles statements whose operands may 2476 already be SSA names. 2477 2478 If INSERT_PHI_P is true, mark those uses as live in the 2479 corresponding block. This is later used by the PHI placement 2480 algorithm to make PHI pruning decisions. 2481 2482 FIXME. Most of this would be unnecessary if we could associate a 2483 symbol to all the SSA names that reference it. But that 2484 sounds like it would be expensive to maintain. Still, it 2485 would be interesting to see if it makes better sense to do 2486 that. */ 2487 2488 static void 2489 prepare_block_for_update (basic_block bb, bool insert_phi_p) 2490 { 2491 basic_block son; 2492 edge e; 2493 edge_iterator ei; 2494 2495 mark_block_for_update (bb); 2496 2497 /* Process PHI nodes marking interesting those that define or use 2498 the symbols that we are interested in. */ 2499 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si); 2500 gsi_next (&si)) 2501 { 2502 gphi *phi = si.phi (); 2503 tree lhs_sym, lhs = gimple_phi_result (phi); 2504 2505 if (TREE_CODE (lhs) == SSA_NAME 2506 && (! virtual_operand_p (lhs) 2507 || ! cfun->gimple_df->rename_vops)) 2508 continue; 2509 2510 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs); 2511 mark_for_renaming (lhs_sym); 2512 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p); 2513 2514 /* Mark the uses in phi nodes as interesting. It would be more correct 2515 to process the arguments of the phi nodes of the successor edges of 2516 BB at the end of prepare_block_for_update, however, that turns out 2517 to be significantly more expensive. Doing it here is conservatively 2518 correct -- it may only cause us to believe a value to be live in a 2519 block that also contains its definition, and thus insert a few more 2520 phi nodes for it. */ 2521 FOR_EACH_EDGE (e, ei, bb->preds) 2522 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p); 2523 } 2524 2525 /* Process the statements. */ 2526 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si); 2527 gsi_next (&si)) 2528 { 2529 gimple *stmt; 2530 ssa_op_iter i; 2531 use_operand_p use_p; 2532 def_operand_p def_p; 2533 2534 stmt = gsi_stmt (si); 2535 2536 if (cfun->gimple_df->rename_vops 2537 && gimple_vuse (stmt)) 2538 { 2539 tree use = gimple_vuse (stmt); 2540 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use); 2541 mark_for_renaming (sym); 2542 mark_use_interesting (sym, stmt, bb, insert_phi_p); 2543 } 2544 2545 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE) 2546 { 2547 tree use = USE_FROM_PTR (use_p); 2548 if (!DECL_P (use)) 2549 continue; 2550 mark_for_renaming (use); 2551 mark_use_interesting (use, stmt, bb, insert_phi_p); 2552 } 2553 2554 if (cfun->gimple_df->rename_vops 2555 && gimple_vdef (stmt)) 2556 { 2557 tree def = gimple_vdef (stmt); 2558 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def); 2559 mark_for_renaming (sym); 2560 mark_def_interesting (sym, stmt, bb, insert_phi_p); 2561 } 2562 2563 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF) 2564 { 2565 tree def = DEF_FROM_PTR (def_p); 2566 if (!DECL_P (def)) 2567 continue; 2568 mark_for_renaming (def); 2569 mark_def_interesting (def, stmt, bb, insert_phi_p); 2570 } 2571 } 2572 2573 /* Now visit all the blocks dominated by BB. */ 2574 for (son = first_dom_son (CDI_DOMINATORS, bb); 2575 son; 2576 son = next_dom_son (CDI_DOMINATORS, son)) 2577 prepare_block_for_update (son, insert_phi_p); 2578 } 2579 2580 2581 /* Helper for prepare_names_to_update. Mark all the use sites for 2582 NAME as interesting. BLOCKS and INSERT_PHI_P are as in 2583 prepare_names_to_update. */ 2584 2585 static void 2586 prepare_use_sites_for (tree name, bool insert_phi_p) 2587 { 2588 use_operand_p use_p; 2589 imm_use_iterator iter; 2590 2591 FOR_EACH_IMM_USE_FAST (use_p, iter, name) 2592 { 2593 gimple *stmt = USE_STMT (use_p); 2594 basic_block bb = gimple_bb (stmt); 2595 2596 if (gimple_code (stmt) == GIMPLE_PHI) 2597 { 2598 int ix = PHI_ARG_INDEX_FROM_USE (use_p); 2599 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix); 2600 mark_use_interesting (name, stmt, e->src, insert_phi_p); 2601 } 2602 else 2603 { 2604 /* For regular statements, mark this as an interesting use 2605 for NAME. */ 2606 mark_use_interesting (name, stmt, bb, insert_phi_p); 2607 } 2608 } 2609 } 2610 2611 2612 /* Helper for prepare_names_to_update. Mark the definition site for 2613 NAME as interesting. BLOCKS and INSERT_PHI_P are as in 2614 prepare_names_to_update. */ 2615 2616 static void 2617 prepare_def_site_for (tree name, bool insert_phi_p) 2618 { 2619 gimple *stmt; 2620 basic_block bb; 2621 2622 gcc_checking_assert (names_to_release == NULL 2623 || !bitmap_bit_p (names_to_release, 2624 SSA_NAME_VERSION (name))); 2625 2626 stmt = SSA_NAME_DEF_STMT (name); 2627 bb = gimple_bb (stmt); 2628 if (bb) 2629 { 2630 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun)); 2631 mark_block_for_update (bb); 2632 mark_def_interesting (name, stmt, bb, insert_phi_p); 2633 } 2634 } 2635 2636 2637 /* Mark definition and use sites of names in NEW_SSA_NAMES and 2638 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert 2639 PHI nodes for newly created names. */ 2640 2641 static void 2642 prepare_names_to_update (bool insert_phi_p) 2643 { 2644 unsigned i = 0; 2645 bitmap_iterator bi; 2646 sbitmap_iterator sbi; 2647 2648 /* If a name N from NEW_SSA_NAMES is also marked to be released, 2649 remove it from NEW_SSA_NAMES so that we don't try to visit its 2650 defining basic block (which most likely doesn't exist). Notice 2651 that we cannot do the same with names in OLD_SSA_NAMES because we 2652 want to replace existing instances. */ 2653 if (names_to_release) 2654 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi) 2655 bitmap_clear_bit (new_ssa_names, i); 2656 2657 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old 2658 names may be considered to be live-in on blocks that contain 2659 definitions for their replacements. */ 2660 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi) 2661 prepare_def_site_for (ssa_name (i), insert_phi_p); 2662 2663 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from 2664 OLD_SSA_NAMES, but we have to ignore its definition site. */ 2665 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi) 2666 { 2667 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i)) 2668 prepare_def_site_for (ssa_name (i), insert_phi_p); 2669 prepare_use_sites_for (ssa_name (i), insert_phi_p); 2670 } 2671 } 2672 2673 2674 /* Dump all the names replaced by NAME to FILE. */ 2675 2676 void 2677 dump_names_replaced_by (FILE *file, tree name) 2678 { 2679 unsigned i; 2680 bitmap old_set; 2681 bitmap_iterator bi; 2682 2683 print_generic_expr (file, name, 0); 2684 fprintf (file, " -> { "); 2685 2686 old_set = names_replaced_by (name); 2687 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi) 2688 { 2689 print_generic_expr (file, ssa_name (i), 0); 2690 fprintf (file, " "); 2691 } 2692 2693 fprintf (file, "}\n"); 2694 } 2695 2696 2697 /* Dump all the names replaced by NAME to stderr. */ 2698 2699 DEBUG_FUNCTION void 2700 debug_names_replaced_by (tree name) 2701 { 2702 dump_names_replaced_by (stderr, name); 2703 } 2704 2705 2706 /* Dump SSA update information to FILE. */ 2707 2708 void 2709 dump_update_ssa (FILE *file) 2710 { 2711 unsigned i = 0; 2712 bitmap_iterator bi; 2713 2714 if (!need_ssa_update_p (cfun)) 2715 return; 2716 2717 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0) 2718 { 2719 sbitmap_iterator sbi; 2720 2721 fprintf (file, "\nSSA replacement table\n"); 2722 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces " 2723 "O_1, ..., O_j\n\n"); 2724 2725 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi) 2726 dump_names_replaced_by (file, ssa_name (i)); 2727 } 2728 2729 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set)) 2730 { 2731 fprintf (file, "\nSymbols to be put in SSA form\n"); 2732 dump_decl_set (file, symbols_to_rename_set); 2733 fprintf (file, "\n"); 2734 } 2735 2736 if (names_to_release && !bitmap_empty_p (names_to_release)) 2737 { 2738 fprintf (file, "\nSSA names to release after updating the SSA web\n\n"); 2739 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi) 2740 { 2741 print_generic_expr (file, ssa_name (i), 0); 2742 fprintf (file, " "); 2743 } 2744 fprintf (file, "\n"); 2745 } 2746 } 2747 2748 2749 /* Dump SSA update information to stderr. */ 2750 2751 DEBUG_FUNCTION void 2752 debug_update_ssa (void) 2753 { 2754 dump_update_ssa (stderr); 2755 } 2756 2757 2758 /* Initialize data structures used for incremental SSA updates. */ 2759 2760 static void 2761 init_update_ssa (struct function *fn) 2762 { 2763 /* Reserve more space than the current number of names. The calls to 2764 add_new_name_mapping are typically done after creating new SSA 2765 names, so we'll need to reallocate these arrays. */ 2766 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR); 2767 bitmap_clear (old_ssa_names); 2768 2769 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR); 2770 bitmap_clear (new_ssa_names); 2771 2772 bitmap_obstack_initialize (&update_ssa_obstack); 2773 2774 names_to_release = NULL; 2775 update_ssa_initialized_fn = fn; 2776 } 2777 2778 2779 /* Deallocate data structures used for incremental SSA updates. */ 2780 2781 void 2782 delete_update_ssa (void) 2783 { 2784 unsigned i; 2785 bitmap_iterator bi; 2786 2787 sbitmap_free (old_ssa_names); 2788 old_ssa_names = NULL; 2789 2790 sbitmap_free (new_ssa_names); 2791 new_ssa_names = NULL; 2792 2793 BITMAP_FREE (symbols_to_rename_set); 2794 symbols_to_rename_set = NULL; 2795 symbols_to_rename.release (); 2796 2797 if (names_to_release) 2798 { 2799 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi) 2800 release_ssa_name (ssa_name (i)); 2801 BITMAP_FREE (names_to_release); 2802 } 2803 2804 clear_ssa_name_info (); 2805 2806 fini_ssa_renamer (); 2807 2808 if (blocks_with_phis_to_rewrite) 2809 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi) 2810 { 2811 vec<gphi *> phis = phis_to_rewrite[i]; 2812 phis.release (); 2813 phis_to_rewrite[i].create (0); 2814 } 2815 2816 BITMAP_FREE (blocks_with_phis_to_rewrite); 2817 BITMAP_FREE (blocks_to_update); 2818 2819 update_ssa_initialized_fn = NULL; 2820 } 2821 2822 2823 /* Create a new name for OLD_NAME in statement STMT and replace the 2824 operand pointed to by DEF_P with the newly created name. If DEF_P 2825 is NULL then STMT should be a GIMPLE assignment. 2826 Return the new name and register the replacement mapping <NEW, OLD> in 2827 update_ssa's tables. */ 2828 2829 tree 2830 create_new_def_for (tree old_name, gimple *stmt, def_operand_p def) 2831 { 2832 tree new_name; 2833 2834 timevar_push (TV_TREE_SSA_INCREMENTAL); 2835 2836 if (!update_ssa_initialized_fn) 2837 init_update_ssa (cfun); 2838 2839 gcc_assert (update_ssa_initialized_fn == cfun); 2840 2841 new_name = duplicate_ssa_name (old_name, stmt); 2842 if (def) 2843 SET_DEF (def, new_name); 2844 else 2845 gimple_assign_set_lhs (stmt, new_name); 2846 2847 if (gimple_code (stmt) == GIMPLE_PHI) 2848 { 2849 basic_block bb = gimple_bb (stmt); 2850 2851 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */ 2852 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb); 2853 } 2854 2855 add_new_name_mapping (new_name, old_name); 2856 2857 /* For the benefit of passes that will be updating the SSA form on 2858 their own, set the current reaching definition of OLD_NAME to be 2859 NEW_NAME. */ 2860 get_ssa_name_ann (old_name)->info.current_def = new_name; 2861 2862 timevar_pop (TV_TREE_SSA_INCREMENTAL); 2863 2864 return new_name; 2865 } 2866 2867 2868 /* Mark virtual operands of FN for renaming by update_ssa. */ 2869 2870 void 2871 mark_virtual_operands_for_renaming (struct function *fn) 2872 { 2873 fn->gimple_df->ssa_renaming_needed = 1; 2874 fn->gimple_df->rename_vops = 1; 2875 } 2876 2877 /* Replace all uses of NAME by underlying variable and mark it 2878 for renaming. This assumes the defining statement of NAME is 2879 going to be removed. */ 2880 2881 void 2882 mark_virtual_operand_for_renaming (tree name) 2883 { 2884 tree name_var = SSA_NAME_VAR (name); 2885 bool used = false; 2886 imm_use_iterator iter; 2887 use_operand_p use_p; 2888 gimple *stmt; 2889 2890 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var)); 2891 FOR_EACH_IMM_USE_STMT (stmt, iter, name) 2892 { 2893 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 2894 SET_USE (use_p, name_var); 2895 used = true; 2896 } 2897 if (used) 2898 mark_virtual_operands_for_renaming (cfun); 2899 } 2900 2901 /* Replace all uses of the virtual PHI result by its underlying variable 2902 and mark it for renaming. This assumes the PHI node is going to be 2903 removed. */ 2904 2905 void 2906 mark_virtual_phi_result_for_renaming (gphi *phi) 2907 { 2908 if (dump_file && (dump_flags & TDF_DETAILS)) 2909 { 2910 fprintf (dump_file, "Marking result for renaming : "); 2911 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); 2912 fprintf (dump_file, "\n"); 2913 } 2914 2915 mark_virtual_operand_for_renaming (gimple_phi_result (phi)); 2916 } 2917 2918 /* Return true if there is any work to be done by update_ssa 2919 for function FN. */ 2920 2921 bool 2922 need_ssa_update_p (struct function *fn) 2923 { 2924 gcc_assert (fn != NULL); 2925 return (update_ssa_initialized_fn == fn 2926 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed)); 2927 } 2928 2929 /* Return true if name N has been registered in the replacement table. */ 2930 2931 bool 2932 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED) 2933 { 2934 if (!update_ssa_initialized_fn) 2935 return false; 2936 2937 gcc_assert (update_ssa_initialized_fn == cfun); 2938 2939 return is_new_name (n) || is_old_name (n); 2940 } 2941 2942 2943 /* Mark NAME to be released after update_ssa has finished. */ 2944 2945 void 2946 release_ssa_name_after_update_ssa (tree name) 2947 { 2948 gcc_assert (cfun && update_ssa_initialized_fn == cfun); 2949 2950 if (names_to_release == NULL) 2951 names_to_release = BITMAP_ALLOC (NULL); 2952 2953 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name)); 2954 } 2955 2956 2957 /* Insert new PHI nodes to replace VAR. DFS contains dominance 2958 frontier information. BLOCKS is the set of blocks to be updated. 2959 2960 This is slightly different than the regular PHI insertion 2961 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for 2962 real names (i.e., GIMPLE registers) are inserted: 2963 2964 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI 2965 nodes inside the region affected by the block that defines VAR 2966 and the blocks that define all its replacements. All these 2967 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS. 2968 2969 First, we compute the entry point to the region (ENTRY). This is 2970 given by the nearest common dominator to all the definition 2971 blocks. When computing the iterated dominance frontier (IDF), any 2972 block not strictly dominated by ENTRY is ignored. 2973 2974 We then call the standard PHI insertion algorithm with the pruned 2975 IDF. 2976 2977 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real 2978 names is not pruned. PHI nodes are inserted at every IDF block. */ 2979 2980 static void 2981 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks, 2982 unsigned update_flags) 2983 { 2984 basic_block entry; 2985 def_blocks *db; 2986 bitmap idf, pruned_idf; 2987 bitmap_iterator bi; 2988 unsigned i; 2989 2990 if (TREE_CODE (var) == SSA_NAME) 2991 gcc_checking_assert (is_old_name (var)); 2992 else 2993 gcc_checking_assert (marked_for_renaming (var)); 2994 2995 /* Get all the definition sites for VAR. */ 2996 db = find_def_blocks_for (var); 2997 2998 /* No need to do anything if there were no definitions to VAR. */ 2999 if (db == NULL || bitmap_empty_p (db->def_blocks)) 3000 return; 3001 3002 /* Compute the initial iterated dominance frontier. */ 3003 idf = compute_idf (db->def_blocks, dfs); 3004 pruned_idf = BITMAP_ALLOC (NULL); 3005 3006 if (TREE_CODE (var) == SSA_NAME) 3007 { 3008 if (update_flags == TODO_update_ssa) 3009 { 3010 /* If doing regular SSA updates for GIMPLE registers, we are 3011 only interested in IDF blocks dominated by the nearest 3012 common dominator of all the definition blocks. */ 3013 entry = nearest_common_dominator_for_set (CDI_DOMINATORS, 3014 db->def_blocks); 3015 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 3016 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi) 3017 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry 3018 && dominated_by_p (CDI_DOMINATORS, 3019 BASIC_BLOCK_FOR_FN (cfun, i), entry)) 3020 bitmap_set_bit (pruned_idf, i); 3021 } 3022 else 3023 { 3024 /* Otherwise, do not prune the IDF for VAR. */ 3025 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi); 3026 bitmap_copy (pruned_idf, idf); 3027 } 3028 } 3029 else 3030 { 3031 /* Otherwise, VAR is a symbol that needs to be put into SSA form 3032 for the first time, so we need to compute the full IDF for 3033 it. */ 3034 bitmap_copy (pruned_idf, idf); 3035 } 3036 3037 if (!bitmap_empty_p (pruned_idf)) 3038 { 3039 /* Make sure that PRUNED_IDF blocks and all their feeding blocks 3040 are included in the region to be updated. The feeding blocks 3041 are important to guarantee that the PHI arguments are renamed 3042 properly. */ 3043 3044 /* FIXME, this is not needed if we are updating symbols. We are 3045 already starting at the ENTRY block anyway. */ 3046 bitmap_ior_into (blocks, pruned_idf); 3047 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi) 3048 { 3049 edge e; 3050 edge_iterator ei; 3051 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 3052 3053 FOR_EACH_EDGE (e, ei, bb->preds) 3054 if (e->src->index >= 0) 3055 bitmap_set_bit (blocks, e->src->index); 3056 } 3057 3058 insert_phi_nodes_for (var, pruned_idf, true); 3059 } 3060 3061 BITMAP_FREE (pruned_idf); 3062 BITMAP_FREE (idf); 3063 } 3064 3065 /* Sort symbols_to_rename after their DECL_UID. */ 3066 3067 static int 3068 insert_updated_phi_nodes_compare_uids (const void *a, const void *b) 3069 { 3070 const_tree syma = *(const const_tree *)a; 3071 const_tree symb = *(const const_tree *)b; 3072 if (DECL_UID (syma) == DECL_UID (symb)) 3073 return 0; 3074 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1; 3075 } 3076 3077 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of 3078 existing SSA names (OLD_SSA_NAMES), update the SSA form so that: 3079 3080 1- The names in OLD_SSA_NAMES dominated by the definitions of 3081 NEW_SSA_NAMES are all re-written to be reached by the 3082 appropriate definition from NEW_SSA_NAMES. 3083 3084 2- If needed, new PHI nodes are added to the iterated dominance 3085 frontier of the blocks where each of NEW_SSA_NAMES are defined. 3086 3087 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by 3088 calling create_new_def_for to create new defs for names that the 3089 caller wants to replace. 3090 3091 The caller cretaes the new names to be inserted and the names that need 3092 to be replaced by calling create_new_def_for for each old definition 3093 to be replaced. Note that the function assumes that the 3094 new defining statement has already been inserted in the IL. 3095 3096 For instance, given the following code: 3097 3098 1 L0: 3099 2 x_1 = PHI (0, x_5) 3100 3 if (x_1 < 10) 3101 4 if (x_1 > 7) 3102 5 y_2 = 0 3103 6 else 3104 7 y_3 = x_1 + x_7 3105 8 endif 3106 9 x_5 = x_1 + 1 3107 10 goto L0; 3108 11 endif 3109 3110 Suppose that we insert new names x_10 and x_11 (lines 4 and 8). 3111 3112 1 L0: 3113 2 x_1 = PHI (0, x_5) 3114 3 if (x_1 < 10) 3115 4 x_10 = ... 3116 5 if (x_1 > 7) 3117 6 y_2 = 0 3118 7 else 3119 8 x_11 = ... 3120 9 y_3 = x_1 + x_7 3121 10 endif 3122 11 x_5 = x_1 + 1 3123 12 goto L0; 3124 13 endif 3125 3126 We want to replace all the uses of x_1 with the new definitions of 3127 x_10 and x_11. Note that the only uses that should be replaced are 3128 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should 3129 *not* be replaced (this is why we cannot just mark symbol 'x' for 3130 renaming). 3131 3132 Additionally, we may need to insert a PHI node at line 11 because 3133 that is a merge point for x_10 and x_11. So the use of x_1 at line 3134 11 will be replaced with the new PHI node. The insertion of PHI 3135 nodes is optional. They are not strictly necessary to preserve the 3136 SSA form, and depending on what the caller inserted, they may not 3137 even be useful for the optimizers. UPDATE_FLAGS controls various 3138 aspects of how update_ssa operates, see the documentation for 3139 TODO_update_ssa*. */ 3140 3141 void 3142 update_ssa (unsigned update_flags) 3143 { 3144 basic_block bb, start_bb; 3145 bitmap_iterator bi; 3146 unsigned i = 0; 3147 bool insert_phi_p; 3148 sbitmap_iterator sbi; 3149 tree sym; 3150 3151 /* Only one update flag should be set. */ 3152 gcc_assert (update_flags == TODO_update_ssa 3153 || update_flags == TODO_update_ssa_no_phi 3154 || update_flags == TODO_update_ssa_full_phi 3155 || update_flags == TODO_update_ssa_only_virtuals); 3156 3157 if (!need_ssa_update_p (cfun)) 3158 return; 3159 3160 if (flag_checking) 3161 { 3162 timevar_push (TV_TREE_STMT_VERIFY); 3163 3164 bool err = false; 3165 3166 FOR_EACH_BB_FN (bb, cfun) 3167 { 3168 gimple_stmt_iterator gsi; 3169 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 3170 { 3171 gimple *stmt = gsi_stmt (gsi); 3172 3173 ssa_op_iter i; 3174 use_operand_p use_p; 3175 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES) 3176 { 3177 tree use = USE_FROM_PTR (use_p); 3178 if (TREE_CODE (use) != SSA_NAME) 3179 continue; 3180 3181 if (SSA_NAME_IN_FREE_LIST (use)) 3182 { 3183 error ("statement uses released SSA name:"); 3184 debug_gimple_stmt (stmt); 3185 fprintf (stderr, "The use of "); 3186 print_generic_expr (stderr, use, 0); 3187 fprintf (stderr," should have been replaced\n"); 3188 err = true; 3189 } 3190 } 3191 } 3192 } 3193 3194 if (err) 3195 internal_error ("cannot update SSA form"); 3196 3197 timevar_pop (TV_TREE_STMT_VERIFY); 3198 } 3199 3200 timevar_push (TV_TREE_SSA_INCREMENTAL); 3201 3202 if (dump_file && (dump_flags & TDF_DETAILS)) 3203 fprintf (dump_file, "\nUpdating SSA:\n"); 3204 3205 if (!update_ssa_initialized_fn) 3206 init_update_ssa (cfun); 3207 else if (update_flags == TODO_update_ssa_only_virtuals) 3208 { 3209 /* If we only need to update virtuals, remove all the mappings for 3210 real names before proceeding. The caller is responsible for 3211 having dealt with the name mappings before calling update_ssa. */ 3212 bitmap_clear (old_ssa_names); 3213 bitmap_clear (new_ssa_names); 3214 } 3215 3216 gcc_assert (update_ssa_initialized_fn == cfun); 3217 3218 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL); 3219 if (!phis_to_rewrite.exists ()) 3220 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1); 3221 blocks_to_update = BITMAP_ALLOC (NULL); 3222 3223 /* Ensure that the dominance information is up-to-date. */ 3224 calculate_dominance_info (CDI_DOMINATORS); 3225 3226 insert_phi_p = (update_flags != TODO_update_ssa_no_phi); 3227 3228 /* If there are names defined in the replacement table, prepare 3229 definition and use sites for all the names in NEW_SSA_NAMES and 3230 OLD_SSA_NAMES. */ 3231 if (bitmap_first_set_bit (new_ssa_names) >= 0) 3232 { 3233 prepare_names_to_update (insert_phi_p); 3234 3235 /* If all the names in NEW_SSA_NAMES had been marked for 3236 removal, and there are no symbols to rename, then there's 3237 nothing else to do. */ 3238 if (bitmap_first_set_bit (new_ssa_names) < 0 3239 && !cfun->gimple_df->ssa_renaming_needed) 3240 goto done; 3241 } 3242 3243 /* Next, determine the block at which to start the renaming process. */ 3244 if (cfun->gimple_df->ssa_renaming_needed) 3245 { 3246 /* If we rename bare symbols initialize the mapping to 3247 auxiliar info we need to keep track of. */ 3248 var_infos = new hash_table<var_info_hasher> (47); 3249 3250 /* If we have to rename some symbols from scratch, we need to 3251 start the process at the root of the CFG. FIXME, it should 3252 be possible to determine the nearest block that had a 3253 definition for each of the symbols that are marked for 3254 updating. For now this seems more work than it's worth. */ 3255 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); 3256 3257 /* Traverse the CFG looking for existing definitions and uses of 3258 symbols in SSA operands. Mark interesting blocks and 3259 statements and set local live-in information for the PHI 3260 placement heuristics. */ 3261 prepare_block_for_update (start_bb, insert_phi_p); 3262 3263 if (flag_checking) 3264 for (i = 1; i < num_ssa_names; ++i) 3265 { 3266 tree name = ssa_name (i); 3267 if (!name 3268 || virtual_operand_p (name)) 3269 continue; 3270 3271 /* For all but virtual operands, which do not have SSA names 3272 with overlapping life ranges, ensure that symbols marked 3273 for renaming do not have existing SSA names associated with 3274 them as we do not re-write them out-of-SSA before going 3275 into SSA for the remaining symbol uses. */ 3276 if (marked_for_renaming (SSA_NAME_VAR (name))) 3277 { 3278 fprintf (stderr, "Existing SSA name for symbol marked for " 3279 "renaming: "); 3280 print_generic_expr (stderr, name, TDF_SLIM); 3281 fprintf (stderr, "\n"); 3282 internal_error ("SSA corruption"); 3283 } 3284 } 3285 } 3286 else 3287 { 3288 /* Otherwise, the entry block to the region is the nearest 3289 common dominator for the blocks in BLOCKS. */ 3290 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, 3291 blocks_to_update); 3292 } 3293 3294 /* If requested, insert PHI nodes at the iterated dominance frontier 3295 of every block, creating new definitions for names in OLD_SSA_NAMES 3296 and for symbols found. */ 3297 if (insert_phi_p) 3298 { 3299 bitmap_head *dfs; 3300 3301 /* If the caller requested PHI nodes to be added, compute 3302 dominance frontiers. */ 3303 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun)); 3304 FOR_EACH_BB_FN (bb, cfun) 3305 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack); 3306 compute_dominance_frontiers (dfs); 3307 3308 if (bitmap_first_set_bit (old_ssa_names) >= 0) 3309 { 3310 sbitmap_iterator sbi; 3311 3312 /* insert_update_phi_nodes_for will call add_new_name_mapping 3313 when inserting new PHI nodes, so the set OLD_SSA_NAMES 3314 will grow while we are traversing it (but it will not 3315 gain any new members). Copy OLD_SSA_NAMES to a temporary 3316 for traversal. */ 3317 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names)); 3318 bitmap_copy (tmp, old_ssa_names); 3319 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi) 3320 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update, 3321 update_flags); 3322 sbitmap_free (tmp); 3323 } 3324 3325 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids); 3326 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym) 3327 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update, 3328 update_flags); 3329 3330 FOR_EACH_BB_FN (bb, cfun) 3331 bitmap_clear (&dfs[bb->index]); 3332 free (dfs); 3333 3334 /* Insertion of PHI nodes may have added blocks to the region. 3335 We need to re-compute START_BB to include the newly added 3336 blocks. */ 3337 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 3338 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, 3339 blocks_to_update); 3340 } 3341 3342 /* Reset the current definition for name and symbol before renaming 3343 the sub-graph. */ 3344 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi) 3345 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE; 3346 3347 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym) 3348 get_var_info (sym)->info.current_def = NULL_TREE; 3349 3350 /* Now start the renaming process at START_BB. */ 3351 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 3352 bitmap_clear (interesting_blocks); 3353 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi) 3354 bitmap_set_bit (interesting_blocks, i); 3355 3356 rewrite_blocks (start_bb, REWRITE_UPDATE); 3357 3358 sbitmap_free (interesting_blocks); 3359 3360 /* Debugging dumps. */ 3361 if (dump_file) 3362 { 3363 int c; 3364 unsigned i; 3365 3366 dump_update_ssa (dump_file); 3367 3368 fprintf (dump_file, "Incremental SSA update started at block: %d\n", 3369 start_bb->index); 3370 3371 c = 0; 3372 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi) 3373 c++; 3374 fprintf (dump_file, "Number of blocks in CFG: %d\n", 3375 last_basic_block_for_fn (cfun)); 3376 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n", 3377 c, PERCENT (c, last_basic_block_for_fn (cfun))); 3378 3379 if (dump_flags & TDF_DETAILS) 3380 { 3381 fprintf (dump_file, "Affected blocks:"); 3382 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi) 3383 fprintf (dump_file, " %u", i); 3384 fprintf (dump_file, "\n"); 3385 } 3386 3387 fprintf (dump_file, "\n\n"); 3388 } 3389 3390 /* Free allocated memory. */ 3391 done: 3392 delete_update_ssa (); 3393 3394 timevar_pop (TV_TREE_SSA_INCREMENTAL); 3395 } 3396