xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-into-ssa.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Rewrite a program in Normal form into SSA.
2    Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Diego Novillo <dnovillo@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12 
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
51 
52 
53 /* This file builds the SSA form for a function as described in:
54    R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
55    Computing Static Single Assignment Form and the Control Dependence
56    Graph. ACM Transactions on Programming Languages and Systems,
57    13(4):451-490, October 1991.  */
58 
59 /* Structure to map a variable VAR to the set of blocks that contain
60    definitions for VAR.  */
61 struct def_blocks_d
62 {
63   /* The variable.  */
64   tree var;
65 
66   /* Blocks that contain definitions of VAR.  Bit I will be set if the
67      Ith block contains a definition of VAR.  */
68   bitmap def_blocks;
69 
70   /* Blocks that contain a PHI node for VAR.  */
71   bitmap phi_blocks;
72 
73   /* Blocks where VAR is live-on-entry.  Similar semantics as
74      DEF_BLOCKS.  */
75   bitmap livein_blocks;
76 };
77 
78 
79 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
80    DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
81    basic blocks where VAR is defined (assigned a new value).  It also
82    contains a bitmap of all the blocks where VAR is live-on-entry
83    (i.e., there is a use of VAR in block B without a preceding
84    definition in B).  The live-on-entry information is used when
85    computing PHI pruning heuristics.  */
86 static htab_t def_blocks;
87 
88 /* Stack of trees used to restore the global currdefs to its original
89    state after completing rewriting of a block and its dominator
90    children.  Its elements have the following properties:
91 
92    - An SSA_NAME (N) indicates that the current definition of the
93      underlying variable should be set to the given SSA_NAME.  If the
94      symbol associated with the SSA_NAME is not a GIMPLE register, the
95      next slot in the stack must be a _DECL node (SYM).  In this case,
96      the name N in the previous slot is the current reaching
97      definition for SYM.
98 
99    - A _DECL node indicates that the underlying variable has no
100      current definition.
101 
102    - A NULL node at the top entry is used to mark the last slot
103      associated with the current block.  */
104 static VEC(tree,heap) *block_defs_stack;
105 
106 
107 /* Set of existing SSA names being replaced by update_ssa.  */
108 static sbitmap old_ssa_names;
109 
110 /* Set of new SSA names being added by update_ssa.  Note that both
111    NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112    the operations done on them are presence tests.  */
113 static sbitmap new_ssa_names;
114 
115 sbitmap interesting_blocks;
116 
117 /* Set of SSA names that have been marked to be released after they
118    were registered in the replacement table.  They will be finally
119    released after we finish updating the SSA web.  */
120 static bitmap names_to_release;
121 
122 static VEC(gimple_vec, heap) *phis_to_rewrite;
123 
124 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE.  */
125 static bitmap blocks_with_phis_to_rewrite;
126 
127 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES.  These sets need
128    to grow as the callers to register_new_name_mapping will typically
129    create new names on the fly.  FIXME.  Currently set to 1/3 to avoid
130    frequent reallocations but still need to find a reasonable growth
131    strategy.  */
132 #define NAME_SETS_GROWTH_FACTOR	(MAX (3, num_ssa_names / 3))
133 
134 /* Tuple used to represent replacement mappings.  */
135 struct repl_map_d
136 {
137   tree name;
138   bitmap set;
139 };
140 
141 
142 /* NEW -> OLD_SET replacement table.  If we are replacing several
143    existing SSA names O_1, O_2, ..., O_j with a new name N_i,
144    then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }.  */
145 static htab_t repl_tbl;
146 
147 /* The function the SSA updating data structures have been initialized for.
148    NULL if they need to be initialized by register_new_name_mapping.  */
149 static struct function *update_ssa_initialized_fn = NULL;
150 
151 /* Statistics kept by update_ssa to use in the virtual mapping
152    heuristic.  If the number of virtual mappings is beyond certain
153    threshold, the updater will switch from using the mappings into
154    renaming the virtual symbols from scratch.  In some cases, the
155    large number of name mappings for virtual names causes significant
156    slowdowns in the PHI insertion code.  */
157 struct update_ssa_stats_d
158 {
159   unsigned num_virtual_mappings;
160   unsigned num_total_mappings;
161   bitmap virtual_symbols;
162   unsigned num_virtual_symbols;
163 };
164 static struct update_ssa_stats_d update_ssa_stats;
165 
166 /* Global data to attach to the main dominator walk structure.  */
167 struct mark_def_sites_global_data
168 {
169   /* This bitmap contains the variables which are set before they
170      are used in a basic block.  */
171   bitmap kills;
172 };
173 
174 
175 /* Information stored for SSA names.  */
176 struct ssa_name_info
177 {
178   /* The current reaching definition replacing this SSA name.  */
179   tree current_def;
180 
181   /* This field indicates whether or not the variable may need PHI nodes.
182      See the enum's definition for more detailed information about the
183      states.  */
184   ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
185 
186   /* Age of this record (so that info_for_ssa_name table can be cleared
187      quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
188      are assumed to be null.  */
189   unsigned age;
190 };
191 
192 /* The information associated with names.  */
193 typedef struct ssa_name_info *ssa_name_info_p;
194 DEF_VEC_P (ssa_name_info_p);
195 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
196 
197 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
198 static unsigned current_info_for_ssa_name_age;
199 
200 /* The set of blocks affected by update_ssa.  */
201 static bitmap blocks_to_update;
202 
203 /* The main entry point to the SSA renamer (rewrite_blocks) may be
204    called several times to do different, but related, tasks.
205    Initially, we need it to rename the whole program into SSA form.
206    At other times, we may need it to only rename into SSA newly
207    exposed symbols.  Finally, we can also call it to incrementally fix
208    an already built SSA web.  */
209 enum rewrite_mode {
210     /* Convert the whole function into SSA form.  */
211     REWRITE_ALL,
212 
213     /* Incrementally update the SSA web by replacing existing SSA
214        names with new ones.  See update_ssa for details.  */
215     REWRITE_UPDATE
216 };
217 
218 
219 
220 
221 /* Prototypes for debugging functions.  */
222 extern void dump_tree_ssa (FILE *);
223 extern void debug_tree_ssa (void);
224 extern void debug_def_blocks (void);
225 extern void dump_tree_ssa_stats (FILE *);
226 extern void debug_tree_ssa_stats (void);
227 extern void dump_update_ssa (FILE *);
228 extern void debug_update_ssa (void);
229 extern void dump_names_replaced_by (FILE *, tree);
230 extern void debug_names_replaced_by (tree);
231 extern void dump_def_blocks (FILE *);
232 extern void debug_def_blocks (void);
233 extern void dump_defs_stack (FILE *, int);
234 extern void debug_defs_stack (int);
235 extern void dump_currdefs (FILE *);
236 extern void debug_currdefs (void);
237 
238 /* Return true if STMT needs to be rewritten.  When renaming a subset
239    of the variables, not all statements will be processed.  This is
240    decided in mark_def_sites.  */
241 
242 static inline bool
243 rewrite_uses_p (gimple stmt)
244 {
245   return gimple_visited_p (stmt);
246 }
247 
248 
249 /* Set the rewrite marker on STMT to the value given by REWRITE_P.  */
250 
251 static inline void
252 set_rewrite_uses (gimple stmt, bool rewrite_p)
253 {
254   gimple_set_visited (stmt, rewrite_p);
255 }
256 
257 
258 /* Return true if the DEFs created by statement STMT should be
259    registered when marking new definition sites.  This is slightly
260    different than rewrite_uses_p: it's used by update_ssa to
261    distinguish statements that need to have both uses and defs
262    processed from those that only need to have their defs processed.
263    Statements that define new SSA names only need to have their defs
264    registered, but they don't need to have their uses renamed.  */
265 
266 static inline bool
267 register_defs_p (gimple stmt)
268 {
269   return gimple_plf (stmt, GF_PLF_1) != 0;
270 }
271 
272 
273 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered.  */
274 
275 static inline void
276 set_register_defs (gimple stmt, bool register_defs_p)
277 {
278   gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
279 }
280 
281 
282 /* Get the information associated with NAME.  */
283 
284 static inline ssa_name_info_p
285 get_ssa_name_ann (tree name)
286 {
287   unsigned ver = SSA_NAME_VERSION (name);
288   unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
289   struct ssa_name_info *info;
290 
291   if (ver >= len)
292     {
293       unsigned new_len = num_ssa_names;
294 
295       VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
296       while (len++ < new_len)
297 	{
298 	  struct ssa_name_info *info = XCNEW (struct ssa_name_info);
299 	  info->age = current_info_for_ssa_name_age;
300 	  VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
301 	}
302     }
303 
304   info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
305   if (info->age < current_info_for_ssa_name_age)
306     {
307       info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
308       info->current_def = NULL_TREE;
309       info->age = current_info_for_ssa_name_age;
310     }
311 
312   return info;
313 }
314 
315 
316 /* Clears info for SSA names.  */
317 
318 static void
319 clear_ssa_name_info (void)
320 {
321   current_info_for_ssa_name_age++;
322 }
323 
324 
325 /* Get phi_state field for VAR.  */
326 
327 static inline enum need_phi_state
328 get_phi_state (tree var)
329 {
330   if (TREE_CODE (var) == SSA_NAME)
331     return get_ssa_name_ann (var)->need_phi_state;
332   else
333     return var_ann (var)->need_phi_state;
334 }
335 
336 
337 /* Sets phi_state field for VAR to STATE.  */
338 
339 static inline void
340 set_phi_state (tree var, enum need_phi_state state)
341 {
342   if (TREE_CODE (var) == SSA_NAME)
343     get_ssa_name_ann (var)->need_phi_state = state;
344   else
345     var_ann (var)->need_phi_state = state;
346 }
347 
348 
349 /* Return the current definition for VAR.  */
350 
351 tree
352 get_current_def (tree var)
353 {
354   if (TREE_CODE (var) == SSA_NAME)
355     return get_ssa_name_ann (var)->current_def;
356   else
357     return var_ann (var)->current_def;
358 }
359 
360 
361 /* Sets current definition of VAR to DEF.  */
362 
363 void
364 set_current_def (tree var, tree def)
365 {
366   if (TREE_CODE (var) == SSA_NAME)
367     get_ssa_name_ann (var)->current_def = def;
368   else
369     var_ann (var)->current_def = def;
370 }
371 
372 
373 /* Compute global livein information given the set of blocks where
374    an object is locally live at the start of the block (LIVEIN)
375    and the set of blocks where the object is defined (DEF_BLOCKS).
376 
377    Note: This routine augments the existing local livein information
378    to include global livein (i.e., it modifies the underlying bitmap
379    for LIVEIN).  */
380 
381 void
382 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
383 {
384   basic_block bb, *worklist, *tos;
385   unsigned i;
386   bitmap_iterator bi;
387 
388   tos = worklist
389     = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
390 
391   EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
392     *tos++ = BASIC_BLOCK (i);
393 
394   /* Iterate until the worklist is empty.  */
395   while (tos != worklist)
396     {
397       edge e;
398       edge_iterator ei;
399 
400       /* Pull a block off the worklist.  */
401       bb = *--tos;
402 
403       /* For each predecessor block.  */
404       FOR_EACH_EDGE (e, ei, bb->preds)
405 	{
406 	  basic_block pred = e->src;
407 	  int pred_index = pred->index;
408 
409 	  /* None of this is necessary for the entry block.  */
410 	  if (pred != ENTRY_BLOCK_PTR
411 	      && ! bitmap_bit_p (livein, pred_index)
412 	      && ! bitmap_bit_p (def_blocks, pred_index))
413 	    {
414 	      *tos++ = pred;
415 	      bitmap_set_bit (livein, pred_index);
416 	    }
417 	}
418     }
419 
420   free (worklist);
421 }
422 
423 
424 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
425    all statements in basic block BB.  */
426 
427 static void
428 initialize_flags_in_bb (basic_block bb)
429 {
430   gimple stmt;
431   gimple_stmt_iterator gsi;
432 
433   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
434     {
435       gimple phi = gsi_stmt (gsi);
436       set_rewrite_uses (phi, false);
437       set_register_defs (phi, false);
438     }
439 
440   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
441     {
442       stmt = gsi_stmt (gsi);
443 
444       /* We are going to use the operand cache API, such as
445 	 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST.  The operand
446 	 cache for each statement should be up-to-date.  */
447       gcc_assert (!gimple_modified_p (stmt));
448       set_rewrite_uses (stmt, false);
449       set_register_defs (stmt, false);
450     }
451 }
452 
453 /* Mark block BB as interesting for update_ssa.  */
454 
455 static void
456 mark_block_for_update (basic_block bb)
457 {
458   gcc_assert (blocks_to_update != NULL);
459   if (bitmap_bit_p (blocks_to_update, bb->index))
460     return;
461   bitmap_set_bit (blocks_to_update, bb->index);
462   initialize_flags_in_bb (bb);
463 }
464 
465 /* Return the set of blocks where variable VAR is defined and the blocks
466    where VAR is live on entry (livein).  If no entry is found in
467    DEF_BLOCKS, a new one is created and returned.  */
468 
469 static inline struct def_blocks_d *
470 get_def_blocks_for (tree var)
471 {
472   struct def_blocks_d db, *db_p;
473   void **slot;
474 
475   db.var = var;
476   slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
477   if (*slot == NULL)
478     {
479       db_p = XNEW (struct def_blocks_d);
480       db_p->var = var;
481       db_p->def_blocks = BITMAP_ALLOC (NULL);
482       db_p->phi_blocks = BITMAP_ALLOC (NULL);
483       db_p->livein_blocks = BITMAP_ALLOC (NULL);
484       *slot = (void *) db_p;
485     }
486   else
487     db_p = (struct def_blocks_d *) *slot;
488 
489   return db_p;
490 }
491 
492 
493 /* Mark block BB as the definition site for variable VAR.  PHI_P is true if
494    VAR is defined by a PHI node.  */
495 
496 static void
497 set_def_block (tree var, basic_block bb, bool phi_p)
498 {
499   struct def_blocks_d *db_p;
500   enum need_phi_state state;
501 
502   state = get_phi_state (var);
503   db_p = get_def_blocks_for (var);
504 
505   /* Set the bit corresponding to the block where VAR is defined.  */
506   bitmap_set_bit (db_p->def_blocks, bb->index);
507   if (phi_p)
508     bitmap_set_bit (db_p->phi_blocks, bb->index);
509 
510   /* Keep track of whether or not we may need to insert PHI nodes.
511 
512      If we are in the UNKNOWN state, then this is the first definition
513      of VAR.  Additionally, we have not seen any uses of VAR yet, so
514      we do not need a PHI node for this variable at this time (i.e.,
515      transition to NEED_PHI_STATE_NO).
516 
517      If we are in any other state, then we either have multiple definitions
518      of this variable occurring in different blocks or we saw a use of the
519      variable which was not dominated by the block containing the
520      definition(s).  In this case we may need a PHI node, so enter
521      state NEED_PHI_STATE_MAYBE.  */
522   if (state == NEED_PHI_STATE_UNKNOWN)
523     set_phi_state (var, NEED_PHI_STATE_NO);
524   else
525     set_phi_state (var, NEED_PHI_STATE_MAYBE);
526 }
527 
528 
529 /* Mark block BB as having VAR live at the entry to BB.  */
530 
531 static void
532 set_livein_block (tree var, basic_block bb)
533 {
534   struct def_blocks_d *db_p;
535   enum need_phi_state state = get_phi_state (var);
536 
537   db_p = get_def_blocks_for (var);
538 
539   /* Set the bit corresponding to the block where VAR is live in.  */
540   bitmap_set_bit (db_p->livein_blocks, bb->index);
541 
542   /* Keep track of whether or not we may need to insert PHI nodes.
543 
544      If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
545      by the single block containing the definition(s) of this variable.  If
546      it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
547      NEED_PHI_STATE_MAYBE.  */
548   if (state == NEED_PHI_STATE_NO)
549     {
550       int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
551 
552       if (def_block_index == -1
553 	  || ! dominated_by_p (CDI_DOMINATORS, bb,
554 	                       BASIC_BLOCK (def_block_index)))
555 	set_phi_state (var, NEED_PHI_STATE_MAYBE);
556     }
557   else
558     set_phi_state (var, NEED_PHI_STATE_MAYBE);
559 }
560 
561 
562 /* Return true if symbol SYM is marked for renaming.  */
563 
564 static inline bool
565 symbol_marked_for_renaming (tree sym)
566 {
567   return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
568 }
569 
570 
571 /* Return true if NAME is in OLD_SSA_NAMES.  */
572 
573 static inline bool
574 is_old_name (tree name)
575 {
576   unsigned ver = SSA_NAME_VERSION (name);
577   if (!new_ssa_names)
578     return false;
579   return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
580 }
581 
582 
583 /* Return true if NAME is in NEW_SSA_NAMES.  */
584 
585 static inline bool
586 is_new_name (tree name)
587 {
588   unsigned ver = SSA_NAME_VERSION (name);
589   if (!new_ssa_names)
590     return false;
591   return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
592 }
593 
594 
595 /* Hashing and equality functions for REPL_TBL.  */
596 
597 static hashval_t
598 repl_map_hash (const void *p)
599 {
600   return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
601 }
602 
603 static int
604 repl_map_eq (const void *p1, const void *p2)
605 {
606   return ((const struct repl_map_d *)p1)->name
607 	 == ((const struct repl_map_d *)p2)->name;
608 }
609 
610 static void
611 repl_map_free (void *p)
612 {
613   BITMAP_FREE (((struct repl_map_d *)p)->set);
614   free (p);
615 }
616 
617 
618 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET).  */
619 
620 static inline bitmap
621 names_replaced_by (tree new_tree)
622 {
623   struct repl_map_d m;
624   void **slot;
625 
626   m.name = new_tree;
627   slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
628 
629   /* If N was not registered in the replacement table, return NULL.  */
630   if (slot == NULL || *slot == NULL)
631     return NULL;
632 
633   return ((struct repl_map_d *) *slot)->set;
634 }
635 
636 
637 /* Add OLD to REPL_TBL[NEW_TREE].SET.  */
638 
639 static inline void
640 add_to_repl_tbl (tree new_tree, tree old)
641 {
642   struct repl_map_d m, *mp;
643   void **slot;
644 
645   m.name = new_tree;
646   slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
647   if (*slot == NULL)
648     {
649       mp = XNEW (struct repl_map_d);
650       mp->name = new_tree;
651       mp->set = BITMAP_ALLOC (NULL);
652       *slot = (void *) mp;
653     }
654   else
655     mp = (struct repl_map_d *) *slot;
656 
657   bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
658 }
659 
660 
661 /* Add a new mapping NEW_TREE -> OLD REPL_TBL.  Every entry N_i in REPL_TBL
662    represents the set of names O_1 ... O_j replaced by N_i.  This is
663    used by update_ssa and its helpers to introduce new SSA names in an
664    already formed SSA web.  */
665 
666 static void
667 add_new_name_mapping (tree new_tree, tree old)
668 {
669   timevar_push (TV_TREE_SSA_INCREMENTAL);
670 
671   /* OLD and NEW_TREE must be different SSA names for the same symbol.  */
672   gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
673 
674   /* If this mapping is for virtual names, we will need to update
675      virtual operands.  If this is a mapping for .MEM, then we gather
676      the symbols associated with each name.  */
677   if (!is_gimple_reg (new_tree))
678     {
679       tree sym;
680 
681       update_ssa_stats.num_virtual_mappings++;
682       update_ssa_stats.num_virtual_symbols++;
683 
684       /* Keep counts of virtual mappings and symbols to use in the
685 	 virtual mapping heuristic.  If we have large numbers of
686 	 virtual mappings for a relatively low number of symbols, it
687 	 will make more sense to rename the symbols from scratch.
688 	 Otherwise, the insertion of PHI nodes for each of the old
689 	 names in these mappings will be very slow.  */
690       sym = SSA_NAME_VAR (new_tree);
691       bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
692     }
693 
694   /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
695      caller may have created new names since the set was created.  */
696   if (new_ssa_names->n_bits <= num_ssa_names - 1)
697     {
698       unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
699       new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
700       old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
701     }
702 
703   /* Update the REPL_TBL table.  */
704   add_to_repl_tbl (new_tree, old);
705 
706   /* If OLD had already been registered as a new name, then all the
707      names that OLD replaces should also be replaced by NEW_TREE.  */
708   if (is_new_name (old))
709     bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
710 
711   /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
712      respectively.  */
713   SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
714   SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
715 
716   /* Update mapping counter to use in the virtual mapping heuristic.  */
717   update_ssa_stats.num_total_mappings++;
718 
719   timevar_pop (TV_TREE_SSA_INCREMENTAL);
720 }
721 
722 
723 /* Call back for walk_dominator_tree used to collect definition sites
724    for every variable in the function.  For every statement S in block
725    BB:
726 
727    1- Variables defined by S in the DEFS of S are marked in the bitmap
728       KILLS.
729 
730    2- If S uses a variable VAR and there is no preceding kill of VAR,
731       then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
732 
733    This information is used to determine which variables are live
734    across block boundaries to reduce the number of PHI nodes
735    we create.  */
736 
737 static void
738 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
739 {
740   tree def;
741   use_operand_p use_p;
742   ssa_op_iter iter;
743 
744   /* Since this is the first time that we rewrite the program into SSA
745      form, force an operand scan on every statement.  */
746   update_stmt (stmt);
747 
748   gcc_assert (blocks_to_update == NULL);
749   set_register_defs (stmt, false);
750   set_rewrite_uses (stmt, false);
751 
752   if (is_gimple_debug (stmt))
753     return;
754 
755   /* If a variable is used before being set, then the variable is live
756      across a block boundary, so mark it live-on-entry to BB.  */
757   FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
758     {
759       tree sym = USE_FROM_PTR (use_p);
760       gcc_assert (DECL_P (sym));
761       if (!bitmap_bit_p (kills, DECL_UID (sym)))
762 	set_livein_block (sym, bb);
763       set_rewrite_uses (stmt, true);
764     }
765 
766   /* Now process the defs.  Mark BB as the definition block and add
767      each def to the set of killed symbols.  */
768   FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
769     {
770       gcc_assert (DECL_P (def));
771       set_def_block (def, bb, false);
772       bitmap_set_bit (kills, DECL_UID (def));
773       set_register_defs (stmt, true);
774     }
775 
776   /* If we found the statement interesting then also mark the block BB
777      as interesting.  */
778   if (rewrite_uses_p (stmt) || register_defs_p (stmt))
779     SET_BIT (interesting_blocks, bb->index);
780 }
781 
782 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
783    in the dfs numbering of the dominance tree.  */
784 
785 struct dom_dfsnum
786 {
787   /* Basic block whose index this entry corresponds to.  */
788   unsigned bb_index;
789 
790   /* The dfs number of this node.  */
791   unsigned dfs_num;
792 };
793 
794 /* Compares two entries of type struct dom_dfsnum by dfs_num field.  Callback
795    for qsort.  */
796 
797 static int
798 cmp_dfsnum (const void *a, const void *b)
799 {
800   const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
801   const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
802 
803   return (int) da->dfs_num - (int) db->dfs_num;
804 }
805 
806 /* Among the intervals starting at the N points specified in DEFS, find
807    the one that contains S, and return its bb_index.  */
808 
809 static unsigned
810 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
811 {
812   unsigned f = 0, t = n, m;
813 
814   while (t > f + 1)
815     {
816       m = (f + t) / 2;
817       if (defs[m].dfs_num <= s)
818 	f = m;
819       else
820 	t = m;
821     }
822 
823   return defs[f].bb_index;
824 }
825 
826 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
827    KILLS is a bitmap of blocks where the value is defined before any use.  */
828 
829 static void
830 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
831 {
832   VEC(int, heap) *worklist;
833   bitmap_iterator bi;
834   unsigned i, b, p, u, top;
835   bitmap live_phis;
836   basic_block def_bb, use_bb;
837   edge e;
838   edge_iterator ei;
839   bitmap to_remove;
840   struct dom_dfsnum *defs;
841   unsigned n_defs, adef;
842 
843   if (bitmap_empty_p (uses))
844     {
845       bitmap_clear (phis);
846       return;
847     }
848 
849   /* The phi must dominate a use, or an argument of a live phi.  Also, we
850      do not create any phi nodes in def blocks, unless they are also livein.  */
851   to_remove = BITMAP_ALLOC (NULL);
852   bitmap_and_compl (to_remove, kills, uses);
853   bitmap_and_compl_into (phis, to_remove);
854   if (bitmap_empty_p (phis))
855     {
856       BITMAP_FREE (to_remove);
857       return;
858     }
859 
860   /* We want to remove the unnecessary phi nodes, but we do not want to compute
861      liveness information, as that may be linear in the size of CFG, and if
862      there are lot of different variables to rewrite, this may lead to quadratic
863      behavior.
864 
865      Instead, we basically emulate standard dce.  We put all uses to worklist,
866      then for each of them find the nearest def that dominates them.  If this
867      def is a phi node, we mark it live, and if it was not live before, we
868      add the predecessors of its basic block to the worklist.
869 
870      To quickly locate the nearest def that dominates use, we use dfs numbering
871      of the dominance tree (that is already available in order to speed up
872      queries).  For each def, we have the interval given by the dfs number on
873      entry to and on exit from the corresponding subtree in the dominance tree.
874      The nearest dominator for a given use is the smallest of these intervals
875      that contains entry and exit dfs numbers for the basic block with the use.
876      If we store the bounds for all the uses to an array and sort it, we can
877      locate the nearest dominating def in logarithmic time by binary search.*/
878   bitmap_ior (to_remove, kills, phis);
879   n_defs = bitmap_count_bits (to_remove);
880   defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
881   defs[0].bb_index = 1;
882   defs[0].dfs_num = 0;
883   adef = 1;
884   EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
885     {
886       def_bb = BASIC_BLOCK (i);
887       defs[adef].bb_index = i;
888       defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
889       defs[adef + 1].bb_index = i;
890       defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
891       adef += 2;
892     }
893   BITMAP_FREE (to_remove);
894   gcc_assert (adef == 2 * n_defs + 1);
895   qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
896   gcc_assert (defs[0].bb_index == 1);
897 
898   /* Now each DEFS entry contains the number of the basic block to that the
899      dfs number corresponds.  Change them to the number of basic block that
900      corresponds to the interval following the dfs number.  Also, for the
901      dfs_out numbers, increase the dfs number by one (so that it corresponds
902      to the start of the following interval, not to the end of the current
903      one).  We use WORKLIST as a stack.  */
904   worklist = VEC_alloc (int, heap, n_defs + 1);
905   VEC_quick_push (int, worklist, 1);
906   top = 1;
907   n_defs = 1;
908   for (i = 1; i < adef; i++)
909     {
910       b = defs[i].bb_index;
911       if (b == top)
912 	{
913 	  /* This is a closing element.  Interval corresponding to the top
914 	     of the stack after removing it follows.  */
915 	  VEC_pop (int, worklist);
916 	  top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
917 	  defs[n_defs].bb_index = top;
918 	  defs[n_defs].dfs_num = defs[i].dfs_num + 1;
919 	}
920       else
921 	{
922 	  /* Opening element.  Nothing to do, just push it to the stack and move
923 	     it to the correct position.  */
924 	  defs[n_defs].bb_index = defs[i].bb_index;
925 	  defs[n_defs].dfs_num = defs[i].dfs_num;
926 	  VEC_quick_push (int, worklist, b);
927 	  top = b;
928 	}
929 
930       /* If this interval starts at the same point as the previous one, cancel
931 	 the previous one.  */
932       if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
933 	defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
934       else
935 	n_defs++;
936     }
937   VEC_pop (int, worklist);
938   gcc_assert (VEC_empty (int, worklist));
939 
940   /* Now process the uses.  */
941   live_phis = BITMAP_ALLOC (NULL);
942   EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
943     {
944       VEC_safe_push (int, heap, worklist, i);
945     }
946 
947   while (!VEC_empty (int, worklist))
948     {
949       b = VEC_pop (int, worklist);
950       if (b == ENTRY_BLOCK)
951 	continue;
952 
953       /* If there is a phi node in USE_BB, it is made live.  Otherwise,
954 	 find the def that dominates the immediate dominator of USE_BB
955 	 (the kill in USE_BB does not dominate the use).  */
956       if (bitmap_bit_p (phis, b))
957 	p = b;
958       else
959 	{
960 	  use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
961 	  p = find_dfsnum_interval (defs, n_defs,
962 				    bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
963 	  if (!bitmap_bit_p (phis, p))
964 	    continue;
965 	}
966 
967       /* If the phi node is already live, there is nothing to do.  */
968       if (bitmap_bit_p (live_phis, p))
969 	continue;
970 
971       /* Mark the phi as live, and add the new uses to the worklist.  */
972       bitmap_set_bit (live_phis, p);
973       def_bb = BASIC_BLOCK (p);
974       FOR_EACH_EDGE (e, ei, def_bb->preds)
975 	{
976 	  u = e->src->index;
977 	  if (bitmap_bit_p (uses, u))
978 	    continue;
979 
980 	  /* In case there is a kill directly in the use block, do not record
981 	     the use (this is also necessary for correctness, as we assume that
982 	     uses dominated by a def directly in their block have been filtered
983 	     out before).  */
984 	  if (bitmap_bit_p (kills, u))
985 	    continue;
986 
987 	  bitmap_set_bit (uses, u);
988 	  VEC_safe_push (int, heap, worklist, u);
989 	}
990     }
991 
992   VEC_free (int, heap, worklist);
993   bitmap_copy (phis, live_phis);
994   BITMAP_FREE (live_phis);
995   free (defs);
996 }
997 
998 /* Return the set of blocks where variable VAR is defined and the blocks
999    where VAR is live on entry (livein).  Return NULL, if no entry is
1000    found in DEF_BLOCKS.  */
1001 
1002 static inline struct def_blocks_d *
1003 find_def_blocks_for (tree var)
1004 {
1005   struct def_blocks_d dm;
1006   dm.var = var;
1007   return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1008 }
1009 
1010 
1011 /* Retrieve or create a default definition for symbol SYM.  */
1012 
1013 static inline tree
1014 get_default_def_for (tree sym)
1015 {
1016   tree ddef = gimple_default_def (cfun, sym);
1017 
1018   if (ddef == NULL_TREE)
1019     {
1020       ddef = make_ssa_name (sym, gimple_build_nop ());
1021       set_default_def (sym, ddef);
1022     }
1023 
1024   return ddef;
1025 }
1026 
1027 
1028 /* Marks phi node PHI in basic block BB for rewrite.  */
1029 
1030 static void
1031 mark_phi_for_rewrite (basic_block bb, gimple phi)
1032 {
1033   gimple_vec phis;
1034   unsigned i, idx = bb->index;
1035 
1036   if (rewrite_uses_p (phi))
1037     return;
1038 
1039   set_rewrite_uses (phi, true);
1040 
1041   if (!blocks_with_phis_to_rewrite)
1042     return;
1043 
1044   bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1045   VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1046   for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1047     VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1048 
1049   phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1050   if (!phis)
1051     phis = VEC_alloc (gimple, heap, 10);
1052 
1053   VEC_safe_push (gimple, heap, phis, phi);
1054   VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1055 }
1056 
1057 /* Insert PHI nodes for variable VAR using the iterated dominance
1058    frontier given in PHI_INSERTION_POINTS.  If UPDATE_P is true, this
1059    function assumes that the caller is incrementally updating the
1060    existing SSA form, in which case VAR may be an SSA name instead of
1061    a symbol.
1062 
1063    PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1064    PHI node for VAR.  On exit, only the nodes that received a PHI node
1065    for VAR will be present in PHI_INSERTION_POINTS.  */
1066 
1067 static void
1068 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1069 {
1070   unsigned bb_index;
1071   edge e;
1072   gimple phi;
1073   basic_block bb;
1074   bitmap_iterator bi;
1075   struct def_blocks_d *def_map;
1076 
1077   def_map = find_def_blocks_for (var);
1078   gcc_assert (def_map);
1079 
1080   /* Remove the blocks where we already have PHI nodes for VAR.  */
1081   bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1082 
1083   /* Remove obviously useless phi nodes.  */
1084   prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1085 			  def_map->livein_blocks);
1086 
1087   /* And insert the PHI nodes.  */
1088   EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1089     {
1090       bb = BASIC_BLOCK (bb_index);
1091       if (update_p)
1092 	mark_block_for_update (bb);
1093 
1094       phi = NULL;
1095 
1096       if (TREE_CODE (var) == SSA_NAME)
1097 	{
1098 	  /* If we are rewriting SSA names, create the LHS of the PHI
1099 	     node by duplicating VAR.  This is useful in the case of
1100 	     pointers, to also duplicate pointer attributes (alias
1101 	     information, in particular).  */
1102 	  edge_iterator ei;
1103 	  tree new_lhs;
1104 
1105 	  gcc_assert (update_p);
1106 	  phi = create_phi_node (var, bb);
1107 
1108 	  new_lhs = duplicate_ssa_name (var, phi);
1109 	  gimple_phi_set_result (phi, new_lhs);
1110 	  add_new_name_mapping (new_lhs, var);
1111 
1112 	  /* Add VAR to every argument slot of PHI.  We need VAR in
1113 	     every argument so that rewrite_update_phi_arguments knows
1114 	     which name is this PHI node replacing.  If VAR is a
1115 	     symbol marked for renaming, this is not necessary, the
1116 	     renamer will use the symbol on the LHS to get its
1117 	     reaching definition.  */
1118 	  FOR_EACH_EDGE (e, ei, bb->preds)
1119 	    add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1120 	}
1121       else
1122 	{
1123 	  tree tracked_var;
1124 
1125 	  gcc_assert (DECL_P (var));
1126 	  phi = create_phi_node (var, bb);
1127 
1128 	  tracked_var = target_for_debug_bind (var);
1129 	  if (tracked_var)
1130 	    {
1131 	      gimple note = gimple_build_debug_bind (tracked_var,
1132 						     PHI_RESULT (phi),
1133 						     phi);
1134 	      gimple_stmt_iterator si = gsi_after_labels (bb);
1135 	      gsi_insert_before (&si, note, GSI_SAME_STMT);
1136 	    }
1137 	}
1138 
1139       /* Mark this PHI node as interesting for update_ssa.  */
1140       set_register_defs (phi, true);
1141       mark_phi_for_rewrite (bb, phi);
1142     }
1143 }
1144 
1145 
1146 /* Insert PHI nodes at the dominance frontier of blocks with variable
1147    definitions.  DFS contains the dominance frontier information for
1148    the flowgraph.  */
1149 
1150 static void
1151 insert_phi_nodes (bitmap *dfs)
1152 {
1153   referenced_var_iterator rvi;
1154   bitmap_iterator bi;
1155   tree var;
1156   bitmap vars;
1157   unsigned uid;
1158 
1159   timevar_push (TV_TREE_INSERT_PHI_NODES);
1160 
1161   /* Do two stages to avoid code generation differences for UID
1162      differences but no UID ordering differences.  */
1163 
1164   vars = BITMAP_ALLOC (NULL);
1165   FOR_EACH_REFERENCED_VAR (var, rvi)
1166     {
1167       struct def_blocks_d *def_map;
1168 
1169       def_map = find_def_blocks_for (var);
1170       if (def_map == NULL)
1171 	continue;
1172 
1173       if (get_phi_state (var) != NEED_PHI_STATE_NO)
1174 	bitmap_set_bit (vars, DECL_UID (var));
1175     }
1176 
1177   EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1178     {
1179       tree var = referenced_var (uid);
1180       struct def_blocks_d *def_map;
1181       bitmap idf;
1182 
1183       def_map = find_def_blocks_for (var);
1184       idf = compute_idf (def_map->def_blocks, dfs);
1185       insert_phi_nodes_for (var, idf, false);
1186       BITMAP_FREE (idf);
1187     }
1188 
1189   BITMAP_FREE (vars);
1190 
1191   timevar_pop (TV_TREE_INSERT_PHI_NODES);
1192 }
1193 
1194 
1195 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1196    register DEF (an SSA_NAME) to be a new definition for SYM.  */
1197 
1198 static void
1199 register_new_def (tree def, tree sym)
1200 {
1201   tree currdef;
1202 
1203   /* If this variable is set in a single basic block and all uses are
1204      dominated by the set(s) in that single basic block, then there is
1205      no reason to record anything for this variable in the block local
1206      definition stacks.  Doing so just wastes time and memory.
1207 
1208      This is the same test to prune the set of variables which may
1209      need PHI nodes.  So we just use that information since it's already
1210      computed and available for us to use.  */
1211   if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1212     {
1213       set_current_def (sym, def);
1214       return;
1215     }
1216 
1217   currdef = get_current_def (sym);
1218 
1219   /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1220      SSA_NAME_VAR is not necessarily SYM.  In this case, also push SYM
1221      in the stack so that we know which symbol is being defined by
1222      this SSA name when we unwind the stack.  */
1223   if (currdef && !is_gimple_reg (sym))
1224     VEC_safe_push (tree, heap, block_defs_stack, sym);
1225 
1226   /* Push the current reaching definition into BLOCK_DEFS_STACK.  This
1227      stack is later used by the dominator tree callbacks to restore
1228      the reaching definitions for all the variables defined in the
1229      block after a recursive visit to all its immediately dominated
1230      blocks.  If there is no current reaching definition, then just
1231      record the underlying _DECL node.  */
1232   VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1233 
1234   /* Set the current reaching definition for SYM to be DEF.  */
1235   set_current_def (sym, def);
1236 }
1237 
1238 
1239 /* Perform a depth-first traversal of the dominator tree looking for
1240    variables to rename.  BB is the block where to start searching.
1241    Renaming is a five step process:
1242 
1243    1- Every definition made by PHI nodes at the start of the blocks is
1244       registered as the current definition for the corresponding variable.
1245 
1246    2- Every statement in BB is rewritten.  USE and VUSE operands are
1247       rewritten with their corresponding reaching definition.  DEF and
1248       VDEF targets are registered as new definitions.
1249 
1250    3- All the PHI nodes in successor blocks of BB are visited.  The
1251       argument corresponding to BB is replaced with its current reaching
1252       definition.
1253 
1254    4- Recursively rewrite every dominator child block of BB.
1255 
1256    5- Restore (in reverse order) the current reaching definition for every
1257       new definition introduced in this block.  This is done so that when
1258       we return from the recursive call, all the current reaching
1259       definitions are restored to the names that were valid in the
1260       dominator parent of BB.  */
1261 
1262 /* Return the current definition for variable VAR.  If none is found,
1263    create a new SSA name to act as the zeroth definition for VAR.  */
1264 
1265 static tree
1266 get_reaching_def (tree var)
1267 {
1268   tree currdef;
1269 
1270   /* Lookup the current reaching definition for VAR.  */
1271   currdef = get_current_def (var);
1272 
1273   /* If there is no reaching definition for VAR, create and register a
1274      default definition for it (if needed).  */
1275   if (currdef == NULL_TREE)
1276     {
1277       tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1278       currdef = get_default_def_for (sym);
1279       set_current_def (var, currdef);
1280     }
1281 
1282   /* Return the current reaching definition for VAR, or the default
1283      definition, if we had to create one.  */
1284   return currdef;
1285 }
1286 
1287 
1288 /* SSA Rewriting Step 2.  Rewrite every variable used in each statement in
1289    the block with its immediate reaching definitions.  Update the current
1290    definition of a variable when a new real or virtual definition is found.  */
1291 
1292 static void
1293 rewrite_stmt (gimple_stmt_iterator si)
1294 {
1295   use_operand_p use_p;
1296   def_operand_p def_p;
1297   ssa_op_iter iter;
1298   gimple stmt = gsi_stmt (si);
1299 
1300   /* If mark_def_sites decided that we don't need to rewrite this
1301      statement, ignore it.  */
1302   gcc_assert (blocks_to_update == NULL);
1303   if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1304     return;
1305 
1306   if (dump_file && (dump_flags & TDF_DETAILS))
1307     {
1308       fprintf (dump_file, "Renaming statement ");
1309       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1310       fprintf (dump_file, "\n");
1311     }
1312 
1313   /* Step 1.  Rewrite USES in the statement.  */
1314   if (rewrite_uses_p (stmt))
1315     FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1316       {
1317 	tree var = USE_FROM_PTR (use_p);
1318 	gcc_assert (DECL_P (var));
1319 	SET_USE (use_p, get_reaching_def (var));
1320       }
1321 
1322   /* Step 2.  Register the statement's DEF operands.  */
1323   if (register_defs_p (stmt))
1324     FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1325       {
1326 	tree var = DEF_FROM_PTR (def_p);
1327 	tree name = make_ssa_name (var, stmt);
1328 	tree tracked_var;
1329 	gcc_assert (DECL_P (var));
1330 	SET_DEF (def_p, name);
1331 	register_new_def (DEF_FROM_PTR (def_p), var);
1332 
1333 	tracked_var = target_for_debug_bind (var);
1334 	if (tracked_var)
1335 	  {
1336 	    gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1337 	    gsi_insert_after (&si, note, GSI_SAME_STMT);
1338 	  }
1339       }
1340 }
1341 
1342 
1343 /* SSA Rewriting Step 3.  Visit all the successor blocks of BB looking for
1344    PHI nodes.  For every PHI node found, add a new argument containing the
1345    current reaching definition for the variable and the edge through which
1346    that definition is reaching the PHI node.  */
1347 
1348 static void
1349 rewrite_add_phi_arguments (basic_block bb)
1350 {
1351   edge e;
1352   edge_iterator ei;
1353 
1354   FOR_EACH_EDGE (e, ei, bb->succs)
1355     {
1356       gimple phi;
1357       gimple_stmt_iterator gsi;
1358 
1359       for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1360 	   gsi_next (&gsi))
1361 	{
1362 	  tree currdef;
1363 	  gimple stmt;
1364 
1365 	  phi = gsi_stmt (gsi);
1366 	  currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1367 	  stmt = SSA_NAME_DEF_STMT (currdef);
1368 	  add_phi_arg (phi, currdef, e, gimple_location (stmt));
1369 	}
1370     }
1371 }
1372 
1373 /* SSA Rewriting Step 1.  Initialization, create a block local stack
1374    of reaching definitions for new SSA names produced in this block
1375    (BLOCK_DEFS).  Register new definitions for every PHI node in the
1376    block.  */
1377 
1378 static void
1379 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1380 		     basic_block bb)
1381 {
1382   gimple phi;
1383   gimple_stmt_iterator gsi;
1384 
1385   if (dump_file && (dump_flags & TDF_DETAILS))
1386     fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1387 
1388   /* Mark the unwind point for this block.  */
1389   VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1390 
1391   /* Step 1.  Register new definitions for every PHI node in the block.
1392      Conceptually, all the PHI nodes are executed in parallel and each PHI
1393      node introduces a new version for the associated variable.  */
1394   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1395     {
1396       tree result;
1397 
1398       phi = gsi_stmt (gsi);
1399       result = gimple_phi_result (phi);
1400       gcc_assert (is_gimple_reg (result));
1401       register_new_def (result, SSA_NAME_VAR (result));
1402     }
1403 
1404   /* Step 2.  Rewrite every variable used in each statement in the block
1405      with its immediate reaching definitions.  Update the current definition
1406      of a variable when a new real or virtual definition is found.  */
1407   if (TEST_BIT (interesting_blocks, bb->index))
1408     for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1409       rewrite_stmt (gsi);
1410 
1411   /* Step 3.  Visit all the successor blocks of BB looking for PHI nodes.
1412      For every PHI node found, add a new argument containing the current
1413      reaching definition for the variable and the edge through which that
1414      definition is reaching the PHI node.  */
1415   rewrite_add_phi_arguments (bb);
1416 }
1417 
1418 
1419 
1420 /* Called after visiting all the statements in basic block BB and all
1421    of its dominator children.  Restore CURRDEFS to its original value.  */
1422 
1423 static void
1424 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1425 		     basic_block bb ATTRIBUTE_UNUSED)
1426 {
1427   /* Restore CURRDEFS to its original state.  */
1428   while (VEC_length (tree, block_defs_stack) > 0)
1429     {
1430       tree tmp = VEC_pop (tree, block_defs_stack);
1431       tree saved_def, var;
1432 
1433       if (tmp == NULL_TREE)
1434 	break;
1435 
1436       if (TREE_CODE (tmp) == SSA_NAME)
1437 	{
1438 	  /* If we recorded an SSA_NAME, then make the SSA_NAME the
1439 	     current definition of its underlying variable.  Note that
1440 	     if the SSA_NAME is not for a GIMPLE register, the symbol
1441 	     being defined is stored in the next slot in the stack.
1442 	     This mechanism is needed because an SSA name for a
1443 	     non-register symbol may be the definition for more than
1444 	     one symbol (e.g., SFTs, aliased variables, etc).  */
1445 	  saved_def = tmp;
1446 	  var = SSA_NAME_VAR (saved_def);
1447 	  if (!is_gimple_reg (var))
1448 	    var = VEC_pop (tree, block_defs_stack);
1449 	}
1450       else
1451 	{
1452 	  /* If we recorded anything else, it must have been a _DECL
1453 	     node and its current reaching definition must have been
1454 	     NULL.  */
1455 	  saved_def = NULL;
1456 	  var = tmp;
1457 	}
1458 
1459       set_current_def (var, saved_def);
1460     }
1461 }
1462 
1463 
1464 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1465 
1466 void
1467 dump_decl_set (FILE *file, bitmap set)
1468 {
1469   if (set)
1470     {
1471       bitmap_iterator bi;
1472       unsigned i;
1473 
1474       fprintf (file, "{ ");
1475 
1476       EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1477 	{
1478 	  print_generic_expr (file, referenced_var (i), 0);
1479 	  fprintf (file, " ");
1480 	}
1481 
1482       fprintf (file, "}");
1483     }
1484   else
1485     fprintf (file, "NIL");
1486 }
1487 
1488 
1489 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
1490 
1491 void
1492 debug_decl_set (bitmap set)
1493 {
1494   dump_decl_set (stderr, set);
1495   fprintf (stderr, "\n");
1496 }
1497 
1498 
1499 /* Dump the renaming stack (block_defs_stack) to FILE.  Traverse the
1500    stack up to a maximum of N levels.  If N is -1, the whole stack is
1501    dumped.  New levels are created when the dominator tree traversal
1502    used for renaming enters a new sub-tree.  */
1503 
1504 void
1505 dump_defs_stack (FILE *file, int n)
1506 {
1507   int i, j;
1508 
1509   fprintf (file, "\n\nRenaming stack");
1510   if (n > 0)
1511     fprintf (file, " (up to %d levels)", n);
1512   fprintf (file, "\n\n");
1513 
1514   i = 1;
1515   fprintf (file, "Level %d (current level)\n", i);
1516   for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1517     {
1518       tree name, var;
1519 
1520       name = VEC_index (tree, block_defs_stack, j);
1521       if (name == NULL_TREE)
1522 	{
1523 	  i++;
1524 	  if (n > 0 && i > n)
1525 	    break;
1526 	  fprintf (file, "\nLevel %d\n", i);
1527 	  continue;
1528 	}
1529 
1530       if (DECL_P (name))
1531 	{
1532 	  var = name;
1533 	  name = NULL_TREE;
1534 	}
1535       else
1536 	{
1537 	  var = SSA_NAME_VAR (name);
1538 	  if (!is_gimple_reg (var))
1539 	    {
1540 	      j--;
1541 	      var = VEC_index (tree, block_defs_stack, j);
1542 	    }
1543 	}
1544 
1545       fprintf (file, "    Previous CURRDEF (");
1546       print_generic_expr (file, var, 0);
1547       fprintf (file, ") = ");
1548       if (name)
1549 	print_generic_expr (file, name, 0);
1550       else
1551 	fprintf (file, "<NIL>");
1552       fprintf (file, "\n");
1553     }
1554 }
1555 
1556 
1557 /* Dump the renaming stack (block_defs_stack) to stderr.  Traverse the
1558    stack up to a maximum of N levels.  If N is -1, the whole stack is
1559    dumped.  New levels are created when the dominator tree traversal
1560    used for renaming enters a new sub-tree.  */
1561 
1562 void
1563 debug_defs_stack (int n)
1564 {
1565   dump_defs_stack (stderr, n);
1566 }
1567 
1568 
1569 /* Dump the current reaching definition of every symbol to FILE.  */
1570 
1571 void
1572 dump_currdefs (FILE *file)
1573 {
1574   referenced_var_iterator i;
1575   tree var;
1576 
1577   fprintf (file, "\n\nCurrent reaching definitions\n\n");
1578   FOR_EACH_REFERENCED_VAR (var, i)
1579     if (SYMS_TO_RENAME (cfun) == NULL
1580 	|| bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1581       {
1582 	fprintf (file, "CURRDEF (");
1583 	print_generic_expr (file, var, 0);
1584 	fprintf (file, ") = ");
1585 	if (get_current_def (var))
1586 	  print_generic_expr (file, get_current_def (var), 0);
1587 	else
1588 	  fprintf (file, "<NIL>");
1589 	fprintf (file, "\n");
1590       }
1591 }
1592 
1593 
1594 /* Dump the current reaching definition of every symbol to stderr.  */
1595 
1596 void
1597 debug_currdefs (void)
1598 {
1599   dump_currdefs (stderr);
1600 }
1601 
1602 
1603 /* Dump SSA information to FILE.  */
1604 
1605 void
1606 dump_tree_ssa (FILE *file)
1607 {
1608   const char *funcname
1609     = lang_hooks.decl_printable_name (current_function_decl, 2);
1610 
1611   fprintf (file, "SSA renaming information for %s\n\n", funcname);
1612 
1613   dump_def_blocks (file);
1614   dump_defs_stack (file, -1);
1615   dump_currdefs (file);
1616   dump_tree_ssa_stats (file);
1617 }
1618 
1619 
1620 /* Dump SSA information to stderr.  */
1621 
1622 void
1623 debug_tree_ssa (void)
1624 {
1625   dump_tree_ssa (stderr);
1626 }
1627 
1628 
1629 /* Dump statistics for the hash table HTAB.  */
1630 
1631 static void
1632 htab_statistics (FILE *file, htab_t htab)
1633 {
1634   fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1635 	   (long) htab_size (htab),
1636 	   (long) htab_elements (htab),
1637 	   htab_collisions (htab));
1638 }
1639 
1640 
1641 /* Dump SSA statistics on FILE.  */
1642 
1643 void
1644 dump_tree_ssa_stats (FILE *file)
1645 {
1646   if (def_blocks || repl_tbl)
1647     fprintf (file, "\nHash table statistics:\n");
1648 
1649   if (def_blocks)
1650     {
1651       fprintf (file, "    def_blocks:   ");
1652       htab_statistics (file, def_blocks);
1653     }
1654 
1655   if (repl_tbl)
1656     {
1657       fprintf (file, "    repl_tbl:     ");
1658       htab_statistics (file, repl_tbl);
1659     }
1660 
1661   if (def_blocks || repl_tbl)
1662     fprintf (file, "\n");
1663 }
1664 
1665 
1666 /* Dump SSA statistics on stderr.  */
1667 
1668 void
1669 debug_tree_ssa_stats (void)
1670 {
1671   dump_tree_ssa_stats (stderr);
1672 }
1673 
1674 
1675 /* Hashing and equality functions for DEF_BLOCKS.  */
1676 
1677 static hashval_t
1678 def_blocks_hash (const void *p)
1679 {
1680   return htab_hash_pointer
1681 	((const void *)((const struct def_blocks_d *)p)->var);
1682 }
1683 
1684 static int
1685 def_blocks_eq (const void *p1, const void *p2)
1686 {
1687   return ((const struct def_blocks_d *)p1)->var
1688 	 == ((const struct def_blocks_d *)p2)->var;
1689 }
1690 
1691 
1692 /* Free memory allocated by one entry in DEF_BLOCKS.  */
1693 
1694 static void
1695 def_blocks_free (void *p)
1696 {
1697   struct def_blocks_d *entry = (struct def_blocks_d *) p;
1698   BITMAP_FREE (entry->def_blocks);
1699   BITMAP_FREE (entry->phi_blocks);
1700   BITMAP_FREE (entry->livein_blocks);
1701   free (entry);
1702 }
1703 
1704 
1705 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table.  */
1706 
1707 static int
1708 debug_def_blocks_r (void **slot, void *data)
1709 {
1710   FILE *file = (FILE *) data;
1711   struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1712 
1713   fprintf (file, "VAR: ");
1714   print_generic_expr (file, db_p->var, dump_flags);
1715   bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1716   bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1717   bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1718 
1719   return 1;
1720 }
1721 
1722 
1723 /* Dump the DEF_BLOCKS hash table on FILE.  */
1724 
1725 void
1726 dump_def_blocks (FILE *file)
1727 {
1728   fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1729   if (def_blocks)
1730     htab_traverse (def_blocks, debug_def_blocks_r, file);
1731 }
1732 
1733 
1734 /* Dump the DEF_BLOCKS hash table on stderr.  */
1735 
1736 void
1737 debug_def_blocks (void)
1738 {
1739   dump_def_blocks (stderr);
1740 }
1741 
1742 
1743 /* Register NEW_NAME to be the new reaching definition for OLD_NAME.  */
1744 
1745 static inline void
1746 register_new_update_single (tree new_name, tree old_name)
1747 {
1748   tree currdef = get_current_def (old_name);
1749 
1750   /* Push the current reaching definition into BLOCK_DEFS_STACK.
1751      This stack is later used by the dominator tree callbacks to
1752      restore the reaching definitions for all the variables
1753      defined in the block after a recursive visit to all its
1754      immediately dominated blocks.  */
1755   VEC_reserve (tree, heap, block_defs_stack, 2);
1756   VEC_quick_push (tree, block_defs_stack, currdef);
1757   VEC_quick_push (tree, block_defs_stack, old_name);
1758 
1759   /* Set the current reaching definition for OLD_NAME to be
1760      NEW_NAME.  */
1761   set_current_def (old_name, new_name);
1762 }
1763 
1764 
1765 /* Register NEW_NAME to be the new reaching definition for all the
1766    names in OLD_NAMES.  Used by the incremental SSA update routines to
1767    replace old SSA names with new ones.  */
1768 
1769 static inline void
1770 register_new_update_set (tree new_name, bitmap old_names)
1771 {
1772   bitmap_iterator bi;
1773   unsigned i;
1774 
1775   EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1776     register_new_update_single (new_name, ssa_name (i));
1777 }
1778 
1779 
1780 
1781 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1782    it is a symbol marked for renaming, replace it with USE_P's current
1783    reaching definition.  */
1784 
1785 static inline void
1786 maybe_replace_use (use_operand_p use_p)
1787 {
1788   tree rdef = NULL_TREE;
1789   tree use = USE_FROM_PTR (use_p);
1790   tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1791 
1792   if (symbol_marked_for_renaming (sym))
1793     rdef = get_reaching_def (sym);
1794   else if (is_old_name (use))
1795     rdef = get_reaching_def (use);
1796 
1797   if (rdef && rdef != use)
1798     SET_USE (use_p, rdef);
1799 }
1800 
1801 
1802 /* Same as maybe_replace_use, but without introducing default stmts,
1803    returning false to indicate a need to do so.  */
1804 
1805 static inline bool
1806 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1807 {
1808   tree rdef = NULL_TREE;
1809   tree use = USE_FROM_PTR (use_p);
1810   tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1811 
1812   if (symbol_marked_for_renaming (sym))
1813     rdef = get_current_def (sym);
1814   else if (is_old_name (use))
1815     {
1816       rdef = get_current_def (use);
1817       /* We can't assume that, if there's no current definition, the
1818 	 default one should be used.  It could be the case that we've
1819 	 rearranged blocks so that the earlier definition no longer
1820 	 dominates the use.  */
1821       if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1822 	rdef = use;
1823     }
1824   else
1825     rdef = use;
1826 
1827   if (rdef && rdef != use)
1828     SET_USE (use_p, rdef);
1829 
1830   return rdef != NULL_TREE;
1831 }
1832 
1833 
1834 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1835    or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1836    register it as the current definition for the names replaced by
1837    DEF_P.  */
1838 
1839 static inline void
1840 maybe_register_def (def_operand_p def_p, gimple stmt,
1841 		    gimple_stmt_iterator gsi)
1842 {
1843   tree def = DEF_FROM_PTR (def_p);
1844   tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1845 
1846   /* If DEF is a naked symbol that needs renaming, create a new
1847      name for it.  */
1848   if (symbol_marked_for_renaming (sym))
1849     {
1850       if (DECL_P (def))
1851 	{
1852 	  tree tracked_var;
1853 
1854 	  def = make_ssa_name (def, stmt);
1855 	  SET_DEF (def_p, def);
1856 
1857 	  tracked_var = target_for_debug_bind (sym);
1858 	  if (tracked_var)
1859 	    {
1860 	      gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1861 	      /* If stmt ends the bb, insert the debug stmt on the single
1862 		 non-EH edge from the stmt.  */
1863 	      if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1864 		{
1865 		  basic_block bb = gsi_bb (gsi);
1866 		  edge_iterator ei;
1867 		  edge e, ef = NULL;
1868 		  FOR_EACH_EDGE (e, ei, bb->succs)
1869 		    if (!(e->flags & EDGE_EH))
1870 		      {
1871 			gcc_assert (!ef);
1872 			ef = e;
1873 		      }
1874 		  gcc_assert (ef
1875 			      && single_pred_p (ef->dest)
1876 			      && !phi_nodes (ef->dest)
1877 			      && ef->dest != EXIT_BLOCK_PTR);
1878 		  gsi_insert_on_edge_immediate (ef, note);
1879 		}
1880 	      else
1881 		gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1882 	    }
1883 	}
1884 
1885       register_new_update_single (def, sym);
1886     }
1887   else
1888     {
1889       /* If DEF is a new name, register it as a new definition
1890 	 for all the names replaced by DEF.  */
1891       if (is_new_name (def))
1892 	register_new_update_set (def, names_replaced_by (def));
1893 
1894       /* If DEF is an old name, register DEF as a new
1895 	 definition for itself.  */
1896       if (is_old_name (def))
1897 	register_new_update_single (def, def);
1898     }
1899 }
1900 
1901 
1902 /* Update every variable used in the statement pointed-to by SI.  The
1903    statement is assumed to be in SSA form already.  Names in
1904    OLD_SSA_NAMES used by SI will be updated to their current reaching
1905    definition.  Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1906    will be registered as a new definition for their corresponding name
1907    in OLD_SSA_NAMES.  */
1908 
1909 static void
1910 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1911 {
1912   use_operand_p use_p;
1913   def_operand_p def_p;
1914   ssa_op_iter iter;
1915 
1916   /* Only update marked statements.  */
1917   if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1918     return;
1919 
1920   if (dump_file && (dump_flags & TDF_DETAILS))
1921     {
1922       fprintf (dump_file, "Updating SSA information for statement ");
1923       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1924       fprintf (dump_file, "\n");
1925     }
1926 
1927   /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1928      symbol is marked for renaming.  */
1929   if (rewrite_uses_p (stmt))
1930     {
1931       if (is_gimple_debug (stmt))
1932 	{
1933 	  bool failed = false;
1934 
1935 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1936 	    if (!maybe_replace_use_in_debug_stmt (use_p))
1937 	      {
1938 		failed = true;
1939 		break;
1940 	      }
1941 
1942 	  if (failed)
1943 	    {
1944 	      /* DOM sometimes threads jumps in such a way that a
1945 		 debug stmt ends up referencing a SSA variable that no
1946 		 longer dominates the debug stmt, but such that all
1947 		 incoming definitions refer to the same definition in
1948 		 an earlier dominator.  We could try to recover that
1949 		 definition somehow, but this will have to do for now.
1950 
1951 		 Introducing a default definition, which is what
1952 		 maybe_replace_use() would do in such cases, may
1953 		 modify code generation, for the otherwise-unused
1954 		 default definition would never go away, modifying SSA
1955 		 version numbers all over.  */
1956 	      gimple_debug_bind_reset_value (stmt);
1957 	      update_stmt (stmt);
1958 	    }
1959 	}
1960       else
1961 	{
1962 	  FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1963 	    maybe_replace_use (use_p);
1964 	}
1965     }
1966 
1967   /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1968      Also register definitions for names whose underlying symbol is
1969      marked for renaming.  */
1970   if (register_defs_p (stmt))
1971     FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1972       maybe_register_def (def_p, stmt, gsi);
1973 }
1974 
1975 
1976 /* Visit all the successor blocks of BB looking for PHI nodes.  For
1977    every PHI node found, check if any of its arguments is in
1978    OLD_SSA_NAMES.  If so, and if the argument has a current reaching
1979    definition, replace it.  */
1980 
1981 static void
1982 rewrite_update_phi_arguments (basic_block bb)
1983 {
1984   edge e;
1985   edge_iterator ei;
1986   unsigned i;
1987 
1988   FOR_EACH_EDGE (e, ei, bb->succs)
1989     {
1990       gimple phi;
1991       gimple_vec phis;
1992 
1993       if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1994 	continue;
1995 
1996       phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1997       for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
1998 	{
1999 	  tree arg, lhs_sym, reaching_def = NULL;
2000 	  use_operand_p arg_p;
2001 
2002   	  gcc_assert (rewrite_uses_p (phi));
2003 
2004 	  arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2005 	  arg = USE_FROM_PTR (arg_p);
2006 
2007 	  if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2008 	    continue;
2009 
2010 	  lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2011 
2012 	  if (arg == NULL_TREE)
2013 	    {
2014 	      /* When updating a PHI node for a recently introduced
2015 		 symbol we may find NULL arguments.  That's why we
2016 		 take the symbol from the LHS of the PHI node.  */
2017 	      reaching_def = get_reaching_def (lhs_sym);
2018 
2019 	    }
2020 	  else
2021 	    {
2022 	      tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2023 
2024 	      if (symbol_marked_for_renaming (sym))
2025 		reaching_def = get_reaching_def (sym);
2026 	      else if (is_old_name (arg))
2027 		reaching_def = get_reaching_def (arg);
2028 	    }
2029 
2030           /* Update the argument if there is a reaching def.  */
2031 	  if (reaching_def)
2032 	    {
2033 	      gimple stmt;
2034 	      source_location locus;
2035 	      int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2036 
2037 	      SET_USE (arg_p, reaching_def);
2038 	      stmt = SSA_NAME_DEF_STMT (reaching_def);
2039 
2040 	      /* Single element PHI nodes  behave like copies, so get the
2041 		 location from the phi argument.  */
2042 	      if (gimple_code (stmt) == GIMPLE_PHI &&
2043 		  gimple_phi_num_args (stmt) == 1)
2044 		locus = gimple_phi_arg_location (stmt, 0);
2045 	      else
2046 		locus = gimple_location (stmt);
2047 
2048 	      gimple_phi_arg_set_location (phi, arg_i, locus);
2049 	    }
2050 
2051 
2052 	  if (e->flags & EDGE_ABNORMAL)
2053 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2054 	}
2055     }
2056 }
2057 
2058 
2059 /* Initialization of block data structures for the incremental SSA
2060    update pass.  Create a block local stack of reaching definitions
2061    for new SSA names produced in this block (BLOCK_DEFS).  Register
2062    new definitions for every PHI node in the block.  */
2063 
2064 static void
2065 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2066 		            basic_block bb)
2067 {
2068   edge e;
2069   edge_iterator ei;
2070   bool is_abnormal_phi;
2071   gimple_stmt_iterator gsi;
2072 
2073   if (dump_file && (dump_flags & TDF_DETAILS))
2074     fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2075 	     bb->index);
2076 
2077   /* Mark the unwind point for this block.  */
2078   VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2079 
2080   if (!bitmap_bit_p (blocks_to_update, bb->index))
2081     return;
2082 
2083   /* Mark the LHS if any of the arguments flows through an abnormal
2084      edge.  */
2085   is_abnormal_phi = false;
2086   FOR_EACH_EDGE (e, ei, bb->preds)
2087     if (e->flags & EDGE_ABNORMAL)
2088       {
2089 	is_abnormal_phi = true;
2090 	break;
2091       }
2092 
2093   /* If any of the PHI nodes is a replacement for a name in
2094      OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2095      register it as a new definition for its corresponding name.  Also
2096      register definitions for names whose underlying symbols are
2097      marked for renaming.  */
2098   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2099     {
2100       tree lhs, lhs_sym;
2101       gimple phi = gsi_stmt (gsi);
2102 
2103       if (!register_defs_p (phi))
2104 	continue;
2105 
2106       lhs = gimple_phi_result (phi);
2107       lhs_sym = SSA_NAME_VAR (lhs);
2108 
2109       if (symbol_marked_for_renaming (lhs_sym))
2110 	register_new_update_single (lhs, lhs_sym);
2111       else
2112 	{
2113 
2114 	  /* If LHS is a new name, register a new definition for all
2115 	     the names replaced by LHS.  */
2116 	  if (is_new_name (lhs))
2117 	    register_new_update_set (lhs, names_replaced_by (lhs));
2118 
2119 	  /* If LHS is an OLD name, register it as a new definition
2120 	     for itself.  */
2121 	  if (is_old_name (lhs))
2122 	    register_new_update_single (lhs, lhs);
2123 	}
2124 
2125       if (is_abnormal_phi)
2126 	SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2127     }
2128 
2129   /* Step 2.  Rewrite every variable used in each statement in the block.  */
2130   if (TEST_BIT (interesting_blocks, bb->index))
2131     {
2132       gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2133       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2134         rewrite_update_stmt (gsi_stmt (gsi), gsi);
2135     }
2136 
2137   /* Step 3.  Update PHI nodes.  */
2138   rewrite_update_phi_arguments (bb);
2139 }
2140 
2141 /* Called after visiting block BB.  Unwind BLOCK_DEFS_STACK to restore
2142    the current reaching definition of every name re-written in BB to
2143    the original reaching definition before visiting BB.  This
2144    unwinding must be done in the opposite order to what is done in
2145    register_new_update_set.  */
2146 
2147 static void
2148 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2149 			    basic_block bb ATTRIBUTE_UNUSED)
2150 {
2151   while (VEC_length (tree, block_defs_stack) > 0)
2152     {
2153       tree var = VEC_pop (tree, block_defs_stack);
2154       tree saved_def;
2155 
2156       /* NULL indicates the unwind stop point for this block (see
2157 	 rewrite_update_enter_block).  */
2158       if (var == NULL)
2159 	return;
2160 
2161       saved_def = VEC_pop (tree, block_defs_stack);
2162       set_current_def (var, saved_def);
2163     }
2164 }
2165 
2166 
2167 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2168    form.
2169 
2170    ENTRY indicates the block where to start.  Every block dominated by
2171       ENTRY will be rewritten.
2172 
2173    WHAT indicates what actions will be taken by the renamer (see enum
2174       rewrite_mode).
2175 
2176    BLOCKS are the set of interesting blocks for the dominator walker
2177       to process.  If this set is NULL, then all the nodes dominated
2178       by ENTRY are walked.  Otherwise, blocks dominated by ENTRY that
2179       are not present in BLOCKS are ignored.  */
2180 
2181 static void
2182 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2183 {
2184   struct dom_walk_data walk_data;
2185 
2186   /* Rewrite all the basic blocks in the program.  */
2187   timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2188 
2189   /* Setup callbacks for the generic dominator tree walker.  */
2190   memset (&walk_data, 0, sizeof (walk_data));
2191 
2192   walk_data.dom_direction = CDI_DOMINATORS;
2193 
2194   if (what == REWRITE_ALL)
2195     {
2196       walk_data.before_dom_children = rewrite_enter_block;
2197       walk_data.after_dom_children = rewrite_leave_block;
2198     }
2199   else if (what == REWRITE_UPDATE)
2200     {
2201       walk_data.before_dom_children = rewrite_update_enter_block;
2202       walk_data.after_dom_children = rewrite_update_leave_block;
2203     }
2204   else
2205     gcc_unreachable ();
2206 
2207   block_defs_stack = VEC_alloc (tree, heap, 10);
2208 
2209   /* Initialize the dominator walker.  */
2210   init_walk_dominator_tree (&walk_data);
2211 
2212   /* Recursively walk the dominator tree rewriting each statement in
2213      each basic block.  */
2214   walk_dominator_tree (&walk_data, entry);
2215 
2216   /* Finalize the dominator walker.  */
2217   fini_walk_dominator_tree (&walk_data);
2218 
2219   /* Debugging dumps.  */
2220   if (dump_file && (dump_flags & TDF_STATS))
2221     {
2222       dump_dfa_stats (dump_file);
2223       if (def_blocks)
2224 	dump_tree_ssa_stats (dump_file);
2225     }
2226 
2227   VEC_free (tree, heap, block_defs_stack);
2228 
2229   timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2230 }
2231 
2232 
2233 /* Block processing routine for mark_def_sites.  Clear the KILLS bitmap
2234    at the start of each block, and call mark_def_sites for each statement.  */
2235 
2236 static void
2237 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2238 {
2239   struct mark_def_sites_global_data *gd;
2240   bitmap kills;
2241   gimple_stmt_iterator gsi;
2242 
2243   gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2244   kills = gd->kills;
2245 
2246   bitmap_clear (kills);
2247   for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2248     mark_def_sites (bb, gsi_stmt (gsi), kills);
2249 }
2250 
2251 
2252 /* Mark the definition site blocks for each variable, so that we know
2253    where the variable is actually live.
2254 
2255    The INTERESTING_BLOCKS global will be filled in with all the blocks
2256    that should be processed by the renamer.  It is assumed that the
2257    caller has already initialized and zeroed it.  */
2258 
2259 static void
2260 mark_def_site_blocks (void)
2261 {
2262   struct dom_walk_data walk_data;
2263   struct mark_def_sites_global_data mark_def_sites_global_data;
2264 
2265   /* Setup callbacks for the generic dominator tree walker to find and
2266      mark definition sites.  */
2267   walk_data.dom_direction = CDI_DOMINATORS;
2268   walk_data.initialize_block_local_data = NULL;
2269   walk_data.before_dom_children = mark_def_sites_block;
2270   walk_data.after_dom_children = NULL;
2271 
2272   /* Notice that this bitmap is indexed using variable UIDs, so it must be
2273      large enough to accommodate all the variables referenced in the
2274      function, not just the ones we are renaming.  */
2275   mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2276   walk_data.global_data = &mark_def_sites_global_data;
2277 
2278   /* We do not have any local data.  */
2279   walk_data.block_local_data_size = 0;
2280 
2281   /* Initialize the dominator walker.  */
2282   init_walk_dominator_tree (&walk_data);
2283 
2284   /* Recursively walk the dominator tree.  */
2285   walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2286 
2287   /* Finalize the dominator walker.  */
2288   fini_walk_dominator_tree (&walk_data);
2289 
2290   /* We no longer need this bitmap, clear and free it.  */
2291   BITMAP_FREE (mark_def_sites_global_data.kills);
2292 }
2293 
2294 
2295 /* Initialize internal data needed during renaming.  */
2296 
2297 static void
2298 init_ssa_renamer (void)
2299 {
2300   tree var;
2301   referenced_var_iterator rvi;
2302 
2303   cfun->gimple_df->in_ssa_p = false;
2304 
2305   /* Allocate memory for the DEF_BLOCKS hash table.  */
2306   gcc_assert (def_blocks == NULL);
2307   def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2308                             def_blocks_eq, def_blocks_free);
2309 
2310   FOR_EACH_REFERENCED_VAR(var, rvi)
2311     set_current_def (var, NULL_TREE);
2312 }
2313 
2314 
2315 /* Deallocate internal data structures used by the renamer.  */
2316 
2317 static void
2318 fini_ssa_renamer (void)
2319 {
2320   if (def_blocks)
2321     {
2322       htab_delete (def_blocks);
2323       def_blocks = NULL;
2324     }
2325 
2326   cfun->gimple_df->in_ssa_p = true;
2327 }
2328 
2329 /* Main entry point into the SSA builder.  The renaming process
2330    proceeds in four main phases:
2331 
2332    1- Compute dominance frontier and immediate dominators, needed to
2333       insert PHI nodes and rename the function in dominator tree
2334       order.
2335 
2336    2- Find and mark all the blocks that define variables
2337       (mark_def_site_blocks).
2338 
2339    3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2340 
2341    4- Rename all the blocks (rewrite_blocks) and statements in the program.
2342 
2343    Steps 3 and 4 are done using the dominator tree walker
2344    (walk_dominator_tree).  */
2345 
2346 static unsigned int
2347 rewrite_into_ssa (void)
2348 {
2349   bitmap *dfs;
2350   basic_block bb;
2351 
2352   timevar_push (TV_TREE_SSA_OTHER);
2353 
2354   /* Initialize operand data structures.  */
2355   init_ssa_operands ();
2356 
2357   /* Initialize internal data needed by the renamer.  */
2358   init_ssa_renamer ();
2359 
2360   /* Initialize the set of interesting blocks.  The callback
2361      mark_def_sites will add to this set those blocks that the renamer
2362      should process.  */
2363   interesting_blocks = sbitmap_alloc (last_basic_block);
2364   sbitmap_zero (interesting_blocks);
2365 
2366   /* Initialize dominance frontier.  */
2367   dfs = XNEWVEC (bitmap, last_basic_block);
2368   FOR_EACH_BB (bb)
2369     dfs[bb->index] = BITMAP_ALLOC (NULL);
2370 
2371   /* 1- Compute dominance frontiers.  */
2372   calculate_dominance_info (CDI_DOMINATORS);
2373   compute_dominance_frontiers (dfs);
2374 
2375   /* 2- Find and mark definition sites.  */
2376   mark_def_site_blocks ();
2377 
2378   /* 3- Insert PHI nodes at dominance frontiers of definition blocks.  */
2379   insert_phi_nodes (dfs);
2380 
2381   /* 4- Rename all the blocks.  */
2382   rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2383 
2384   /* Free allocated memory.  */
2385   FOR_EACH_BB (bb)
2386     BITMAP_FREE (dfs[bb->index]);
2387   free (dfs);
2388 
2389   sbitmap_free (interesting_blocks);
2390 
2391   fini_ssa_renamer ();
2392 
2393   timevar_pop (TV_TREE_SSA_OTHER);
2394   return 0;
2395 }
2396 
2397 
2398 struct gimple_opt_pass pass_build_ssa =
2399 {
2400  {
2401   GIMPLE_PASS,
2402   "ssa",				/* name */
2403   NULL,					/* gate */
2404   rewrite_into_ssa,			/* execute */
2405   NULL,					/* sub */
2406   NULL,					/* next */
2407   0,					/* static_pass_number */
2408   TV_NONE,				/* tv_id */
2409   PROP_cfg | PROP_referenced_vars,	/* properties_required */
2410   PROP_ssa,				/* properties_provided */
2411   0,					/* properties_destroyed */
2412   0,					/* todo_flags_start */
2413   TODO_dump_func
2414     | TODO_update_ssa_only_virtuals
2415     | TODO_verify_ssa
2416     | TODO_remove_unused_locals		/* todo_flags_finish */
2417  }
2418 };
2419 
2420 
2421 /* Mark the definition of VAR at STMT and BB as interesting for the
2422    renamer.  BLOCKS is the set of blocks that need updating.  */
2423 
2424 static void
2425 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2426 {
2427   gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2428   set_register_defs (stmt, true);
2429 
2430   if (insert_phi_p)
2431     {
2432       bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2433 
2434       set_def_block (var, bb, is_phi_p);
2435 
2436       /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2437 	 site for both itself and all the old names replaced by it.  */
2438       if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2439 	{
2440 	  bitmap_iterator bi;
2441 	  unsigned i;
2442 	  bitmap set = names_replaced_by (var);
2443 	  if (set)
2444 	    EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2445 	      set_def_block (ssa_name (i), bb, is_phi_p);
2446 	}
2447     }
2448 }
2449 
2450 
2451 /* Mark the use of VAR at STMT and BB as interesting for the
2452    renamer.  INSERT_PHI_P is true if we are going to insert new PHI
2453    nodes.  */
2454 
2455 static inline void
2456 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2457 {
2458   basic_block def_bb = gimple_bb (stmt);
2459 
2460   mark_block_for_update (def_bb);
2461   mark_block_for_update (bb);
2462 
2463   if (gimple_code (stmt) == GIMPLE_PHI)
2464     mark_phi_for_rewrite (def_bb, stmt);
2465   else
2466     {
2467       set_rewrite_uses (stmt, true);
2468 
2469       if (is_gimple_debug (stmt))
2470 	return;
2471     }
2472 
2473   /* If VAR has not been defined in BB, then it is live-on-entry
2474      to BB.  Note that we cannot just use the block holding VAR's
2475      definition because if VAR is one of the names in OLD_SSA_NAMES,
2476      it will have several definitions (itself and all the names that
2477      replace it).  */
2478   if (insert_phi_p)
2479     {
2480       struct def_blocks_d *db_p = get_def_blocks_for (var);
2481       if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2482 	set_livein_block (var, bb);
2483     }
2484 }
2485 
2486 
2487 /* Do a dominator walk starting at BB processing statements that
2488    reference symbols in SYMS_TO_RENAME.  This is very similar to
2489    mark_def_sites, but the scan handles statements whose operands may
2490    already be SSA names.
2491 
2492    If INSERT_PHI_P is true, mark those uses as live in the
2493    corresponding block.  This is later used by the PHI placement
2494    algorithm to make PHI pruning decisions.
2495 
2496    FIXME.  Most of this would be unnecessary if we could associate a
2497 	   symbol to all the SSA names that reference it.  But that
2498 	   sounds like it would be expensive to maintain.  Still, it
2499 	   would be interesting to see if it makes better sense to do
2500 	   that.  */
2501 
2502 static void
2503 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2504 {
2505   basic_block son;
2506   gimple_stmt_iterator si;
2507   edge e;
2508   edge_iterator ei;
2509 
2510   mark_block_for_update (bb);
2511 
2512   /* Process PHI nodes marking interesting those that define or use
2513      the symbols that we are interested in.  */
2514   for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2515     {
2516       gimple phi = gsi_stmt (si);
2517       tree lhs_sym, lhs = gimple_phi_result (phi);
2518 
2519       lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2520 
2521       if (!symbol_marked_for_renaming (lhs_sym))
2522 	continue;
2523 
2524       mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2525 
2526       /* Mark the uses in phi nodes as interesting.  It would be more correct
2527 	 to process the arguments of the phi nodes of the successor edges of
2528 	 BB at the end of prepare_block_for_update, however, that turns out
2529 	 to be significantly more expensive.  Doing it here is conservatively
2530 	 correct -- it may only cause us to believe a value to be live in a
2531 	 block that also contains its definition, and thus insert a few more
2532 	 phi nodes for it.  */
2533       FOR_EACH_EDGE (e, ei, bb->preds)
2534 	mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2535     }
2536 
2537   /* Process the statements.  */
2538   for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2539     {
2540       gimple stmt;
2541       ssa_op_iter i;
2542       use_operand_p use_p;
2543       def_operand_p def_p;
2544 
2545       stmt = gsi_stmt (si);
2546 
2547       FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2548 	{
2549 	  tree use = USE_FROM_PTR (use_p);
2550 	  tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2551 	  if (symbol_marked_for_renaming (sym))
2552 	    mark_use_interesting (sym, stmt, bb, insert_phi_p);
2553 	}
2554 
2555       FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2556 	{
2557 	  tree def = DEF_FROM_PTR (def_p);
2558 	  tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2559 	  if (symbol_marked_for_renaming (sym))
2560 	    mark_def_interesting (sym, stmt, bb, insert_phi_p);
2561 	}
2562     }
2563 
2564   /* Now visit all the blocks dominated by BB.  */
2565   for (son = first_dom_son (CDI_DOMINATORS, bb);
2566        son;
2567        son = next_dom_son (CDI_DOMINATORS, son))
2568     prepare_block_for_update (son, insert_phi_p);
2569 }
2570 
2571 
2572 /* Helper for prepare_names_to_update.  Mark all the use sites for
2573    NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2574    prepare_names_to_update.  */
2575 
2576 static void
2577 prepare_use_sites_for (tree name, bool insert_phi_p)
2578 {
2579   use_operand_p use_p;
2580   imm_use_iterator iter;
2581 
2582   FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2583     {
2584       gimple stmt = USE_STMT (use_p);
2585       basic_block bb = gimple_bb (stmt);
2586 
2587       if (gimple_code (stmt) == GIMPLE_PHI)
2588 	{
2589 	  int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2590 	  edge e = gimple_phi_arg_edge (stmt, ix);
2591 	  mark_use_interesting (name, stmt, e->src, insert_phi_p);
2592 	}
2593       else
2594 	{
2595 	  /* For regular statements, mark this as an interesting use
2596 	     for NAME.  */
2597 	  mark_use_interesting (name, stmt, bb, insert_phi_p);
2598 	}
2599     }
2600 }
2601 
2602 
2603 /* Helper for prepare_names_to_update.  Mark the definition site for
2604    NAME as interesting.  BLOCKS and INSERT_PHI_P are as in
2605    prepare_names_to_update.  */
2606 
2607 static void
2608 prepare_def_site_for (tree name, bool insert_phi_p)
2609 {
2610   gimple stmt;
2611   basic_block bb;
2612 
2613   gcc_assert (names_to_release == NULL
2614 	      || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2615 
2616   stmt = SSA_NAME_DEF_STMT (name);
2617   bb = gimple_bb (stmt);
2618   if (bb)
2619     {
2620       gcc_assert (bb->index < last_basic_block);
2621       mark_block_for_update (bb);
2622       mark_def_interesting (name, stmt, bb, insert_phi_p);
2623     }
2624 }
2625 
2626 
2627 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2628    OLD_SSA_NAMES.  INSERT_PHI_P is true if the caller wants to insert
2629    PHI nodes for newly created names.  */
2630 
2631 static void
2632 prepare_names_to_update (bool insert_phi_p)
2633 {
2634   unsigned i = 0;
2635   bitmap_iterator bi;
2636   sbitmap_iterator sbi;
2637 
2638   /* If a name N from NEW_SSA_NAMES is also marked to be released,
2639      remove it from NEW_SSA_NAMES so that we don't try to visit its
2640      defining basic block (which most likely doesn't exist).  Notice
2641      that we cannot do the same with names in OLD_SSA_NAMES because we
2642      want to replace existing instances.  */
2643   if (names_to_release)
2644     EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2645       RESET_BIT (new_ssa_names, i);
2646 
2647   /* First process names in NEW_SSA_NAMES.  Otherwise, uses of old
2648      names may be considered to be live-in on blocks that contain
2649      definitions for their replacements.  */
2650   EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2651     prepare_def_site_for (ssa_name (i), insert_phi_p);
2652 
2653   /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2654      OLD_SSA_NAMES, but we have to ignore its definition site.  */
2655   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2656     {
2657       if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2658 	prepare_def_site_for (ssa_name (i), insert_phi_p);
2659       prepare_use_sites_for (ssa_name (i), insert_phi_p);
2660     }
2661 }
2662 
2663 
2664 /* Dump all the names replaced by NAME to FILE.  */
2665 
2666 void
2667 dump_names_replaced_by (FILE *file, tree name)
2668 {
2669   unsigned i;
2670   bitmap old_set;
2671   bitmap_iterator bi;
2672 
2673   print_generic_expr (file, name, 0);
2674   fprintf (file, " -> { ");
2675 
2676   old_set = names_replaced_by (name);
2677   EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2678     {
2679       print_generic_expr (file, ssa_name (i), 0);
2680       fprintf (file, " ");
2681     }
2682 
2683   fprintf (file, "}\n");
2684 }
2685 
2686 
2687 /* Dump all the names replaced by NAME to stderr.  */
2688 
2689 void
2690 debug_names_replaced_by (tree name)
2691 {
2692   dump_names_replaced_by (stderr, name);
2693 }
2694 
2695 
2696 /* Dump SSA update information to FILE.  */
2697 
2698 void
2699 dump_update_ssa (FILE *file)
2700 {
2701   unsigned i = 0;
2702   bitmap_iterator bi;
2703 
2704   if (!need_ssa_update_p (cfun))
2705     return;
2706 
2707   if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2708     {
2709       sbitmap_iterator sbi;
2710 
2711       fprintf (file, "\nSSA replacement table\n");
2712       fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2713 	             "O_1, ..., O_j\n\n");
2714 
2715       EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2716 	dump_names_replaced_by (file, ssa_name (i));
2717 
2718       fprintf (file, "\n");
2719       fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2720 	       update_ssa_stats.num_virtual_mappings);
2721       fprintf (file, "Number of real NEW -> OLD mappings:    %7u\n",
2722 	       update_ssa_stats.num_total_mappings
2723 	       - update_ssa_stats.num_virtual_mappings);
2724       fprintf (file, "Number of total NEW -> OLD mappings:   %7u\n",
2725 	       update_ssa_stats.num_total_mappings);
2726 
2727       fprintf (file, "\nNumber of virtual symbols: %u\n",
2728 	       update_ssa_stats.num_virtual_symbols);
2729     }
2730 
2731   if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2732     {
2733       fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2734       dump_decl_set (file, SYMS_TO_RENAME (cfun));
2735       fprintf (file, "\n");
2736     }
2737 
2738   if (names_to_release && !bitmap_empty_p (names_to_release))
2739     {
2740       fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2741       EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2742 	{
2743 	  print_generic_expr (file, ssa_name (i), 0);
2744 	  fprintf (file, " ");
2745 	}
2746     }
2747 
2748   fprintf (file, "\n\n");
2749 }
2750 
2751 
2752 /* Dump SSA update information to stderr.  */
2753 
2754 void
2755 debug_update_ssa (void)
2756 {
2757   dump_update_ssa (stderr);
2758 }
2759 
2760 
2761 /* Initialize data structures used for incremental SSA updates.  */
2762 
2763 static void
2764 init_update_ssa (struct function *fn)
2765 {
2766   /* Reserve more space than the current number of names.  The calls to
2767      add_new_name_mapping are typically done after creating new SSA
2768      names, so we'll need to reallocate these arrays.  */
2769   old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2770   sbitmap_zero (old_ssa_names);
2771 
2772   new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2773   sbitmap_zero (new_ssa_names);
2774 
2775   repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2776   names_to_release = NULL;
2777   memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2778   update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2779   update_ssa_initialized_fn = fn;
2780 }
2781 
2782 
2783 /* Deallocate data structures used for incremental SSA updates.  */
2784 
2785 void
2786 delete_update_ssa (void)
2787 {
2788   unsigned i;
2789   bitmap_iterator bi;
2790 
2791   sbitmap_free (old_ssa_names);
2792   old_ssa_names = NULL;
2793 
2794   sbitmap_free (new_ssa_names);
2795   new_ssa_names = NULL;
2796 
2797   htab_delete (repl_tbl);
2798   repl_tbl = NULL;
2799 
2800   bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2801   BITMAP_FREE (update_ssa_stats.virtual_symbols);
2802 
2803   if (names_to_release)
2804     {
2805       EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2806 	release_ssa_name (ssa_name (i));
2807       BITMAP_FREE (names_to_release);
2808     }
2809 
2810   clear_ssa_name_info ();
2811 
2812   fini_ssa_renamer ();
2813 
2814   if (blocks_with_phis_to_rewrite)
2815     EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2816       {
2817 	gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2818 
2819 	VEC_free (gimple, heap, phis);
2820 	VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2821       }
2822 
2823   BITMAP_FREE (blocks_with_phis_to_rewrite);
2824   BITMAP_FREE (blocks_to_update);
2825   update_ssa_initialized_fn = NULL;
2826 }
2827 
2828 
2829 /* Create a new name for OLD_NAME in statement STMT and replace the
2830    operand pointed to by DEF_P with the newly created name.  Return
2831    the new name and register the replacement mapping <NEW, OLD> in
2832    update_ssa's tables.  */
2833 
2834 tree
2835 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2836 {
2837   tree new_name = duplicate_ssa_name (old_name, stmt);
2838 
2839   SET_DEF (def, new_name);
2840 
2841   if (gimple_code (stmt) == GIMPLE_PHI)
2842     {
2843       edge e;
2844       edge_iterator ei;
2845       basic_block bb = gimple_bb (stmt);
2846 
2847       /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2848       FOR_EACH_EDGE (e, ei, bb->preds)
2849 	if (e->flags & EDGE_ABNORMAL)
2850 	  {
2851 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2852 	    break;
2853 	  }
2854     }
2855 
2856   register_new_name_mapping (new_name, old_name);
2857 
2858   /* For the benefit of passes that will be updating the SSA form on
2859      their own, set the current reaching definition of OLD_NAME to be
2860      NEW_NAME.  */
2861   set_current_def (old_name, new_name);
2862 
2863   return new_name;
2864 }
2865 
2866 
2867 /* Register name NEW to be a replacement for name OLD.  This function
2868    must be called for every replacement that should be performed by
2869    update_ssa.  */
2870 
2871 void
2872 register_new_name_mapping (tree new_tree, tree old)
2873 {
2874   if (!update_ssa_initialized_fn)
2875     init_update_ssa (cfun);
2876 
2877   gcc_assert (update_ssa_initialized_fn == cfun);
2878 
2879   add_new_name_mapping (new_tree, old);
2880 }
2881 
2882 
2883 /* Register symbol SYM to be renamed by update_ssa.  */
2884 
2885 void
2886 mark_sym_for_renaming (tree sym)
2887 {
2888   bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2889 }
2890 
2891 
2892 /* Register all the symbols in SET to be renamed by update_ssa.  */
2893 
2894 void
2895 mark_set_for_renaming (bitmap set)
2896 {
2897   bitmap_iterator bi;
2898   unsigned i;
2899 
2900   if (set == NULL || bitmap_empty_p (set))
2901     return;
2902 
2903   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2904     mark_sym_for_renaming (referenced_var (i));
2905 }
2906 
2907 
2908 /* Return true if there is any work to be done by update_ssa
2909    for function FN.  */
2910 
2911 bool
2912 need_ssa_update_p (struct function *fn)
2913 {
2914   gcc_assert (fn != NULL);
2915   return (update_ssa_initialized_fn == fn
2916 	  || (fn->gimple_df
2917 	      && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2918 }
2919 
2920 /* Return true if SSA name mappings have been registered for SSA updating.  */
2921 
2922 bool
2923 name_mappings_registered_p (void)
2924 {
2925   if (!update_ssa_initialized_fn)
2926     return false;
2927 
2928   gcc_assert (update_ssa_initialized_fn == cfun);
2929 
2930   return repl_tbl && htab_elements (repl_tbl) > 0;
2931 }
2932 
2933 /* Return true if name N has been registered in the replacement table.  */
2934 
2935 bool
2936 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2937 {
2938   if (!update_ssa_initialized_fn)
2939     return false;
2940 
2941   gcc_assert (update_ssa_initialized_fn == cfun);
2942 
2943   return is_new_name (n) || is_old_name (n);
2944 }
2945 
2946 
2947 /* Return the set of all the SSA names marked to be replaced.  */
2948 
2949 bitmap
2950 ssa_names_to_replace (void)
2951 {
2952   unsigned i = 0;
2953   bitmap ret;
2954   sbitmap_iterator sbi;
2955 
2956   gcc_assert (update_ssa_initialized_fn == NULL
2957 	      || update_ssa_initialized_fn == cfun);
2958 
2959   ret = BITMAP_ALLOC (NULL);
2960   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2961     bitmap_set_bit (ret, i);
2962 
2963   return ret;
2964 }
2965 
2966 
2967 /* Mark NAME to be released after update_ssa has finished.  */
2968 
2969 void
2970 release_ssa_name_after_update_ssa (tree name)
2971 {
2972   gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2973 
2974   if (names_to_release == NULL)
2975     names_to_release = BITMAP_ALLOC (NULL);
2976 
2977   bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2978 }
2979 
2980 
2981 /* Insert new PHI nodes to replace VAR.  DFS contains dominance
2982    frontier information.  BLOCKS is the set of blocks to be updated.
2983 
2984    This is slightly different than the regular PHI insertion
2985    algorithm.  The value of UPDATE_FLAGS controls how PHI nodes for
2986    real names (i.e., GIMPLE registers) are inserted:
2987 
2988    - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2989      nodes inside the region affected by the block that defines VAR
2990      and the blocks that define all its replacements.  All these
2991      definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2992 
2993      First, we compute the entry point to the region (ENTRY).  This is
2994      given by the nearest common dominator to all the definition
2995      blocks. When computing the iterated dominance frontier (IDF), any
2996      block not strictly dominated by ENTRY is ignored.
2997 
2998      We then call the standard PHI insertion algorithm with the pruned
2999      IDF.
3000 
3001    - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3002      names is not pruned.  PHI nodes are inserted at every IDF block.  */
3003 
3004 static void
3005 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
3006                               unsigned update_flags)
3007 {
3008   basic_block entry;
3009   struct def_blocks_d *db;
3010   bitmap idf, pruned_idf;
3011   bitmap_iterator bi;
3012   unsigned i;
3013 
3014 #if defined ENABLE_CHECKING
3015   if (TREE_CODE (var) == SSA_NAME)
3016     gcc_assert (is_old_name (var));
3017   else
3018     gcc_assert (symbol_marked_for_renaming (var));
3019 #endif
3020 
3021   /* Get all the definition sites for VAR.  */
3022   db = find_def_blocks_for (var);
3023 
3024   /* No need to do anything if there were no definitions to VAR.  */
3025   if (db == NULL || bitmap_empty_p (db->def_blocks))
3026     return;
3027 
3028   /* Compute the initial iterated dominance frontier.  */
3029   idf = compute_idf (db->def_blocks, dfs);
3030   pruned_idf = BITMAP_ALLOC (NULL);
3031 
3032   if (TREE_CODE (var) == SSA_NAME)
3033     {
3034       if (update_flags == TODO_update_ssa)
3035 	{
3036 	  /* If doing regular SSA updates for GIMPLE registers, we are
3037 	     only interested in IDF blocks dominated by the nearest
3038 	     common dominator of all the definition blocks.  */
3039 	  entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3040 						    db->def_blocks);
3041 	  if (entry != ENTRY_BLOCK_PTR)
3042 	    EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3043 	      if (BASIC_BLOCK (i) != entry
3044 		  && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3045 		bitmap_set_bit (pruned_idf, i);
3046 	}
3047       else
3048 	{
3049 	  /* Otherwise, do not prune the IDF for VAR.  */
3050 	  gcc_assert (update_flags == TODO_update_ssa_full_phi);
3051 	  bitmap_copy (pruned_idf, idf);
3052 	}
3053     }
3054   else
3055     {
3056       /* Otherwise, VAR is a symbol that needs to be put into SSA form
3057 	 for the first time, so we need to compute the full IDF for
3058 	 it.  */
3059       bitmap_copy (pruned_idf, idf);
3060     }
3061 
3062   if (!bitmap_empty_p (pruned_idf))
3063     {
3064       /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3065 	 are included in the region to be updated.  The feeding blocks
3066 	 are important to guarantee that the PHI arguments are renamed
3067 	 properly.  */
3068 
3069       /* FIXME, this is not needed if we are updating symbols.  We are
3070 	 already starting at the ENTRY block anyway.  */
3071       bitmap_ior_into (blocks, pruned_idf);
3072       EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3073 	{
3074 	  edge e;
3075 	  edge_iterator ei;
3076 	  basic_block bb = BASIC_BLOCK (i);
3077 
3078 	  FOR_EACH_EDGE (e, ei, bb->preds)
3079 	    if (e->src->index >= 0)
3080 	      bitmap_set_bit (blocks, e->src->index);
3081 	}
3082 
3083       insert_phi_nodes_for (var, pruned_idf, true);
3084     }
3085 
3086   BITMAP_FREE (pruned_idf);
3087   BITMAP_FREE (idf);
3088 }
3089 
3090 
3091 /* Heuristic to determine whether SSA name mappings for virtual names
3092    should be discarded and their symbols rewritten from scratch.  When
3093    there is a large number of mappings for virtual names, the
3094    insertion of PHI nodes for the old names in the mappings takes
3095    considerable more time than if we inserted PHI nodes for the
3096    symbols instead.
3097 
3098    Currently the heuristic takes these stats into account:
3099 
3100    	- Number of mappings for virtual SSA names.
3101 	- Number of distinct virtual symbols involved in those mappings.
3102 
3103    If the number of virtual mappings is much larger than the number of
3104    virtual symbols, then it will be faster to compute PHI insertion
3105    spots for the symbols.  Even if this involves traversing the whole
3106    CFG, which is what happens when symbols are renamed from scratch.  */
3107 
3108 static bool
3109 switch_virtuals_to_full_rewrite_p (void)
3110 {
3111   if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3112     return false;
3113 
3114   if (update_ssa_stats.num_virtual_mappings
3115       > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3116         * update_ssa_stats.num_virtual_symbols)
3117     return true;
3118 
3119   return false;
3120 }
3121 
3122 
3123 /* Remove every virtual mapping and mark all the affected virtual
3124    symbols for renaming.  */
3125 
3126 static void
3127 switch_virtuals_to_full_rewrite (void)
3128 {
3129   unsigned i = 0;
3130   sbitmap_iterator sbi;
3131 
3132   if (dump_file)
3133     {
3134       fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3135       fprintf (dump_file, "\tNumber of virtual mappings:       %7u\n",
3136 	       update_ssa_stats.num_virtual_mappings);
3137       fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3138 	       update_ssa_stats.num_virtual_symbols);
3139       fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3140 	                  "faster than processing\nthe name mappings.\n\n");
3141     }
3142 
3143   /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3144      Note that it is not really necessary to remove the mappings from
3145      REPL_TBL, that would only waste time.  */
3146   EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3147     if (!is_gimple_reg (ssa_name (i)))
3148       RESET_BIT (new_ssa_names, i);
3149 
3150   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3151     if (!is_gimple_reg (ssa_name (i)))
3152       RESET_BIT (old_ssa_names, i);
3153 
3154   mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3155 }
3156 
3157 
3158 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3159    existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3160 
3161    1- The names in OLD_SSA_NAMES dominated by the definitions of
3162       NEW_SSA_NAMES are all re-written to be reached by the
3163       appropriate definition from NEW_SSA_NAMES.
3164 
3165    2- If needed, new PHI nodes are added to the iterated dominance
3166       frontier of the blocks where each of NEW_SSA_NAMES are defined.
3167 
3168    The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3169    calling register_new_name_mapping for every pair of names that the
3170    caller wants to replace.
3171 
3172    The caller identifies the new names that have been inserted and the
3173    names that need to be replaced by calling register_new_name_mapping
3174    for every pair <NEW, OLD>.  Note that the function assumes that the
3175    new names have already been inserted in the IL.
3176 
3177    For instance, given the following code:
3178 
3179      1	L0:
3180      2	x_1 = PHI (0, x_5)
3181      3	if (x_1 < 10)
3182      4	  if (x_1 > 7)
3183      5	    y_2 = 0
3184      6	  else
3185      7	    y_3 = x_1 + x_7
3186      8	  endif
3187      9	  x_5 = x_1 + 1
3188      10   goto L0;
3189      11	endif
3190 
3191    Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3192 
3193      1	L0:
3194      2	x_1 = PHI (0, x_5)
3195      3	if (x_1 < 10)
3196      4	  x_10 = ...
3197      5	  if (x_1 > 7)
3198      6	    y_2 = 0
3199      7	  else
3200      8	    x_11 = ...
3201      9	    y_3 = x_1 + x_7
3202      10	  endif
3203      11	  x_5 = x_1 + 1
3204      12	  goto L0;
3205      13	endif
3206 
3207    We want to replace all the uses of x_1 with the new definitions of
3208    x_10 and x_11.  Note that the only uses that should be replaced are
3209    those at lines 5, 9 and 11.  Also, the use of x_7 at line 9 should
3210    *not* be replaced (this is why we cannot just mark symbol 'x' for
3211    renaming).
3212 
3213    Additionally, we may need to insert a PHI node at line 11 because
3214    that is a merge point for x_10 and x_11.  So the use of x_1 at line
3215    11 will be replaced with the new PHI node.  The insertion of PHI
3216    nodes is optional.  They are not strictly necessary to preserve the
3217    SSA form, and depending on what the caller inserted, they may not
3218    even be useful for the optimizers.  UPDATE_FLAGS controls various
3219    aspects of how update_ssa operates, see the documentation for
3220    TODO_update_ssa*.  */
3221 
3222 void
3223 update_ssa (unsigned update_flags)
3224 {
3225   basic_block bb, start_bb;
3226   bitmap_iterator bi;
3227   unsigned i = 0;
3228   bool insert_phi_p;
3229   sbitmap_iterator sbi;
3230 
3231   if (!need_ssa_update_p (cfun))
3232     return;
3233 
3234   timevar_push (TV_TREE_SSA_INCREMENTAL);
3235 
3236   if (!update_ssa_initialized_fn)
3237     init_update_ssa (cfun);
3238   gcc_assert (update_ssa_initialized_fn == cfun);
3239 
3240   blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3241   if (!phis_to_rewrite)
3242     phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3243   blocks_to_update = BITMAP_ALLOC (NULL);
3244 
3245   /* Ensure that the dominance information is up-to-date.  */
3246   calculate_dominance_info (CDI_DOMINATORS);
3247 
3248   /* Only one update flag should be set.  */
3249   gcc_assert (update_flags == TODO_update_ssa
3250               || update_flags == TODO_update_ssa_no_phi
3251 	      || update_flags == TODO_update_ssa_full_phi
3252 	      || update_flags == TODO_update_ssa_only_virtuals);
3253 
3254   /* If we only need to update virtuals, remove all the mappings for
3255      real names before proceeding.  The caller is responsible for
3256      having dealt with the name mappings before calling update_ssa.  */
3257   if (update_flags == TODO_update_ssa_only_virtuals)
3258     {
3259       sbitmap_zero (old_ssa_names);
3260       sbitmap_zero (new_ssa_names);
3261       htab_empty (repl_tbl);
3262     }
3263 
3264   insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3265 
3266   if (insert_phi_p)
3267     {
3268       /* If the caller requested PHI nodes to be added, initialize
3269 	 live-in information data structures (DEF_BLOCKS).  */
3270 
3271       /* For each SSA name N, the DEF_BLOCKS table describes where the
3272 	 name is defined, which blocks have PHI nodes for N, and which
3273 	 blocks have uses of N (i.e., N is live-on-entry in those
3274 	 blocks).  */
3275       def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3276 				def_blocks_eq, def_blocks_free);
3277     }
3278   else
3279     {
3280       def_blocks = NULL;
3281     }
3282 
3283   /* Heuristic to avoid massive slow downs when the replacement
3284      mappings include lots of virtual names.  */
3285   if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3286     switch_virtuals_to_full_rewrite ();
3287 
3288   /* If there are names defined in the replacement table, prepare
3289      definition and use sites for all the names in NEW_SSA_NAMES and
3290      OLD_SSA_NAMES.  */
3291   if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3292     {
3293       prepare_names_to_update (insert_phi_p);
3294 
3295       /* If all the names in NEW_SSA_NAMES had been marked for
3296 	 removal, and there are no symbols to rename, then there's
3297 	 nothing else to do.  */
3298       if (sbitmap_first_set_bit (new_ssa_names) < 0
3299 	  && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3300 	goto done;
3301     }
3302 
3303   /* Next, determine the block at which to start the renaming process.  */
3304   if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3305     {
3306       /* If we have to rename some symbols from scratch, we need to
3307 	 start the process at the root of the CFG.  FIXME, it should
3308 	 be possible to determine the nearest block that had a
3309 	 definition for each of the symbols that are marked for
3310 	 updating.  For now this seems more work than it's worth.  */
3311       start_bb = ENTRY_BLOCK_PTR;
3312 
3313       /* Traverse the CFG looking for existing definitions and uses of
3314 	 symbols in SYMS_TO_RENAME.  Mark interesting blocks and
3315 	 statements and set local live-in information for the PHI
3316 	 placement heuristics.  */
3317       prepare_block_for_update (start_bb, insert_phi_p);
3318     }
3319   else
3320     {
3321       /* Otherwise, the entry block to the region is the nearest
3322 	 common dominator for the blocks in BLOCKS.  */
3323       start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3324 						   blocks_to_update);
3325     }
3326 
3327   /* If requested, insert PHI nodes at the iterated dominance frontier
3328      of every block, creating new definitions for names in OLD_SSA_NAMES
3329      and for symbols in SYMS_TO_RENAME.  */
3330   if (insert_phi_p)
3331     {
3332       bitmap *dfs;
3333 
3334       /* If the caller requested PHI nodes to be added, compute
3335 	 dominance frontiers.  */
3336       dfs = XNEWVEC (bitmap, last_basic_block);
3337       FOR_EACH_BB (bb)
3338 	dfs[bb->index] = BITMAP_ALLOC (NULL);
3339       compute_dominance_frontiers (dfs);
3340 
3341       if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3342 	{
3343 	  sbitmap_iterator sbi;
3344 
3345 	  /* insert_update_phi_nodes_for will call add_new_name_mapping
3346 	     when inserting new PHI nodes, so the set OLD_SSA_NAMES
3347 	     will grow while we are traversing it (but it will not
3348 	     gain any new members).  Copy OLD_SSA_NAMES to a temporary
3349 	     for traversal.  */
3350 	  sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3351 	  sbitmap_copy (tmp, old_ssa_names);
3352 	  EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3353 	    insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3354 	                                  update_flags);
3355 	  sbitmap_free (tmp);
3356 	}
3357 
3358       EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3359 	insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3360 	                              update_flags);
3361 
3362       FOR_EACH_BB (bb)
3363 	BITMAP_FREE (dfs[bb->index]);
3364       free (dfs);
3365 
3366       /* Insertion of PHI nodes may have added blocks to the region.
3367 	 We need to re-compute START_BB to include the newly added
3368 	 blocks.  */
3369       if (start_bb != ENTRY_BLOCK_PTR)
3370 	start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3371 						     blocks_to_update);
3372     }
3373 
3374   /* Reset the current definition for name and symbol before renaming
3375      the sub-graph.  */
3376   EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3377     set_current_def (ssa_name (i), NULL_TREE);
3378 
3379   EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3380     set_current_def (referenced_var (i), NULL_TREE);
3381 
3382   /* Now start the renaming process at START_BB.  */
3383   interesting_blocks = sbitmap_alloc (last_basic_block);
3384   sbitmap_zero (interesting_blocks);
3385   EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3386     SET_BIT (interesting_blocks, i);
3387 
3388   rewrite_blocks (start_bb, REWRITE_UPDATE);
3389 
3390   sbitmap_free (interesting_blocks);
3391 
3392   /* Debugging dumps.  */
3393   if (dump_file)
3394     {
3395       int c;
3396       unsigned i;
3397 
3398       dump_update_ssa (dump_file);
3399 
3400       fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3401 	       start_bb->index);
3402 
3403       c = 0;
3404       EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3405 	c++;
3406       fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3407       fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3408 	       c, PERCENT (c, last_basic_block));
3409 
3410       if (dump_flags & TDF_DETAILS)
3411 	{
3412 	  fprintf (dump_file, "Affected blocks: ");
3413 	  EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3414 	    fprintf (dump_file, "%u ", i);
3415 	  fprintf (dump_file, "\n");
3416 	}
3417 
3418       fprintf (dump_file, "\n\n");
3419     }
3420 
3421   /* Free allocated memory.  */
3422 done:
3423   delete_update_ssa ();
3424 
3425   timevar_pop (TV_TREE_SSA_INCREMENTAL);
3426 }
3427