xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-if-conv.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /* If-conversion for vectorizer.
2    Copyright (C) 2004-2013 Free Software Foundation, Inc.
3    Contributed by Devang Patel <dpatel@apple.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* This pass implements a tree level if-conversion of loops.  Its
22    initial goal is to help the vectorizer to vectorize loops with
23    conditions.
24 
25    A short description of if-conversion:
26 
27      o Decide if a loop is if-convertible or not.
28      o Walk all loop basic blocks in breadth first order (BFS order).
29        o Remove conditional statements (at the end of basic block)
30          and propagate condition into destination basic blocks'
31 	 predicate list.
32        o Replace modify expression with conditional modify expression
33          using current basic block's condition.
34      o Merge all basic blocks
35        o Replace phi nodes with conditional modify expr
36        o Merge all basic blocks into header
37 
38      Sample transformation:
39 
40      INPUT
41      -----
42 
43      # i_23 = PHI <0(0), i_18(10)>;
44      <L0>:;
45      j_15 = A[i_23];
46      if (j_15 > 41) goto <L1>; else goto <L17>;
47 
48      <L17>:;
49      goto <bb 3> (<L3>);
50 
51      <L1>:;
52 
53      # iftmp.2_4 = PHI <0(8), 42(2)>;
54      <L3>:;
55      A[i_23] = iftmp.2_4;
56      i_18 = i_23 + 1;
57      if (i_18 <= 15) goto <L19>; else goto <L18>;
58 
59      <L19>:;
60      goto <bb 1> (<L0>);
61 
62      <L18>:;
63 
64      OUTPUT
65      ------
66 
67      # i_23 = PHI <0(0), i_18(10)>;
68      <L0>:;
69      j_15 = A[i_23];
70 
71      <L3>:;
72      iftmp.2_4 = j_15 > 41 ? 42 : 0;
73      A[i_23] = iftmp.2_4;
74      i_18 = i_23 + 1;
75      if (i_18 <= 15) goto <L19>; else goto <L18>;
76 
77      <L19>:;
78      goto <bb 1> (<L0>);
79 
80      <L18>:;
81 */
82 
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "tm.h"
87 #include "tree.h"
88 #include "flags.h"
89 #include "basic-block.h"
90 #include "gimple-pretty-print.h"
91 #include "tree-flow.h"
92 #include "cfgloop.h"
93 #include "tree-chrec.h"
94 #include "tree-data-ref.h"
95 #include "tree-scalar-evolution.h"
96 #include "tree-pass.h"
97 #include "dbgcnt.h"
98 
99 /* List of basic blocks in if-conversion-suitable order.  */
100 static basic_block *ifc_bbs;
101 
102 /* Structure used to predicate basic blocks.  This is attached to the
103    ->aux field of the BBs in the loop to be if-converted.  */
104 typedef struct bb_predicate_s {
105 
106   /* The condition under which this basic block is executed.  */
107   tree predicate;
108 
109   /* PREDICATE is gimplified, and the sequence of statements is
110      recorded here, in order to avoid the duplication of computations
111      that occur in previous conditions.  See PR44483.  */
112   gimple_seq predicate_gimplified_stmts;
113 } *bb_predicate_p;
114 
115 /* Returns true when the basic block BB has a predicate.  */
116 
117 static inline bool
118 bb_has_predicate (basic_block bb)
119 {
120   return bb->aux != NULL;
121 }
122 
123 /* Returns the gimplified predicate for basic block BB.  */
124 
125 static inline tree
126 bb_predicate (basic_block bb)
127 {
128   return ((bb_predicate_p) bb->aux)->predicate;
129 }
130 
131 /* Sets the gimplified predicate COND for basic block BB.  */
132 
133 static inline void
134 set_bb_predicate (basic_block bb, tree cond)
135 {
136   gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
137 	       && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
138 	      || is_gimple_condexpr (cond));
139   ((bb_predicate_p) bb->aux)->predicate = cond;
140 }
141 
142 /* Returns the sequence of statements of the gimplification of the
143    predicate for basic block BB.  */
144 
145 static inline gimple_seq
146 bb_predicate_gimplified_stmts (basic_block bb)
147 {
148   return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
149 }
150 
151 /* Sets the sequence of statements STMTS of the gimplification of the
152    predicate for basic block BB.  */
153 
154 static inline void
155 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
156 {
157   ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
158 }
159 
160 /* Adds the sequence of statements STMTS to the sequence of statements
161    of the predicate for basic block BB.  */
162 
163 static inline void
164 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
165 {
166   gimple_seq_add_seq
167     (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
168 }
169 
170 /* Initializes to TRUE the predicate of basic block BB.  */
171 
172 static inline void
173 init_bb_predicate (basic_block bb)
174 {
175   bb->aux = XNEW (struct bb_predicate_s);
176   set_bb_predicate_gimplified_stmts (bb, NULL);
177   set_bb_predicate (bb, boolean_true_node);
178 }
179 
180 /* Free the predicate of basic block BB.  */
181 
182 static inline void
183 free_bb_predicate (basic_block bb)
184 {
185   gimple_seq stmts;
186 
187   if (!bb_has_predicate (bb))
188     return;
189 
190   /* Release the SSA_NAMEs created for the gimplification of the
191      predicate.  */
192   stmts = bb_predicate_gimplified_stmts (bb);
193   if (stmts)
194     {
195       gimple_stmt_iterator i;
196 
197       for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
198 	free_stmt_operands (gsi_stmt (i));
199     }
200 
201   free (bb->aux);
202   bb->aux = NULL;
203 }
204 
205 /* Free the predicate of BB and reinitialize it with the true
206    predicate.  */
207 
208 static inline void
209 reset_bb_predicate (basic_block bb)
210 {
211   free_bb_predicate (bb);
212   init_bb_predicate (bb);
213 }
214 
215 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
216    the expression EXPR.  Inserts the statement created for this
217    computation before GSI and leaves the iterator GSI at the same
218    statement.  */
219 
220 static tree
221 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
222 {
223   tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
224   gimple stmt = gimple_build_assign (new_name, expr);
225   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
226   return new_name;
227 }
228 
229 /* Return true when COND is a true predicate.  */
230 
231 static inline bool
232 is_true_predicate (tree cond)
233 {
234   return (cond == NULL_TREE
235 	  || cond == boolean_true_node
236 	  || integer_onep (cond));
237 }
238 
239 /* Returns true when BB has a predicate that is not trivial: true or
240    NULL_TREE.  */
241 
242 static inline bool
243 is_predicated (basic_block bb)
244 {
245   return !is_true_predicate (bb_predicate (bb));
246 }
247 
248 /* Parses the predicate COND and returns its comparison code and
249    operands OP0 and OP1.  */
250 
251 static enum tree_code
252 parse_predicate (tree cond, tree *op0, tree *op1)
253 {
254   gimple s;
255 
256   if (TREE_CODE (cond) == SSA_NAME
257       && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
258     {
259       if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
260 	{
261 	  *op0 = gimple_assign_rhs1 (s);
262 	  *op1 = gimple_assign_rhs2 (s);
263 	  return gimple_assign_rhs_code (s);
264 	}
265 
266       else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
267 	{
268 	  tree op = gimple_assign_rhs1 (s);
269 	  tree type = TREE_TYPE (op);
270 	  enum tree_code code = parse_predicate (op, op0, op1);
271 
272 	  return code == ERROR_MARK ? ERROR_MARK
273 	    : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
274 	}
275 
276       return ERROR_MARK;
277     }
278 
279   if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
280     {
281       *op0 = TREE_OPERAND (cond, 0);
282       *op1 = TREE_OPERAND (cond, 1);
283       return TREE_CODE (cond);
284     }
285 
286   return ERROR_MARK;
287 }
288 
289 /* Returns the fold of predicate C1 OR C2 at location LOC.  */
290 
291 static tree
292 fold_or_predicates (location_t loc, tree c1, tree c2)
293 {
294   tree op1a, op1b, op2a, op2b;
295   enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
296   enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
297 
298   if (code1 != ERROR_MARK && code2 != ERROR_MARK)
299     {
300       tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
301 					  code2, op2a, op2b);
302       if (t)
303 	return t;
304     }
305 
306   return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
307 }
308 
309 /* Returns true if N is either a constant or a SSA_NAME.  */
310 
311 static bool
312 constant_or_ssa_name (tree n)
313 {
314   switch (TREE_CODE (n))
315     {
316       case SSA_NAME:
317       case INTEGER_CST:
318       case REAL_CST:
319       case COMPLEX_CST:
320       case VECTOR_CST:
321 	return true;
322       default:
323 	return false;
324     }
325 }
326 
327 /* Returns either a COND_EXPR or the folded expression if the folded
328    expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
329    a constant or a SSA_NAME. */
330 
331 static tree
332 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
333 {
334   tree rhs1, lhs1, cond_expr;
335   cond_expr = fold_ternary (COND_EXPR, type, cond,
336 			    rhs, lhs);
337 
338   if (cond_expr == NULL_TREE)
339     return build3 (COND_EXPR, type, cond, rhs, lhs);
340 
341   STRIP_USELESS_TYPE_CONVERSION (cond_expr);
342 
343   if (constant_or_ssa_name (cond_expr))
344     return cond_expr;
345 
346   if (TREE_CODE (cond_expr) == ABS_EXPR)
347     {
348       rhs1 = TREE_OPERAND (cond_expr, 1);
349       STRIP_USELESS_TYPE_CONVERSION (rhs1);
350       if (constant_or_ssa_name (rhs1))
351 	return build1 (ABS_EXPR, type, rhs1);
352     }
353 
354   if (TREE_CODE (cond_expr) == MIN_EXPR
355       || TREE_CODE (cond_expr) == MAX_EXPR)
356     {
357       lhs1 = TREE_OPERAND (cond_expr, 0);
358       STRIP_USELESS_TYPE_CONVERSION (lhs1);
359       rhs1 = TREE_OPERAND (cond_expr, 1);
360       STRIP_USELESS_TYPE_CONVERSION (rhs1);
361       if (constant_or_ssa_name (rhs1)
362 	  && constant_or_ssa_name (lhs1))
363 	return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
364     }
365   return build3 (COND_EXPR, type, cond, rhs, lhs);
366 }
367 
368 /* Add condition NC to the predicate list of basic block BB.  */
369 
370 static inline void
371 add_to_predicate_list (basic_block bb, tree nc)
372 {
373   tree bc, *tp;
374 
375   if (is_true_predicate (nc))
376     return;
377 
378   if (!is_predicated (bb))
379     bc = nc;
380   else
381     {
382       bc = bb_predicate (bb);
383       bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
384       if (is_true_predicate (bc))
385 	{
386 	  reset_bb_predicate (bb);
387 	  return;
388 	}
389     }
390 
391   /* Allow a TRUTH_NOT_EXPR around the main predicate.  */
392   if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
393     tp = &TREE_OPERAND (bc, 0);
394   else
395     tp = &bc;
396   if (!is_gimple_condexpr (*tp))
397     {
398       gimple_seq stmts;
399       *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
400       add_bb_predicate_gimplified_stmts (bb, stmts);
401     }
402   set_bb_predicate (bb, bc);
403 }
404 
405 /* Add the condition COND to the previous condition PREV_COND, and add
406    this to the predicate list of the destination of edge E.  LOOP is
407    the loop to be if-converted.  */
408 
409 static void
410 add_to_dst_predicate_list (struct loop *loop, edge e,
411 			   tree prev_cond, tree cond)
412 {
413   if (!flow_bb_inside_loop_p (loop, e->dest))
414     return;
415 
416   if (!is_true_predicate (prev_cond))
417     cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
418 			prev_cond, cond);
419 
420   add_to_predicate_list (e->dest, cond);
421 }
422 
423 /* Return true if one of the successor edges of BB exits LOOP.  */
424 
425 static bool
426 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
427 {
428   edge e;
429   edge_iterator ei;
430 
431   FOR_EACH_EDGE (e, ei, bb->succs)
432     if (loop_exit_edge_p (loop, e))
433       return true;
434 
435   return false;
436 }
437 
438 /* Return true when PHI is if-convertible.  PHI is part of loop LOOP
439    and it belongs to basic block BB.
440 
441    PHI is not if-convertible if:
442    - it has more than 2 arguments.
443 
444    When the flag_tree_loop_if_convert_stores is not set, PHI is not
445    if-convertible if:
446    - a virtual PHI is immediately used in another PHI node,
447    - there is a virtual PHI in a BB other than the loop->header.  */
448 
449 static bool
450 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
451 {
452   if (dump_file && (dump_flags & TDF_DETAILS))
453     {
454       fprintf (dump_file, "-------------------------\n");
455       print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
456     }
457 
458   if (bb != loop->header && gimple_phi_num_args (phi) != 2)
459     {
460       if (dump_file && (dump_flags & TDF_DETAILS))
461 	fprintf (dump_file, "More than two phi node args.\n");
462       return false;
463     }
464 
465   if (flag_tree_loop_if_convert_stores)
466     return true;
467 
468   /* When the flag_tree_loop_if_convert_stores is not set, check
469      that there are no memory writes in the branches of the loop to be
470      if-converted.  */
471   if (virtual_operand_p (gimple_phi_result (phi)))
472     {
473       imm_use_iterator imm_iter;
474       use_operand_p use_p;
475 
476       if (bb != loop->header)
477 	{
478 	  if (dump_file && (dump_flags & TDF_DETAILS))
479 	    fprintf (dump_file, "Virtual phi not on loop->header.\n");
480 	  return false;
481 	}
482 
483       FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
484 	{
485 	  if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
486 	    {
487 	      if (dump_file && (dump_flags & TDF_DETAILS))
488 		fprintf (dump_file, "Difficult to handle this virtual phi.\n");
489 	      return false;
490 	    }
491 	}
492     }
493 
494   return true;
495 }
496 
497 /* Records the status of a data reference.  This struct is attached to
498    each DR->aux field.  */
499 
500 struct ifc_dr {
501   /* -1 when not initialized, 0 when false, 1 when true.  */
502   int written_at_least_once;
503 
504   /* -1 when not initialized, 0 when false, 1 when true.  */
505   int rw_unconditionally;
506 };
507 
508 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
509 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
510 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
511 
512 /* Returns true when the memory references of STMT are read or written
513    unconditionally.  In other words, this function returns true when
514    for every data reference A in STMT there exist other accesses to
515    a data reference with the same base with predicates that add up (OR-up) to
516    the true predicate: this ensures that the data reference A is touched
517    (read or written) on every iteration of the if-converted loop.  */
518 
519 static bool
520 memrefs_read_or_written_unconditionally (gimple stmt,
521 					 vec<data_reference_p> drs)
522 {
523   int i, j;
524   data_reference_p a, b;
525   tree ca = bb_predicate (gimple_bb (stmt));
526 
527   for (i = 0; drs.iterate (i, &a); i++)
528     if (DR_STMT (a) == stmt)
529       {
530 	bool found = false;
531 	int x = DR_RW_UNCONDITIONALLY (a);
532 
533 	if (x == 0)
534 	  return false;
535 
536 	if (x == 1)
537 	  continue;
538 
539 	for (j = 0; drs.iterate (j, &b); j++)
540           {
541             tree ref_base_a = DR_REF (a);
542             tree ref_base_b = DR_REF (b);
543 
544             if (DR_STMT (b) == stmt)
545               continue;
546 
547             while (TREE_CODE (ref_base_a) == COMPONENT_REF
548                    || TREE_CODE (ref_base_a) == IMAGPART_EXPR
549                    || TREE_CODE (ref_base_a) == REALPART_EXPR)
550               ref_base_a = TREE_OPERAND (ref_base_a, 0);
551 
552             while (TREE_CODE (ref_base_b) == COMPONENT_REF
553                    || TREE_CODE (ref_base_b) == IMAGPART_EXPR
554                    || TREE_CODE (ref_base_b) == REALPART_EXPR)
555               ref_base_b = TREE_OPERAND (ref_base_b, 0);
556 
557   	    if (!operand_equal_p (ref_base_a, ref_base_b, 0))
558 	      {
559 	        tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
560 
561 	        if (DR_RW_UNCONDITIONALLY (b) == 1
562 		    || is_true_predicate (cb)
563 		    || is_true_predicate (ca
564                         = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
565 		  {
566 		    DR_RW_UNCONDITIONALLY (a) = 1;
567   		    DR_RW_UNCONDITIONALLY (b) = 1;
568 		    found = true;
569 		    break;
570 		  }
571                }
572 	    }
573 
574 	if (!found)
575 	  {
576 	    DR_RW_UNCONDITIONALLY (a) = 0;
577 	    return false;
578 	  }
579       }
580 
581   return true;
582 }
583 
584 /* Returns true when the memory references of STMT are unconditionally
585    written.  In other words, this function returns true when for every
586    data reference A written in STMT, there exist other writes to the
587    same data reference with predicates that add up (OR-up) to the true
588    predicate: this ensures that the data reference A is written on
589    every iteration of the if-converted loop.  */
590 
591 static bool
592 write_memrefs_written_at_least_once (gimple stmt,
593 				     vec<data_reference_p> drs)
594 {
595   int i, j;
596   data_reference_p a, b;
597   tree ca = bb_predicate (gimple_bb (stmt));
598 
599   for (i = 0; drs.iterate (i, &a); i++)
600     if (DR_STMT (a) == stmt
601 	&& DR_IS_WRITE (a))
602       {
603 	bool found = false;
604 	int x = DR_WRITTEN_AT_LEAST_ONCE (a);
605 
606 	if (x == 0)
607 	  return false;
608 
609 	if (x == 1)
610 	  continue;
611 
612 	for (j = 0; drs.iterate (j, &b); j++)
613 	  if (DR_STMT (b) != stmt
614 	      && DR_IS_WRITE (b)
615 	      && same_data_refs_base_objects (a, b))
616 	    {
617 	      tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
618 
619 	      if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
620 		  || is_true_predicate (cb)
621 		  || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
622 								 ca, cb)))
623 		{
624 		  DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
625 		  DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
626 		  found = true;
627 		  break;
628 		}
629 	    }
630 
631 	if (!found)
632 	  {
633 	    DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
634 	    return false;
635 	  }
636       }
637 
638   return true;
639 }
640 
641 /* Return true when the memory references of STMT won't trap in the
642    if-converted code.  There are two things that we have to check for:
643 
644    - writes to memory occur to writable memory: if-conversion of
645    memory writes transforms the conditional memory writes into
646    unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
647    into "A[i] = cond ? foo : A[i]", and as the write to memory may not
648    be executed at all in the original code, it may be a readonly
649    memory.  To check that A is not const-qualified, we check that
650    there exists at least an unconditional write to A in the current
651    function.
652 
653    - reads or writes to memory are valid memory accesses for every
654    iteration.  To check that the memory accesses are correctly formed
655    and that we are allowed to read and write in these locations, we
656    check that the memory accesses to be if-converted occur at every
657    iteration unconditionally.  */
658 
659 static bool
660 ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
661 {
662   return write_memrefs_written_at_least_once (stmt, refs)
663     && memrefs_read_or_written_unconditionally (stmt, refs);
664 }
665 
666 /* Wrapper around gimple_could_trap_p refined for the needs of the
667    if-conversion.  Try to prove that the memory accesses of STMT could
668    not trap in the innermost loop containing STMT.  */
669 
670 static bool
671 ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
672 {
673   if (gimple_vuse (stmt)
674       && !gimple_could_trap_p_1 (stmt, false, false)
675       && ifcvt_memrefs_wont_trap (stmt, refs))
676     return false;
677 
678   return gimple_could_trap_p (stmt);
679 }
680 
681 /* Return true when STMT is if-convertible.
682 
683    GIMPLE_ASSIGN statement is not if-convertible if,
684    - it is not movable,
685    - it could trap,
686    - LHS is not var decl.  */
687 
688 static bool
689 if_convertible_gimple_assign_stmt_p (gimple stmt,
690 				     vec<data_reference_p> refs)
691 {
692   tree lhs = gimple_assign_lhs (stmt);
693   basic_block bb;
694 
695   if (dump_file && (dump_flags & TDF_DETAILS))
696     {
697       fprintf (dump_file, "-------------------------\n");
698       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
699     }
700 
701   if (!is_gimple_reg_type (TREE_TYPE (lhs)))
702     return false;
703 
704   /* Some of these constrains might be too conservative.  */
705   if (stmt_ends_bb_p (stmt)
706       || gimple_has_volatile_ops (stmt)
707       || (TREE_CODE (lhs) == SSA_NAME
708           && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
709       || gimple_has_side_effects (stmt))
710     {
711       if (dump_file && (dump_flags & TDF_DETAILS))
712         fprintf (dump_file, "stmt not suitable for ifcvt\n");
713       return false;
714     }
715 
716   if (flag_tree_loop_if_convert_stores)
717     {
718       if (ifcvt_could_trap_p (stmt, refs))
719 	{
720 	  if (dump_file && (dump_flags & TDF_DETAILS))
721 	    fprintf (dump_file, "tree could trap...\n");
722 	  return false;
723 	}
724       return true;
725     }
726 
727   if (gimple_assign_rhs_could_trap_p (stmt))
728     {
729       if (dump_file && (dump_flags & TDF_DETAILS))
730 	fprintf (dump_file, "tree could trap...\n");
731       return false;
732     }
733 
734   bb = gimple_bb (stmt);
735 
736   if (TREE_CODE (lhs) != SSA_NAME
737       && bb != bb->loop_father->header
738       && !bb_with_exit_edge_p (bb->loop_father, bb))
739     {
740       if (dump_file && (dump_flags & TDF_DETAILS))
741 	{
742 	  fprintf (dump_file, "LHS is not var\n");
743 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
744 	}
745       return false;
746     }
747 
748   return true;
749 }
750 
751 /* Return true when STMT is if-convertible.
752 
753    A statement is if-convertible if:
754    - it is an if-convertible GIMPLE_ASSIGN,
755    - it is a GIMPLE_LABEL or a GIMPLE_COND.  */
756 
757 static bool
758 if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs)
759 {
760   switch (gimple_code (stmt))
761     {
762     case GIMPLE_LABEL:
763     case GIMPLE_DEBUG:
764     case GIMPLE_COND:
765       return true;
766 
767     case GIMPLE_ASSIGN:
768       return if_convertible_gimple_assign_stmt_p (stmt, refs);
769 
770     case GIMPLE_CALL:
771       {
772 	tree fndecl = gimple_call_fndecl (stmt);
773 	if (fndecl)
774 	  {
775 	    int flags = gimple_call_flags (stmt);
776 	    if ((flags & ECF_CONST)
777 		&& !(flags & ECF_LOOPING_CONST_OR_PURE)
778 		/* We can only vectorize some builtins at the moment,
779 		   so restrict if-conversion to those.  */
780 		&& DECL_BUILT_IN (fndecl))
781 	      return true;
782 	  }
783 	return false;
784       }
785 
786     default:
787       /* Don't know what to do with 'em so don't do anything.  */
788       if (dump_file && (dump_flags & TDF_DETAILS))
789 	{
790 	  fprintf (dump_file, "don't know what to do\n");
791 	  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
792 	}
793       return false;
794       break;
795     }
796 
797   return true;
798 }
799 
800 /* Return true when BB is if-convertible.  This routine does not check
801    basic block's statements and phis.
802 
803    A basic block is not if-convertible if:
804    - it is non-empty and it is after the exit block (in BFS order),
805    - it is after the exit block but before the latch,
806    - its edges are not normal.
807 
808    EXIT_BB is the basic block containing the exit of the LOOP.  BB is
809    inside LOOP.  */
810 
811 static bool
812 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
813 {
814   edge e;
815   edge_iterator ei;
816 
817   if (dump_file && (dump_flags & TDF_DETAILS))
818     fprintf (dump_file, "----------[%d]-------------\n", bb->index);
819 
820   if (EDGE_COUNT (bb->preds) > 2
821       || EDGE_COUNT (bb->succs) > 2)
822     return false;
823 
824   if (exit_bb)
825     {
826       if (bb != loop->latch)
827 	{
828 	  if (dump_file && (dump_flags & TDF_DETAILS))
829 	    fprintf (dump_file, "basic block after exit bb but before latch\n");
830 	  return false;
831 	}
832       else if (!empty_block_p (bb))
833 	{
834 	  if (dump_file && (dump_flags & TDF_DETAILS))
835 	    fprintf (dump_file, "non empty basic block after exit bb\n");
836 	  return false;
837 	}
838       else if (bb == loop->latch
839 	       && bb != exit_bb
840 	       && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
841 	  {
842 	    if (dump_file && (dump_flags & TDF_DETAILS))
843 	      fprintf (dump_file, "latch is not dominated by exit_block\n");
844 	    return false;
845 	  }
846     }
847 
848   /* Be less adventurous and handle only normal edges.  */
849   FOR_EACH_EDGE (e, ei, bb->succs)
850     if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
851       {
852 	if (dump_file && (dump_flags & TDF_DETAILS))
853 	  fprintf (dump_file, "Difficult to handle edges\n");
854 	return false;
855       }
856 
857   /* At least one incoming edge has to be non-critical as otherwise edge
858      predicates are not equal to basic-block predicates of the edge
859      source.  */
860   if (EDGE_COUNT (bb->preds) > 1
861       && bb != loop->header)
862     {
863       bool found = false;
864       FOR_EACH_EDGE (e, ei, bb->preds)
865 	if (EDGE_COUNT (e->src->succs) == 1)
866 	  found = true;
867       if (!found)
868 	{
869 	  if (dump_file && (dump_flags & TDF_DETAILS))
870 	    fprintf (dump_file, "only critical predecessors\n");
871 	  return false;
872 	}
873     }
874 
875   return true;
876 }
877 
878 /* Return true when all predecessor blocks of BB are visited.  The
879    VISITED bitmap keeps track of the visited blocks.  */
880 
881 static bool
882 pred_blocks_visited_p (basic_block bb, bitmap *visited)
883 {
884   edge e;
885   edge_iterator ei;
886   FOR_EACH_EDGE (e, ei, bb->preds)
887     if (!bitmap_bit_p (*visited, e->src->index))
888       return false;
889 
890   return true;
891 }
892 
893 /* Get body of a LOOP in suitable order for if-conversion.  It is
894    caller's responsibility to deallocate basic block list.
895    If-conversion suitable order is, breadth first sort (BFS) order
896    with an additional constraint: select a block only if all its
897    predecessors are already selected.  */
898 
899 static basic_block *
900 get_loop_body_in_if_conv_order (const struct loop *loop)
901 {
902   basic_block *blocks, *blocks_in_bfs_order;
903   basic_block bb;
904   bitmap visited;
905   unsigned int index = 0;
906   unsigned int visited_count = 0;
907 
908   gcc_assert (loop->num_nodes);
909   gcc_assert (loop->latch != EXIT_BLOCK_PTR);
910 
911   blocks = XCNEWVEC (basic_block, loop->num_nodes);
912   visited = BITMAP_ALLOC (NULL);
913 
914   blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
915 
916   index = 0;
917   while (index < loop->num_nodes)
918     {
919       bb = blocks_in_bfs_order [index];
920 
921       if (bb->flags & BB_IRREDUCIBLE_LOOP)
922 	{
923 	  free (blocks_in_bfs_order);
924 	  BITMAP_FREE (visited);
925 	  free (blocks);
926 	  return NULL;
927 	}
928 
929       if (!bitmap_bit_p (visited, bb->index))
930 	{
931 	  if (pred_blocks_visited_p (bb, &visited)
932 	      || bb == loop->header)
933 	    {
934 	      /* This block is now visited.  */
935 	      bitmap_set_bit (visited, bb->index);
936 	      blocks[visited_count++] = bb;
937 	    }
938 	}
939 
940       index++;
941 
942       if (index == loop->num_nodes
943 	  && visited_count != loop->num_nodes)
944 	/* Not done yet.  */
945 	index = 0;
946     }
947   free (blocks_in_bfs_order);
948   BITMAP_FREE (visited);
949   return blocks;
950 }
951 
952 /* Returns true when the analysis of the predicates for all the basic
953    blocks in LOOP succeeded.
954 
955    predicate_bbs first allocates the predicates of the basic blocks.
956    These fields are then initialized with the tree expressions
957    representing the predicates under which a basic block is executed
958    in the LOOP.  As the loop->header is executed at each iteration, it
959    has the "true" predicate.  Other statements executed under a
960    condition are predicated with that condition, for example
961 
962    | if (x)
963    |   S1;
964    | else
965    |   S2;
966 
967    S1 will be predicated with "x", and
968    S2 will be predicated with "!x".  */
969 
970 static bool
971 predicate_bbs (loop_p loop)
972 {
973   unsigned int i;
974 
975   for (i = 0; i < loop->num_nodes; i++)
976     init_bb_predicate (ifc_bbs[i]);
977 
978   for (i = 0; i < loop->num_nodes; i++)
979     {
980       basic_block bb = ifc_bbs[i];
981       tree cond;
982       gimple_stmt_iterator itr;
983 
984       /* The loop latch is always executed and has no extra conditions
985 	 to be processed: skip it.  */
986       if (bb == loop->latch)
987 	{
988 	  reset_bb_predicate (loop->latch);
989 	  continue;
990 	}
991 
992       cond = bb_predicate (bb);
993 
994       for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
995 	{
996 	  gimple stmt = gsi_stmt (itr);
997 
998 	  switch (gimple_code (stmt))
999 	    {
1000 	    case GIMPLE_LABEL:
1001 	    case GIMPLE_ASSIGN:
1002 	    case GIMPLE_CALL:
1003 	    case GIMPLE_DEBUG:
1004 	      break;
1005 
1006 	    case GIMPLE_COND:
1007 	      {
1008 		tree c2;
1009 		edge true_edge, false_edge;
1010 		location_t loc = gimple_location (stmt);
1011 		tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
1012 					  boolean_type_node,
1013 					  gimple_cond_lhs (stmt),
1014 					  gimple_cond_rhs (stmt));
1015 
1016 		/* Add new condition into destination's predicate list.  */
1017 		extract_true_false_edges_from_block (gimple_bb (stmt),
1018 						     &true_edge, &false_edge);
1019 
1020 		/* If C is true, then TRUE_EDGE is taken.  */
1021 		add_to_dst_predicate_list (loop, true_edge,
1022 					   unshare_expr (cond),
1023 					   unshare_expr (c));
1024 
1025 		/* If C is false, then FALSE_EDGE is taken.  */
1026 		c2 = build1_loc (loc, TRUTH_NOT_EXPR,
1027 				 boolean_type_node, unshare_expr (c));
1028 		add_to_dst_predicate_list (loop, false_edge,
1029 					   unshare_expr (cond), c2);
1030 
1031 		cond = NULL_TREE;
1032 		break;
1033 	      }
1034 
1035 	    default:
1036 	      /* Not handled yet in if-conversion.  */
1037 	      return false;
1038 	    }
1039 	}
1040 
1041       /* If current bb has only one successor, then consider it as an
1042 	 unconditional goto.  */
1043       if (single_succ_p (bb))
1044 	{
1045 	  basic_block bb_n = single_succ (bb);
1046 
1047 	  /* The successor bb inherits the predicate of its
1048 	     predecessor.  If there is no predicate in the predecessor
1049 	     bb, then consider the successor bb as always executed.  */
1050 	  if (cond == NULL_TREE)
1051 	    cond = boolean_true_node;
1052 
1053 	  add_to_predicate_list (bb_n, cond);
1054 	}
1055     }
1056 
1057   /* The loop header is always executed.  */
1058   reset_bb_predicate (loop->header);
1059   gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1060 	      && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1061 
1062   return true;
1063 }
1064 
1065 /* Return true when LOOP is if-convertible.  This is a helper function
1066    for if_convertible_loop_p.  REFS and DDRS are initialized and freed
1067    in if_convertible_loop_p.  */
1068 
1069 static bool
1070 if_convertible_loop_p_1 (struct loop *loop,
1071 			 vec<loop_p> *loop_nest,
1072 			 vec<data_reference_p> *refs,
1073 			 vec<ddr_p> *ddrs)
1074 {
1075   bool res;
1076   unsigned int i;
1077   basic_block exit_bb = NULL;
1078 
1079   /* Don't if-convert the loop when the data dependences cannot be
1080      computed: the loop won't be vectorized in that case.  */
1081   res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1082   if (!res)
1083     return false;
1084 
1085   calculate_dominance_info (CDI_DOMINATORS);
1086 
1087   /* Allow statements that can be handled during if-conversion.  */
1088   ifc_bbs = get_loop_body_in_if_conv_order (loop);
1089   if (!ifc_bbs)
1090     {
1091       if (dump_file && (dump_flags & TDF_DETAILS))
1092 	fprintf (dump_file, "Irreducible loop\n");
1093       return false;
1094     }
1095 
1096   for (i = 0; i < loop->num_nodes; i++)
1097     {
1098       basic_block bb = ifc_bbs[i];
1099 
1100       if (!if_convertible_bb_p (loop, bb, exit_bb))
1101 	return false;
1102 
1103       if (bb_with_exit_edge_p (loop, bb))
1104 	exit_bb = bb;
1105     }
1106 
1107   res = predicate_bbs (loop);
1108   if (!res)
1109     return false;
1110 
1111   if (flag_tree_loop_if_convert_stores)
1112     {
1113       data_reference_p dr;
1114 
1115       for (i = 0; refs->iterate (i, &dr); i++)
1116 	{
1117 	  dr->aux = XNEW (struct ifc_dr);
1118 	  DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1119 	  DR_RW_UNCONDITIONALLY (dr) = -1;
1120 	}
1121     }
1122 
1123   for (i = 0; i < loop->num_nodes; i++)
1124     {
1125       basic_block bb = ifc_bbs[i];
1126       gimple_stmt_iterator itr;
1127 
1128       for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1129 	if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
1130 	  return false;
1131 
1132       /* Check the if-convertibility of statements in predicated BBs.  */
1133       if (is_predicated (bb))
1134 	for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1135 	  if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1136 	    return false;
1137     }
1138 
1139   if (dump_file)
1140     fprintf (dump_file, "Applying if-conversion\n");
1141 
1142   return true;
1143 }
1144 
1145 /* Return true when LOOP is if-convertible.
1146    LOOP is if-convertible if:
1147    - it is innermost,
1148    - it has two or more basic blocks,
1149    - it has only one exit,
1150    - loop header is not the exit edge,
1151    - if its basic blocks and phi nodes are if convertible.  */
1152 
1153 static bool
1154 if_convertible_loop_p (struct loop *loop)
1155 {
1156   edge e;
1157   edge_iterator ei;
1158   bool res = false;
1159   vec<data_reference_p> refs;
1160   vec<ddr_p> ddrs;
1161   vec<loop_p> loop_nest;
1162 
1163   /* Handle only innermost loop.  */
1164   if (!loop || loop->inner)
1165     {
1166       if (dump_file && (dump_flags & TDF_DETAILS))
1167 	fprintf (dump_file, "not innermost loop\n");
1168       return false;
1169     }
1170 
1171   /* If only one block, no need for if-conversion.  */
1172   if (loop->num_nodes <= 2)
1173     {
1174       if (dump_file && (dump_flags & TDF_DETAILS))
1175 	fprintf (dump_file, "less than 2 basic blocks\n");
1176       return false;
1177     }
1178 
1179   /* More than one loop exit is too much to handle.  */
1180   if (!single_exit (loop))
1181     {
1182       if (dump_file && (dump_flags & TDF_DETAILS))
1183 	fprintf (dump_file, "multiple exits\n");
1184       return false;
1185     }
1186 
1187   /* If one of the loop header's edge is an exit edge then do not
1188      apply if-conversion.  */
1189   FOR_EACH_EDGE (e, ei, loop->header->succs)
1190     if (loop_exit_edge_p (loop, e))
1191       return false;
1192 
1193   refs.create (5);
1194   ddrs.create (25);
1195   loop_nest.create (3);
1196   res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
1197 
1198   if (flag_tree_loop_if_convert_stores)
1199     {
1200       data_reference_p dr;
1201       unsigned int i;
1202 
1203       for (i = 0; refs.iterate (i, &dr); i++)
1204 	free (dr->aux);
1205     }
1206 
1207   loop_nest.release ();
1208   free_data_refs (refs);
1209   free_dependence_relations (ddrs);
1210   return res;
1211 }
1212 
1213 /* Basic block BB has two predecessors.  Using predecessor's bb
1214    predicate, set an appropriate condition COND for the PHI node
1215    replacement.  Return the true block whose phi arguments are
1216    selected when cond is true.  LOOP is the loop containing the
1217    if-converted region, GSI is the place to insert the code for the
1218    if-conversion.  */
1219 
1220 static basic_block
1221 find_phi_replacement_condition (basic_block bb, tree *cond,
1222 				gimple_stmt_iterator *gsi)
1223 {
1224   edge first_edge, second_edge;
1225   tree tmp_cond;
1226 
1227   gcc_assert (EDGE_COUNT (bb->preds) == 2);
1228   first_edge = EDGE_PRED (bb, 0);
1229   second_edge = EDGE_PRED (bb, 1);
1230 
1231   /* Prefer an edge with a not negated predicate.
1232      ???  That's a very weak cost model.  */
1233   tmp_cond = bb_predicate (first_edge->src);
1234   gcc_assert (tmp_cond);
1235   if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1236     {
1237       edge tmp_edge;
1238 
1239       tmp_edge = first_edge;
1240       first_edge = second_edge;
1241       second_edge = tmp_edge;
1242     }
1243 
1244   /* Check if the edge we take the condition from is not critical.
1245      We know that at least one non-critical edge exists.  */
1246   if (EDGE_COUNT (first_edge->src->succs) > 1)
1247     {
1248       *cond = bb_predicate (second_edge->src);
1249 
1250       if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1251 	*cond = TREE_OPERAND (*cond, 0);
1252       else
1253 	/* Select non loop header bb.  */
1254 	first_edge = second_edge;
1255     }
1256   else
1257     *cond = bb_predicate (first_edge->src);
1258 
1259   /* Gimplify the condition to a valid cond-expr conditonal operand.  */
1260   *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1261 				      is_gimple_condexpr, NULL_TREE,
1262 				      true, GSI_SAME_STMT);
1263 
1264   return first_edge->src;
1265 }
1266 
1267 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1268    This routine does not handle PHI nodes with more than two
1269    arguments.
1270 
1271    For example,
1272      S1: A = PHI <x1(1), x2(5)>
1273    is converted into,
1274      S2: A = cond ? x1 : x2;
1275 
1276    The generated code is inserted at GSI that points to the top of
1277    basic block's statement list.  When COND is true, phi arg from
1278    TRUE_BB is selected.  */
1279 
1280 static void
1281 predicate_scalar_phi (gimple phi, tree cond,
1282 		      basic_block true_bb,
1283 		      gimple_stmt_iterator *gsi)
1284 {
1285   gimple new_stmt;
1286   basic_block bb;
1287   tree rhs, res, arg, scev;
1288 
1289   gcc_assert (gimple_code (phi) == GIMPLE_PHI
1290 	      && gimple_phi_num_args (phi) == 2);
1291 
1292   res = gimple_phi_result (phi);
1293   /* Do not handle virtual phi nodes.  */
1294   if (virtual_operand_p (res))
1295     return;
1296 
1297   bb = gimple_bb (phi);
1298 
1299   if ((arg = degenerate_phi_result (phi))
1300       || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1301 					    res))
1302 	  && !chrec_contains_undetermined (scev)
1303 	  && scev != res
1304 	  && (arg = gimple_phi_arg_def (phi, 0))))
1305     rhs = arg;
1306   else
1307     {
1308       tree arg_0, arg_1;
1309       /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr.  */
1310       if (EDGE_PRED (bb, 1)->src == true_bb)
1311 	{
1312 	  arg_0 = gimple_phi_arg_def (phi, 1);
1313 	  arg_1 = gimple_phi_arg_def (phi, 0);
1314 	}
1315       else
1316 	{
1317 	  arg_0 = gimple_phi_arg_def (phi, 0);
1318 	  arg_1 = gimple_phi_arg_def (phi, 1);
1319 	}
1320 
1321       /* Build new RHS using selected condition and arguments.  */
1322       rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1323 				  arg_0, arg_1);
1324     }
1325 
1326   new_stmt = gimple_build_assign (res, rhs);
1327   SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
1328   gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1329   update_stmt (new_stmt);
1330 
1331   if (dump_file && (dump_flags & TDF_DETAILS))
1332     {
1333       fprintf (dump_file, "new phi replacement stmt\n");
1334       print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1335     }
1336 }
1337 
1338 /* Replaces in LOOP all the scalar phi nodes other than those in the
1339    LOOP->header block with conditional modify expressions.  */
1340 
1341 static void
1342 predicate_all_scalar_phis (struct loop *loop)
1343 {
1344   basic_block bb;
1345   unsigned int orig_loop_num_nodes = loop->num_nodes;
1346   unsigned int i;
1347 
1348   for (i = 1; i < orig_loop_num_nodes; i++)
1349     {
1350       gimple phi;
1351       tree cond = NULL_TREE;
1352       gimple_stmt_iterator gsi, phi_gsi;
1353       basic_block true_bb = NULL;
1354       bb = ifc_bbs[i];
1355 
1356       if (bb == loop->header)
1357 	continue;
1358 
1359       phi_gsi = gsi_start_phis (bb);
1360       if (gsi_end_p (phi_gsi))
1361 	continue;
1362 
1363       /* BB has two predecessors.  Using predecessor's aux field, set
1364 	 appropriate condition for the PHI node replacement.  */
1365       gsi = gsi_after_labels (bb);
1366       true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1367 
1368       while (!gsi_end_p (phi_gsi))
1369 	{
1370 	  phi = gsi_stmt (phi_gsi);
1371 	  predicate_scalar_phi (phi, cond, true_bb, &gsi);
1372 	  release_phi_node (phi);
1373 	  gsi_next (&phi_gsi);
1374 	}
1375 
1376       set_phi_nodes (bb, NULL);
1377     }
1378 }
1379 
1380 /* Insert in each basic block of LOOP the statements produced by the
1381    gimplification of the predicates.  */
1382 
1383 static void
1384 insert_gimplified_predicates (loop_p loop)
1385 {
1386   unsigned int i;
1387 
1388   for (i = 0; i < loop->num_nodes; i++)
1389     {
1390       basic_block bb = ifc_bbs[i];
1391       gimple_seq stmts;
1392 
1393       if (!is_predicated (bb))
1394 	{
1395 	  /* Do not insert statements for a basic block that is not
1396 	     predicated.  Also make sure that the predicate of the
1397 	     basic block is set to true.  */
1398 	  reset_bb_predicate (bb);
1399 	  continue;
1400 	}
1401 
1402       stmts = bb_predicate_gimplified_stmts (bb);
1403       if (stmts)
1404 	{
1405 	  if (flag_tree_loop_if_convert_stores)
1406 	    {
1407 	      /* Insert the predicate of the BB just after the label,
1408 		 as the if-conversion of memory writes will use this
1409 		 predicate.  */
1410 	      gimple_stmt_iterator gsi = gsi_after_labels (bb);
1411 	      gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1412 	    }
1413 	  else
1414 	    {
1415 	      /* Insert the predicate of the BB at the end of the BB
1416 		 as this would reduce the register pressure: the only
1417 		 use of this predicate will be in successor BBs.  */
1418 	      gimple_stmt_iterator gsi = gsi_last_bb (bb);
1419 
1420 	      if (gsi_end_p (gsi)
1421 		  || stmt_ends_bb_p (gsi_stmt (gsi)))
1422 		gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1423 	      else
1424 		gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1425 	    }
1426 
1427 	  /* Once the sequence is code generated, set it to NULL.  */
1428 	  set_bb_predicate_gimplified_stmts (bb, NULL);
1429 	}
1430     }
1431 }
1432 
1433 /* Predicate each write to memory in LOOP.
1434 
1435    This function transforms control flow constructs containing memory
1436    writes of the form:
1437 
1438    | for (i = 0; i < N; i++)
1439    |   if (cond)
1440    |     A[i] = expr;
1441 
1442    into the following form that does not contain control flow:
1443 
1444    | for (i = 0; i < N; i++)
1445    |   A[i] = cond ? expr : A[i];
1446 
1447    The original CFG looks like this:
1448 
1449    | bb_0
1450    |   i = 0
1451    | end_bb_0
1452    |
1453    | bb_1
1454    |   if (i < N) goto bb_5 else goto bb_2
1455    | end_bb_1
1456    |
1457    | bb_2
1458    |   cond = some_computation;
1459    |   if (cond) goto bb_3 else goto bb_4
1460    | end_bb_2
1461    |
1462    | bb_3
1463    |   A[i] = expr;
1464    |   goto bb_4
1465    | end_bb_3
1466    |
1467    | bb_4
1468    |   goto bb_1
1469    | end_bb_4
1470 
1471    insert_gimplified_predicates inserts the computation of the COND
1472    expression at the beginning of the destination basic block:
1473 
1474    | bb_0
1475    |   i = 0
1476    | end_bb_0
1477    |
1478    | bb_1
1479    |   if (i < N) goto bb_5 else goto bb_2
1480    | end_bb_1
1481    |
1482    | bb_2
1483    |   cond = some_computation;
1484    |   if (cond) goto bb_3 else goto bb_4
1485    | end_bb_2
1486    |
1487    | bb_3
1488    |   cond = some_computation;
1489    |   A[i] = expr;
1490    |   goto bb_4
1491    | end_bb_3
1492    |
1493    | bb_4
1494    |   goto bb_1
1495    | end_bb_4
1496 
1497    predicate_mem_writes is then predicating the memory write as follows:
1498 
1499    | bb_0
1500    |   i = 0
1501    | end_bb_0
1502    |
1503    | bb_1
1504    |   if (i < N) goto bb_5 else goto bb_2
1505    | end_bb_1
1506    |
1507    | bb_2
1508    |   if (cond) goto bb_3 else goto bb_4
1509    | end_bb_2
1510    |
1511    | bb_3
1512    |   cond = some_computation;
1513    |   A[i] = cond ? expr : A[i];
1514    |   goto bb_4
1515    | end_bb_3
1516    |
1517    | bb_4
1518    |   goto bb_1
1519    | end_bb_4
1520 
1521    and finally combine_blocks removes the basic block boundaries making
1522    the loop vectorizable:
1523 
1524    | bb_0
1525    |   i = 0
1526    |   if (i < N) goto bb_5 else goto bb_1
1527    | end_bb_0
1528    |
1529    | bb_1
1530    |   cond = some_computation;
1531    |   A[i] = cond ? expr : A[i];
1532    |   if (i < N) goto bb_5 else goto bb_4
1533    | end_bb_1
1534    |
1535    | bb_4
1536    |   goto bb_1
1537    | end_bb_4
1538 */
1539 
1540 static void
1541 predicate_mem_writes (loop_p loop)
1542 {
1543   unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1544 
1545   for (i = 1; i < orig_loop_num_nodes; i++)
1546     {
1547       gimple_stmt_iterator gsi;
1548       basic_block bb = ifc_bbs[i];
1549       tree cond = bb_predicate (bb);
1550       bool swap;
1551       gimple stmt;
1552 
1553       if (is_true_predicate (cond))
1554 	continue;
1555 
1556       swap = false;
1557       if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1558 	{
1559 	  swap = true;
1560 	  cond = TREE_OPERAND (cond, 0);
1561 	}
1562 
1563       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1564 	if ((stmt = gsi_stmt (gsi))
1565 	    && gimple_assign_single_p (stmt)
1566 	    && gimple_vdef (stmt))
1567 	  {
1568 	    tree lhs = gimple_assign_lhs (stmt);
1569 	    tree rhs = gimple_assign_rhs1 (stmt);
1570 	    tree type = TREE_TYPE (lhs);
1571 
1572 	    lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1573 	    rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1574 	    if (swap)
1575 	      {
1576 		tree tem = lhs;
1577 		lhs = rhs;
1578 		rhs = tem;
1579 	      }
1580 	    cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1581 					       is_gimple_condexpr, NULL_TREE,
1582 					       true, GSI_SAME_STMT);
1583 	    rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
1584 	    gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1585 	    update_stmt (stmt);
1586 	  }
1587     }
1588 }
1589 
1590 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1591    other than the exit and latch of the LOOP.  Also resets the
1592    GIMPLE_DEBUG information.  */
1593 
1594 static void
1595 remove_conditions_and_labels (loop_p loop)
1596 {
1597   gimple_stmt_iterator gsi;
1598   unsigned int i;
1599 
1600   for (i = 0; i < loop->num_nodes; i++)
1601     {
1602       basic_block bb = ifc_bbs[i];
1603 
1604       if (bb_with_exit_edge_p (loop, bb)
1605         || bb == loop->latch)
1606       continue;
1607 
1608       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1609 	switch (gimple_code (gsi_stmt (gsi)))
1610 	  {
1611 	  case GIMPLE_COND:
1612 	  case GIMPLE_LABEL:
1613 	    gsi_remove (&gsi, true);
1614 	    break;
1615 
1616 	  case GIMPLE_DEBUG:
1617 	    /* ??? Should there be conditional GIMPLE_DEBUG_BINDs?  */
1618 	    if (gimple_debug_bind_p (gsi_stmt (gsi)))
1619 	      {
1620 		gimple_debug_bind_reset_value (gsi_stmt (gsi));
1621 		update_stmt (gsi_stmt (gsi));
1622 	      }
1623 	    gsi_next (&gsi);
1624 	    break;
1625 
1626 	  default:
1627 	    gsi_next (&gsi);
1628 	  }
1629     }
1630 }
1631 
1632 /* Combine all the basic blocks from LOOP into one or two super basic
1633    blocks.  Replace PHI nodes with conditional modify expressions.  */
1634 
1635 static void
1636 combine_blocks (struct loop *loop)
1637 {
1638   basic_block bb, exit_bb, merge_target_bb;
1639   unsigned int orig_loop_num_nodes = loop->num_nodes;
1640   unsigned int i;
1641   edge e;
1642   edge_iterator ei;
1643 
1644   remove_conditions_and_labels (loop);
1645   insert_gimplified_predicates (loop);
1646   predicate_all_scalar_phis (loop);
1647 
1648   if (flag_tree_loop_if_convert_stores)
1649     predicate_mem_writes (loop);
1650 
1651   /* Merge basic blocks: first remove all the edges in the loop,
1652      except for those from the exit block.  */
1653   exit_bb = NULL;
1654   for (i = 0; i < orig_loop_num_nodes; i++)
1655     {
1656       bb = ifc_bbs[i];
1657       free_bb_predicate (bb);
1658       if (bb_with_exit_edge_p (loop, bb))
1659 	{
1660 	  gcc_assert (exit_bb == NULL);
1661 	  exit_bb = bb;
1662 	}
1663     }
1664   gcc_assert (exit_bb != loop->latch);
1665 
1666   for (i = 1; i < orig_loop_num_nodes; i++)
1667     {
1668       bb = ifc_bbs[i];
1669 
1670       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1671 	{
1672 	  if (e->src == exit_bb)
1673 	    ei_next (&ei);
1674 	  else
1675 	    remove_edge (e);
1676 	}
1677     }
1678 
1679   if (exit_bb != NULL)
1680     {
1681       if (exit_bb != loop->header)
1682 	{
1683 	  /* Connect this node to loop header.  */
1684 	  make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1685 	  set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1686 	}
1687 
1688       /* Redirect non-exit edges to loop->latch.  */
1689       FOR_EACH_EDGE (e, ei, exit_bb->succs)
1690 	{
1691 	  if (!loop_exit_edge_p (loop, e))
1692 	    redirect_edge_and_branch (e, loop->latch);
1693 	}
1694       set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1695     }
1696   else
1697     {
1698       /* If the loop does not have an exit, reconnect header and latch.  */
1699       make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1700       set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1701     }
1702 
1703   merge_target_bb = loop->header;
1704   for (i = 1; i < orig_loop_num_nodes; i++)
1705     {
1706       gimple_stmt_iterator gsi;
1707       gimple_stmt_iterator last;
1708 
1709       bb = ifc_bbs[i];
1710 
1711       if (bb == exit_bb || bb == loop->latch)
1712 	continue;
1713 
1714       /* Make stmts member of loop->header.  */
1715       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1716 	gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1717 
1718       /* Update stmt list.  */
1719       last = gsi_last_bb (merge_target_bb);
1720       gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1721       set_bb_seq (bb, NULL);
1722 
1723       delete_basic_block (bb);
1724     }
1725 
1726   /* If possible, merge loop header to the block with the exit edge.
1727      This reduces the number of basic blocks to two, to please the
1728      vectorizer that handles only loops with two nodes.  */
1729   if (exit_bb
1730       && exit_bb != loop->header
1731       && can_merge_blocks_p (loop->header, exit_bb))
1732     merge_blocks (loop->header, exit_bb);
1733 
1734   free (ifc_bbs);
1735   ifc_bbs = NULL;
1736 }
1737 
1738 /* If-convert LOOP when it is legal.  For the moment this pass has no
1739    profitability analysis.  Returns true when something changed.  */
1740 
1741 static bool
1742 tree_if_conversion (struct loop *loop)
1743 {
1744   bool changed = false;
1745   ifc_bbs = NULL;
1746 
1747   if (!if_convertible_loop_p (loop)
1748       || !dbg_cnt (if_conversion_tree))
1749     goto cleanup;
1750 
1751   /* Now all statements are if-convertible.  Combine all the basic
1752      blocks into one huge basic block doing the if-conversion
1753      on-the-fly.  */
1754   combine_blocks (loop);
1755 
1756   if (flag_tree_loop_if_convert_stores)
1757     mark_virtual_operands_for_renaming (cfun);
1758 
1759   changed = true;
1760 
1761  cleanup:
1762   if (ifc_bbs)
1763     {
1764       unsigned int i;
1765 
1766       for (i = 0; i < loop->num_nodes; i++)
1767 	free_bb_predicate (ifc_bbs[i]);
1768 
1769       free (ifc_bbs);
1770       ifc_bbs = NULL;
1771     }
1772 
1773   return changed;
1774 }
1775 
1776 /* Tree if-conversion pass management.  */
1777 
1778 static unsigned int
1779 main_tree_if_conversion (void)
1780 {
1781   loop_iterator li;
1782   struct loop *loop;
1783   bool changed = false;
1784   unsigned todo = 0;
1785 
1786   if (number_of_loops () <= 1)
1787     return 0;
1788 
1789   FOR_EACH_LOOP (li, loop, 0)
1790     changed |= tree_if_conversion (loop);
1791 
1792   if (changed)
1793     todo |= TODO_cleanup_cfg;
1794 
1795   if (changed && flag_tree_loop_if_convert_stores)
1796     todo |= TODO_update_ssa_only_virtuals;
1797 
1798 #ifdef ENABLE_CHECKING
1799   {
1800     basic_block bb;
1801     FOR_EACH_BB (bb)
1802       gcc_assert (!bb->aux);
1803   }
1804 #endif
1805 
1806   return todo;
1807 }
1808 
1809 /* Returns true when the if-conversion pass is enabled.  */
1810 
1811 static bool
1812 gate_tree_if_conversion (void)
1813 {
1814   return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
1815 	  || flag_tree_loop_if_convert == 1
1816 	  || flag_tree_loop_if_convert_stores == 1);
1817 }
1818 
1819 struct gimple_opt_pass pass_if_conversion =
1820 {
1821  {
1822   GIMPLE_PASS,
1823   "ifcvt",				/* name */
1824   OPTGROUP_NONE,                        /* optinfo_flags */
1825   gate_tree_if_conversion,		/* gate */
1826   main_tree_if_conversion,		/* execute */
1827   NULL,					/* sub */
1828   NULL,					/* next */
1829   0,					/* static_pass_number */
1830   TV_NONE,				/* tv_id */
1831   PROP_cfg | PROP_ssa,			/* properties_required */
1832   0,					/* properties_provided */
1833   0,					/* properties_destroyed */
1834   0,					/* todo_flags_start */
1835   TODO_verify_stmts | TODO_verify_flow
1836                                         /* todo_flags_finish */
1837  }
1838 };
1839