1 /* Exception handling semantics and decomposition for trees. 2 Copyright (C) 2003-2016 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3, or (at your option) 9 any later version. 10 11 GCC is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "cgraph.h" 31 #include "diagnostic-core.h" 32 #include "fold-const.h" 33 #include "calls.h" 34 #include "except.h" 35 #include "cfganal.h" 36 #include "cfgcleanup.h" 37 #include "tree-eh.h" 38 #include "gimple-iterator.h" 39 #include "tree-cfg.h" 40 #include "tree-into-ssa.h" 41 #include "tree-ssa.h" 42 #include "tree-inline.h" 43 #include "langhooks.h" 44 #include "cfgloop.h" 45 #include "gimple-low.h" 46 47 /* In some instances a tree and a gimple need to be stored in a same table, 48 i.e. in hash tables. This is a structure to do this. */ 49 typedef union {tree *tp; tree t; gimple *g;} treemple; 50 51 /* Misc functions used in this file. */ 52 53 /* Remember and lookup EH landing pad data for arbitrary statements. 54 Really this means any statement that could_throw_p. We could 55 stuff this information into the stmt_ann data structure, but: 56 57 (1) We absolutely rely on this information being kept until 58 we get to rtl. Once we're done with lowering here, if we lose 59 the information there's no way to recover it! 60 61 (2) There are many more statements that *cannot* throw as 62 compared to those that can. We should be saving some amount 63 of space by only allocating memory for those that can throw. */ 64 65 /* Add statement T in function IFUN to landing pad NUM. */ 66 67 static void 68 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num) 69 { 70 gcc_assert (num != 0); 71 72 if (!get_eh_throw_stmt_table (ifun)) 73 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31)); 74 75 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num)); 76 } 77 78 /* Add statement T in the current function (cfun) to EH landing pad NUM. */ 79 80 void 81 add_stmt_to_eh_lp (gimple *t, int num) 82 { 83 add_stmt_to_eh_lp_fn (cfun, t, num); 84 } 85 86 /* Add statement T to the single EH landing pad in REGION. */ 87 88 static void 89 record_stmt_eh_region (eh_region region, gimple *t) 90 { 91 if (region == NULL) 92 return; 93 if (region->type == ERT_MUST_NOT_THROW) 94 add_stmt_to_eh_lp_fn (cfun, t, -region->index); 95 else 96 { 97 eh_landing_pad lp = region->landing_pads; 98 if (lp == NULL) 99 lp = gen_eh_landing_pad (region); 100 else 101 gcc_assert (lp->next_lp == NULL); 102 add_stmt_to_eh_lp_fn (cfun, t, lp->index); 103 } 104 } 105 106 107 /* Remove statement T in function IFUN from its EH landing pad. */ 108 109 bool 110 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t) 111 { 112 if (!get_eh_throw_stmt_table (ifun)) 113 return false; 114 115 if (!get_eh_throw_stmt_table (ifun)->get (t)) 116 return false; 117 118 get_eh_throw_stmt_table (ifun)->remove (t); 119 return true; 120 } 121 122 123 /* Remove statement T in the current function (cfun) from its 124 EH landing pad. */ 125 126 bool 127 remove_stmt_from_eh_lp (gimple *t) 128 { 129 return remove_stmt_from_eh_lp_fn (cfun, t); 130 } 131 132 /* Determine if statement T is inside an EH region in function IFUN. 133 Positive numbers indicate a landing pad index; negative numbers 134 indicate a MUST_NOT_THROW region index; zero indicates that the 135 statement is not recorded in the region table. */ 136 137 int 138 lookup_stmt_eh_lp_fn (struct function *ifun, gimple *t) 139 { 140 if (ifun->eh->throw_stmt_table == NULL) 141 return 0; 142 143 int *lp_nr = ifun->eh->throw_stmt_table->get (t); 144 return lp_nr ? *lp_nr : 0; 145 } 146 147 /* Likewise, but always use the current function. */ 148 149 int 150 lookup_stmt_eh_lp (gimple *t) 151 { 152 /* We can get called from initialized data when -fnon-call-exceptions 153 is on; prevent crash. */ 154 if (!cfun) 155 return 0; 156 return lookup_stmt_eh_lp_fn (cfun, t); 157 } 158 159 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY 160 nodes and LABEL_DECL nodes. We will use this during the second phase to 161 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */ 162 163 struct finally_tree_node 164 { 165 /* When storing a GIMPLE_TRY, we have to record a gimple. However 166 when deciding whether a GOTO to a certain LABEL_DECL (which is a 167 tree) leaves the TRY block, its necessary to record a tree in 168 this field. Thus a treemple is used. */ 169 treemple child; 170 gtry *parent; 171 }; 172 173 /* Hashtable helpers. */ 174 175 struct finally_tree_hasher : free_ptr_hash <finally_tree_node> 176 { 177 static inline hashval_t hash (const finally_tree_node *); 178 static inline bool equal (const finally_tree_node *, 179 const finally_tree_node *); 180 }; 181 182 inline hashval_t 183 finally_tree_hasher::hash (const finally_tree_node *v) 184 { 185 return (intptr_t)v->child.t >> 4; 186 } 187 188 inline bool 189 finally_tree_hasher::equal (const finally_tree_node *v, 190 const finally_tree_node *c) 191 { 192 return v->child.t == c->child.t; 193 } 194 195 /* Note that this table is *not* marked GTY. It is short-lived. */ 196 static hash_table<finally_tree_hasher> *finally_tree; 197 198 static void 199 record_in_finally_tree (treemple child, gtry *parent) 200 { 201 struct finally_tree_node *n; 202 finally_tree_node **slot; 203 204 n = XNEW (struct finally_tree_node); 205 n->child = child; 206 n->parent = parent; 207 208 slot = finally_tree->find_slot (n, INSERT); 209 gcc_assert (!*slot); 210 *slot = n; 211 } 212 213 static void 214 collect_finally_tree (gimple *stmt, gtry *region); 215 216 /* Go through the gimple sequence. Works with collect_finally_tree to 217 record all GIMPLE_LABEL and GIMPLE_TRY statements. */ 218 219 static void 220 collect_finally_tree_1 (gimple_seq seq, gtry *region) 221 { 222 gimple_stmt_iterator gsi; 223 224 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) 225 collect_finally_tree (gsi_stmt (gsi), region); 226 } 227 228 static void 229 collect_finally_tree (gimple *stmt, gtry *region) 230 { 231 treemple temp; 232 233 switch (gimple_code (stmt)) 234 { 235 case GIMPLE_LABEL: 236 temp.t = gimple_label_label (as_a <glabel *> (stmt)); 237 record_in_finally_tree (temp, region); 238 break; 239 240 case GIMPLE_TRY: 241 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY) 242 { 243 temp.g = stmt; 244 record_in_finally_tree (temp, region); 245 collect_finally_tree_1 (gimple_try_eval (stmt), 246 as_a <gtry *> (stmt)); 247 collect_finally_tree_1 (gimple_try_cleanup (stmt), region); 248 } 249 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH) 250 { 251 collect_finally_tree_1 (gimple_try_eval (stmt), region); 252 collect_finally_tree_1 (gimple_try_cleanup (stmt), region); 253 } 254 break; 255 256 case GIMPLE_CATCH: 257 collect_finally_tree_1 (gimple_catch_handler ( 258 as_a <gcatch *> (stmt)), 259 region); 260 break; 261 262 case GIMPLE_EH_FILTER: 263 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region); 264 break; 265 266 case GIMPLE_EH_ELSE: 267 { 268 geh_else *eh_else_stmt = as_a <geh_else *> (stmt); 269 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region); 270 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region); 271 } 272 break; 273 274 default: 275 /* A type, a decl, or some kind of statement that we're not 276 interested in. Don't walk them. */ 277 break; 278 } 279 } 280 281 282 /* Use the finally tree to determine if a jump from START to TARGET 283 would leave the try_finally node that START lives in. */ 284 285 static bool 286 outside_finally_tree (treemple start, gimple *target) 287 { 288 struct finally_tree_node n, *p; 289 290 do 291 { 292 n.child = start; 293 p = finally_tree->find (&n); 294 if (!p) 295 return true; 296 start.g = p->parent; 297 } 298 while (start.g != target); 299 300 return false; 301 } 302 303 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY 304 nodes into a set of gotos, magic labels, and eh regions. 305 The eh region creation is straight-forward, but frobbing all the gotos 306 and such into shape isn't. */ 307 308 /* The sequence into which we record all EH stuff. This will be 309 placed at the end of the function when we're all done. */ 310 static gimple_seq eh_seq; 311 312 /* Record whether an EH region contains something that can throw, 313 indexed by EH region number. */ 314 static bitmap eh_region_may_contain_throw_map; 315 316 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN 317 statements that are seen to escape this GIMPLE_TRY_FINALLY node. 318 The idea is to record a gimple statement for everything except for 319 the conditionals, which get their labels recorded. Since labels are 320 of type 'tree', we need this node to store both gimple and tree 321 objects. REPL_STMT is the sequence used to replace the goto/return 322 statement. CONT_STMT is used to store the statement that allows 323 the return/goto to jump to the original destination. */ 324 325 struct goto_queue_node 326 { 327 treemple stmt; 328 location_t location; 329 gimple_seq repl_stmt; 330 gimple *cont_stmt; 331 int index; 332 /* This is used when index >= 0 to indicate that stmt is a label (as 333 opposed to a goto stmt). */ 334 int is_label; 335 }; 336 337 /* State of the world while lowering. */ 338 339 struct leh_state 340 { 341 /* What's "current" while constructing the eh region tree. These 342 correspond to variables of the same name in cfun->eh, which we 343 don't have easy access to. */ 344 eh_region cur_region; 345 346 /* What's "current" for the purposes of __builtin_eh_pointer. For 347 a CATCH, this is the associated TRY. For an EH_FILTER, this is 348 the associated ALLOWED_EXCEPTIONS, etc. */ 349 eh_region ehp_region; 350 351 /* Processing of TRY_FINALLY requires a bit more state. This is 352 split out into a separate structure so that we don't have to 353 copy so much when processing other nodes. */ 354 struct leh_tf_state *tf; 355 }; 356 357 struct leh_tf_state 358 { 359 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The 360 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain 361 this so that outside_finally_tree can reliably reference the tree used 362 in the collect_finally_tree data structures. */ 363 gtry *try_finally_expr; 364 gtry *top_p; 365 366 /* While lowering a top_p usually it is expanded into multiple statements, 367 thus we need the following field to store them. */ 368 gimple_seq top_p_seq; 369 370 /* The state outside this try_finally node. */ 371 struct leh_state *outer; 372 373 /* The exception region created for it. */ 374 eh_region region; 375 376 /* The goto queue. */ 377 struct goto_queue_node *goto_queue; 378 size_t goto_queue_size; 379 size_t goto_queue_active; 380 381 /* Pointer map to help in searching goto_queue when it is large. */ 382 hash_map<gimple *, goto_queue_node *> *goto_queue_map; 383 384 /* The set of unique labels seen as entries in the goto queue. */ 385 vec<tree> dest_array; 386 387 /* A label to be added at the end of the completed transformed 388 sequence. It will be set if may_fallthru was true *at one time*, 389 though subsequent transformations may have cleared that flag. */ 390 tree fallthru_label; 391 392 /* True if it is possible to fall out the bottom of the try block. 393 Cleared if the fallthru is converted to a goto. */ 394 bool may_fallthru; 395 396 /* True if any entry in goto_queue is a GIMPLE_RETURN. */ 397 bool may_return; 398 399 /* True if the finally block can receive an exception edge. 400 Cleared if the exception case is handled by code duplication. */ 401 bool may_throw; 402 }; 403 404 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *); 405 406 /* Search for STMT in the goto queue. Return the replacement, 407 or null if the statement isn't in the queue. */ 408 409 #define LARGE_GOTO_QUEUE 20 410 411 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq); 412 413 static gimple_seq 414 find_goto_replacement (struct leh_tf_state *tf, treemple stmt) 415 { 416 unsigned int i; 417 418 if (tf->goto_queue_active < LARGE_GOTO_QUEUE) 419 { 420 for (i = 0; i < tf->goto_queue_active; i++) 421 if ( tf->goto_queue[i].stmt.g == stmt.g) 422 return tf->goto_queue[i].repl_stmt; 423 return NULL; 424 } 425 426 /* If we have a large number of entries in the goto_queue, create a 427 pointer map and use that for searching. */ 428 429 if (!tf->goto_queue_map) 430 { 431 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>; 432 for (i = 0; i < tf->goto_queue_active; i++) 433 { 434 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g, 435 &tf->goto_queue[i]); 436 gcc_assert (!existed); 437 } 438 } 439 440 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g); 441 if (slot != NULL) 442 return ((*slot)->repl_stmt); 443 444 return NULL; 445 } 446 447 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a 448 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto, 449 then we can just splat it in, otherwise we add the new stmts immediately 450 after the GIMPLE_COND and redirect. */ 451 452 static void 453 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf, 454 gimple_stmt_iterator *gsi) 455 { 456 tree label; 457 gimple_seq new_seq; 458 treemple temp; 459 location_t loc = gimple_location (gsi_stmt (*gsi)); 460 461 temp.tp = tp; 462 new_seq = find_goto_replacement (tf, temp); 463 if (!new_seq) 464 return; 465 466 if (gimple_seq_singleton_p (new_seq) 467 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO) 468 { 469 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq)); 470 return; 471 } 472 473 label = create_artificial_label (loc); 474 /* Set the new label for the GIMPLE_COND */ 475 *tp = label; 476 477 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING); 478 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING); 479 } 480 481 /* The real work of replace_goto_queue. Returns with TSI updated to 482 point to the next statement. */ 483 484 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *); 485 486 static void 487 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf, 488 gimple_stmt_iterator *gsi) 489 { 490 gimple_seq seq; 491 treemple temp; 492 temp.g = NULL; 493 494 switch (gimple_code (stmt)) 495 { 496 case GIMPLE_GOTO: 497 case GIMPLE_RETURN: 498 temp.g = stmt; 499 seq = find_goto_replacement (tf, temp); 500 if (seq) 501 { 502 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT); 503 gsi_remove (gsi, false); 504 return; 505 } 506 break; 507 508 case GIMPLE_COND: 509 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi); 510 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi); 511 break; 512 513 case GIMPLE_TRY: 514 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf); 515 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf); 516 break; 517 case GIMPLE_CATCH: 518 replace_goto_queue_stmt_list (gimple_catch_handler_ptr ( 519 as_a <gcatch *> (stmt)), 520 tf); 521 break; 522 case GIMPLE_EH_FILTER: 523 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf); 524 break; 525 case GIMPLE_EH_ELSE: 526 { 527 geh_else *eh_else_stmt = as_a <geh_else *> (stmt); 528 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt), 529 tf); 530 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt), 531 tf); 532 } 533 break; 534 535 default: 536 /* These won't have gotos in them. */ 537 break; 538 } 539 540 gsi_next (gsi); 541 } 542 543 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */ 544 545 static void 546 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf) 547 { 548 gimple_stmt_iterator gsi = gsi_start (*seq); 549 550 while (!gsi_end_p (gsi)) 551 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi); 552 } 553 554 /* Replace all goto queue members. */ 555 556 static void 557 replace_goto_queue (struct leh_tf_state *tf) 558 { 559 if (tf->goto_queue_active == 0) 560 return; 561 replace_goto_queue_stmt_list (&tf->top_p_seq, tf); 562 replace_goto_queue_stmt_list (&eh_seq, tf); 563 } 564 565 /* Add a new record to the goto queue contained in TF. NEW_STMT is the 566 data to be added, IS_LABEL indicates whether NEW_STMT is a label or 567 a gimple return. */ 568 569 static void 570 record_in_goto_queue (struct leh_tf_state *tf, 571 treemple new_stmt, 572 int index, 573 bool is_label, 574 location_t location) 575 { 576 size_t active, size; 577 struct goto_queue_node *q; 578 579 gcc_assert (!tf->goto_queue_map); 580 581 active = tf->goto_queue_active; 582 size = tf->goto_queue_size; 583 if (active >= size) 584 { 585 size = (size ? size * 2 : 32); 586 tf->goto_queue_size = size; 587 tf->goto_queue 588 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size); 589 } 590 591 q = &tf->goto_queue[active]; 592 tf->goto_queue_active = active + 1; 593 594 memset (q, 0, sizeof (*q)); 595 q->stmt = new_stmt; 596 q->index = index; 597 q->location = location; 598 q->is_label = is_label; 599 } 600 601 /* Record the LABEL label in the goto queue contained in TF. 602 TF is not null. */ 603 604 static void 605 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label, 606 location_t location) 607 { 608 int index; 609 treemple temp, new_stmt; 610 611 if (!label) 612 return; 613 614 /* Computed and non-local gotos do not get processed. Given 615 their nature we can neither tell whether we've escaped the 616 finally block nor redirect them if we knew. */ 617 if (TREE_CODE (label) != LABEL_DECL) 618 return; 619 620 /* No need to record gotos that don't leave the try block. */ 621 temp.t = label; 622 if (!outside_finally_tree (temp, tf->try_finally_expr)) 623 return; 624 625 if (! tf->dest_array.exists ()) 626 { 627 tf->dest_array.create (10); 628 tf->dest_array.quick_push (label); 629 index = 0; 630 } 631 else 632 { 633 int n = tf->dest_array.length (); 634 for (index = 0; index < n; ++index) 635 if (tf->dest_array[index] == label) 636 break; 637 if (index == n) 638 tf->dest_array.safe_push (label); 639 } 640 641 /* In the case of a GOTO we want to record the destination label, 642 since with a GIMPLE_COND we have an easy access to the then/else 643 labels. */ 644 new_stmt = stmt; 645 record_in_goto_queue (tf, new_stmt, index, true, location); 646 } 647 648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally 649 node, and if so record that fact in the goto queue associated with that 650 try_finally node. */ 651 652 static void 653 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt) 654 { 655 struct leh_tf_state *tf = state->tf; 656 treemple new_stmt; 657 658 if (!tf) 659 return; 660 661 switch (gimple_code (stmt)) 662 { 663 case GIMPLE_COND: 664 { 665 gcond *cond_stmt = as_a <gcond *> (stmt); 666 new_stmt.tp = gimple_op_ptr (cond_stmt, 2); 667 record_in_goto_queue_label (tf, new_stmt, 668 gimple_cond_true_label (cond_stmt), 669 EXPR_LOCATION (*new_stmt.tp)); 670 new_stmt.tp = gimple_op_ptr (cond_stmt, 3); 671 record_in_goto_queue_label (tf, new_stmt, 672 gimple_cond_false_label (cond_stmt), 673 EXPR_LOCATION (*new_stmt.tp)); 674 } 675 break; 676 case GIMPLE_GOTO: 677 new_stmt.g = stmt; 678 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt), 679 gimple_location (stmt)); 680 break; 681 682 case GIMPLE_RETURN: 683 tf->may_return = true; 684 new_stmt.g = stmt; 685 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt)); 686 break; 687 688 default: 689 gcc_unreachable (); 690 } 691 } 692 693 694 #if CHECKING_P 695 /* We do not process GIMPLE_SWITCHes for now. As long as the original source 696 was in fact structured, and we've not yet done jump threading, then none 697 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */ 698 699 static void 700 verify_norecord_switch_expr (struct leh_state *state, 701 gswitch *switch_expr) 702 { 703 struct leh_tf_state *tf = state->tf; 704 size_t i, n; 705 706 if (!tf) 707 return; 708 709 n = gimple_switch_num_labels (switch_expr); 710 711 for (i = 0; i < n; ++i) 712 { 713 treemple temp; 714 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i)); 715 temp.t = lab; 716 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr)); 717 } 718 } 719 #else 720 #define verify_norecord_switch_expr(state, switch_expr) 721 #endif 722 723 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is 724 non-null, insert it before the new branch. */ 725 726 static void 727 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod) 728 { 729 gimple *x; 730 731 /* In the case of a return, the queue node must be a gimple statement. */ 732 gcc_assert (!q->is_label); 733 734 /* Note that the return value may have already been computed, e.g., 735 736 int x; 737 int foo (void) 738 { 739 x = 0; 740 try { 741 return x; 742 } finally { 743 x++; 744 } 745 } 746 747 should return 0, not 1. We don't have to do anything to make 748 this happens because the return value has been placed in the 749 RESULT_DECL already. */ 750 751 q->cont_stmt = q->stmt.g; 752 753 if (mod) 754 gimple_seq_add_seq (&q->repl_stmt, mod); 755 756 x = gimple_build_goto (finlab); 757 gimple_set_location (x, q->location); 758 gimple_seq_add_stmt (&q->repl_stmt, x); 759 } 760 761 /* Similar, but easier, for GIMPLE_GOTO. */ 762 763 static void 764 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod, 765 struct leh_tf_state *tf) 766 { 767 ggoto *x; 768 769 gcc_assert (q->is_label); 770 771 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]); 772 773 if (mod) 774 gimple_seq_add_seq (&q->repl_stmt, mod); 775 776 x = gimple_build_goto (finlab); 777 gimple_set_location (x, q->location); 778 gimple_seq_add_stmt (&q->repl_stmt, x); 779 } 780 781 /* Emit a standard landing pad sequence into SEQ for REGION. */ 782 783 static void 784 emit_post_landing_pad (gimple_seq *seq, eh_region region) 785 { 786 eh_landing_pad lp = region->landing_pads; 787 glabel *x; 788 789 if (lp == NULL) 790 lp = gen_eh_landing_pad (region); 791 792 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION); 793 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index; 794 795 x = gimple_build_label (lp->post_landing_pad); 796 gimple_seq_add_stmt (seq, x); 797 } 798 799 /* Emit a RESX statement into SEQ for REGION. */ 800 801 static void 802 emit_resx (gimple_seq *seq, eh_region region) 803 { 804 gresx *x = gimple_build_resx (region->index); 805 gimple_seq_add_stmt (seq, x); 806 if (region->outer) 807 record_stmt_eh_region (region->outer, x); 808 } 809 810 /* Emit an EH_DISPATCH statement into SEQ for REGION. */ 811 812 static void 813 emit_eh_dispatch (gimple_seq *seq, eh_region region) 814 { 815 geh_dispatch *x = gimple_build_eh_dispatch (region->index); 816 gimple_seq_add_stmt (seq, x); 817 } 818 819 /* Note that the current EH region may contain a throw, or a 820 call to a function which itself may contain a throw. */ 821 822 static void 823 note_eh_region_may_contain_throw (eh_region region) 824 { 825 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index)) 826 { 827 if (region->type == ERT_MUST_NOT_THROW) 828 break; 829 region = region->outer; 830 if (region == NULL) 831 break; 832 } 833 } 834 835 /* Check if REGION has been marked as containing a throw. If REGION is 836 NULL, this predicate is false. */ 837 838 static inline bool 839 eh_region_may_contain_throw (eh_region r) 840 { 841 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index); 842 } 843 844 /* We want to transform 845 try { body; } catch { stuff; } 846 to 847 normal_sequence: 848 body; 849 over: 850 eh_sequence: 851 landing_pad: 852 stuff; 853 goto over; 854 855 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad 856 should be placed before the second operand, or NULL. OVER is 857 an existing label that should be put at the exit, or NULL. */ 858 859 static gimple_seq 860 frob_into_branch_around (gtry *tp, eh_region region, tree over) 861 { 862 gimple *x; 863 gimple_seq cleanup, result; 864 location_t loc = gimple_location (tp); 865 866 cleanup = gimple_try_cleanup (tp); 867 result = gimple_try_eval (tp); 868 869 if (region) 870 emit_post_landing_pad (&eh_seq, region); 871 872 if (gimple_seq_may_fallthru (cleanup)) 873 { 874 if (!over) 875 over = create_artificial_label (loc); 876 x = gimple_build_goto (over); 877 gimple_set_location (x, loc); 878 gimple_seq_add_stmt (&cleanup, x); 879 } 880 gimple_seq_add_seq (&eh_seq, cleanup); 881 882 if (over) 883 { 884 x = gimple_build_label (over); 885 gimple_seq_add_stmt (&result, x); 886 } 887 return result; 888 } 889 890 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T. 891 Make sure to record all new labels found. */ 892 893 static gimple_seq 894 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state, 895 location_t loc) 896 { 897 gtry *region = NULL; 898 gimple_seq new_seq; 899 gimple_stmt_iterator gsi; 900 901 new_seq = copy_gimple_seq_and_replace_locals (seq); 902 903 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi)) 904 { 905 gimple *stmt = gsi_stmt (gsi); 906 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating 907 it on the EH paths. When it is not eliminated, make it transparent in 908 the debug info. */ 909 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE)) 910 gimple_set_location (stmt, UNKNOWN_LOCATION); 911 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION) 912 { 913 tree block = gimple_block (stmt); 914 gimple_set_location (stmt, loc); 915 gimple_set_block (stmt, block); 916 } 917 } 918 919 if (outer_state->tf) 920 region = outer_state->tf->try_finally_expr; 921 collect_finally_tree_1 (new_seq, region); 922 923 return new_seq; 924 } 925 926 /* A subroutine of lower_try_finally. Create a fallthru label for 927 the given try_finally state. The only tricky bit here is that 928 we have to make sure to record the label in our outer context. */ 929 930 static tree 931 lower_try_finally_fallthru_label (struct leh_tf_state *tf) 932 { 933 tree label = tf->fallthru_label; 934 treemple temp; 935 936 if (!label) 937 { 938 label = create_artificial_label (gimple_location (tf->try_finally_expr)); 939 tf->fallthru_label = label; 940 if (tf->outer->tf) 941 { 942 temp.t = label; 943 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr); 944 } 945 } 946 return label; 947 } 948 949 /* A subroutine of lower_try_finally. If FINALLY consits of a 950 GIMPLE_EH_ELSE node, return it. */ 951 952 static inline geh_else * 953 get_eh_else (gimple_seq finally) 954 { 955 gimple *x = gimple_seq_first_stmt (finally); 956 if (gimple_code (x) == GIMPLE_EH_ELSE) 957 { 958 gcc_assert (gimple_seq_singleton_p (finally)); 959 return as_a <geh_else *> (x); 960 } 961 return NULL; 962 } 963 964 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions 965 langhook returns non-null, then the language requires that the exception 966 path out of a try_finally be treated specially. To wit: the code within 967 the finally block may not itself throw an exception. We have two choices 968 here. First we can duplicate the finally block and wrap it in a 969 must_not_throw region. Second, we can generate code like 970 971 try { 972 finally_block; 973 } catch { 974 if (fintmp == eh_edge) 975 protect_cleanup_actions; 976 } 977 978 where "fintmp" is the temporary used in the switch statement generation 979 alternative considered below. For the nonce, we always choose the first 980 option. 981 982 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */ 983 984 static void 985 honor_protect_cleanup_actions (struct leh_state *outer_state, 986 struct leh_state *this_state, 987 struct leh_tf_state *tf) 988 { 989 gimple_seq finally = gimple_try_cleanup (tf->top_p); 990 991 /* EH_ELSE doesn't come from user code; only compiler generated stuff. 992 It does need to be handled here, so as to separate the (different) 993 EH path from the normal path. But we should not attempt to wrap 994 it with a must-not-throw node (which indeed gets in the way). */ 995 if (geh_else *eh_else = get_eh_else (finally)) 996 { 997 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else)); 998 finally = gimple_eh_else_e_body (eh_else); 999 1000 /* Let the ELSE see the exception that's being processed. */ 1001 eh_region save_ehp = this_state->ehp_region; 1002 this_state->ehp_region = this_state->cur_region; 1003 lower_eh_constructs_1 (this_state, &finally); 1004 this_state->ehp_region = save_ehp; 1005 } 1006 else 1007 { 1008 /* First check for nothing to do. */ 1009 if (lang_hooks.eh_protect_cleanup_actions == NULL) 1010 return; 1011 tree actions = lang_hooks.eh_protect_cleanup_actions (); 1012 if (actions == NULL) 1013 return; 1014 1015 if (this_state) 1016 finally = lower_try_finally_dup_block (finally, outer_state, 1017 gimple_location (tf->try_finally_expr)); 1018 1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP 1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought 1021 to be in an enclosing scope, but needs to be implemented at this level 1022 to avoid a nesting violation (see wrap_temporary_cleanups in 1023 cp/decl.c). Since it's logically at an outer level, we should call 1024 terminate before we get to it, so strip it away before adding the 1025 MUST_NOT_THROW filter. */ 1026 gimple_stmt_iterator gsi = gsi_start (finally); 1027 gimple *x = gsi_stmt (gsi); 1028 if (gimple_code (x) == GIMPLE_TRY 1029 && gimple_try_kind (x) == GIMPLE_TRY_CATCH 1030 && gimple_try_catch_is_cleanup (x)) 1031 { 1032 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT); 1033 gsi_remove (&gsi, false); 1034 } 1035 1036 /* Wrap the block with protect_cleanup_actions as the action. */ 1037 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions); 1038 gtry *try_stmt = gimple_build_try (finally, 1039 gimple_seq_alloc_with_stmt (eh_mnt), 1040 GIMPLE_TRY_CATCH); 1041 finally = lower_eh_must_not_throw (outer_state, try_stmt); 1042 } 1043 1044 /* Drop all of this into the exception sequence. */ 1045 emit_post_landing_pad (&eh_seq, tf->region); 1046 gimple_seq_add_seq (&eh_seq, finally); 1047 if (gimple_seq_may_fallthru (finally)) 1048 emit_resx (&eh_seq, tf->region); 1049 1050 /* Having now been handled, EH isn't to be considered with 1051 the rest of the outgoing edges. */ 1052 tf->may_throw = false; 1053 } 1054 1055 /* A subroutine of lower_try_finally. We have determined that there is 1056 no fallthru edge out of the finally block. This means that there is 1057 no outgoing edge corresponding to any incoming edge. Restructure the 1058 try_finally node for this special case. */ 1059 1060 static void 1061 lower_try_finally_nofallthru (struct leh_state *state, 1062 struct leh_tf_state *tf) 1063 { 1064 tree lab; 1065 gimple *x; 1066 geh_else *eh_else; 1067 gimple_seq finally; 1068 struct goto_queue_node *q, *qe; 1069 1070 lab = create_artificial_label (gimple_location (tf->try_finally_expr)); 1071 1072 /* We expect that tf->top_p is a GIMPLE_TRY. */ 1073 finally = gimple_try_cleanup (tf->top_p); 1074 tf->top_p_seq = gimple_try_eval (tf->top_p); 1075 1076 x = gimple_build_label (lab); 1077 gimple_seq_add_stmt (&tf->top_p_seq, x); 1078 1079 q = tf->goto_queue; 1080 qe = q + tf->goto_queue_active; 1081 for (; q < qe; ++q) 1082 if (q->index < 0) 1083 do_return_redirection (q, lab, NULL); 1084 else 1085 do_goto_redirection (q, lab, NULL, tf); 1086 1087 replace_goto_queue (tf); 1088 1089 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */ 1090 eh_else = get_eh_else (finally); 1091 if (eh_else) 1092 { 1093 finally = gimple_eh_else_n_body (eh_else); 1094 lower_eh_constructs_1 (state, &finally); 1095 gimple_seq_add_seq (&tf->top_p_seq, finally); 1096 1097 if (tf->may_throw) 1098 { 1099 finally = gimple_eh_else_e_body (eh_else); 1100 lower_eh_constructs_1 (state, &finally); 1101 1102 emit_post_landing_pad (&eh_seq, tf->region); 1103 gimple_seq_add_seq (&eh_seq, finally); 1104 } 1105 } 1106 else 1107 { 1108 lower_eh_constructs_1 (state, &finally); 1109 gimple_seq_add_seq (&tf->top_p_seq, finally); 1110 1111 if (tf->may_throw) 1112 { 1113 emit_post_landing_pad (&eh_seq, tf->region); 1114 1115 x = gimple_build_goto (lab); 1116 gimple_set_location (x, gimple_location (tf->try_finally_expr)); 1117 gimple_seq_add_stmt (&eh_seq, x); 1118 } 1119 } 1120 } 1121 1122 /* A subroutine of lower_try_finally. We have determined that there is 1123 exactly one destination of the finally block. Restructure the 1124 try_finally node for this special case. */ 1125 1126 static void 1127 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf) 1128 { 1129 struct goto_queue_node *q, *qe; 1130 geh_else *eh_else; 1131 glabel *label_stmt; 1132 gimple *x; 1133 gimple_seq finally; 1134 gimple_stmt_iterator gsi; 1135 tree finally_label; 1136 location_t loc = gimple_location (tf->try_finally_expr); 1137 1138 finally = gimple_try_cleanup (tf->top_p); 1139 tf->top_p_seq = gimple_try_eval (tf->top_p); 1140 1141 /* Since there's only one destination, and the destination edge can only 1142 either be EH or non-EH, that implies that all of our incoming edges 1143 are of the same type. Therefore we can lower EH_ELSE immediately. */ 1144 eh_else = get_eh_else (finally); 1145 if (eh_else) 1146 { 1147 if (tf->may_throw) 1148 finally = gimple_eh_else_e_body (eh_else); 1149 else 1150 finally = gimple_eh_else_n_body (eh_else); 1151 } 1152 1153 lower_eh_constructs_1 (state, &finally); 1154 1155 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi)) 1156 { 1157 gimple *stmt = gsi_stmt (gsi); 1158 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION) 1159 { 1160 tree block = gimple_block (stmt); 1161 gimple_set_location (stmt, gimple_location (tf->try_finally_expr)); 1162 gimple_set_block (stmt, block); 1163 } 1164 } 1165 1166 if (tf->may_throw) 1167 { 1168 /* Only reachable via the exception edge. Add the given label to 1169 the head of the FINALLY block. Append a RESX at the end. */ 1170 emit_post_landing_pad (&eh_seq, tf->region); 1171 gimple_seq_add_seq (&eh_seq, finally); 1172 emit_resx (&eh_seq, tf->region); 1173 return; 1174 } 1175 1176 if (tf->may_fallthru) 1177 { 1178 /* Only reachable via the fallthru edge. Do nothing but let 1179 the two blocks run together; we'll fall out the bottom. */ 1180 gimple_seq_add_seq (&tf->top_p_seq, finally); 1181 return; 1182 } 1183 1184 finally_label = create_artificial_label (loc); 1185 label_stmt = gimple_build_label (finally_label); 1186 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt); 1187 1188 gimple_seq_add_seq (&tf->top_p_seq, finally); 1189 1190 q = tf->goto_queue; 1191 qe = q + tf->goto_queue_active; 1192 1193 if (tf->may_return) 1194 { 1195 /* Reachable by return expressions only. Redirect them. */ 1196 for (; q < qe; ++q) 1197 do_return_redirection (q, finally_label, NULL); 1198 replace_goto_queue (tf); 1199 } 1200 else 1201 { 1202 /* Reachable by goto expressions only. Redirect them. */ 1203 for (; q < qe; ++q) 1204 do_goto_redirection (q, finally_label, NULL, tf); 1205 replace_goto_queue (tf); 1206 1207 if (tf->dest_array[0] == tf->fallthru_label) 1208 { 1209 /* Reachable by goto to fallthru label only. Redirect it 1210 to the new label (already created, sadly), and do not 1211 emit the final branch out, or the fallthru label. */ 1212 tf->fallthru_label = NULL; 1213 return; 1214 } 1215 } 1216 1217 /* Place the original return/goto to the original destination 1218 immediately after the finally block. */ 1219 x = tf->goto_queue[0].cont_stmt; 1220 gimple_seq_add_stmt (&tf->top_p_seq, x); 1221 maybe_record_in_goto_queue (state, x); 1222 } 1223 1224 /* A subroutine of lower_try_finally. There are multiple edges incoming 1225 and outgoing from the finally block. Implement this by duplicating the 1226 finally block for every destination. */ 1227 1228 static void 1229 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf) 1230 { 1231 gimple_seq finally; 1232 gimple_seq new_stmt; 1233 gimple_seq seq; 1234 gimple *x; 1235 geh_else *eh_else; 1236 tree tmp; 1237 location_t tf_loc = gimple_location (tf->try_finally_expr); 1238 1239 finally = gimple_try_cleanup (tf->top_p); 1240 1241 /* Notice EH_ELSE, and simplify some of the remaining code 1242 by considering FINALLY to be the normal return path only. */ 1243 eh_else = get_eh_else (finally); 1244 if (eh_else) 1245 finally = gimple_eh_else_n_body (eh_else); 1246 1247 tf->top_p_seq = gimple_try_eval (tf->top_p); 1248 new_stmt = NULL; 1249 1250 if (tf->may_fallthru) 1251 { 1252 seq = lower_try_finally_dup_block (finally, state, tf_loc); 1253 lower_eh_constructs_1 (state, &seq); 1254 gimple_seq_add_seq (&new_stmt, seq); 1255 1256 tmp = lower_try_finally_fallthru_label (tf); 1257 x = gimple_build_goto (tmp); 1258 gimple_set_location (x, tf_loc); 1259 gimple_seq_add_stmt (&new_stmt, x); 1260 } 1261 1262 if (tf->may_throw) 1263 { 1264 /* We don't need to copy the EH path of EH_ELSE, 1265 since it is only emitted once. */ 1266 if (eh_else) 1267 seq = gimple_eh_else_e_body (eh_else); 1268 else 1269 seq = lower_try_finally_dup_block (finally, state, tf_loc); 1270 lower_eh_constructs_1 (state, &seq); 1271 1272 emit_post_landing_pad (&eh_seq, tf->region); 1273 gimple_seq_add_seq (&eh_seq, seq); 1274 emit_resx (&eh_seq, tf->region); 1275 } 1276 1277 if (tf->goto_queue) 1278 { 1279 struct goto_queue_node *q, *qe; 1280 int return_index, index; 1281 struct labels_s 1282 { 1283 struct goto_queue_node *q; 1284 tree label; 1285 } *labels; 1286 1287 return_index = tf->dest_array.length (); 1288 labels = XCNEWVEC (struct labels_s, return_index + 1); 1289 1290 q = tf->goto_queue; 1291 qe = q + tf->goto_queue_active; 1292 for (; q < qe; q++) 1293 { 1294 index = q->index < 0 ? return_index : q->index; 1295 1296 if (!labels[index].q) 1297 labels[index].q = q; 1298 } 1299 1300 for (index = 0; index < return_index + 1; index++) 1301 { 1302 tree lab; 1303 1304 q = labels[index].q; 1305 if (! q) 1306 continue; 1307 1308 lab = labels[index].label 1309 = create_artificial_label (tf_loc); 1310 1311 if (index == return_index) 1312 do_return_redirection (q, lab, NULL); 1313 else 1314 do_goto_redirection (q, lab, NULL, tf); 1315 1316 x = gimple_build_label (lab); 1317 gimple_seq_add_stmt (&new_stmt, x); 1318 1319 seq = lower_try_finally_dup_block (finally, state, q->location); 1320 lower_eh_constructs_1 (state, &seq); 1321 gimple_seq_add_seq (&new_stmt, seq); 1322 1323 gimple_seq_add_stmt (&new_stmt, q->cont_stmt); 1324 maybe_record_in_goto_queue (state, q->cont_stmt); 1325 } 1326 1327 for (q = tf->goto_queue; q < qe; q++) 1328 { 1329 tree lab; 1330 1331 index = q->index < 0 ? return_index : q->index; 1332 1333 if (labels[index].q == q) 1334 continue; 1335 1336 lab = labels[index].label; 1337 1338 if (index == return_index) 1339 do_return_redirection (q, lab, NULL); 1340 else 1341 do_goto_redirection (q, lab, NULL, tf); 1342 } 1343 1344 replace_goto_queue (tf); 1345 free (labels); 1346 } 1347 1348 /* Need to link new stmts after running replace_goto_queue due 1349 to not wanting to process the same goto stmts twice. */ 1350 gimple_seq_add_seq (&tf->top_p_seq, new_stmt); 1351 } 1352 1353 /* A subroutine of lower_try_finally. There are multiple edges incoming 1354 and outgoing from the finally block. Implement this by instrumenting 1355 each incoming edge and creating a switch statement at the end of the 1356 finally block that branches to the appropriate destination. */ 1357 1358 static void 1359 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf) 1360 { 1361 struct goto_queue_node *q, *qe; 1362 tree finally_tmp, finally_label; 1363 int return_index, eh_index, fallthru_index; 1364 int nlabels, ndests, j, last_case_index; 1365 tree last_case; 1366 auto_vec<tree> case_label_vec; 1367 gimple_seq switch_body = NULL; 1368 gimple *x; 1369 geh_else *eh_else; 1370 tree tmp; 1371 gimple *switch_stmt; 1372 gimple_seq finally; 1373 hash_map<tree, gimple *> *cont_map = NULL; 1374 /* The location of the TRY_FINALLY stmt. */ 1375 location_t tf_loc = gimple_location (tf->try_finally_expr); 1376 /* The location of the finally block. */ 1377 location_t finally_loc; 1378 1379 finally = gimple_try_cleanup (tf->top_p); 1380 eh_else = get_eh_else (finally); 1381 1382 /* Mash the TRY block to the head of the chain. */ 1383 tf->top_p_seq = gimple_try_eval (tf->top_p); 1384 1385 /* The location of the finally is either the last stmt in the finally 1386 block or the location of the TRY_FINALLY itself. */ 1387 x = gimple_seq_last_stmt (finally); 1388 finally_loc = x ? gimple_location (x) : tf_loc; 1389 1390 /* Prepare for switch statement generation. */ 1391 nlabels = tf->dest_array.length (); 1392 return_index = nlabels; 1393 eh_index = return_index + tf->may_return; 1394 fallthru_index = eh_index + (tf->may_throw && !eh_else); 1395 ndests = fallthru_index + tf->may_fallthru; 1396 1397 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp"); 1398 finally_label = create_artificial_label (finally_loc); 1399 1400 /* We use vec::quick_push on case_label_vec throughout this function, 1401 since we know the size in advance and allocate precisely as muce 1402 space as needed. */ 1403 case_label_vec.create (ndests); 1404 last_case = NULL; 1405 last_case_index = 0; 1406 1407 /* Begin inserting code for getting to the finally block. Things 1408 are done in this order to correspond to the sequence the code is 1409 laid out. */ 1410 1411 if (tf->may_fallthru) 1412 { 1413 x = gimple_build_assign (finally_tmp, 1414 build_int_cst (integer_type_node, 1415 fallthru_index)); 1416 gimple_seq_add_stmt (&tf->top_p_seq, x); 1417 1418 tmp = build_int_cst (integer_type_node, fallthru_index); 1419 last_case = build_case_label (tmp, NULL, 1420 create_artificial_label (tf_loc)); 1421 case_label_vec.quick_push (last_case); 1422 last_case_index++; 1423 1424 x = gimple_build_label (CASE_LABEL (last_case)); 1425 gimple_seq_add_stmt (&switch_body, x); 1426 1427 tmp = lower_try_finally_fallthru_label (tf); 1428 x = gimple_build_goto (tmp); 1429 gimple_set_location (x, tf_loc); 1430 gimple_seq_add_stmt (&switch_body, x); 1431 } 1432 1433 /* For EH_ELSE, emit the exception path (plus resx) now, then 1434 subsequently we only need consider the normal path. */ 1435 if (eh_else) 1436 { 1437 if (tf->may_throw) 1438 { 1439 finally = gimple_eh_else_e_body (eh_else); 1440 lower_eh_constructs_1 (state, &finally); 1441 1442 emit_post_landing_pad (&eh_seq, tf->region); 1443 gimple_seq_add_seq (&eh_seq, finally); 1444 emit_resx (&eh_seq, tf->region); 1445 } 1446 1447 finally = gimple_eh_else_n_body (eh_else); 1448 } 1449 else if (tf->may_throw) 1450 { 1451 emit_post_landing_pad (&eh_seq, tf->region); 1452 1453 x = gimple_build_assign (finally_tmp, 1454 build_int_cst (integer_type_node, eh_index)); 1455 gimple_seq_add_stmt (&eh_seq, x); 1456 1457 x = gimple_build_goto (finally_label); 1458 gimple_set_location (x, tf_loc); 1459 gimple_seq_add_stmt (&eh_seq, x); 1460 1461 tmp = build_int_cst (integer_type_node, eh_index); 1462 last_case = build_case_label (tmp, NULL, 1463 create_artificial_label (tf_loc)); 1464 case_label_vec.quick_push (last_case); 1465 last_case_index++; 1466 1467 x = gimple_build_label (CASE_LABEL (last_case)); 1468 gimple_seq_add_stmt (&eh_seq, x); 1469 emit_resx (&eh_seq, tf->region); 1470 } 1471 1472 x = gimple_build_label (finally_label); 1473 gimple_seq_add_stmt (&tf->top_p_seq, x); 1474 1475 lower_eh_constructs_1 (state, &finally); 1476 gimple_seq_add_seq (&tf->top_p_seq, finally); 1477 1478 /* Redirect each incoming goto edge. */ 1479 q = tf->goto_queue; 1480 qe = q + tf->goto_queue_active; 1481 j = last_case_index + tf->may_return; 1482 /* Prepare the assignments to finally_tmp that are executed upon the 1483 entrance through a particular edge. */ 1484 for (; q < qe; ++q) 1485 { 1486 gimple_seq mod = NULL; 1487 int switch_id; 1488 unsigned int case_index; 1489 1490 if (q->index < 0) 1491 { 1492 x = gimple_build_assign (finally_tmp, 1493 build_int_cst (integer_type_node, 1494 return_index)); 1495 gimple_seq_add_stmt (&mod, x); 1496 do_return_redirection (q, finally_label, mod); 1497 switch_id = return_index; 1498 } 1499 else 1500 { 1501 x = gimple_build_assign (finally_tmp, 1502 build_int_cst (integer_type_node, q->index)); 1503 gimple_seq_add_stmt (&mod, x); 1504 do_goto_redirection (q, finally_label, mod, tf); 1505 switch_id = q->index; 1506 } 1507 1508 case_index = j + q->index; 1509 if (case_label_vec.length () <= case_index || !case_label_vec[case_index]) 1510 { 1511 tree case_lab; 1512 tmp = build_int_cst (integer_type_node, switch_id); 1513 case_lab = build_case_label (tmp, NULL, 1514 create_artificial_label (tf_loc)); 1515 /* We store the cont_stmt in the pointer map, so that we can recover 1516 it in the loop below. */ 1517 if (!cont_map) 1518 cont_map = new hash_map<tree, gimple *>; 1519 cont_map->put (case_lab, q->cont_stmt); 1520 case_label_vec.quick_push (case_lab); 1521 } 1522 } 1523 for (j = last_case_index; j < last_case_index + nlabels; j++) 1524 { 1525 gimple *cont_stmt; 1526 1527 last_case = case_label_vec[j]; 1528 1529 gcc_assert (last_case); 1530 gcc_assert (cont_map); 1531 1532 cont_stmt = *cont_map->get (last_case); 1533 1534 x = gimple_build_label (CASE_LABEL (last_case)); 1535 gimple_seq_add_stmt (&switch_body, x); 1536 gimple_seq_add_stmt (&switch_body, cont_stmt); 1537 maybe_record_in_goto_queue (state, cont_stmt); 1538 } 1539 if (cont_map) 1540 delete cont_map; 1541 1542 replace_goto_queue (tf); 1543 1544 /* Make sure that the last case is the default label, as one is required. 1545 Then sort the labels, which is also required in GIMPLE. */ 1546 CASE_LOW (last_case) = NULL; 1547 tree tem = case_label_vec.pop (); 1548 gcc_assert (tem == last_case); 1549 sort_case_labels (case_label_vec); 1550 1551 /* Build the switch statement, setting last_case to be the default 1552 label. */ 1553 switch_stmt = gimple_build_switch (finally_tmp, last_case, 1554 case_label_vec); 1555 gimple_set_location (switch_stmt, finally_loc); 1556 1557 /* Need to link SWITCH_STMT after running replace_goto_queue 1558 due to not wanting to process the same goto stmts twice. */ 1559 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt); 1560 gimple_seq_add_seq (&tf->top_p_seq, switch_body); 1561 } 1562 1563 /* Decide whether or not we are going to duplicate the finally block. 1564 There are several considerations. 1565 1566 First, if this is Java, then the finally block contains code 1567 written by the user. It has line numbers associated with it, 1568 so duplicating the block means it's difficult to set a breakpoint. 1569 Since controlling code generation via -g is verboten, we simply 1570 never duplicate code without optimization. 1571 1572 Second, we'd like to prevent egregious code growth. One way to 1573 do this is to estimate the size of the finally block, multiply 1574 that by the number of copies we'd need to make, and compare against 1575 the estimate of the size of the switch machinery we'd have to add. */ 1576 1577 static bool 1578 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally) 1579 { 1580 int f_estimate, sw_estimate; 1581 geh_else *eh_else; 1582 1583 /* If there's an EH_ELSE involved, the exception path is separate 1584 and really doesn't come into play for this computation. */ 1585 eh_else = get_eh_else (finally); 1586 if (eh_else) 1587 { 1588 ndests -= may_throw; 1589 finally = gimple_eh_else_n_body (eh_else); 1590 } 1591 1592 if (!optimize) 1593 { 1594 gimple_stmt_iterator gsi; 1595 1596 if (ndests == 1) 1597 return true; 1598 1599 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi)) 1600 { 1601 /* Duplicate __builtin_stack_restore in the hope of eliminating it 1602 on the EH paths and, consequently, useless cleanups. */ 1603 gimple *stmt = gsi_stmt (gsi); 1604 if (!is_gimple_debug (stmt) 1605 && !gimple_clobber_p (stmt) 1606 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE)) 1607 return false; 1608 } 1609 return true; 1610 } 1611 1612 /* Finally estimate N times, plus N gotos. */ 1613 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights); 1614 f_estimate = (f_estimate + 1) * ndests; 1615 1616 /* Switch statement (cost 10), N variable assignments, N gotos. */ 1617 sw_estimate = 10 + 2 * ndests; 1618 1619 /* Optimize for size clearly wants our best guess. */ 1620 if (optimize_function_for_size_p (cfun)) 1621 return f_estimate < sw_estimate; 1622 1623 /* ??? These numbers are completely made up so far. */ 1624 if (optimize > 1) 1625 return f_estimate < 100 || f_estimate < sw_estimate * 2; 1626 else 1627 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3; 1628 } 1629 1630 /* REG is the enclosing region for a possible cleanup region, or the region 1631 itself. Returns TRUE if such a region would be unreachable. 1632 1633 Cleanup regions within a must-not-throw region aren't actually reachable 1634 even if there are throwing stmts within them, because the personality 1635 routine will call terminate before unwinding. */ 1636 1637 static bool 1638 cleanup_is_dead_in (eh_region reg) 1639 { 1640 while (reg && reg->type == ERT_CLEANUP) 1641 reg = reg->outer; 1642 return (reg && reg->type == ERT_MUST_NOT_THROW); 1643 } 1644 1645 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes 1646 to a sequence of labels and blocks, plus the exception region trees 1647 that record all the magic. This is complicated by the need to 1648 arrange for the FINALLY block to be executed on all exits. */ 1649 1650 static gimple_seq 1651 lower_try_finally (struct leh_state *state, gtry *tp) 1652 { 1653 struct leh_tf_state this_tf; 1654 struct leh_state this_state; 1655 int ndests; 1656 gimple_seq old_eh_seq; 1657 1658 /* Process the try block. */ 1659 1660 memset (&this_tf, 0, sizeof (this_tf)); 1661 this_tf.try_finally_expr = tp; 1662 this_tf.top_p = tp; 1663 this_tf.outer = state; 1664 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region)) 1665 { 1666 this_tf.region = gen_eh_region_cleanup (state->cur_region); 1667 this_state.cur_region = this_tf.region; 1668 } 1669 else 1670 { 1671 this_tf.region = NULL; 1672 this_state.cur_region = state->cur_region; 1673 } 1674 1675 this_state.ehp_region = state->ehp_region; 1676 this_state.tf = &this_tf; 1677 1678 old_eh_seq = eh_seq; 1679 eh_seq = NULL; 1680 1681 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp)); 1682 1683 /* Determine if the try block is escaped through the bottom. */ 1684 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp)); 1685 1686 /* Determine if any exceptions are possible within the try block. */ 1687 if (this_tf.region) 1688 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region); 1689 if (this_tf.may_throw) 1690 honor_protect_cleanup_actions (state, &this_state, &this_tf); 1691 1692 /* Determine how many edges (still) reach the finally block. Or rather, 1693 how many destinations are reached by the finally block. Use this to 1694 determine how we process the finally block itself. */ 1695 1696 ndests = this_tf.dest_array.length (); 1697 ndests += this_tf.may_fallthru; 1698 ndests += this_tf.may_return; 1699 ndests += this_tf.may_throw; 1700 1701 /* If the FINALLY block is not reachable, dike it out. */ 1702 if (ndests == 0) 1703 { 1704 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp)); 1705 gimple_try_set_cleanup (tp, NULL); 1706 } 1707 /* If the finally block doesn't fall through, then any destination 1708 we might try to impose there isn't reached either. There may be 1709 some minor amount of cleanup and redirection still needed. */ 1710 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp))) 1711 lower_try_finally_nofallthru (state, &this_tf); 1712 1713 /* We can easily special-case redirection to a single destination. */ 1714 else if (ndests == 1) 1715 lower_try_finally_onedest (state, &this_tf); 1716 else if (decide_copy_try_finally (ndests, this_tf.may_throw, 1717 gimple_try_cleanup (tp))) 1718 lower_try_finally_copy (state, &this_tf); 1719 else 1720 lower_try_finally_switch (state, &this_tf); 1721 1722 /* If someone requested we add a label at the end of the transformed 1723 block, do so. */ 1724 if (this_tf.fallthru_label) 1725 { 1726 /* This must be reached only if ndests == 0. */ 1727 gimple *x = gimple_build_label (this_tf.fallthru_label); 1728 gimple_seq_add_stmt (&this_tf.top_p_seq, x); 1729 } 1730 1731 this_tf.dest_array.release (); 1732 free (this_tf.goto_queue); 1733 if (this_tf.goto_queue_map) 1734 delete this_tf.goto_queue_map; 1735 1736 /* If there was an old (aka outer) eh_seq, append the current eh_seq. 1737 If there was no old eh_seq, then the append is trivially already done. */ 1738 if (old_eh_seq) 1739 { 1740 if (eh_seq == NULL) 1741 eh_seq = old_eh_seq; 1742 else 1743 { 1744 gimple_seq new_eh_seq = eh_seq; 1745 eh_seq = old_eh_seq; 1746 gimple_seq_add_seq (&eh_seq, new_eh_seq); 1747 } 1748 } 1749 1750 return this_tf.top_p_seq; 1751 } 1752 1753 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a 1754 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the 1755 exception region trees that records all the magic. */ 1756 1757 static gimple_seq 1758 lower_catch (struct leh_state *state, gtry *tp) 1759 { 1760 eh_region try_region = NULL; 1761 struct leh_state this_state = *state; 1762 gimple_stmt_iterator gsi; 1763 tree out_label; 1764 gimple_seq new_seq, cleanup; 1765 gimple *x; 1766 location_t try_catch_loc = gimple_location (tp); 1767 1768 if (flag_exceptions) 1769 { 1770 try_region = gen_eh_region_try (state->cur_region); 1771 this_state.cur_region = try_region; 1772 } 1773 1774 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp)); 1775 1776 if (!eh_region_may_contain_throw (try_region)) 1777 return gimple_try_eval (tp); 1778 1779 new_seq = NULL; 1780 emit_eh_dispatch (&new_seq, try_region); 1781 emit_resx (&new_seq, try_region); 1782 1783 this_state.cur_region = state->cur_region; 1784 this_state.ehp_region = try_region; 1785 1786 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup 1787 itself, so that e.g. for coverage purposes the nested cleanups don't 1788 appear before the cleanup body. See PR64634 for details. */ 1789 gimple_seq old_eh_seq = eh_seq; 1790 eh_seq = NULL; 1791 1792 out_label = NULL; 1793 cleanup = gimple_try_cleanup (tp); 1794 for (gsi = gsi_start (cleanup); 1795 !gsi_end_p (gsi); 1796 gsi_next (&gsi)) 1797 { 1798 eh_catch c; 1799 gcatch *catch_stmt; 1800 gimple_seq handler; 1801 1802 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi)); 1803 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt)); 1804 1805 handler = gimple_catch_handler (catch_stmt); 1806 lower_eh_constructs_1 (&this_state, &handler); 1807 1808 c->label = create_artificial_label (UNKNOWN_LOCATION); 1809 x = gimple_build_label (c->label); 1810 gimple_seq_add_stmt (&new_seq, x); 1811 1812 gimple_seq_add_seq (&new_seq, handler); 1813 1814 if (gimple_seq_may_fallthru (new_seq)) 1815 { 1816 if (!out_label) 1817 out_label = create_artificial_label (try_catch_loc); 1818 1819 x = gimple_build_goto (out_label); 1820 gimple_seq_add_stmt (&new_seq, x); 1821 } 1822 if (!c->type_list) 1823 break; 1824 } 1825 1826 gimple_try_set_cleanup (tp, new_seq); 1827 1828 gimple_seq new_eh_seq = eh_seq; 1829 eh_seq = old_eh_seq; 1830 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label); 1831 gimple_seq_add_seq (&eh_seq, new_eh_seq); 1832 return ret_seq; 1833 } 1834 1835 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a 1836 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception 1837 region trees that record all the magic. */ 1838 1839 static gimple_seq 1840 lower_eh_filter (struct leh_state *state, gtry *tp) 1841 { 1842 struct leh_state this_state = *state; 1843 eh_region this_region = NULL; 1844 gimple *inner, *x; 1845 gimple_seq new_seq; 1846 1847 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp)); 1848 1849 if (flag_exceptions) 1850 { 1851 this_region = gen_eh_region_allowed (state->cur_region, 1852 gimple_eh_filter_types (inner)); 1853 this_state.cur_region = this_region; 1854 } 1855 1856 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp)); 1857 1858 if (!eh_region_may_contain_throw (this_region)) 1859 return gimple_try_eval (tp); 1860 1861 new_seq = NULL; 1862 this_state.cur_region = state->cur_region; 1863 this_state.ehp_region = this_region; 1864 1865 emit_eh_dispatch (&new_seq, this_region); 1866 emit_resx (&new_seq, this_region); 1867 1868 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION); 1869 x = gimple_build_label (this_region->u.allowed.label); 1870 gimple_seq_add_stmt (&new_seq, x); 1871 1872 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner)); 1873 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner)); 1874 1875 gimple_try_set_cleanup (tp, new_seq); 1876 1877 return frob_into_branch_around (tp, this_region, NULL); 1878 } 1879 1880 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with 1881 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks, 1882 plus the exception region trees that record all the magic. */ 1883 1884 static gimple_seq 1885 lower_eh_must_not_throw (struct leh_state *state, gtry *tp) 1886 { 1887 struct leh_state this_state = *state; 1888 1889 if (flag_exceptions) 1890 { 1891 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp)); 1892 eh_region this_region; 1893 1894 this_region = gen_eh_region_must_not_throw (state->cur_region); 1895 this_region->u.must_not_throw.failure_decl 1896 = gimple_eh_must_not_throw_fndecl ( 1897 as_a <geh_mnt *> (inner)); 1898 this_region->u.must_not_throw.failure_loc 1899 = LOCATION_LOCUS (gimple_location (tp)); 1900 1901 /* In order to get mangling applied to this decl, we must mark it 1902 used now. Otherwise, pass_ipa_free_lang_data won't think it 1903 needs to happen. */ 1904 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1; 1905 1906 this_state.cur_region = this_region; 1907 } 1908 1909 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp)); 1910 1911 return gimple_try_eval (tp); 1912 } 1913 1914 /* Implement a cleanup expression. This is similar to try-finally, 1915 except that we only execute the cleanup block for exception edges. */ 1916 1917 static gimple_seq 1918 lower_cleanup (struct leh_state *state, gtry *tp) 1919 { 1920 struct leh_state this_state = *state; 1921 eh_region this_region = NULL; 1922 struct leh_tf_state fake_tf; 1923 gimple_seq result; 1924 bool cleanup_dead = cleanup_is_dead_in (state->cur_region); 1925 1926 if (flag_exceptions && !cleanup_dead) 1927 { 1928 this_region = gen_eh_region_cleanup (state->cur_region); 1929 this_state.cur_region = this_region; 1930 } 1931 1932 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp)); 1933 1934 if (cleanup_dead || !eh_region_may_contain_throw (this_region)) 1935 return gimple_try_eval (tp); 1936 1937 /* Build enough of a try-finally state so that we can reuse 1938 honor_protect_cleanup_actions. */ 1939 memset (&fake_tf, 0, sizeof (fake_tf)); 1940 fake_tf.top_p = fake_tf.try_finally_expr = tp; 1941 fake_tf.outer = state; 1942 fake_tf.region = this_region; 1943 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp)); 1944 fake_tf.may_throw = true; 1945 1946 honor_protect_cleanup_actions (state, NULL, &fake_tf); 1947 1948 if (fake_tf.may_throw) 1949 { 1950 /* In this case honor_protect_cleanup_actions had nothing to do, 1951 and we should process this normally. */ 1952 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp)); 1953 result = frob_into_branch_around (tp, this_region, 1954 fake_tf.fallthru_label); 1955 } 1956 else 1957 { 1958 /* In this case honor_protect_cleanup_actions did nearly all of 1959 the work. All we have left is to append the fallthru_label. */ 1960 1961 result = gimple_try_eval (tp); 1962 if (fake_tf.fallthru_label) 1963 { 1964 gimple *x = gimple_build_label (fake_tf.fallthru_label); 1965 gimple_seq_add_stmt (&result, x); 1966 } 1967 } 1968 return result; 1969 } 1970 1971 /* Main loop for lowering eh constructs. Also moves gsi to the next 1972 statement. */ 1973 1974 static void 1975 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi) 1976 { 1977 gimple_seq replace; 1978 gimple *x; 1979 gimple *stmt = gsi_stmt (*gsi); 1980 1981 switch (gimple_code (stmt)) 1982 { 1983 case GIMPLE_CALL: 1984 { 1985 tree fndecl = gimple_call_fndecl (stmt); 1986 tree rhs, lhs; 1987 1988 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) 1989 switch (DECL_FUNCTION_CODE (fndecl)) 1990 { 1991 case BUILT_IN_EH_POINTER: 1992 /* The front end may have generated a call to 1993 __builtin_eh_pointer (0) within a catch region. Replace 1994 this zero argument with the current catch region number. */ 1995 if (state->ehp_region) 1996 { 1997 tree nr = build_int_cst (integer_type_node, 1998 state->ehp_region->index); 1999 gimple_call_set_arg (stmt, 0, nr); 2000 } 2001 else 2002 { 2003 /* The user has dome something silly. Remove it. */ 2004 rhs = null_pointer_node; 2005 goto do_replace; 2006 } 2007 break; 2008 2009 case BUILT_IN_EH_FILTER: 2010 /* ??? This should never appear, but since it's a builtin it 2011 is accessible to abuse by users. Just remove it and 2012 replace the use with the arbitrary value zero. */ 2013 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0); 2014 do_replace: 2015 lhs = gimple_call_lhs (stmt); 2016 x = gimple_build_assign (lhs, rhs); 2017 gsi_insert_before (gsi, x, GSI_SAME_STMT); 2018 /* FALLTHRU */ 2019 2020 case BUILT_IN_EH_COPY_VALUES: 2021 /* Likewise this should not appear. Remove it. */ 2022 gsi_remove (gsi, true); 2023 return; 2024 2025 default: 2026 break; 2027 } 2028 } 2029 /* FALLTHRU */ 2030 2031 case GIMPLE_ASSIGN: 2032 /* If the stmt can throw use a new temporary for the assignment 2033 to a LHS. This makes sure the old value of the LHS is 2034 available on the EH edge. Only do so for statements that 2035 potentially fall through (no noreturn calls e.g.), otherwise 2036 this new assignment might create fake fallthru regions. */ 2037 if (stmt_could_throw_p (stmt) 2038 && gimple_has_lhs (stmt) 2039 && gimple_stmt_may_fallthru (stmt) 2040 && !tree_could_throw_p (gimple_get_lhs (stmt)) 2041 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) 2042 { 2043 tree lhs = gimple_get_lhs (stmt); 2044 tree tmp = create_tmp_var (TREE_TYPE (lhs)); 2045 gimple *s = gimple_build_assign (lhs, tmp); 2046 gimple_set_location (s, gimple_location (stmt)); 2047 gimple_set_block (s, gimple_block (stmt)); 2048 gimple_set_lhs (stmt, tmp); 2049 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE 2050 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) 2051 DECL_GIMPLE_REG_P (tmp) = 1; 2052 gsi_insert_after (gsi, s, GSI_SAME_STMT); 2053 } 2054 /* Look for things that can throw exceptions, and record them. */ 2055 if (state->cur_region && stmt_could_throw_p (stmt)) 2056 { 2057 record_stmt_eh_region (state->cur_region, stmt); 2058 note_eh_region_may_contain_throw (state->cur_region); 2059 } 2060 break; 2061 2062 case GIMPLE_COND: 2063 case GIMPLE_GOTO: 2064 case GIMPLE_RETURN: 2065 maybe_record_in_goto_queue (state, stmt); 2066 break; 2067 2068 case GIMPLE_SWITCH: 2069 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt)); 2070 break; 2071 2072 case GIMPLE_TRY: 2073 { 2074 gtry *try_stmt = as_a <gtry *> (stmt); 2075 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY) 2076 replace = lower_try_finally (state, try_stmt); 2077 else 2078 { 2079 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt)); 2080 if (!x) 2081 { 2082 replace = gimple_try_eval (try_stmt); 2083 lower_eh_constructs_1 (state, &replace); 2084 } 2085 else 2086 switch (gimple_code (x)) 2087 { 2088 case GIMPLE_CATCH: 2089 replace = lower_catch (state, try_stmt); 2090 break; 2091 case GIMPLE_EH_FILTER: 2092 replace = lower_eh_filter (state, try_stmt); 2093 break; 2094 case GIMPLE_EH_MUST_NOT_THROW: 2095 replace = lower_eh_must_not_throw (state, try_stmt); 2096 break; 2097 case GIMPLE_EH_ELSE: 2098 /* This code is only valid with GIMPLE_TRY_FINALLY. */ 2099 gcc_unreachable (); 2100 default: 2101 replace = lower_cleanup (state, try_stmt); 2102 break; 2103 } 2104 } 2105 } 2106 2107 /* Remove the old stmt and insert the transformed sequence 2108 instead. */ 2109 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT); 2110 gsi_remove (gsi, true); 2111 2112 /* Return since we don't want gsi_next () */ 2113 return; 2114 2115 case GIMPLE_EH_ELSE: 2116 /* We should be eliminating this in lower_try_finally et al. */ 2117 gcc_unreachable (); 2118 2119 default: 2120 /* A type, a decl, or some kind of statement that we're not 2121 interested in. Don't walk them. */ 2122 break; 2123 } 2124 2125 gsi_next (gsi); 2126 } 2127 2128 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */ 2129 2130 static void 2131 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq) 2132 { 2133 gimple_stmt_iterator gsi; 2134 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);) 2135 lower_eh_constructs_2 (state, &gsi); 2136 } 2137 2138 namespace { 2139 2140 const pass_data pass_data_lower_eh = 2141 { 2142 GIMPLE_PASS, /* type */ 2143 "eh", /* name */ 2144 OPTGROUP_NONE, /* optinfo_flags */ 2145 TV_TREE_EH, /* tv_id */ 2146 PROP_gimple_lcf, /* properties_required */ 2147 PROP_gimple_leh, /* properties_provided */ 2148 0, /* properties_destroyed */ 2149 0, /* todo_flags_start */ 2150 0, /* todo_flags_finish */ 2151 }; 2152 2153 class pass_lower_eh : public gimple_opt_pass 2154 { 2155 public: 2156 pass_lower_eh (gcc::context *ctxt) 2157 : gimple_opt_pass (pass_data_lower_eh, ctxt) 2158 {} 2159 2160 /* opt_pass methods: */ 2161 virtual unsigned int execute (function *); 2162 2163 }; // class pass_lower_eh 2164 2165 unsigned int 2166 pass_lower_eh::execute (function *fun) 2167 { 2168 struct leh_state null_state; 2169 gimple_seq bodyp; 2170 2171 bodyp = gimple_body (current_function_decl); 2172 if (bodyp == NULL) 2173 return 0; 2174 2175 finally_tree = new hash_table<finally_tree_hasher> (31); 2176 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL); 2177 memset (&null_state, 0, sizeof (null_state)); 2178 2179 collect_finally_tree_1 (bodyp, NULL); 2180 lower_eh_constructs_1 (&null_state, &bodyp); 2181 gimple_set_body (current_function_decl, bodyp); 2182 2183 /* We assume there's a return statement, or something, at the end of 2184 the function, and thus ploping the EH sequence afterward won't 2185 change anything. */ 2186 gcc_assert (!gimple_seq_may_fallthru (bodyp)); 2187 gimple_seq_add_seq (&bodyp, eh_seq); 2188 2189 /* We assume that since BODYP already existed, adding EH_SEQ to it 2190 didn't change its value, and we don't have to re-set the function. */ 2191 gcc_assert (bodyp == gimple_body (current_function_decl)); 2192 2193 delete finally_tree; 2194 finally_tree = NULL; 2195 BITMAP_FREE (eh_region_may_contain_throw_map); 2196 eh_seq = NULL; 2197 2198 /* If this function needs a language specific EH personality routine 2199 and the frontend didn't already set one do so now. */ 2200 if (function_needs_eh_personality (fun) == eh_personality_lang 2201 && !DECL_FUNCTION_PERSONALITY (current_function_decl)) 2202 DECL_FUNCTION_PERSONALITY (current_function_decl) 2203 = lang_hooks.eh_personality (); 2204 2205 return 0; 2206 } 2207 2208 } // anon namespace 2209 2210 gimple_opt_pass * 2211 make_pass_lower_eh (gcc::context *ctxt) 2212 { 2213 return new pass_lower_eh (ctxt); 2214 } 2215 2216 /* Create the multiple edges from an EH_DISPATCH statement to all of 2217 the possible handlers for its EH region. Return true if there's 2218 no fallthru edge; false if there is. */ 2219 2220 bool 2221 make_eh_dispatch_edges (geh_dispatch *stmt) 2222 { 2223 eh_region r; 2224 eh_catch c; 2225 basic_block src, dst; 2226 2227 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); 2228 src = gimple_bb (stmt); 2229 2230 switch (r->type) 2231 { 2232 case ERT_TRY: 2233 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 2234 { 2235 dst = label_to_block (c->label); 2236 make_edge (src, dst, 0); 2237 2238 /* A catch-all handler doesn't have a fallthru. */ 2239 if (c->type_list == NULL) 2240 return false; 2241 } 2242 break; 2243 2244 case ERT_ALLOWED_EXCEPTIONS: 2245 dst = label_to_block (r->u.allowed.label); 2246 make_edge (src, dst, 0); 2247 break; 2248 2249 default: 2250 gcc_unreachable (); 2251 } 2252 2253 return true; 2254 } 2255 2256 /* Create the single EH edge from STMT to its nearest landing pad, 2257 if there is such a landing pad within the current function. */ 2258 2259 void 2260 make_eh_edges (gimple *stmt) 2261 { 2262 basic_block src, dst; 2263 eh_landing_pad lp; 2264 int lp_nr; 2265 2266 lp_nr = lookup_stmt_eh_lp (stmt); 2267 if (lp_nr <= 0) 2268 return; 2269 2270 lp = get_eh_landing_pad_from_number (lp_nr); 2271 gcc_assert (lp != NULL); 2272 2273 src = gimple_bb (stmt); 2274 dst = label_to_block (lp->post_landing_pad); 2275 make_edge (src, dst, EDGE_EH); 2276 } 2277 2278 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree; 2279 do not actually perform the final edge redirection. 2280 2281 CHANGE_REGION is true when we're being called from cleanup_empty_eh and 2282 we intend to change the destination EH region as well; this means 2283 EH_LANDING_PAD_NR must already be set on the destination block label. 2284 If false, we're being called from generic cfg manipulation code and we 2285 should preserve our place within the region tree. */ 2286 2287 static void 2288 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region) 2289 { 2290 eh_landing_pad old_lp, new_lp; 2291 basic_block old_bb; 2292 gimple *throw_stmt; 2293 int old_lp_nr, new_lp_nr; 2294 tree old_label, new_label; 2295 edge_iterator ei; 2296 edge e; 2297 2298 old_bb = edge_in->dest; 2299 old_label = gimple_block_label (old_bb); 2300 old_lp_nr = EH_LANDING_PAD_NR (old_label); 2301 gcc_assert (old_lp_nr > 0); 2302 old_lp = get_eh_landing_pad_from_number (old_lp_nr); 2303 2304 throw_stmt = last_stmt (edge_in->src); 2305 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr); 2306 2307 new_label = gimple_block_label (new_bb); 2308 2309 /* Look for an existing region that might be using NEW_BB already. */ 2310 new_lp_nr = EH_LANDING_PAD_NR (new_label); 2311 if (new_lp_nr) 2312 { 2313 new_lp = get_eh_landing_pad_from_number (new_lp_nr); 2314 gcc_assert (new_lp); 2315 2316 /* Unless CHANGE_REGION is true, the new and old landing pad 2317 had better be associated with the same EH region. */ 2318 gcc_assert (change_region || new_lp->region == old_lp->region); 2319 } 2320 else 2321 { 2322 new_lp = NULL; 2323 gcc_assert (!change_region); 2324 } 2325 2326 /* Notice when we redirect the last EH edge away from OLD_BB. */ 2327 FOR_EACH_EDGE (e, ei, old_bb->preds) 2328 if (e != edge_in && (e->flags & EDGE_EH)) 2329 break; 2330 2331 if (new_lp) 2332 { 2333 /* NEW_LP already exists. If there are still edges into OLD_LP, 2334 there's nothing to do with the EH tree. If there are no more 2335 edges into OLD_LP, then we want to remove OLD_LP as it is unused. 2336 If CHANGE_REGION is true, then our caller is expecting to remove 2337 the landing pad. */ 2338 if (e == NULL && !change_region) 2339 remove_eh_landing_pad (old_lp); 2340 } 2341 else 2342 { 2343 /* No correct landing pad exists. If there are no more edges 2344 into OLD_LP, then we can simply re-use the existing landing pad. 2345 Otherwise, we have to create a new landing pad. */ 2346 if (e == NULL) 2347 { 2348 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0; 2349 new_lp = old_lp; 2350 } 2351 else 2352 new_lp = gen_eh_landing_pad (old_lp->region); 2353 new_lp->post_landing_pad = new_label; 2354 EH_LANDING_PAD_NR (new_label) = new_lp->index; 2355 } 2356 2357 /* Maybe move the throwing statement to the new region. */ 2358 if (old_lp != new_lp) 2359 { 2360 remove_stmt_from_eh_lp (throw_stmt); 2361 add_stmt_to_eh_lp (throw_stmt, new_lp->index); 2362 } 2363 } 2364 2365 /* Redirect EH edge E to NEW_BB. */ 2366 2367 edge 2368 redirect_eh_edge (edge edge_in, basic_block new_bb) 2369 { 2370 redirect_eh_edge_1 (edge_in, new_bb, false); 2371 return ssa_redirect_edge (edge_in, new_bb); 2372 } 2373 2374 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the 2375 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB. 2376 The actual edge update will happen in the caller. */ 2377 2378 void 2379 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb) 2380 { 2381 tree new_lab = gimple_block_label (new_bb); 2382 bool any_changed = false; 2383 basic_block old_bb; 2384 eh_region r; 2385 eh_catch c; 2386 2387 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); 2388 switch (r->type) 2389 { 2390 case ERT_TRY: 2391 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 2392 { 2393 old_bb = label_to_block (c->label); 2394 if (old_bb == e->dest) 2395 { 2396 c->label = new_lab; 2397 any_changed = true; 2398 } 2399 } 2400 break; 2401 2402 case ERT_ALLOWED_EXCEPTIONS: 2403 old_bb = label_to_block (r->u.allowed.label); 2404 gcc_assert (old_bb == e->dest); 2405 r->u.allowed.label = new_lab; 2406 any_changed = true; 2407 break; 2408 2409 default: 2410 gcc_unreachable (); 2411 } 2412 2413 gcc_assert (any_changed); 2414 } 2415 2416 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */ 2417 2418 bool 2419 operation_could_trap_helper_p (enum tree_code op, 2420 bool fp_operation, 2421 bool honor_trapv, 2422 bool honor_nans, 2423 bool honor_snans, 2424 tree divisor, 2425 bool *handled) 2426 { 2427 *handled = true; 2428 switch (op) 2429 { 2430 case TRUNC_DIV_EXPR: 2431 case CEIL_DIV_EXPR: 2432 case FLOOR_DIV_EXPR: 2433 case ROUND_DIV_EXPR: 2434 case EXACT_DIV_EXPR: 2435 case CEIL_MOD_EXPR: 2436 case FLOOR_MOD_EXPR: 2437 case ROUND_MOD_EXPR: 2438 case TRUNC_MOD_EXPR: 2439 case RDIV_EXPR: 2440 if (honor_snans || honor_trapv) 2441 return true; 2442 if (fp_operation) 2443 return flag_trapping_math; 2444 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor)) 2445 return true; 2446 return false; 2447 2448 case LT_EXPR: 2449 case LE_EXPR: 2450 case GT_EXPR: 2451 case GE_EXPR: 2452 case LTGT_EXPR: 2453 /* Some floating point comparisons may trap. */ 2454 return honor_nans; 2455 2456 case EQ_EXPR: 2457 case NE_EXPR: 2458 case UNORDERED_EXPR: 2459 case ORDERED_EXPR: 2460 case UNLT_EXPR: 2461 case UNLE_EXPR: 2462 case UNGT_EXPR: 2463 case UNGE_EXPR: 2464 case UNEQ_EXPR: 2465 return honor_snans; 2466 2467 case NEGATE_EXPR: 2468 case ABS_EXPR: 2469 case CONJ_EXPR: 2470 /* These operations don't trap with floating point. */ 2471 if (honor_trapv) 2472 return true; 2473 return false; 2474 2475 case PLUS_EXPR: 2476 case MINUS_EXPR: 2477 case MULT_EXPR: 2478 /* Any floating arithmetic may trap. */ 2479 if (fp_operation && flag_trapping_math) 2480 return true; 2481 if (honor_trapv) 2482 return true; 2483 return false; 2484 2485 case COMPLEX_EXPR: 2486 case CONSTRUCTOR: 2487 /* Constructing an object cannot trap. */ 2488 return false; 2489 2490 default: 2491 /* Any floating arithmetic may trap. */ 2492 if (fp_operation && flag_trapping_math) 2493 return true; 2494 2495 *handled = false; 2496 return false; 2497 } 2498 } 2499 2500 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied 2501 on floating-point values. HONOR_TRAPV is true if OP is applied on integer 2502 type operands that may trap. If OP is a division operator, DIVISOR contains 2503 the value of the divisor. */ 2504 2505 bool 2506 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv, 2507 tree divisor) 2508 { 2509 bool honor_nans = (fp_operation && flag_trapping_math 2510 && !flag_finite_math_only); 2511 bool honor_snans = fp_operation && flag_signaling_nans != 0; 2512 bool handled; 2513 2514 if (TREE_CODE_CLASS (op) != tcc_comparison 2515 && TREE_CODE_CLASS (op) != tcc_unary 2516 && TREE_CODE_CLASS (op) != tcc_binary 2517 && op != FMA_EXPR) 2518 return false; 2519 2520 return operation_could_trap_helper_p (op, fp_operation, honor_trapv, 2521 honor_nans, honor_snans, divisor, 2522 &handled); 2523 } 2524 2525 2526 /* Returns true if it is possible to prove that the index of 2527 an array access REF (an ARRAY_REF expression) falls into the 2528 array bounds. */ 2529 2530 static bool 2531 in_array_bounds_p (tree ref) 2532 { 2533 tree idx = TREE_OPERAND (ref, 1); 2534 tree min, max; 2535 2536 if (TREE_CODE (idx) != INTEGER_CST) 2537 return false; 2538 2539 min = array_ref_low_bound (ref); 2540 max = array_ref_up_bound (ref); 2541 if (!min 2542 || !max 2543 || TREE_CODE (min) != INTEGER_CST 2544 || TREE_CODE (max) != INTEGER_CST) 2545 return false; 2546 2547 if (tree_int_cst_lt (idx, min) 2548 || tree_int_cst_lt (max, idx)) 2549 return false; 2550 2551 return true; 2552 } 2553 2554 /* Returns true if it is possible to prove that the range of 2555 an array access REF (an ARRAY_RANGE_REF expression) falls 2556 into the array bounds. */ 2557 2558 static bool 2559 range_in_array_bounds_p (tree ref) 2560 { 2561 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref)); 2562 tree range_min, range_max, min, max; 2563 2564 range_min = TYPE_MIN_VALUE (domain_type); 2565 range_max = TYPE_MAX_VALUE (domain_type); 2566 if (!range_min 2567 || !range_max 2568 || TREE_CODE (range_min) != INTEGER_CST 2569 || TREE_CODE (range_max) != INTEGER_CST) 2570 return false; 2571 2572 min = array_ref_low_bound (ref); 2573 max = array_ref_up_bound (ref); 2574 if (!min 2575 || !max 2576 || TREE_CODE (min) != INTEGER_CST 2577 || TREE_CODE (max) != INTEGER_CST) 2578 return false; 2579 2580 if (tree_int_cst_lt (range_min, min) 2581 || tree_int_cst_lt (max, range_max)) 2582 return false; 2583 2584 return true; 2585 } 2586 2587 /* Return true if EXPR can trap, as in dereferencing an invalid pointer 2588 location or floating point arithmetic. C.f. the rtl version, may_trap_p. 2589 This routine expects only GIMPLE lhs or rhs input. */ 2590 2591 bool 2592 tree_could_trap_p (tree expr) 2593 { 2594 enum tree_code code; 2595 bool fp_operation = false; 2596 bool honor_trapv = false; 2597 tree t, base, div = NULL_TREE; 2598 2599 if (!expr) 2600 return false; 2601 2602 code = TREE_CODE (expr); 2603 t = TREE_TYPE (expr); 2604 2605 if (t) 2606 { 2607 if (COMPARISON_CLASS_P (expr)) 2608 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))); 2609 else 2610 fp_operation = FLOAT_TYPE_P (t); 2611 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t); 2612 } 2613 2614 if (TREE_CODE_CLASS (code) == tcc_binary) 2615 div = TREE_OPERAND (expr, 1); 2616 if (operation_could_trap_p (code, fp_operation, honor_trapv, div)) 2617 return true; 2618 2619 restart: 2620 switch (code) 2621 { 2622 case COMPONENT_REF: 2623 case REALPART_EXPR: 2624 case IMAGPART_EXPR: 2625 case BIT_FIELD_REF: 2626 case VIEW_CONVERT_EXPR: 2627 case WITH_SIZE_EXPR: 2628 expr = TREE_OPERAND (expr, 0); 2629 code = TREE_CODE (expr); 2630 goto restart; 2631 2632 case ARRAY_RANGE_REF: 2633 base = TREE_OPERAND (expr, 0); 2634 if (tree_could_trap_p (base)) 2635 return true; 2636 if (TREE_THIS_NOTRAP (expr)) 2637 return false; 2638 return !range_in_array_bounds_p (expr); 2639 2640 case ARRAY_REF: 2641 base = TREE_OPERAND (expr, 0); 2642 if (tree_could_trap_p (base)) 2643 return true; 2644 if (TREE_THIS_NOTRAP (expr)) 2645 return false; 2646 return !in_array_bounds_p (expr); 2647 2648 case TARGET_MEM_REF: 2649 case MEM_REF: 2650 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR 2651 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))) 2652 return true; 2653 if (TREE_THIS_NOTRAP (expr)) 2654 return false; 2655 /* We cannot prove that the access is in-bounds when we have 2656 variable-index TARGET_MEM_REFs. */ 2657 if (code == TARGET_MEM_REF 2658 && (TMR_INDEX (expr) || TMR_INDEX2 (expr))) 2659 return true; 2660 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR) 2661 { 2662 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0); 2663 offset_int off = mem_ref_offset (expr); 2664 if (wi::neg_p (off, SIGNED)) 2665 return true; 2666 if (TREE_CODE (base) == STRING_CST) 2667 return wi::leu_p (TREE_STRING_LENGTH (base), off); 2668 else if (DECL_SIZE_UNIT (base) == NULL_TREE 2669 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST 2670 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off)) 2671 return true; 2672 /* Now we are sure the first byte of the access is inside 2673 the object. */ 2674 return false; 2675 } 2676 return true; 2677 2678 case INDIRECT_REF: 2679 return !TREE_THIS_NOTRAP (expr); 2680 2681 case ASM_EXPR: 2682 return TREE_THIS_VOLATILE (expr); 2683 2684 case CALL_EXPR: 2685 t = get_callee_fndecl (expr); 2686 /* Assume that calls to weak functions may trap. */ 2687 if (!t || !DECL_P (t)) 2688 return true; 2689 if (DECL_WEAK (t)) 2690 return tree_could_trap_p (t); 2691 return false; 2692 2693 case FUNCTION_DECL: 2694 /* Assume that accesses to weak functions may trap, unless we know 2695 they are certainly defined in current TU or in some other 2696 LTO partition. */ 2697 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr)) 2698 { 2699 cgraph_node *node = cgraph_node::get (expr); 2700 if (node) 2701 node = node->function_symbol (); 2702 return !(node && node->in_other_partition); 2703 } 2704 return false; 2705 2706 case VAR_DECL: 2707 /* Assume that accesses to weak vars may trap, unless we know 2708 they are certainly defined in current TU or in some other 2709 LTO partition. */ 2710 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr)) 2711 { 2712 varpool_node *node = varpool_node::get (expr); 2713 if (node) 2714 node = node->ultimate_alias_target (); 2715 return !(node && node->in_other_partition); 2716 } 2717 return false; 2718 2719 default: 2720 return false; 2721 } 2722 } 2723 2724 2725 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a 2726 an assignment or a conditional) may throw. */ 2727 2728 static bool 2729 stmt_could_throw_1_p (gassign *stmt) 2730 { 2731 enum tree_code code = gimple_assign_rhs_code (stmt); 2732 bool honor_nans = false; 2733 bool honor_snans = false; 2734 bool fp_operation = false; 2735 bool honor_trapv = false; 2736 tree t; 2737 size_t i; 2738 bool handled, ret; 2739 2740 if (TREE_CODE_CLASS (code) == tcc_comparison 2741 || TREE_CODE_CLASS (code) == tcc_unary 2742 || TREE_CODE_CLASS (code) == tcc_binary 2743 || code == FMA_EXPR) 2744 { 2745 if (TREE_CODE_CLASS (code) == tcc_comparison) 2746 t = TREE_TYPE (gimple_assign_rhs1 (stmt)); 2747 else 2748 t = gimple_expr_type (stmt); 2749 fp_operation = FLOAT_TYPE_P (t); 2750 if (fp_operation) 2751 { 2752 honor_nans = flag_trapping_math && !flag_finite_math_only; 2753 honor_snans = flag_signaling_nans != 0; 2754 } 2755 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t)) 2756 honor_trapv = true; 2757 } 2758 2759 /* First check the LHS. */ 2760 if (tree_could_trap_p (gimple_assign_lhs (stmt))) 2761 return true; 2762 2763 /* Check if the main expression may trap. */ 2764 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv, 2765 honor_nans, honor_snans, 2766 gimple_assign_rhs2 (stmt), 2767 &handled); 2768 if (handled) 2769 return ret; 2770 2771 /* If the expression does not trap, see if any of the individual operands may 2772 trap. */ 2773 for (i = 1; i < gimple_num_ops (stmt); i++) 2774 if (tree_could_trap_p (gimple_op (stmt, i))) 2775 return true; 2776 2777 return false; 2778 } 2779 2780 2781 /* Return true if statement STMT could throw an exception. */ 2782 2783 bool 2784 stmt_could_throw_p (gimple *stmt) 2785 { 2786 if (!flag_exceptions) 2787 return false; 2788 2789 /* The only statements that can throw an exception are assignments, 2790 conditionals, calls, resx, and asms. */ 2791 switch (gimple_code (stmt)) 2792 { 2793 case GIMPLE_RESX: 2794 return true; 2795 2796 case GIMPLE_CALL: 2797 return !gimple_call_nothrow_p (as_a <gcall *> (stmt)); 2798 2799 case GIMPLE_COND: 2800 { 2801 if (!cfun->can_throw_non_call_exceptions) 2802 return false; 2803 gcond *cond = as_a <gcond *> (stmt); 2804 tree lhs = gimple_cond_lhs (cond); 2805 return operation_could_trap_p (gimple_cond_code (cond), 2806 FLOAT_TYPE_P (TREE_TYPE (lhs)), 2807 false, NULL_TREE); 2808 } 2809 2810 case GIMPLE_ASSIGN: 2811 if (!cfun->can_throw_non_call_exceptions 2812 || gimple_clobber_p (stmt)) 2813 return false; 2814 return stmt_could_throw_1_p (as_a <gassign *> (stmt)); 2815 2816 case GIMPLE_ASM: 2817 if (!cfun->can_throw_non_call_exceptions) 2818 return false; 2819 return gimple_asm_volatile_p (as_a <gasm *> (stmt)); 2820 2821 default: 2822 return false; 2823 } 2824 } 2825 2826 2827 /* Return true if expression T could throw an exception. */ 2828 2829 bool 2830 tree_could_throw_p (tree t) 2831 { 2832 if (!flag_exceptions) 2833 return false; 2834 if (TREE_CODE (t) == MODIFY_EXPR) 2835 { 2836 if (cfun->can_throw_non_call_exceptions 2837 && tree_could_trap_p (TREE_OPERAND (t, 0))) 2838 return true; 2839 t = TREE_OPERAND (t, 1); 2840 } 2841 2842 if (TREE_CODE (t) == WITH_SIZE_EXPR) 2843 t = TREE_OPERAND (t, 0); 2844 if (TREE_CODE (t) == CALL_EXPR) 2845 return (call_expr_flags (t) & ECF_NOTHROW) == 0; 2846 if (cfun->can_throw_non_call_exceptions) 2847 return tree_could_trap_p (t); 2848 return false; 2849 } 2850 2851 /* Return true if STMT can throw an exception that is not caught within 2852 the current function (CFUN). */ 2853 2854 bool 2855 stmt_can_throw_external (gimple *stmt) 2856 { 2857 int lp_nr; 2858 2859 if (!stmt_could_throw_p (stmt)) 2860 return false; 2861 2862 lp_nr = lookup_stmt_eh_lp (stmt); 2863 return lp_nr == 0; 2864 } 2865 2866 /* Return true if STMT can throw an exception that is caught within 2867 the current function (CFUN). */ 2868 2869 bool 2870 stmt_can_throw_internal (gimple *stmt) 2871 { 2872 int lp_nr; 2873 2874 if (!stmt_could_throw_p (stmt)) 2875 return false; 2876 2877 lp_nr = lookup_stmt_eh_lp (stmt); 2878 return lp_nr > 0; 2879 } 2880 2881 /* Given a statement STMT in IFUN, if STMT can no longer throw, then 2882 remove any entry it might have from the EH table. Return true if 2883 any change was made. */ 2884 2885 bool 2886 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt) 2887 { 2888 if (stmt_could_throw_p (stmt)) 2889 return false; 2890 return remove_stmt_from_eh_lp_fn (ifun, stmt); 2891 } 2892 2893 /* Likewise, but always use the current function. */ 2894 2895 bool 2896 maybe_clean_eh_stmt (gimple *stmt) 2897 { 2898 return maybe_clean_eh_stmt_fn (cfun, stmt); 2899 } 2900 2901 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced 2902 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT 2903 in the table if it should be in there. Return TRUE if a replacement was 2904 done that my require an EH edge purge. */ 2905 2906 bool 2907 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt) 2908 { 2909 int lp_nr = lookup_stmt_eh_lp (old_stmt); 2910 2911 if (lp_nr != 0) 2912 { 2913 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt); 2914 2915 if (new_stmt == old_stmt && new_stmt_could_throw) 2916 return false; 2917 2918 remove_stmt_from_eh_lp (old_stmt); 2919 if (new_stmt_could_throw) 2920 { 2921 add_stmt_to_eh_lp (new_stmt, lp_nr); 2922 return false; 2923 } 2924 else 2925 return true; 2926 } 2927 2928 return false; 2929 } 2930 2931 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT 2932 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP 2933 operand is the return value of duplicate_eh_regions. */ 2934 2935 bool 2936 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt, 2937 struct function *old_fun, gimple *old_stmt, 2938 hash_map<void *, void *> *map, 2939 int default_lp_nr) 2940 { 2941 int old_lp_nr, new_lp_nr; 2942 2943 if (!stmt_could_throw_p (new_stmt)) 2944 return false; 2945 2946 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt); 2947 if (old_lp_nr == 0) 2948 { 2949 if (default_lp_nr == 0) 2950 return false; 2951 new_lp_nr = default_lp_nr; 2952 } 2953 else if (old_lp_nr > 0) 2954 { 2955 eh_landing_pad old_lp, new_lp; 2956 2957 old_lp = (*old_fun->eh->lp_array)[old_lp_nr]; 2958 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp)); 2959 new_lp_nr = new_lp->index; 2960 } 2961 else 2962 { 2963 eh_region old_r, new_r; 2964 2965 old_r = (*old_fun->eh->region_array)[-old_lp_nr]; 2966 new_r = static_cast<eh_region> (*map->get (old_r)); 2967 new_lp_nr = -new_r->index; 2968 } 2969 2970 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr); 2971 return true; 2972 } 2973 2974 /* Similar, but both OLD_STMT and NEW_STMT are within the current function, 2975 and thus no remapping is required. */ 2976 2977 bool 2978 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt) 2979 { 2980 int lp_nr; 2981 2982 if (!stmt_could_throw_p (new_stmt)) 2983 return false; 2984 2985 lp_nr = lookup_stmt_eh_lp (old_stmt); 2986 if (lp_nr == 0) 2987 return false; 2988 2989 add_stmt_to_eh_lp (new_stmt, lp_nr); 2990 return true; 2991 } 2992 2993 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of 2994 GIMPLE_TRY) that are similar enough to be considered the same. Currently 2995 this only handles handlers consisting of a single call, as that's the 2996 important case for C++: a destructor call for a particular object showing 2997 up in multiple handlers. */ 2998 2999 static bool 3000 same_handler_p (gimple_seq oneh, gimple_seq twoh) 3001 { 3002 gimple_stmt_iterator gsi; 3003 gimple *ones, *twos; 3004 unsigned int ai; 3005 3006 gsi = gsi_start (oneh); 3007 if (!gsi_one_before_end_p (gsi)) 3008 return false; 3009 ones = gsi_stmt (gsi); 3010 3011 gsi = gsi_start (twoh); 3012 if (!gsi_one_before_end_p (gsi)) 3013 return false; 3014 twos = gsi_stmt (gsi); 3015 3016 if (!is_gimple_call (ones) 3017 || !is_gimple_call (twos) 3018 || gimple_call_lhs (ones) 3019 || gimple_call_lhs (twos) 3020 || gimple_call_chain (ones) 3021 || gimple_call_chain (twos) 3022 || !gimple_call_same_target_p (ones, twos) 3023 || gimple_call_num_args (ones) != gimple_call_num_args (twos)) 3024 return false; 3025 3026 for (ai = 0; ai < gimple_call_num_args (ones); ++ai) 3027 if (!operand_equal_p (gimple_call_arg (ones, ai), 3028 gimple_call_arg (twos, ai), 0)) 3029 return false; 3030 3031 return true; 3032 } 3033 3034 /* Optimize 3035 try { A() } finally { try { ~B() } catch { ~A() } } 3036 try { ... } finally { ~A() } 3037 into 3038 try { A() } catch { ~B() } 3039 try { ~B() ... } finally { ~A() } 3040 3041 This occurs frequently in C++, where A is a local variable and B is a 3042 temporary used in the initializer for A. */ 3043 3044 static void 3045 optimize_double_finally (gtry *one, gtry *two) 3046 { 3047 gimple *oneh; 3048 gimple_stmt_iterator gsi; 3049 gimple_seq cleanup; 3050 3051 cleanup = gimple_try_cleanup (one); 3052 gsi = gsi_start (cleanup); 3053 if (!gsi_one_before_end_p (gsi)) 3054 return; 3055 3056 oneh = gsi_stmt (gsi); 3057 if (gimple_code (oneh) != GIMPLE_TRY 3058 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH) 3059 return; 3060 3061 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two))) 3062 { 3063 gimple_seq seq = gimple_try_eval (oneh); 3064 3065 gimple_try_set_cleanup (one, seq); 3066 gimple_try_set_kind (one, GIMPLE_TRY_CATCH); 3067 seq = copy_gimple_seq_and_replace_locals (seq); 3068 gimple_seq_add_seq (&seq, gimple_try_eval (two)); 3069 gimple_try_set_eval (two, seq); 3070 } 3071 } 3072 3073 /* Perform EH refactoring optimizations that are simpler to do when code 3074 flow has been lowered but EH structures haven't. */ 3075 3076 static void 3077 refactor_eh_r (gimple_seq seq) 3078 { 3079 gimple_stmt_iterator gsi; 3080 gimple *one, *two; 3081 3082 one = NULL; 3083 two = NULL; 3084 gsi = gsi_start (seq); 3085 while (1) 3086 { 3087 one = two; 3088 if (gsi_end_p (gsi)) 3089 two = NULL; 3090 else 3091 two = gsi_stmt (gsi); 3092 if (one && two) 3093 if (gtry *try_one = dyn_cast <gtry *> (one)) 3094 if (gtry *try_two = dyn_cast <gtry *> (two)) 3095 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY 3096 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY) 3097 optimize_double_finally (try_one, try_two); 3098 if (one) 3099 switch (gimple_code (one)) 3100 { 3101 case GIMPLE_TRY: 3102 refactor_eh_r (gimple_try_eval (one)); 3103 refactor_eh_r (gimple_try_cleanup (one)); 3104 break; 3105 case GIMPLE_CATCH: 3106 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one))); 3107 break; 3108 case GIMPLE_EH_FILTER: 3109 refactor_eh_r (gimple_eh_filter_failure (one)); 3110 break; 3111 case GIMPLE_EH_ELSE: 3112 { 3113 geh_else *eh_else_stmt = as_a <geh_else *> (one); 3114 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt)); 3115 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt)); 3116 } 3117 break; 3118 default: 3119 break; 3120 } 3121 if (two) 3122 gsi_next (&gsi); 3123 else 3124 break; 3125 } 3126 } 3127 3128 namespace { 3129 3130 const pass_data pass_data_refactor_eh = 3131 { 3132 GIMPLE_PASS, /* type */ 3133 "ehopt", /* name */ 3134 OPTGROUP_NONE, /* optinfo_flags */ 3135 TV_TREE_EH, /* tv_id */ 3136 PROP_gimple_lcf, /* properties_required */ 3137 0, /* properties_provided */ 3138 0, /* properties_destroyed */ 3139 0, /* todo_flags_start */ 3140 0, /* todo_flags_finish */ 3141 }; 3142 3143 class pass_refactor_eh : public gimple_opt_pass 3144 { 3145 public: 3146 pass_refactor_eh (gcc::context *ctxt) 3147 : gimple_opt_pass (pass_data_refactor_eh, ctxt) 3148 {} 3149 3150 /* opt_pass methods: */ 3151 virtual bool gate (function *) { return flag_exceptions != 0; } 3152 virtual unsigned int execute (function *) 3153 { 3154 refactor_eh_r (gimple_body (current_function_decl)); 3155 return 0; 3156 } 3157 3158 }; // class pass_refactor_eh 3159 3160 } // anon namespace 3161 3162 gimple_opt_pass * 3163 make_pass_refactor_eh (gcc::context *ctxt) 3164 { 3165 return new pass_refactor_eh (ctxt); 3166 } 3167 3168 /* At the end of gimple optimization, we can lower RESX. */ 3169 3170 static bool 3171 lower_resx (basic_block bb, gresx *stmt, 3172 hash_map<eh_region, tree> *mnt_map) 3173 { 3174 int lp_nr; 3175 eh_region src_r, dst_r; 3176 gimple_stmt_iterator gsi; 3177 gimple *x; 3178 tree fn, src_nr; 3179 bool ret = false; 3180 3181 lp_nr = lookup_stmt_eh_lp (stmt); 3182 if (lp_nr != 0) 3183 dst_r = get_eh_region_from_lp_number (lp_nr); 3184 else 3185 dst_r = NULL; 3186 3187 src_r = get_eh_region_from_number (gimple_resx_region (stmt)); 3188 gsi = gsi_last_bb (bb); 3189 3190 if (src_r == NULL) 3191 { 3192 /* We can wind up with no source region when pass_cleanup_eh shows 3193 that there are no entries into an eh region and deletes it, but 3194 then the block that contains the resx isn't removed. This can 3195 happen without optimization when the switch statement created by 3196 lower_try_finally_switch isn't simplified to remove the eh case. 3197 3198 Resolve this by expanding the resx node to an abort. */ 3199 3200 fn = builtin_decl_implicit (BUILT_IN_TRAP); 3201 x = gimple_build_call (fn, 0); 3202 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3203 3204 while (EDGE_COUNT (bb->succs) > 0) 3205 remove_edge (EDGE_SUCC (bb, 0)); 3206 } 3207 else if (dst_r) 3208 { 3209 /* When we have a destination region, we resolve this by copying 3210 the excptr and filter values into place, and changing the edge 3211 to immediately after the landing pad. */ 3212 edge e; 3213 3214 if (lp_nr < 0) 3215 { 3216 basic_block new_bb; 3217 tree lab; 3218 3219 /* We are resuming into a MUST_NOT_CALL region. Expand a call to 3220 the failure decl into a new block, if needed. */ 3221 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW); 3222 3223 tree *slot = mnt_map->get (dst_r); 3224 if (slot == NULL) 3225 { 3226 gimple_stmt_iterator gsi2; 3227 3228 new_bb = create_empty_bb (bb); 3229 add_bb_to_loop (new_bb, bb->loop_father); 3230 lab = gimple_block_label (new_bb); 3231 gsi2 = gsi_start_bb (new_bb); 3232 3233 fn = dst_r->u.must_not_throw.failure_decl; 3234 x = gimple_build_call (fn, 0); 3235 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc); 3236 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING); 3237 3238 mnt_map->put (dst_r, lab); 3239 } 3240 else 3241 { 3242 lab = *slot; 3243 new_bb = label_to_block (lab); 3244 } 3245 3246 gcc_assert (EDGE_COUNT (bb->succs) == 0); 3247 e = make_edge (bb, new_bb, EDGE_FALLTHRU); 3248 e->count = bb->count; 3249 e->probability = REG_BR_PROB_BASE; 3250 } 3251 else 3252 { 3253 edge_iterator ei; 3254 tree dst_nr = build_int_cst (integer_type_node, dst_r->index); 3255 3256 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES); 3257 src_nr = build_int_cst (integer_type_node, src_r->index); 3258 x = gimple_build_call (fn, 2, dst_nr, src_nr); 3259 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3260 3261 /* Update the flags for the outgoing edge. */ 3262 e = single_succ_edge (bb); 3263 gcc_assert (e->flags & EDGE_EH); 3264 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU; 3265 3266 /* If there are no more EH users of the landing pad, delete it. */ 3267 FOR_EACH_EDGE (e, ei, e->dest->preds) 3268 if (e->flags & EDGE_EH) 3269 break; 3270 if (e == NULL) 3271 { 3272 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); 3273 remove_eh_landing_pad (lp); 3274 } 3275 } 3276 3277 ret = true; 3278 } 3279 else 3280 { 3281 tree var; 3282 3283 /* When we don't have a destination region, this exception escapes 3284 up the call chain. We resolve this by generating a call to the 3285 _Unwind_Resume library function. */ 3286 3287 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup 3288 with no arguments for C++ and Java. Check for that. */ 3289 if (src_r->use_cxa_end_cleanup) 3290 { 3291 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP); 3292 x = gimple_build_call (fn, 0); 3293 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3294 } 3295 else 3296 { 3297 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER); 3298 src_nr = build_int_cst (integer_type_node, src_r->index); 3299 x = gimple_build_call (fn, 1, src_nr); 3300 var = create_tmp_var (ptr_type_node); 3301 var = make_ssa_name (var, x); 3302 gimple_call_set_lhs (x, var); 3303 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3304 3305 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME); 3306 x = gimple_build_call (fn, 1, var); 3307 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3308 } 3309 3310 gcc_assert (EDGE_COUNT (bb->succs) == 0); 3311 } 3312 3313 gsi_remove (&gsi, true); 3314 3315 return ret; 3316 } 3317 3318 namespace { 3319 3320 const pass_data pass_data_lower_resx = 3321 { 3322 GIMPLE_PASS, /* type */ 3323 "resx", /* name */ 3324 OPTGROUP_NONE, /* optinfo_flags */ 3325 TV_TREE_EH, /* tv_id */ 3326 PROP_gimple_lcf, /* properties_required */ 3327 0, /* properties_provided */ 3328 0, /* properties_destroyed */ 3329 0, /* todo_flags_start */ 3330 0, /* todo_flags_finish */ 3331 }; 3332 3333 class pass_lower_resx : public gimple_opt_pass 3334 { 3335 public: 3336 pass_lower_resx (gcc::context *ctxt) 3337 : gimple_opt_pass (pass_data_lower_resx, ctxt) 3338 {} 3339 3340 /* opt_pass methods: */ 3341 virtual bool gate (function *) { return flag_exceptions != 0; } 3342 virtual unsigned int execute (function *); 3343 3344 }; // class pass_lower_resx 3345 3346 unsigned 3347 pass_lower_resx::execute (function *fun) 3348 { 3349 basic_block bb; 3350 bool dominance_invalidated = false; 3351 bool any_rewritten = false; 3352 3353 hash_map<eh_region, tree> mnt_map; 3354 3355 FOR_EACH_BB_FN (bb, fun) 3356 { 3357 gimple *last = last_stmt (bb); 3358 if (last && is_gimple_resx (last)) 3359 { 3360 dominance_invalidated |= 3361 lower_resx (bb, as_a <gresx *> (last), &mnt_map); 3362 any_rewritten = true; 3363 } 3364 } 3365 3366 if (dominance_invalidated) 3367 { 3368 free_dominance_info (CDI_DOMINATORS); 3369 free_dominance_info (CDI_POST_DOMINATORS); 3370 } 3371 3372 return any_rewritten ? TODO_update_ssa_only_virtuals : 0; 3373 } 3374 3375 } // anon namespace 3376 3377 gimple_opt_pass * 3378 make_pass_lower_resx (gcc::context *ctxt) 3379 { 3380 return new pass_lower_resx (ctxt); 3381 } 3382 3383 /* Try to optimize var = {v} {CLOBBER} stmts followed just by 3384 external throw. */ 3385 3386 static void 3387 optimize_clobbers (basic_block bb) 3388 { 3389 gimple_stmt_iterator gsi = gsi_last_bb (bb); 3390 bool any_clobbers = false; 3391 bool seen_stack_restore = false; 3392 edge_iterator ei; 3393 edge e; 3394 3395 /* Only optimize anything if the bb contains at least one clobber, 3396 ends with resx (checked by caller), optionally contains some 3397 debug stmts or labels, or at most one __builtin_stack_restore 3398 call, and has an incoming EH edge. */ 3399 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 3400 { 3401 gimple *stmt = gsi_stmt (gsi); 3402 if (is_gimple_debug (stmt)) 3403 continue; 3404 if (gimple_clobber_p (stmt)) 3405 { 3406 any_clobbers = true; 3407 continue; 3408 } 3409 if (!seen_stack_restore 3410 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE)) 3411 { 3412 seen_stack_restore = true; 3413 continue; 3414 } 3415 if (gimple_code (stmt) == GIMPLE_LABEL) 3416 break; 3417 return; 3418 } 3419 if (!any_clobbers) 3420 return; 3421 FOR_EACH_EDGE (e, ei, bb->preds) 3422 if (e->flags & EDGE_EH) 3423 break; 3424 if (e == NULL) 3425 return; 3426 gsi = gsi_last_bb (bb); 3427 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 3428 { 3429 gimple *stmt = gsi_stmt (gsi); 3430 if (!gimple_clobber_p (stmt)) 3431 continue; 3432 unlink_stmt_vdef (stmt); 3433 gsi_remove (&gsi, true); 3434 release_defs (stmt); 3435 } 3436 } 3437 3438 /* Try to sink var = {v} {CLOBBER} stmts followed just by 3439 internal throw to successor BB. */ 3440 3441 static int 3442 sink_clobbers (basic_block bb) 3443 { 3444 edge e; 3445 edge_iterator ei; 3446 gimple_stmt_iterator gsi, dgsi; 3447 basic_block succbb; 3448 bool any_clobbers = false; 3449 unsigned todo = 0; 3450 3451 /* Only optimize if BB has a single EH successor and 3452 all predecessor edges are EH too. */ 3453 if (!single_succ_p (bb) 3454 || (single_succ_edge (bb)->flags & EDGE_EH) == 0) 3455 return 0; 3456 3457 FOR_EACH_EDGE (e, ei, bb->preds) 3458 { 3459 if ((e->flags & EDGE_EH) == 0) 3460 return 0; 3461 } 3462 3463 /* And BB contains only CLOBBER stmts before the final 3464 RESX. */ 3465 gsi = gsi_last_bb (bb); 3466 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 3467 { 3468 gimple *stmt = gsi_stmt (gsi); 3469 if (is_gimple_debug (stmt)) 3470 continue; 3471 if (gimple_code (stmt) == GIMPLE_LABEL) 3472 break; 3473 if (!gimple_clobber_p (stmt)) 3474 return 0; 3475 any_clobbers = true; 3476 } 3477 if (!any_clobbers) 3478 return 0; 3479 3480 edge succe = single_succ_edge (bb); 3481 succbb = succe->dest; 3482 3483 /* See if there is a virtual PHI node to take an updated virtual 3484 operand from. */ 3485 gphi *vphi = NULL; 3486 tree vuse = NULL_TREE; 3487 for (gphi_iterator gpi = gsi_start_phis (succbb); 3488 !gsi_end_p (gpi); gsi_next (&gpi)) 3489 { 3490 tree res = gimple_phi_result (gpi.phi ()); 3491 if (virtual_operand_p (res)) 3492 { 3493 vphi = gpi.phi (); 3494 vuse = res; 3495 break; 3496 } 3497 } 3498 3499 dgsi = gsi_after_labels (succbb); 3500 gsi = gsi_last_bb (bb); 3501 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 3502 { 3503 gimple *stmt = gsi_stmt (gsi); 3504 tree lhs; 3505 if (is_gimple_debug (stmt)) 3506 continue; 3507 if (gimple_code (stmt) == GIMPLE_LABEL) 3508 break; 3509 lhs = gimple_assign_lhs (stmt); 3510 /* Unfortunately we don't have dominance info updated at this 3511 point, so checking if 3512 dominated_by_p (CDI_DOMINATORS, succbb, 3513 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0))) 3514 would be too costly. Thus, avoid sinking any clobbers that 3515 refer to non-(D) SSA_NAMEs. */ 3516 if (TREE_CODE (lhs) == MEM_REF 3517 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME 3518 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0))) 3519 { 3520 unlink_stmt_vdef (stmt); 3521 gsi_remove (&gsi, true); 3522 release_defs (stmt); 3523 continue; 3524 } 3525 3526 /* As we do not change stmt order when sinking across a 3527 forwarder edge we can keep virtual operands in place. */ 3528 gsi_remove (&gsi, false); 3529 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT); 3530 3531 /* But adjust virtual operands if we sunk across a PHI node. */ 3532 if (vuse) 3533 { 3534 gimple *use_stmt; 3535 imm_use_iterator iter; 3536 use_operand_p use_p; 3537 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse) 3538 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 3539 SET_USE (use_p, gimple_vdef (stmt)); 3540 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse)) 3541 { 3542 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1; 3543 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0; 3544 } 3545 /* Adjust the incoming virtual operand. */ 3546 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt)); 3547 SET_USE (gimple_vuse_op (stmt), vuse); 3548 } 3549 /* If there isn't a single predecessor but no virtual PHI node 3550 arrange for virtual operands to be renamed. */ 3551 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P 3552 && !single_pred_p (succbb)) 3553 { 3554 /* In this case there will be no use of the VDEF of this stmt. 3555 ??? Unless this is a secondary opportunity and we have not 3556 removed unreachable blocks yet, so we cannot assert this. 3557 Which also means we will end up renaming too many times. */ 3558 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun)); 3559 mark_virtual_operands_for_renaming (cfun); 3560 todo |= TODO_update_ssa_only_virtuals; 3561 } 3562 } 3563 3564 return todo; 3565 } 3566 3567 /* At the end of inlining, we can lower EH_DISPATCH. Return true when 3568 we have found some duplicate labels and removed some edges. */ 3569 3570 static bool 3571 lower_eh_dispatch (basic_block src, geh_dispatch *stmt) 3572 { 3573 gimple_stmt_iterator gsi; 3574 int region_nr; 3575 eh_region r; 3576 tree filter, fn; 3577 gimple *x; 3578 bool redirected = false; 3579 3580 region_nr = gimple_eh_dispatch_region (stmt); 3581 r = get_eh_region_from_number (region_nr); 3582 3583 gsi = gsi_last_bb (src); 3584 3585 switch (r->type) 3586 { 3587 case ERT_TRY: 3588 { 3589 auto_vec<tree> labels; 3590 tree default_label = NULL; 3591 eh_catch c; 3592 edge_iterator ei; 3593 edge e; 3594 hash_set<tree> seen_values; 3595 3596 /* Collect the labels for a switch. Zero the post_landing_pad 3597 field becase we'll no longer have anything keeping these labels 3598 in existence and the optimizer will be free to merge these 3599 blocks at will. */ 3600 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 3601 { 3602 tree tp_node, flt_node, lab = c->label; 3603 bool have_label = false; 3604 3605 c->label = NULL; 3606 tp_node = c->type_list; 3607 flt_node = c->filter_list; 3608 3609 if (tp_node == NULL) 3610 { 3611 default_label = lab; 3612 break; 3613 } 3614 do 3615 { 3616 /* Filter out duplicate labels that arise when this handler 3617 is shadowed by an earlier one. When no labels are 3618 attached to the handler anymore, we remove 3619 the corresponding edge and then we delete unreachable 3620 blocks at the end of this pass. */ 3621 if (! seen_values.contains (TREE_VALUE (flt_node))) 3622 { 3623 tree t = build_case_label (TREE_VALUE (flt_node), 3624 NULL, lab); 3625 labels.safe_push (t); 3626 seen_values.add (TREE_VALUE (flt_node)); 3627 have_label = true; 3628 } 3629 3630 tp_node = TREE_CHAIN (tp_node); 3631 flt_node = TREE_CHAIN (flt_node); 3632 } 3633 while (tp_node); 3634 if (! have_label) 3635 { 3636 remove_edge (find_edge (src, label_to_block (lab))); 3637 redirected = true; 3638 } 3639 } 3640 3641 /* Clean up the edge flags. */ 3642 FOR_EACH_EDGE (e, ei, src->succs) 3643 { 3644 if (e->flags & EDGE_FALLTHRU) 3645 { 3646 /* If there was no catch-all, use the fallthru edge. */ 3647 if (default_label == NULL) 3648 default_label = gimple_block_label (e->dest); 3649 e->flags &= ~EDGE_FALLTHRU; 3650 } 3651 } 3652 gcc_assert (default_label != NULL); 3653 3654 /* Don't generate a switch if there's only a default case. 3655 This is common in the form of try { A; } catch (...) { B; }. */ 3656 if (!labels.exists ()) 3657 { 3658 e = single_succ_edge (src); 3659 e->flags |= EDGE_FALLTHRU; 3660 } 3661 else 3662 { 3663 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER); 3664 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node, 3665 region_nr)); 3666 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn))); 3667 filter = make_ssa_name (filter, x); 3668 gimple_call_set_lhs (x, filter); 3669 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3670 3671 /* Turn the default label into a default case. */ 3672 default_label = build_case_label (NULL, NULL, default_label); 3673 sort_case_labels (labels); 3674 3675 x = gimple_build_switch (filter, default_label, labels); 3676 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3677 } 3678 } 3679 break; 3680 3681 case ERT_ALLOWED_EXCEPTIONS: 3682 { 3683 edge b_e = BRANCH_EDGE (src); 3684 edge f_e = FALLTHRU_EDGE (src); 3685 3686 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER); 3687 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node, 3688 region_nr)); 3689 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn))); 3690 filter = make_ssa_name (filter, x); 3691 gimple_call_set_lhs (x, filter); 3692 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3693 3694 r->u.allowed.label = NULL; 3695 x = gimple_build_cond (EQ_EXPR, filter, 3696 build_int_cst (TREE_TYPE (filter), 3697 r->u.allowed.filter), 3698 NULL_TREE, NULL_TREE); 3699 gsi_insert_before (&gsi, x, GSI_SAME_STMT); 3700 3701 b_e->flags = b_e->flags | EDGE_TRUE_VALUE; 3702 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE; 3703 } 3704 break; 3705 3706 default: 3707 gcc_unreachable (); 3708 } 3709 3710 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */ 3711 gsi_remove (&gsi, true); 3712 return redirected; 3713 } 3714 3715 namespace { 3716 3717 const pass_data pass_data_lower_eh_dispatch = 3718 { 3719 GIMPLE_PASS, /* type */ 3720 "ehdisp", /* name */ 3721 OPTGROUP_NONE, /* optinfo_flags */ 3722 TV_TREE_EH, /* tv_id */ 3723 PROP_gimple_lcf, /* properties_required */ 3724 0, /* properties_provided */ 3725 0, /* properties_destroyed */ 3726 0, /* todo_flags_start */ 3727 0, /* todo_flags_finish */ 3728 }; 3729 3730 class pass_lower_eh_dispatch : public gimple_opt_pass 3731 { 3732 public: 3733 pass_lower_eh_dispatch (gcc::context *ctxt) 3734 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt) 3735 {} 3736 3737 /* opt_pass methods: */ 3738 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; } 3739 virtual unsigned int execute (function *); 3740 3741 }; // class pass_lower_eh_dispatch 3742 3743 unsigned 3744 pass_lower_eh_dispatch::execute (function *fun) 3745 { 3746 basic_block bb; 3747 int flags = 0; 3748 bool redirected = false; 3749 3750 assign_filter_values (); 3751 3752 FOR_EACH_BB_FN (bb, fun) 3753 { 3754 gimple *last = last_stmt (bb); 3755 if (last == NULL) 3756 continue; 3757 if (gimple_code (last) == GIMPLE_EH_DISPATCH) 3758 { 3759 redirected |= lower_eh_dispatch (bb, 3760 as_a <geh_dispatch *> (last)); 3761 flags |= TODO_update_ssa_only_virtuals; 3762 } 3763 else if (gimple_code (last) == GIMPLE_RESX) 3764 { 3765 if (stmt_can_throw_external (last)) 3766 optimize_clobbers (bb); 3767 else 3768 flags |= sink_clobbers (bb); 3769 } 3770 } 3771 3772 if (redirected) 3773 delete_unreachable_blocks (); 3774 return flags; 3775 } 3776 3777 } // anon namespace 3778 3779 gimple_opt_pass * 3780 make_pass_lower_eh_dispatch (gcc::context *ctxt) 3781 { 3782 return new pass_lower_eh_dispatch (ctxt); 3783 } 3784 3785 /* Walk statements, see what regions and, optionally, landing pads 3786 are really referenced. 3787 3788 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions, 3789 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads. 3790 3791 Passing NULL for LP_REACHABLE is valid, in this case only reachable 3792 regions are marked. 3793 3794 The caller is responsible for freeing the returned sbitmaps. */ 3795 3796 static void 3797 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep) 3798 { 3799 sbitmap r_reachable, lp_reachable; 3800 basic_block bb; 3801 bool mark_landing_pads = (lp_reachablep != NULL); 3802 gcc_checking_assert (r_reachablep != NULL); 3803 3804 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ()); 3805 bitmap_clear (r_reachable); 3806 *r_reachablep = r_reachable; 3807 3808 if (mark_landing_pads) 3809 { 3810 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ()); 3811 bitmap_clear (lp_reachable); 3812 *lp_reachablep = lp_reachable; 3813 } 3814 else 3815 lp_reachable = NULL; 3816 3817 FOR_EACH_BB_FN (bb, cfun) 3818 { 3819 gimple_stmt_iterator gsi; 3820 3821 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 3822 { 3823 gimple *stmt = gsi_stmt (gsi); 3824 3825 if (mark_landing_pads) 3826 { 3827 int lp_nr = lookup_stmt_eh_lp (stmt); 3828 3829 /* Negative LP numbers are MUST_NOT_THROW regions which 3830 are not considered BB enders. */ 3831 if (lp_nr < 0) 3832 bitmap_set_bit (r_reachable, -lp_nr); 3833 3834 /* Positive LP numbers are real landing pads, and BB enders. */ 3835 else if (lp_nr > 0) 3836 { 3837 gcc_assert (gsi_one_before_end_p (gsi)); 3838 eh_region region = get_eh_region_from_lp_number (lp_nr); 3839 bitmap_set_bit (r_reachable, region->index); 3840 bitmap_set_bit (lp_reachable, lp_nr); 3841 } 3842 } 3843 3844 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */ 3845 switch (gimple_code (stmt)) 3846 { 3847 case GIMPLE_RESX: 3848 bitmap_set_bit (r_reachable, 3849 gimple_resx_region (as_a <gresx *> (stmt))); 3850 break; 3851 case GIMPLE_EH_DISPATCH: 3852 bitmap_set_bit (r_reachable, 3853 gimple_eh_dispatch_region ( 3854 as_a <geh_dispatch *> (stmt))); 3855 break; 3856 case GIMPLE_CALL: 3857 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES)) 3858 for (int i = 0; i < 2; ++i) 3859 { 3860 tree rt = gimple_call_arg (stmt, i); 3861 HOST_WIDE_INT ri = tree_to_shwi (rt); 3862 3863 gcc_assert (ri == (int)ri); 3864 bitmap_set_bit (r_reachable, ri); 3865 } 3866 break; 3867 default: 3868 break; 3869 } 3870 } 3871 } 3872 } 3873 3874 /* Remove unreachable handlers and unreachable landing pads. */ 3875 3876 static void 3877 remove_unreachable_handlers (void) 3878 { 3879 sbitmap r_reachable, lp_reachable; 3880 eh_region region; 3881 eh_landing_pad lp; 3882 unsigned i; 3883 3884 mark_reachable_handlers (&r_reachable, &lp_reachable); 3885 3886 if (dump_file) 3887 { 3888 fprintf (dump_file, "Before removal of unreachable regions:\n"); 3889 dump_eh_tree (dump_file, cfun); 3890 fprintf (dump_file, "Reachable regions: "); 3891 dump_bitmap_file (dump_file, r_reachable); 3892 fprintf (dump_file, "Reachable landing pads: "); 3893 dump_bitmap_file (dump_file, lp_reachable); 3894 } 3895 3896 if (dump_file) 3897 { 3898 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region) 3899 if (region && !bitmap_bit_p (r_reachable, region->index)) 3900 fprintf (dump_file, 3901 "Removing unreachable region %d\n", 3902 region->index); 3903 } 3904 3905 remove_unreachable_eh_regions (r_reachable); 3906 3907 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp) 3908 if (lp && !bitmap_bit_p (lp_reachable, lp->index)) 3909 { 3910 if (dump_file) 3911 fprintf (dump_file, 3912 "Removing unreachable landing pad %d\n", 3913 lp->index); 3914 remove_eh_landing_pad (lp); 3915 } 3916 3917 if (dump_file) 3918 { 3919 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n"); 3920 dump_eh_tree (dump_file, cfun); 3921 fprintf (dump_file, "\n\n"); 3922 } 3923 3924 sbitmap_free (r_reachable); 3925 sbitmap_free (lp_reachable); 3926 3927 if (flag_checking) 3928 verify_eh_tree (cfun); 3929 } 3930 3931 /* Remove unreachable handlers if any landing pads have been removed after 3932 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */ 3933 3934 void 3935 maybe_remove_unreachable_handlers (void) 3936 { 3937 eh_landing_pad lp; 3938 unsigned i; 3939 3940 if (cfun->eh == NULL) 3941 return; 3942 3943 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp) 3944 if (lp && lp->post_landing_pad) 3945 { 3946 if (label_to_block (lp->post_landing_pad) == NULL) 3947 { 3948 remove_unreachable_handlers (); 3949 return; 3950 } 3951 } 3952 } 3953 3954 /* Remove regions that do not have landing pads. This assumes 3955 that remove_unreachable_handlers has already been run, and 3956 that we've just manipulated the landing pads since then. 3957 3958 Preserve regions with landing pads and regions that prevent 3959 exceptions from propagating further, even if these regions 3960 are not reachable. */ 3961 3962 static void 3963 remove_unreachable_handlers_no_lp (void) 3964 { 3965 eh_region region; 3966 sbitmap r_reachable; 3967 unsigned i; 3968 3969 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL); 3970 3971 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region) 3972 { 3973 if (! region) 3974 continue; 3975 3976 if (region->landing_pads != NULL 3977 || region->type == ERT_MUST_NOT_THROW) 3978 bitmap_set_bit (r_reachable, region->index); 3979 3980 if (dump_file 3981 && !bitmap_bit_p (r_reachable, region->index)) 3982 fprintf (dump_file, 3983 "Removing unreachable region %d\n", 3984 region->index); 3985 } 3986 3987 remove_unreachable_eh_regions (r_reachable); 3988 3989 sbitmap_free (r_reachable); 3990 } 3991 3992 /* Undo critical edge splitting on an EH landing pad. Earlier, we 3993 optimisticaly split all sorts of edges, including EH edges. The 3994 optimization passes in between may not have needed them; if not, 3995 we should undo the split. 3996 3997 Recognize this case by having one EH edge incoming to the BB and 3998 one normal edge outgoing; BB should be empty apart from the 3999 post_landing_pad label. 4000 4001 Note that this is slightly different from the empty handler case 4002 handled by cleanup_empty_eh, in that the actual handler may yet 4003 have actual code but the landing pad has been separated from the 4004 handler. As such, cleanup_empty_eh relies on this transformation 4005 having been done first. */ 4006 4007 static bool 4008 unsplit_eh (eh_landing_pad lp) 4009 { 4010 basic_block bb = label_to_block (lp->post_landing_pad); 4011 gimple_stmt_iterator gsi; 4012 edge e_in, e_out; 4013 4014 /* Quickly check the edge counts on BB for singularity. */ 4015 if (!single_pred_p (bb) || !single_succ_p (bb)) 4016 return false; 4017 e_in = single_pred_edge (bb); 4018 e_out = single_succ_edge (bb); 4019 4020 /* Input edge must be EH and output edge must be normal. */ 4021 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0) 4022 return false; 4023 4024 /* The block must be empty except for the labels and debug insns. */ 4025 gsi = gsi_after_labels (bb); 4026 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) 4027 gsi_next_nondebug (&gsi); 4028 if (!gsi_end_p (gsi)) 4029 return false; 4030 4031 /* The destination block must not already have a landing pad 4032 for a different region. */ 4033 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 4034 { 4035 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 4036 tree lab; 4037 int lp_nr; 4038 4039 if (!label_stmt) 4040 break; 4041 lab = gimple_label_label (label_stmt); 4042 lp_nr = EH_LANDING_PAD_NR (lab); 4043 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region) 4044 return false; 4045 } 4046 4047 /* The new destination block must not already be a destination of 4048 the source block, lest we merge fallthru and eh edges and get 4049 all sorts of confused. */ 4050 if (find_edge (e_in->src, e_out->dest)) 4051 return false; 4052 4053 /* ??? We can get degenerate phis due to cfg cleanups. I would have 4054 thought this should have been cleaned up by a phicprop pass, but 4055 that doesn't appear to handle virtuals. Propagate by hand. */ 4056 if (!gimple_seq_empty_p (phi_nodes (bb))) 4057 { 4058 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); ) 4059 { 4060 gimple *use_stmt; 4061 gphi *phi = gpi.phi (); 4062 tree lhs = gimple_phi_result (phi); 4063 tree rhs = gimple_phi_arg_def (phi, 0); 4064 use_operand_p use_p; 4065 imm_use_iterator iter; 4066 4067 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs) 4068 { 4069 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 4070 SET_USE (use_p, rhs); 4071 } 4072 4073 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) 4074 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1; 4075 4076 remove_phi_node (&gpi, true); 4077 } 4078 } 4079 4080 if (dump_file && (dump_flags & TDF_DETAILS)) 4081 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n", 4082 lp->index, e_out->dest->index); 4083 4084 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving 4085 a successor edge, humor it. But do the real CFG change with the 4086 predecessor of E_OUT in order to preserve the ordering of arguments 4087 to the PHI nodes in E_OUT->DEST. */ 4088 redirect_eh_edge_1 (e_in, e_out->dest, false); 4089 redirect_edge_pred (e_out, e_in->src); 4090 e_out->flags = e_in->flags; 4091 e_out->probability = e_in->probability; 4092 e_out->count = e_in->count; 4093 remove_edge (e_in); 4094 4095 return true; 4096 } 4097 4098 /* Examine each landing pad block and see if it matches unsplit_eh. */ 4099 4100 static bool 4101 unsplit_all_eh (void) 4102 { 4103 bool changed = false; 4104 eh_landing_pad lp; 4105 int i; 4106 4107 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) 4108 if (lp) 4109 changed |= unsplit_eh (lp); 4110 4111 return changed; 4112 } 4113 4114 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming 4115 to OLD_BB to NEW_BB; return true on success, false on failure. 4116 4117 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any 4118 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT. 4119 Virtual PHIs may be deleted and marked for renaming. */ 4120 4121 static bool 4122 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb, 4123 edge old_bb_out, bool change_region) 4124 { 4125 gphi_iterator ngsi, ogsi; 4126 edge_iterator ei; 4127 edge e; 4128 bitmap ophi_handled; 4129 4130 /* The destination block must not be a regular successor for any 4131 of the preds of the landing pad. Thus, avoid turning 4132 <..> 4133 | \ EH 4134 | <..> 4135 | / 4136 <..> 4137 into 4138 <..> 4139 | | EH 4140 <..> 4141 which CFG verification would choke on. See PR45172 and PR51089. */ 4142 FOR_EACH_EDGE (e, ei, old_bb->preds) 4143 if (find_edge (e->src, new_bb)) 4144 return false; 4145 4146 FOR_EACH_EDGE (e, ei, old_bb->preds) 4147 redirect_edge_var_map_clear (e); 4148 4149 ophi_handled = BITMAP_ALLOC (NULL); 4150 4151 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map 4152 for the edges we're going to move. */ 4153 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi)) 4154 { 4155 gphi *ophi, *nphi = ngsi.phi (); 4156 tree nresult, nop; 4157 4158 nresult = gimple_phi_result (nphi); 4159 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx); 4160 4161 /* Find the corresponding PHI in OLD_BB so we can forward-propagate 4162 the source ssa_name. */ 4163 ophi = NULL; 4164 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi)) 4165 { 4166 ophi = ogsi.phi (); 4167 if (gimple_phi_result (ophi) == nop) 4168 break; 4169 ophi = NULL; 4170 } 4171 4172 /* If we did find the corresponding PHI, copy those inputs. */ 4173 if (ophi) 4174 { 4175 /* If NOP is used somewhere else beyond phis in new_bb, give up. */ 4176 if (!has_single_use (nop)) 4177 { 4178 imm_use_iterator imm_iter; 4179 use_operand_p use_p; 4180 4181 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop) 4182 { 4183 if (!gimple_debug_bind_p (USE_STMT (use_p)) 4184 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI 4185 || gimple_bb (USE_STMT (use_p)) != new_bb)) 4186 goto fail; 4187 } 4188 } 4189 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop)); 4190 FOR_EACH_EDGE (e, ei, old_bb->preds) 4191 { 4192 location_t oloc; 4193 tree oop; 4194 4195 if ((e->flags & EDGE_EH) == 0) 4196 continue; 4197 oop = gimple_phi_arg_def (ophi, e->dest_idx); 4198 oloc = gimple_phi_arg_location (ophi, e->dest_idx); 4199 redirect_edge_var_map_add (e, nresult, oop, oloc); 4200 } 4201 } 4202 /* If we didn't find the PHI, if it's a real variable or a VOP, we know 4203 from the fact that OLD_BB is tree_empty_eh_handler_p that the 4204 variable is unchanged from input to the block and we can simply 4205 re-use the input to NEW_BB from the OLD_BB_OUT edge. */ 4206 else 4207 { 4208 location_t nloc 4209 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx); 4210 FOR_EACH_EDGE (e, ei, old_bb->preds) 4211 redirect_edge_var_map_add (e, nresult, nop, nloc); 4212 } 4213 } 4214 4215 /* Second, verify that all PHIs from OLD_BB have been handled. If not, 4216 we don't know what values from the other edges into NEW_BB to use. */ 4217 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi)) 4218 { 4219 gphi *ophi = ogsi.phi (); 4220 tree oresult = gimple_phi_result (ophi); 4221 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult))) 4222 goto fail; 4223 } 4224 4225 /* Finally, move the edges and update the PHIs. */ 4226 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); ) 4227 if (e->flags & EDGE_EH) 4228 { 4229 /* ??? CFG manipluation routines do not try to update loop 4230 form on edge redirection. Do so manually here for now. */ 4231 /* If we redirect a loop entry or latch edge that will either create 4232 a multiple entry loop or rotate the loop. If the loops merge 4233 we may have created a loop with multiple latches. 4234 All of this isn't easily fixed thus cancel the affected loop 4235 and mark the other loop as possibly having multiple latches. */ 4236 if (e->dest == e->dest->loop_father->header) 4237 { 4238 mark_loop_for_removal (e->dest->loop_father); 4239 new_bb->loop_father->latch = NULL; 4240 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES); 4241 } 4242 redirect_eh_edge_1 (e, new_bb, change_region); 4243 redirect_edge_succ (e, new_bb); 4244 flush_pending_stmts (e); 4245 } 4246 else 4247 ei_next (&ei); 4248 4249 BITMAP_FREE (ophi_handled); 4250 return true; 4251 4252 fail: 4253 FOR_EACH_EDGE (e, ei, old_bb->preds) 4254 redirect_edge_var_map_clear (e); 4255 BITMAP_FREE (ophi_handled); 4256 return false; 4257 } 4258 4259 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its 4260 old region to NEW_REGION at BB. */ 4261 4262 static void 4263 cleanup_empty_eh_move_lp (basic_block bb, edge e_out, 4264 eh_landing_pad lp, eh_region new_region) 4265 { 4266 gimple_stmt_iterator gsi; 4267 eh_landing_pad *pp; 4268 4269 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp) 4270 continue; 4271 *pp = lp->next_lp; 4272 4273 lp->region = new_region; 4274 lp->next_lp = new_region->landing_pads; 4275 new_region->landing_pads = lp; 4276 4277 /* Delete the RESX that was matched within the empty handler block. */ 4278 gsi = gsi_last_bb (bb); 4279 unlink_stmt_vdef (gsi_stmt (gsi)); 4280 gsi_remove (&gsi, true); 4281 4282 /* Clean up E_OUT for the fallthru. */ 4283 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU; 4284 e_out->probability = REG_BR_PROB_BASE; 4285 } 4286 4287 /* A subroutine of cleanup_empty_eh. Handle more complex cases of 4288 unsplitting than unsplit_eh was prepared to handle, e.g. when 4289 multiple incoming edges and phis are involved. */ 4290 4291 static bool 4292 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp) 4293 { 4294 gimple_stmt_iterator gsi; 4295 tree lab; 4296 4297 /* We really ought not have totally lost everything following 4298 a landing pad label. Given that BB is empty, there had better 4299 be a successor. */ 4300 gcc_assert (e_out != NULL); 4301 4302 /* The destination block must not already have a landing pad 4303 for a different region. */ 4304 lab = NULL; 4305 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 4306 { 4307 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 4308 int lp_nr; 4309 4310 if (!stmt) 4311 break; 4312 lab = gimple_label_label (stmt); 4313 lp_nr = EH_LANDING_PAD_NR (lab); 4314 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region) 4315 return false; 4316 } 4317 4318 /* Attempt to move the PHIs into the successor block. */ 4319 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false)) 4320 { 4321 if (dump_file && (dump_flags & TDF_DETAILS)) 4322 fprintf (dump_file, 4323 "Unsplit EH landing pad %d to block %i " 4324 "(via cleanup_empty_eh).\n", 4325 lp->index, e_out->dest->index); 4326 return true; 4327 } 4328 4329 return false; 4330 } 4331 4332 /* Return true if edge E_FIRST is part of an empty infinite loop 4333 or leads to such a loop through a series of single successor 4334 empty bbs. */ 4335 4336 static bool 4337 infinite_empty_loop_p (edge e_first) 4338 { 4339 bool inf_loop = false; 4340 edge e; 4341 4342 if (e_first->dest == e_first->src) 4343 return true; 4344 4345 e_first->src->aux = (void *) 1; 4346 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest)) 4347 { 4348 gimple_stmt_iterator gsi; 4349 if (e->dest->aux) 4350 { 4351 inf_loop = true; 4352 break; 4353 } 4354 e->dest->aux = (void *) 1; 4355 gsi = gsi_after_labels (e->dest); 4356 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) 4357 gsi_next_nondebug (&gsi); 4358 if (!gsi_end_p (gsi)) 4359 break; 4360 } 4361 e_first->src->aux = NULL; 4362 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest)) 4363 e->dest->aux = NULL; 4364 4365 return inf_loop; 4366 } 4367 4368 /* Examine the block associated with LP to determine if it's an empty 4369 handler for its EH region. If so, attempt to redirect EH edges to 4370 an outer region. Return true the CFG was updated in any way. This 4371 is similar to jump forwarding, just across EH edges. */ 4372 4373 static bool 4374 cleanup_empty_eh (eh_landing_pad lp) 4375 { 4376 basic_block bb = label_to_block (lp->post_landing_pad); 4377 gimple_stmt_iterator gsi; 4378 gimple *resx; 4379 eh_region new_region; 4380 edge_iterator ei; 4381 edge e, e_out; 4382 bool has_non_eh_pred; 4383 bool ret = false; 4384 int new_lp_nr; 4385 4386 /* There can be zero or one edges out of BB. This is the quickest test. */ 4387 switch (EDGE_COUNT (bb->succs)) 4388 { 4389 case 0: 4390 e_out = NULL; 4391 break; 4392 case 1: 4393 e_out = single_succ_edge (bb); 4394 break; 4395 default: 4396 return false; 4397 } 4398 4399 resx = last_stmt (bb); 4400 if (resx && is_gimple_resx (resx)) 4401 { 4402 if (stmt_can_throw_external (resx)) 4403 optimize_clobbers (bb); 4404 else if (sink_clobbers (bb)) 4405 ret = true; 4406 } 4407 4408 gsi = gsi_after_labels (bb); 4409 4410 /* Make sure to skip debug statements. */ 4411 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) 4412 gsi_next_nondebug (&gsi); 4413 4414 /* If the block is totally empty, look for more unsplitting cases. */ 4415 if (gsi_end_p (gsi)) 4416 { 4417 /* For the degenerate case of an infinite loop bail out. 4418 If bb has no successors and is totally empty, which can happen e.g. 4419 because of incorrect noreturn attribute, bail out too. */ 4420 if (e_out == NULL 4421 || infinite_empty_loop_p (e_out)) 4422 return ret; 4423 4424 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp); 4425 } 4426 4427 /* The block should consist only of a single RESX statement, modulo a 4428 preceding call to __builtin_stack_restore if there is no outgoing 4429 edge, since the call can be eliminated in this case. */ 4430 resx = gsi_stmt (gsi); 4431 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE)) 4432 { 4433 gsi_next (&gsi); 4434 resx = gsi_stmt (gsi); 4435 } 4436 if (!is_gimple_resx (resx)) 4437 return ret; 4438 gcc_assert (gsi_one_before_end_p (gsi)); 4439 4440 /* Determine if there are non-EH edges, or resx edges into the handler. */ 4441 has_non_eh_pred = false; 4442 FOR_EACH_EDGE (e, ei, bb->preds) 4443 if (!(e->flags & EDGE_EH)) 4444 has_non_eh_pred = true; 4445 4446 /* Find the handler that's outer of the empty handler by looking at 4447 where the RESX instruction was vectored. */ 4448 new_lp_nr = lookup_stmt_eh_lp (resx); 4449 new_region = get_eh_region_from_lp_number (new_lp_nr); 4450 4451 /* If there's no destination region within the current function, 4452 redirection is trivial via removing the throwing statements from 4453 the EH region, removing the EH edges, and allowing the block 4454 to go unreachable. */ 4455 if (new_region == NULL) 4456 { 4457 gcc_assert (e_out == NULL); 4458 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 4459 if (e->flags & EDGE_EH) 4460 { 4461 gimple *stmt = last_stmt (e->src); 4462 remove_stmt_from_eh_lp (stmt); 4463 remove_edge (e); 4464 } 4465 else 4466 ei_next (&ei); 4467 goto succeed; 4468 } 4469 4470 /* If the destination region is a MUST_NOT_THROW, allow the runtime 4471 to handle the abort and allow the blocks to go unreachable. */ 4472 if (new_region->type == ERT_MUST_NOT_THROW) 4473 { 4474 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 4475 if (e->flags & EDGE_EH) 4476 { 4477 gimple *stmt = last_stmt (e->src); 4478 remove_stmt_from_eh_lp (stmt); 4479 add_stmt_to_eh_lp (stmt, new_lp_nr); 4480 remove_edge (e); 4481 } 4482 else 4483 ei_next (&ei); 4484 goto succeed; 4485 } 4486 4487 /* Try to redirect the EH edges and merge the PHIs into the destination 4488 landing pad block. If the merge succeeds, we'll already have redirected 4489 all the EH edges. The handler itself will go unreachable if there were 4490 no normal edges. */ 4491 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true)) 4492 goto succeed; 4493 4494 /* Finally, if all input edges are EH edges, then we can (potentially) 4495 reduce the number of transfers from the runtime by moving the landing 4496 pad from the original region to the new region. This is a win when 4497 we remove the last CLEANUP region along a particular exception 4498 propagation path. Since nothing changes except for the region with 4499 which the landing pad is associated, the PHI nodes do not need to be 4500 adjusted at all. */ 4501 if (!has_non_eh_pred) 4502 { 4503 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region); 4504 if (dump_file && (dump_flags & TDF_DETAILS)) 4505 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n", 4506 lp->index, new_region->index); 4507 4508 /* ??? The CFG didn't change, but we may have rendered the 4509 old EH region unreachable. Trigger a cleanup there. */ 4510 return true; 4511 } 4512 4513 return ret; 4514 4515 succeed: 4516 if (dump_file && (dump_flags & TDF_DETAILS)) 4517 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index); 4518 remove_eh_landing_pad (lp); 4519 return true; 4520 } 4521 4522 /* Do a post-order traversal of the EH region tree. Examine each 4523 post_landing_pad block and see if we can eliminate it as empty. */ 4524 4525 static bool 4526 cleanup_all_empty_eh (void) 4527 { 4528 bool changed = false; 4529 eh_landing_pad lp; 4530 int i; 4531 4532 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) 4533 if (lp) 4534 changed |= cleanup_empty_eh (lp); 4535 4536 return changed; 4537 } 4538 4539 /* Perform cleanups and lowering of exception handling 4540 1) cleanups regions with handlers doing nothing are optimized out 4541 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out 4542 3) Info about regions that are containing instructions, and regions 4543 reachable via local EH edges is collected 4544 4) Eh tree is pruned for regions no longer necessary. 4545 4546 TODO: Push MUST_NOT_THROW regions to the root of the EH tree. 4547 Unify those that have the same failure decl and locus. 4548 */ 4549 4550 static unsigned int 4551 execute_cleanup_eh_1 (void) 4552 { 4553 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die 4554 looking up unreachable landing pads. */ 4555 remove_unreachable_handlers (); 4556 4557 /* Watch out for the region tree vanishing due to all unreachable. */ 4558 if (cfun->eh->region_tree) 4559 { 4560 bool changed = false; 4561 4562 if (optimize) 4563 changed |= unsplit_all_eh (); 4564 changed |= cleanup_all_empty_eh (); 4565 4566 if (changed) 4567 { 4568 free_dominance_info (CDI_DOMINATORS); 4569 free_dominance_info (CDI_POST_DOMINATORS); 4570 4571 /* We delayed all basic block deletion, as we may have performed 4572 cleanups on EH edges while non-EH edges were still present. */ 4573 delete_unreachable_blocks (); 4574 4575 /* We manipulated the landing pads. Remove any region that no 4576 longer has a landing pad. */ 4577 remove_unreachable_handlers_no_lp (); 4578 4579 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; 4580 } 4581 } 4582 4583 return 0; 4584 } 4585 4586 namespace { 4587 4588 const pass_data pass_data_cleanup_eh = 4589 { 4590 GIMPLE_PASS, /* type */ 4591 "ehcleanup", /* name */ 4592 OPTGROUP_NONE, /* optinfo_flags */ 4593 TV_TREE_EH, /* tv_id */ 4594 PROP_gimple_lcf, /* properties_required */ 4595 0, /* properties_provided */ 4596 0, /* properties_destroyed */ 4597 0, /* todo_flags_start */ 4598 0, /* todo_flags_finish */ 4599 }; 4600 4601 class pass_cleanup_eh : public gimple_opt_pass 4602 { 4603 public: 4604 pass_cleanup_eh (gcc::context *ctxt) 4605 : gimple_opt_pass (pass_data_cleanup_eh, ctxt) 4606 {} 4607 4608 /* opt_pass methods: */ 4609 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); } 4610 virtual bool gate (function *fun) 4611 { 4612 return fun->eh != NULL && fun->eh->region_tree != NULL; 4613 } 4614 4615 virtual unsigned int execute (function *); 4616 4617 }; // class pass_cleanup_eh 4618 4619 unsigned int 4620 pass_cleanup_eh::execute (function *fun) 4621 { 4622 int ret = execute_cleanup_eh_1 (); 4623 4624 /* If the function no longer needs an EH personality routine 4625 clear it. This exposes cross-language inlining opportunities 4626 and avoids references to a never defined personality routine. */ 4627 if (DECL_FUNCTION_PERSONALITY (current_function_decl) 4628 && function_needs_eh_personality (fun) != eh_personality_lang) 4629 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE; 4630 4631 return ret; 4632 } 4633 4634 } // anon namespace 4635 4636 gimple_opt_pass * 4637 make_pass_cleanup_eh (gcc::context *ctxt) 4638 { 4639 return new pass_cleanup_eh (ctxt); 4640 } 4641 4642 /* Verify that BB containing STMT as the last statement, has precisely the 4643 edge that make_eh_edges would create. */ 4644 4645 DEBUG_FUNCTION bool 4646 verify_eh_edges (gimple *stmt) 4647 { 4648 basic_block bb = gimple_bb (stmt); 4649 eh_landing_pad lp = NULL; 4650 int lp_nr; 4651 edge_iterator ei; 4652 edge e, eh_edge; 4653 4654 lp_nr = lookup_stmt_eh_lp (stmt); 4655 if (lp_nr > 0) 4656 lp = get_eh_landing_pad_from_number (lp_nr); 4657 4658 eh_edge = NULL; 4659 FOR_EACH_EDGE (e, ei, bb->succs) 4660 { 4661 if (e->flags & EDGE_EH) 4662 { 4663 if (eh_edge) 4664 { 4665 error ("BB %i has multiple EH edges", bb->index); 4666 return true; 4667 } 4668 else 4669 eh_edge = e; 4670 } 4671 } 4672 4673 if (lp == NULL) 4674 { 4675 if (eh_edge) 4676 { 4677 error ("BB %i can not throw but has an EH edge", bb->index); 4678 return true; 4679 } 4680 return false; 4681 } 4682 4683 if (!stmt_could_throw_p (stmt)) 4684 { 4685 error ("BB %i last statement has incorrectly set lp", bb->index); 4686 return true; 4687 } 4688 4689 if (eh_edge == NULL) 4690 { 4691 error ("BB %i is missing an EH edge", bb->index); 4692 return true; 4693 } 4694 4695 if (eh_edge->dest != label_to_block (lp->post_landing_pad)) 4696 { 4697 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index); 4698 return true; 4699 } 4700 4701 return false; 4702 } 4703 4704 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */ 4705 4706 DEBUG_FUNCTION bool 4707 verify_eh_dispatch_edge (geh_dispatch *stmt) 4708 { 4709 eh_region r; 4710 eh_catch c; 4711 basic_block src, dst; 4712 bool want_fallthru = true; 4713 edge_iterator ei; 4714 edge e, fall_edge; 4715 4716 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt)); 4717 src = gimple_bb (stmt); 4718 4719 FOR_EACH_EDGE (e, ei, src->succs) 4720 gcc_assert (e->aux == NULL); 4721 4722 switch (r->type) 4723 { 4724 case ERT_TRY: 4725 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 4726 { 4727 dst = label_to_block (c->label); 4728 e = find_edge (src, dst); 4729 if (e == NULL) 4730 { 4731 error ("BB %i is missing an edge", src->index); 4732 return true; 4733 } 4734 e->aux = (void *)e; 4735 4736 /* A catch-all handler doesn't have a fallthru. */ 4737 if (c->type_list == NULL) 4738 { 4739 want_fallthru = false; 4740 break; 4741 } 4742 } 4743 break; 4744 4745 case ERT_ALLOWED_EXCEPTIONS: 4746 dst = label_to_block (r->u.allowed.label); 4747 e = find_edge (src, dst); 4748 if (e == NULL) 4749 { 4750 error ("BB %i is missing an edge", src->index); 4751 return true; 4752 } 4753 e->aux = (void *)e; 4754 break; 4755 4756 default: 4757 gcc_unreachable (); 4758 } 4759 4760 fall_edge = NULL; 4761 FOR_EACH_EDGE (e, ei, src->succs) 4762 { 4763 if (e->flags & EDGE_FALLTHRU) 4764 { 4765 if (fall_edge != NULL) 4766 { 4767 error ("BB %i too many fallthru edges", src->index); 4768 return true; 4769 } 4770 fall_edge = e; 4771 } 4772 else if (e->aux) 4773 e->aux = NULL; 4774 else 4775 { 4776 error ("BB %i has incorrect edge", src->index); 4777 return true; 4778 } 4779 } 4780 if ((fall_edge != NULL) ^ want_fallthru) 4781 { 4782 error ("BB %i has incorrect fallthru edge", src->index); 4783 return true; 4784 } 4785 4786 return false; 4787 } 4788