xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-eh.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /* Exception handling semantics and decomposition for trees.
2    Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "flags.h"
26 #include "function.h"
27 #include "except.h"
28 #include "pointer-set.h"
29 #include "tree-flow.h"
30 #include "tree-inline.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "ggc.h"
34 #include "diagnostic-core.h"
35 #include "gimple.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 
39 /* In some instances a tree and a gimple need to be stored in a same table,
40    i.e. in hash tables. This is a structure to do this. */
41 typedef union {tree *tp; tree t; gimple g;} treemple;
42 
43 /* Nonzero if we are using EH to handle cleanups.  */
44 static int using_eh_for_cleanups_p = 0;
45 
46 void
47 using_eh_for_cleanups (void)
48 {
49   using_eh_for_cleanups_p = 1;
50 }
51 
52 /* Misc functions used in this file.  */
53 
54 /* Remember and lookup EH landing pad data for arbitrary statements.
55    Really this means any statement that could_throw_p.  We could
56    stuff this information into the stmt_ann data structure, but:
57 
58    (1) We absolutely rely on this information being kept until
59    we get to rtl.  Once we're done with lowering here, if we lose
60    the information there's no way to recover it!
61 
62    (2) There are many more statements that *cannot* throw as
63    compared to those that can.  We should be saving some amount
64    of space by only allocating memory for those that can throw.  */
65 
66 /* Add statement T in function IFUN to landing pad NUM.  */
67 
68 void
69 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
70 {
71   struct throw_stmt_node *n;
72   void **slot;
73 
74   gcc_assert (num != 0);
75 
76   n = ggc_alloc_throw_stmt_node ();
77   n->stmt = t;
78   n->lp_nr = num;
79 
80   if (!get_eh_throw_stmt_table (ifun))
81     set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
82 						    struct_ptr_eq,
83 						    ggc_free));
84 
85   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
86   gcc_assert (!*slot);
87   *slot = n;
88 }
89 
90 /* Add statement T in the current function (cfun) to EH landing pad NUM.  */
91 
92 void
93 add_stmt_to_eh_lp (gimple t, int num)
94 {
95   add_stmt_to_eh_lp_fn (cfun, t, num);
96 }
97 
98 /* Add statement T to the single EH landing pad in REGION.  */
99 
100 static void
101 record_stmt_eh_region (eh_region region, gimple t)
102 {
103   if (region == NULL)
104     return;
105   if (region->type == ERT_MUST_NOT_THROW)
106     add_stmt_to_eh_lp_fn (cfun, t, -region->index);
107   else
108     {
109       eh_landing_pad lp = region->landing_pads;
110       if (lp == NULL)
111 	lp = gen_eh_landing_pad (region);
112       else
113 	gcc_assert (lp->next_lp == NULL);
114       add_stmt_to_eh_lp_fn (cfun, t, lp->index);
115     }
116 }
117 
118 
119 /* Remove statement T in function IFUN from its EH landing pad.  */
120 
121 bool
122 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
123 {
124   struct throw_stmt_node dummy;
125   void **slot;
126 
127   if (!get_eh_throw_stmt_table (ifun))
128     return false;
129 
130   dummy.stmt = t;
131   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
132                         NO_INSERT);
133   if (slot)
134     {
135       htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
136       return true;
137     }
138   else
139     return false;
140 }
141 
142 
143 /* Remove statement T in the current function (cfun) from its
144    EH landing pad.  */
145 
146 bool
147 remove_stmt_from_eh_lp (gimple t)
148 {
149   return remove_stmt_from_eh_lp_fn (cfun, t);
150 }
151 
152 /* Determine if statement T is inside an EH region in function IFUN.
153    Positive numbers indicate a landing pad index; negative numbers
154    indicate a MUST_NOT_THROW region index; zero indicates that the
155    statement is not recorded in the region table.  */
156 
157 int
158 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
159 {
160   struct throw_stmt_node *p, n;
161 
162   if (ifun->eh->throw_stmt_table == NULL)
163     return 0;
164 
165   n.stmt = t;
166   p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
167   return p ? p->lp_nr : 0;
168 }
169 
170 /* Likewise, but always use the current function.  */
171 
172 int
173 lookup_stmt_eh_lp (gimple t)
174 {
175   /* We can get called from initialized data when -fnon-call-exceptions
176      is on; prevent crash.  */
177   if (!cfun)
178     return 0;
179   return lookup_stmt_eh_lp_fn (cfun, t);
180 }
181 
182 /* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
183    nodes and LABEL_DECL nodes.  We will use this during the second phase to
184    determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
185 
186 struct finally_tree_node
187 {
188   /* When storing a GIMPLE_TRY, we have to record a gimple.  However
189      when deciding whether a GOTO to a certain LABEL_DECL (which is a
190      tree) leaves the TRY block, its necessary to record a tree in
191      this field.  Thus a treemple is used. */
192   treemple child;
193   gimple parent;
194 };
195 
196 /* Note that this table is *not* marked GTY.  It is short-lived.  */
197 static htab_t finally_tree;
198 
199 static void
200 record_in_finally_tree (treemple child, gimple parent)
201 {
202   struct finally_tree_node *n;
203   void **slot;
204 
205   n = XNEW (struct finally_tree_node);
206   n->child = child;
207   n->parent = parent;
208 
209   slot = htab_find_slot (finally_tree, n, INSERT);
210   gcc_assert (!*slot);
211   *slot = n;
212 }
213 
214 static void
215 collect_finally_tree (gimple stmt, gimple region);
216 
217 /* Go through the gimple sequence.  Works with collect_finally_tree to
218    record all GIMPLE_LABEL and GIMPLE_TRY statements. */
219 
220 static void
221 collect_finally_tree_1 (gimple_seq seq, gimple region)
222 {
223   gimple_stmt_iterator gsi;
224 
225   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
226     collect_finally_tree (gsi_stmt (gsi), region);
227 }
228 
229 static void
230 collect_finally_tree (gimple stmt, gimple region)
231 {
232   treemple temp;
233 
234   switch (gimple_code (stmt))
235     {
236     case GIMPLE_LABEL:
237       temp.t = gimple_label_label (stmt);
238       record_in_finally_tree (temp, region);
239       break;
240 
241     case GIMPLE_TRY:
242       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
243         {
244           temp.g = stmt;
245           record_in_finally_tree (temp, region);
246           collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
247 	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
248         }
249       else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
250         {
251           collect_finally_tree_1 (gimple_try_eval (stmt), region);
252           collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
253         }
254       break;
255 
256     case GIMPLE_CATCH:
257       collect_finally_tree_1 (gimple_catch_handler (stmt), region);
258       break;
259 
260     case GIMPLE_EH_FILTER:
261       collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
262       break;
263 
264     case GIMPLE_EH_ELSE:
265       collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
266       collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
267       break;
268 
269     default:
270       /* A type, a decl, or some kind of statement that we're not
271 	 interested in.  Don't walk them.  */
272       break;
273     }
274 }
275 
276 
277 /* Use the finally tree to determine if a jump from START to TARGET
278    would leave the try_finally node that START lives in.  */
279 
280 static bool
281 outside_finally_tree (treemple start, gimple target)
282 {
283   struct finally_tree_node n, *p;
284 
285   do
286     {
287       n.child = start;
288       p = (struct finally_tree_node *) htab_find (finally_tree, &n);
289       if (!p)
290 	return true;
291       start.g = p->parent;
292     }
293   while (start.g != target);
294 
295   return false;
296 }
297 
298 /* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
299    nodes into a set of gotos, magic labels, and eh regions.
300    The eh region creation is straight-forward, but frobbing all the gotos
301    and such into shape isn't.  */
302 
303 /* The sequence into which we record all EH stuff.  This will be
304    placed at the end of the function when we're all done.  */
305 static gimple_seq eh_seq;
306 
307 /* Record whether an EH region contains something that can throw,
308    indexed by EH region number.  */
309 static bitmap eh_region_may_contain_throw_map;
310 
311 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
312    statements that are seen to escape this GIMPLE_TRY_FINALLY node.
313    The idea is to record a gimple statement for everything except for
314    the conditionals, which get their labels recorded. Since labels are
315    of type 'tree', we need this node to store both gimple and tree
316    objects.  REPL_STMT is the sequence used to replace the goto/return
317    statement.  CONT_STMT is used to store the statement that allows
318    the return/goto to jump to the original destination. */
319 
320 struct goto_queue_node
321 {
322   treemple stmt;
323   location_t location;
324   gimple_seq repl_stmt;
325   gimple cont_stmt;
326   int index;
327   /* This is used when index >= 0 to indicate that stmt is a label (as
328      opposed to a goto stmt).  */
329   int is_label;
330 };
331 
332 /* State of the world while lowering.  */
333 
334 struct leh_state
335 {
336   /* What's "current" while constructing the eh region tree.  These
337      correspond to variables of the same name in cfun->eh, which we
338      don't have easy access to.  */
339   eh_region cur_region;
340 
341   /* What's "current" for the purposes of __builtin_eh_pointer.  For
342      a CATCH, this is the associated TRY.  For an EH_FILTER, this is
343      the associated ALLOWED_EXCEPTIONS, etc.  */
344   eh_region ehp_region;
345 
346   /* Processing of TRY_FINALLY requires a bit more state.  This is
347      split out into a separate structure so that we don't have to
348      copy so much when processing other nodes.  */
349   struct leh_tf_state *tf;
350 };
351 
352 struct leh_tf_state
353 {
354   /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
355      try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
356      this so that outside_finally_tree can reliably reference the tree used
357      in the collect_finally_tree data structures.  */
358   gimple try_finally_expr;
359   gimple top_p;
360 
361   /* While lowering a top_p usually it is expanded into multiple statements,
362      thus we need the following field to store them. */
363   gimple_seq top_p_seq;
364 
365   /* The state outside this try_finally node.  */
366   struct leh_state *outer;
367 
368   /* The exception region created for it.  */
369   eh_region region;
370 
371   /* The goto queue.  */
372   struct goto_queue_node *goto_queue;
373   size_t goto_queue_size;
374   size_t goto_queue_active;
375 
376   /* Pointer map to help in searching goto_queue when it is large.  */
377   struct pointer_map_t *goto_queue_map;
378 
379   /* The set of unique labels seen as entries in the goto queue.  */
380   vec<tree> dest_array;
381 
382   /* A label to be added at the end of the completed transformed
383      sequence.  It will be set if may_fallthru was true *at one time*,
384      though subsequent transformations may have cleared that flag.  */
385   tree fallthru_label;
386 
387   /* True if it is possible to fall out the bottom of the try block.
388      Cleared if the fallthru is converted to a goto.  */
389   bool may_fallthru;
390 
391   /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
392   bool may_return;
393 
394   /* True if the finally block can receive an exception edge.
395      Cleared if the exception case is handled by code duplication.  */
396   bool may_throw;
397 };
398 
399 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
400 
401 /* Search for STMT in the goto queue.  Return the replacement,
402    or null if the statement isn't in the queue.  */
403 
404 #define LARGE_GOTO_QUEUE 20
405 
406 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
407 
408 static gimple_seq
409 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
410 {
411   unsigned int i;
412   void **slot;
413 
414   if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
415     {
416       for (i = 0; i < tf->goto_queue_active; i++)
417 	if ( tf->goto_queue[i].stmt.g == stmt.g)
418 	  return tf->goto_queue[i].repl_stmt;
419       return NULL;
420     }
421 
422   /* If we have a large number of entries in the goto_queue, create a
423      pointer map and use that for searching.  */
424 
425   if (!tf->goto_queue_map)
426     {
427       tf->goto_queue_map = pointer_map_create ();
428       for (i = 0; i < tf->goto_queue_active; i++)
429 	{
430 	  slot = pointer_map_insert (tf->goto_queue_map,
431                                      tf->goto_queue[i].stmt.g);
432           gcc_assert (*slot == NULL);
433 	  *slot = &tf->goto_queue[i];
434 	}
435     }
436 
437   slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
438   if (slot != NULL)
439     return (((struct goto_queue_node *) *slot)->repl_stmt);
440 
441   return NULL;
442 }
443 
444 /* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
445    lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
446    then we can just splat it in, otherwise we add the new stmts immediately
447    after the GIMPLE_COND and redirect.  */
448 
449 static void
450 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
451 				gimple_stmt_iterator *gsi)
452 {
453   tree label;
454   gimple_seq new_seq;
455   treemple temp;
456   location_t loc = gimple_location (gsi_stmt (*gsi));
457 
458   temp.tp = tp;
459   new_seq = find_goto_replacement (tf, temp);
460   if (!new_seq)
461     return;
462 
463   if (gimple_seq_singleton_p (new_seq)
464       && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
465     {
466       *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
467       return;
468     }
469 
470   label = create_artificial_label (loc);
471   /* Set the new label for the GIMPLE_COND */
472   *tp = label;
473 
474   gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
475   gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
476 }
477 
478 /* The real work of replace_goto_queue.  Returns with TSI updated to
479    point to the next statement.  */
480 
481 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
482 
483 static void
484 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
485 		      gimple_stmt_iterator *gsi)
486 {
487   gimple_seq seq;
488   treemple temp;
489   temp.g = NULL;
490 
491   switch (gimple_code (stmt))
492     {
493     case GIMPLE_GOTO:
494     case GIMPLE_RETURN:
495       temp.g = stmt;
496       seq = find_goto_replacement (tf, temp);
497       if (seq)
498 	{
499 	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
500 	  gsi_remove (gsi, false);
501 	  return;
502 	}
503       break;
504 
505     case GIMPLE_COND:
506       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
507       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
508       break;
509 
510     case GIMPLE_TRY:
511       replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
512       replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
513       break;
514     case GIMPLE_CATCH:
515       replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
516       break;
517     case GIMPLE_EH_FILTER:
518       replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
519       break;
520     case GIMPLE_EH_ELSE:
521       replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
522       replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
523       break;
524 
525     default:
526       /* These won't have gotos in them.  */
527       break;
528     }
529 
530   gsi_next (gsi);
531 }
532 
533 /* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
534 
535 static void
536 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
537 {
538   gimple_stmt_iterator gsi = gsi_start (*seq);
539 
540   while (!gsi_end_p (gsi))
541     replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
542 }
543 
544 /* Replace all goto queue members.  */
545 
546 static void
547 replace_goto_queue (struct leh_tf_state *tf)
548 {
549   if (tf->goto_queue_active == 0)
550     return;
551   replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
552   replace_goto_queue_stmt_list (&eh_seq, tf);
553 }
554 
555 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
556    data to be added, IS_LABEL indicates whether NEW_STMT is a label or
557    a gimple return. */
558 
559 static void
560 record_in_goto_queue (struct leh_tf_state *tf,
561                       treemple new_stmt,
562                       int index,
563                       bool is_label,
564 		      location_t location)
565 {
566   size_t active, size;
567   struct goto_queue_node *q;
568 
569   gcc_assert (!tf->goto_queue_map);
570 
571   active = tf->goto_queue_active;
572   size = tf->goto_queue_size;
573   if (active >= size)
574     {
575       size = (size ? size * 2 : 32);
576       tf->goto_queue_size = size;
577       tf->goto_queue
578          = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
579     }
580 
581   q = &tf->goto_queue[active];
582   tf->goto_queue_active = active + 1;
583 
584   memset (q, 0, sizeof (*q));
585   q->stmt = new_stmt;
586   q->index = index;
587   q->location = location;
588   q->is_label = is_label;
589 }
590 
591 /* Record the LABEL label in the goto queue contained in TF.
592    TF is not null.  */
593 
594 static void
595 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
596 			    location_t location)
597 {
598   int index;
599   treemple temp, new_stmt;
600 
601   if (!label)
602     return;
603 
604   /* Computed and non-local gotos do not get processed.  Given
605      their nature we can neither tell whether we've escaped the
606      finally block nor redirect them if we knew.  */
607   if (TREE_CODE (label) != LABEL_DECL)
608     return;
609 
610   /* No need to record gotos that don't leave the try block.  */
611   temp.t = label;
612   if (!outside_finally_tree (temp, tf->try_finally_expr))
613     return;
614 
615   if (! tf->dest_array.exists ())
616     {
617       tf->dest_array.create (10);
618       tf->dest_array.quick_push (label);
619       index = 0;
620     }
621   else
622     {
623       int n = tf->dest_array.length ();
624       for (index = 0; index < n; ++index)
625         if (tf->dest_array[index] == label)
626           break;
627       if (index == n)
628         tf->dest_array.safe_push (label);
629     }
630 
631   /* In the case of a GOTO we want to record the destination label,
632      since with a GIMPLE_COND we have an easy access to the then/else
633      labels. */
634   new_stmt = stmt;
635   record_in_goto_queue (tf, new_stmt, index, true, location);
636 }
637 
638 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
639    node, and if so record that fact in the goto queue associated with that
640    try_finally node.  */
641 
642 static void
643 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
644 {
645   struct leh_tf_state *tf = state->tf;
646   treemple new_stmt;
647 
648   if (!tf)
649     return;
650 
651   switch (gimple_code (stmt))
652     {
653     case GIMPLE_COND:
654       new_stmt.tp = gimple_op_ptr (stmt, 2);
655       record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
656 				  EXPR_LOCATION (*new_stmt.tp));
657       new_stmt.tp = gimple_op_ptr (stmt, 3);
658       record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
659 				  EXPR_LOCATION (*new_stmt.tp));
660       break;
661     case GIMPLE_GOTO:
662       new_stmt.g = stmt;
663       record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
664 				  gimple_location (stmt));
665       break;
666 
667     case GIMPLE_RETURN:
668       tf->may_return = true;
669       new_stmt.g = stmt;
670       record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
671       break;
672 
673     default:
674       gcc_unreachable ();
675     }
676 }
677 
678 
679 #ifdef ENABLE_CHECKING
680 /* We do not process GIMPLE_SWITCHes for now.  As long as the original source
681    was in fact structured, and we've not yet done jump threading, then none
682    of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
683 
684 static void
685 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
686 {
687   struct leh_tf_state *tf = state->tf;
688   size_t i, n;
689 
690   if (!tf)
691     return;
692 
693   n = gimple_switch_num_labels (switch_expr);
694 
695   for (i = 0; i < n; ++i)
696     {
697       treemple temp;
698       tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
699       temp.t = lab;
700       gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
701     }
702 }
703 #else
704 #define verify_norecord_switch_expr(state, switch_expr)
705 #endif
706 
707 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB.  If MOD is
708    non-null, insert it before the new branch.  */
709 
710 static void
711 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
712 {
713   gimple x;
714 
715   /* In the case of a return, the queue node must be a gimple statement.  */
716   gcc_assert (!q->is_label);
717 
718   /* Note that the return value may have already been computed, e.g.,
719 
720 	int x;
721 	int foo (void)
722 	{
723 	  x = 0;
724 	  try {
725 	    return x;
726 	  } finally {
727 	    x++;
728 	  }
729 	}
730 
731      should return 0, not 1.  We don't have to do anything to make
732      this happens because the return value has been placed in the
733      RESULT_DECL already.  */
734 
735   q->cont_stmt = q->stmt.g;
736 
737   if (mod)
738     gimple_seq_add_seq (&q->repl_stmt, mod);
739 
740   x = gimple_build_goto (finlab);
741   gimple_set_location (x, q->location);
742   gimple_seq_add_stmt (&q->repl_stmt, x);
743 }
744 
745 /* Similar, but easier, for GIMPLE_GOTO.  */
746 
747 static void
748 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
749 		     struct leh_tf_state *tf)
750 {
751   gimple x;
752 
753   gcc_assert (q->is_label);
754 
755   q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
756 
757   if (mod)
758     gimple_seq_add_seq (&q->repl_stmt, mod);
759 
760   x = gimple_build_goto (finlab);
761   gimple_set_location (x, q->location);
762   gimple_seq_add_stmt (&q->repl_stmt, x);
763 }
764 
765 /* Emit a standard landing pad sequence into SEQ for REGION.  */
766 
767 static void
768 emit_post_landing_pad (gimple_seq *seq, eh_region region)
769 {
770   eh_landing_pad lp = region->landing_pads;
771   gimple x;
772 
773   if (lp == NULL)
774     lp = gen_eh_landing_pad (region);
775 
776   lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
777   EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
778 
779   x = gimple_build_label (lp->post_landing_pad);
780   gimple_seq_add_stmt (seq, x);
781 }
782 
783 /* Emit a RESX statement into SEQ for REGION.  */
784 
785 static void
786 emit_resx (gimple_seq *seq, eh_region region)
787 {
788   gimple x = gimple_build_resx (region->index);
789   gimple_seq_add_stmt (seq, x);
790   if (region->outer)
791     record_stmt_eh_region (region->outer, x);
792 }
793 
794 /* Emit an EH_DISPATCH statement into SEQ for REGION.  */
795 
796 static void
797 emit_eh_dispatch (gimple_seq *seq, eh_region region)
798 {
799   gimple x = gimple_build_eh_dispatch (region->index);
800   gimple_seq_add_stmt (seq, x);
801 }
802 
803 /* Note that the current EH region may contain a throw, or a
804    call to a function which itself may contain a throw.  */
805 
806 static void
807 note_eh_region_may_contain_throw (eh_region region)
808 {
809   while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
810     {
811       if (region->type == ERT_MUST_NOT_THROW)
812 	break;
813       region = region->outer;
814       if (region == NULL)
815 	break;
816     }
817 }
818 
819 /* Check if REGION has been marked as containing a throw.  If REGION is
820    NULL, this predicate is false.  */
821 
822 static inline bool
823 eh_region_may_contain_throw (eh_region r)
824 {
825   return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
826 }
827 
828 /* We want to transform
829 	try { body; } catch { stuff; }
830    to
831 	normal_sequence:
832 	  body;
833 	  over:
834 	eh_sequence:
835 	  landing_pad:
836 	  stuff;
837 	  goto over;
838 
839    TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
840    should be placed before the second operand, or NULL.  OVER is
841    an existing label that should be put at the exit, or NULL.  */
842 
843 static gimple_seq
844 frob_into_branch_around (gimple tp, eh_region region, tree over)
845 {
846   gimple x;
847   gimple_seq cleanup, result;
848   location_t loc = gimple_location (tp);
849 
850   cleanup = gimple_try_cleanup (tp);
851   result = gimple_try_eval (tp);
852 
853   if (region)
854     emit_post_landing_pad (&eh_seq, region);
855 
856   if (gimple_seq_may_fallthru (cleanup))
857     {
858       if (!over)
859 	over = create_artificial_label (loc);
860       x = gimple_build_goto (over);
861       gimple_set_location (x, loc);
862       gimple_seq_add_stmt (&cleanup, x);
863     }
864   gimple_seq_add_seq (&eh_seq, cleanup);
865 
866   if (over)
867     {
868       x = gimple_build_label (over);
869       gimple_seq_add_stmt (&result, x);
870     }
871   return result;
872 }
873 
874 /* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
875    Make sure to record all new labels found.  */
876 
877 static gimple_seq
878 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
879 			     location_t loc)
880 {
881   gimple region = NULL;
882   gimple_seq new_seq;
883   gimple_stmt_iterator gsi;
884 
885   new_seq = copy_gimple_seq_and_replace_locals (seq);
886 
887   for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
888     {
889       gimple stmt = gsi_stmt (gsi);
890       if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
891 	{
892 	  tree block = gimple_block (stmt);
893 	  gimple_set_location (stmt, loc);
894 	  gimple_set_block (stmt, block);
895 	}
896     }
897 
898   if (outer_state->tf)
899     region = outer_state->tf->try_finally_expr;
900   collect_finally_tree_1 (new_seq, region);
901 
902   return new_seq;
903 }
904 
905 /* A subroutine of lower_try_finally.  Create a fallthru label for
906    the given try_finally state.  The only tricky bit here is that
907    we have to make sure to record the label in our outer context.  */
908 
909 static tree
910 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
911 {
912   tree label = tf->fallthru_label;
913   treemple temp;
914 
915   if (!label)
916     {
917       label = create_artificial_label (gimple_location (tf->try_finally_expr));
918       tf->fallthru_label = label;
919       if (tf->outer->tf)
920         {
921           temp.t = label;
922           record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
923         }
924     }
925   return label;
926 }
927 
928 /* A subroutine of lower_try_finally.  If FINALLY consits of a
929    GIMPLE_EH_ELSE node, return it.  */
930 
931 static inline gimple
932 get_eh_else (gimple_seq finally)
933 {
934   gimple x = gimple_seq_first_stmt (finally);
935   if (gimple_code (x) == GIMPLE_EH_ELSE)
936     {
937       gcc_assert (gimple_seq_singleton_p (finally));
938       return x;
939     }
940   return NULL;
941 }
942 
943 /* A subroutine of lower_try_finally.  If the eh_protect_cleanup_actions
944    langhook returns non-null, then the language requires that the exception
945    path out of a try_finally be treated specially.  To wit: the code within
946    the finally block may not itself throw an exception.  We have two choices
947    here. First we can duplicate the finally block and wrap it in a
948    must_not_throw region.  Second, we can generate code like
949 
950 	try {
951 	  finally_block;
952 	} catch {
953 	  if (fintmp == eh_edge)
954 	    protect_cleanup_actions;
955 	}
956 
957    where "fintmp" is the temporary used in the switch statement generation
958    alternative considered below.  For the nonce, we always choose the first
959    option.
960 
961    THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
962 
963 static void
964 honor_protect_cleanup_actions (struct leh_state *outer_state,
965 			       struct leh_state *this_state,
966 			       struct leh_tf_state *tf)
967 {
968   tree protect_cleanup_actions;
969   gimple_stmt_iterator gsi;
970   bool finally_may_fallthru;
971   gimple_seq finally;
972   gimple x, eh_else;
973 
974   /* First check for nothing to do.  */
975   if (lang_hooks.eh_protect_cleanup_actions == NULL)
976     return;
977   protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
978   if (protect_cleanup_actions == NULL)
979     return;
980 
981   finally = gimple_try_cleanup (tf->top_p);
982   eh_else = get_eh_else (finally);
983 
984   /* Duplicate the FINALLY block.  Only need to do this for try-finally,
985      and not for cleanups.  If we've got an EH_ELSE, extract it now.  */
986   if (eh_else)
987     {
988       finally = gimple_eh_else_e_body (eh_else);
989       gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
990     }
991   else if (this_state)
992     finally = lower_try_finally_dup_block (finally, outer_state,
993 	gimple_location (tf->try_finally_expr));
994   finally_may_fallthru = gimple_seq_may_fallthru (finally);
995 
996   /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
997      set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
998      to be in an enclosing scope, but needs to be implemented at this level
999      to avoid a nesting violation (see wrap_temporary_cleanups in
1000      cp/decl.c).  Since it's logically at an outer level, we should call
1001      terminate before we get to it, so strip it away before adding the
1002      MUST_NOT_THROW filter.  */
1003   gsi = gsi_start (finally);
1004   x = gsi_stmt (gsi);
1005   if (gimple_code (x) == GIMPLE_TRY
1006       && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1007       && gimple_try_catch_is_cleanup (x))
1008     {
1009       gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1010       gsi_remove (&gsi, false);
1011     }
1012 
1013   /* Wrap the block with protect_cleanup_actions as the action.  */
1014   x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1015   x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1016 			GIMPLE_TRY_CATCH);
1017   finally = lower_eh_must_not_throw (outer_state, x);
1018 
1019   /* Drop all of this into the exception sequence.  */
1020   emit_post_landing_pad (&eh_seq, tf->region);
1021   gimple_seq_add_seq (&eh_seq, finally);
1022   if (finally_may_fallthru)
1023     emit_resx (&eh_seq, tf->region);
1024 
1025   /* Having now been handled, EH isn't to be considered with
1026      the rest of the outgoing edges.  */
1027   tf->may_throw = false;
1028 }
1029 
1030 /* A subroutine of lower_try_finally.  We have determined that there is
1031    no fallthru edge out of the finally block.  This means that there is
1032    no outgoing edge corresponding to any incoming edge.  Restructure the
1033    try_finally node for this special case.  */
1034 
1035 static void
1036 lower_try_finally_nofallthru (struct leh_state *state,
1037 			      struct leh_tf_state *tf)
1038 {
1039   tree lab;
1040   gimple x, eh_else;
1041   gimple_seq finally;
1042   struct goto_queue_node *q, *qe;
1043 
1044   lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1045 
1046   /* We expect that tf->top_p is a GIMPLE_TRY. */
1047   finally = gimple_try_cleanup (tf->top_p);
1048   tf->top_p_seq = gimple_try_eval (tf->top_p);
1049 
1050   x = gimple_build_label (lab);
1051   gimple_seq_add_stmt (&tf->top_p_seq, x);
1052 
1053   q = tf->goto_queue;
1054   qe = q + tf->goto_queue_active;
1055   for (; q < qe; ++q)
1056     if (q->index < 0)
1057       do_return_redirection (q, lab, NULL);
1058     else
1059       do_goto_redirection (q, lab, NULL, tf);
1060 
1061   replace_goto_queue (tf);
1062 
1063   /* Emit the finally block into the stream.  Lower EH_ELSE at this time.  */
1064   eh_else = get_eh_else (finally);
1065   if (eh_else)
1066     {
1067       finally = gimple_eh_else_n_body (eh_else);
1068       lower_eh_constructs_1 (state, &finally);
1069       gimple_seq_add_seq (&tf->top_p_seq, finally);
1070 
1071       if (tf->may_throw)
1072 	{
1073 	  finally = gimple_eh_else_e_body (eh_else);
1074 	  lower_eh_constructs_1 (state, &finally);
1075 
1076 	  emit_post_landing_pad (&eh_seq, tf->region);
1077 	  gimple_seq_add_seq (&eh_seq, finally);
1078 	}
1079     }
1080   else
1081     {
1082       lower_eh_constructs_1 (state, &finally);
1083       gimple_seq_add_seq (&tf->top_p_seq, finally);
1084 
1085       if (tf->may_throw)
1086 	{
1087 	  emit_post_landing_pad (&eh_seq, tf->region);
1088 
1089 	  x = gimple_build_goto (lab);
1090 	  gimple_set_location (x, gimple_location (tf->try_finally_expr));
1091 	  gimple_seq_add_stmt (&eh_seq, x);
1092 	}
1093     }
1094 }
1095 
1096 /* A subroutine of lower_try_finally.  We have determined that there is
1097    exactly one destination of the finally block.  Restructure the
1098    try_finally node for this special case.  */
1099 
1100 static void
1101 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1102 {
1103   struct goto_queue_node *q, *qe;
1104   gimple x;
1105   gimple_seq finally;
1106   gimple_stmt_iterator gsi;
1107   tree finally_label;
1108   location_t loc = gimple_location (tf->try_finally_expr);
1109 
1110   finally = gimple_try_cleanup (tf->top_p);
1111   tf->top_p_seq = gimple_try_eval (tf->top_p);
1112 
1113   /* Since there's only one destination, and the destination edge can only
1114      either be EH or non-EH, that implies that all of our incoming edges
1115      are of the same type.  Therefore we can lower EH_ELSE immediately.  */
1116   x = get_eh_else (finally);
1117   if (x)
1118     {
1119       if (tf->may_throw)
1120 	finally = gimple_eh_else_e_body (x);
1121       else
1122 	finally = gimple_eh_else_n_body (x);
1123     }
1124 
1125   lower_eh_constructs_1 (state, &finally);
1126 
1127   for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1128     {
1129       gimple stmt = gsi_stmt (gsi);
1130       if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1131 	{
1132 	  tree block = gimple_block (stmt);
1133 	  gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1134 	  gimple_set_block (stmt, block);
1135 	}
1136     }
1137 
1138   if (tf->may_throw)
1139     {
1140       /* Only reachable via the exception edge.  Add the given label to
1141          the head of the FINALLY block.  Append a RESX at the end.  */
1142       emit_post_landing_pad (&eh_seq, tf->region);
1143       gimple_seq_add_seq (&eh_seq, finally);
1144       emit_resx (&eh_seq, tf->region);
1145       return;
1146     }
1147 
1148   if (tf->may_fallthru)
1149     {
1150       /* Only reachable via the fallthru edge.  Do nothing but let
1151 	 the two blocks run together; we'll fall out the bottom.  */
1152       gimple_seq_add_seq (&tf->top_p_seq, finally);
1153       return;
1154     }
1155 
1156   finally_label = create_artificial_label (loc);
1157   x = gimple_build_label (finally_label);
1158   gimple_seq_add_stmt (&tf->top_p_seq, x);
1159 
1160   gimple_seq_add_seq (&tf->top_p_seq, finally);
1161 
1162   q = tf->goto_queue;
1163   qe = q + tf->goto_queue_active;
1164 
1165   if (tf->may_return)
1166     {
1167       /* Reachable by return expressions only.  Redirect them.  */
1168       for (; q < qe; ++q)
1169 	do_return_redirection (q, finally_label, NULL);
1170       replace_goto_queue (tf);
1171     }
1172   else
1173     {
1174       /* Reachable by goto expressions only.  Redirect them.  */
1175       for (; q < qe; ++q)
1176 	do_goto_redirection (q, finally_label, NULL, tf);
1177       replace_goto_queue (tf);
1178 
1179       if (tf->dest_array[0] == tf->fallthru_label)
1180 	{
1181 	  /* Reachable by goto to fallthru label only.  Redirect it
1182 	     to the new label (already created, sadly), and do not
1183 	     emit the final branch out, or the fallthru label.  */
1184 	  tf->fallthru_label = NULL;
1185 	  return;
1186 	}
1187     }
1188 
1189   /* Place the original return/goto to the original destination
1190      immediately after the finally block. */
1191   x = tf->goto_queue[0].cont_stmt;
1192   gimple_seq_add_stmt (&tf->top_p_seq, x);
1193   maybe_record_in_goto_queue (state, x);
1194 }
1195 
1196 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1197    and outgoing from the finally block.  Implement this by duplicating the
1198    finally block for every destination.  */
1199 
1200 static void
1201 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1202 {
1203   gimple_seq finally;
1204   gimple_seq new_stmt;
1205   gimple_seq seq;
1206   gimple x, eh_else;
1207   tree tmp;
1208   location_t tf_loc = gimple_location (tf->try_finally_expr);
1209 
1210   finally = gimple_try_cleanup (tf->top_p);
1211 
1212   /* Notice EH_ELSE, and simplify some of the remaining code
1213      by considering FINALLY to be the normal return path only.  */
1214   eh_else = get_eh_else (finally);
1215   if (eh_else)
1216     finally = gimple_eh_else_n_body (eh_else);
1217 
1218   tf->top_p_seq = gimple_try_eval (tf->top_p);
1219   new_stmt = NULL;
1220 
1221   if (tf->may_fallthru)
1222     {
1223       seq = lower_try_finally_dup_block (finally, state, tf_loc);
1224       lower_eh_constructs_1 (state, &seq);
1225       gimple_seq_add_seq (&new_stmt, seq);
1226 
1227       tmp = lower_try_finally_fallthru_label (tf);
1228       x = gimple_build_goto (tmp);
1229       gimple_set_location (x, tf_loc);
1230       gimple_seq_add_stmt (&new_stmt, x);
1231     }
1232 
1233   if (tf->may_throw)
1234     {
1235       /* We don't need to copy the EH path of EH_ELSE,
1236 	 since it is only emitted once.  */
1237       if (eh_else)
1238 	seq = gimple_eh_else_e_body (eh_else);
1239       else
1240 	seq = lower_try_finally_dup_block (finally, state, tf_loc);
1241       lower_eh_constructs_1 (state, &seq);
1242 
1243       emit_post_landing_pad (&eh_seq, tf->region);
1244       gimple_seq_add_seq (&eh_seq, seq);
1245       emit_resx (&eh_seq, tf->region);
1246     }
1247 
1248   if (tf->goto_queue)
1249     {
1250       struct goto_queue_node *q, *qe;
1251       int return_index, index;
1252       struct labels_s
1253       {
1254 	struct goto_queue_node *q;
1255 	tree label;
1256       } *labels;
1257 
1258       return_index = tf->dest_array.length ();
1259       labels = XCNEWVEC (struct labels_s, return_index + 1);
1260 
1261       q = tf->goto_queue;
1262       qe = q + tf->goto_queue_active;
1263       for (; q < qe; q++)
1264 	{
1265 	  index = q->index < 0 ? return_index : q->index;
1266 
1267 	  if (!labels[index].q)
1268 	    labels[index].q = q;
1269 	}
1270 
1271       for (index = 0; index < return_index + 1; index++)
1272 	{
1273 	  tree lab;
1274 
1275 	  q = labels[index].q;
1276 	  if (! q)
1277 	    continue;
1278 
1279 	  lab = labels[index].label
1280 	    = create_artificial_label (tf_loc);
1281 
1282 	  if (index == return_index)
1283 	    do_return_redirection (q, lab, NULL);
1284 	  else
1285 	    do_goto_redirection (q, lab, NULL, tf);
1286 
1287 	  x = gimple_build_label (lab);
1288           gimple_seq_add_stmt (&new_stmt, x);
1289 
1290 	  seq = lower_try_finally_dup_block (finally, state, q->location);
1291 	  lower_eh_constructs_1 (state, &seq);
1292           gimple_seq_add_seq (&new_stmt, seq);
1293 
1294           gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1295 	  maybe_record_in_goto_queue (state, q->cont_stmt);
1296 	}
1297 
1298       for (q = tf->goto_queue; q < qe; q++)
1299 	{
1300 	  tree lab;
1301 
1302 	  index = q->index < 0 ? return_index : q->index;
1303 
1304 	  if (labels[index].q == q)
1305 	    continue;
1306 
1307 	  lab = labels[index].label;
1308 
1309 	  if (index == return_index)
1310 	    do_return_redirection (q, lab, NULL);
1311 	  else
1312 	    do_goto_redirection (q, lab, NULL, tf);
1313 	}
1314 
1315       replace_goto_queue (tf);
1316       free (labels);
1317     }
1318 
1319   /* Need to link new stmts after running replace_goto_queue due
1320      to not wanting to process the same goto stmts twice.  */
1321   gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1322 }
1323 
1324 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1325    and outgoing from the finally block.  Implement this by instrumenting
1326    each incoming edge and creating a switch statement at the end of the
1327    finally block that branches to the appropriate destination.  */
1328 
1329 static void
1330 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1331 {
1332   struct goto_queue_node *q, *qe;
1333   tree finally_tmp, finally_label;
1334   int return_index, eh_index, fallthru_index;
1335   int nlabels, ndests, j, last_case_index;
1336   tree last_case;
1337   vec<tree> case_label_vec;
1338   gimple_seq switch_body = NULL;
1339   gimple x, eh_else;
1340   tree tmp;
1341   gimple switch_stmt;
1342   gimple_seq finally;
1343   struct pointer_map_t *cont_map = NULL;
1344   /* The location of the TRY_FINALLY stmt.  */
1345   location_t tf_loc = gimple_location (tf->try_finally_expr);
1346   /* The location of the finally block.  */
1347   location_t finally_loc;
1348 
1349   finally = gimple_try_cleanup (tf->top_p);
1350   eh_else = get_eh_else (finally);
1351 
1352   /* Mash the TRY block to the head of the chain.  */
1353   tf->top_p_seq = gimple_try_eval (tf->top_p);
1354 
1355   /* The location of the finally is either the last stmt in the finally
1356      block or the location of the TRY_FINALLY itself.  */
1357   x = gimple_seq_last_stmt (finally);
1358   finally_loc = x ? gimple_location (x) : tf_loc;
1359 
1360   /* Prepare for switch statement generation.  */
1361   nlabels = tf->dest_array.length ();
1362   return_index = nlabels;
1363   eh_index = return_index + tf->may_return;
1364   fallthru_index = eh_index + (tf->may_throw && !eh_else);
1365   ndests = fallthru_index + tf->may_fallthru;
1366 
1367   finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1368   finally_label = create_artificial_label (finally_loc);
1369 
1370   /* We use vec::quick_push on case_label_vec throughout this function,
1371      since we know the size in advance and allocate precisely as muce
1372      space as needed.  */
1373   case_label_vec.create (ndests);
1374   last_case = NULL;
1375   last_case_index = 0;
1376 
1377   /* Begin inserting code for getting to the finally block.  Things
1378      are done in this order to correspond to the sequence the code is
1379      laid out.  */
1380 
1381   if (tf->may_fallthru)
1382     {
1383       x = gimple_build_assign (finally_tmp,
1384 			       build_int_cst (integer_type_node,
1385 					      fallthru_index));
1386       gimple_seq_add_stmt (&tf->top_p_seq, x);
1387 
1388       tmp = build_int_cst (integer_type_node, fallthru_index);
1389       last_case = build_case_label (tmp, NULL,
1390 				    create_artificial_label (tf_loc));
1391       case_label_vec.quick_push (last_case);
1392       last_case_index++;
1393 
1394       x = gimple_build_label (CASE_LABEL (last_case));
1395       gimple_seq_add_stmt (&switch_body, x);
1396 
1397       tmp = lower_try_finally_fallthru_label (tf);
1398       x = gimple_build_goto (tmp);
1399       gimple_set_location (x, tf_loc);
1400       gimple_seq_add_stmt (&switch_body, x);
1401     }
1402 
1403   /* For EH_ELSE, emit the exception path (plus resx) now, then
1404      subsequently we only need consider the normal path.  */
1405   if (eh_else)
1406     {
1407       if (tf->may_throw)
1408 	{
1409 	  finally = gimple_eh_else_e_body (eh_else);
1410 	  lower_eh_constructs_1 (state, &finally);
1411 
1412 	  emit_post_landing_pad (&eh_seq, tf->region);
1413 	  gimple_seq_add_seq (&eh_seq, finally);
1414 	  emit_resx (&eh_seq, tf->region);
1415 	}
1416 
1417       finally = gimple_eh_else_n_body (eh_else);
1418     }
1419   else if (tf->may_throw)
1420     {
1421       emit_post_landing_pad (&eh_seq, tf->region);
1422 
1423       x = gimple_build_assign (finally_tmp,
1424 			       build_int_cst (integer_type_node, eh_index));
1425       gimple_seq_add_stmt (&eh_seq, x);
1426 
1427       x = gimple_build_goto (finally_label);
1428       gimple_set_location (x, tf_loc);
1429       gimple_seq_add_stmt (&eh_seq, x);
1430 
1431       tmp = build_int_cst (integer_type_node, eh_index);
1432       last_case = build_case_label (tmp, NULL,
1433 				    create_artificial_label (tf_loc));
1434       case_label_vec.quick_push (last_case);
1435       last_case_index++;
1436 
1437       x = gimple_build_label (CASE_LABEL (last_case));
1438       gimple_seq_add_stmt (&eh_seq, x);
1439       emit_resx (&eh_seq, tf->region);
1440     }
1441 
1442   x = gimple_build_label (finally_label);
1443   gimple_seq_add_stmt (&tf->top_p_seq, x);
1444 
1445   lower_eh_constructs_1 (state, &finally);
1446   gimple_seq_add_seq (&tf->top_p_seq, finally);
1447 
1448   /* Redirect each incoming goto edge.  */
1449   q = tf->goto_queue;
1450   qe = q + tf->goto_queue_active;
1451   j = last_case_index + tf->may_return;
1452   /* Prepare the assignments to finally_tmp that are executed upon the
1453      entrance through a particular edge. */
1454   for (; q < qe; ++q)
1455     {
1456       gimple_seq mod = NULL;
1457       int switch_id;
1458       unsigned int case_index;
1459 
1460       if (q->index < 0)
1461 	{
1462 	  x = gimple_build_assign (finally_tmp,
1463 				   build_int_cst (integer_type_node,
1464 						  return_index));
1465 	  gimple_seq_add_stmt (&mod, x);
1466 	  do_return_redirection (q, finally_label, mod);
1467 	  switch_id = return_index;
1468 	}
1469       else
1470 	{
1471 	  x = gimple_build_assign (finally_tmp,
1472 				   build_int_cst (integer_type_node, q->index));
1473 	  gimple_seq_add_stmt (&mod, x);
1474 	  do_goto_redirection (q, finally_label, mod, tf);
1475 	  switch_id = q->index;
1476 	}
1477 
1478       case_index = j + q->index;
1479       if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1480         {
1481           tree case_lab;
1482           void **slot;
1483 	  tmp = build_int_cst (integer_type_node, switch_id);
1484           case_lab = build_case_label (tmp, NULL,
1485 				       create_artificial_label (tf_loc));
1486           /* We store the cont_stmt in the pointer map, so that we can recover
1487              it in the loop below.  */
1488           if (!cont_map)
1489             cont_map = pointer_map_create ();
1490           slot = pointer_map_insert (cont_map, case_lab);
1491           *slot = q->cont_stmt;
1492           case_label_vec.quick_push (case_lab);
1493         }
1494     }
1495   for (j = last_case_index; j < last_case_index + nlabels; j++)
1496     {
1497       gimple cont_stmt;
1498       void **slot;
1499 
1500       last_case = case_label_vec[j];
1501 
1502       gcc_assert (last_case);
1503       gcc_assert (cont_map);
1504 
1505       slot = pointer_map_contains (cont_map, last_case);
1506       gcc_assert (slot);
1507       cont_stmt = *(gimple *) slot;
1508 
1509       x = gimple_build_label (CASE_LABEL (last_case));
1510       gimple_seq_add_stmt (&switch_body, x);
1511       gimple_seq_add_stmt (&switch_body, cont_stmt);
1512       maybe_record_in_goto_queue (state, cont_stmt);
1513     }
1514   if (cont_map)
1515     pointer_map_destroy (cont_map);
1516 
1517   replace_goto_queue (tf);
1518 
1519   /* Make sure that the last case is the default label, as one is required.
1520      Then sort the labels, which is also required in GIMPLE.  */
1521   CASE_LOW (last_case) = NULL;
1522   sort_case_labels (case_label_vec);
1523 
1524   /* Build the switch statement, setting last_case to be the default
1525      label.  */
1526   switch_stmt = gimple_build_switch (finally_tmp, last_case,
1527 				     case_label_vec);
1528   gimple_set_location (switch_stmt, finally_loc);
1529 
1530   /* Need to link SWITCH_STMT after running replace_goto_queue
1531      due to not wanting to process the same goto stmts twice.  */
1532   gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1533   gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1534 }
1535 
1536 /* Decide whether or not we are going to duplicate the finally block.
1537    There are several considerations.
1538 
1539    First, if this is Java, then the finally block contains code
1540    written by the user.  It has line numbers associated with it,
1541    so duplicating the block means it's difficult to set a breakpoint.
1542    Since controlling code generation via -g is verboten, we simply
1543    never duplicate code without optimization.
1544 
1545    Second, we'd like to prevent egregious code growth.  One way to
1546    do this is to estimate the size of the finally block, multiply
1547    that by the number of copies we'd need to make, and compare against
1548    the estimate of the size of the switch machinery we'd have to add.  */
1549 
1550 static bool
1551 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1552 {
1553   int f_estimate, sw_estimate;
1554   gimple eh_else;
1555 
1556   /* If there's an EH_ELSE involved, the exception path is separate
1557      and really doesn't come into play for this computation.  */
1558   eh_else = get_eh_else (finally);
1559   if (eh_else)
1560     {
1561       ndests -= may_throw;
1562       finally = gimple_eh_else_n_body (eh_else);
1563     }
1564 
1565   if (!optimize)
1566     {
1567       gimple_stmt_iterator gsi;
1568 
1569       if (ndests == 1)
1570         return true;
1571 
1572       for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1573 	{
1574 	  gimple stmt = gsi_stmt (gsi);
1575 	  if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1576 	    return false;
1577 	}
1578       return true;
1579     }
1580 
1581   /* Finally estimate N times, plus N gotos.  */
1582   f_estimate = count_insns_seq (finally, &eni_size_weights);
1583   f_estimate = (f_estimate + 1) * ndests;
1584 
1585   /* Switch statement (cost 10), N variable assignments, N gotos.  */
1586   sw_estimate = 10 + 2 * ndests;
1587 
1588   /* Optimize for size clearly wants our best guess.  */
1589   if (optimize_function_for_size_p (cfun))
1590     return f_estimate < sw_estimate;
1591 
1592   /* ??? These numbers are completely made up so far.  */
1593   if (optimize > 1)
1594     return f_estimate < 100 || f_estimate < sw_estimate * 2;
1595   else
1596     return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1597 }
1598 
1599 /* REG is the enclosing region for a possible cleanup region, or the region
1600    itself.  Returns TRUE if such a region would be unreachable.
1601 
1602    Cleanup regions within a must-not-throw region aren't actually reachable
1603    even if there are throwing stmts within them, because the personality
1604    routine will call terminate before unwinding.  */
1605 
1606 static bool
1607 cleanup_is_dead_in (eh_region reg)
1608 {
1609   while (reg && reg->type == ERT_CLEANUP)
1610     reg = reg->outer;
1611   return (reg && reg->type == ERT_MUST_NOT_THROW);
1612 }
1613 
1614 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1615    to a sequence of labels and blocks, plus the exception region trees
1616    that record all the magic.  This is complicated by the need to
1617    arrange for the FINALLY block to be executed on all exits.  */
1618 
1619 static gimple_seq
1620 lower_try_finally (struct leh_state *state, gimple tp)
1621 {
1622   struct leh_tf_state this_tf;
1623   struct leh_state this_state;
1624   int ndests;
1625   gimple_seq old_eh_seq;
1626 
1627   /* Process the try block.  */
1628 
1629   memset (&this_tf, 0, sizeof (this_tf));
1630   this_tf.try_finally_expr = tp;
1631   this_tf.top_p = tp;
1632   this_tf.outer = state;
1633   if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1634     {
1635       this_tf.region = gen_eh_region_cleanup (state->cur_region);
1636       this_state.cur_region = this_tf.region;
1637     }
1638   else
1639     {
1640       this_tf.region = NULL;
1641       this_state.cur_region = state->cur_region;
1642     }
1643 
1644   this_state.ehp_region = state->ehp_region;
1645   this_state.tf = &this_tf;
1646 
1647   old_eh_seq = eh_seq;
1648   eh_seq = NULL;
1649 
1650   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1651 
1652   /* Determine if the try block is escaped through the bottom.  */
1653   this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1654 
1655   /* Determine if any exceptions are possible within the try block.  */
1656   if (this_tf.region)
1657     this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1658   if (this_tf.may_throw)
1659     honor_protect_cleanup_actions (state, &this_state, &this_tf);
1660 
1661   /* Determine how many edges (still) reach the finally block.  Or rather,
1662      how many destinations are reached by the finally block.  Use this to
1663      determine how we process the finally block itself.  */
1664 
1665   ndests = this_tf.dest_array.length ();
1666   ndests += this_tf.may_fallthru;
1667   ndests += this_tf.may_return;
1668   ndests += this_tf.may_throw;
1669 
1670   /* If the FINALLY block is not reachable, dike it out.  */
1671   if (ndests == 0)
1672     {
1673       gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1674       gimple_try_set_cleanup (tp, NULL);
1675     }
1676   /* If the finally block doesn't fall through, then any destination
1677      we might try to impose there isn't reached either.  There may be
1678      some minor amount of cleanup and redirection still needed.  */
1679   else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1680     lower_try_finally_nofallthru (state, &this_tf);
1681 
1682   /* We can easily special-case redirection to a single destination.  */
1683   else if (ndests == 1)
1684     lower_try_finally_onedest (state, &this_tf);
1685   else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1686 				    gimple_try_cleanup (tp)))
1687     lower_try_finally_copy (state, &this_tf);
1688   else
1689     lower_try_finally_switch (state, &this_tf);
1690 
1691   /* If someone requested we add a label at the end of the transformed
1692      block, do so.  */
1693   if (this_tf.fallthru_label)
1694     {
1695       /* This must be reached only if ndests == 0. */
1696       gimple x = gimple_build_label (this_tf.fallthru_label);
1697       gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1698     }
1699 
1700   this_tf.dest_array.release ();
1701   free (this_tf.goto_queue);
1702   if (this_tf.goto_queue_map)
1703     pointer_map_destroy (this_tf.goto_queue_map);
1704 
1705   /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1706      If there was no old eh_seq, then the append is trivially already done.  */
1707   if (old_eh_seq)
1708     {
1709       if (eh_seq == NULL)
1710 	eh_seq = old_eh_seq;
1711       else
1712 	{
1713 	  gimple_seq new_eh_seq = eh_seq;
1714 	  eh_seq = old_eh_seq;
1715 	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1716 	}
1717     }
1718 
1719   return this_tf.top_p_seq;
1720 }
1721 
1722 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1723    list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1724    exception region trees that records all the magic.  */
1725 
1726 static gimple_seq
1727 lower_catch (struct leh_state *state, gimple tp)
1728 {
1729   eh_region try_region = NULL;
1730   struct leh_state this_state = *state;
1731   gimple_stmt_iterator gsi;
1732   tree out_label;
1733   gimple_seq new_seq, cleanup;
1734   gimple x;
1735   location_t try_catch_loc = gimple_location (tp);
1736 
1737   if (flag_exceptions)
1738     {
1739       try_region = gen_eh_region_try (state->cur_region);
1740       this_state.cur_region = try_region;
1741     }
1742 
1743   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1744 
1745   if (!eh_region_may_contain_throw (try_region))
1746     return gimple_try_eval (tp);
1747 
1748   new_seq = NULL;
1749   emit_eh_dispatch (&new_seq, try_region);
1750   emit_resx (&new_seq, try_region);
1751 
1752   this_state.cur_region = state->cur_region;
1753   this_state.ehp_region = try_region;
1754 
1755   /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1756      itself, so that e.g. for coverage purposes the nested cleanups don't
1757      appear before the cleanup body.  See PR64634 for details.  */
1758   gimple_seq old_eh_seq = eh_seq;
1759   eh_seq = NULL;
1760 
1761   out_label = NULL;
1762   cleanup = gimple_try_cleanup (tp);
1763   for (gsi = gsi_start (cleanup);
1764        !gsi_end_p (gsi);
1765        gsi_next (&gsi))
1766     {
1767       eh_catch c;
1768       gimple gcatch;
1769       gimple_seq handler;
1770 
1771       gcatch = gsi_stmt (gsi);
1772       c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1773 
1774       handler = gimple_catch_handler (gcatch);
1775       lower_eh_constructs_1 (&this_state, &handler);
1776 
1777       c->label = create_artificial_label (UNKNOWN_LOCATION);
1778       x = gimple_build_label (c->label);
1779       gimple_seq_add_stmt (&new_seq, x);
1780 
1781       gimple_seq_add_seq (&new_seq, handler);
1782 
1783       if (gimple_seq_may_fallthru (new_seq))
1784 	{
1785 	  if (!out_label)
1786 	    out_label = create_artificial_label (try_catch_loc);
1787 
1788 	  x = gimple_build_goto (out_label);
1789 	  gimple_seq_add_stmt (&new_seq, x);
1790 	}
1791       if (!c->type_list)
1792 	break;
1793     }
1794 
1795   gimple_try_set_cleanup (tp, new_seq);
1796 
1797   gimple_seq new_eh_seq = eh_seq;
1798   eh_seq = old_eh_seq;
1799   gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1800   gimple_seq_add_seq (&eh_seq, new_eh_seq);
1801   return ret_seq;
1802 }
1803 
1804 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1805    GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1806    region trees that record all the magic.  */
1807 
1808 static gimple_seq
1809 lower_eh_filter (struct leh_state *state, gimple tp)
1810 {
1811   struct leh_state this_state = *state;
1812   eh_region this_region = NULL;
1813   gimple inner, x;
1814   gimple_seq new_seq;
1815 
1816   inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1817 
1818   if (flag_exceptions)
1819     {
1820       this_region = gen_eh_region_allowed (state->cur_region,
1821 				           gimple_eh_filter_types (inner));
1822       this_state.cur_region = this_region;
1823     }
1824 
1825   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1826 
1827   if (!eh_region_may_contain_throw (this_region))
1828     return gimple_try_eval (tp);
1829 
1830   new_seq = NULL;
1831   this_state.cur_region = state->cur_region;
1832   this_state.ehp_region = this_region;
1833 
1834   emit_eh_dispatch (&new_seq, this_region);
1835   emit_resx (&new_seq, this_region);
1836 
1837   this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1838   x = gimple_build_label (this_region->u.allowed.label);
1839   gimple_seq_add_stmt (&new_seq, x);
1840 
1841   lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1842   gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1843 
1844   gimple_try_set_cleanup (tp, new_seq);
1845 
1846   return frob_into_branch_around (tp, this_region, NULL);
1847 }
1848 
1849 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1850    an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1851    plus the exception region trees that record all the magic.  */
1852 
1853 static gimple_seq
1854 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1855 {
1856   struct leh_state this_state = *state;
1857 
1858   if (flag_exceptions)
1859     {
1860       gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1861       eh_region this_region;
1862 
1863       this_region = gen_eh_region_must_not_throw (state->cur_region);
1864       this_region->u.must_not_throw.failure_decl
1865 	= gimple_eh_must_not_throw_fndecl (inner);
1866       this_region->u.must_not_throw.failure_loc
1867 	= LOCATION_LOCUS (gimple_location (tp));
1868 
1869       /* In order to get mangling applied to this decl, we must mark it
1870 	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1871 	 needs to happen.  */
1872       TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1873 
1874       this_state.cur_region = this_region;
1875     }
1876 
1877   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1878 
1879   return gimple_try_eval (tp);
1880 }
1881 
1882 /* Implement a cleanup expression.  This is similar to try-finally,
1883    except that we only execute the cleanup block for exception edges.  */
1884 
1885 static gimple_seq
1886 lower_cleanup (struct leh_state *state, gimple tp)
1887 {
1888   struct leh_state this_state = *state;
1889   eh_region this_region = NULL;
1890   struct leh_tf_state fake_tf;
1891   gimple_seq result;
1892   bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1893 
1894   if (flag_exceptions && !cleanup_dead)
1895     {
1896       this_region = gen_eh_region_cleanup (state->cur_region);
1897       this_state.cur_region = this_region;
1898     }
1899 
1900   lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1901 
1902   if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1903     return gimple_try_eval (tp);
1904 
1905   /* Build enough of a try-finally state so that we can reuse
1906      honor_protect_cleanup_actions.  */
1907   memset (&fake_tf, 0, sizeof (fake_tf));
1908   fake_tf.top_p = fake_tf.try_finally_expr = tp;
1909   fake_tf.outer = state;
1910   fake_tf.region = this_region;
1911   fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1912   fake_tf.may_throw = true;
1913 
1914   honor_protect_cleanup_actions (state, NULL, &fake_tf);
1915 
1916   if (fake_tf.may_throw)
1917     {
1918       /* In this case honor_protect_cleanup_actions had nothing to do,
1919 	 and we should process this normally.  */
1920       lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1921       result = frob_into_branch_around (tp, this_region,
1922                                         fake_tf.fallthru_label);
1923     }
1924   else
1925     {
1926       /* In this case honor_protect_cleanup_actions did nearly all of
1927 	 the work.  All we have left is to append the fallthru_label.  */
1928 
1929       result = gimple_try_eval (tp);
1930       if (fake_tf.fallthru_label)
1931 	{
1932 	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1933 	  gimple_seq_add_stmt (&result, x);
1934 	}
1935     }
1936   return result;
1937 }
1938 
1939 /* Main loop for lowering eh constructs. Also moves gsi to the next
1940    statement. */
1941 
1942 static void
1943 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1944 {
1945   gimple_seq replace;
1946   gimple x;
1947   gimple stmt = gsi_stmt (*gsi);
1948 
1949   switch (gimple_code (stmt))
1950     {
1951     case GIMPLE_CALL:
1952       {
1953 	tree fndecl = gimple_call_fndecl (stmt);
1954 	tree rhs, lhs;
1955 
1956 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1957 	  switch (DECL_FUNCTION_CODE (fndecl))
1958 	    {
1959 	    case BUILT_IN_EH_POINTER:
1960 	      /* The front end may have generated a call to
1961 		 __builtin_eh_pointer (0) within a catch region.  Replace
1962 		 this zero argument with the current catch region number.  */
1963 	      if (state->ehp_region)
1964 		{
1965 		  tree nr = build_int_cst (integer_type_node,
1966 					   state->ehp_region->index);
1967 		  gimple_call_set_arg (stmt, 0, nr);
1968 		}
1969 	      else
1970 		{
1971 		  /* The user has dome something silly.  Remove it.  */
1972 		  rhs = null_pointer_node;
1973 		  goto do_replace;
1974 		}
1975 	      break;
1976 
1977 	    case BUILT_IN_EH_FILTER:
1978 	      /* ??? This should never appear, but since it's a builtin it
1979 		 is accessible to abuse by users.  Just remove it and
1980 		 replace the use with the arbitrary value zero.  */
1981 	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1982 	    do_replace:
1983 	      lhs = gimple_call_lhs (stmt);
1984 	      x = gimple_build_assign (lhs, rhs);
1985 	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1986 	      /* FALLTHRU */
1987 
1988 	    case BUILT_IN_EH_COPY_VALUES:
1989 	      /* Likewise this should not appear.  Remove it.  */
1990 	      gsi_remove (gsi, true);
1991 	      return;
1992 
1993 	    default:
1994 	      break;
1995 	    }
1996       }
1997       /* FALLTHRU */
1998 
1999     case GIMPLE_ASSIGN:
2000       /* If the stmt can throw use a new temporary for the assignment
2001          to a LHS.  This makes sure the old value of the LHS is
2002 	 available on the EH edge.  Only do so for statements that
2003 	 potentially fall through (no noreturn calls e.g.), otherwise
2004 	 this new assignment might create fake fallthru regions.  */
2005       if (stmt_could_throw_p (stmt)
2006 	  && gimple_has_lhs (stmt)
2007 	  && gimple_stmt_may_fallthru (stmt)
2008 	  && !tree_could_throw_p (gimple_get_lhs (stmt))
2009 	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2010 	{
2011 	  tree lhs = gimple_get_lhs (stmt);
2012 	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2013 	  gimple s = gimple_build_assign (lhs, tmp);
2014 	  gimple_set_location (s, gimple_location (stmt));
2015 	  gimple_set_block (s, gimple_block (stmt));
2016 	  gimple_set_lhs (stmt, tmp);
2017 	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2018 	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2019 	    DECL_GIMPLE_REG_P (tmp) = 1;
2020 	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
2021 	}
2022       /* Look for things that can throw exceptions, and record them.  */
2023       if (state->cur_region && stmt_could_throw_p (stmt))
2024 	{
2025 	  record_stmt_eh_region (state->cur_region, stmt);
2026 	  note_eh_region_may_contain_throw (state->cur_region);
2027 	}
2028       break;
2029 
2030     case GIMPLE_COND:
2031     case GIMPLE_GOTO:
2032     case GIMPLE_RETURN:
2033       maybe_record_in_goto_queue (state, stmt);
2034       break;
2035 
2036     case GIMPLE_SWITCH:
2037       verify_norecord_switch_expr (state, stmt);
2038       break;
2039 
2040     case GIMPLE_TRY:
2041       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2042 	replace = lower_try_finally (state, stmt);
2043       else
2044 	{
2045 	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2046 	  if (!x)
2047 	    {
2048 	      replace = gimple_try_eval (stmt);
2049 	      lower_eh_constructs_1 (state, &replace);
2050 	    }
2051 	  else
2052 	    switch (gimple_code (x))
2053 	      {
2054 		case GIMPLE_CATCH:
2055 		    replace = lower_catch (state, stmt);
2056 		    break;
2057 		case GIMPLE_EH_FILTER:
2058 		    replace = lower_eh_filter (state, stmt);
2059 		    break;
2060 		case GIMPLE_EH_MUST_NOT_THROW:
2061 		    replace = lower_eh_must_not_throw (state, stmt);
2062 		    break;
2063 		case GIMPLE_EH_ELSE:
2064 		    /* This code is only valid with GIMPLE_TRY_FINALLY.  */
2065 		    gcc_unreachable ();
2066 		default:
2067 		    replace = lower_cleanup (state, stmt);
2068 		    break;
2069 	      }
2070 	}
2071 
2072       /* Remove the old stmt and insert the transformed sequence
2073 	 instead. */
2074       gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2075       gsi_remove (gsi, true);
2076 
2077       /* Return since we don't want gsi_next () */
2078       return;
2079 
2080     case GIMPLE_EH_ELSE:
2081       /* We should be eliminating this in lower_try_finally et al.  */
2082       gcc_unreachable ();
2083 
2084     default:
2085       /* A type, a decl, or some kind of statement that we're not
2086 	 interested in.  Don't walk them.  */
2087       break;
2088     }
2089 
2090   gsi_next (gsi);
2091 }
2092 
2093 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2094 
2095 static void
2096 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2097 {
2098   gimple_stmt_iterator gsi;
2099   for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2100     lower_eh_constructs_2 (state, &gsi);
2101 }
2102 
2103 static unsigned int
2104 lower_eh_constructs (void)
2105 {
2106   struct leh_state null_state;
2107   gimple_seq bodyp;
2108 
2109   bodyp = gimple_body (current_function_decl);
2110   if (bodyp == NULL)
2111     return 0;
2112 
2113   finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2114   eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2115   memset (&null_state, 0, sizeof (null_state));
2116 
2117   collect_finally_tree_1 (bodyp, NULL);
2118   lower_eh_constructs_1 (&null_state, &bodyp);
2119   gimple_set_body (current_function_decl, bodyp);
2120 
2121   /* We assume there's a return statement, or something, at the end of
2122      the function, and thus ploping the EH sequence afterward won't
2123      change anything.  */
2124   gcc_assert (!gimple_seq_may_fallthru (bodyp));
2125   gimple_seq_add_seq (&bodyp, eh_seq);
2126 
2127   /* We assume that since BODYP already existed, adding EH_SEQ to it
2128      didn't change its value, and we don't have to re-set the function.  */
2129   gcc_assert (bodyp == gimple_body (current_function_decl));
2130 
2131   htab_delete (finally_tree);
2132   BITMAP_FREE (eh_region_may_contain_throw_map);
2133   eh_seq = NULL;
2134 
2135   /* If this function needs a language specific EH personality routine
2136      and the frontend didn't already set one do so now.  */
2137   if (function_needs_eh_personality (cfun) == eh_personality_lang
2138       && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2139     DECL_FUNCTION_PERSONALITY (current_function_decl)
2140       = lang_hooks.eh_personality ();
2141 
2142   return 0;
2143 }
2144 
2145 struct gimple_opt_pass pass_lower_eh =
2146 {
2147  {
2148   GIMPLE_PASS,
2149   "eh",					/* name */
2150   OPTGROUP_NONE,                        /* optinfo_flags */
2151   NULL,					/* gate */
2152   lower_eh_constructs,			/* execute */
2153   NULL,					/* sub */
2154   NULL,					/* next */
2155   0,					/* static_pass_number */
2156   TV_TREE_EH,				/* tv_id */
2157   PROP_gimple_lcf,			/* properties_required */
2158   PROP_gimple_leh,			/* properties_provided */
2159   0,					/* properties_destroyed */
2160   0,					/* todo_flags_start */
2161   0             			/* todo_flags_finish */
2162  }
2163 };
2164 
2165 /* Create the multiple edges from an EH_DISPATCH statement to all of
2166    the possible handlers for its EH region.  Return true if there's
2167    no fallthru edge; false if there is.  */
2168 
2169 bool
2170 make_eh_dispatch_edges (gimple stmt)
2171 {
2172   eh_region r;
2173   eh_catch c;
2174   basic_block src, dst;
2175 
2176   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2177   src = gimple_bb (stmt);
2178 
2179   switch (r->type)
2180     {
2181     case ERT_TRY:
2182       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2183 	{
2184 	  dst = label_to_block (c->label);
2185 	  make_edge (src, dst, 0);
2186 
2187 	  /* A catch-all handler doesn't have a fallthru.  */
2188 	  if (c->type_list == NULL)
2189 	    return false;
2190 	}
2191       break;
2192 
2193     case ERT_ALLOWED_EXCEPTIONS:
2194       dst = label_to_block (r->u.allowed.label);
2195       make_edge (src, dst, 0);
2196       break;
2197 
2198     default:
2199       gcc_unreachable ();
2200     }
2201 
2202   return true;
2203 }
2204 
2205 /* Create the single EH edge from STMT to its nearest landing pad,
2206    if there is such a landing pad within the current function.  */
2207 
2208 void
2209 make_eh_edges (gimple stmt)
2210 {
2211   basic_block src, dst;
2212   eh_landing_pad lp;
2213   int lp_nr;
2214 
2215   lp_nr = lookup_stmt_eh_lp (stmt);
2216   if (lp_nr <= 0)
2217     return;
2218 
2219   lp = get_eh_landing_pad_from_number (lp_nr);
2220   gcc_assert (lp != NULL);
2221 
2222   src = gimple_bb (stmt);
2223   dst = label_to_block (lp->post_landing_pad);
2224   make_edge (src, dst, EDGE_EH);
2225 }
2226 
2227 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2228    do not actually perform the final edge redirection.
2229 
2230    CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2231    we intend to change the destination EH region as well; this means
2232    EH_LANDING_PAD_NR must already be set on the destination block label.
2233    If false, we're being called from generic cfg manipulation code and we
2234    should preserve our place within the region tree.  */
2235 
2236 static void
2237 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2238 {
2239   eh_landing_pad old_lp, new_lp;
2240   basic_block old_bb;
2241   gimple throw_stmt;
2242   int old_lp_nr, new_lp_nr;
2243   tree old_label, new_label;
2244   edge_iterator ei;
2245   edge e;
2246 
2247   old_bb = edge_in->dest;
2248   old_label = gimple_block_label (old_bb);
2249   old_lp_nr = EH_LANDING_PAD_NR (old_label);
2250   gcc_assert (old_lp_nr > 0);
2251   old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2252 
2253   throw_stmt = last_stmt (edge_in->src);
2254   gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2255 
2256   new_label = gimple_block_label (new_bb);
2257 
2258   /* Look for an existing region that might be using NEW_BB already.  */
2259   new_lp_nr = EH_LANDING_PAD_NR (new_label);
2260   if (new_lp_nr)
2261     {
2262       new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2263       gcc_assert (new_lp);
2264 
2265       /* Unless CHANGE_REGION is true, the new and old landing pad
2266 	 had better be associated with the same EH region.  */
2267       gcc_assert (change_region || new_lp->region == old_lp->region);
2268     }
2269   else
2270     {
2271       new_lp = NULL;
2272       gcc_assert (!change_region);
2273     }
2274 
2275   /* Notice when we redirect the last EH edge away from OLD_BB.  */
2276   FOR_EACH_EDGE (e, ei, old_bb->preds)
2277     if (e != edge_in && (e->flags & EDGE_EH))
2278       break;
2279 
2280   if (new_lp)
2281     {
2282       /* NEW_LP already exists.  If there are still edges into OLD_LP,
2283 	 there's nothing to do with the EH tree.  If there are no more
2284 	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2285 	 If CHANGE_REGION is true, then our caller is expecting to remove
2286 	 the landing pad.  */
2287       if (e == NULL && !change_region)
2288 	remove_eh_landing_pad (old_lp);
2289     }
2290   else
2291     {
2292       /* No correct landing pad exists.  If there are no more edges
2293 	 into OLD_LP, then we can simply re-use the existing landing pad.
2294 	 Otherwise, we have to create a new landing pad.  */
2295       if (e == NULL)
2296 	{
2297 	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2298 	  new_lp = old_lp;
2299 	}
2300       else
2301 	new_lp = gen_eh_landing_pad (old_lp->region);
2302       new_lp->post_landing_pad = new_label;
2303       EH_LANDING_PAD_NR (new_label) = new_lp->index;
2304     }
2305 
2306   /* Maybe move the throwing statement to the new region.  */
2307   if (old_lp != new_lp)
2308     {
2309       remove_stmt_from_eh_lp (throw_stmt);
2310       add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2311     }
2312 }
2313 
2314 /* Redirect EH edge E to NEW_BB.  */
2315 
2316 edge
2317 redirect_eh_edge (edge edge_in, basic_block new_bb)
2318 {
2319   redirect_eh_edge_1 (edge_in, new_bb, false);
2320   return ssa_redirect_edge (edge_in, new_bb);
2321 }
2322 
2323 /* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2324    labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2325    The actual edge update will happen in the caller.  */
2326 
2327 void
2328 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2329 {
2330   tree new_lab = gimple_block_label (new_bb);
2331   bool any_changed = false;
2332   basic_block old_bb;
2333   eh_region r;
2334   eh_catch c;
2335 
2336   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2337   switch (r->type)
2338     {
2339     case ERT_TRY:
2340       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2341 	{
2342 	  old_bb = label_to_block (c->label);
2343 	  if (old_bb == e->dest)
2344 	    {
2345 	      c->label = new_lab;
2346 	      any_changed = true;
2347 	    }
2348 	}
2349       break;
2350 
2351     case ERT_ALLOWED_EXCEPTIONS:
2352       old_bb = label_to_block (r->u.allowed.label);
2353       gcc_assert (old_bb == e->dest);
2354       r->u.allowed.label = new_lab;
2355       any_changed = true;
2356       break;
2357 
2358     default:
2359       gcc_unreachable ();
2360     }
2361 
2362   gcc_assert (any_changed);
2363 }
2364 
2365 /* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2366 
2367 bool
2368 operation_could_trap_helper_p (enum tree_code op,
2369 			       bool fp_operation,
2370 			       bool honor_trapv,
2371 			       bool honor_nans,
2372 			       bool honor_snans,
2373 			       tree divisor,
2374 			       bool *handled)
2375 {
2376   *handled = true;
2377   switch (op)
2378     {
2379     case TRUNC_DIV_EXPR:
2380     case CEIL_DIV_EXPR:
2381     case FLOOR_DIV_EXPR:
2382     case ROUND_DIV_EXPR:
2383     case EXACT_DIV_EXPR:
2384     case CEIL_MOD_EXPR:
2385     case FLOOR_MOD_EXPR:
2386     case ROUND_MOD_EXPR:
2387     case TRUNC_MOD_EXPR:
2388     case RDIV_EXPR:
2389       if (honor_snans || honor_trapv)
2390 	return true;
2391       if (fp_operation)
2392 	return flag_trapping_math;
2393       if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2394         return true;
2395       return false;
2396 
2397     case LT_EXPR:
2398     case LE_EXPR:
2399     case GT_EXPR:
2400     case GE_EXPR:
2401     case LTGT_EXPR:
2402       /* Some floating point comparisons may trap.  */
2403       return honor_nans;
2404 
2405     case EQ_EXPR:
2406     case NE_EXPR:
2407     case UNORDERED_EXPR:
2408     case ORDERED_EXPR:
2409     case UNLT_EXPR:
2410     case UNLE_EXPR:
2411     case UNGT_EXPR:
2412     case UNGE_EXPR:
2413     case UNEQ_EXPR:
2414       return honor_snans;
2415 
2416     case CONVERT_EXPR:
2417     case FIX_TRUNC_EXPR:
2418       /* Conversion of floating point might trap.  */
2419       return honor_nans;
2420 
2421     case NEGATE_EXPR:
2422     case ABS_EXPR:
2423     case CONJ_EXPR:
2424       /* These operations don't trap with floating point.  */
2425       if (honor_trapv)
2426 	return true;
2427       return false;
2428 
2429     case PLUS_EXPR:
2430     case MINUS_EXPR:
2431     case MULT_EXPR:
2432       /* Any floating arithmetic may trap.  */
2433       if (fp_operation && flag_trapping_math)
2434 	return true;
2435       if (honor_trapv)
2436 	return true;
2437       return false;
2438 
2439     case COMPLEX_EXPR:
2440     case CONSTRUCTOR:
2441       /* Constructing an object cannot trap.  */
2442       return false;
2443 
2444     default:
2445       /* Any floating arithmetic may trap.  */
2446       if (fp_operation && flag_trapping_math)
2447 	return true;
2448 
2449       *handled = false;
2450       return false;
2451     }
2452 }
2453 
2454 /* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2455    on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2456    type operands that may trap.  If OP is a division operator, DIVISOR contains
2457    the value of the divisor.  */
2458 
2459 bool
2460 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2461 			tree divisor)
2462 {
2463   bool honor_nans = (fp_operation && flag_trapping_math
2464 		     && !flag_finite_math_only);
2465   bool honor_snans = fp_operation && flag_signaling_nans != 0;
2466   bool handled;
2467 
2468   if (TREE_CODE_CLASS (op) != tcc_comparison
2469       && TREE_CODE_CLASS (op) != tcc_unary
2470       && TREE_CODE_CLASS (op) != tcc_binary)
2471     return false;
2472 
2473   return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2474 					honor_nans, honor_snans, divisor,
2475 					&handled);
2476 }
2477 
2478 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2479    location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2480    This routine expects only GIMPLE lhs or rhs input.  */
2481 
2482 bool
2483 tree_could_trap_p (tree expr)
2484 {
2485   enum tree_code code;
2486   bool fp_operation = false;
2487   bool honor_trapv = false;
2488   tree t, base, div = NULL_TREE;
2489 
2490   if (!expr)
2491     return false;
2492 
2493   code = TREE_CODE (expr);
2494   t = TREE_TYPE (expr);
2495 
2496   if (t)
2497     {
2498       if (COMPARISON_CLASS_P (expr))
2499 	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2500       else
2501 	fp_operation = FLOAT_TYPE_P (t);
2502       honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2503     }
2504 
2505   if (TREE_CODE_CLASS (code) == tcc_binary)
2506     div = TREE_OPERAND (expr, 1);
2507   if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2508     return true;
2509 
2510  restart:
2511   switch (code)
2512     {
2513     case COMPONENT_REF:
2514     case REALPART_EXPR:
2515     case IMAGPART_EXPR:
2516     case BIT_FIELD_REF:
2517     case VIEW_CONVERT_EXPR:
2518     case WITH_SIZE_EXPR:
2519       expr = TREE_OPERAND (expr, 0);
2520       code = TREE_CODE (expr);
2521       goto restart;
2522 
2523     case ARRAY_RANGE_REF:
2524       base = TREE_OPERAND (expr, 0);
2525       if (tree_could_trap_p (base))
2526 	return true;
2527       if (TREE_THIS_NOTRAP (expr))
2528 	return false;
2529       return !range_in_array_bounds_p (expr);
2530 
2531     case ARRAY_REF:
2532       base = TREE_OPERAND (expr, 0);
2533       if (tree_could_trap_p (base))
2534 	return true;
2535       if (TREE_THIS_NOTRAP (expr))
2536 	return false;
2537       return !in_array_bounds_p (expr);
2538 
2539     case TARGET_MEM_REF:
2540     case MEM_REF:
2541       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2542 	  && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2543 	return true;
2544       if (TREE_THIS_NOTRAP (expr))
2545 	return false;
2546       /* We cannot prove that the access is in-bounds when we have
2547          variable-index TARGET_MEM_REFs.  */
2548       if (code == TARGET_MEM_REF
2549 	  && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2550 	return true;
2551       if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2552 	{
2553 	  tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2554 	  double_int off = mem_ref_offset (expr);
2555 	  if (off.is_negative ())
2556 	    return true;
2557 	  if (TREE_CODE (base) == STRING_CST)
2558 	    return double_int::from_uhwi (TREE_STRING_LENGTH (base)).ule (off);
2559 	  else if (DECL_SIZE_UNIT (base) == NULL_TREE
2560 		   || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2561 		   || tree_to_double_int (DECL_SIZE_UNIT (base)).ule (off))
2562 	    return true;
2563 	  /* Now we are sure the first byte of the access is inside
2564 	     the object.  */
2565 	  return false;
2566 	}
2567       return true;
2568 
2569     case INDIRECT_REF:
2570       return !TREE_THIS_NOTRAP (expr);
2571 
2572     case ASM_EXPR:
2573       return TREE_THIS_VOLATILE (expr);
2574 
2575     case CALL_EXPR:
2576       t = get_callee_fndecl (expr);
2577       /* Assume that calls to weak functions may trap.  */
2578       if (!t || !DECL_P (t))
2579 	return true;
2580       if (DECL_WEAK (t))
2581 	return tree_could_trap_p (t);
2582       return false;
2583 
2584     case FUNCTION_DECL:
2585       /* Assume that accesses to weak functions may trap, unless we know
2586 	 they are certainly defined in current TU or in some other
2587 	 LTO partition.  */
2588       if (DECL_WEAK (expr))
2589 	{
2590 	  struct cgraph_node *node;
2591 	  if (!DECL_EXTERNAL (expr))
2592 	    return false;
2593 	  node = cgraph_function_node (cgraph_get_node (expr), NULL);
2594 	  if (node && node->symbol.in_other_partition)
2595 	    return false;
2596 	  return true;
2597 	}
2598       return false;
2599 
2600     case VAR_DECL:
2601       /* Assume that accesses to weak vars may trap, unless we know
2602 	 they are certainly defined in current TU or in some other
2603 	 LTO partition.  */
2604       if (DECL_WEAK (expr))
2605 	{
2606 	  struct varpool_node *node;
2607 	  if (!DECL_EXTERNAL (expr))
2608 	    return false;
2609 	  node = varpool_variable_node (varpool_get_node (expr), NULL);
2610 	  if (node && node->symbol.in_other_partition)
2611 	    return false;
2612 	  return true;
2613 	}
2614       return false;
2615 
2616     default:
2617       return false;
2618     }
2619 }
2620 
2621 
2622 /* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2623    an assignment or a conditional) may throw.  */
2624 
2625 static bool
2626 stmt_could_throw_1_p (gimple stmt)
2627 {
2628   enum tree_code code = gimple_expr_code (stmt);
2629   bool honor_nans = false;
2630   bool honor_snans = false;
2631   bool fp_operation = false;
2632   bool honor_trapv = false;
2633   tree t;
2634   size_t i;
2635   bool handled, ret;
2636 
2637   if (TREE_CODE_CLASS (code) == tcc_comparison
2638       || TREE_CODE_CLASS (code) == tcc_unary
2639       || TREE_CODE_CLASS (code) == tcc_binary)
2640     {
2641       if (is_gimple_assign (stmt)
2642 	  && TREE_CODE_CLASS (code) == tcc_comparison)
2643 	t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2644       else if (gimple_code (stmt) == GIMPLE_COND)
2645 	t = TREE_TYPE (gimple_cond_lhs (stmt));
2646       else
2647 	t = gimple_expr_type (stmt);
2648       fp_operation = FLOAT_TYPE_P (t);
2649       if (fp_operation)
2650 	{
2651 	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2652 	  honor_snans = flag_signaling_nans != 0;
2653 	}
2654       else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2655 	honor_trapv = true;
2656     }
2657 
2658   /* Check if the main expression may trap.  */
2659   t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2660   ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2661 				       honor_nans, honor_snans, t,
2662 				       &handled);
2663   if (handled)
2664     return ret;
2665 
2666   /* If the expression does not trap, see if any of the individual operands may
2667      trap.  */
2668   for (i = 0; i < gimple_num_ops (stmt); i++)
2669     if (tree_could_trap_p (gimple_op (stmt, i)))
2670       return true;
2671 
2672   return false;
2673 }
2674 
2675 
2676 /* Return true if statement STMT could throw an exception.  */
2677 
2678 bool
2679 stmt_could_throw_p (gimple stmt)
2680 {
2681   if (!flag_exceptions)
2682     return false;
2683 
2684   /* The only statements that can throw an exception are assignments,
2685      conditionals, calls, resx, and asms.  */
2686   switch (gimple_code (stmt))
2687     {
2688     case GIMPLE_RESX:
2689       return true;
2690 
2691     case GIMPLE_CALL:
2692       return !gimple_call_nothrow_p (stmt);
2693 
2694     case GIMPLE_ASSIGN:
2695     case GIMPLE_COND:
2696       if (!cfun->can_throw_non_call_exceptions)
2697         return false;
2698       return stmt_could_throw_1_p (stmt);
2699 
2700     case GIMPLE_ASM:
2701       if (!cfun->can_throw_non_call_exceptions)
2702         return false;
2703       return gimple_asm_volatile_p (stmt);
2704 
2705     default:
2706       return false;
2707     }
2708 }
2709 
2710 
2711 /* Return true if expression T could throw an exception.  */
2712 
2713 bool
2714 tree_could_throw_p (tree t)
2715 {
2716   if (!flag_exceptions)
2717     return false;
2718   if (TREE_CODE (t) == MODIFY_EXPR)
2719     {
2720       if (cfun->can_throw_non_call_exceptions
2721           && tree_could_trap_p (TREE_OPERAND (t, 0)))
2722         return true;
2723       t = TREE_OPERAND (t, 1);
2724     }
2725 
2726   if (TREE_CODE (t) == WITH_SIZE_EXPR)
2727     t = TREE_OPERAND (t, 0);
2728   if (TREE_CODE (t) == CALL_EXPR)
2729     return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2730   if (cfun->can_throw_non_call_exceptions)
2731     return tree_could_trap_p (t);
2732   return false;
2733 }
2734 
2735 /* Return true if STMT can throw an exception that is not caught within
2736    the current function (CFUN).  */
2737 
2738 bool
2739 stmt_can_throw_external (gimple stmt)
2740 {
2741   int lp_nr;
2742 
2743   if (!stmt_could_throw_p (stmt))
2744     return false;
2745 
2746   lp_nr = lookup_stmt_eh_lp (stmt);
2747   return lp_nr == 0;
2748 }
2749 
2750 /* Return true if STMT can throw an exception that is caught within
2751    the current function (CFUN).  */
2752 
2753 bool
2754 stmt_can_throw_internal (gimple stmt)
2755 {
2756   int lp_nr;
2757 
2758   if (!stmt_could_throw_p (stmt))
2759     return false;
2760 
2761   lp_nr = lookup_stmt_eh_lp (stmt);
2762   return lp_nr > 0;
2763 }
2764 
2765 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2766    remove any entry it might have from the EH table.  Return true if
2767    any change was made.  */
2768 
2769 bool
2770 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2771 {
2772   if (stmt_could_throw_p (stmt))
2773     return false;
2774   return remove_stmt_from_eh_lp_fn (ifun, stmt);
2775 }
2776 
2777 /* Likewise, but always use the current function.  */
2778 
2779 bool
2780 maybe_clean_eh_stmt (gimple stmt)
2781 {
2782   return maybe_clean_eh_stmt_fn (cfun, stmt);
2783 }
2784 
2785 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2786    OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2787    in the table if it should be in there.  Return TRUE if a replacement was
2788    done that my require an EH edge purge.  */
2789 
2790 bool
2791 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2792 {
2793   int lp_nr = lookup_stmt_eh_lp (old_stmt);
2794 
2795   if (lp_nr != 0)
2796     {
2797       bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2798 
2799       if (new_stmt == old_stmt && new_stmt_could_throw)
2800 	return false;
2801 
2802       remove_stmt_from_eh_lp (old_stmt);
2803       if (new_stmt_could_throw)
2804 	{
2805 	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2806 	  return false;
2807 	}
2808       else
2809 	return true;
2810     }
2811 
2812   return false;
2813 }
2814 
2815 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2816    in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2817    operand is the return value of duplicate_eh_regions.  */
2818 
2819 bool
2820 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2821 			    struct function *old_fun, gimple old_stmt,
2822 			    struct pointer_map_t *map, int default_lp_nr)
2823 {
2824   int old_lp_nr, new_lp_nr;
2825   void **slot;
2826 
2827   if (!stmt_could_throw_p (new_stmt))
2828     return false;
2829 
2830   old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2831   if (old_lp_nr == 0)
2832     {
2833       if (default_lp_nr == 0)
2834 	return false;
2835       new_lp_nr = default_lp_nr;
2836     }
2837   else if (old_lp_nr > 0)
2838     {
2839       eh_landing_pad old_lp, new_lp;
2840 
2841       old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2842       slot = pointer_map_contains (map, old_lp);
2843       new_lp = (eh_landing_pad) *slot;
2844       new_lp_nr = new_lp->index;
2845     }
2846   else
2847     {
2848       eh_region old_r, new_r;
2849 
2850       old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2851       slot = pointer_map_contains (map, old_r);
2852       new_r = (eh_region) *slot;
2853       new_lp_nr = -new_r->index;
2854     }
2855 
2856   add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2857   return true;
2858 }
2859 
2860 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2861    and thus no remapping is required.  */
2862 
2863 bool
2864 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2865 {
2866   int lp_nr;
2867 
2868   if (!stmt_could_throw_p (new_stmt))
2869     return false;
2870 
2871   lp_nr = lookup_stmt_eh_lp (old_stmt);
2872   if (lp_nr == 0)
2873     return false;
2874 
2875   add_stmt_to_eh_lp (new_stmt, lp_nr);
2876   return true;
2877 }
2878 
2879 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2880    GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2881    this only handles handlers consisting of a single call, as that's the
2882    important case for C++: a destructor call for a particular object showing
2883    up in multiple handlers.  */
2884 
2885 static bool
2886 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2887 {
2888   gimple_stmt_iterator gsi;
2889   gimple ones, twos;
2890   unsigned int ai;
2891 
2892   gsi = gsi_start (oneh);
2893   if (!gsi_one_before_end_p (gsi))
2894     return false;
2895   ones = gsi_stmt (gsi);
2896 
2897   gsi = gsi_start (twoh);
2898   if (!gsi_one_before_end_p (gsi))
2899     return false;
2900   twos = gsi_stmt (gsi);
2901 
2902   if (!is_gimple_call (ones)
2903       || !is_gimple_call (twos)
2904       || gimple_call_lhs (ones)
2905       || gimple_call_lhs (twos)
2906       || gimple_call_chain (ones)
2907       || gimple_call_chain (twos)
2908       || !gimple_call_same_target_p (ones, twos)
2909       || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2910     return false;
2911 
2912   for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2913     if (!operand_equal_p (gimple_call_arg (ones, ai),
2914                           gimple_call_arg (twos, ai), 0))
2915       return false;
2916 
2917   return true;
2918 }
2919 
2920 /* Optimize
2921     try { A() } finally { try { ~B() } catch { ~A() } }
2922     try { ... } finally { ~A() }
2923    into
2924     try { A() } catch { ~B() }
2925     try { ~B() ... } finally { ~A() }
2926 
2927    This occurs frequently in C++, where A is a local variable and B is a
2928    temporary used in the initializer for A.  */
2929 
2930 static void
2931 optimize_double_finally (gimple one, gimple two)
2932 {
2933   gimple oneh;
2934   gimple_stmt_iterator gsi;
2935   gimple_seq cleanup;
2936 
2937   cleanup = gimple_try_cleanup (one);
2938   gsi = gsi_start (cleanup);
2939   if (!gsi_one_before_end_p (gsi))
2940     return;
2941 
2942   oneh = gsi_stmt (gsi);
2943   if (gimple_code (oneh) != GIMPLE_TRY
2944       || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2945     return;
2946 
2947   if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2948     {
2949       gimple_seq seq = gimple_try_eval (oneh);
2950 
2951       gimple_try_set_cleanup (one, seq);
2952       gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2953       seq = copy_gimple_seq_and_replace_locals (seq);
2954       gimple_seq_add_seq (&seq, gimple_try_eval (two));
2955       gimple_try_set_eval (two, seq);
2956     }
2957 }
2958 
2959 /* Perform EH refactoring optimizations that are simpler to do when code
2960    flow has been lowered but EH structures haven't.  */
2961 
2962 static void
2963 refactor_eh_r (gimple_seq seq)
2964 {
2965   gimple_stmt_iterator gsi;
2966   gimple one, two;
2967 
2968   one = NULL;
2969   two = NULL;
2970   gsi = gsi_start (seq);
2971   while (1)
2972     {
2973       one = two;
2974       if (gsi_end_p (gsi))
2975 	two = NULL;
2976       else
2977 	two = gsi_stmt (gsi);
2978       if (one
2979 	  && two
2980 	  && gimple_code (one) == GIMPLE_TRY
2981 	  && gimple_code (two) == GIMPLE_TRY
2982 	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2983 	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2984 	optimize_double_finally (one, two);
2985       if (one)
2986 	switch (gimple_code (one))
2987 	  {
2988 	  case GIMPLE_TRY:
2989 	    refactor_eh_r (gimple_try_eval (one));
2990 	    refactor_eh_r (gimple_try_cleanup (one));
2991 	    break;
2992 	  case GIMPLE_CATCH:
2993 	    refactor_eh_r (gimple_catch_handler (one));
2994 	    break;
2995 	  case GIMPLE_EH_FILTER:
2996 	    refactor_eh_r (gimple_eh_filter_failure (one));
2997 	    break;
2998 	  case GIMPLE_EH_ELSE:
2999 	    refactor_eh_r (gimple_eh_else_n_body (one));
3000 	    refactor_eh_r (gimple_eh_else_e_body (one));
3001 	    break;
3002 	  default:
3003 	    break;
3004 	  }
3005       if (two)
3006 	gsi_next (&gsi);
3007       else
3008 	break;
3009     }
3010 }
3011 
3012 static unsigned
3013 refactor_eh (void)
3014 {
3015   refactor_eh_r (gimple_body (current_function_decl));
3016   return 0;
3017 }
3018 
3019 static bool
3020 gate_refactor_eh (void)
3021 {
3022   return flag_exceptions != 0;
3023 }
3024 
3025 struct gimple_opt_pass pass_refactor_eh =
3026 {
3027  {
3028   GIMPLE_PASS,
3029   "ehopt",				/* name */
3030   OPTGROUP_NONE,                        /* optinfo_flags */
3031   gate_refactor_eh,			/* gate */
3032   refactor_eh,				/* execute */
3033   NULL,					/* sub */
3034   NULL,					/* next */
3035   0,					/* static_pass_number */
3036   TV_TREE_EH,				/* tv_id */
3037   PROP_gimple_lcf,			/* properties_required */
3038   0,					/* properties_provided */
3039   0,					/* properties_destroyed */
3040   0,					/* todo_flags_start */
3041   0             			/* todo_flags_finish */
3042  }
3043 };
3044 
3045 /* At the end of gimple optimization, we can lower RESX.  */
3046 
3047 static bool
3048 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3049 {
3050   int lp_nr;
3051   eh_region src_r, dst_r;
3052   gimple_stmt_iterator gsi;
3053   gimple x;
3054   tree fn, src_nr;
3055   bool ret = false;
3056 
3057   lp_nr = lookup_stmt_eh_lp (stmt);
3058   if (lp_nr != 0)
3059     dst_r = get_eh_region_from_lp_number (lp_nr);
3060   else
3061     dst_r = NULL;
3062 
3063   src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3064   gsi = gsi_last_bb (bb);
3065 
3066   if (src_r == NULL)
3067     {
3068       /* We can wind up with no source region when pass_cleanup_eh shows
3069 	 that there are no entries into an eh region and deletes it, but
3070 	 then the block that contains the resx isn't removed.  This can
3071 	 happen without optimization when the switch statement created by
3072 	 lower_try_finally_switch isn't simplified to remove the eh case.
3073 
3074 	 Resolve this by expanding the resx node to an abort.  */
3075 
3076       fn = builtin_decl_implicit (BUILT_IN_TRAP);
3077       x = gimple_build_call (fn, 0);
3078       gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3079 
3080       while (EDGE_COUNT (bb->succs) > 0)
3081 	remove_edge (EDGE_SUCC (bb, 0));
3082     }
3083   else if (dst_r)
3084     {
3085       /* When we have a destination region, we resolve this by copying
3086 	 the excptr and filter values into place, and changing the edge
3087 	 to immediately after the landing pad.  */
3088       edge e;
3089 
3090       if (lp_nr < 0)
3091 	{
3092 	  basic_block new_bb;
3093 	  void **slot;
3094 	  tree lab;
3095 
3096 	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
3097 	     the failure decl into a new block, if needed.  */
3098 	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3099 
3100 	  slot = pointer_map_contains (mnt_map, dst_r);
3101 	  if (slot == NULL)
3102 	    {
3103 	      gimple_stmt_iterator gsi2;
3104 
3105 	      new_bb = create_empty_bb (bb);
3106 	      if (current_loops)
3107 		add_bb_to_loop (new_bb, bb->loop_father);
3108 	      lab = gimple_block_label (new_bb);
3109 	      gsi2 = gsi_start_bb (new_bb);
3110 
3111 	      fn = dst_r->u.must_not_throw.failure_decl;
3112 	      x = gimple_build_call (fn, 0);
3113 	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3114 	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3115 
3116 	      slot = pointer_map_insert (mnt_map, dst_r);
3117 	      *slot = lab;
3118 	    }
3119 	  else
3120 	    {
3121 	      lab = (tree) *slot;
3122 	      new_bb = label_to_block (lab);
3123 	    }
3124 
3125 	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
3126 	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3127 	  e->count = bb->count;
3128 	  e->probability = REG_BR_PROB_BASE;
3129 	}
3130       else
3131 	{
3132 	  edge_iterator ei;
3133 	  tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3134 
3135 	  fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3136 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3137 	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
3138 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3139 
3140 	  /* Update the flags for the outgoing edge.  */
3141 	  e = single_succ_edge (bb);
3142 	  gcc_assert (e->flags & EDGE_EH);
3143 	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3144 
3145 	  /* If there are no more EH users of the landing pad, delete it.  */
3146 	  FOR_EACH_EDGE (e, ei, e->dest->preds)
3147 	    if (e->flags & EDGE_EH)
3148 	      break;
3149 	  if (e == NULL)
3150 	    {
3151 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3152 	      remove_eh_landing_pad (lp);
3153 	    }
3154 	}
3155 
3156       ret = true;
3157     }
3158   else
3159     {
3160       tree var;
3161 
3162       /* When we don't have a destination region, this exception escapes
3163 	 up the call chain.  We resolve this by generating a call to the
3164 	 _Unwind_Resume library function.  */
3165 
3166       /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3167 	 with no arguments for C++ and Java.  Check for that.  */
3168       if (src_r->use_cxa_end_cleanup)
3169 	{
3170 	  fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3171 	  x = gimple_build_call (fn, 0);
3172 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3173 	}
3174       else
3175 	{
3176 	  fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3177 	  src_nr = build_int_cst (integer_type_node, src_r->index);
3178 	  x = gimple_build_call (fn, 1, src_nr);
3179 	  var = create_tmp_var (ptr_type_node, NULL);
3180 	  var = make_ssa_name (var, x);
3181 	  gimple_call_set_lhs (x, var);
3182 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3183 
3184 	  fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3185 	  x = gimple_build_call (fn, 1, var);
3186 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3187 	}
3188 
3189       gcc_assert (EDGE_COUNT (bb->succs) == 0);
3190     }
3191 
3192   gsi_remove (&gsi, true);
3193 
3194   return ret;
3195 }
3196 
3197 static unsigned
3198 execute_lower_resx (void)
3199 {
3200   basic_block bb;
3201   struct pointer_map_t *mnt_map;
3202   bool dominance_invalidated = false;
3203   bool any_rewritten = false;
3204 
3205   mnt_map = pointer_map_create ();
3206 
3207   FOR_EACH_BB (bb)
3208     {
3209       gimple last = last_stmt (bb);
3210       if (last && is_gimple_resx (last))
3211 	{
3212 	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3213 	  any_rewritten = true;
3214 	}
3215     }
3216 
3217   pointer_map_destroy (mnt_map);
3218 
3219   if (dominance_invalidated)
3220     {
3221       free_dominance_info (CDI_DOMINATORS);
3222       free_dominance_info (CDI_POST_DOMINATORS);
3223     }
3224 
3225   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3226 }
3227 
3228 static bool
3229 gate_lower_resx (void)
3230 {
3231   return flag_exceptions != 0;
3232 }
3233 
3234 struct gimple_opt_pass pass_lower_resx =
3235 {
3236  {
3237   GIMPLE_PASS,
3238   "resx",				/* name */
3239   OPTGROUP_NONE,                        /* optinfo_flags */
3240   gate_lower_resx,			/* gate */
3241   execute_lower_resx,			/* execute */
3242   NULL,					/* sub */
3243   NULL,					/* next */
3244   0,					/* static_pass_number */
3245   TV_TREE_EH,				/* tv_id */
3246   PROP_gimple_lcf,			/* properties_required */
3247   0,					/* properties_provided */
3248   0,					/* properties_destroyed */
3249   0,					/* todo_flags_start */
3250   TODO_verify_flow	                /* todo_flags_finish */
3251  }
3252 };
3253 
3254 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3255    external throw.  */
3256 
3257 static void
3258 optimize_clobbers (basic_block bb)
3259 {
3260   gimple_stmt_iterator gsi = gsi_last_bb (bb);
3261   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3262     {
3263       gimple stmt = gsi_stmt (gsi);
3264       if (is_gimple_debug (stmt))
3265 	continue;
3266       if (!gimple_clobber_p (stmt)
3267 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3268 	return;
3269       unlink_stmt_vdef (stmt);
3270       gsi_remove (&gsi, true);
3271       release_defs (stmt);
3272     }
3273 }
3274 
3275 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3276    internal throw to successor BB.  */
3277 
3278 static int
3279 sink_clobbers (basic_block bb)
3280 {
3281   edge e;
3282   edge_iterator ei;
3283   gimple_stmt_iterator gsi, dgsi;
3284   basic_block succbb;
3285   bool any_clobbers = false;
3286 
3287   /* Only optimize if BB has a single EH successor and
3288      all predecessor edges are EH too.  */
3289   if (!single_succ_p (bb)
3290       || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3291     return 0;
3292 
3293   FOR_EACH_EDGE (e, ei, bb->preds)
3294     {
3295       if ((e->flags & EDGE_EH) == 0)
3296 	return 0;
3297     }
3298 
3299   /* And BB contains only CLOBBER stmts before the final
3300      RESX.  */
3301   gsi = gsi_last_bb (bb);
3302   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3303     {
3304       gimple stmt = gsi_stmt (gsi);
3305       if (is_gimple_debug (stmt))
3306 	continue;
3307       if (gimple_code (stmt) == GIMPLE_LABEL)
3308 	break;
3309       if (!gimple_clobber_p (stmt)
3310 	  || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3311 	return 0;
3312       any_clobbers = true;
3313     }
3314   if (!any_clobbers)
3315     return 0;
3316 
3317   succbb = single_succ (bb);
3318   dgsi = gsi_after_labels (succbb);
3319   gsi = gsi_last_bb (bb);
3320   for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3321     {
3322       gimple stmt = gsi_stmt (gsi);
3323       if (is_gimple_debug (stmt))
3324 	continue;
3325       if (gimple_code (stmt) == GIMPLE_LABEL)
3326 	break;
3327       unlink_stmt_vdef (stmt);
3328       gsi_remove (&gsi, false);
3329       /* Trigger the operand scanner to cause renaming for virtual
3330          operands for this statement.
3331 	 ???  Given the simple structure of this code manually
3332 	 figuring out the reaching definition should not be too hard.  */
3333       if (gimple_vuse (stmt))
3334 	gimple_set_vuse (stmt, NULL_TREE);
3335       gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3336     }
3337 
3338   return TODO_update_ssa_only_virtuals;
3339 }
3340 
3341 /* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3342    we have found some duplicate labels and removed some edges.  */
3343 
3344 static bool
3345 lower_eh_dispatch (basic_block src, gimple stmt)
3346 {
3347   gimple_stmt_iterator gsi;
3348   int region_nr;
3349   eh_region r;
3350   tree filter, fn;
3351   gimple x;
3352   bool redirected = false;
3353 
3354   region_nr = gimple_eh_dispatch_region (stmt);
3355   r = get_eh_region_from_number (region_nr);
3356 
3357   gsi = gsi_last_bb (src);
3358 
3359   switch (r->type)
3360     {
3361     case ERT_TRY:
3362       {
3363 	vec<tree> labels = vNULL;
3364 	tree default_label = NULL;
3365 	eh_catch c;
3366 	edge_iterator ei;
3367 	edge e;
3368 	struct pointer_set_t *seen_values = pointer_set_create ();
3369 
3370 	/* Collect the labels for a switch.  Zero the post_landing_pad
3371 	   field becase we'll no longer have anything keeping these labels
3372 	   in existence and the optimizer will be free to merge these
3373 	   blocks at will.  */
3374 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3375 	  {
3376 	    tree tp_node, flt_node, lab = c->label;
3377 	    bool have_label = false;
3378 
3379 	    c->label = NULL;
3380 	    tp_node = c->type_list;
3381 	    flt_node = c->filter_list;
3382 
3383 	    if (tp_node == NULL)
3384 	      {
3385 	        default_label = lab;
3386 		break;
3387 	      }
3388 	    do
3389 	      {
3390 		/* Filter out duplicate labels that arise when this handler
3391 		   is shadowed by an earlier one.  When no labels are
3392 		   attached to the handler anymore, we remove
3393 		   the corresponding edge and then we delete unreachable
3394 		   blocks at the end of this pass.  */
3395 		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3396 		  {
3397 		    tree t = build_case_label (TREE_VALUE (flt_node),
3398 					       NULL, lab);
3399 		    labels.safe_push (t);
3400 		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3401 		    have_label = true;
3402 		  }
3403 
3404 		tp_node = TREE_CHAIN (tp_node);
3405 		flt_node = TREE_CHAIN (flt_node);
3406 	      }
3407 	    while (tp_node);
3408 	    if (! have_label)
3409 	      {
3410 	        remove_edge (find_edge (src, label_to_block (lab)));
3411 	        redirected = true;
3412 	      }
3413 	  }
3414 
3415 	/* Clean up the edge flags.  */
3416 	FOR_EACH_EDGE (e, ei, src->succs)
3417 	  {
3418 	    if (e->flags & EDGE_FALLTHRU)
3419 	      {
3420 		/* If there was no catch-all, use the fallthru edge.  */
3421 		if (default_label == NULL)
3422 		  default_label = gimple_block_label (e->dest);
3423 		e->flags &= ~EDGE_FALLTHRU;
3424 	      }
3425 	  }
3426 	gcc_assert (default_label != NULL);
3427 
3428 	/* Don't generate a switch if there's only a default case.
3429 	   This is common in the form of try { A; } catch (...) { B; }.  */
3430 	if (!labels.exists ())
3431 	  {
3432 	    e = single_succ_edge (src);
3433 	    e->flags |= EDGE_FALLTHRU;
3434 	  }
3435 	else
3436 	  {
3437 	    fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3438 	    x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3439 							 region_nr));
3440 	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3441 	    filter = make_ssa_name (filter, x);
3442 	    gimple_call_set_lhs (x, filter);
3443 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3444 
3445 	    /* Turn the default label into a default case.  */
3446 	    default_label = build_case_label (NULL, NULL, default_label);
3447 	    sort_case_labels (labels);
3448 
3449 	    x = gimple_build_switch (filter, default_label, labels);
3450 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3451 
3452 	    labels.release ();
3453 	  }
3454 	pointer_set_destroy (seen_values);
3455       }
3456       break;
3457 
3458     case ERT_ALLOWED_EXCEPTIONS:
3459       {
3460 	edge b_e = BRANCH_EDGE (src);
3461 	edge f_e = FALLTHRU_EDGE (src);
3462 
3463 	fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3464 	x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3465 						     region_nr));
3466 	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3467 	filter = make_ssa_name (filter, x);
3468 	gimple_call_set_lhs (x, filter);
3469 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3470 
3471 	r->u.allowed.label = NULL;
3472 	x = gimple_build_cond (EQ_EXPR, filter,
3473 			       build_int_cst (TREE_TYPE (filter),
3474 					      r->u.allowed.filter),
3475 			       NULL_TREE, NULL_TREE);
3476 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3477 
3478 	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3479         f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3480       }
3481       break;
3482 
3483     default:
3484       gcc_unreachable ();
3485     }
3486 
3487   /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3488   gsi_remove (&gsi, true);
3489   return redirected;
3490 }
3491 
3492 static unsigned
3493 execute_lower_eh_dispatch (void)
3494 {
3495   basic_block bb;
3496   int flags = 0;
3497   bool redirected = false;
3498 
3499   assign_filter_values ();
3500 
3501   FOR_EACH_BB (bb)
3502     {
3503       gimple last = last_stmt (bb);
3504       if (last == NULL)
3505 	continue;
3506       if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3507 	{
3508 	  redirected |= lower_eh_dispatch (bb, last);
3509 	  flags |= TODO_update_ssa_only_virtuals;
3510 	}
3511       else if (gimple_code (last) == GIMPLE_RESX)
3512 	{
3513 	  if (stmt_can_throw_external (last))
3514 	    optimize_clobbers (bb);
3515 	  else
3516 	    flags |= sink_clobbers (bb);
3517 	}
3518     }
3519 
3520   if (redirected)
3521     delete_unreachable_blocks ();
3522   return flags;
3523 }
3524 
3525 static bool
3526 gate_lower_eh_dispatch (void)
3527 {
3528   return cfun->eh->region_tree != NULL;
3529 }
3530 
3531 struct gimple_opt_pass pass_lower_eh_dispatch =
3532 {
3533  {
3534   GIMPLE_PASS,
3535   "ehdisp",				/* name */
3536   OPTGROUP_NONE,                        /* optinfo_flags */
3537   gate_lower_eh_dispatch,		/* gate */
3538   execute_lower_eh_dispatch,		/* execute */
3539   NULL,					/* sub */
3540   NULL,					/* next */
3541   0,					/* static_pass_number */
3542   TV_TREE_EH,				/* tv_id */
3543   PROP_gimple_lcf,			/* properties_required */
3544   0,					/* properties_provided */
3545   0,					/* properties_destroyed */
3546   0,					/* todo_flags_start */
3547   TODO_verify_flow	                /* todo_flags_finish */
3548  }
3549 };
3550 
3551 /* Walk statements, see what regions and, optionally, landing pads
3552    are really referenced.
3553 
3554    Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3555    and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3556 
3557    Passing NULL for LP_REACHABLE is valid, in this case only reachable
3558    regions are marked.
3559 
3560    The caller is responsible for freeing the returned sbitmaps.  */
3561 
3562 static void
3563 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3564 {
3565   sbitmap r_reachable, lp_reachable;
3566   basic_block bb;
3567   bool mark_landing_pads = (lp_reachablep != NULL);
3568   gcc_checking_assert (r_reachablep != NULL);
3569 
3570   r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3571   bitmap_clear (r_reachable);
3572   *r_reachablep = r_reachable;
3573 
3574   if (mark_landing_pads)
3575     {
3576       lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3577       bitmap_clear (lp_reachable);
3578       *lp_reachablep = lp_reachable;
3579     }
3580   else
3581     lp_reachable = NULL;
3582 
3583   FOR_EACH_BB (bb)
3584     {
3585       gimple_stmt_iterator gsi;
3586 
3587       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3588 	{
3589 	  gimple stmt = gsi_stmt (gsi);
3590 
3591 	  if (mark_landing_pads)
3592 	    {
3593 	      int lp_nr = lookup_stmt_eh_lp (stmt);
3594 
3595 	      /* Negative LP numbers are MUST_NOT_THROW regions which
3596 		 are not considered BB enders.  */
3597 	      if (lp_nr < 0)
3598 		bitmap_set_bit (r_reachable, -lp_nr);
3599 
3600 	      /* Positive LP numbers are real landing pads, and BB enders.  */
3601 	      else if (lp_nr > 0)
3602 		{
3603 		  gcc_assert (gsi_one_before_end_p (gsi));
3604 		  eh_region region = get_eh_region_from_lp_number (lp_nr);
3605 		  bitmap_set_bit (r_reachable, region->index);
3606 		  bitmap_set_bit (lp_reachable, lp_nr);
3607 		}
3608 	    }
3609 
3610 	  /* Avoid removing regions referenced from RESX/EH_DISPATCH.  */
3611 	  switch (gimple_code (stmt))
3612 	    {
3613 	    case GIMPLE_RESX:
3614 	      bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3615 	      break;
3616 	    case GIMPLE_EH_DISPATCH:
3617 	      bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3618 	      break;
3619 	    default:
3620 	      break;
3621 	    }
3622 	}
3623     }
3624 }
3625 
3626 /* Remove unreachable handlers and unreachable landing pads.  */
3627 
3628 static void
3629 remove_unreachable_handlers (void)
3630 {
3631   sbitmap r_reachable, lp_reachable;
3632   eh_region region;
3633   eh_landing_pad lp;
3634   unsigned i;
3635 
3636   mark_reachable_handlers (&r_reachable, &lp_reachable);
3637 
3638   if (dump_file)
3639     {
3640       fprintf (dump_file, "Before removal of unreachable regions:\n");
3641       dump_eh_tree (dump_file, cfun);
3642       fprintf (dump_file, "Reachable regions: ");
3643       dump_bitmap_file (dump_file, r_reachable);
3644       fprintf (dump_file, "Reachable landing pads: ");
3645       dump_bitmap_file (dump_file, lp_reachable);
3646     }
3647 
3648   if (dump_file)
3649     {
3650       FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3651 	if (region && !bitmap_bit_p (r_reachable, region->index))
3652 	  fprintf (dump_file,
3653 		   "Removing unreachable region %d\n",
3654 		   region->index);
3655     }
3656 
3657   remove_unreachable_eh_regions (r_reachable);
3658 
3659   FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3660     if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3661       {
3662 	if (dump_file)
3663 	  fprintf (dump_file,
3664 		   "Removing unreachable landing pad %d\n",
3665 		   lp->index);
3666 	remove_eh_landing_pad (lp);
3667       }
3668 
3669   if (dump_file)
3670     {
3671       fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3672       dump_eh_tree (dump_file, cfun);
3673       fprintf (dump_file, "\n\n");
3674     }
3675 
3676   sbitmap_free (r_reachable);
3677   sbitmap_free (lp_reachable);
3678 
3679 #ifdef ENABLE_CHECKING
3680   verify_eh_tree (cfun);
3681 #endif
3682 }
3683 
3684 /* Remove unreachable handlers if any landing pads have been removed after
3685    last ehcleanup pass (due to gimple_purge_dead_eh_edges).  */
3686 
3687 void
3688 maybe_remove_unreachable_handlers (void)
3689 {
3690   eh_landing_pad lp;
3691   unsigned i;
3692 
3693   if (cfun->eh == NULL)
3694     return;
3695 
3696   FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3697     if (lp && lp->post_landing_pad)
3698       {
3699 	if (label_to_block (lp->post_landing_pad) == NULL)
3700 	  {
3701 	    remove_unreachable_handlers ();
3702 	    return;
3703 	  }
3704       }
3705 }
3706 
3707 /* Remove regions that do not have landing pads.  This assumes
3708    that remove_unreachable_handlers has already been run, and
3709    that we've just manipulated the landing pads since then.
3710 
3711    Preserve regions with landing pads and regions that prevent
3712    exceptions from propagating further, even if these regions
3713    are not reachable.  */
3714 
3715 static void
3716 remove_unreachable_handlers_no_lp (void)
3717 {
3718   eh_region region;
3719   sbitmap r_reachable;
3720   unsigned i;
3721 
3722   mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3723 
3724   FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3725     {
3726       if (! region)
3727 	continue;
3728 
3729       if (region->landing_pads != NULL
3730 	  || region->type == ERT_MUST_NOT_THROW)
3731 	bitmap_set_bit (r_reachable, region->index);
3732 
3733       if (dump_file
3734 	  && !bitmap_bit_p (r_reachable, region->index))
3735 	fprintf (dump_file,
3736 		 "Removing unreachable region %d\n",
3737 		 region->index);
3738     }
3739 
3740   remove_unreachable_eh_regions (r_reachable);
3741 
3742   sbitmap_free (r_reachable);
3743 }
3744 
3745 /* Undo critical edge splitting on an EH landing pad.  Earlier, we
3746    optimisticaly split all sorts of edges, including EH edges.  The
3747    optimization passes in between may not have needed them; if not,
3748    we should undo the split.
3749 
3750    Recognize this case by having one EH edge incoming to the BB and
3751    one normal edge outgoing; BB should be empty apart from the
3752    post_landing_pad label.
3753 
3754    Note that this is slightly different from the empty handler case
3755    handled by cleanup_empty_eh, in that the actual handler may yet
3756    have actual code but the landing pad has been separated from the
3757    handler.  As such, cleanup_empty_eh relies on this transformation
3758    having been done first.  */
3759 
3760 static bool
3761 unsplit_eh (eh_landing_pad lp)
3762 {
3763   basic_block bb = label_to_block (lp->post_landing_pad);
3764   gimple_stmt_iterator gsi;
3765   edge e_in, e_out;
3766 
3767   /* Quickly check the edge counts on BB for singularity.  */
3768   if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3769     return false;
3770   e_in = EDGE_PRED (bb, 0);
3771   e_out = EDGE_SUCC (bb, 0);
3772 
3773   /* Input edge must be EH and output edge must be normal.  */
3774   if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3775     return false;
3776 
3777   /* The block must be empty except for the labels and debug insns.  */
3778   gsi = gsi_after_labels (bb);
3779   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3780     gsi_next_nondebug (&gsi);
3781   if (!gsi_end_p (gsi))
3782     return false;
3783 
3784   /* The destination block must not already have a landing pad
3785      for a different region.  */
3786   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3787     {
3788       gimple stmt = gsi_stmt (gsi);
3789       tree lab;
3790       int lp_nr;
3791 
3792       if (gimple_code (stmt) != GIMPLE_LABEL)
3793 	break;
3794       lab = gimple_label_label (stmt);
3795       lp_nr = EH_LANDING_PAD_NR (lab);
3796       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3797 	return false;
3798     }
3799 
3800   /* The new destination block must not already be a destination of
3801      the source block, lest we merge fallthru and eh edges and get
3802      all sorts of confused.  */
3803   if (find_edge (e_in->src, e_out->dest))
3804     return false;
3805 
3806   /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3807      thought this should have been cleaned up by a phicprop pass, but
3808      that doesn't appear to handle virtuals.  Propagate by hand.  */
3809   if (!gimple_seq_empty_p (phi_nodes (bb)))
3810     {
3811       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3812 	{
3813 	  gimple use_stmt, phi = gsi_stmt (gsi);
3814 	  tree lhs = gimple_phi_result (phi);
3815 	  tree rhs = gimple_phi_arg_def (phi, 0);
3816 	  use_operand_p use_p;
3817 	  imm_use_iterator iter;
3818 
3819 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3820 	    {
3821 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3822 		SET_USE (use_p, rhs);
3823 	    }
3824 
3825 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3826 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3827 
3828 	  remove_phi_node (&gsi, true);
3829 	}
3830     }
3831 
3832   if (dump_file && (dump_flags & TDF_DETAILS))
3833     fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3834 	     lp->index, e_out->dest->index);
3835 
3836   /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3837      a successor edge, humor it.  But do the real CFG change with the
3838      predecessor of E_OUT in order to preserve the ordering of arguments
3839      to the PHI nodes in E_OUT->DEST.  */
3840   redirect_eh_edge_1 (e_in, e_out->dest, false);
3841   redirect_edge_pred (e_out, e_in->src);
3842   e_out->flags = e_in->flags;
3843   e_out->probability = e_in->probability;
3844   e_out->count = e_in->count;
3845   remove_edge (e_in);
3846 
3847   return true;
3848 }
3849 
3850 /* Examine each landing pad block and see if it matches unsplit_eh.  */
3851 
3852 static bool
3853 unsplit_all_eh (void)
3854 {
3855   bool changed = false;
3856   eh_landing_pad lp;
3857   int i;
3858 
3859   for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
3860     if (lp)
3861       changed |= unsplit_eh (lp);
3862 
3863   return changed;
3864 }
3865 
3866 /* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3867    to OLD_BB to NEW_BB; return true on success, false on failure.
3868 
3869    OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3870    PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3871    Virtual PHIs may be deleted and marked for renaming.  */
3872 
3873 static bool
3874 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3875 			     edge old_bb_out, bool change_region)
3876 {
3877   gimple_stmt_iterator ngsi, ogsi;
3878   edge_iterator ei;
3879   edge e;
3880   bitmap rename_virts;
3881   bitmap ophi_handled;
3882 
3883   /* The destination block must not be a regular successor for any
3884      of the preds of the landing pad.  Thus, avoid turning
3885         <..>
3886 	 |  \ EH
3887 	 |  <..>
3888 	 |  /
3889 	<..>
3890      into
3891         <..>
3892 	|  | EH
3893 	<..>
3894      which CFG verification would choke on.  See PR45172 and PR51089.  */
3895   FOR_EACH_EDGE (e, ei, old_bb->preds)
3896     if (find_edge (e->src, new_bb))
3897       return false;
3898 
3899   FOR_EACH_EDGE (e, ei, old_bb->preds)
3900     redirect_edge_var_map_clear (e);
3901 
3902   ophi_handled = BITMAP_ALLOC (NULL);
3903   rename_virts = BITMAP_ALLOC (NULL);
3904 
3905   /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3906      for the edges we're going to move.  */
3907   for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3908     {
3909       gimple ophi, nphi = gsi_stmt (ngsi);
3910       tree nresult, nop;
3911 
3912       nresult = gimple_phi_result (nphi);
3913       nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3914 
3915       /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3916 	 the source ssa_name.  */
3917       ophi = NULL;
3918       for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3919 	{
3920 	  ophi = gsi_stmt (ogsi);
3921 	  if (gimple_phi_result (ophi) == nop)
3922 	    break;
3923 	  ophi = NULL;
3924 	}
3925 
3926       /* If we did find the corresponding PHI, copy those inputs.  */
3927       if (ophi)
3928 	{
3929 	  /* If NOP is used somewhere else beyond phis in new_bb, give up.  */
3930 	  if (!has_single_use (nop))
3931 	    {
3932 	      imm_use_iterator imm_iter;
3933 	      use_operand_p use_p;
3934 
3935 	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3936 		{
3937 		  if (!gimple_debug_bind_p (USE_STMT (use_p))
3938 		      && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3939 			  || gimple_bb (USE_STMT (use_p)) != new_bb))
3940 		    goto fail;
3941 		}
3942 	    }
3943 	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3944 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3945 	    {
3946 	      location_t oloc;
3947 	      tree oop;
3948 
3949 	      if ((e->flags & EDGE_EH) == 0)
3950 		continue;
3951 	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3952 	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3953 	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3954 	    }
3955 	}
3956       /* If we didn't find the PHI, but it's a VOP, remember to rename
3957 	 it later, assuming all other tests succeed.  */
3958       else if (virtual_operand_p (nresult))
3959 	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3960       /* If we didn't find the PHI, and it's a real variable, we know
3961 	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3962 	 variable is unchanged from input to the block and we can simply
3963 	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3964       else
3965 	{
3966 	  location_t nloc
3967 	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3968 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3969 	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3970 	}
3971     }
3972 
3973   /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3974      we don't know what values from the other edges into NEW_BB to use.  */
3975   for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3976     {
3977       gimple ophi = gsi_stmt (ogsi);
3978       tree oresult = gimple_phi_result (ophi);
3979       if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3980 	goto fail;
3981     }
3982 
3983   /* At this point we know that the merge will succeed.  Remove the PHI
3984      nodes for the virtuals that we want to rename.  */
3985   if (!bitmap_empty_p (rename_virts))
3986     {
3987       for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3988 	{
3989 	  gimple nphi = gsi_stmt (ngsi);
3990 	  tree nresult = gimple_phi_result (nphi);
3991 	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3992 	    {
3993 	      mark_virtual_phi_result_for_renaming (nphi);
3994 	      remove_phi_node (&ngsi, true);
3995 	    }
3996 	  else
3997 	    gsi_next (&ngsi);
3998 	}
3999     }
4000 
4001   /* Finally, move the edges and update the PHIs.  */
4002   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4003     if (e->flags & EDGE_EH)
4004       {
4005 	/* ???  CFG manipluation routines do not try to update loop
4006 	   form on edge redirection.  Do so manually here for now.  */
4007 	/* If we redirect a loop entry or latch edge that will either create
4008 	   a multiple entry loop or rotate the loop.  If the loops merge
4009 	   we may have created a loop with multiple latches.
4010 	   All of this isn't easily fixed thus cancel the affected loop
4011 	   and mark the other loop as possibly having multiple latches.  */
4012 	if (current_loops
4013 	    && e->dest == e->dest->loop_father->header)
4014 	  {
4015 	    e->dest->loop_father->header = NULL;
4016 	    e->dest->loop_father->latch = NULL;
4017 	    new_bb->loop_father->latch = NULL;
4018 	    loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4019 	  }
4020 	redirect_eh_edge_1 (e, new_bb, change_region);
4021 	redirect_edge_succ (e, new_bb);
4022 	flush_pending_stmts (e);
4023       }
4024     else
4025       ei_next (&ei);
4026 
4027   BITMAP_FREE (ophi_handled);
4028   BITMAP_FREE (rename_virts);
4029   return true;
4030 
4031  fail:
4032   FOR_EACH_EDGE (e, ei, old_bb->preds)
4033     redirect_edge_var_map_clear (e);
4034   BITMAP_FREE (ophi_handled);
4035   BITMAP_FREE (rename_virts);
4036   return false;
4037 }
4038 
4039 /* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
4040    old region to NEW_REGION at BB.  */
4041 
4042 static void
4043 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4044 			  eh_landing_pad lp, eh_region new_region)
4045 {
4046   gimple_stmt_iterator gsi;
4047   eh_landing_pad *pp;
4048 
4049   for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4050     continue;
4051   *pp = lp->next_lp;
4052 
4053   lp->region = new_region;
4054   lp->next_lp = new_region->landing_pads;
4055   new_region->landing_pads = lp;
4056 
4057   /* Delete the RESX that was matched within the empty handler block.  */
4058   gsi = gsi_last_bb (bb);
4059   unlink_stmt_vdef (gsi_stmt (gsi));
4060   gsi_remove (&gsi, true);
4061 
4062   /* Clean up E_OUT for the fallthru.  */
4063   e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4064   e_out->probability = REG_BR_PROB_BASE;
4065 }
4066 
4067 /* A subroutine of cleanup_empty_eh.  Handle more complex cases of
4068    unsplitting than unsplit_eh was prepared to handle, e.g. when
4069    multiple incoming edges and phis are involved.  */
4070 
4071 static bool
4072 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4073 {
4074   gimple_stmt_iterator gsi;
4075   tree lab;
4076 
4077   /* We really ought not have totally lost everything following
4078      a landing pad label.  Given that BB is empty, there had better
4079      be a successor.  */
4080   gcc_assert (e_out != NULL);
4081 
4082   /* The destination block must not already have a landing pad
4083      for a different region.  */
4084   lab = NULL;
4085   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4086     {
4087       gimple stmt = gsi_stmt (gsi);
4088       int lp_nr;
4089 
4090       if (gimple_code (stmt) != GIMPLE_LABEL)
4091 	break;
4092       lab = gimple_label_label (stmt);
4093       lp_nr = EH_LANDING_PAD_NR (lab);
4094       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4095 	return false;
4096     }
4097 
4098   /* Attempt to move the PHIs into the successor block.  */
4099   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4100     {
4101       if (dump_file && (dump_flags & TDF_DETAILS))
4102 	fprintf (dump_file,
4103 		 "Unsplit EH landing pad %d to block %i "
4104 		 "(via cleanup_empty_eh).\n",
4105 		 lp->index, e_out->dest->index);
4106       return true;
4107     }
4108 
4109   return false;
4110 }
4111 
4112 /* Return true if edge E_FIRST is part of an empty infinite loop
4113    or leads to such a loop through a series of single successor
4114    empty bbs.  */
4115 
4116 static bool
4117 infinite_empty_loop_p (edge e_first)
4118 {
4119   bool inf_loop = false;
4120   edge e;
4121 
4122   if (e_first->dest == e_first->src)
4123     return true;
4124 
4125   e_first->src->aux = (void *) 1;
4126   for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4127     {
4128       gimple_stmt_iterator gsi;
4129       if (e->dest->aux)
4130 	{
4131 	  inf_loop = true;
4132 	  break;
4133 	}
4134       e->dest->aux = (void *) 1;
4135       gsi = gsi_after_labels (e->dest);
4136       if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4137 	gsi_next_nondebug (&gsi);
4138       if (!gsi_end_p (gsi))
4139 	break;
4140     }
4141   e_first->src->aux = NULL;
4142   for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4143     e->dest->aux = NULL;
4144 
4145   return inf_loop;
4146 }
4147 
4148 /* Examine the block associated with LP to determine if it's an empty
4149    handler for its EH region.  If so, attempt to redirect EH edges to
4150    an outer region.  Return true the CFG was updated in any way.  This
4151    is similar to jump forwarding, just across EH edges.  */
4152 
4153 static bool
4154 cleanup_empty_eh (eh_landing_pad lp)
4155 {
4156   basic_block bb = label_to_block (lp->post_landing_pad);
4157   gimple_stmt_iterator gsi;
4158   gimple resx;
4159   eh_region new_region;
4160   edge_iterator ei;
4161   edge e, e_out;
4162   bool has_non_eh_pred;
4163   bool ret = false;
4164   int new_lp_nr;
4165 
4166   /* There can be zero or one edges out of BB.  This is the quickest test.  */
4167   switch (EDGE_COUNT (bb->succs))
4168     {
4169     case 0:
4170       e_out = NULL;
4171       break;
4172     case 1:
4173       e_out = EDGE_SUCC (bb, 0);
4174       break;
4175     default:
4176       return false;
4177     }
4178 
4179   resx = last_stmt (bb);
4180   if (resx && is_gimple_resx (resx))
4181     {
4182       if (stmt_can_throw_external (resx))
4183 	optimize_clobbers (bb);
4184       else if (sink_clobbers (bb))
4185 	ret = true;
4186     }
4187 
4188   gsi = gsi_after_labels (bb);
4189 
4190   /* Make sure to skip debug statements.  */
4191   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4192     gsi_next_nondebug (&gsi);
4193 
4194   /* If the block is totally empty, look for more unsplitting cases.  */
4195   if (gsi_end_p (gsi))
4196     {
4197       /* For the degenerate case of an infinite loop bail out.
4198 	 If bb has no successors and is totally empty, which can happen e.g.
4199 	 because of incorrect noreturn attribute, bail out too.  */
4200       if (e_out == NULL
4201 	  || infinite_empty_loop_p (e_out))
4202 	return ret;
4203 
4204       return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4205     }
4206 
4207   /* The block should consist only of a single RESX statement, modulo a
4208      preceding call to __builtin_stack_restore if there is no outgoing
4209      edge, since the call can be eliminated in this case.  */
4210   resx = gsi_stmt (gsi);
4211   if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4212     {
4213       gsi_next (&gsi);
4214       resx = gsi_stmt (gsi);
4215     }
4216   if (!is_gimple_resx (resx))
4217     return ret;
4218   gcc_assert (gsi_one_before_end_p (gsi));
4219 
4220   /* Determine if there are non-EH edges, or resx edges into the handler.  */
4221   has_non_eh_pred = false;
4222   FOR_EACH_EDGE (e, ei, bb->preds)
4223     if (!(e->flags & EDGE_EH))
4224       has_non_eh_pred = true;
4225 
4226   /* Find the handler that's outer of the empty handler by looking at
4227      where the RESX instruction was vectored.  */
4228   new_lp_nr = lookup_stmt_eh_lp (resx);
4229   new_region = get_eh_region_from_lp_number (new_lp_nr);
4230 
4231   /* If there's no destination region within the current function,
4232      redirection is trivial via removing the throwing statements from
4233      the EH region, removing the EH edges, and allowing the block
4234      to go unreachable.  */
4235   if (new_region == NULL)
4236     {
4237       gcc_assert (e_out == NULL);
4238       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4239 	if (e->flags & EDGE_EH)
4240 	  {
4241 	    gimple stmt = last_stmt (e->src);
4242 	    remove_stmt_from_eh_lp (stmt);
4243 	    remove_edge (e);
4244 	  }
4245 	else
4246 	  ei_next (&ei);
4247       goto succeed;
4248     }
4249 
4250   /* If the destination region is a MUST_NOT_THROW, allow the runtime
4251      to handle the abort and allow the blocks to go unreachable.  */
4252   if (new_region->type == ERT_MUST_NOT_THROW)
4253     {
4254       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4255 	if (e->flags & EDGE_EH)
4256 	  {
4257 	    gimple stmt = last_stmt (e->src);
4258 	    remove_stmt_from_eh_lp (stmt);
4259 	    add_stmt_to_eh_lp (stmt, new_lp_nr);
4260 	    remove_edge (e);
4261 	  }
4262 	else
4263 	  ei_next (&ei);
4264       goto succeed;
4265     }
4266 
4267   /* Try to redirect the EH edges and merge the PHIs into the destination
4268      landing pad block.  If the merge succeeds, we'll already have redirected
4269      all the EH edges.  The handler itself will go unreachable if there were
4270      no normal edges.  */
4271   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4272     goto succeed;
4273 
4274   /* Finally, if all input edges are EH edges, then we can (potentially)
4275      reduce the number of transfers from the runtime by moving the landing
4276      pad from the original region to the new region.  This is a win when
4277      we remove the last CLEANUP region along a particular exception
4278      propagation path.  Since nothing changes except for the region with
4279      which the landing pad is associated, the PHI nodes do not need to be
4280      adjusted at all.  */
4281   if (!has_non_eh_pred)
4282     {
4283       cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4284       if (dump_file && (dump_flags & TDF_DETAILS))
4285 	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4286 		 lp->index, new_region->index);
4287 
4288       /* ??? The CFG didn't change, but we may have rendered the
4289 	 old EH region unreachable.  Trigger a cleanup there.  */
4290       return true;
4291     }
4292 
4293   return ret;
4294 
4295  succeed:
4296   if (dump_file && (dump_flags & TDF_DETAILS))
4297     fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4298   remove_eh_landing_pad (lp);
4299   return true;
4300 }
4301 
4302 /* Do a post-order traversal of the EH region tree.  Examine each
4303    post_landing_pad block and see if we can eliminate it as empty.  */
4304 
4305 static bool
4306 cleanup_all_empty_eh (void)
4307 {
4308   bool changed = false;
4309   eh_landing_pad lp;
4310   int i;
4311 
4312   for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4313     if (lp)
4314       changed |= cleanup_empty_eh (lp);
4315 
4316   return changed;
4317 }
4318 
4319 /* Perform cleanups and lowering of exception handling
4320     1) cleanups regions with handlers doing nothing are optimized out
4321     2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4322     3) Info about regions that are containing instructions, and regions
4323        reachable via local EH edges is collected
4324     4) Eh tree is pruned for regions no longer neccesary.
4325 
4326    TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4327 	 Unify those that have the same failure decl and locus.
4328 */
4329 
4330 static unsigned int
4331 execute_cleanup_eh_1 (void)
4332 {
4333   /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4334      looking up unreachable landing pads.  */
4335   remove_unreachable_handlers ();
4336 
4337   /* Watch out for the region tree vanishing due to all unreachable.  */
4338   if (cfun->eh->region_tree)
4339     {
4340       bool changed = false;
4341 
4342       if (optimize)
4343 	changed |= unsplit_all_eh ();
4344       changed |= cleanup_all_empty_eh ();
4345 
4346       if (changed)
4347 	{
4348 	  free_dominance_info (CDI_DOMINATORS);
4349 	  free_dominance_info (CDI_POST_DOMINATORS);
4350 
4351           /* We delayed all basic block deletion, as we may have performed
4352 	     cleanups on EH edges while non-EH edges were still present.  */
4353 	  delete_unreachable_blocks ();
4354 
4355 	  /* We manipulated the landing pads.  Remove any region that no
4356 	     longer has a landing pad.  */
4357 	  remove_unreachable_handlers_no_lp ();
4358 
4359 	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4360 	}
4361     }
4362 
4363   return 0;
4364 }
4365 
4366 static unsigned int
4367 execute_cleanup_eh (void)
4368 {
4369   int ret = execute_cleanup_eh_1 ();
4370 
4371   /* If the function no longer needs an EH personality routine
4372      clear it.  This exposes cross-language inlining opportunities
4373      and avoids references to a never defined personality routine.  */
4374   if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4375       && function_needs_eh_personality (cfun) != eh_personality_lang)
4376     DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4377 
4378   return ret;
4379 }
4380 
4381 static bool
4382 gate_cleanup_eh (void)
4383 {
4384   return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4385 }
4386 
4387 struct gimple_opt_pass pass_cleanup_eh = {
4388   {
4389    GIMPLE_PASS,
4390    "ehcleanup",			/* name */
4391    OPTGROUP_NONE,               /* optinfo_flags */
4392    gate_cleanup_eh,		/* gate */
4393    execute_cleanup_eh,		/* execute */
4394    NULL,			/* sub */
4395    NULL,			/* next */
4396    0,				/* static_pass_number */
4397    TV_TREE_EH,			/* tv_id */
4398    PROP_gimple_lcf,		/* properties_required */
4399    0,				/* properties_provided */
4400    0,				/* properties_destroyed */
4401    0,				/* todo_flags_start */
4402    0             		/* todo_flags_finish */
4403    }
4404 };
4405 
4406 /* Verify that BB containing STMT as the last statement, has precisely the
4407    edge that make_eh_edges would create.  */
4408 
4409 DEBUG_FUNCTION bool
4410 verify_eh_edges (gimple stmt)
4411 {
4412   basic_block bb = gimple_bb (stmt);
4413   eh_landing_pad lp = NULL;
4414   int lp_nr;
4415   edge_iterator ei;
4416   edge e, eh_edge;
4417 
4418   lp_nr = lookup_stmt_eh_lp (stmt);
4419   if (lp_nr > 0)
4420     lp = get_eh_landing_pad_from_number (lp_nr);
4421 
4422   eh_edge = NULL;
4423   FOR_EACH_EDGE (e, ei, bb->succs)
4424     {
4425       if (e->flags & EDGE_EH)
4426 	{
4427 	  if (eh_edge)
4428 	    {
4429 	      error ("BB %i has multiple EH edges", bb->index);
4430 	      return true;
4431 	    }
4432 	  else
4433 	    eh_edge = e;
4434 	}
4435     }
4436 
4437   if (lp == NULL)
4438     {
4439       if (eh_edge)
4440 	{
4441 	  error ("BB %i can not throw but has an EH edge", bb->index);
4442 	  return true;
4443 	}
4444       return false;
4445     }
4446 
4447   if (!stmt_could_throw_p (stmt))
4448     {
4449       error ("BB %i last statement has incorrectly set lp", bb->index);
4450       return true;
4451     }
4452 
4453   if (eh_edge == NULL)
4454     {
4455       error ("BB %i is missing an EH edge", bb->index);
4456       return true;
4457     }
4458 
4459   if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4460     {
4461       error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4462       return true;
4463     }
4464 
4465   return false;
4466 }
4467 
4468 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4469 
4470 DEBUG_FUNCTION bool
4471 verify_eh_dispatch_edge (gimple stmt)
4472 {
4473   eh_region r;
4474   eh_catch c;
4475   basic_block src, dst;
4476   bool want_fallthru = true;
4477   edge_iterator ei;
4478   edge e, fall_edge;
4479 
4480   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4481   src = gimple_bb (stmt);
4482 
4483   FOR_EACH_EDGE (e, ei, src->succs)
4484     gcc_assert (e->aux == NULL);
4485 
4486   switch (r->type)
4487     {
4488     case ERT_TRY:
4489       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4490 	{
4491 	  dst = label_to_block (c->label);
4492 	  e = find_edge (src, dst);
4493 	  if (e == NULL)
4494 	    {
4495 	      error ("BB %i is missing an edge", src->index);
4496 	      return true;
4497 	    }
4498 	  e->aux = (void *)e;
4499 
4500 	  /* A catch-all handler doesn't have a fallthru.  */
4501 	  if (c->type_list == NULL)
4502 	    {
4503 	      want_fallthru = false;
4504 	      break;
4505 	    }
4506 	}
4507       break;
4508 
4509     case ERT_ALLOWED_EXCEPTIONS:
4510       dst = label_to_block (r->u.allowed.label);
4511       e = find_edge (src, dst);
4512       if (e == NULL)
4513 	{
4514 	  error ("BB %i is missing an edge", src->index);
4515 	  return true;
4516 	}
4517       e->aux = (void *)e;
4518       break;
4519 
4520     default:
4521       gcc_unreachable ();
4522     }
4523 
4524   fall_edge = NULL;
4525   FOR_EACH_EDGE (e, ei, src->succs)
4526     {
4527       if (e->flags & EDGE_FALLTHRU)
4528 	{
4529 	  if (fall_edge != NULL)
4530 	    {
4531 	      error ("BB %i too many fallthru edges", src->index);
4532 	      return true;
4533 	    }
4534 	  fall_edge = e;
4535 	}
4536       else if (e->aux)
4537 	e->aux = NULL;
4538       else
4539 	{
4540 	  error ("BB %i has incorrect edge", src->index);
4541 	  return true;
4542 	}
4543     }
4544   if ((fall_edge != NULL) ^ want_fallthru)
4545     {
4546       error ("BB %i has incorrect fallthru edge", src->index);
4547       return true;
4548     }
4549 
4550   return false;
4551 }
4552