xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-eh.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Exception handling semantics and decomposition for trees.
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "pointer-set.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "tree-inline.h"
35 #include "tree-iterator.h"
36 #include "tree-pass.h"
37 #include "timevar.h"
38 #include "langhooks.h"
39 #include "ggc.h"
40 #include "toplev.h"
41 #include "gimple.h"
42 #include "target.h"
43 
44 /* In some instances a tree and a gimple need to be stored in a same table,
45    i.e. in hash tables. This is a structure to do this. */
46 typedef union {tree *tp; tree t; gimple g;} treemple;
47 
48 /* Nonzero if we are using EH to handle cleanups.  */
49 static int using_eh_for_cleanups_p = 0;
50 
51 void
52 using_eh_for_cleanups (void)
53 {
54   using_eh_for_cleanups_p = 1;
55 }
56 
57 /* Misc functions used in this file.  */
58 
59 /* Compare and hash for any structure which begins with a canonical
60    pointer.  Assumes all pointers are interchangeable, which is sort
61    of already assumed by gcc elsewhere IIRC.  */
62 
63 static int
64 struct_ptr_eq (const void *a, const void *b)
65 {
66   const void * const * x = (const void * const *) a;
67   const void * const * y = (const void * const *) b;
68   return *x == *y;
69 }
70 
71 static hashval_t
72 struct_ptr_hash (const void *a)
73 {
74   const void * const * x = (const void * const *) a;
75   return (size_t)*x >> 4;
76 }
77 
78 
79 /* Remember and lookup EH landing pad data for arbitrary statements.
80    Really this means any statement that could_throw_p.  We could
81    stuff this information into the stmt_ann data structure, but:
82 
83    (1) We absolutely rely on this information being kept until
84    we get to rtl.  Once we're done with lowering here, if we lose
85    the information there's no way to recover it!
86 
87    (2) There are many more statements that *cannot* throw as
88    compared to those that can.  We should be saving some amount
89    of space by only allocating memory for those that can throw.  */
90 
91 /* Add statement T in function IFUN to landing pad NUM.  */
92 
93 void
94 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
95 {
96   struct throw_stmt_node *n;
97   void **slot;
98 
99   gcc_assert (num != 0);
100 
101   n = GGC_NEW (struct throw_stmt_node);
102   n->stmt = t;
103   n->lp_nr = num;
104 
105   if (!get_eh_throw_stmt_table (ifun))
106     set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
107 						    struct_ptr_eq,
108 						    ggc_free));
109 
110   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
111   gcc_assert (!*slot);
112   *slot = n;
113 }
114 
115 /* Add statement T in the current function (cfun) to EH landing pad NUM.  */
116 
117 void
118 add_stmt_to_eh_lp (gimple t, int num)
119 {
120   add_stmt_to_eh_lp_fn (cfun, t, num);
121 }
122 
123 /* Add statement T to the single EH landing pad in REGION.  */
124 
125 static void
126 record_stmt_eh_region (eh_region region, gimple t)
127 {
128   if (region == NULL)
129     return;
130   if (region->type == ERT_MUST_NOT_THROW)
131     add_stmt_to_eh_lp_fn (cfun, t, -region->index);
132   else
133     {
134       eh_landing_pad lp = region->landing_pads;
135       if (lp == NULL)
136 	lp = gen_eh_landing_pad (region);
137       else
138 	gcc_assert (lp->next_lp == NULL);
139       add_stmt_to_eh_lp_fn (cfun, t, lp->index);
140     }
141 }
142 
143 
144 /* Remove statement T in function IFUN from its EH landing pad.  */
145 
146 bool
147 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
148 {
149   struct throw_stmt_node dummy;
150   void **slot;
151 
152   if (!get_eh_throw_stmt_table (ifun))
153     return false;
154 
155   dummy.stmt = t;
156   slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
157                         NO_INSERT);
158   if (slot)
159     {
160       htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
161       return true;
162     }
163   else
164     return false;
165 }
166 
167 
168 /* Remove statement T in the current function (cfun) from its
169    EH landing pad.  */
170 
171 bool
172 remove_stmt_from_eh_lp (gimple t)
173 {
174   return remove_stmt_from_eh_lp_fn (cfun, t);
175 }
176 
177 /* Determine if statement T is inside an EH region in function IFUN.
178    Positive numbers indicate a landing pad index; negative numbers
179    indicate a MUST_NOT_THROW region index; zero indicates that the
180    statement is not recorded in the region table.  */
181 
182 int
183 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
184 {
185   struct throw_stmt_node *p, n;
186 
187   if (ifun->eh->throw_stmt_table == NULL)
188     return 0;
189 
190   n.stmt = t;
191   p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
192   return p ? p->lp_nr : 0;
193 }
194 
195 /* Likewise, but always use the current function.  */
196 
197 int
198 lookup_stmt_eh_lp (gimple t)
199 {
200   /* We can get called from initialized data when -fnon-call-exceptions
201      is on; prevent crash.  */
202   if (!cfun)
203     return 0;
204   return lookup_stmt_eh_lp_fn (cfun, t);
205 }
206 
207 /* First pass of EH node decomposition.  Build up a tree of GIMPLE_TRY_FINALLY
208    nodes and LABEL_DECL nodes.  We will use this during the second phase to
209    determine if a goto leaves the body of a TRY_FINALLY_EXPR node.  */
210 
211 struct finally_tree_node
212 {
213   /* When storing a GIMPLE_TRY, we have to record a gimple.  However
214      when deciding whether a GOTO to a certain LABEL_DECL (which is a
215      tree) leaves the TRY block, its necessary to record a tree in
216      this field.  Thus a treemple is used. */
217   treemple child;
218   gimple parent;
219 };
220 
221 /* Note that this table is *not* marked GTY.  It is short-lived.  */
222 static htab_t finally_tree;
223 
224 static void
225 record_in_finally_tree (treemple child, gimple parent)
226 {
227   struct finally_tree_node *n;
228   void **slot;
229 
230   n = XNEW (struct finally_tree_node);
231   n->child = child;
232   n->parent = parent;
233 
234   slot = htab_find_slot (finally_tree, n, INSERT);
235   gcc_assert (!*slot);
236   *slot = n;
237 }
238 
239 static void
240 collect_finally_tree (gimple stmt, gimple region);
241 
242 /* Go through the gimple sequence.  Works with collect_finally_tree to
243    record all GIMPLE_LABEL and GIMPLE_TRY statements. */
244 
245 static void
246 collect_finally_tree_1 (gimple_seq seq, gimple region)
247 {
248   gimple_stmt_iterator gsi;
249 
250   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
251     collect_finally_tree (gsi_stmt (gsi), region);
252 }
253 
254 static void
255 collect_finally_tree (gimple stmt, gimple region)
256 {
257   treemple temp;
258 
259   switch (gimple_code (stmt))
260     {
261     case GIMPLE_LABEL:
262       temp.t = gimple_label_label (stmt);
263       record_in_finally_tree (temp, region);
264       break;
265 
266     case GIMPLE_TRY:
267       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
268         {
269           temp.g = stmt;
270           record_in_finally_tree (temp, region);
271           collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
272 	  collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
273         }
274       else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
275         {
276           collect_finally_tree_1 (gimple_try_eval (stmt), region);
277           collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
278         }
279       break;
280 
281     case GIMPLE_CATCH:
282       collect_finally_tree_1 (gimple_catch_handler (stmt), region);
283       break;
284 
285     case GIMPLE_EH_FILTER:
286       collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
287       break;
288 
289     default:
290       /* A type, a decl, or some kind of statement that we're not
291 	 interested in.  Don't walk them.  */
292       break;
293     }
294 }
295 
296 
297 /* Use the finally tree to determine if a jump from START to TARGET
298    would leave the try_finally node that START lives in.  */
299 
300 static bool
301 outside_finally_tree (treemple start, gimple target)
302 {
303   struct finally_tree_node n, *p;
304 
305   do
306     {
307       n.child = start;
308       p = (struct finally_tree_node *) htab_find (finally_tree, &n);
309       if (!p)
310 	return true;
311       start.g = p->parent;
312     }
313   while (start.g != target);
314 
315   return false;
316 }
317 
318 /* Second pass of EH node decomposition.  Actually transform the GIMPLE_TRY
319    nodes into a set of gotos, magic labels, and eh regions.
320    The eh region creation is straight-forward, but frobbing all the gotos
321    and such into shape isn't.  */
322 
323 /* The sequence into which we record all EH stuff.  This will be
324    placed at the end of the function when we're all done.  */
325 static gimple_seq eh_seq;
326 
327 /* Record whether an EH region contains something that can throw,
328    indexed by EH region number.  */
329 static bitmap eh_region_may_contain_throw_map;
330 
331 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
332    statements that are seen to escape this GIMPLE_TRY_FINALLY node.
333    The idea is to record a gimple statement for everything except for
334    the conditionals, which get their labels recorded. Since labels are
335    of type 'tree', we need this node to store both gimple and tree
336    objects.  REPL_STMT is the sequence used to replace the goto/return
337    statement.  CONT_STMT is used to store the statement that allows
338    the return/goto to jump to the original destination. */
339 
340 struct goto_queue_node
341 {
342   treemple stmt;
343   gimple_seq repl_stmt;
344   gimple cont_stmt;
345   int index;
346   /* This is used when index >= 0 to indicate that stmt is a label (as
347      opposed to a goto stmt).  */
348   int is_label;
349 };
350 
351 /* State of the world while lowering.  */
352 
353 struct leh_state
354 {
355   /* What's "current" while constructing the eh region tree.  These
356      correspond to variables of the same name in cfun->eh, which we
357      don't have easy access to.  */
358   eh_region cur_region;
359 
360   /* What's "current" for the purposes of __builtin_eh_pointer.  For
361      a CATCH, this is the associated TRY.  For an EH_FILTER, this is
362      the associated ALLOWED_EXCEPTIONS, etc.  */
363   eh_region ehp_region;
364 
365   /* Processing of TRY_FINALLY requires a bit more state.  This is
366      split out into a separate structure so that we don't have to
367      copy so much when processing other nodes.  */
368   struct leh_tf_state *tf;
369 };
370 
371 struct leh_tf_state
372 {
373   /* Pointer to the GIMPLE_TRY_FINALLY node under discussion.  The
374      try_finally_expr is the original GIMPLE_TRY_FINALLY.  We need to retain
375      this so that outside_finally_tree can reliably reference the tree used
376      in the collect_finally_tree data structures.  */
377   gimple try_finally_expr;
378   gimple top_p;
379 
380   /* While lowering a top_p usually it is expanded into multiple statements,
381      thus we need the following field to store them. */
382   gimple_seq top_p_seq;
383 
384   /* The state outside this try_finally node.  */
385   struct leh_state *outer;
386 
387   /* The exception region created for it.  */
388   eh_region region;
389 
390   /* The goto queue.  */
391   struct goto_queue_node *goto_queue;
392   size_t goto_queue_size;
393   size_t goto_queue_active;
394 
395   /* Pointer map to help in searching goto_queue when it is large.  */
396   struct pointer_map_t *goto_queue_map;
397 
398   /* The set of unique labels seen as entries in the goto queue.  */
399   VEC(tree,heap) *dest_array;
400 
401   /* A label to be added at the end of the completed transformed
402      sequence.  It will be set if may_fallthru was true *at one time*,
403      though subsequent transformations may have cleared that flag.  */
404   tree fallthru_label;
405 
406   /* True if it is possible to fall out the bottom of the try block.
407      Cleared if the fallthru is converted to a goto.  */
408   bool may_fallthru;
409 
410   /* True if any entry in goto_queue is a GIMPLE_RETURN.  */
411   bool may_return;
412 
413   /* True if the finally block can receive an exception edge.
414      Cleared if the exception case is handled by code duplication.  */
415   bool may_throw;
416 };
417 
418 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
419 
420 /* Search for STMT in the goto queue.  Return the replacement,
421    or null if the statement isn't in the queue.  */
422 
423 #define LARGE_GOTO_QUEUE 20
424 
425 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
426 
427 static gimple_seq
428 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
429 {
430   unsigned int i;
431   void **slot;
432 
433   if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
434     {
435       for (i = 0; i < tf->goto_queue_active; i++)
436 	if ( tf->goto_queue[i].stmt.g == stmt.g)
437 	  return tf->goto_queue[i].repl_stmt;
438       return NULL;
439     }
440 
441   /* If we have a large number of entries in the goto_queue, create a
442      pointer map and use that for searching.  */
443 
444   if (!tf->goto_queue_map)
445     {
446       tf->goto_queue_map = pointer_map_create ();
447       for (i = 0; i < tf->goto_queue_active; i++)
448 	{
449 	  slot = pointer_map_insert (tf->goto_queue_map,
450                                      tf->goto_queue[i].stmt.g);
451           gcc_assert (*slot == NULL);
452 	  *slot = &tf->goto_queue[i];
453 	}
454     }
455 
456   slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
457   if (slot != NULL)
458     return (((struct goto_queue_node *) *slot)->repl_stmt);
459 
460   return NULL;
461 }
462 
463 /* A subroutine of replace_goto_queue_1.  Handles the sub-clauses of a
464    lowered GIMPLE_COND.  If, by chance, the replacement is a simple goto,
465    then we can just splat it in, otherwise we add the new stmts immediately
466    after the GIMPLE_COND and redirect.  */
467 
468 static void
469 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
470 				gimple_stmt_iterator *gsi)
471 {
472   tree label;
473   gimple_seq new_seq;
474   treemple temp;
475   location_t loc = gimple_location (gsi_stmt (*gsi));
476 
477   temp.tp = tp;
478   new_seq = find_goto_replacement (tf, temp);
479   if (!new_seq)
480     return;
481 
482   if (gimple_seq_singleton_p (new_seq)
483       && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
484     {
485       *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
486       return;
487     }
488 
489   label = create_artificial_label (loc);
490   /* Set the new label for the GIMPLE_COND */
491   *tp = label;
492 
493   gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
494   gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
495 }
496 
497 /* The real work of replace_goto_queue.  Returns with TSI updated to
498    point to the next statement.  */
499 
500 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
501 
502 static void
503 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
504 		      gimple_stmt_iterator *gsi)
505 {
506   gimple_seq seq;
507   treemple temp;
508   temp.g = NULL;
509 
510   switch (gimple_code (stmt))
511     {
512     case GIMPLE_GOTO:
513     case GIMPLE_RETURN:
514       temp.g = stmt;
515       seq = find_goto_replacement (tf, temp);
516       if (seq)
517 	{
518 	  gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
519 	  gsi_remove (gsi, false);
520 	  return;
521 	}
522       break;
523 
524     case GIMPLE_COND:
525       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
526       replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
527       break;
528 
529     case GIMPLE_TRY:
530       replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
531       replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
532       break;
533     case GIMPLE_CATCH:
534       replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
535       break;
536     case GIMPLE_EH_FILTER:
537       replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
538       break;
539 
540     default:
541       /* These won't have gotos in them.  */
542       break;
543     }
544 
545   gsi_next (gsi);
546 }
547 
548 /* A subroutine of replace_goto_queue.  Handles GIMPLE_SEQ.  */
549 
550 static void
551 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
552 {
553   gimple_stmt_iterator gsi = gsi_start (seq);
554 
555   while (!gsi_end_p (gsi))
556     replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
557 }
558 
559 /* Replace all goto queue members.  */
560 
561 static void
562 replace_goto_queue (struct leh_tf_state *tf)
563 {
564   if (tf->goto_queue_active == 0)
565     return;
566   replace_goto_queue_stmt_list (tf->top_p_seq, tf);
567   replace_goto_queue_stmt_list (eh_seq, tf);
568 }
569 
570 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
571    data to be added, IS_LABEL indicates whether NEW_STMT is a label or
572    a gimple return. */
573 
574 static void
575 record_in_goto_queue (struct leh_tf_state *tf,
576                       treemple new_stmt,
577                       int index,
578                       bool is_label)
579 {
580   size_t active, size;
581   struct goto_queue_node *q;
582 
583   gcc_assert (!tf->goto_queue_map);
584 
585   active = tf->goto_queue_active;
586   size = tf->goto_queue_size;
587   if (active >= size)
588     {
589       size = (size ? size * 2 : 32);
590       tf->goto_queue_size = size;
591       tf->goto_queue
592          = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
593     }
594 
595   q = &tf->goto_queue[active];
596   tf->goto_queue_active = active + 1;
597 
598   memset (q, 0, sizeof (*q));
599   q->stmt = new_stmt;
600   q->index = index;
601   q->is_label = is_label;
602 }
603 
604 /* Record the LABEL label in the goto queue contained in TF.
605    TF is not null.  */
606 
607 static void
608 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
609 {
610   int index;
611   treemple temp, new_stmt;
612 
613   if (!label)
614     return;
615 
616   /* Computed and non-local gotos do not get processed.  Given
617      their nature we can neither tell whether we've escaped the
618      finally block nor redirect them if we knew.  */
619   if (TREE_CODE (label) != LABEL_DECL)
620     return;
621 
622   /* No need to record gotos that don't leave the try block.  */
623   temp.t = label;
624   if (!outside_finally_tree (temp, tf->try_finally_expr))
625     return;
626 
627   if (! tf->dest_array)
628     {
629       tf->dest_array = VEC_alloc (tree, heap, 10);
630       VEC_quick_push (tree, tf->dest_array, label);
631       index = 0;
632     }
633   else
634     {
635       int n = VEC_length (tree, tf->dest_array);
636       for (index = 0; index < n; ++index)
637         if (VEC_index (tree, tf->dest_array, index) == label)
638           break;
639       if (index == n)
640         VEC_safe_push (tree, heap, tf->dest_array, label);
641     }
642 
643   /* In the case of a GOTO we want to record the destination label,
644      since with a GIMPLE_COND we have an easy access to the then/else
645      labels. */
646   new_stmt = stmt;
647   record_in_goto_queue (tf, new_stmt, index, true);
648 }
649 
650 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
651    node, and if so record that fact in the goto queue associated with that
652    try_finally node.  */
653 
654 static void
655 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
656 {
657   struct leh_tf_state *tf = state->tf;
658   treemple new_stmt;
659 
660   if (!tf)
661     return;
662 
663   switch (gimple_code (stmt))
664     {
665     case GIMPLE_COND:
666       new_stmt.tp = gimple_op_ptr (stmt, 2);
667       record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
668       new_stmt.tp = gimple_op_ptr (stmt, 3);
669       record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
670       break;
671     case GIMPLE_GOTO:
672       new_stmt.g = stmt;
673       record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
674       break;
675 
676     case GIMPLE_RETURN:
677       tf->may_return = true;
678       new_stmt.g = stmt;
679       record_in_goto_queue (tf, new_stmt, -1, false);
680       break;
681 
682     default:
683       gcc_unreachable ();
684     }
685 }
686 
687 
688 #ifdef ENABLE_CHECKING
689 /* We do not process GIMPLE_SWITCHes for now.  As long as the original source
690    was in fact structured, and we've not yet done jump threading, then none
691    of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this.  */
692 
693 static void
694 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
695 {
696   struct leh_tf_state *tf = state->tf;
697   size_t i, n;
698 
699   if (!tf)
700     return;
701 
702   n = gimple_switch_num_labels (switch_expr);
703 
704   for (i = 0; i < n; ++i)
705     {
706       treemple temp;
707       tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
708       temp.t = lab;
709       gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
710     }
711 }
712 #else
713 #define verify_norecord_switch_expr(state, switch_expr)
714 #endif
715 
716 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB.  Place in CONT_P
717    whatever is needed to finish the return.  If MOD is non-null, insert it
718    before the new branch.  RETURN_VALUE_P is a cache containing a temporary
719    variable to be used in manipulating the value returned from the function.  */
720 
721 static void
722 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
723 		       tree *return_value_p)
724 {
725   tree ret_expr;
726   gimple x;
727 
728   /* In the case of a return, the queue node must be a gimple statement. */
729   gcc_assert (!q->is_label);
730 
731   ret_expr = gimple_return_retval (q->stmt.g);
732 
733   if (ret_expr)
734     {
735       if (!*return_value_p)
736         *return_value_p = ret_expr;
737       else
738         gcc_assert (*return_value_p == ret_expr);
739       q->cont_stmt = q->stmt.g;
740       /* The nasty part about redirecting the return value is that the
741 	 return value itself is to be computed before the FINALLY block
742 	 is executed.  e.g.
743 
744 		int x;
745 		int foo (void)
746 		{
747 		  x = 0;
748 		  try {
749 		    return x;
750 		  } finally {
751 		    x++;
752 		  }
753 		}
754 
755 	  should return 0, not 1.  Arrange for this to happen by copying
756 	  computed the return value into a local temporary.  This also
757 	  allows us to redirect multiple return statements through the
758 	  same destination block; whether this is a net win or not really
759 	  depends, I guess, but it does make generation of the switch in
760 	  lower_try_finally_switch easier.  */
761 
762       if (TREE_CODE (ret_expr) == RESULT_DECL)
763 	{
764 	  if (!*return_value_p)
765 	    *return_value_p = ret_expr;
766 	  else
767 	    gcc_assert (*return_value_p == ret_expr);
768 	  q->cont_stmt = q->stmt.g;
769 	}
770       else
771 	  gcc_unreachable ();
772     }
773   else
774       /* If we don't return a value, all return statements are the same.  */
775       q->cont_stmt = q->stmt.g;
776 
777   if (!q->repl_stmt)
778     q->repl_stmt = gimple_seq_alloc ();
779 
780   if (mod)
781     gimple_seq_add_seq (&q->repl_stmt, mod);
782 
783   x = gimple_build_goto (finlab);
784   gimple_seq_add_stmt (&q->repl_stmt, x);
785 }
786 
787 /* Similar, but easier, for GIMPLE_GOTO.  */
788 
789 static void
790 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
791 		     struct leh_tf_state *tf)
792 {
793   gimple x;
794 
795   gcc_assert (q->is_label);
796   if (!q->repl_stmt)
797     q->repl_stmt = gimple_seq_alloc ();
798 
799   q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
800 
801   if (mod)
802     gimple_seq_add_seq (&q->repl_stmt, mod);
803 
804   x = gimple_build_goto (finlab);
805   gimple_seq_add_stmt (&q->repl_stmt, x);
806 }
807 
808 /* Emit a standard landing pad sequence into SEQ for REGION.  */
809 
810 static void
811 emit_post_landing_pad (gimple_seq *seq, eh_region region)
812 {
813   eh_landing_pad lp = region->landing_pads;
814   gimple x;
815 
816   if (lp == NULL)
817     lp = gen_eh_landing_pad (region);
818 
819   lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
820   EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
821 
822   x = gimple_build_label (lp->post_landing_pad);
823   gimple_seq_add_stmt (seq, x);
824 }
825 
826 /* Emit a RESX statement into SEQ for REGION.  */
827 
828 static void
829 emit_resx (gimple_seq *seq, eh_region region)
830 {
831   gimple x = gimple_build_resx (region->index);
832   gimple_seq_add_stmt (seq, x);
833   if (region->outer)
834     record_stmt_eh_region (region->outer, x);
835 }
836 
837 /* Emit an EH_DISPATCH statement into SEQ for REGION.  */
838 
839 static void
840 emit_eh_dispatch (gimple_seq *seq, eh_region region)
841 {
842   gimple x = gimple_build_eh_dispatch (region->index);
843   gimple_seq_add_stmt (seq, x);
844 }
845 
846 /* Note that the current EH region may contain a throw, or a
847    call to a function which itself may contain a throw.  */
848 
849 static void
850 note_eh_region_may_contain_throw (eh_region region)
851 {
852   while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
853     {
854       bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
855       region = region->outer;
856       if (region == NULL)
857 	break;
858     }
859 }
860 
861 /* Check if REGION has been marked as containing a throw.  If REGION is
862    NULL, this predicate is false.  */
863 
864 static inline bool
865 eh_region_may_contain_throw (eh_region r)
866 {
867   return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
868 }
869 
870 /* We want to transform
871 	try { body; } catch { stuff; }
872    to
873 	normal_seqence:
874 	  body;
875 	  over:
876 	eh_seqence:
877 	  landing_pad:
878 	  stuff;
879 	  goto over;
880 
881    TP is a GIMPLE_TRY node.  REGION is the region whose post_landing_pad
882    should be placed before the second operand, or NULL.  OVER is
883    an existing label that should be put at the exit, or NULL.  */
884 
885 static gimple_seq
886 frob_into_branch_around (gimple tp, eh_region region, tree over)
887 {
888   gimple x;
889   gimple_seq cleanup, result;
890   location_t loc = gimple_location (tp);
891 
892   cleanup = gimple_try_cleanup (tp);
893   result = gimple_try_eval (tp);
894 
895   if (region)
896     emit_post_landing_pad (&eh_seq, region);
897 
898   if (gimple_seq_may_fallthru (cleanup))
899     {
900       if (!over)
901 	over = create_artificial_label (loc);
902       x = gimple_build_goto (over);
903       gimple_seq_add_stmt (&cleanup, x);
904     }
905   gimple_seq_add_seq (&eh_seq, cleanup);
906 
907   if (over)
908     {
909       x = gimple_build_label (over);
910       gimple_seq_add_stmt (&result, x);
911     }
912   return result;
913 }
914 
915 /* A subroutine of lower_try_finally.  Duplicate the tree rooted at T.
916    Make sure to record all new labels found.  */
917 
918 static gimple_seq
919 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
920 {
921   gimple region = NULL;
922   gimple_seq new_seq;
923 
924   new_seq = copy_gimple_seq_and_replace_locals (seq);
925 
926   if (outer_state->tf)
927     region = outer_state->tf->try_finally_expr;
928   collect_finally_tree_1 (new_seq, region);
929 
930   return new_seq;
931 }
932 
933 /* A subroutine of lower_try_finally.  Create a fallthru label for
934    the given try_finally state.  The only tricky bit here is that
935    we have to make sure to record the label in our outer context.  */
936 
937 static tree
938 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
939 {
940   tree label = tf->fallthru_label;
941   treemple temp;
942 
943   if (!label)
944     {
945       label = create_artificial_label (gimple_location (tf->try_finally_expr));
946       tf->fallthru_label = label;
947       if (tf->outer->tf)
948         {
949           temp.t = label;
950           record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
951         }
952     }
953   return label;
954 }
955 
956 /* A subroutine of lower_try_finally.  If lang_protect_cleanup_actions
957    returns non-null, then the language requires that the exception path out
958    of a try_finally be treated specially.  To wit: the code within the
959    finally block may not itself throw an exception.  We have two choices here.
960    First we can duplicate the finally block and wrap it in a must_not_throw
961    region.  Second, we can generate code like
962 
963 	try {
964 	  finally_block;
965 	} catch {
966 	  if (fintmp == eh_edge)
967 	    protect_cleanup_actions;
968 	}
969 
970    where "fintmp" is the temporary used in the switch statement generation
971    alternative considered below.  For the nonce, we always choose the first
972    option.
973 
974    THIS_STATE may be null if this is a try-cleanup, not a try-finally.  */
975 
976 static void
977 honor_protect_cleanup_actions (struct leh_state *outer_state,
978 			       struct leh_state *this_state,
979 			       struct leh_tf_state *tf)
980 {
981   tree protect_cleanup_actions;
982   gimple_stmt_iterator gsi;
983   bool finally_may_fallthru;
984   gimple_seq finally;
985   gimple x;
986 
987   /* First check for nothing to do.  */
988   if (lang_protect_cleanup_actions == NULL)
989     return;
990   protect_cleanup_actions = lang_protect_cleanup_actions ();
991   if (protect_cleanup_actions == NULL)
992     return;
993 
994   finally = gimple_try_cleanup (tf->top_p);
995   finally_may_fallthru = gimple_seq_may_fallthru (finally);
996 
997   /* Duplicate the FINALLY block.  Only need to do this for try-finally,
998      and not for cleanups.  */
999   if (this_state)
1000     finally = lower_try_finally_dup_block (finally, outer_state);
1001 
1002   /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1003      set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1004      to be in an enclosing scope, but needs to be implemented at this level
1005      to avoid a nesting violation (see wrap_temporary_cleanups in
1006      cp/decl.c).  Since it's logically at an outer level, we should call
1007      terminate before we get to it, so strip it away before adding the
1008      MUST_NOT_THROW filter.  */
1009   gsi = gsi_start (finally);
1010   x = gsi_stmt (gsi);
1011   if (gimple_code (x) == GIMPLE_TRY
1012       && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1013       && gimple_try_catch_is_cleanup (x))
1014     {
1015       gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1016       gsi_remove (&gsi, false);
1017     }
1018 
1019   /* Wrap the block with protect_cleanup_actions as the action.  */
1020   x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1021   x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1022 			GIMPLE_TRY_CATCH);
1023   finally = lower_eh_must_not_throw (outer_state, x);
1024 
1025   /* Drop all of this into the exception sequence.  */
1026   emit_post_landing_pad (&eh_seq, tf->region);
1027   gimple_seq_add_seq (&eh_seq, finally);
1028   if (finally_may_fallthru)
1029     emit_resx (&eh_seq, tf->region);
1030 
1031   /* Having now been handled, EH isn't to be considered with
1032      the rest of the outgoing edges.  */
1033   tf->may_throw = false;
1034 }
1035 
1036 /* A subroutine of lower_try_finally.  We have determined that there is
1037    no fallthru edge out of the finally block.  This means that there is
1038    no outgoing edge corresponding to any incoming edge.  Restructure the
1039    try_finally node for this special case.  */
1040 
1041 static void
1042 lower_try_finally_nofallthru (struct leh_state *state,
1043 			      struct leh_tf_state *tf)
1044 {
1045   tree lab, return_val;
1046   gimple x;
1047   gimple_seq finally;
1048   struct goto_queue_node *q, *qe;
1049 
1050   lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1051 
1052   /* We expect that tf->top_p is a GIMPLE_TRY. */
1053   finally = gimple_try_cleanup (tf->top_p);
1054   tf->top_p_seq = gimple_try_eval (tf->top_p);
1055 
1056   x = gimple_build_label (lab);
1057   gimple_seq_add_stmt (&tf->top_p_seq, x);
1058 
1059   return_val = NULL;
1060   q = tf->goto_queue;
1061   qe = q + tf->goto_queue_active;
1062   for (; q < qe; ++q)
1063     if (q->index < 0)
1064       do_return_redirection (q, lab, NULL, &return_val);
1065     else
1066       do_goto_redirection (q, lab, NULL, tf);
1067 
1068   replace_goto_queue (tf);
1069 
1070   lower_eh_constructs_1 (state, finally);
1071   gimple_seq_add_seq (&tf->top_p_seq, finally);
1072 
1073   if (tf->may_throw)
1074     {
1075       emit_post_landing_pad (&eh_seq, tf->region);
1076 
1077       x = gimple_build_goto (lab);
1078       gimple_seq_add_stmt (&eh_seq, x);
1079     }
1080 }
1081 
1082 /* A subroutine of lower_try_finally.  We have determined that there is
1083    exactly one destination of the finally block.  Restructure the
1084    try_finally node for this special case.  */
1085 
1086 static void
1087 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1088 {
1089   struct goto_queue_node *q, *qe;
1090   gimple x;
1091   gimple_seq finally;
1092   tree finally_label;
1093   location_t loc = gimple_location (tf->try_finally_expr);
1094 
1095   finally = gimple_try_cleanup (tf->top_p);
1096   tf->top_p_seq = gimple_try_eval (tf->top_p);
1097 
1098   lower_eh_constructs_1 (state, finally);
1099 
1100   if (tf->may_throw)
1101     {
1102       /* Only reachable via the exception edge.  Add the given label to
1103          the head of the FINALLY block.  Append a RESX at the end.  */
1104       emit_post_landing_pad (&eh_seq, tf->region);
1105       gimple_seq_add_seq (&eh_seq, finally);
1106       emit_resx (&eh_seq, tf->region);
1107       return;
1108     }
1109 
1110   if (tf->may_fallthru)
1111     {
1112       /* Only reachable via the fallthru edge.  Do nothing but let
1113 	 the two blocks run together; we'll fall out the bottom.  */
1114       gimple_seq_add_seq (&tf->top_p_seq, finally);
1115       return;
1116     }
1117 
1118   finally_label = create_artificial_label (loc);
1119   x = gimple_build_label (finally_label);
1120   gimple_seq_add_stmt (&tf->top_p_seq, x);
1121 
1122   gimple_seq_add_seq (&tf->top_p_seq, finally);
1123 
1124   q = tf->goto_queue;
1125   qe = q + tf->goto_queue_active;
1126 
1127   if (tf->may_return)
1128     {
1129       /* Reachable by return expressions only.  Redirect them.  */
1130       tree return_val = NULL;
1131       for (; q < qe; ++q)
1132 	do_return_redirection (q, finally_label, NULL, &return_val);
1133       replace_goto_queue (tf);
1134     }
1135   else
1136     {
1137       /* Reachable by goto expressions only.  Redirect them.  */
1138       for (; q < qe; ++q)
1139 	do_goto_redirection (q, finally_label, NULL, tf);
1140       replace_goto_queue (tf);
1141 
1142       if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1143 	{
1144 	  /* Reachable by goto to fallthru label only.  Redirect it
1145 	     to the new label (already created, sadly), and do not
1146 	     emit the final branch out, or the fallthru label.  */
1147 	  tf->fallthru_label = NULL;
1148 	  return;
1149 	}
1150     }
1151 
1152   /* Place the original return/goto to the original destination
1153      immediately after the finally block. */
1154   x = tf->goto_queue[0].cont_stmt;
1155   gimple_seq_add_stmt (&tf->top_p_seq, x);
1156   maybe_record_in_goto_queue (state, x);
1157 }
1158 
1159 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1160    and outgoing from the finally block.  Implement this by duplicating the
1161    finally block for every destination.  */
1162 
1163 static void
1164 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1165 {
1166   gimple_seq finally;
1167   gimple_seq new_stmt;
1168   gimple_seq seq;
1169   gimple x;
1170   tree tmp;
1171   location_t tf_loc = gimple_location (tf->try_finally_expr);
1172 
1173   finally = gimple_try_cleanup (tf->top_p);
1174   tf->top_p_seq = gimple_try_eval (tf->top_p);
1175   new_stmt = NULL;
1176 
1177   if (tf->may_fallthru)
1178     {
1179       seq = lower_try_finally_dup_block (finally, state);
1180       lower_eh_constructs_1 (state, seq);
1181       gimple_seq_add_seq (&new_stmt, seq);
1182 
1183       tmp = lower_try_finally_fallthru_label (tf);
1184       x = gimple_build_goto (tmp);
1185       gimple_seq_add_stmt (&new_stmt, x);
1186     }
1187 
1188   if (tf->may_throw)
1189     {
1190       seq = lower_try_finally_dup_block (finally, state);
1191       lower_eh_constructs_1 (state, seq);
1192 
1193       emit_post_landing_pad (&eh_seq, tf->region);
1194       gimple_seq_add_seq (&eh_seq, seq);
1195       emit_resx (&eh_seq, tf->region);
1196     }
1197 
1198   if (tf->goto_queue)
1199     {
1200       struct goto_queue_node *q, *qe;
1201       tree return_val = NULL;
1202       int return_index, index;
1203       struct labels_s
1204       {
1205 	struct goto_queue_node *q;
1206 	tree label;
1207       } *labels;
1208 
1209       return_index = VEC_length (tree, tf->dest_array);
1210       labels = XCNEWVEC (struct labels_s, return_index + 1);
1211 
1212       q = tf->goto_queue;
1213       qe = q + tf->goto_queue_active;
1214       for (; q < qe; q++)
1215 	{
1216 	  index = q->index < 0 ? return_index : q->index;
1217 
1218 	  if (!labels[index].q)
1219 	    labels[index].q = q;
1220 	}
1221 
1222       for (index = 0; index < return_index + 1; index++)
1223 	{
1224 	  tree lab;
1225 
1226 	  q = labels[index].q;
1227 	  if (! q)
1228 	    continue;
1229 
1230 	  lab = labels[index].label
1231 	    = create_artificial_label (tf_loc);
1232 
1233 	  if (index == return_index)
1234 	    do_return_redirection (q, lab, NULL, &return_val);
1235 	  else
1236 	    do_goto_redirection (q, lab, NULL, tf);
1237 
1238 	  x = gimple_build_label (lab);
1239           gimple_seq_add_stmt (&new_stmt, x);
1240 
1241 	  seq = lower_try_finally_dup_block (finally, state);
1242 	  lower_eh_constructs_1 (state, seq);
1243           gimple_seq_add_seq (&new_stmt, seq);
1244 
1245           gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1246 	  maybe_record_in_goto_queue (state, q->cont_stmt);
1247 	}
1248 
1249       for (q = tf->goto_queue; q < qe; q++)
1250 	{
1251 	  tree lab;
1252 
1253 	  index = q->index < 0 ? return_index : q->index;
1254 
1255 	  if (labels[index].q == q)
1256 	    continue;
1257 
1258 	  lab = labels[index].label;
1259 
1260 	  if (index == return_index)
1261 	    do_return_redirection (q, lab, NULL, &return_val);
1262 	  else
1263 	    do_goto_redirection (q, lab, NULL, tf);
1264 	}
1265 
1266       replace_goto_queue (tf);
1267       free (labels);
1268     }
1269 
1270   /* Need to link new stmts after running replace_goto_queue due
1271      to not wanting to process the same goto stmts twice.  */
1272   gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1273 }
1274 
1275 /* A subroutine of lower_try_finally.  There are multiple edges incoming
1276    and outgoing from the finally block.  Implement this by instrumenting
1277    each incoming edge and creating a switch statement at the end of the
1278    finally block that branches to the appropriate destination.  */
1279 
1280 static void
1281 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1282 {
1283   struct goto_queue_node *q, *qe;
1284   tree return_val = NULL;
1285   tree finally_tmp, finally_label;
1286   int return_index, eh_index, fallthru_index;
1287   int nlabels, ndests, j, last_case_index;
1288   tree last_case;
1289   VEC (tree,heap) *case_label_vec;
1290   gimple_seq switch_body;
1291   gimple x;
1292   tree tmp;
1293   gimple switch_stmt;
1294   gimple_seq finally;
1295   struct pointer_map_t *cont_map = NULL;
1296   /* The location of the TRY_FINALLY stmt.  */
1297   location_t tf_loc = gimple_location (tf->try_finally_expr);
1298   /* The location of the finally block.  */
1299   location_t finally_loc;
1300 
1301   switch_body = gimple_seq_alloc ();
1302 
1303   /* Mash the TRY block to the head of the chain.  */
1304   finally = gimple_try_cleanup (tf->top_p);
1305   tf->top_p_seq = gimple_try_eval (tf->top_p);
1306 
1307   /* The location of the finally is either the last stmt in the finally
1308      block or the location of the TRY_FINALLY itself.  */
1309   finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1310     gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1311     : tf_loc;
1312 
1313   /* Lower the finally block itself.  */
1314   lower_eh_constructs_1 (state, finally);
1315 
1316   /* Prepare for switch statement generation.  */
1317   nlabels = VEC_length (tree, tf->dest_array);
1318   return_index = nlabels;
1319   eh_index = return_index + tf->may_return;
1320   fallthru_index = eh_index + tf->may_throw;
1321   ndests = fallthru_index + tf->may_fallthru;
1322 
1323   finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1324   finally_label = create_artificial_label (finally_loc);
1325 
1326   /* We use VEC_quick_push on case_label_vec throughout this function,
1327      since we know the size in advance and allocate precisely as muce
1328      space as needed.  */
1329   case_label_vec = VEC_alloc (tree, heap, ndests);
1330   last_case = NULL;
1331   last_case_index = 0;
1332 
1333   /* Begin inserting code for getting to the finally block.  Things
1334      are done in this order to correspond to the sequence the code is
1335      layed out.  */
1336 
1337   if (tf->may_fallthru)
1338     {
1339       x = gimple_build_assign (finally_tmp,
1340 			       build_int_cst (NULL, fallthru_index));
1341       gimple_seq_add_stmt (&tf->top_p_seq, x);
1342 
1343       last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1344 			  build_int_cst (NULL, fallthru_index),
1345 			  NULL, create_artificial_label (tf_loc));
1346       VEC_quick_push (tree, case_label_vec, last_case);
1347       last_case_index++;
1348 
1349       x = gimple_build_label (CASE_LABEL (last_case));
1350       gimple_seq_add_stmt (&switch_body, x);
1351 
1352       tmp = lower_try_finally_fallthru_label (tf);
1353       x = gimple_build_goto (tmp);
1354       gimple_seq_add_stmt (&switch_body, x);
1355     }
1356 
1357   if (tf->may_throw)
1358     {
1359       emit_post_landing_pad (&eh_seq, tf->region);
1360 
1361       x = gimple_build_assign (finally_tmp,
1362 			       build_int_cst (NULL, eh_index));
1363       gimple_seq_add_stmt (&eh_seq, x);
1364 
1365       x = gimple_build_goto (finally_label);
1366       gimple_seq_add_stmt (&eh_seq, x);
1367 
1368       last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1369 			  build_int_cst (NULL, eh_index),
1370 			  NULL, create_artificial_label (tf_loc));
1371       VEC_quick_push (tree, case_label_vec, last_case);
1372       last_case_index++;
1373 
1374       x = gimple_build_label (CASE_LABEL (last_case));
1375       gimple_seq_add_stmt (&eh_seq, x);
1376       emit_resx (&eh_seq, tf->region);
1377     }
1378 
1379   x = gimple_build_label (finally_label);
1380   gimple_seq_add_stmt (&tf->top_p_seq, x);
1381 
1382   gimple_seq_add_seq (&tf->top_p_seq, finally);
1383 
1384   /* Redirect each incoming goto edge.  */
1385   q = tf->goto_queue;
1386   qe = q + tf->goto_queue_active;
1387   j = last_case_index + tf->may_return;
1388   /* Prepare the assignments to finally_tmp that are executed upon the
1389      entrance through a particular edge. */
1390   for (; q < qe; ++q)
1391     {
1392       gimple_seq mod;
1393       int switch_id;
1394       unsigned int case_index;
1395 
1396       mod = gimple_seq_alloc ();
1397 
1398       if (q->index < 0)
1399 	{
1400 	  x = gimple_build_assign (finally_tmp,
1401 				   build_int_cst (NULL, return_index));
1402 	  gimple_seq_add_stmt (&mod, x);
1403 	  do_return_redirection (q, finally_label, mod, &return_val);
1404 	  switch_id = return_index;
1405 	}
1406       else
1407 	{
1408 	  x = gimple_build_assign (finally_tmp,
1409 				   build_int_cst (NULL, q->index));
1410 	  gimple_seq_add_stmt (&mod, x);
1411 	  do_goto_redirection (q, finally_label, mod, tf);
1412 	  switch_id = q->index;
1413 	}
1414 
1415       case_index = j + q->index;
1416       if (VEC_length (tree, case_label_vec) <= case_index
1417           || !VEC_index (tree, case_label_vec, case_index))
1418         {
1419           tree case_lab;
1420           void **slot;
1421           case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1422                              build_int_cst (NULL, switch_id),
1423 			     NULL, NULL);
1424           /* We store the cont_stmt in the pointer map, so that we can recover
1425              it in the loop below.  We don't create the new label while
1426              walking the goto_queue because pointers don't offer a stable
1427              order.  */
1428           if (!cont_map)
1429             cont_map = pointer_map_create ();
1430           slot = pointer_map_insert (cont_map, case_lab);
1431           *slot = q->cont_stmt;
1432           VEC_quick_push (tree, case_label_vec, case_lab);
1433         }
1434     }
1435   for (j = last_case_index; j < last_case_index + nlabels; j++)
1436     {
1437       tree label;
1438       gimple cont_stmt;
1439       void **slot;
1440 
1441       last_case = VEC_index (tree, case_label_vec, j);
1442 
1443       gcc_assert (last_case);
1444       gcc_assert (cont_map);
1445 
1446       slot = pointer_map_contains (cont_map, last_case);
1447       /* As the comment above suggests, CASE_LABEL (last_case) was just a
1448          placeholder, it does not store an actual label, yet. */
1449       gcc_assert (slot);
1450       cont_stmt = *(gimple *) slot;
1451 
1452       label = create_artificial_label (tf_loc);
1453       CASE_LABEL (last_case) = label;
1454 
1455       x = gimple_build_label (label);
1456       gimple_seq_add_stmt (&switch_body, x);
1457       gimple_seq_add_stmt (&switch_body, cont_stmt);
1458       maybe_record_in_goto_queue (state, cont_stmt);
1459     }
1460   if (cont_map)
1461     pointer_map_destroy (cont_map);
1462 
1463   replace_goto_queue (tf);
1464 
1465   /* Make sure that the last case is the default label, as one is required.
1466      Then sort the labels, which is also required in GIMPLE.  */
1467   CASE_LOW (last_case) = NULL;
1468   sort_case_labels (case_label_vec);
1469 
1470   /* Build the switch statement, setting last_case to be the default
1471      label.  */
1472   switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1473                                          case_label_vec);
1474   gimple_set_location (switch_stmt, finally_loc);
1475 
1476   /* Need to link SWITCH_STMT after running replace_goto_queue
1477      due to not wanting to process the same goto stmts twice.  */
1478   gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1479   gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1480 }
1481 
1482 /* Decide whether or not we are going to duplicate the finally block.
1483    There are several considerations.
1484 
1485    First, if this is Java, then the finally block contains code
1486    written by the user.  It has line numbers associated with it,
1487    so duplicating the block means it's difficult to set a breakpoint.
1488    Since controlling code generation via -g is verboten, we simply
1489    never duplicate code without optimization.
1490 
1491    Second, we'd like to prevent egregious code growth.  One way to
1492    do this is to estimate the size of the finally block, multiply
1493    that by the number of copies we'd need to make, and compare against
1494    the estimate of the size of the switch machinery we'd have to add.  */
1495 
1496 static bool
1497 decide_copy_try_finally (int ndests, gimple_seq finally)
1498 {
1499   int f_estimate, sw_estimate;
1500 
1501   if (!optimize)
1502     return false;
1503 
1504   /* Finally estimate N times, plus N gotos.  */
1505   f_estimate = count_insns_seq (finally, &eni_size_weights);
1506   f_estimate = (f_estimate + 1) * ndests;
1507 
1508   /* Switch statement (cost 10), N variable assignments, N gotos.  */
1509   sw_estimate = 10 + 2 * ndests;
1510 
1511   /* Optimize for size clearly wants our best guess.  */
1512   if (optimize_function_for_size_p (cfun))
1513     return f_estimate < sw_estimate;
1514 
1515   /* ??? These numbers are completely made up so far.  */
1516   if (optimize > 1)
1517     return f_estimate < 100 || f_estimate < sw_estimate * 2;
1518   else
1519     return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1520 }
1521 
1522 
1523 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_FINALLY nodes
1524    to a sequence of labels and blocks, plus the exception region trees
1525    that record all the magic.  This is complicated by the need to
1526    arrange for the FINALLY block to be executed on all exits.  */
1527 
1528 static gimple_seq
1529 lower_try_finally (struct leh_state *state, gimple tp)
1530 {
1531   struct leh_tf_state this_tf;
1532   struct leh_state this_state;
1533   int ndests;
1534   gimple_seq old_eh_seq;
1535 
1536   /* Process the try block.  */
1537 
1538   memset (&this_tf, 0, sizeof (this_tf));
1539   this_tf.try_finally_expr = tp;
1540   this_tf.top_p = tp;
1541   this_tf.outer = state;
1542   if (using_eh_for_cleanups_p)
1543     this_tf.region = gen_eh_region_cleanup (state->cur_region);
1544   else
1545     this_tf.region = NULL;
1546 
1547   this_state.cur_region = this_tf.region;
1548   this_state.ehp_region = state->ehp_region;
1549   this_state.tf = &this_tf;
1550 
1551   old_eh_seq = eh_seq;
1552   eh_seq = NULL;
1553 
1554   lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1555 
1556   /* Determine if the try block is escaped through the bottom.  */
1557   this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1558 
1559   /* Determine if any exceptions are possible within the try block.  */
1560   if (using_eh_for_cleanups_p)
1561     this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1562   if (this_tf.may_throw)
1563     honor_protect_cleanup_actions (state, &this_state, &this_tf);
1564 
1565   /* Determine how many edges (still) reach the finally block.  Or rather,
1566      how many destinations are reached by the finally block.  Use this to
1567      determine how we process the finally block itself.  */
1568 
1569   ndests = VEC_length (tree, this_tf.dest_array);
1570   ndests += this_tf.may_fallthru;
1571   ndests += this_tf.may_return;
1572   ndests += this_tf.may_throw;
1573 
1574   /* If the FINALLY block is not reachable, dike it out.  */
1575   if (ndests == 0)
1576     {
1577       gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1578       gimple_try_set_cleanup (tp, NULL);
1579     }
1580   /* If the finally block doesn't fall through, then any destination
1581      we might try to impose there isn't reached either.  There may be
1582      some minor amount of cleanup and redirection still needed.  */
1583   else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1584     lower_try_finally_nofallthru (state, &this_tf);
1585 
1586   /* We can easily special-case redirection to a single destination.  */
1587   else if (ndests == 1)
1588     lower_try_finally_onedest (state, &this_tf);
1589   else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1590     lower_try_finally_copy (state, &this_tf);
1591   else
1592     lower_try_finally_switch (state, &this_tf);
1593 
1594   /* If someone requested we add a label at the end of the transformed
1595      block, do so.  */
1596   if (this_tf.fallthru_label)
1597     {
1598       /* This must be reached only if ndests == 0. */
1599       gimple x = gimple_build_label (this_tf.fallthru_label);
1600       gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1601     }
1602 
1603   VEC_free (tree, heap, this_tf.dest_array);
1604   if (this_tf.goto_queue)
1605     free (this_tf.goto_queue);
1606   if (this_tf.goto_queue_map)
1607     pointer_map_destroy (this_tf.goto_queue_map);
1608 
1609   /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1610      If there was no old eh_seq, then the append is trivially already done.  */
1611   if (old_eh_seq)
1612     {
1613       if (eh_seq == NULL)
1614 	eh_seq = old_eh_seq;
1615       else
1616 	{
1617 	  gimple_seq new_eh_seq = eh_seq;
1618 	  eh_seq = old_eh_seq;
1619 	  gimple_seq_add_seq(&eh_seq, new_eh_seq);
1620 	}
1621     }
1622 
1623   return this_tf.top_p_seq;
1624 }
1625 
1626 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY_CATCH with a
1627    list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1628    exception region trees that records all the magic.  */
1629 
1630 static gimple_seq
1631 lower_catch (struct leh_state *state, gimple tp)
1632 {
1633   eh_region try_region = NULL;
1634   struct leh_state this_state = *state;
1635   gimple_stmt_iterator gsi;
1636   tree out_label;
1637   gimple_seq new_seq;
1638   gimple x;
1639   location_t try_catch_loc = gimple_location (tp);
1640 
1641   if (flag_exceptions)
1642     {
1643       try_region = gen_eh_region_try (state->cur_region);
1644       this_state.cur_region = try_region;
1645     }
1646 
1647   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1648 
1649   if (!eh_region_may_contain_throw (try_region))
1650     return gimple_try_eval (tp);
1651 
1652   new_seq = NULL;
1653   emit_eh_dispatch (&new_seq, try_region);
1654   emit_resx (&new_seq, try_region);
1655 
1656   this_state.cur_region = state->cur_region;
1657   this_state.ehp_region = try_region;
1658 
1659   out_label = NULL;
1660   for (gsi = gsi_start (gimple_try_cleanup (tp));
1661        !gsi_end_p (gsi);
1662        gsi_next (&gsi))
1663     {
1664       eh_catch c;
1665       gimple gcatch;
1666       gimple_seq handler;
1667 
1668       gcatch = gsi_stmt (gsi);
1669       c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1670 
1671       handler = gimple_catch_handler (gcatch);
1672       lower_eh_constructs_1 (&this_state, handler);
1673 
1674       c->label = create_artificial_label (UNKNOWN_LOCATION);
1675       x = gimple_build_label (c->label);
1676       gimple_seq_add_stmt (&new_seq, x);
1677 
1678       gimple_seq_add_seq (&new_seq, handler);
1679 
1680       if (gimple_seq_may_fallthru (new_seq))
1681 	{
1682 	  if (!out_label)
1683 	    out_label = create_artificial_label (try_catch_loc);
1684 
1685 	  x = gimple_build_goto (out_label);
1686 	  gimple_seq_add_stmt (&new_seq, x);
1687 	}
1688       if (!c->type_list)
1689 	break;
1690     }
1691 
1692   gimple_try_set_cleanup (tp, new_seq);
1693 
1694   return frob_into_branch_around (tp, try_region, out_label);
1695 }
1696 
1697 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with a
1698    GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1699    region trees that record all the magic.  */
1700 
1701 static gimple_seq
1702 lower_eh_filter (struct leh_state *state, gimple tp)
1703 {
1704   struct leh_state this_state = *state;
1705   eh_region this_region = NULL;
1706   gimple inner, x;
1707   gimple_seq new_seq;
1708 
1709   inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1710 
1711   if (flag_exceptions)
1712     {
1713       this_region = gen_eh_region_allowed (state->cur_region,
1714 				           gimple_eh_filter_types (inner));
1715       this_state.cur_region = this_region;
1716     }
1717 
1718   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1719 
1720   if (!eh_region_may_contain_throw (this_region))
1721     return gimple_try_eval (tp);
1722 
1723   new_seq = NULL;
1724   this_state.cur_region = state->cur_region;
1725   this_state.ehp_region = this_region;
1726 
1727   emit_eh_dispatch (&new_seq, this_region);
1728   emit_resx (&new_seq, this_region);
1729 
1730   this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1731   x = gimple_build_label (this_region->u.allowed.label);
1732   gimple_seq_add_stmt (&new_seq, x);
1733 
1734   lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1735   gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1736 
1737   gimple_try_set_cleanup (tp, new_seq);
1738 
1739   return frob_into_branch_around (tp, this_region, NULL);
1740 }
1741 
1742 /* A subroutine of lower_eh_constructs_1.  Lower a GIMPLE_TRY with
1743    an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1744    plus the exception region trees that record all the magic.  */
1745 
1746 static gimple_seq
1747 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1748 {
1749   struct leh_state this_state = *state;
1750 
1751   if (flag_exceptions)
1752     {
1753       gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1754       eh_region this_region;
1755 
1756       this_region = gen_eh_region_must_not_throw (state->cur_region);
1757       this_region->u.must_not_throw.failure_decl
1758 	= gimple_eh_must_not_throw_fndecl (inner);
1759       this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1760 
1761       /* In order to get mangling applied to this decl, we must mark it
1762 	 used now.  Otherwise, pass_ipa_free_lang_data won't think it
1763 	 needs to happen.  */
1764       TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1765 
1766       this_state.cur_region = this_region;
1767     }
1768 
1769   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1770 
1771   return gimple_try_eval (tp);
1772 }
1773 
1774 /* Implement a cleanup expression.  This is similar to try-finally,
1775    except that we only execute the cleanup block for exception edges.  */
1776 
1777 static gimple_seq
1778 lower_cleanup (struct leh_state *state, gimple tp)
1779 {
1780   struct leh_state this_state = *state;
1781   eh_region this_region = NULL;
1782   struct leh_tf_state fake_tf;
1783   gimple_seq result;
1784 
1785   if (flag_exceptions)
1786     {
1787       this_region = gen_eh_region_cleanup (state->cur_region);
1788       this_state.cur_region = this_region;
1789     }
1790 
1791   lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1792 
1793   if (!eh_region_may_contain_throw (this_region))
1794     return gimple_try_eval (tp);
1795 
1796   /* Build enough of a try-finally state so that we can reuse
1797      honor_protect_cleanup_actions.  */
1798   memset (&fake_tf, 0, sizeof (fake_tf));
1799   fake_tf.top_p = fake_tf.try_finally_expr = tp;
1800   fake_tf.outer = state;
1801   fake_tf.region = this_region;
1802   fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1803   fake_tf.may_throw = true;
1804 
1805   honor_protect_cleanup_actions (state, NULL, &fake_tf);
1806 
1807   if (fake_tf.may_throw)
1808     {
1809       /* In this case honor_protect_cleanup_actions had nothing to do,
1810 	 and we should process this normally.  */
1811       lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1812       result = frob_into_branch_around (tp, this_region,
1813                                         fake_tf.fallthru_label);
1814     }
1815   else
1816     {
1817       /* In this case honor_protect_cleanup_actions did nearly all of
1818 	 the work.  All we have left is to append the fallthru_label.  */
1819 
1820       result = gimple_try_eval (tp);
1821       if (fake_tf.fallthru_label)
1822 	{
1823 	  gimple x = gimple_build_label (fake_tf.fallthru_label);
1824 	  gimple_seq_add_stmt (&result, x);
1825 	}
1826     }
1827   return result;
1828 }
1829 
1830 /* Main loop for lowering eh constructs. Also moves gsi to the next
1831    statement. */
1832 
1833 static void
1834 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1835 {
1836   gimple_seq replace;
1837   gimple x;
1838   gimple stmt = gsi_stmt (*gsi);
1839 
1840   switch (gimple_code (stmt))
1841     {
1842     case GIMPLE_CALL:
1843       {
1844 	tree fndecl = gimple_call_fndecl (stmt);
1845 	tree rhs, lhs;
1846 
1847 	if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1848 	  switch (DECL_FUNCTION_CODE (fndecl))
1849 	    {
1850 	    case BUILT_IN_EH_POINTER:
1851 	      /* The front end may have generated a call to
1852 		 __builtin_eh_pointer (0) within a catch region.  Replace
1853 		 this zero argument with the current catch region number.  */
1854 	      if (state->ehp_region)
1855 		{
1856 		  tree nr = build_int_cst (NULL, state->ehp_region->index);
1857 		  gimple_call_set_arg (stmt, 0, nr);
1858 		}
1859 	      else
1860 		{
1861 		  /* The user has dome something silly.  Remove it.  */
1862 		  rhs = build_int_cst (ptr_type_node, 0);
1863 		  goto do_replace;
1864 		}
1865 	      break;
1866 
1867 	    case BUILT_IN_EH_FILTER:
1868 	      /* ??? This should never appear, but since it's a builtin it
1869 		 is accessible to abuse by users.  Just remove it and
1870 		 replace the use with the arbitrary value zero.  */
1871 	      rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1872 	    do_replace:
1873 	      lhs = gimple_call_lhs (stmt);
1874 	      x = gimple_build_assign (lhs, rhs);
1875 	      gsi_insert_before (gsi, x, GSI_SAME_STMT);
1876 	      /* FALLTHRU */
1877 
1878 	    case BUILT_IN_EH_COPY_VALUES:
1879 	      /* Likewise this should not appear.  Remove it.  */
1880 	      gsi_remove (gsi, true);
1881 	      return;
1882 
1883 	    default:
1884 	      break;
1885 	    }
1886       }
1887       /* FALLTHRU */
1888 
1889     case GIMPLE_ASSIGN:
1890       /* If the stmt can throw use a new temporary for the assignment
1891          to a LHS.  This makes sure the old value of the LHS is
1892 	 available on the EH edge.  Only do so for statements that
1893 	 potentially fall thru (no noreturn calls e.g.), otherwise
1894 	 this new assignment might create fake fallthru regions.  */
1895       if (stmt_could_throw_p (stmt)
1896 	  && gimple_has_lhs (stmt)
1897 	  && gimple_stmt_may_fallthru (stmt)
1898 	  && !tree_could_throw_p (gimple_get_lhs (stmt))
1899 	  && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1900 	{
1901 	  tree lhs = gimple_get_lhs (stmt);
1902 	  tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1903 	  gimple s = gimple_build_assign (lhs, tmp);
1904 	  gimple_set_location (s, gimple_location (stmt));
1905 	  gimple_set_block (s, gimple_block (stmt));
1906 	  gimple_set_lhs (stmt, tmp);
1907 	  if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1908 	      || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1909 	    DECL_GIMPLE_REG_P (tmp) = 1;
1910 	  gsi_insert_after (gsi, s, GSI_SAME_STMT);
1911 	}
1912       /* Look for things that can throw exceptions, and record them.  */
1913       if (state->cur_region && stmt_could_throw_p (stmt))
1914 	{
1915 	  record_stmt_eh_region (state->cur_region, stmt);
1916 	  note_eh_region_may_contain_throw (state->cur_region);
1917 	}
1918       break;
1919 
1920     case GIMPLE_COND:
1921     case GIMPLE_GOTO:
1922     case GIMPLE_RETURN:
1923       maybe_record_in_goto_queue (state, stmt);
1924       break;
1925 
1926     case GIMPLE_SWITCH:
1927       verify_norecord_switch_expr (state, stmt);
1928       break;
1929 
1930     case GIMPLE_TRY:
1931       if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1932 	replace = lower_try_finally (state, stmt);
1933       else
1934 	{
1935 	  x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1936 	  if (!x)
1937 	    {
1938 	      replace = gimple_try_eval (stmt);
1939 	      lower_eh_constructs_1 (state, replace);
1940 	    }
1941 	  else
1942 	    switch (gimple_code (x))
1943 	      {
1944 		case GIMPLE_CATCH:
1945 		    replace = lower_catch (state, stmt);
1946 		    break;
1947 		case GIMPLE_EH_FILTER:
1948 		    replace = lower_eh_filter (state, stmt);
1949 		    break;
1950 		case GIMPLE_EH_MUST_NOT_THROW:
1951 		    replace = lower_eh_must_not_throw (state, stmt);
1952 		    break;
1953 		default:
1954 		    replace = lower_cleanup (state, stmt);
1955 		    break;
1956 	      }
1957 	}
1958 
1959       /* Remove the old stmt and insert the transformed sequence
1960 	 instead. */
1961       gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1962       gsi_remove (gsi, true);
1963 
1964       /* Return since we don't want gsi_next () */
1965       return;
1966 
1967     default:
1968       /* A type, a decl, or some kind of statement that we're not
1969 	 interested in.  Don't walk them.  */
1970       break;
1971     }
1972 
1973   gsi_next (gsi);
1974 }
1975 
1976 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1977 
1978 static void
1979 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1980 {
1981   gimple_stmt_iterator gsi;
1982   for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1983     lower_eh_constructs_2 (state, &gsi);
1984 }
1985 
1986 static unsigned int
1987 lower_eh_constructs (void)
1988 {
1989   struct leh_state null_state;
1990   gimple_seq bodyp;
1991 
1992   bodyp = gimple_body (current_function_decl);
1993   if (bodyp == NULL)
1994     return 0;
1995 
1996   finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1997   eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1998   memset (&null_state, 0, sizeof (null_state));
1999 
2000   collect_finally_tree_1 (bodyp, NULL);
2001   lower_eh_constructs_1 (&null_state, bodyp);
2002 
2003   /* We assume there's a return statement, or something, at the end of
2004      the function, and thus ploping the EH sequence afterward won't
2005      change anything.  */
2006   gcc_assert (!gimple_seq_may_fallthru (bodyp));
2007   gimple_seq_add_seq (&bodyp, eh_seq);
2008 
2009   /* We assume that since BODYP already existed, adding EH_SEQ to it
2010      didn't change its value, and we don't have to re-set the function.  */
2011   gcc_assert (bodyp == gimple_body (current_function_decl));
2012 
2013   htab_delete (finally_tree);
2014   BITMAP_FREE (eh_region_may_contain_throw_map);
2015   eh_seq = NULL;
2016 
2017   /* If this function needs a language specific EH personality routine
2018      and the frontend didn't already set one do so now.  */
2019   if (function_needs_eh_personality (cfun) == eh_personality_lang
2020       && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2021     DECL_FUNCTION_PERSONALITY (current_function_decl)
2022       = lang_hooks.eh_personality ();
2023 
2024   return 0;
2025 }
2026 
2027 struct gimple_opt_pass pass_lower_eh =
2028 {
2029  {
2030   GIMPLE_PASS,
2031   "eh",					/* name */
2032   NULL,					/* gate */
2033   lower_eh_constructs,			/* execute */
2034   NULL,					/* sub */
2035   NULL,					/* next */
2036   0,					/* static_pass_number */
2037   TV_TREE_EH,				/* tv_id */
2038   PROP_gimple_lcf,			/* properties_required */
2039   PROP_gimple_leh,			/* properties_provided */
2040   0,					/* properties_destroyed */
2041   0,					/* todo_flags_start */
2042   TODO_dump_func			/* todo_flags_finish */
2043  }
2044 };
2045 
2046 /* Create the multiple edges from an EH_DISPATCH statement to all of
2047    the possible handlers for its EH region.  Return true if there's
2048    no fallthru edge; false if there is.  */
2049 
2050 bool
2051 make_eh_dispatch_edges (gimple stmt)
2052 {
2053   eh_region r;
2054   eh_catch c;
2055   basic_block src, dst;
2056 
2057   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2058   src = gimple_bb (stmt);
2059 
2060   switch (r->type)
2061     {
2062     case ERT_TRY:
2063       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2064 	{
2065 	  dst = label_to_block (c->label);
2066 	  make_edge (src, dst, 0);
2067 
2068 	  /* A catch-all handler doesn't have a fallthru.  */
2069 	  if (c->type_list == NULL)
2070 	    return false;
2071 	}
2072       break;
2073 
2074     case ERT_ALLOWED_EXCEPTIONS:
2075       dst = label_to_block (r->u.allowed.label);
2076       make_edge (src, dst, 0);
2077       break;
2078 
2079     default:
2080       gcc_unreachable ();
2081     }
2082 
2083   return true;
2084 }
2085 
2086 /* Create the single EH edge from STMT to its nearest landing pad,
2087    if there is such a landing pad within the current function.  */
2088 
2089 void
2090 make_eh_edges (gimple stmt)
2091 {
2092   basic_block src, dst;
2093   eh_landing_pad lp;
2094   int lp_nr;
2095 
2096   lp_nr = lookup_stmt_eh_lp (stmt);
2097   if (lp_nr <= 0)
2098     return;
2099 
2100   lp = get_eh_landing_pad_from_number (lp_nr);
2101   gcc_assert (lp != NULL);
2102 
2103   src = gimple_bb (stmt);
2104   dst = label_to_block (lp->post_landing_pad);
2105   make_edge (src, dst, EDGE_EH);
2106 }
2107 
2108 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2109    do not actually perform the final edge redirection.
2110 
2111    CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2112    we intend to change the destination EH region as well; this means
2113    EH_LANDING_PAD_NR must already be set on the destination block label.
2114    If false, we're being called from generic cfg manipulation code and we
2115    should preserve our place within the region tree.  */
2116 
2117 static void
2118 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2119 {
2120   eh_landing_pad old_lp, new_lp;
2121   basic_block old_bb;
2122   gimple throw_stmt;
2123   int old_lp_nr, new_lp_nr;
2124   tree old_label, new_label;
2125   edge_iterator ei;
2126   edge e;
2127 
2128   old_bb = edge_in->dest;
2129   old_label = gimple_block_label (old_bb);
2130   old_lp_nr = EH_LANDING_PAD_NR (old_label);
2131   gcc_assert (old_lp_nr > 0);
2132   old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2133 
2134   throw_stmt = last_stmt (edge_in->src);
2135   gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2136 
2137   new_label = gimple_block_label (new_bb);
2138 
2139   /* Look for an existing region that might be using NEW_BB already.  */
2140   new_lp_nr = EH_LANDING_PAD_NR (new_label);
2141   if (new_lp_nr)
2142     {
2143       new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2144       gcc_assert (new_lp);
2145 
2146       /* Unless CHANGE_REGION is true, the new and old landing pad
2147 	 had better be associated with the same EH region.  */
2148       gcc_assert (change_region || new_lp->region == old_lp->region);
2149     }
2150   else
2151     {
2152       new_lp = NULL;
2153       gcc_assert (!change_region);
2154     }
2155 
2156   /* Notice when we redirect the last EH edge away from OLD_BB.  */
2157   FOR_EACH_EDGE (e, ei, old_bb->preds)
2158     if (e != edge_in && (e->flags & EDGE_EH))
2159       break;
2160 
2161   if (new_lp)
2162     {
2163       /* NEW_LP already exists.  If there are still edges into OLD_LP,
2164 	 there's nothing to do with the EH tree.  If there are no more
2165 	 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2166 	 If CHANGE_REGION is true, then our caller is expecting to remove
2167 	 the landing pad.  */
2168       if (e == NULL && !change_region)
2169 	remove_eh_landing_pad (old_lp);
2170     }
2171   else
2172     {
2173       /* No correct landing pad exists.  If there are no more edges
2174 	 into OLD_LP, then we can simply re-use the existing landing pad.
2175 	 Otherwise, we have to create a new landing pad.  */
2176       if (e == NULL)
2177 	{
2178 	  EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2179 	  new_lp = old_lp;
2180 	}
2181       else
2182 	new_lp = gen_eh_landing_pad (old_lp->region);
2183       new_lp->post_landing_pad = new_label;
2184       EH_LANDING_PAD_NR (new_label) = new_lp->index;
2185     }
2186 
2187   /* Maybe move the throwing statement to the new region.  */
2188   if (old_lp != new_lp)
2189     {
2190       remove_stmt_from_eh_lp (throw_stmt);
2191       add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2192     }
2193 }
2194 
2195 /* Redirect EH edge E to NEW_BB.  */
2196 
2197 edge
2198 redirect_eh_edge (edge edge_in, basic_block new_bb)
2199 {
2200   redirect_eh_edge_1 (edge_in, new_bb, false);
2201   return ssa_redirect_edge (edge_in, new_bb);
2202 }
2203 
2204 /* This is a subroutine of gimple_redirect_edge_and_branch.  Update the
2205    labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2206    The actual edge update will happen in the caller.  */
2207 
2208 void
2209 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2210 {
2211   tree new_lab = gimple_block_label (new_bb);
2212   bool any_changed = false;
2213   basic_block old_bb;
2214   eh_region r;
2215   eh_catch c;
2216 
2217   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2218   switch (r->type)
2219     {
2220     case ERT_TRY:
2221       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2222 	{
2223 	  old_bb = label_to_block (c->label);
2224 	  if (old_bb == e->dest)
2225 	    {
2226 	      c->label = new_lab;
2227 	      any_changed = true;
2228 	    }
2229 	}
2230       break;
2231 
2232     case ERT_ALLOWED_EXCEPTIONS:
2233       old_bb = label_to_block (r->u.allowed.label);
2234       gcc_assert (old_bb == e->dest);
2235       r->u.allowed.label = new_lab;
2236       any_changed = true;
2237       break;
2238 
2239     default:
2240       gcc_unreachable ();
2241     }
2242 
2243   gcc_assert (any_changed);
2244 }
2245 
2246 /* Helper function for operation_could_trap_p and stmt_could_throw_p.  */
2247 
2248 bool
2249 operation_could_trap_helper_p (enum tree_code op,
2250 			       bool fp_operation,
2251 			       bool honor_trapv,
2252 			       bool honor_nans,
2253 			       bool honor_snans,
2254 			       tree divisor,
2255 			       bool *handled)
2256 {
2257   *handled = true;
2258   switch (op)
2259     {
2260     case TRUNC_DIV_EXPR:
2261     case CEIL_DIV_EXPR:
2262     case FLOOR_DIV_EXPR:
2263     case ROUND_DIV_EXPR:
2264     case EXACT_DIV_EXPR:
2265     case CEIL_MOD_EXPR:
2266     case FLOOR_MOD_EXPR:
2267     case ROUND_MOD_EXPR:
2268     case TRUNC_MOD_EXPR:
2269     case RDIV_EXPR:
2270       if (honor_snans || honor_trapv)
2271 	return true;
2272       if (fp_operation)
2273 	return flag_trapping_math;
2274       if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2275         return true;
2276       return false;
2277 
2278     case LT_EXPR:
2279     case LE_EXPR:
2280     case GT_EXPR:
2281     case GE_EXPR:
2282     case LTGT_EXPR:
2283       /* Some floating point comparisons may trap.  */
2284       return honor_nans;
2285 
2286     case EQ_EXPR:
2287     case NE_EXPR:
2288     case UNORDERED_EXPR:
2289     case ORDERED_EXPR:
2290     case UNLT_EXPR:
2291     case UNLE_EXPR:
2292     case UNGT_EXPR:
2293     case UNGE_EXPR:
2294     case UNEQ_EXPR:
2295       return honor_snans;
2296 
2297     case CONVERT_EXPR:
2298     case FIX_TRUNC_EXPR:
2299       /* Conversion of floating point might trap.  */
2300       return honor_nans;
2301 
2302     case NEGATE_EXPR:
2303     case ABS_EXPR:
2304     case CONJ_EXPR:
2305       /* These operations don't trap with floating point.  */
2306       if (honor_trapv)
2307 	return true;
2308       return false;
2309 
2310     case PLUS_EXPR:
2311     case MINUS_EXPR:
2312     case MULT_EXPR:
2313       /* Any floating arithmetic may trap.  */
2314       if (fp_operation && flag_trapping_math)
2315 	return true;
2316       if (honor_trapv)
2317 	return true;
2318       return false;
2319 
2320     case COMPLEX_EXPR:
2321     case CONSTRUCTOR:
2322       /* Constructing an object cannot trap.  */
2323       return false;
2324 
2325     default:
2326       /* Any floating arithmetic may trap.  */
2327       if (fp_operation && flag_trapping_math)
2328 	return true;
2329 
2330       *handled = false;
2331       return false;
2332     }
2333 }
2334 
2335 /* Return true if operation OP may trap.  FP_OPERATION is true if OP is applied
2336    on floating-point values.  HONOR_TRAPV is true if OP is applied on integer
2337    type operands that may trap.  If OP is a division operator, DIVISOR contains
2338    the value of the divisor.  */
2339 
2340 bool
2341 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2342 			tree divisor)
2343 {
2344   bool honor_nans = (fp_operation && flag_trapping_math
2345 		     && !flag_finite_math_only);
2346   bool honor_snans = fp_operation && flag_signaling_nans != 0;
2347   bool handled;
2348 
2349   if (TREE_CODE_CLASS (op) != tcc_comparison
2350       && TREE_CODE_CLASS (op) != tcc_unary
2351       && TREE_CODE_CLASS (op) != tcc_binary)
2352     return false;
2353 
2354   return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2355 					honor_nans, honor_snans, divisor,
2356 					&handled);
2357 }
2358 
2359 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2360    location or floating point arithmetic.  C.f. the rtl version, may_trap_p.
2361    This routine expects only GIMPLE lhs or rhs input.  */
2362 
2363 bool
2364 tree_could_trap_p (tree expr)
2365 {
2366   enum tree_code code;
2367   bool fp_operation = false;
2368   bool honor_trapv = false;
2369   tree t, base, div = NULL_TREE;
2370 
2371   if (!expr)
2372     return false;
2373 
2374   code = TREE_CODE (expr);
2375   t = TREE_TYPE (expr);
2376 
2377   if (t)
2378     {
2379       if (COMPARISON_CLASS_P (expr))
2380 	fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2381       else
2382 	fp_operation = FLOAT_TYPE_P (t);
2383       honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2384     }
2385 
2386   if (TREE_CODE_CLASS (code) == tcc_binary)
2387     div = TREE_OPERAND (expr, 1);
2388   if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2389     return true;
2390 
2391  restart:
2392   switch (code)
2393     {
2394     case TARGET_MEM_REF:
2395       /* For TARGET_MEM_REFs use the information based on the original
2396 	 reference.  */
2397       expr = TMR_ORIGINAL (expr);
2398       code = TREE_CODE (expr);
2399       goto restart;
2400 
2401     case COMPONENT_REF:
2402     case REALPART_EXPR:
2403     case IMAGPART_EXPR:
2404     case BIT_FIELD_REF:
2405     case VIEW_CONVERT_EXPR:
2406     case WITH_SIZE_EXPR:
2407       expr = TREE_OPERAND (expr, 0);
2408       code = TREE_CODE (expr);
2409       goto restart;
2410 
2411     case ARRAY_RANGE_REF:
2412       base = TREE_OPERAND (expr, 0);
2413       if (tree_could_trap_p (base))
2414 	return true;
2415       if (TREE_THIS_NOTRAP (expr))
2416 	return false;
2417       return !range_in_array_bounds_p (expr);
2418 
2419     case ARRAY_REF:
2420       base = TREE_OPERAND (expr, 0);
2421       if (tree_could_trap_p (base))
2422 	return true;
2423       if (TREE_THIS_NOTRAP (expr))
2424 	return false;
2425       return !in_array_bounds_p (expr);
2426 
2427     case INDIRECT_REF:
2428     case ALIGN_INDIRECT_REF:
2429     case MISALIGNED_INDIRECT_REF:
2430       return !TREE_THIS_NOTRAP (expr);
2431 
2432     case ASM_EXPR:
2433       return TREE_THIS_VOLATILE (expr);
2434 
2435     case CALL_EXPR:
2436       t = get_callee_fndecl (expr);
2437       /* Assume that calls to weak functions may trap.  */
2438       if (!t || !DECL_P (t) || DECL_WEAK (t))
2439 	return true;
2440       return false;
2441 
2442     default:
2443       return false;
2444     }
2445 }
2446 
2447 
2448 /* Helper for stmt_could_throw_p.  Return true if STMT (assumed to be a
2449    an assignment or a conditional) may throw.  */
2450 
2451 static bool
2452 stmt_could_throw_1_p (gimple stmt)
2453 {
2454   enum tree_code code = gimple_expr_code (stmt);
2455   bool honor_nans = false;
2456   bool honor_snans = false;
2457   bool fp_operation = false;
2458   bool honor_trapv = false;
2459   tree t;
2460   size_t i;
2461   bool handled, ret;
2462 
2463   if (TREE_CODE_CLASS (code) == tcc_comparison
2464       || TREE_CODE_CLASS (code) == tcc_unary
2465       || TREE_CODE_CLASS (code) == tcc_binary)
2466     {
2467       t = gimple_expr_type (stmt);
2468       fp_operation = FLOAT_TYPE_P (t);
2469       if (fp_operation)
2470 	{
2471 	  honor_nans = flag_trapping_math && !flag_finite_math_only;
2472 	  honor_snans = flag_signaling_nans != 0;
2473 	}
2474       else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2475 	honor_trapv = true;
2476     }
2477 
2478   /* Check if the main expression may trap.  */
2479   t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2480   ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2481 				       honor_nans, honor_snans, t,
2482 				       &handled);
2483   if (handled)
2484     return ret;
2485 
2486   /* If the expression does not trap, see if any of the individual operands may
2487      trap.  */
2488   for (i = 0; i < gimple_num_ops (stmt); i++)
2489     if (tree_could_trap_p (gimple_op (stmt, i)))
2490       return true;
2491 
2492   return false;
2493 }
2494 
2495 
2496 /* Return true if statement STMT could throw an exception.  */
2497 
2498 bool
2499 stmt_could_throw_p (gimple stmt)
2500 {
2501   if (!flag_exceptions)
2502     return false;
2503 
2504   /* The only statements that can throw an exception are assignments,
2505      conditionals, calls, resx, and asms.  */
2506   switch (gimple_code (stmt))
2507     {
2508     case GIMPLE_RESX:
2509       return true;
2510 
2511     case GIMPLE_CALL:
2512       return !gimple_call_nothrow_p (stmt);
2513 
2514     case GIMPLE_ASSIGN:
2515     case GIMPLE_COND:
2516       if (!flag_non_call_exceptions)
2517         return false;
2518       return stmt_could_throw_1_p (stmt);
2519 
2520     case GIMPLE_ASM:
2521       if (!flag_non_call_exceptions)
2522         return false;
2523       return gimple_asm_volatile_p (stmt);
2524 
2525     default:
2526       return false;
2527     }
2528 }
2529 
2530 
2531 /* Return true if expression T could throw an exception.  */
2532 
2533 bool
2534 tree_could_throw_p (tree t)
2535 {
2536   if (!flag_exceptions)
2537     return false;
2538   if (TREE_CODE (t) == MODIFY_EXPR)
2539     {
2540       if (flag_non_call_exceptions
2541           && tree_could_trap_p (TREE_OPERAND (t, 0)))
2542         return true;
2543       t = TREE_OPERAND (t, 1);
2544     }
2545 
2546   if (TREE_CODE (t) == WITH_SIZE_EXPR)
2547     t = TREE_OPERAND (t, 0);
2548   if (TREE_CODE (t) == CALL_EXPR)
2549     return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2550   if (flag_non_call_exceptions)
2551     return tree_could_trap_p (t);
2552   return false;
2553 }
2554 
2555 /* Return true if STMT can throw an exception that is not caught within
2556    the current function (CFUN).  */
2557 
2558 bool
2559 stmt_can_throw_external (gimple stmt)
2560 {
2561   int lp_nr;
2562 
2563   if (!stmt_could_throw_p (stmt))
2564     return false;
2565 
2566   lp_nr = lookup_stmt_eh_lp (stmt);
2567   return lp_nr == 0;
2568 }
2569 
2570 /* Return true if STMT can throw an exception that is caught within
2571    the current function (CFUN).  */
2572 
2573 bool
2574 stmt_can_throw_internal (gimple stmt)
2575 {
2576   int lp_nr;
2577 
2578   if (!stmt_could_throw_p (stmt))
2579     return false;
2580 
2581   lp_nr = lookup_stmt_eh_lp (stmt);
2582   return lp_nr > 0;
2583 }
2584 
2585 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2586    remove any entry it might have from the EH table.  Return true if
2587    any change was made.  */
2588 
2589 bool
2590 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2591 {
2592   if (stmt_could_throw_p (stmt))
2593     return false;
2594   return remove_stmt_from_eh_lp_fn (ifun, stmt);
2595 }
2596 
2597 /* Likewise, but always use the current function.  */
2598 
2599 bool
2600 maybe_clean_eh_stmt (gimple stmt)
2601 {
2602   return maybe_clean_eh_stmt_fn (cfun, stmt);
2603 }
2604 
2605 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2606    OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2607    in the table if it should be in there.  Return TRUE if a replacement was
2608    done that my require an EH edge purge.  */
2609 
2610 bool
2611 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2612 {
2613   int lp_nr = lookup_stmt_eh_lp (old_stmt);
2614 
2615   if (lp_nr != 0)
2616     {
2617       bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2618 
2619       if (new_stmt == old_stmt && new_stmt_could_throw)
2620 	return false;
2621 
2622       remove_stmt_from_eh_lp (old_stmt);
2623       if (new_stmt_could_throw)
2624 	{
2625 	  add_stmt_to_eh_lp (new_stmt, lp_nr);
2626 	  return false;
2627 	}
2628       else
2629 	return true;
2630     }
2631 
2632   return false;
2633 }
2634 
2635 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2636    in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT.  The MAP
2637    operand is the return value of duplicate_eh_regions.  */
2638 
2639 bool
2640 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2641 			    struct function *old_fun, gimple old_stmt,
2642 			    struct pointer_map_t *map, int default_lp_nr)
2643 {
2644   int old_lp_nr, new_lp_nr;
2645   void **slot;
2646 
2647   if (!stmt_could_throw_p (new_stmt))
2648     return false;
2649 
2650   old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2651   if (old_lp_nr == 0)
2652     {
2653       if (default_lp_nr == 0)
2654 	return false;
2655       new_lp_nr = default_lp_nr;
2656     }
2657   else if (old_lp_nr > 0)
2658     {
2659       eh_landing_pad old_lp, new_lp;
2660 
2661       old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2662       slot = pointer_map_contains (map, old_lp);
2663       new_lp = (eh_landing_pad) *slot;
2664       new_lp_nr = new_lp->index;
2665     }
2666   else
2667     {
2668       eh_region old_r, new_r;
2669 
2670       old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2671       slot = pointer_map_contains (map, old_r);
2672       new_r = (eh_region) *slot;
2673       new_lp_nr = -new_r->index;
2674     }
2675 
2676   add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2677   return true;
2678 }
2679 
2680 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2681    and thus no remapping is required.  */
2682 
2683 bool
2684 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2685 {
2686   int lp_nr;
2687 
2688   if (!stmt_could_throw_p (new_stmt))
2689     return false;
2690 
2691   lp_nr = lookup_stmt_eh_lp (old_stmt);
2692   if (lp_nr == 0)
2693     return false;
2694 
2695   add_stmt_to_eh_lp (new_stmt, lp_nr);
2696   return true;
2697 }
2698 
2699 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2700    GIMPLE_TRY) that are similar enough to be considered the same.  Currently
2701    this only handles handlers consisting of a single call, as that's the
2702    important case for C++: a destructor call for a particular object showing
2703    up in multiple handlers.  */
2704 
2705 static bool
2706 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2707 {
2708   gimple_stmt_iterator gsi;
2709   gimple ones, twos;
2710   unsigned int ai;
2711 
2712   gsi = gsi_start (oneh);
2713   if (!gsi_one_before_end_p (gsi))
2714     return false;
2715   ones = gsi_stmt (gsi);
2716 
2717   gsi = gsi_start (twoh);
2718   if (!gsi_one_before_end_p (gsi))
2719     return false;
2720   twos = gsi_stmt (gsi);
2721 
2722   if (!is_gimple_call (ones)
2723       || !is_gimple_call (twos)
2724       || gimple_call_lhs (ones)
2725       || gimple_call_lhs (twos)
2726       || gimple_call_chain (ones)
2727       || gimple_call_chain (twos)
2728       || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2729       || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2730     return false;
2731 
2732   for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2733     if (!operand_equal_p (gimple_call_arg (ones, ai),
2734                           gimple_call_arg (twos, ai), 0))
2735       return false;
2736 
2737   return true;
2738 }
2739 
2740 /* Optimize
2741     try { A() } finally { try { ~B() } catch { ~A() } }
2742     try { ... } finally { ~A() }
2743    into
2744     try { A() } catch { ~B() }
2745     try { ~B() ... } finally { ~A() }
2746 
2747    This occurs frequently in C++, where A is a local variable and B is a
2748    temporary used in the initializer for A.  */
2749 
2750 static void
2751 optimize_double_finally (gimple one, gimple two)
2752 {
2753   gimple oneh;
2754   gimple_stmt_iterator gsi;
2755 
2756   gsi = gsi_start (gimple_try_cleanup (one));
2757   if (!gsi_one_before_end_p (gsi))
2758     return;
2759 
2760   oneh = gsi_stmt (gsi);
2761   if (gimple_code (oneh) != GIMPLE_TRY
2762       || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2763     return;
2764 
2765   if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2766     {
2767       gimple_seq seq = gimple_try_eval (oneh);
2768 
2769       gimple_try_set_cleanup (one, seq);
2770       gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2771       seq = copy_gimple_seq_and_replace_locals (seq);
2772       gimple_seq_add_seq (&seq, gimple_try_eval (two));
2773       gimple_try_set_eval (two, seq);
2774     }
2775 }
2776 
2777 /* Perform EH refactoring optimizations that are simpler to do when code
2778    flow has been lowered but EH structures haven't.  */
2779 
2780 static void
2781 refactor_eh_r (gimple_seq seq)
2782 {
2783   gimple_stmt_iterator gsi;
2784   gimple one, two;
2785 
2786   one = NULL;
2787   two = NULL;
2788   gsi = gsi_start (seq);
2789   while (1)
2790     {
2791       one = two;
2792       if (gsi_end_p (gsi))
2793 	two = NULL;
2794       else
2795 	two = gsi_stmt (gsi);
2796       if (one
2797 	  && two
2798 	  && gimple_code (one) == GIMPLE_TRY
2799 	  && gimple_code (two) == GIMPLE_TRY
2800 	  && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2801 	  && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2802 	optimize_double_finally (one, two);
2803       if (one)
2804 	switch (gimple_code (one))
2805 	  {
2806 	  case GIMPLE_TRY:
2807 	    refactor_eh_r (gimple_try_eval (one));
2808 	    refactor_eh_r (gimple_try_cleanup (one));
2809 	    break;
2810 	  case GIMPLE_CATCH:
2811 	    refactor_eh_r (gimple_catch_handler (one));
2812 	    break;
2813 	  case GIMPLE_EH_FILTER:
2814 	    refactor_eh_r (gimple_eh_filter_failure (one));
2815 	    break;
2816 	  default:
2817 	    break;
2818 	  }
2819       if (two)
2820 	gsi_next (&gsi);
2821       else
2822 	break;
2823     }
2824 }
2825 
2826 static unsigned
2827 refactor_eh (void)
2828 {
2829   refactor_eh_r (gimple_body (current_function_decl));
2830   return 0;
2831 }
2832 
2833 static bool
2834 gate_refactor_eh (void)
2835 {
2836   return flag_exceptions != 0;
2837 }
2838 
2839 struct gimple_opt_pass pass_refactor_eh =
2840 {
2841  {
2842   GIMPLE_PASS,
2843   "ehopt",				/* name */
2844   gate_refactor_eh,			/* gate */
2845   refactor_eh,				/* execute */
2846   NULL,					/* sub */
2847   NULL,					/* next */
2848   0,					/* static_pass_number */
2849   TV_TREE_EH,				/* tv_id */
2850   PROP_gimple_lcf,			/* properties_required */
2851   0,					/* properties_provided */
2852   0,					/* properties_destroyed */
2853   0,					/* todo_flags_start */
2854   TODO_dump_func			/* todo_flags_finish */
2855  }
2856 };
2857 
2858 /* At the end of gimple optimization, we can lower RESX.  */
2859 
2860 static bool
2861 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2862 {
2863   int lp_nr;
2864   eh_region src_r, dst_r;
2865   gimple_stmt_iterator gsi;
2866   gimple x;
2867   tree fn, src_nr;
2868   bool ret = false;
2869 
2870   lp_nr = lookup_stmt_eh_lp (stmt);
2871   if (lp_nr != 0)
2872     dst_r = get_eh_region_from_lp_number (lp_nr);
2873   else
2874     dst_r = NULL;
2875 
2876   src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2877   gsi = gsi_last_bb (bb);
2878 
2879   if (src_r == NULL)
2880     {
2881       /* We can wind up with no source region when pass_cleanup_eh shows
2882 	 that there are no entries into an eh region and deletes it, but
2883 	 then the block that contains the resx isn't removed.  This can
2884 	 happen without optimization when the switch statement created by
2885 	 lower_try_finally_switch isn't simplified to remove the eh case.
2886 
2887 	 Resolve this by expanding the resx node to an abort.  */
2888 
2889       fn = implicit_built_in_decls[BUILT_IN_TRAP];
2890       x = gimple_build_call (fn, 0);
2891       gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2892 
2893       while (EDGE_COUNT (bb->succs) > 0)
2894 	remove_edge (EDGE_SUCC (bb, 0));
2895     }
2896   else if (dst_r)
2897     {
2898       /* When we have a destination region, we resolve this by copying
2899 	 the excptr and filter values into place, and changing the edge
2900 	 to immediately after the landing pad.  */
2901       edge e;
2902 
2903       if (lp_nr < 0)
2904 	{
2905 	  basic_block new_bb;
2906 	  void **slot;
2907 	  tree lab;
2908 
2909 	  /* We are resuming into a MUST_NOT_CALL region.  Expand a call to
2910 	     the failure decl into a new block, if needed.  */
2911 	  gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2912 
2913 	  slot = pointer_map_contains (mnt_map, dst_r);
2914 	  if (slot == NULL)
2915 	    {
2916 	      gimple_stmt_iterator gsi2;
2917 
2918 	      new_bb = create_empty_bb (bb);
2919 	      lab = gimple_block_label (new_bb);
2920 	      gsi2 = gsi_start_bb (new_bb);
2921 
2922 	      fn = dst_r->u.must_not_throw.failure_decl;
2923 	      x = gimple_build_call (fn, 0);
2924 	      gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2925 	      gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2926 
2927 	      slot = pointer_map_insert (mnt_map, dst_r);
2928 	      *slot = lab;
2929 	    }
2930 	  else
2931 	    {
2932 	      lab = (tree) *slot;
2933 	      new_bb = label_to_block (lab);
2934 	    }
2935 
2936 	  gcc_assert (EDGE_COUNT (bb->succs) == 0);
2937 	  e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2938 	  e->count = bb->count;
2939 	  e->probability = REG_BR_PROB_BASE;
2940 	}
2941       else
2942 	{
2943 	  edge_iterator ei;
2944 	  tree dst_nr = build_int_cst (NULL, dst_r->index);
2945 
2946 	  fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2947 	  src_nr = build_int_cst (NULL, src_r->index);
2948 	  x = gimple_build_call (fn, 2, dst_nr, src_nr);
2949 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2950 
2951 	  /* Update the flags for the outgoing edge.  */
2952 	  e = single_succ_edge (bb);
2953 	  gcc_assert (e->flags & EDGE_EH);
2954 	  e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2955 
2956 	  /* If there are no more EH users of the landing pad, delete it.  */
2957 	  FOR_EACH_EDGE (e, ei, e->dest->preds)
2958 	    if (e->flags & EDGE_EH)
2959 	      break;
2960 	  if (e == NULL)
2961 	    {
2962 	      eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2963 	      remove_eh_landing_pad (lp);
2964 	    }
2965 	}
2966 
2967       ret = true;
2968     }
2969   else
2970     {
2971       tree var;
2972 
2973       /* When we don't have a destination region, this exception escapes
2974 	 up the call chain.  We resolve this by generating a call to the
2975 	 _Unwind_Resume library function.  */
2976 
2977       /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2978 	 with no arguments for C++ and Java.  Check for that.  */
2979       if (src_r->use_cxa_end_cleanup)
2980 	{
2981 	  fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2982 	  x = gimple_build_call (fn, 0);
2983 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2984 	}
2985       else
2986 	{
2987 	  fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2988 	  src_nr = build_int_cst (NULL, src_r->index);
2989 	  x = gimple_build_call (fn, 1, src_nr);
2990 	  var = create_tmp_var (ptr_type_node, NULL);
2991 	  var = make_ssa_name (var, x);
2992 	  gimple_call_set_lhs (x, var);
2993 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2994 
2995 	  fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2996 	  x = gimple_build_call (fn, 1, var);
2997 	  gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2998 	}
2999 
3000       gcc_assert (EDGE_COUNT (bb->succs) == 0);
3001     }
3002 
3003   gsi_remove (&gsi, true);
3004 
3005   return ret;
3006 }
3007 
3008 static unsigned
3009 execute_lower_resx (void)
3010 {
3011   basic_block bb;
3012   struct pointer_map_t *mnt_map;
3013   bool dominance_invalidated = false;
3014   bool any_rewritten = false;
3015 
3016   mnt_map = pointer_map_create ();
3017 
3018   FOR_EACH_BB (bb)
3019     {
3020       gimple last = last_stmt (bb);
3021       if (last && is_gimple_resx (last))
3022 	{
3023 	  dominance_invalidated |= lower_resx (bb, last, mnt_map);
3024 	  any_rewritten = true;
3025 	}
3026     }
3027 
3028   pointer_map_destroy (mnt_map);
3029 
3030   if (dominance_invalidated)
3031     {
3032       free_dominance_info (CDI_DOMINATORS);
3033       free_dominance_info (CDI_POST_DOMINATORS);
3034     }
3035 
3036   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3037 }
3038 
3039 static bool
3040 gate_lower_resx (void)
3041 {
3042   return flag_exceptions != 0;
3043 }
3044 
3045 struct gimple_opt_pass pass_lower_resx =
3046 {
3047  {
3048   GIMPLE_PASS,
3049   "resx",				/* name */
3050   gate_lower_resx,			/* gate */
3051   execute_lower_resx,			/* execute */
3052   NULL,					/* sub */
3053   NULL,					/* next */
3054   0,					/* static_pass_number */
3055   TV_TREE_EH,				/* tv_id */
3056   PROP_gimple_lcf,			/* properties_required */
3057   0,					/* properties_provided */
3058   0,					/* properties_destroyed */
3059   0,					/* todo_flags_start */
3060   TODO_dump_func | TODO_verify_flow	/* todo_flags_finish */
3061  }
3062 };
3063 
3064 
3065 /* At the end of inlining, we can lower EH_DISPATCH.  Return true when
3066    we have found some duplicate labels and removed some edges.  */
3067 
3068 static bool
3069 lower_eh_dispatch (basic_block src, gimple stmt)
3070 {
3071   gimple_stmt_iterator gsi;
3072   int region_nr;
3073   eh_region r;
3074   tree filter, fn;
3075   gimple x;
3076   bool redirected = false;
3077 
3078   region_nr = gimple_eh_dispatch_region (stmt);
3079   r = get_eh_region_from_number (region_nr);
3080 
3081   gsi = gsi_last_bb (src);
3082 
3083   switch (r->type)
3084     {
3085     case ERT_TRY:
3086       {
3087 	VEC (tree, heap) *labels = NULL;
3088 	tree default_label = NULL;
3089 	eh_catch c;
3090 	edge_iterator ei;
3091 	edge e;
3092 	struct pointer_set_t *seen_values = pointer_set_create ();
3093 
3094 	/* Collect the labels for a switch.  Zero the post_landing_pad
3095 	   field becase we'll no longer have anything keeping these labels
3096 	   in existance and the optimizer will be free to merge these
3097 	   blocks at will.  */
3098 	for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3099 	  {
3100 	    tree tp_node, flt_node, lab = c->label;
3101 	    bool have_label = false;
3102 
3103 	    c->label = NULL;
3104 	    tp_node = c->type_list;
3105 	    flt_node = c->filter_list;
3106 
3107 	    if (tp_node == NULL)
3108 	      {
3109 	        default_label = lab;
3110 		break;
3111 	      }
3112 	    do
3113 	      {
3114 		/* Filter out duplicate labels that arise when this handler
3115 		   is shadowed by an earlier one.  When no labels are
3116 		   attached to the handler anymore, we remove
3117 		   the corresponding edge and then we delete unreachable
3118 		   blocks at the end of this pass.  */
3119 		if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3120 		  {
3121 		    tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3122 				     TREE_VALUE (flt_node), NULL, lab);
3123 		    VEC_safe_push (tree, heap, labels, t);
3124 		    pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3125 		    have_label = true;
3126 		  }
3127 
3128 		tp_node = TREE_CHAIN (tp_node);
3129 		flt_node = TREE_CHAIN (flt_node);
3130 	      }
3131 	    while (tp_node);
3132 	    if (! have_label)
3133 	      {
3134 	        remove_edge (find_edge (src, label_to_block (lab)));
3135 	        redirected = true;
3136 	      }
3137 	  }
3138 
3139 	/* Clean up the edge flags.  */
3140 	FOR_EACH_EDGE (e, ei, src->succs)
3141 	  {
3142 	    if (e->flags & EDGE_FALLTHRU)
3143 	      {
3144 		/* If there was no catch-all, use the fallthru edge.  */
3145 		if (default_label == NULL)
3146 		  default_label = gimple_block_label (e->dest);
3147 		e->flags &= ~EDGE_FALLTHRU;
3148 	      }
3149 	  }
3150 	gcc_assert (default_label != NULL);
3151 
3152 	/* Don't generate a switch if there's only a default case.
3153 	   This is common in the form of try { A; } catch (...) { B; }.  */
3154 	if (labels == NULL)
3155 	  {
3156 	    e = single_succ_edge (src);
3157 	    e->flags |= EDGE_FALLTHRU;
3158 	  }
3159 	else
3160 	  {
3161 	    fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3162 	    x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3163 	    filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3164 	    filter = make_ssa_name (filter, x);
3165 	    gimple_call_set_lhs (x, filter);
3166 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3167 
3168 	    /* Turn the default label into a default case.  */
3169 	    default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3170 				    NULL, NULL, default_label);
3171 	    sort_case_labels (labels);
3172 
3173 	    x = gimple_build_switch_vec (filter, default_label, labels);
3174 	    gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3175 
3176 	    VEC_free (tree, heap, labels);
3177 	  }
3178 	pointer_set_destroy (seen_values);
3179       }
3180       break;
3181 
3182     case ERT_ALLOWED_EXCEPTIONS:
3183       {
3184 	edge b_e = BRANCH_EDGE (src);
3185 	edge f_e = FALLTHRU_EDGE (src);
3186 
3187 	fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3188 	x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3189 	filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3190 	filter = make_ssa_name (filter, x);
3191 	gimple_call_set_lhs (x, filter);
3192 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3193 
3194 	r->u.allowed.label = NULL;
3195 	x = gimple_build_cond (EQ_EXPR, filter,
3196 			       build_int_cst (TREE_TYPE (filter),
3197 					      r->u.allowed.filter),
3198 			       NULL_TREE, NULL_TREE);
3199 	gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3200 
3201 	b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3202         f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3203       }
3204       break;
3205 
3206     default:
3207       gcc_unreachable ();
3208     }
3209 
3210   /* Replace the EH_DISPATCH with the SWITCH or COND generated above.  */
3211   gsi_remove (&gsi, true);
3212   return redirected;
3213 }
3214 
3215 static unsigned
3216 execute_lower_eh_dispatch (void)
3217 {
3218   basic_block bb;
3219   bool any_rewritten = false;
3220   bool redirected = false;
3221 
3222   assign_filter_values ();
3223 
3224   FOR_EACH_BB (bb)
3225     {
3226       gimple last = last_stmt (bb);
3227       if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3228 	{
3229 	  redirected |= lower_eh_dispatch (bb, last);
3230 	  any_rewritten = true;
3231 	}
3232     }
3233 
3234   if (redirected)
3235     delete_unreachable_blocks ();
3236   return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3237 }
3238 
3239 static bool
3240 gate_lower_eh_dispatch (void)
3241 {
3242   return cfun->eh->region_tree != NULL;
3243 }
3244 
3245 struct gimple_opt_pass pass_lower_eh_dispatch =
3246 {
3247  {
3248   GIMPLE_PASS,
3249   "ehdisp",				/* name */
3250   gate_lower_eh_dispatch,		/* gate */
3251   execute_lower_eh_dispatch,		/* execute */
3252   NULL,					/* sub */
3253   NULL,					/* next */
3254   0,					/* static_pass_number */
3255   TV_TREE_EH,				/* tv_id */
3256   PROP_gimple_lcf,			/* properties_required */
3257   0,					/* properties_provided */
3258   0,					/* properties_destroyed */
3259   0,					/* todo_flags_start */
3260   TODO_dump_func | TODO_verify_flow	/* todo_flags_finish */
3261  }
3262 };
3263 
3264 /* Walk statements, see what regions are really referenced and remove
3265    those that are unused.  */
3266 
3267 static void
3268 remove_unreachable_handlers (void)
3269 {
3270   sbitmap r_reachable, lp_reachable;
3271   eh_region region;
3272   eh_landing_pad lp;
3273   basic_block bb;
3274   int lp_nr, r_nr;
3275 
3276   r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3277   lp_reachable
3278     = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3279   sbitmap_zero (r_reachable);
3280   sbitmap_zero (lp_reachable);
3281 
3282   FOR_EACH_BB (bb)
3283     {
3284       gimple_stmt_iterator gsi = gsi_start_bb (bb);
3285 
3286       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3287 	{
3288 	  gimple stmt = gsi_stmt (gsi);
3289 	  lp_nr = lookup_stmt_eh_lp (stmt);
3290 
3291 	  /* Negative LP numbers are MUST_NOT_THROW regions which
3292 	     are not considered BB enders.  */
3293 	  if (lp_nr < 0)
3294 	    SET_BIT (r_reachable, -lp_nr);
3295 
3296 	  /* Positive LP numbers are real landing pads, are are BB enders.  */
3297 	  else if (lp_nr > 0)
3298 	    {
3299 	      gcc_assert (gsi_one_before_end_p (gsi));
3300 	      region = get_eh_region_from_lp_number (lp_nr);
3301 	      SET_BIT (r_reachable, region->index);
3302 	      SET_BIT (lp_reachable, lp_nr);
3303 	    }
3304 	}
3305     }
3306 
3307   if (dump_file)
3308     {
3309       fprintf (dump_file, "Before removal of unreachable regions:\n");
3310       dump_eh_tree (dump_file, cfun);
3311       fprintf (dump_file, "Reachable regions: ");
3312       dump_sbitmap_file (dump_file, r_reachable);
3313       fprintf (dump_file, "Reachable landing pads: ");
3314       dump_sbitmap_file (dump_file, lp_reachable);
3315     }
3316 
3317   for (r_nr = 1;
3318        VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3319     if (region && !TEST_BIT (r_reachable, r_nr))
3320       {
3321 	if (dump_file)
3322 	  fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3323 	remove_eh_handler (region);
3324       }
3325 
3326   for (lp_nr = 1;
3327        VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3328     if (lp && !TEST_BIT (lp_reachable, lp_nr))
3329       {
3330 	if (dump_file)
3331 	  fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3332 	remove_eh_landing_pad (lp);
3333       }
3334 
3335   if (dump_file)
3336     {
3337       fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3338       dump_eh_tree (dump_file, cfun);
3339       fprintf (dump_file, "\n\n");
3340     }
3341 
3342   sbitmap_free (r_reachable);
3343   sbitmap_free (lp_reachable);
3344 
3345 #ifdef ENABLE_CHECKING
3346   verify_eh_tree (cfun);
3347 #endif
3348 }
3349 
3350 /* Remove regions that do not have landing pads.  This assumes
3351    that remove_unreachable_handlers has already been run, and
3352    that we've just manipulated the landing pads since then.  */
3353 
3354 static void
3355 remove_unreachable_handlers_no_lp (void)
3356 {
3357   eh_region r;
3358   int i;
3359 
3360   for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3361     if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3362       {
3363 	if (dump_file)
3364 	  fprintf (dump_file, "Removing unreachable region %d\n", i);
3365 	remove_eh_handler (r);
3366       }
3367 }
3368 
3369 /* Undo critical edge splitting on an EH landing pad.  Earlier, we
3370    optimisticaly split all sorts of edges, including EH edges.  The
3371    optimization passes in between may not have needed them; if not,
3372    we should undo the split.
3373 
3374    Recognize this case by having one EH edge incoming to the BB and
3375    one normal edge outgoing; BB should be empty apart from the
3376    post_landing_pad label.
3377 
3378    Note that this is slightly different from the empty handler case
3379    handled by cleanup_empty_eh, in that the actual handler may yet
3380    have actual code but the landing pad has been separated from the
3381    handler.  As such, cleanup_empty_eh relies on this transformation
3382    having been done first.  */
3383 
3384 static bool
3385 unsplit_eh (eh_landing_pad lp)
3386 {
3387   basic_block bb = label_to_block (lp->post_landing_pad);
3388   gimple_stmt_iterator gsi;
3389   edge e_in, e_out;
3390 
3391   /* Quickly check the edge counts on BB for singularity.  */
3392   if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3393     return false;
3394   e_in = EDGE_PRED (bb, 0);
3395   e_out = EDGE_SUCC (bb, 0);
3396 
3397   /* Input edge must be EH and output edge must be normal.  */
3398   if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3399     return false;
3400 
3401   /* The block must be empty except for the labels and debug insns.  */
3402   gsi = gsi_after_labels (bb);
3403   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3404     gsi_next_nondebug (&gsi);
3405   if (!gsi_end_p (gsi))
3406     return false;
3407 
3408   /* The destination block must not already have a landing pad
3409      for a different region.  */
3410   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3411     {
3412       gimple stmt = gsi_stmt (gsi);
3413       tree lab;
3414       int lp_nr;
3415 
3416       if (gimple_code (stmt) != GIMPLE_LABEL)
3417 	break;
3418       lab = gimple_label_label (stmt);
3419       lp_nr = EH_LANDING_PAD_NR (lab);
3420       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3421 	return false;
3422     }
3423 
3424   /* The new destination block must not already be a destination of
3425      the source block, lest we merge fallthru and eh edges and get
3426      all sorts of confused.  */
3427   if (find_edge (e_in->src, e_out->dest))
3428     return false;
3429 
3430   /* ??? We can get degenerate phis due to cfg cleanups.  I would have
3431      thought this should have been cleaned up by a phicprop pass, but
3432      that doesn't appear to handle virtuals.  Propagate by hand.  */
3433   if (!gimple_seq_empty_p (phi_nodes (bb)))
3434     {
3435       for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3436 	{
3437 	  gimple use_stmt, phi = gsi_stmt (gsi);
3438 	  tree lhs = gimple_phi_result (phi);
3439 	  tree rhs = gimple_phi_arg_def (phi, 0);
3440 	  use_operand_p use_p;
3441 	  imm_use_iterator iter;
3442 
3443 	  FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3444 	    {
3445 	      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3446 		SET_USE (use_p, rhs);
3447 	    }
3448 
3449 	  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3450 	    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3451 
3452 	  remove_phi_node (&gsi, true);
3453 	}
3454     }
3455 
3456   if (dump_file && (dump_flags & TDF_DETAILS))
3457     fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3458 	     lp->index, e_out->dest->index);
3459 
3460   /* Redirect the edge.  Since redirect_eh_edge_1 expects to be moving
3461      a successor edge, humor it.  But do the real CFG change with the
3462      predecessor of E_OUT in order to preserve the ordering of arguments
3463      to the PHI nodes in E_OUT->DEST.  */
3464   redirect_eh_edge_1 (e_in, e_out->dest, false);
3465   redirect_edge_pred (e_out, e_in->src);
3466   e_out->flags = e_in->flags;
3467   e_out->probability = e_in->probability;
3468   e_out->count = e_in->count;
3469   remove_edge (e_in);
3470 
3471   return true;
3472 }
3473 
3474 /* Examine each landing pad block and see if it matches unsplit_eh.  */
3475 
3476 static bool
3477 unsplit_all_eh (void)
3478 {
3479   bool changed = false;
3480   eh_landing_pad lp;
3481   int i;
3482 
3483   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3484     if (lp)
3485       changed |= unsplit_eh (lp);
3486 
3487   return changed;
3488 }
3489 
3490 /* A subroutine of cleanup_empty_eh.  Redirect all EH edges incoming
3491    to OLD_BB to NEW_BB; return true on success, false on failure.
3492 
3493    OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3494    PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3495    Virtual PHIs may be deleted and marked for renaming.  */
3496 
3497 static bool
3498 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3499 			     edge old_bb_out, bool change_region)
3500 {
3501   gimple_stmt_iterator ngsi, ogsi;
3502   edge_iterator ei;
3503   edge e;
3504   bitmap rename_virts;
3505   bitmap ophi_handled;
3506 
3507   FOR_EACH_EDGE (e, ei, old_bb->preds)
3508     redirect_edge_var_map_clear (e);
3509 
3510   ophi_handled = BITMAP_ALLOC (NULL);
3511   rename_virts = BITMAP_ALLOC (NULL);
3512 
3513   /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3514      for the edges we're going to move.  */
3515   for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3516     {
3517       gimple ophi, nphi = gsi_stmt (ngsi);
3518       tree nresult, nop;
3519 
3520       nresult = gimple_phi_result (nphi);
3521       nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3522 
3523       /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3524 	 the source ssa_name.  */
3525       ophi = NULL;
3526       for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3527 	{
3528 	  ophi = gsi_stmt (ogsi);
3529 	  if (gimple_phi_result (ophi) == nop)
3530 	    break;
3531 	  ophi = NULL;
3532 	}
3533 
3534       /* If we did find the corresponding PHI, copy those inputs.  */
3535       if (ophi)
3536 	{
3537 	  bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3538 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3539 	    {
3540 	      location_t oloc;
3541 	      tree oop;
3542 
3543 	      if ((e->flags & EDGE_EH) == 0)
3544 		continue;
3545 	      oop = gimple_phi_arg_def (ophi, e->dest_idx);
3546 	      oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3547 	      redirect_edge_var_map_add (e, nresult, oop, oloc);
3548 	    }
3549 	}
3550       /* If we didn't find the PHI, but it's a VOP, remember to rename
3551 	 it later, assuming all other tests succeed.  */
3552       else if (!is_gimple_reg (nresult))
3553 	bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3554       /* If we didn't find the PHI, and it's a real variable, we know
3555 	 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3556 	 variable is unchanged from input to the block and we can simply
3557 	 re-use the input to NEW_BB from the OLD_BB_OUT edge.  */
3558       else
3559 	{
3560 	  location_t nloc
3561 	    = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3562 	  FOR_EACH_EDGE (e, ei, old_bb->preds)
3563 	    redirect_edge_var_map_add (e, nresult, nop, nloc);
3564 	}
3565     }
3566 
3567   /* Second, verify that all PHIs from OLD_BB have been handled.  If not,
3568      we don't know what values from the other edges into NEW_BB to use.  */
3569   for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3570     {
3571       gimple ophi = gsi_stmt (ogsi);
3572       tree oresult = gimple_phi_result (ophi);
3573       if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3574 	goto fail;
3575     }
3576 
3577   /* At this point we know that the merge will succeed.  Remove the PHI
3578      nodes for the virtuals that we want to rename.  */
3579   if (!bitmap_empty_p (rename_virts))
3580     {
3581       for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3582 	{
3583 	  gimple nphi = gsi_stmt (ngsi);
3584 	  tree nresult = gimple_phi_result (nphi);
3585 	  if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3586 	    {
3587 	      mark_virtual_phi_result_for_renaming (nphi);
3588 	      remove_phi_node (&ngsi, true);
3589 	    }
3590 	  else
3591 	    gsi_next (&ngsi);
3592 	}
3593     }
3594 
3595   /* Finally, move the edges and update the PHIs.  */
3596   for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3597     if (e->flags & EDGE_EH)
3598       {
3599 	redirect_eh_edge_1 (e, new_bb, change_region);
3600 	redirect_edge_succ (e, new_bb);
3601 	flush_pending_stmts (e);
3602       }
3603     else
3604       ei_next (&ei);
3605 
3606   BITMAP_FREE (ophi_handled);
3607   BITMAP_FREE (rename_virts);
3608   return true;
3609 
3610  fail:
3611   FOR_EACH_EDGE (e, ei, old_bb->preds)
3612     redirect_edge_var_map_clear (e);
3613   BITMAP_FREE (ophi_handled);
3614   BITMAP_FREE (rename_virts);
3615   return false;
3616 }
3617 
3618 /* A subroutine of cleanup_empty_eh.  Move a landing pad LP from its
3619    old region to NEW_REGION at BB.  */
3620 
3621 static void
3622 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3623 			  eh_landing_pad lp, eh_region new_region)
3624 {
3625   gimple_stmt_iterator gsi;
3626   eh_landing_pad *pp;
3627 
3628   for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3629     continue;
3630   *pp = lp->next_lp;
3631 
3632   lp->region = new_region;
3633   lp->next_lp = new_region->landing_pads;
3634   new_region->landing_pads = lp;
3635 
3636   /* Delete the RESX that was matched within the empty handler block.  */
3637   gsi = gsi_last_bb (bb);
3638   mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3639   gsi_remove (&gsi, true);
3640 
3641   /* Clean up E_OUT for the fallthru.  */
3642   e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3643   e_out->probability = REG_BR_PROB_BASE;
3644 }
3645 
3646 /* A subroutine of cleanup_empty_eh.  Handle more complex cases of
3647    unsplitting than unsplit_eh was prepared to handle, e.g. when
3648    multiple incoming edges and phis are involved.  */
3649 
3650 static bool
3651 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3652 {
3653   gimple_stmt_iterator gsi;
3654   tree lab;
3655 
3656   /* We really ought not have totally lost everything following
3657      a landing pad label.  Given that BB is empty, there had better
3658      be a successor.  */
3659   gcc_assert (e_out != NULL);
3660 
3661   /* The destination block must not already have a landing pad
3662      for a different region.  */
3663   lab = NULL;
3664   for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3665     {
3666       gimple stmt = gsi_stmt (gsi);
3667       int lp_nr;
3668 
3669       if (gimple_code (stmt) != GIMPLE_LABEL)
3670 	break;
3671       lab = gimple_label_label (stmt);
3672       lp_nr = EH_LANDING_PAD_NR (lab);
3673       if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3674 	return false;
3675     }
3676 
3677   /* Attempt to move the PHIs into the successor block.  */
3678   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3679     {
3680       if (dump_file && (dump_flags & TDF_DETAILS))
3681 	fprintf (dump_file,
3682 		 "Unsplit EH landing pad %d to block %i "
3683 		 "(via cleanup_empty_eh).\n",
3684 		 lp->index, e_out->dest->index);
3685       return true;
3686     }
3687 
3688   return false;
3689 }
3690 
3691 /* Return true if edge E_FIRST is part of an empty infinite loop
3692    or leads to such a loop through a series of single successor
3693    empty bbs.  */
3694 
3695 static bool
3696 infinite_empty_loop_p (edge e_first)
3697 {
3698   bool inf_loop = false;
3699   edge e;
3700 
3701   if (e_first->dest == e_first->src)
3702     return true;
3703 
3704   e_first->src->aux = (void *) 1;
3705   for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3706     {
3707       gimple_stmt_iterator gsi;
3708       if (e->dest->aux)
3709 	{
3710 	  inf_loop = true;
3711 	  break;
3712 	}
3713       e->dest->aux = (void *) 1;
3714       gsi = gsi_after_labels (e->dest);
3715       if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3716 	gsi_next_nondebug (&gsi);
3717       if (!gsi_end_p (gsi))
3718 	break;
3719     }
3720   e_first->src->aux = NULL;
3721   for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3722     e->dest->aux = NULL;
3723 
3724   return inf_loop;
3725 }
3726 
3727 /* Examine the block associated with LP to determine if it's an empty
3728    handler for its EH region.  If so, attempt to redirect EH edges to
3729    an outer region.  Return true the CFG was updated in any way.  This
3730    is similar to jump forwarding, just across EH edges.  */
3731 
3732 static bool
3733 cleanup_empty_eh (eh_landing_pad lp)
3734 {
3735   basic_block bb = label_to_block (lp->post_landing_pad);
3736   gimple_stmt_iterator gsi;
3737   gimple resx;
3738   eh_region new_region;
3739   edge_iterator ei;
3740   edge e, e_out;
3741   bool has_non_eh_pred;
3742   int new_lp_nr;
3743 
3744   /* There can be zero or one edges out of BB.  This is the quickest test.  */
3745   switch (EDGE_COUNT (bb->succs))
3746     {
3747     case 0:
3748       e_out = NULL;
3749       break;
3750     case 1:
3751       e_out = EDGE_SUCC (bb, 0);
3752       break;
3753     default:
3754       return false;
3755     }
3756   gsi = gsi_after_labels (bb);
3757 
3758   /* Make sure to skip debug statements.  */
3759   if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3760     gsi_next_nondebug (&gsi);
3761 
3762   /* If the block is totally empty, look for more unsplitting cases.  */
3763   if (gsi_end_p (gsi))
3764     {
3765       /* For the degenerate case of an infinite loop bail out.  */
3766       if (infinite_empty_loop_p (e_out))
3767 	return false;
3768 
3769       return cleanup_empty_eh_unsplit (bb, e_out, lp);
3770     }
3771 
3772   /* The block should consist only of a single RESX statement.  */
3773   resx = gsi_stmt (gsi);
3774   if (!is_gimple_resx (resx))
3775     return false;
3776   gcc_assert (gsi_one_before_end_p (gsi));
3777 
3778   /* Determine if there are non-EH edges, or resx edges into the handler.  */
3779   has_non_eh_pred = false;
3780   FOR_EACH_EDGE (e, ei, bb->preds)
3781     if (!(e->flags & EDGE_EH))
3782       has_non_eh_pred = true;
3783 
3784   /* Find the handler that's outer of the empty handler by looking at
3785      where the RESX instruction was vectored.  */
3786   new_lp_nr = lookup_stmt_eh_lp (resx);
3787   new_region = get_eh_region_from_lp_number (new_lp_nr);
3788 
3789   /* If there's no destination region within the current function,
3790      redirection is trivial via removing the throwing statements from
3791      the EH region, removing the EH edges, and allowing the block
3792      to go unreachable.  */
3793   if (new_region == NULL)
3794     {
3795       gcc_assert (e_out == NULL);
3796       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3797 	if (e->flags & EDGE_EH)
3798 	  {
3799 	    gimple stmt = last_stmt (e->src);
3800 	    remove_stmt_from_eh_lp (stmt);
3801 	    remove_edge (e);
3802 	  }
3803 	else
3804 	  ei_next (&ei);
3805       goto succeed;
3806     }
3807 
3808   /* If the destination region is a MUST_NOT_THROW, allow the runtime
3809      to handle the abort and allow the blocks to go unreachable.  */
3810   if (new_region->type == ERT_MUST_NOT_THROW)
3811     {
3812       for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3813 	if (e->flags & EDGE_EH)
3814 	  {
3815 	    gimple stmt = last_stmt (e->src);
3816 	    remove_stmt_from_eh_lp (stmt);
3817 	    add_stmt_to_eh_lp (stmt, new_lp_nr);
3818 	    remove_edge (e);
3819 	  }
3820 	else
3821 	  ei_next (&ei);
3822       goto succeed;
3823     }
3824 
3825   /* Try to redirect the EH edges and merge the PHIs into the destination
3826      landing pad block.  If the merge succeeds, we'll already have redirected
3827      all the EH edges.  The handler itself will go unreachable if there were
3828      no normal edges.  */
3829   if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3830     goto succeed;
3831 
3832   /* Finally, if all input edges are EH edges, then we can (potentially)
3833      reduce the number of transfers from the runtime by moving the landing
3834      pad from the original region to the new region.  This is a win when
3835      we remove the last CLEANUP region along a particular exception
3836      propagation path.  Since nothing changes except for the region with
3837      which the landing pad is associated, the PHI nodes do not need to be
3838      adjusted at all.  */
3839   if (!has_non_eh_pred)
3840     {
3841       cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3842       if (dump_file && (dump_flags & TDF_DETAILS))
3843 	fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3844 		 lp->index, new_region->index);
3845 
3846       /* ??? The CFG didn't change, but we may have rendered the
3847 	 old EH region unreachable.  Trigger a cleanup there.  */
3848       return true;
3849     }
3850 
3851   return false;
3852 
3853  succeed:
3854   if (dump_file && (dump_flags & TDF_DETAILS))
3855     fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3856   remove_eh_landing_pad (lp);
3857   return true;
3858 }
3859 
3860 /* Do a post-order traversal of the EH region tree.  Examine each
3861    post_landing_pad block and see if we can eliminate it as empty.  */
3862 
3863 static bool
3864 cleanup_all_empty_eh (void)
3865 {
3866   bool changed = false;
3867   eh_landing_pad lp;
3868   int i;
3869 
3870   for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3871     if (lp)
3872       changed |= cleanup_empty_eh (lp);
3873 
3874   return changed;
3875 }
3876 
3877 /* Perform cleanups and lowering of exception handling
3878     1) cleanups regions with handlers doing nothing are optimized out
3879     2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3880     3) Info about regions that are containing instructions, and regions
3881        reachable via local EH edges is collected
3882     4) Eh tree is pruned for regions no longer neccesary.
3883 
3884    TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3885 	 Unify those that have the same failure decl and locus.
3886 */
3887 
3888 static unsigned int
3889 execute_cleanup_eh (void)
3890 {
3891   /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3892      looking up unreachable landing pads.  */
3893   remove_unreachable_handlers ();
3894 
3895   /* Watch out for the region tree vanishing due to all unreachable.  */
3896   if (cfun->eh->region_tree && optimize)
3897     {
3898       bool changed = false;
3899 
3900       changed |= unsplit_all_eh ();
3901       changed |= cleanup_all_empty_eh ();
3902 
3903       if (changed)
3904 	{
3905 	  free_dominance_info (CDI_DOMINATORS);
3906 	  free_dominance_info (CDI_POST_DOMINATORS);
3907 
3908           /* We delayed all basic block deletion, as we may have performed
3909 	     cleanups on EH edges while non-EH edges were still present.  */
3910 	  delete_unreachable_blocks ();
3911 
3912 	  /* We manipulated the landing pads.  Remove any region that no
3913 	     longer has a landing pad.  */
3914 	  remove_unreachable_handlers_no_lp ();
3915 
3916 	  return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3917 	}
3918     }
3919 
3920   return 0;
3921 }
3922 
3923 static bool
3924 gate_cleanup_eh (void)
3925 {
3926   return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3927 }
3928 
3929 struct gimple_opt_pass pass_cleanup_eh = {
3930   {
3931    GIMPLE_PASS,
3932    "ehcleanup",			/* name */
3933    gate_cleanup_eh,		/* gate */
3934    execute_cleanup_eh,		/* execute */
3935    NULL,			/* sub */
3936    NULL,			/* next */
3937    0,				/* static_pass_number */
3938    TV_TREE_EH,			/* tv_id */
3939    PROP_gimple_lcf,		/* properties_required */
3940    0,				/* properties_provided */
3941    0,				/* properties_destroyed */
3942    0,				/* todo_flags_start */
3943    TODO_dump_func		/* todo_flags_finish */
3944    }
3945 };
3946 
3947 /* Verify that BB containing STMT as the last statement, has precisely the
3948    edge that make_eh_edges would create.  */
3949 
3950 bool
3951 verify_eh_edges (gimple stmt)
3952 {
3953   basic_block bb = gimple_bb (stmt);
3954   eh_landing_pad lp = NULL;
3955   int lp_nr;
3956   edge_iterator ei;
3957   edge e, eh_edge;
3958 
3959   lp_nr = lookup_stmt_eh_lp (stmt);
3960   if (lp_nr > 0)
3961     lp = get_eh_landing_pad_from_number (lp_nr);
3962 
3963   eh_edge = NULL;
3964   FOR_EACH_EDGE (e, ei, bb->succs)
3965     {
3966       if (e->flags & EDGE_EH)
3967 	{
3968 	  if (eh_edge)
3969 	    {
3970 	      error ("BB %i has multiple EH edges", bb->index);
3971 	      return true;
3972 	    }
3973 	  else
3974 	    eh_edge = e;
3975 	}
3976     }
3977 
3978   if (lp == NULL)
3979     {
3980       if (eh_edge)
3981 	{
3982 	  error ("BB %i can not throw but has an EH edge", bb->index);
3983 	  return true;
3984 	}
3985       return false;
3986     }
3987 
3988   if (!stmt_could_throw_p (stmt))
3989     {
3990       error ("BB %i last statement has incorrectly set lp", bb->index);
3991       return true;
3992     }
3993 
3994   if (eh_edge == NULL)
3995     {
3996       error ("BB %i is missing an EH edge", bb->index);
3997       return true;
3998     }
3999 
4000   if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4001     {
4002       error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4003       return true;
4004     }
4005 
4006   return false;
4007 }
4008 
4009 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically.  */
4010 
4011 bool
4012 verify_eh_dispatch_edge (gimple stmt)
4013 {
4014   eh_region r;
4015   eh_catch c;
4016   basic_block src, dst;
4017   bool want_fallthru = true;
4018   edge_iterator ei;
4019   edge e, fall_edge;
4020 
4021   r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4022   src = gimple_bb (stmt);
4023 
4024   FOR_EACH_EDGE (e, ei, src->succs)
4025     gcc_assert (e->aux == NULL);
4026 
4027   switch (r->type)
4028     {
4029     case ERT_TRY:
4030       for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4031 	{
4032 	  dst = label_to_block (c->label);
4033 	  e = find_edge (src, dst);
4034 	  if (e == NULL)
4035 	    {
4036 	      error ("BB %i is missing an edge", src->index);
4037 	      return true;
4038 	    }
4039 	  e->aux = (void *)e;
4040 
4041 	  /* A catch-all handler doesn't have a fallthru.  */
4042 	  if (c->type_list == NULL)
4043 	    {
4044 	      want_fallthru = false;
4045 	      break;
4046 	    }
4047 	}
4048       break;
4049 
4050     case ERT_ALLOWED_EXCEPTIONS:
4051       dst = label_to_block (r->u.allowed.label);
4052       e = find_edge (src, dst);
4053       if (e == NULL)
4054 	{
4055 	  error ("BB %i is missing an edge", src->index);
4056 	  return true;
4057 	}
4058       e->aux = (void *)e;
4059       break;
4060 
4061     default:
4062       gcc_unreachable ();
4063     }
4064 
4065   fall_edge = NULL;
4066   FOR_EACH_EDGE (e, ei, src->succs)
4067     {
4068       if (e->flags & EDGE_FALLTHRU)
4069 	{
4070 	  if (fall_edge != NULL)
4071 	    {
4072 	      error ("BB %i too many fallthru edges", src->index);
4073 	      return true;
4074 	    }
4075 	  fall_edge = e;
4076 	}
4077       else if (e->aux)
4078 	e->aux = NULL;
4079       else
4080 	{
4081 	  error ("BB %i has incorrect edge", src->index);
4082 	  return true;
4083 	}
4084     }
4085   if ((fall_edge != NULL) ^ want_fallthru)
4086     {
4087       error ("BB %i has incorrect fallthru edge", src->index);
4088       return true;
4089     }
4090 
4091   return false;
4092 }
4093