xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-data-ref.h (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Data references and dependences detectors.
2    Copyright (C) 2003-2017 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23 
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 
27 /*
28   innermost_loop_behavior describes the evolution of the address of the memory
29   reference in the innermost enclosing loop.  The address is expressed as
30   BASE + STEP * # of iteration, and base is further decomposed as the base
31   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
32   constant offset (INIT).  Examples, in loop nest
33 
34   for (i = 0; i < 100; i++)
35     for (j = 3; j < 100; j++)
36 
37                        Example 1                      Example 2
38       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
39 
40 
41   innermost_loop_behavior
42       base_address     &a                             p
43       offset           i * D_i			      x
44       init             3 * D_j + offsetof (b)         28
45       step             D_j                            4
46 
47   */
48 struct innermost_loop_behavior
49 {
50   tree base_address;
51   tree offset;
52   tree init;
53   tree step;
54 
55   /* Alignment information.  ALIGNED_TO is set to the largest power of two
56      that divides OFFSET.  */
57   tree aligned_to;
58 };
59 
60 /* Describes the evolutions of indices of the memory reference.  The indices
61    are indices of the ARRAY_REFs, indexes in artificial dimensions
62    added for member selection of records and the operands of MEM_REFs.
63    BASE_OBJECT is the part of the reference that is loop-invariant
64    (note that this reference does not have to cover the whole object
65    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66    not recommended to use BASE_OBJECT in any code generation).
67    For the examples above,
68 
69    base_object:        a                              *(p + x + 4B * j_0)
70    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
71 		       4
72 		       {i_0, +, 1}_1
73 		       {j_0, +, 1}_2
74 */
75 
76 struct indices
77 {
78   /* The object.  */
79   tree base_object;
80 
81   /* A list of chrecs.  Access functions of the indices.  */
82   vec<tree> access_fns;
83 
84   /* Whether BASE_OBJECT is an access representing the whole object
85      or whether the access could not be constrained.  */
86   bool unconstrained_base;
87 };
88 
89 struct dr_alias
90 {
91   /* The alias information that should be used for new pointers to this
92      location.  */
93   struct ptr_info_def *ptr_info;
94 };
95 
96 /* An integer vector.  A vector formally consists of an element of a vector
97    space. A vector space is a set that is closed under vector addition
98    and scalar multiplication.  In this vector space, an element is a list of
99    integers.  */
100 typedef int *lambda_vector;
101 
102 /* An integer matrix.  A matrix consists of m vectors of length n (IE
103    all vectors are the same length).  */
104 typedef lambda_vector *lambda_matrix;
105 
106 
107 
108 struct data_reference
109 {
110   /* A pointer to the statement that contains this DR.  */
111   gimple *stmt;
112 
113   /* A pointer to the memory reference.  */
114   tree ref;
115 
116   /* Auxiliary info specific to a pass.  */
117   void *aux;
118 
119   /* True when the data reference is in RHS of a stmt.  */
120   bool is_read;
121 
122   /* Behavior of the memory reference in the innermost loop.  */
123   struct innermost_loop_behavior innermost;
124 
125   /* Subscripts of this data reference.  */
126   struct indices indices;
127 
128   /* Alias information for the data reference.  */
129   struct dr_alias alias;
130 };
131 
132 #define DR_STMT(DR)                (DR)->stmt
133 #define DR_REF(DR)                 (DR)->ref
134 #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR)             (DR)->is_read
140 #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
142 #define DR_OFFSET(DR)              (DR)->innermost.offset
143 #define DR_INIT(DR)                (DR)->innermost.init
144 #define DR_STEP(DR)                (DR)->innermost.step
145 #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR)          (DR)->innermost.aligned_to
147 #define DR_INNERMOST(DR)           (DR)->innermost
148 
149 typedef struct data_reference *data_reference_p;
150 
151 enum data_dependence_direction {
152   dir_positive,
153   dir_negative,
154   dir_equal,
155   dir_positive_or_negative,
156   dir_positive_or_equal,
157   dir_negative_or_equal,
158   dir_star,
159   dir_independent
160 };
161 
162 /* The description of the grid of iterations that overlap.  At most
163    two loops are considered at the same time just now, hence at most
164    two functions are needed.  For each of the functions, we store
165    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
166    where x, y, ... are variables.  */
167 
168 #define MAX_DIM 2
169 
170 /* Special values of N.  */
171 #define NO_DEPENDENCE 0
172 #define NOT_KNOWN (MAX_DIM + 1)
173 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
174 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
175 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
176 
177 typedef vec<tree> affine_fn;
178 
179 struct conflict_function
180 {
181   unsigned n;
182   affine_fn fns[MAX_DIM];
183 };
184 
185 /* What is a subscript?  Given two array accesses a subscript is the
186    tuple composed of the access functions for a given dimension.
187    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
188    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
189    are stored in the data_dependence_relation structure under the form
190    of an array of subscripts.  */
191 
192 struct subscript
193 {
194   /* A description of the iterations for which the elements are
195      accessed twice.  */
196   conflict_function *conflicting_iterations_in_a;
197   conflict_function *conflicting_iterations_in_b;
198 
199   /* This field stores the information about the iteration domain
200      validity of the dependence relation.  */
201   tree last_conflict;
202 
203   /* Distance from the iteration that access a conflicting element in
204      A to the iteration that access this same conflicting element in
205      B.  The distance is a tree scalar expression, i.e. a constant or a
206      symbolic expression, but certainly not a chrec function.  */
207   tree distance;
208 };
209 
210 typedef struct subscript *subscript_p;
211 
212 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
213 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
214 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
215 #define SUB_DISTANCE(SUB) SUB->distance
216 
217 /* A data_dependence_relation represents a relation between two
218    data_references A and B.  */
219 
220 struct data_dependence_relation
221 {
222 
223   struct data_reference *a;
224   struct data_reference *b;
225 
226   /* A "yes/no/maybe" field for the dependence relation:
227 
228      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
229        relation between A and B, and the description of this relation
230        is given in the SUBSCRIPTS array,
231 
232      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
233        SUBSCRIPTS is empty,
234 
235      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
236        but the analyzer cannot be more specific.  */
237   tree are_dependent;
238 
239   /* For each subscript in the dependence test, there is an element in
240      this array.  This is the attribute that labels the edge A->B of
241      the data_dependence_relation.  */
242   vec<subscript_p> subscripts;
243 
244   /* The analyzed loop nest.  */
245   vec<loop_p> loop_nest;
246 
247   /* The classic direction vector.  */
248   vec<lambda_vector> dir_vects;
249 
250   /* The classic distance vector.  */
251   vec<lambda_vector> dist_vects;
252 
253   /* An index in loop_nest for the innermost loop that varies for
254      this data dependence relation.  */
255   unsigned inner_loop;
256 
257   /* Is the dependence reversed with respect to the lexicographic order?  */
258   bool reversed_p;
259 
260   /* When the dependence relation is affine, it can be represented by
261      a distance vector.  */
262   bool affine_p;
263 
264   /* Set to true when the dependence relation is on the same data
265      access.  */
266   bool self_reference_p;
267 };
268 
269 typedef struct data_dependence_relation *ddr_p;
270 
271 #define DDR_A(DDR) DDR->a
272 #define DDR_B(DDR) DDR->b
273 #define DDR_AFFINE_P(DDR) DDR->affine_p
274 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
275 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
276 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
277 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
278 
279 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
280 /* The size of the direction/distance vectors: the number of loops in
281    the loop nest.  */
282 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
283 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
284 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
285 
286 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
287 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
288 #define DDR_NUM_DIST_VECTS(DDR) \
289   (DDR_DIST_VECTS (DDR).length ())
290 #define DDR_NUM_DIR_VECTS(DDR) \
291   (DDR_DIR_VECTS (DDR).length ())
292 #define DDR_DIR_VECT(DDR, I) \
293   DDR_DIR_VECTS (DDR)[I]
294 #define DDR_DIST_VECT(DDR, I) \
295   DDR_DIST_VECTS (DDR)[I]
296 #define DDR_REVERSED_P(DDR) DDR->reversed_p
297 
298 
299 bool dr_analyze_innermost (struct data_reference *, struct loop *);
300 extern bool compute_data_dependences_for_loop (struct loop *, bool,
301 					       vec<loop_p> *,
302 					       vec<data_reference_p> *,
303 					       vec<ddr_p> *);
304 extern void debug_ddrs (vec<ddr_p> );
305 extern void dump_data_reference (FILE *, struct data_reference *);
306 extern void debug (data_reference &ref);
307 extern void debug (data_reference *ptr);
308 extern void debug_data_reference (struct data_reference *);
309 extern void debug_data_references (vec<data_reference_p> );
310 extern void debug (vec<data_reference_p> &ref);
311 extern void debug (vec<data_reference_p> *ptr);
312 extern void debug_data_dependence_relation (struct data_dependence_relation *);
313 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
314 extern void debug (vec<ddr_p> &ref);
315 extern void debug (vec<ddr_p> *ptr);
316 extern void debug_data_dependence_relations (vec<ddr_p> );
317 extern void free_dependence_relation (struct data_dependence_relation *);
318 extern void free_dependence_relations (vec<ddr_p> );
319 extern void free_data_ref (data_reference_p);
320 extern void free_data_refs (vec<data_reference_p> );
321 extern bool find_data_references_in_stmt (struct loop *, gimple *,
322 					  vec<data_reference_p> *);
323 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple *,
324 						   vec<data_reference_p> *);
325 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
326 bool loop_nest_has_data_refs (loop_p loop);
327 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple *, bool);
328 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
329 extern struct data_dependence_relation *initialize_data_dependence_relation
330      (struct data_reference *, struct data_reference *, vec<loop_p>);
331 extern void compute_affine_dependence (struct data_dependence_relation *,
332 				       loop_p);
333 extern void compute_self_dependence (struct data_dependence_relation *);
334 extern bool compute_all_dependences (vec<data_reference_p> ,
335 				     vec<ddr_p> *,
336 				     vec<loop_p>, bool);
337 extern tree find_data_references_in_bb (struct loop *, basic_block,
338                                         vec<data_reference_p> *);
339 
340 extern bool dr_may_alias_p (const struct data_reference *,
341 			    const struct data_reference *, bool);
342 extern bool dr_equal_offsets_p (struct data_reference *,
343                                 struct data_reference *);
344 
345 /* Return true when the base objects of data references A and B are
346    the same memory object.  */
347 
348 static inline bool
349 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
350 {
351   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
352     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
353 }
354 
355 /* Return true when the data references A and B are accessing the same
356    memory object with the same access functions.  */
357 
358 static inline bool
359 same_data_refs (data_reference_p a, data_reference_p b)
360 {
361   unsigned int i;
362 
363   /* The references are exactly the same.  */
364   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
365     return true;
366 
367   if (!same_data_refs_base_objects (a, b))
368     return false;
369 
370   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
371     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
372       return false;
373 
374   return true;
375 }
376 
377 /* Return true when the DDR contains two data references that have the
378    same access functions.  */
379 
380 static inline bool
381 same_access_functions (const struct data_dependence_relation *ddr)
382 {
383   unsigned i;
384 
385   for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
386     if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
387 			  DR_ACCESS_FN (DDR_B (ddr), i)))
388       return false;
389 
390   return true;
391 }
392 
393 /* Returns true when all the dependences are computable.  */
394 
395 inline bool
396 known_dependences_p (vec<ddr_p> dependence_relations)
397 {
398   ddr_p ddr;
399   unsigned int i;
400 
401   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
402     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
403       return false;
404 
405   return true;
406 }
407 
408 /* Returns the dependence level for a vector DIST of size LENGTH.
409    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
410    to the sequence of statements, not carried by any loop.  */
411 
412 static inline unsigned
413 dependence_level (lambda_vector dist_vect, int length)
414 {
415   int i;
416 
417   for (i = 0; i < length; i++)
418     if (dist_vect[i] != 0)
419       return i + 1;
420 
421   return 0;
422 }
423 
424 /* Return the dependence level for the DDR relation.  */
425 
426 static inline unsigned
427 ddr_dependence_level (ddr_p ddr)
428 {
429   unsigned vector;
430   unsigned level = 0;
431 
432   if (DDR_DIST_VECTS (ddr).exists ())
433     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
434 
435   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
436     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
437 					  DDR_NB_LOOPS (ddr)));
438   return level;
439 }
440 
441 /* Return the index of the variable VAR in the LOOP_NEST array.  */
442 
443 static inline int
444 index_in_loop_nest (int var, vec<loop_p> loop_nest)
445 {
446   struct loop *loopi;
447   int var_index;
448 
449   for (var_index = 0; loop_nest.iterate (var_index, &loopi);
450        var_index++)
451     if (loopi->num == var)
452       break;
453 
454   return var_index;
455 }
456 
457 /* Returns true when the data reference DR the form "A[i] = ..."
458    with a stride equal to its unit type size.  */
459 
460 static inline bool
461 adjacent_dr_p (struct data_reference *dr)
462 {
463   /* If this is a bitfield store bail out.  */
464   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
465       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
466     return false;
467 
468   if (!DR_STEP (dr)
469       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
470     return false;
471 
472   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
473 					 DR_STEP (dr)),
474 			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
475 }
476 
477 void split_constant_offset (tree , tree *, tree *);
478 
479 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
480 
481 static inline int
482 lambda_vector_gcd (lambda_vector vector, int size)
483 {
484   int i;
485   int gcd1 = 0;
486 
487   if (size > 0)
488     {
489       gcd1 = vector[0];
490       for (i = 1; i < size; i++)
491 	gcd1 = gcd (gcd1, vector[i]);
492     }
493   return gcd1;
494 }
495 
496 /* Allocate a new vector of given SIZE.  */
497 
498 static inline lambda_vector
499 lambda_vector_new (int size)
500 {
501   /* ???  We shouldn't abuse the GC allocator here.  */
502   return ggc_cleared_vec_alloc<int> (size);
503 }
504 
505 /* Clear out vector VEC1 of length SIZE.  */
506 
507 static inline void
508 lambda_vector_clear (lambda_vector vec1, int size)
509 {
510   memset (vec1, 0, size * sizeof (*vec1));
511 }
512 
513 /* Returns true when the vector V is lexicographically positive, in
514    other words, when the first nonzero element is positive.  */
515 
516 static inline bool
517 lambda_vector_lexico_pos (lambda_vector v,
518 			  unsigned n)
519 {
520   unsigned i;
521   for (i = 0; i < n; i++)
522     {
523       if (v[i] == 0)
524 	continue;
525       if (v[i] < 0)
526 	return false;
527       if (v[i] > 0)
528 	return true;
529     }
530   return true;
531 }
532 
533 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
534 
535 static inline bool
536 lambda_vector_zerop (lambda_vector vec1, int size)
537 {
538   int i;
539   for (i = 0; i < size; i++)
540     if (vec1[i] != 0)
541       return false;
542   return true;
543 }
544 
545 /* Allocate a matrix of M rows x  N cols.  */
546 
547 static inline lambda_matrix
548 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
549 {
550   lambda_matrix mat;
551   int i;
552 
553   mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
554 
555   for (i = 0; i < m; i++)
556     mat[i] = XOBNEWVEC (lambda_obstack, int, n);
557 
558   return mat;
559 }
560 
561 #endif  /* GCC_TREE_DATA_REF_H  */
562