xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-data-ref.h (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /* Data references and dependences detectors.
2    Copyright (C) 2003-2019 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23 
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
27 
28 /*
29   innermost_loop_behavior describes the evolution of the address of the memory
30   reference in the innermost enclosing loop.  The address is expressed as
31   BASE + STEP * # of iteration, and base is further decomposed as the base
32   pointer (BASE_ADDRESS),  loop invariant offset (OFFSET) and
33   constant offset (INIT).  Examples, in loop nest
34 
35   for (i = 0; i < 100; i++)
36     for (j = 3; j < 100; j++)
37 
38                        Example 1                      Example 2
39       data-ref         a[j].b[i][j]                   *(p + x + 16B + 4B * j)
40 
41 
42   innermost_loop_behavior
43       base_address     &a                             p
44       offset           i * D_i			      x
45       init             3 * D_j + offsetof (b)         28
46       step             D_j                            4
47 
48   */
49 struct innermost_loop_behavior
50 {
51   tree base_address;
52   tree offset;
53   tree init;
54   tree step;
55 
56   /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57      from an alignment boundary of BASE_ALIGNMENT bytes.  For example,
58      if we had:
59 
60        struct S __attribute__((aligned(16))) { ... };
61 
62        char *ptr;
63        ... *(struct S *) (ptr - 4) ...;
64 
65      the information would be:
66 
67        base_address:      ptr
68        base_aligment:      16
69        base_misalignment:   4
70        init:               -4
71 
72      where init cancels the base misalignment.  If instead we had a
73      reference to a particular field:
74 
75        struct S __attribute__((aligned(16))) { ... int f; ... };
76 
77        char *ptr;
78        ... ((struct S *) (ptr - 4))->f ...;
79 
80      the information would be:
81 
82        base_address:      ptr
83        base_aligment:      16
84        base_misalignment:   4
85        init:               -4 + offsetof (S, f)
86 
87      where base_address + init might also be misaligned, and by a different
88      amount from base_address.  */
89   unsigned int base_alignment;
90   unsigned int base_misalignment;
91 
92   /* The largest power of two that divides OFFSET, capped to a suitably
93      high value if the offset is zero.  This is a byte rather than a bit
94      quantity.  */
95   unsigned int offset_alignment;
96 
97   /* Likewise for STEP.  */
98   unsigned int step_alignment;
99 };
100 
101 /* Describes the evolutions of indices of the memory reference.  The indices
102    are indices of the ARRAY_REFs, indexes in artificial dimensions
103    added for member selection of records and the operands of MEM_REFs.
104    BASE_OBJECT is the part of the reference that is loop-invariant
105    (note that this reference does not have to cover the whole object
106    being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107    not recommended to use BASE_OBJECT in any code generation).
108    For the examples above,
109 
110    base_object:        a                              *(p + x + 4B * j_0)
111    indices:            {j_0, +, 1}_2                  {16, +, 4}_2
112 		       4
113 		       {i_0, +, 1}_1
114 		       {j_0, +, 1}_2
115 */
116 
117 struct indices
118 {
119   /* The object.  */
120   tree base_object;
121 
122   /* A list of chrecs.  Access functions of the indices.  */
123   vec<tree> access_fns;
124 
125   /* Whether BASE_OBJECT is an access representing the whole object
126      or whether the access could not be constrained.  */
127   bool unconstrained_base;
128 };
129 
130 struct dr_alias
131 {
132   /* The alias information that should be used for new pointers to this
133      location.  */
134   struct ptr_info_def *ptr_info;
135 };
136 
137 /* An integer vector.  A vector formally consists of an element of a vector
138    space. A vector space is a set that is closed under vector addition
139    and scalar multiplication.  In this vector space, an element is a list of
140    integers.  */
141 typedef HOST_WIDE_INT lambda_int;
142 typedef lambda_int *lambda_vector;
143 
144 /* An integer matrix.  A matrix consists of m vectors of length n (IE
145    all vectors are the same length).  */
146 typedef lambda_vector *lambda_matrix;
147 
148 
149 
150 struct data_reference
151 {
152   /* A pointer to the statement that contains this DR.  */
153   gimple *stmt;
154 
155   /* A pointer to the memory reference.  */
156   tree ref;
157 
158   /* Auxiliary info specific to a pass.  */
159   void *aux;
160 
161   /* True when the data reference is in RHS of a stmt.  */
162   bool is_read;
163 
164   /* True when the data reference is conditional within STMT,
165      i.e. if it might not occur even when the statement is executed
166      and runs to completion.  */
167   bool is_conditional_in_stmt;
168 
169   /* Behavior of the memory reference in the innermost loop.  */
170   struct innermost_loop_behavior innermost;
171 
172   /* Subscripts of this data reference.  */
173   struct indices indices;
174 
175   /* Alias information for the data reference.  */
176   struct dr_alias alias;
177 };
178 
179 #define DR_STMT(DR)                (DR)->stmt
180 #define DR_REF(DR)                 (DR)->ref
181 #define DR_BASE_OBJECT(DR)         (DR)->indices.base_object
182 #define DR_UNCONSTRAINED_BASE(DR)  (DR)->indices.unconstrained_base
183 #define DR_ACCESS_FNS(DR)	   (DR)->indices.access_fns
184 #define DR_ACCESS_FN(DR, I)        DR_ACCESS_FNS (DR)[I]
185 #define DR_NUM_DIMENSIONS(DR)      DR_ACCESS_FNS (DR).length ()
186 #define DR_IS_READ(DR)             (DR)->is_read
187 #define DR_IS_WRITE(DR)            (!DR_IS_READ (DR))
188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
189 #define DR_BASE_ADDRESS(DR)        (DR)->innermost.base_address
190 #define DR_OFFSET(DR)              (DR)->innermost.offset
191 #define DR_INIT(DR)                (DR)->innermost.init
192 #define DR_STEP(DR)                (DR)->innermost.step
193 #define DR_PTR_INFO(DR)            (DR)->alias.ptr_info
194 #define DR_BASE_ALIGNMENT(DR)      (DR)->innermost.base_alignment
195 #define DR_BASE_MISALIGNMENT(DR)   (DR)->innermost.base_misalignment
196 #define DR_OFFSET_ALIGNMENT(DR)    (DR)->innermost.offset_alignment
197 #define DR_STEP_ALIGNMENT(DR)      (DR)->innermost.step_alignment
198 #define DR_INNERMOST(DR)           (DR)->innermost
199 
200 typedef struct data_reference *data_reference_p;
201 
202 /* This struct is used to store the information of a data reference,
203    including the data ref itself and the segment length for aliasing
204    checks.  This is used to merge alias checks.  */
205 
206 struct dr_with_seg_len
207 {
208   dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
209 		   unsigned int a)
210     : dr (d), seg_len (len), access_size (size), align (a) {}
211 
212   data_reference_p dr;
213   /* The offset of the last access that needs to be checked minus
214      the offset of the first.  */
215   tree seg_len;
216   /* A value that, when added to abs (SEG_LEN), gives the total number of
217      bytes in the segment.  */
218   poly_uint64 access_size;
219   /* The minimum common alignment of DR's start address, SEG_LEN and
220      ACCESS_SIZE.  */
221   unsigned int align;
222 };
223 
224 /* This struct contains two dr_with_seg_len objects with aliasing data
225    refs.  Two comparisons are generated from them.  */
226 
227 struct dr_with_seg_len_pair_t
228 {
229   dr_with_seg_len_pair_t (const dr_with_seg_len& d1,
230 			       const dr_with_seg_len& d2)
231     : first (d1), second (d2) {}
232 
233   dr_with_seg_len first;
234   dr_with_seg_len second;
235 };
236 
237 enum data_dependence_direction {
238   dir_positive,
239   dir_negative,
240   dir_equal,
241   dir_positive_or_negative,
242   dir_positive_or_equal,
243   dir_negative_or_equal,
244   dir_star,
245   dir_independent
246 };
247 
248 /* The description of the grid of iterations that overlap.  At most
249    two loops are considered at the same time just now, hence at most
250    two functions are needed.  For each of the functions, we store
251    the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
252    where x, y, ... are variables.  */
253 
254 #define MAX_DIM 2
255 
256 /* Special values of N.  */
257 #define NO_DEPENDENCE 0
258 #define NOT_KNOWN (MAX_DIM + 1)
259 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
260 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
261 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
262 
263 typedef vec<tree> affine_fn;
264 
265 struct conflict_function
266 {
267   unsigned n;
268   affine_fn fns[MAX_DIM];
269 };
270 
271 /* What is a subscript?  Given two array accesses a subscript is the
272    tuple composed of the access functions for a given dimension.
273    Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
274    subscripts: (f1, g1), (f2, g2), (f3, g3).  These three subscripts
275    are stored in the data_dependence_relation structure under the form
276    of an array of subscripts.  */
277 
278 struct subscript
279 {
280   /* The access functions of the two references.  */
281   tree access_fn[2];
282 
283   /* A description of the iterations for which the elements are
284      accessed twice.  */
285   conflict_function *conflicting_iterations_in_a;
286   conflict_function *conflicting_iterations_in_b;
287 
288   /* This field stores the information about the iteration domain
289      validity of the dependence relation.  */
290   tree last_conflict;
291 
292   /* Distance from the iteration that access a conflicting element in
293      A to the iteration that access this same conflicting element in
294      B.  The distance is a tree scalar expression, i.e. a constant or a
295      symbolic expression, but certainly not a chrec function.  */
296   tree distance;
297 };
298 
299 typedef struct subscript *subscript_p;
300 
301 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
302 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
303 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
304 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
305 #define SUB_DISTANCE(SUB) (SUB)->distance
306 
307 /* A data_dependence_relation represents a relation between two
308    data_references A and B.  */
309 
310 struct data_dependence_relation
311 {
312 
313   struct data_reference *a;
314   struct data_reference *b;
315 
316   /* A "yes/no/maybe" field for the dependence relation:
317 
318      - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
319        relation between A and B, and the description of this relation
320        is given in the SUBSCRIPTS array,
321 
322      - when "ARE_DEPENDENT == chrec_known", there is no dependence and
323        SUBSCRIPTS is empty,
324 
325      - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
326        but the analyzer cannot be more specific.  */
327   tree are_dependent;
328 
329   /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
330      independent when the runtime addresses of OBJECT_A and OBJECT_B
331      are different.  The addresses of both objects are invariant in the
332      loop nest.  */
333   tree object_a;
334   tree object_b;
335 
336   /* For each subscript in the dependence test, there is an element in
337      this array.  This is the attribute that labels the edge A->B of
338      the data_dependence_relation.  */
339   vec<subscript_p> subscripts;
340 
341   /* The analyzed loop nest.  */
342   vec<loop_p> loop_nest;
343 
344   /* The classic direction vector.  */
345   vec<lambda_vector> dir_vects;
346 
347   /* The classic distance vector.  */
348   vec<lambda_vector> dist_vects;
349 
350   /* An index in loop_nest for the innermost loop that varies for
351      this data dependence relation.  */
352   unsigned inner_loop;
353 
354   /* Is the dependence reversed with respect to the lexicographic order?  */
355   bool reversed_p;
356 
357   /* When the dependence relation is affine, it can be represented by
358      a distance vector.  */
359   bool affine_p;
360 
361   /* Set to true when the dependence relation is on the same data
362      access.  */
363   bool self_reference_p;
364 
365   /* True if the dependence described is conservatively correct rather
366      than exact, and if it is still possible for the accesses to be
367      conditionally independent.  For example, the a and b references in:
368 
369        struct s *a, *b;
370        for (int i = 0; i < n; ++i)
371          a->f[i] += b->f[i];
372 
373      conservatively have a distance vector of (0), for the case in which
374      a == b, but the accesses are independent if a != b.  Similarly,
375      the a and b references in:
376 
377        struct s *a, *b;
378        for (int i = 0; i < n; ++i)
379          a[0].f[i] += b[i].f[i];
380 
381      conservatively have a distance vector of (0), but they are indepenent
382      when a != b + i.  In contrast, the references in:
383 
384        struct s *a;
385        for (int i = 0; i < n; ++i)
386          a->f[i] += a->f[i];
387 
388      have the same distance vector of (0), but the accesses can never be
389      independent.  */
390   bool could_be_independent_p;
391 };
392 
393 typedef struct data_dependence_relation *ddr_p;
394 
395 #define DDR_A(DDR) (DDR)->a
396 #define DDR_B(DDR) (DDR)->b
397 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
398 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
399 #define DDR_OBJECT_A(DDR) (DDR)->object_a
400 #define DDR_OBJECT_B(DDR) (DDR)->object_b
401 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
402 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
403 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
404 
405 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
406 /* The size of the direction/distance vectors: the number of loops in
407    the loop nest.  */
408 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
409 #define DDR_INNER_LOOP(DDR) (DDR)->inner_loop
410 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
411 
412 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
413 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
414 #define DDR_NUM_DIST_VECTS(DDR) \
415   (DDR_DIST_VECTS (DDR).length ())
416 #define DDR_NUM_DIR_VECTS(DDR) \
417   (DDR_DIR_VECTS (DDR).length ())
418 #define DDR_DIR_VECT(DDR, I) \
419   DDR_DIR_VECTS (DDR)[I]
420 #define DDR_DIST_VECT(DDR, I) \
421   DDR_DIST_VECTS (DDR)[I]
422 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
423 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
424 
425 
426 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
427 				 struct loop *, const gimple *);
428 extern bool compute_data_dependences_for_loop (struct loop *, bool,
429 					       vec<loop_p> *,
430 					       vec<data_reference_p> *,
431 					       vec<ddr_p> *);
432 extern void debug_ddrs (vec<ddr_p> );
433 extern void dump_data_reference (FILE *, struct data_reference *);
434 extern void debug (data_reference &ref);
435 extern void debug (data_reference *ptr);
436 extern void debug_data_reference (struct data_reference *);
437 extern void debug_data_references (vec<data_reference_p> );
438 extern void debug (vec<data_reference_p> &ref);
439 extern void debug (vec<data_reference_p> *ptr);
440 extern void debug_data_dependence_relation (struct data_dependence_relation *);
441 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
442 extern void debug (vec<ddr_p> &ref);
443 extern void debug (vec<ddr_p> *ptr);
444 extern void debug_data_dependence_relations (vec<ddr_p> );
445 extern void free_dependence_relation (struct data_dependence_relation *);
446 extern void free_dependence_relations (vec<ddr_p> );
447 extern void free_data_ref (data_reference_p);
448 extern void free_data_refs (vec<data_reference_p> );
449 extern opt_result find_data_references_in_stmt (struct loop *, gimple *,
450 						vec<data_reference_p> *);
451 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
452 						   vec<data_reference_p> *);
453 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
454 bool loop_nest_has_data_refs (loop_p loop);
455 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
456 					bool);
457 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
458 extern struct data_dependence_relation *initialize_data_dependence_relation
459      (struct data_reference *, struct data_reference *, vec<loop_p>);
460 extern void compute_affine_dependence (struct data_dependence_relation *,
461 				       loop_p);
462 extern void compute_self_dependence (struct data_dependence_relation *);
463 extern bool compute_all_dependences (vec<data_reference_p> ,
464 				     vec<ddr_p> *,
465 				     vec<loop_p>, bool);
466 extern tree find_data_references_in_bb (struct loop *, basic_block,
467                                         vec<data_reference_p> *);
468 extern unsigned int dr_alignment (innermost_loop_behavior *);
469 extern tree get_base_for_alignment (tree, unsigned int *);
470 
471 /* Return the alignment in bytes that DR is guaranteed to have at all
472    times.  */
473 
474 inline unsigned int
475 dr_alignment (data_reference *dr)
476 {
477   return dr_alignment (&DR_INNERMOST (dr));
478 }
479 
480 extern bool dr_may_alias_p (const struct data_reference *,
481 			    const struct data_reference *, struct loop *);
482 extern bool dr_equal_offsets_p (struct data_reference *,
483                                 struct data_reference *);
484 
485 extern opt_result runtime_alias_check_p (ddr_p, struct loop *, bool);
486 extern int data_ref_compare_tree (tree, tree);
487 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
488 					   poly_uint64);
489 extern void create_runtime_alias_checks (struct loop *,
490 					 vec<dr_with_seg_len_pair_t> *, tree*);
491 extern tree dr_direction_indicator (struct data_reference *);
492 extern tree dr_zero_step_indicator (struct data_reference *);
493 extern bool dr_known_forward_stride_p (struct data_reference *);
494 
495 /* Return true when the base objects of data references A and B are
496    the same memory object.  */
497 
498 static inline bool
499 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
500 {
501   return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
502     && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
503 }
504 
505 /* Return true when the data references A and B are accessing the same
506    memory object with the same access functions.  */
507 
508 static inline bool
509 same_data_refs (data_reference_p a, data_reference_p b)
510 {
511   unsigned int i;
512 
513   /* The references are exactly the same.  */
514   if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
515     return true;
516 
517   if (!same_data_refs_base_objects (a, b))
518     return false;
519 
520   for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
521     if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
522       return false;
523 
524   return true;
525 }
526 
527 /* Returns true when all the dependences are computable.  */
528 
529 inline bool
530 known_dependences_p (vec<ddr_p> dependence_relations)
531 {
532   ddr_p ddr;
533   unsigned int i;
534 
535   FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
536     if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
537       return false;
538 
539   return true;
540 }
541 
542 /* Returns the dependence level for a vector DIST of size LENGTH.
543    LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
544    to the sequence of statements, not carried by any loop.  */
545 
546 static inline unsigned
547 dependence_level (lambda_vector dist_vect, int length)
548 {
549   int i;
550 
551   for (i = 0; i < length; i++)
552     if (dist_vect[i] != 0)
553       return i + 1;
554 
555   return 0;
556 }
557 
558 /* Return the dependence level for the DDR relation.  */
559 
560 static inline unsigned
561 ddr_dependence_level (ddr_p ddr)
562 {
563   unsigned vector;
564   unsigned level = 0;
565 
566   if (DDR_DIST_VECTS (ddr).exists ())
567     level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
568 
569   for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
570     level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
571 					  DDR_NB_LOOPS (ddr)));
572   return level;
573 }
574 
575 /* Return the index of the variable VAR in the LOOP_NEST array.  */
576 
577 static inline int
578 index_in_loop_nest (int var, vec<loop_p> loop_nest)
579 {
580   struct loop *loopi;
581   int var_index;
582 
583   for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
584     if (loopi->num == var)
585       return var_index;
586 
587   gcc_unreachable ();
588 }
589 
590 /* Returns true when the data reference DR the form "A[i] = ..."
591    with a stride equal to its unit type size.  */
592 
593 static inline bool
594 adjacent_dr_p (struct data_reference *dr)
595 {
596   /* If this is a bitfield store bail out.  */
597   if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
598       && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
599     return false;
600 
601   if (!DR_STEP (dr)
602       || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
603     return false;
604 
605   return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
606 					 DR_STEP (dr)),
607 			     TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
608 }
609 
610 void split_constant_offset (tree , tree *, tree *);
611 
612 /* Compute the greatest common divisor of a VECTOR of SIZE numbers.  */
613 
614 static inline lambda_int
615 lambda_vector_gcd (lambda_vector vector, int size)
616 {
617   int i;
618   lambda_int gcd1 = 0;
619 
620   if (size > 0)
621     {
622       gcd1 = vector[0];
623       for (i = 1; i < size; i++)
624 	gcd1 = gcd (gcd1, vector[i]);
625     }
626   return gcd1;
627 }
628 
629 /* Allocate a new vector of given SIZE.  */
630 
631 static inline lambda_vector
632 lambda_vector_new (int size)
633 {
634   /* ???  We shouldn't abuse the GC allocator here.  */
635   return ggc_cleared_vec_alloc<lambda_int> (size);
636 }
637 
638 /* Clear out vector VEC1 of length SIZE.  */
639 
640 static inline void
641 lambda_vector_clear (lambda_vector vec1, int size)
642 {
643   memset (vec1, 0, size * sizeof (*vec1));
644 }
645 
646 /* Returns true when the vector V is lexicographically positive, in
647    other words, when the first nonzero element is positive.  */
648 
649 static inline bool
650 lambda_vector_lexico_pos (lambda_vector v,
651 			  unsigned n)
652 {
653   unsigned i;
654   for (i = 0; i < n; i++)
655     {
656       if (v[i] == 0)
657 	continue;
658       if (v[i] < 0)
659 	return false;
660       if (v[i] > 0)
661 	return true;
662     }
663   return true;
664 }
665 
666 /* Return true if vector VEC1 of length SIZE is the zero vector.  */
667 
668 static inline bool
669 lambda_vector_zerop (lambda_vector vec1, int size)
670 {
671   int i;
672   for (i = 0; i < size; i++)
673     if (vec1[i] != 0)
674       return false;
675   return true;
676 }
677 
678 /* Allocate a matrix of M rows x  N cols.  */
679 
680 static inline lambda_matrix
681 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
682 {
683   lambda_matrix mat;
684   int i;
685 
686   mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
687 
688   for (i = 0; i < m; i++)
689     mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
690 
691   return mat;
692 }
693 
694 #endif  /* GCC_TREE_DATA_REF_H  */
695