1 /* Data references and dependences detectors. 2 Copyright (C) 2003-2019 Free Software Foundation, Inc. 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_TREE_DATA_REF_H 22 #define GCC_TREE_DATA_REF_H 23 24 #include "graphds.h" 25 #include "tree-chrec.h" 26 #include "opt-problem.h" 27 28 /* 29 innermost_loop_behavior describes the evolution of the address of the memory 30 reference in the innermost enclosing loop. The address is expressed as 31 BASE + STEP * # of iteration, and base is further decomposed as the base 32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and 33 constant offset (INIT). Examples, in loop nest 34 35 for (i = 0; i < 100; i++) 36 for (j = 3; j < 100; j++) 37 38 Example 1 Example 2 39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j) 40 41 42 innermost_loop_behavior 43 base_address &a p 44 offset i * D_i x 45 init 3 * D_j + offsetof (b) 28 46 step D_j 4 47 48 */ 49 struct innermost_loop_behavior 50 { 51 tree base_address; 52 tree offset; 53 tree init; 54 tree step; 55 56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes 57 from an alignment boundary of BASE_ALIGNMENT bytes. For example, 58 if we had: 59 60 struct S __attribute__((aligned(16))) { ... }; 61 62 char *ptr; 63 ... *(struct S *) (ptr - 4) ...; 64 65 the information would be: 66 67 base_address: ptr 68 base_aligment: 16 69 base_misalignment: 4 70 init: -4 71 72 where init cancels the base misalignment. If instead we had a 73 reference to a particular field: 74 75 struct S __attribute__((aligned(16))) { ... int f; ... }; 76 77 char *ptr; 78 ... ((struct S *) (ptr - 4))->f ...; 79 80 the information would be: 81 82 base_address: ptr 83 base_aligment: 16 84 base_misalignment: 4 85 init: -4 + offsetof (S, f) 86 87 where base_address + init might also be misaligned, and by a different 88 amount from base_address. */ 89 unsigned int base_alignment; 90 unsigned int base_misalignment; 91 92 /* The largest power of two that divides OFFSET, capped to a suitably 93 high value if the offset is zero. This is a byte rather than a bit 94 quantity. */ 95 unsigned int offset_alignment; 96 97 /* Likewise for STEP. */ 98 unsigned int step_alignment; 99 }; 100 101 /* Describes the evolutions of indices of the memory reference. The indices 102 are indices of the ARRAY_REFs, indexes in artificial dimensions 103 added for member selection of records and the operands of MEM_REFs. 104 BASE_OBJECT is the part of the reference that is loop-invariant 105 (note that this reference does not have to cover the whole object 106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is 107 not recommended to use BASE_OBJECT in any code generation). 108 For the examples above, 109 110 base_object: a *(p + x + 4B * j_0) 111 indices: {j_0, +, 1}_2 {16, +, 4}_2 112 4 113 {i_0, +, 1}_1 114 {j_0, +, 1}_2 115 */ 116 117 struct indices 118 { 119 /* The object. */ 120 tree base_object; 121 122 /* A list of chrecs. Access functions of the indices. */ 123 vec<tree> access_fns; 124 125 /* Whether BASE_OBJECT is an access representing the whole object 126 or whether the access could not be constrained. */ 127 bool unconstrained_base; 128 }; 129 130 struct dr_alias 131 { 132 /* The alias information that should be used for new pointers to this 133 location. */ 134 struct ptr_info_def *ptr_info; 135 }; 136 137 /* An integer vector. A vector formally consists of an element of a vector 138 space. A vector space is a set that is closed under vector addition 139 and scalar multiplication. In this vector space, an element is a list of 140 integers. */ 141 typedef HOST_WIDE_INT lambda_int; 142 typedef lambda_int *lambda_vector; 143 144 /* An integer matrix. A matrix consists of m vectors of length n (IE 145 all vectors are the same length). */ 146 typedef lambda_vector *lambda_matrix; 147 148 149 150 struct data_reference 151 { 152 /* A pointer to the statement that contains this DR. */ 153 gimple *stmt; 154 155 /* A pointer to the memory reference. */ 156 tree ref; 157 158 /* Auxiliary info specific to a pass. */ 159 void *aux; 160 161 /* True when the data reference is in RHS of a stmt. */ 162 bool is_read; 163 164 /* True when the data reference is conditional within STMT, 165 i.e. if it might not occur even when the statement is executed 166 and runs to completion. */ 167 bool is_conditional_in_stmt; 168 169 /* Behavior of the memory reference in the innermost loop. */ 170 struct innermost_loop_behavior innermost; 171 172 /* Subscripts of this data reference. */ 173 struct indices indices; 174 175 /* Alias information for the data reference. */ 176 struct dr_alias alias; 177 }; 178 179 #define DR_STMT(DR) (DR)->stmt 180 #define DR_REF(DR) (DR)->ref 181 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object 182 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base 183 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns 184 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I] 185 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length () 186 #define DR_IS_READ(DR) (DR)->is_read 187 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR)) 188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt 189 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address 190 #define DR_OFFSET(DR) (DR)->innermost.offset 191 #define DR_INIT(DR) (DR)->innermost.init 192 #define DR_STEP(DR) (DR)->innermost.step 193 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info 194 #define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment 195 #define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment 196 #define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment 197 #define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment 198 #define DR_INNERMOST(DR) (DR)->innermost 199 200 typedef struct data_reference *data_reference_p; 201 202 /* This struct is used to store the information of a data reference, 203 including the data ref itself and the segment length for aliasing 204 checks. This is used to merge alias checks. */ 205 206 struct dr_with_seg_len 207 { 208 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size, 209 unsigned int a) 210 : dr (d), seg_len (len), access_size (size), align (a) {} 211 212 data_reference_p dr; 213 /* The offset of the last access that needs to be checked minus 214 the offset of the first. */ 215 tree seg_len; 216 /* A value that, when added to abs (SEG_LEN), gives the total number of 217 bytes in the segment. */ 218 poly_uint64 access_size; 219 /* The minimum common alignment of DR's start address, SEG_LEN and 220 ACCESS_SIZE. */ 221 unsigned int align; 222 }; 223 224 /* This struct contains two dr_with_seg_len objects with aliasing data 225 refs. Two comparisons are generated from them. */ 226 227 struct dr_with_seg_len_pair_t 228 { 229 dr_with_seg_len_pair_t (const dr_with_seg_len& d1, 230 const dr_with_seg_len& d2) 231 : first (d1), second (d2) {} 232 233 dr_with_seg_len first; 234 dr_with_seg_len second; 235 }; 236 237 enum data_dependence_direction { 238 dir_positive, 239 dir_negative, 240 dir_equal, 241 dir_positive_or_negative, 242 dir_positive_or_equal, 243 dir_negative_or_equal, 244 dir_star, 245 dir_independent 246 }; 247 248 /* The description of the grid of iterations that overlap. At most 249 two loops are considered at the same time just now, hence at most 250 two functions are needed. For each of the functions, we store 251 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ..., 252 where x, y, ... are variables. */ 253 254 #define MAX_DIM 2 255 256 /* Special values of N. */ 257 #define NO_DEPENDENCE 0 258 #define NOT_KNOWN (MAX_DIM + 1) 259 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN) 260 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN) 261 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE) 262 263 typedef vec<tree> affine_fn; 264 265 struct conflict_function 266 { 267 unsigned n; 268 affine_fn fns[MAX_DIM]; 269 }; 270 271 /* What is a subscript? Given two array accesses a subscript is the 272 tuple composed of the access functions for a given dimension. 273 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three 274 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts 275 are stored in the data_dependence_relation structure under the form 276 of an array of subscripts. */ 277 278 struct subscript 279 { 280 /* The access functions of the two references. */ 281 tree access_fn[2]; 282 283 /* A description of the iterations for which the elements are 284 accessed twice. */ 285 conflict_function *conflicting_iterations_in_a; 286 conflict_function *conflicting_iterations_in_b; 287 288 /* This field stores the information about the iteration domain 289 validity of the dependence relation. */ 290 tree last_conflict; 291 292 /* Distance from the iteration that access a conflicting element in 293 A to the iteration that access this same conflicting element in 294 B. The distance is a tree scalar expression, i.e. a constant or a 295 symbolic expression, but certainly not a chrec function. */ 296 tree distance; 297 }; 298 299 typedef struct subscript *subscript_p; 300 301 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I] 302 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a 303 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b 304 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict 305 #define SUB_DISTANCE(SUB) (SUB)->distance 306 307 /* A data_dependence_relation represents a relation between two 308 data_references A and B. */ 309 310 struct data_dependence_relation 311 { 312 313 struct data_reference *a; 314 struct data_reference *b; 315 316 /* A "yes/no/maybe" field for the dependence relation: 317 318 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence 319 relation between A and B, and the description of this relation 320 is given in the SUBSCRIPTS array, 321 322 - when "ARE_DEPENDENT == chrec_known", there is no dependence and 323 SUBSCRIPTS is empty, 324 325 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence, 326 but the analyzer cannot be more specific. */ 327 tree are_dependent; 328 329 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are 330 independent when the runtime addresses of OBJECT_A and OBJECT_B 331 are different. The addresses of both objects are invariant in the 332 loop nest. */ 333 tree object_a; 334 tree object_b; 335 336 /* For each subscript in the dependence test, there is an element in 337 this array. This is the attribute that labels the edge A->B of 338 the data_dependence_relation. */ 339 vec<subscript_p> subscripts; 340 341 /* The analyzed loop nest. */ 342 vec<loop_p> loop_nest; 343 344 /* The classic direction vector. */ 345 vec<lambda_vector> dir_vects; 346 347 /* The classic distance vector. */ 348 vec<lambda_vector> dist_vects; 349 350 /* An index in loop_nest for the innermost loop that varies for 351 this data dependence relation. */ 352 unsigned inner_loop; 353 354 /* Is the dependence reversed with respect to the lexicographic order? */ 355 bool reversed_p; 356 357 /* When the dependence relation is affine, it can be represented by 358 a distance vector. */ 359 bool affine_p; 360 361 /* Set to true when the dependence relation is on the same data 362 access. */ 363 bool self_reference_p; 364 365 /* True if the dependence described is conservatively correct rather 366 than exact, and if it is still possible for the accesses to be 367 conditionally independent. For example, the a and b references in: 368 369 struct s *a, *b; 370 for (int i = 0; i < n; ++i) 371 a->f[i] += b->f[i]; 372 373 conservatively have a distance vector of (0), for the case in which 374 a == b, but the accesses are independent if a != b. Similarly, 375 the a and b references in: 376 377 struct s *a, *b; 378 for (int i = 0; i < n; ++i) 379 a[0].f[i] += b[i].f[i]; 380 381 conservatively have a distance vector of (0), but they are indepenent 382 when a != b + i. In contrast, the references in: 383 384 struct s *a; 385 for (int i = 0; i < n; ++i) 386 a->f[i] += a->f[i]; 387 388 have the same distance vector of (0), but the accesses can never be 389 independent. */ 390 bool could_be_independent_p; 391 }; 392 393 typedef struct data_dependence_relation *ddr_p; 394 395 #define DDR_A(DDR) (DDR)->a 396 #define DDR_B(DDR) (DDR)->b 397 #define DDR_AFFINE_P(DDR) (DDR)->affine_p 398 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent 399 #define DDR_OBJECT_A(DDR) (DDR)->object_a 400 #define DDR_OBJECT_B(DDR) (DDR)->object_b 401 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts 402 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I] 403 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length () 404 405 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest 406 /* The size of the direction/distance vectors: the number of loops in 407 the loop nest. */ 408 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ()) 409 #define DDR_INNER_LOOP(DDR) (DDR)->inner_loop 410 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p 411 412 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects) 413 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects) 414 #define DDR_NUM_DIST_VECTS(DDR) \ 415 (DDR_DIST_VECTS (DDR).length ()) 416 #define DDR_NUM_DIR_VECTS(DDR) \ 417 (DDR_DIR_VECTS (DDR).length ()) 418 #define DDR_DIR_VECT(DDR, I) \ 419 DDR_DIR_VECTS (DDR)[I] 420 #define DDR_DIST_VECT(DDR, I) \ 421 DDR_DIST_VECTS (DDR)[I] 422 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p 423 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p 424 425 426 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree, 427 struct loop *, const gimple *); 428 extern bool compute_data_dependences_for_loop (struct loop *, bool, 429 vec<loop_p> *, 430 vec<data_reference_p> *, 431 vec<ddr_p> *); 432 extern void debug_ddrs (vec<ddr_p> ); 433 extern void dump_data_reference (FILE *, struct data_reference *); 434 extern void debug (data_reference &ref); 435 extern void debug (data_reference *ptr); 436 extern void debug_data_reference (struct data_reference *); 437 extern void debug_data_references (vec<data_reference_p> ); 438 extern void debug (vec<data_reference_p> &ref); 439 extern void debug (vec<data_reference_p> *ptr); 440 extern void debug_data_dependence_relation (struct data_dependence_relation *); 441 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> ); 442 extern void debug (vec<ddr_p> &ref); 443 extern void debug (vec<ddr_p> *ptr); 444 extern void debug_data_dependence_relations (vec<ddr_p> ); 445 extern void free_dependence_relation (struct data_dependence_relation *); 446 extern void free_dependence_relations (vec<ddr_p> ); 447 extern void free_data_ref (data_reference_p); 448 extern void free_data_refs (vec<data_reference_p> ); 449 extern opt_result find_data_references_in_stmt (struct loop *, gimple *, 450 vec<data_reference_p> *); 451 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *, 452 vec<data_reference_p> *); 453 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *); 454 bool loop_nest_has_data_refs (loop_p loop); 455 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool, 456 bool); 457 extern bool find_loop_nest (struct loop *, vec<loop_p> *); 458 extern struct data_dependence_relation *initialize_data_dependence_relation 459 (struct data_reference *, struct data_reference *, vec<loop_p>); 460 extern void compute_affine_dependence (struct data_dependence_relation *, 461 loop_p); 462 extern void compute_self_dependence (struct data_dependence_relation *); 463 extern bool compute_all_dependences (vec<data_reference_p> , 464 vec<ddr_p> *, 465 vec<loop_p>, bool); 466 extern tree find_data_references_in_bb (struct loop *, basic_block, 467 vec<data_reference_p> *); 468 extern unsigned int dr_alignment (innermost_loop_behavior *); 469 extern tree get_base_for_alignment (tree, unsigned int *); 470 471 /* Return the alignment in bytes that DR is guaranteed to have at all 472 times. */ 473 474 inline unsigned int 475 dr_alignment (data_reference *dr) 476 { 477 return dr_alignment (&DR_INNERMOST (dr)); 478 } 479 480 extern bool dr_may_alias_p (const struct data_reference *, 481 const struct data_reference *, struct loop *); 482 extern bool dr_equal_offsets_p (struct data_reference *, 483 struct data_reference *); 484 485 extern opt_result runtime_alias_check_p (ddr_p, struct loop *, bool); 486 extern int data_ref_compare_tree (tree, tree); 487 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *, 488 poly_uint64); 489 extern void create_runtime_alias_checks (struct loop *, 490 vec<dr_with_seg_len_pair_t> *, tree*); 491 extern tree dr_direction_indicator (struct data_reference *); 492 extern tree dr_zero_step_indicator (struct data_reference *); 493 extern bool dr_known_forward_stride_p (struct data_reference *); 494 495 /* Return true when the base objects of data references A and B are 496 the same memory object. */ 497 498 static inline bool 499 same_data_refs_base_objects (data_reference_p a, data_reference_p b) 500 { 501 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b) 502 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0); 503 } 504 505 /* Return true when the data references A and B are accessing the same 506 memory object with the same access functions. */ 507 508 static inline bool 509 same_data_refs (data_reference_p a, data_reference_p b) 510 { 511 unsigned int i; 512 513 /* The references are exactly the same. */ 514 if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) 515 return true; 516 517 if (!same_data_refs_base_objects (a, b)) 518 return false; 519 520 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) 521 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i))) 522 return false; 523 524 return true; 525 } 526 527 /* Returns true when all the dependences are computable. */ 528 529 inline bool 530 known_dependences_p (vec<ddr_p> dependence_relations) 531 { 532 ddr_p ddr; 533 unsigned int i; 534 535 FOR_EACH_VEC_ELT (dependence_relations, i, ddr) 536 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) 537 return false; 538 539 return true; 540 } 541 542 /* Returns the dependence level for a vector DIST of size LENGTH. 543 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due 544 to the sequence of statements, not carried by any loop. */ 545 546 static inline unsigned 547 dependence_level (lambda_vector dist_vect, int length) 548 { 549 int i; 550 551 for (i = 0; i < length; i++) 552 if (dist_vect[i] != 0) 553 return i + 1; 554 555 return 0; 556 } 557 558 /* Return the dependence level for the DDR relation. */ 559 560 static inline unsigned 561 ddr_dependence_level (ddr_p ddr) 562 { 563 unsigned vector; 564 unsigned level = 0; 565 566 if (DDR_DIST_VECTS (ddr).exists ()) 567 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr)); 568 569 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++) 570 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector), 571 DDR_NB_LOOPS (ddr))); 572 return level; 573 } 574 575 /* Return the index of the variable VAR in the LOOP_NEST array. */ 576 577 static inline int 578 index_in_loop_nest (int var, vec<loop_p> loop_nest) 579 { 580 struct loop *loopi; 581 int var_index; 582 583 for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++) 584 if (loopi->num == var) 585 return var_index; 586 587 gcc_unreachable (); 588 } 589 590 /* Returns true when the data reference DR the form "A[i] = ..." 591 with a stride equal to its unit type size. */ 592 593 static inline bool 594 adjacent_dr_p (struct data_reference *dr) 595 { 596 /* If this is a bitfield store bail out. */ 597 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF 598 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1))) 599 return false; 600 601 if (!DR_STEP (dr) 602 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST) 603 return false; 604 605 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)), 606 DR_STEP (dr)), 607 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)))); 608 } 609 610 void split_constant_offset (tree , tree *, tree *); 611 612 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */ 613 614 static inline lambda_int 615 lambda_vector_gcd (lambda_vector vector, int size) 616 { 617 int i; 618 lambda_int gcd1 = 0; 619 620 if (size > 0) 621 { 622 gcd1 = vector[0]; 623 for (i = 1; i < size; i++) 624 gcd1 = gcd (gcd1, vector[i]); 625 } 626 return gcd1; 627 } 628 629 /* Allocate a new vector of given SIZE. */ 630 631 static inline lambda_vector 632 lambda_vector_new (int size) 633 { 634 /* ??? We shouldn't abuse the GC allocator here. */ 635 return ggc_cleared_vec_alloc<lambda_int> (size); 636 } 637 638 /* Clear out vector VEC1 of length SIZE. */ 639 640 static inline void 641 lambda_vector_clear (lambda_vector vec1, int size) 642 { 643 memset (vec1, 0, size * sizeof (*vec1)); 644 } 645 646 /* Returns true when the vector V is lexicographically positive, in 647 other words, when the first nonzero element is positive. */ 648 649 static inline bool 650 lambda_vector_lexico_pos (lambda_vector v, 651 unsigned n) 652 { 653 unsigned i; 654 for (i = 0; i < n; i++) 655 { 656 if (v[i] == 0) 657 continue; 658 if (v[i] < 0) 659 return false; 660 if (v[i] > 0) 661 return true; 662 } 663 return true; 664 } 665 666 /* Return true if vector VEC1 of length SIZE is the zero vector. */ 667 668 static inline bool 669 lambda_vector_zerop (lambda_vector vec1, int size) 670 { 671 int i; 672 for (i = 0; i < size; i++) 673 if (vec1[i] != 0) 674 return false; 675 return true; 676 } 677 678 /* Allocate a matrix of M rows x N cols. */ 679 680 static inline lambda_matrix 681 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack) 682 { 683 lambda_matrix mat; 684 int i; 685 686 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m); 687 688 for (i = 0; i < m; i++) 689 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n); 690 691 return mat; 692 } 693 694 #endif /* GCC_TREE_DATA_REF_H */ 695