1 /* Data references and dependences detectors. 2 Copyright (C) 2003-2020 Free Software Foundation, Inc. 3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_TREE_DATA_REF_H 22 #define GCC_TREE_DATA_REF_H 23 24 #include "graphds.h" 25 #include "tree-chrec.h" 26 #include "opt-problem.h" 27 28 /* 29 innermost_loop_behavior describes the evolution of the address of the memory 30 reference in the innermost enclosing loop. The address is expressed as 31 BASE + STEP * # of iteration, and base is further decomposed as the base 32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and 33 constant offset (INIT). Examples, in loop nest 34 35 for (i = 0; i < 100; i++) 36 for (j = 3; j < 100; j++) 37 38 Example 1 Example 2 39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j) 40 41 42 innermost_loop_behavior 43 base_address &a p 44 offset i * D_i x 45 init 3 * D_j + offsetof (b) 28 46 step D_j 4 47 48 */ 49 struct innermost_loop_behavior 50 { 51 tree base_address; 52 tree offset; 53 tree init; 54 tree step; 55 56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes 57 from an alignment boundary of BASE_ALIGNMENT bytes. For example, 58 if we had: 59 60 struct S __attribute__((aligned(16))) { ... }; 61 62 char *ptr; 63 ... *(struct S *) (ptr - 4) ...; 64 65 the information would be: 66 67 base_address: ptr 68 base_aligment: 16 69 base_misalignment: 4 70 init: -4 71 72 where init cancels the base misalignment. If instead we had a 73 reference to a particular field: 74 75 struct S __attribute__((aligned(16))) { ... int f; ... }; 76 77 char *ptr; 78 ... ((struct S *) (ptr - 4))->f ...; 79 80 the information would be: 81 82 base_address: ptr 83 base_aligment: 16 84 base_misalignment: 4 85 init: -4 + offsetof (S, f) 86 87 where base_address + init might also be misaligned, and by a different 88 amount from base_address. */ 89 unsigned int base_alignment; 90 unsigned int base_misalignment; 91 92 /* The largest power of two that divides OFFSET, capped to a suitably 93 high value if the offset is zero. This is a byte rather than a bit 94 quantity. */ 95 unsigned int offset_alignment; 96 97 /* Likewise for STEP. */ 98 unsigned int step_alignment; 99 }; 100 101 /* Describes the evolutions of indices of the memory reference. The indices 102 are indices of the ARRAY_REFs, indexes in artificial dimensions 103 added for member selection of records and the operands of MEM_REFs. 104 BASE_OBJECT is the part of the reference that is loop-invariant 105 (note that this reference does not have to cover the whole object 106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is 107 not recommended to use BASE_OBJECT in any code generation). 108 For the examples above, 109 110 base_object: a *(p + x + 4B * j_0) 111 indices: {j_0, +, 1}_2 {16, +, 4}_2 112 4 113 {i_0, +, 1}_1 114 {j_0, +, 1}_2 115 */ 116 117 struct indices 118 { 119 /* The object. */ 120 tree base_object; 121 122 /* A list of chrecs. Access functions of the indices. */ 123 vec<tree> access_fns; 124 125 /* Whether BASE_OBJECT is an access representing the whole object 126 or whether the access could not be constrained. */ 127 bool unconstrained_base; 128 }; 129 130 struct dr_alias 131 { 132 /* The alias information that should be used for new pointers to this 133 location. */ 134 struct ptr_info_def *ptr_info; 135 }; 136 137 /* An integer vector. A vector formally consists of an element of a vector 138 space. A vector space is a set that is closed under vector addition 139 and scalar multiplication. In this vector space, an element is a list of 140 integers. */ 141 typedef HOST_WIDE_INT lambda_int; 142 typedef lambda_int *lambda_vector; 143 144 /* An integer matrix. A matrix consists of m vectors of length n (IE 145 all vectors are the same length). */ 146 typedef lambda_vector *lambda_matrix; 147 148 149 150 struct data_reference 151 { 152 /* A pointer to the statement that contains this DR. */ 153 gimple *stmt; 154 155 /* A pointer to the memory reference. */ 156 tree ref; 157 158 /* Auxiliary info specific to a pass. */ 159 void *aux; 160 161 /* True when the data reference is in RHS of a stmt. */ 162 bool is_read; 163 164 /* True when the data reference is conditional within STMT, 165 i.e. if it might not occur even when the statement is executed 166 and runs to completion. */ 167 bool is_conditional_in_stmt; 168 169 /* Behavior of the memory reference in the innermost loop. */ 170 struct innermost_loop_behavior innermost; 171 172 /* Subscripts of this data reference. */ 173 struct indices indices; 174 175 /* Alias information for the data reference. */ 176 struct dr_alias alias; 177 }; 178 179 #define DR_STMT(DR) (DR)->stmt 180 #define DR_REF(DR) (DR)->ref 181 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object 182 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base 183 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns 184 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I] 185 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length () 186 #define DR_IS_READ(DR) (DR)->is_read 187 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR)) 188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt 189 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address 190 #define DR_OFFSET(DR) (DR)->innermost.offset 191 #define DR_INIT(DR) (DR)->innermost.init 192 #define DR_STEP(DR) (DR)->innermost.step 193 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info 194 #define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment 195 #define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment 196 #define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment 197 #define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment 198 #define DR_INNERMOST(DR) (DR)->innermost 199 200 typedef struct data_reference *data_reference_p; 201 202 /* This struct is used to store the information of a data reference, 203 including the data ref itself and the segment length for aliasing 204 checks. This is used to merge alias checks. */ 205 206 class dr_with_seg_len 207 { 208 public: 209 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size, 210 unsigned int a) 211 : dr (d), seg_len (len), access_size (size), align (a) {} 212 213 data_reference_p dr; 214 /* The offset of the last access that needs to be checked minus 215 the offset of the first. */ 216 tree seg_len; 217 /* A value that, when added to abs (SEG_LEN), gives the total number of 218 bytes in the segment. */ 219 poly_uint64 access_size; 220 /* The minimum common alignment of DR's start address, SEG_LEN and 221 ACCESS_SIZE. */ 222 unsigned int align; 223 }; 224 225 /* Flags that describe a potential alias between two dr_with_seg_lens. 226 In general, each pair of dr_with_seg_lens represents a composite of 227 multiple access pairs P, so testing flags like DR_IS_READ on the DRs 228 does not give meaningful information. 229 230 DR_ALIAS_RAW: 231 There is a pair in P for which the second reference is a read 232 and the first is a write. 233 234 DR_ALIAS_WAR: 235 There is a pair in P for which the second reference is a write 236 and the first is a read. 237 238 DR_ALIAS_WAW: 239 There is a pair in P for which both references are writes. 240 241 DR_ALIAS_ARBITRARY: 242 Either 243 (a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or 244 (b) there is a pair in P that breaks the ordering assumption below. 245 246 This flag overrides the RAW, WAR and WAW flags above. 247 248 DR_ALIAS_UNSWAPPED: 249 DR_ALIAS_SWAPPED: 250 Temporary flags that indicate whether there is a pair P whose 251 DRs have or haven't been swapped around. 252 253 DR_ALIAS_MIXED_STEPS: 254 The DR_STEP for one of the data references in the pair does not 255 accurately describe that reference for all members of P. (Note 256 that the flag does not say anything about whether the DR_STEPs 257 of the two references in the pair are the same.) 258 259 The ordering assumption mentioned above is that for every pair 260 (DR_A, DR_B) in P: 261 262 (1) The original code accesses n elements for DR_A and n elements for DR_B, 263 interleaved as follows: 264 265 one access of size DR_A.access_size at DR_A.dr 266 one access of size DR_B.access_size at DR_B.dr 267 one access of size DR_A.access_size at DR_A.dr + STEP_A 268 one access of size DR_B.access_size at DR_B.dr + STEP_B 269 one access of size DR_A.access_size at DR_A.dr + STEP_A * 2 270 one access of size DR_B.access_size at DR_B.dr + STEP_B * 2 271 ... 272 273 (2) The new code accesses the same data in exactly two chunks: 274 275 one group of accesses spanning |DR_A.seg_len| + DR_A.access_size 276 one group of accesses spanning |DR_B.seg_len| + DR_B.access_size 277 278 A pair might break this assumption if the DR_A and DR_B accesses 279 in the original or the new code are mingled in some way. For example, 280 if DR_A.access_size represents the effect of two individual writes 281 to nearby locations, the pair breaks the assumption if those writes 282 occur either side of the access for DR_B. 283 284 Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption 285 fails to hold for any individual pair in P. If the assumption *does* 286 hold for every pair in P, it doesn't matter whether it holds for the 287 composite pair or not. In other words, P should represent the complete 288 set of pairs that the composite pair is testing, so only the ordering 289 of two accesses in the same member of P matters. */ 290 const unsigned int DR_ALIAS_RAW = 1U << 0; 291 const unsigned int DR_ALIAS_WAR = 1U << 1; 292 const unsigned int DR_ALIAS_WAW = 1U << 2; 293 const unsigned int DR_ALIAS_ARBITRARY = 1U << 3; 294 const unsigned int DR_ALIAS_SWAPPED = 1U << 4; 295 const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5; 296 const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6; 297 298 /* This struct contains two dr_with_seg_len objects with aliasing data 299 refs. Two comparisons are generated from them. */ 300 301 class dr_with_seg_len_pair_t 302 { 303 public: 304 /* WELL_ORDERED indicates that the ordering assumption described above 305 DR_ALIAS_ARBITRARY holds. REORDERED indicates that it doesn't. */ 306 enum sequencing { WELL_ORDERED, REORDERED }; 307 308 dr_with_seg_len_pair_t (const dr_with_seg_len &, 309 const dr_with_seg_len &, sequencing); 310 311 dr_with_seg_len first; 312 dr_with_seg_len second; 313 unsigned int flags; 314 }; 315 316 inline dr_with_seg_len_pair_t:: 317 dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2, 318 sequencing seq) 319 : first (d1), second (d2), flags (0) 320 { 321 if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr)) 322 flags |= DR_ALIAS_WAR; 323 else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr)) 324 flags |= DR_ALIAS_RAW; 325 else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr)) 326 flags |= DR_ALIAS_WAW; 327 else 328 gcc_unreachable (); 329 if (seq == REORDERED) 330 flags |= DR_ALIAS_ARBITRARY; 331 } 332 333 enum data_dependence_direction { 334 dir_positive, 335 dir_negative, 336 dir_equal, 337 dir_positive_or_negative, 338 dir_positive_or_equal, 339 dir_negative_or_equal, 340 dir_star, 341 dir_independent 342 }; 343 344 /* The description of the grid of iterations that overlap. At most 345 two loops are considered at the same time just now, hence at most 346 two functions are needed. For each of the functions, we store 347 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ..., 348 where x, y, ... are variables. */ 349 350 #define MAX_DIM 2 351 352 /* Special values of N. */ 353 #define NO_DEPENDENCE 0 354 #define NOT_KNOWN (MAX_DIM + 1) 355 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN) 356 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN) 357 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE) 358 359 typedef vec<tree> affine_fn; 360 361 struct conflict_function 362 { 363 unsigned n; 364 affine_fn fns[MAX_DIM]; 365 }; 366 367 /* What is a subscript? Given two array accesses a subscript is the 368 tuple composed of the access functions for a given dimension. 369 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three 370 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts 371 are stored in the data_dependence_relation structure under the form 372 of an array of subscripts. */ 373 374 struct subscript 375 { 376 /* The access functions of the two references. */ 377 tree access_fn[2]; 378 379 /* A description of the iterations for which the elements are 380 accessed twice. */ 381 conflict_function *conflicting_iterations_in_a; 382 conflict_function *conflicting_iterations_in_b; 383 384 /* This field stores the information about the iteration domain 385 validity of the dependence relation. */ 386 tree last_conflict; 387 388 /* Distance from the iteration that access a conflicting element in 389 A to the iteration that access this same conflicting element in 390 B. The distance is a tree scalar expression, i.e. a constant or a 391 symbolic expression, but certainly not a chrec function. */ 392 tree distance; 393 }; 394 395 typedef struct subscript *subscript_p; 396 397 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I] 398 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a 399 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b 400 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict 401 #define SUB_DISTANCE(SUB) (SUB)->distance 402 403 /* A data_dependence_relation represents a relation between two 404 data_references A and B. */ 405 406 struct data_dependence_relation 407 { 408 409 struct data_reference *a; 410 struct data_reference *b; 411 412 /* A "yes/no/maybe" field for the dependence relation: 413 414 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence 415 relation between A and B, and the description of this relation 416 is given in the SUBSCRIPTS array, 417 418 - when "ARE_DEPENDENT == chrec_known", there is no dependence and 419 SUBSCRIPTS is empty, 420 421 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence, 422 but the analyzer cannot be more specific. */ 423 tree are_dependent; 424 425 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are 426 independent when the runtime addresses of OBJECT_A and OBJECT_B 427 are different. The addresses of both objects are invariant in the 428 loop nest. */ 429 tree object_a; 430 tree object_b; 431 432 /* For each subscript in the dependence test, there is an element in 433 this array. This is the attribute that labels the edge A->B of 434 the data_dependence_relation. */ 435 vec<subscript_p> subscripts; 436 437 /* The analyzed loop nest. */ 438 vec<loop_p> loop_nest; 439 440 /* The classic direction vector. */ 441 vec<lambda_vector> dir_vects; 442 443 /* The classic distance vector. */ 444 vec<lambda_vector> dist_vects; 445 446 /* Is the dependence reversed with respect to the lexicographic order? */ 447 bool reversed_p; 448 449 /* When the dependence relation is affine, it can be represented by 450 a distance vector. */ 451 bool affine_p; 452 453 /* Set to true when the dependence relation is on the same data 454 access. */ 455 bool self_reference_p; 456 457 /* True if the dependence described is conservatively correct rather 458 than exact, and if it is still possible for the accesses to be 459 conditionally independent. For example, the a and b references in: 460 461 struct s *a, *b; 462 for (int i = 0; i < n; ++i) 463 a->f[i] += b->f[i]; 464 465 conservatively have a distance vector of (0), for the case in which 466 a == b, but the accesses are independent if a != b. Similarly, 467 the a and b references in: 468 469 struct s *a, *b; 470 for (int i = 0; i < n; ++i) 471 a[0].f[i] += b[i].f[i]; 472 473 conservatively have a distance vector of (0), but they are indepenent 474 when a != b + i. In contrast, the references in: 475 476 struct s *a; 477 for (int i = 0; i < n; ++i) 478 a->f[i] += a->f[i]; 479 480 have the same distance vector of (0), but the accesses can never be 481 independent. */ 482 bool could_be_independent_p; 483 }; 484 485 typedef struct data_dependence_relation *ddr_p; 486 487 #define DDR_A(DDR) (DDR)->a 488 #define DDR_B(DDR) (DDR)->b 489 #define DDR_AFFINE_P(DDR) (DDR)->affine_p 490 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent 491 #define DDR_OBJECT_A(DDR) (DDR)->object_a 492 #define DDR_OBJECT_B(DDR) (DDR)->object_b 493 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts 494 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I] 495 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length () 496 497 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest 498 /* The size of the direction/distance vectors: the number of loops in 499 the loop nest. */ 500 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ()) 501 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p 502 503 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects) 504 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects) 505 #define DDR_NUM_DIST_VECTS(DDR) \ 506 (DDR_DIST_VECTS (DDR).length ()) 507 #define DDR_NUM_DIR_VECTS(DDR) \ 508 (DDR_DIR_VECTS (DDR).length ()) 509 #define DDR_DIR_VECT(DDR, I) \ 510 DDR_DIR_VECTS (DDR)[I] 511 #define DDR_DIST_VECT(DDR, I) \ 512 DDR_DIST_VECTS (DDR)[I] 513 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p 514 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p 515 516 517 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree, 518 class loop *, const gimple *); 519 extern bool compute_data_dependences_for_loop (class loop *, bool, 520 vec<loop_p> *, 521 vec<data_reference_p> *, 522 vec<ddr_p> *); 523 extern void debug_ddrs (vec<ddr_p> ); 524 extern void dump_data_reference (FILE *, struct data_reference *); 525 extern void debug (data_reference &ref); 526 extern void debug (data_reference *ptr); 527 extern void debug_data_reference (struct data_reference *); 528 extern void debug_data_references (vec<data_reference_p> ); 529 extern void debug (vec<data_reference_p> &ref); 530 extern void debug (vec<data_reference_p> *ptr); 531 extern void debug_data_dependence_relation (struct data_dependence_relation *); 532 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> ); 533 extern void debug (vec<ddr_p> &ref); 534 extern void debug (vec<ddr_p> *ptr); 535 extern void debug_data_dependence_relations (vec<ddr_p> ); 536 extern void free_dependence_relation (struct data_dependence_relation *); 537 extern void free_dependence_relations (vec<ddr_p> ); 538 extern void free_data_ref (data_reference_p); 539 extern void free_data_refs (vec<data_reference_p> ); 540 extern opt_result find_data_references_in_stmt (class loop *, gimple *, 541 vec<data_reference_p> *); 542 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *, 543 vec<data_reference_p> *); 544 tree find_data_references_in_loop (class loop *, vec<data_reference_p> *); 545 bool loop_nest_has_data_refs (loop_p loop); 546 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool, 547 bool); 548 extern bool find_loop_nest (class loop *, vec<loop_p> *); 549 extern struct data_dependence_relation *initialize_data_dependence_relation 550 (struct data_reference *, struct data_reference *, vec<loop_p>); 551 extern void compute_affine_dependence (struct data_dependence_relation *, 552 loop_p); 553 extern void compute_self_dependence (struct data_dependence_relation *); 554 extern bool compute_all_dependences (vec<data_reference_p> , 555 vec<ddr_p> *, 556 vec<loop_p>, bool); 557 extern tree find_data_references_in_bb (class loop *, basic_block, 558 vec<data_reference_p> *); 559 extern unsigned int dr_alignment (innermost_loop_behavior *); 560 extern tree get_base_for_alignment (tree, unsigned int *); 561 562 /* Return the alignment in bytes that DR is guaranteed to have at all 563 times. */ 564 565 inline unsigned int 566 dr_alignment (data_reference *dr) 567 { 568 return dr_alignment (&DR_INNERMOST (dr)); 569 } 570 571 extern bool dr_may_alias_p (const struct data_reference *, 572 const struct data_reference *, class loop *); 573 extern bool dr_equal_offsets_p (struct data_reference *, 574 struct data_reference *); 575 576 extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool); 577 extern int data_ref_compare_tree (tree, tree); 578 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *, 579 poly_uint64); 580 extern void create_runtime_alias_checks (class loop *, 581 vec<dr_with_seg_len_pair_t> *, tree*); 582 extern tree dr_direction_indicator (struct data_reference *); 583 extern tree dr_zero_step_indicator (struct data_reference *); 584 extern bool dr_known_forward_stride_p (struct data_reference *); 585 586 /* Return true when the base objects of data references A and B are 587 the same memory object. */ 588 589 static inline bool 590 same_data_refs_base_objects (data_reference_p a, data_reference_p b) 591 { 592 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b) 593 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0); 594 } 595 596 /* Return true when the data references A and B are accessing the same 597 memory object with the same access functions. */ 598 599 static inline bool 600 same_data_refs (data_reference_p a, data_reference_p b) 601 { 602 unsigned int i; 603 604 /* The references are exactly the same. */ 605 if (operand_equal_p (DR_REF (a), DR_REF (b), 0)) 606 return true; 607 608 if (!same_data_refs_base_objects (a, b)) 609 return false; 610 611 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++) 612 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i))) 613 return false; 614 615 return true; 616 } 617 618 /* Returns true when all the dependences are computable. */ 619 620 inline bool 621 known_dependences_p (vec<ddr_p> dependence_relations) 622 { 623 ddr_p ddr; 624 unsigned int i; 625 626 FOR_EACH_VEC_ELT (dependence_relations, i, ddr) 627 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know) 628 return false; 629 630 return true; 631 } 632 633 /* Returns the dependence level for a vector DIST of size LENGTH. 634 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due 635 to the sequence of statements, not carried by any loop. */ 636 637 static inline unsigned 638 dependence_level (lambda_vector dist_vect, int length) 639 { 640 int i; 641 642 for (i = 0; i < length; i++) 643 if (dist_vect[i] != 0) 644 return i + 1; 645 646 return 0; 647 } 648 649 /* Return the dependence level for the DDR relation. */ 650 651 static inline unsigned 652 ddr_dependence_level (ddr_p ddr) 653 { 654 unsigned vector; 655 unsigned level = 0; 656 657 if (DDR_DIST_VECTS (ddr).exists ()) 658 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr)); 659 660 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++) 661 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector), 662 DDR_NB_LOOPS (ddr))); 663 return level; 664 } 665 666 /* Return the index of the variable VAR in the LOOP_NEST array. */ 667 668 static inline int 669 index_in_loop_nest (int var, vec<loop_p> loop_nest) 670 { 671 class loop *loopi; 672 int var_index; 673 674 for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++) 675 if (loopi->num == var) 676 return var_index; 677 678 gcc_unreachable (); 679 } 680 681 /* Returns true when the data reference DR the form "A[i] = ..." 682 with a stride equal to its unit type size. */ 683 684 static inline bool 685 adjacent_dr_p (struct data_reference *dr) 686 { 687 /* If this is a bitfield store bail out. */ 688 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF 689 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1))) 690 return false; 691 692 if (!DR_STEP (dr) 693 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST) 694 return false; 695 696 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)), 697 DR_STEP (dr)), 698 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)))); 699 } 700 701 void split_constant_offset (tree , tree *, tree *); 702 703 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */ 704 705 static inline lambda_int 706 lambda_vector_gcd (lambda_vector vector, int size) 707 { 708 int i; 709 lambda_int gcd1 = 0; 710 711 if (size > 0) 712 { 713 gcd1 = vector[0]; 714 for (i = 1; i < size; i++) 715 gcd1 = gcd (gcd1, vector[i]); 716 } 717 return gcd1; 718 } 719 720 /* Allocate a new vector of given SIZE. */ 721 722 static inline lambda_vector 723 lambda_vector_new (int size) 724 { 725 /* ??? We shouldn't abuse the GC allocator here. */ 726 return ggc_cleared_vec_alloc<lambda_int> (size); 727 } 728 729 /* Clear out vector VEC1 of length SIZE. */ 730 731 static inline void 732 lambda_vector_clear (lambda_vector vec1, int size) 733 { 734 memset (vec1, 0, size * sizeof (*vec1)); 735 } 736 737 /* Returns true when the vector V is lexicographically positive, in 738 other words, when the first nonzero element is positive. */ 739 740 static inline bool 741 lambda_vector_lexico_pos (lambda_vector v, 742 unsigned n) 743 { 744 unsigned i; 745 for (i = 0; i < n; i++) 746 { 747 if (v[i] == 0) 748 continue; 749 if (v[i] < 0) 750 return false; 751 if (v[i] > 0) 752 return true; 753 } 754 return true; 755 } 756 757 /* Return true if vector VEC1 of length SIZE is the zero vector. */ 758 759 static inline bool 760 lambda_vector_zerop (lambda_vector vec1, int size) 761 { 762 int i; 763 for (i = 0; i < size; i++) 764 if (vec1[i] != 0) 765 return false; 766 return true; 767 } 768 769 /* Allocate a matrix of M rows x N cols. */ 770 771 static inline lambda_matrix 772 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack) 773 { 774 lambda_matrix mat; 775 int i; 776 777 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m); 778 779 for (i = 0; i < m; i++) 780 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n); 781 782 return mat; 783 } 784 785 #endif /* GCC_TREE_DATA_REF_H */ 786