1 /* Lower complex number operations to scalar operations. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "fold-const.h" 31 #include "stor-layout.h" 32 #include "tree-eh.h" 33 #include "gimplify.h" 34 #include "gimple-iterator.h" 35 #include "gimplify-me.h" 36 #include "tree-cfg.h" 37 #include "tree-dfa.h" 38 #include "tree-ssa.h" 39 #include "tree-ssa-propagate.h" 40 #include "tree-hasher.h" 41 #include "cfgloop.h" 42 #include "cfganal.h" 43 44 45 /* For each complex ssa name, a lattice value. We're interested in finding 46 out whether a complex number is degenerate in some way, having only real 47 or only complex parts. */ 48 49 enum 50 { 51 UNINITIALIZED = 0, 52 ONLY_REAL = 1, 53 ONLY_IMAG = 2, 54 VARYING = 3 55 }; 56 57 /* The type complex_lattice_t holds combinations of the above 58 constants. */ 59 typedef int complex_lattice_t; 60 61 #define PAIR(a, b) ((a) << 2 | (b)) 62 63 64 static vec<complex_lattice_t> complex_lattice_values; 65 66 /* For each complex variable, a pair of variables for the components exists in 67 the hashtable. */ 68 static int_tree_htab_type *complex_variable_components; 69 70 /* For each complex SSA_NAME, a pair of ssa names for the components. */ 71 static vec<tree> complex_ssa_name_components; 72 73 /* Vector of PHI triplets (original complex PHI and corresponding real and 74 imag PHIs if real and/or imag PHIs contain temporarily 75 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ 76 static vec<gphi *> phis_to_revisit; 77 78 /* BBs that need EH cleanup. */ 79 static bitmap need_eh_cleanup; 80 81 /* Lookup UID in the complex_variable_components hashtable and return the 82 associated tree. */ 83 static tree 84 cvc_lookup (unsigned int uid) 85 { 86 struct int_tree_map in; 87 in.uid = uid; 88 return complex_variable_components->find_with_hash (in, uid).to; 89 } 90 91 /* Insert the pair UID, TO into the complex_variable_components hashtable. */ 92 93 static void 94 cvc_insert (unsigned int uid, tree to) 95 { 96 int_tree_map h; 97 int_tree_map *loc; 98 99 h.uid = uid; 100 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); 101 loc->uid = uid; 102 loc->to = to; 103 } 104 105 /* Return true if T is not a zero constant. In the case of real values, 106 we're only interested in +0.0. */ 107 108 static int 109 some_nonzerop (tree t) 110 { 111 int zerop = false; 112 113 /* Operations with real or imaginary part of a complex number zero 114 cannot be treated the same as operations with a real or imaginary 115 operand if we care about the signs of zeros in the result. */ 116 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) 117 zerop = real_identical (&TREE_REAL_CST (t), &dconst0); 118 else if (TREE_CODE (t) == FIXED_CST) 119 zerop = fixed_zerop (t); 120 else if (TREE_CODE (t) == INTEGER_CST) 121 zerop = integer_zerop (t); 122 123 return !zerop; 124 } 125 126 127 /* Compute a lattice value from the components of a complex type REAL 128 and IMAG. */ 129 130 static complex_lattice_t 131 find_lattice_value_parts (tree real, tree imag) 132 { 133 int r, i; 134 complex_lattice_t ret; 135 136 r = some_nonzerop (real); 137 i = some_nonzerop (imag); 138 ret = r * ONLY_REAL + i * ONLY_IMAG; 139 140 /* ??? On occasion we could do better than mapping 0+0i to real, but we 141 certainly don't want to leave it UNINITIALIZED, which eventually gets 142 mapped to VARYING. */ 143 if (ret == UNINITIALIZED) 144 ret = ONLY_REAL; 145 146 return ret; 147 } 148 149 150 /* Compute a lattice value from gimple_val T. */ 151 152 static complex_lattice_t 153 find_lattice_value (tree t) 154 { 155 tree real, imag; 156 157 switch (TREE_CODE (t)) 158 { 159 case SSA_NAME: 160 return complex_lattice_values[SSA_NAME_VERSION (t)]; 161 162 case COMPLEX_CST: 163 real = TREE_REALPART (t); 164 imag = TREE_IMAGPART (t); 165 break; 166 167 default: 168 gcc_unreachable (); 169 } 170 171 return find_lattice_value_parts (real, imag); 172 } 173 174 /* Determine if LHS is something for which we're interested in seeing 175 simulation results. */ 176 177 static bool 178 is_complex_reg (tree lhs) 179 { 180 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); 181 } 182 183 /* Mark the incoming parameters to the function as VARYING. */ 184 185 static void 186 init_parameter_lattice_values (void) 187 { 188 tree parm, ssa_name; 189 190 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 191 if (is_complex_reg (parm) 192 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) 193 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; 194 } 195 196 /* Initialize simulation state for each statement. Return false if we 197 found no statements we want to simulate, and thus there's nothing 198 for the entire pass to do. */ 199 200 static bool 201 init_dont_simulate_again (void) 202 { 203 basic_block bb; 204 bool saw_a_complex_op = false; 205 206 FOR_EACH_BB_FN (bb, cfun) 207 { 208 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 209 gsi_next (&gsi)) 210 { 211 gphi *phi = gsi.phi (); 212 prop_set_simulate_again (phi, 213 is_complex_reg (gimple_phi_result (phi))); 214 } 215 216 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 217 gsi_next (&gsi)) 218 { 219 gimple *stmt; 220 tree op0, op1; 221 bool sim_again_p; 222 223 stmt = gsi_stmt (gsi); 224 op0 = op1 = NULL_TREE; 225 226 /* Most control-altering statements must be initially 227 simulated, else we won't cover the entire cfg. */ 228 sim_again_p = stmt_ends_bb_p (stmt); 229 230 switch (gimple_code (stmt)) 231 { 232 case GIMPLE_CALL: 233 if (gimple_call_lhs (stmt)) 234 sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); 235 break; 236 237 case GIMPLE_ASSIGN: 238 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); 239 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR 240 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 241 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); 242 else 243 op0 = gimple_assign_rhs1 (stmt); 244 if (gimple_num_ops (stmt) > 2) 245 op1 = gimple_assign_rhs2 (stmt); 246 break; 247 248 case GIMPLE_COND: 249 op0 = gimple_cond_lhs (stmt); 250 op1 = gimple_cond_rhs (stmt); 251 break; 252 253 default: 254 break; 255 } 256 257 if (op0 || op1) 258 switch (gimple_expr_code (stmt)) 259 { 260 case EQ_EXPR: 261 case NE_EXPR: 262 case PLUS_EXPR: 263 case MINUS_EXPR: 264 case MULT_EXPR: 265 case TRUNC_DIV_EXPR: 266 case CEIL_DIV_EXPR: 267 case FLOOR_DIV_EXPR: 268 case ROUND_DIV_EXPR: 269 case RDIV_EXPR: 270 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE 271 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) 272 saw_a_complex_op = true; 273 break; 274 275 case NEGATE_EXPR: 276 case CONJ_EXPR: 277 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) 278 saw_a_complex_op = true; 279 break; 280 281 case REALPART_EXPR: 282 case IMAGPART_EXPR: 283 /* The total store transformation performed during 284 gimplification creates such uninitialized loads 285 and we need to lower the statement to be able 286 to fix things up. */ 287 if (TREE_CODE (op0) == SSA_NAME 288 && ssa_undefined_value_p (op0)) 289 saw_a_complex_op = true; 290 break; 291 292 default: 293 break; 294 } 295 296 prop_set_simulate_again (stmt, sim_again_p); 297 } 298 } 299 300 return saw_a_complex_op; 301 } 302 303 304 /* Evaluate statement STMT against the complex lattice defined above. */ 305 306 static enum ssa_prop_result 307 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, 308 tree *result_p) 309 { 310 complex_lattice_t new_l, old_l, op1_l, op2_l; 311 unsigned int ver; 312 tree lhs; 313 314 lhs = gimple_get_lhs (stmt); 315 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ 316 if (!lhs) 317 return SSA_PROP_VARYING; 318 319 /* These conditions should be satisfied due to the initial filter 320 set up in init_dont_simulate_again. */ 321 gcc_assert (TREE_CODE (lhs) == SSA_NAME); 322 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 323 324 *result_p = lhs; 325 ver = SSA_NAME_VERSION (lhs); 326 old_l = complex_lattice_values[ver]; 327 328 switch (gimple_expr_code (stmt)) 329 { 330 case SSA_NAME: 331 case COMPLEX_CST: 332 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 333 break; 334 335 case COMPLEX_EXPR: 336 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), 337 gimple_assign_rhs2 (stmt)); 338 break; 339 340 case PLUS_EXPR: 341 case MINUS_EXPR: 342 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 343 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 344 345 /* We've set up the lattice values such that IOR neatly 346 models addition. */ 347 new_l = op1_l | op2_l; 348 break; 349 350 case MULT_EXPR: 351 case RDIV_EXPR: 352 case TRUNC_DIV_EXPR: 353 case CEIL_DIV_EXPR: 354 case FLOOR_DIV_EXPR: 355 case ROUND_DIV_EXPR: 356 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 357 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 358 359 /* Obviously, if either varies, so does the result. */ 360 if (op1_l == VARYING || op2_l == VARYING) 361 new_l = VARYING; 362 /* Don't prematurely promote variables if we've not yet seen 363 their inputs. */ 364 else if (op1_l == UNINITIALIZED) 365 new_l = op2_l; 366 else if (op2_l == UNINITIALIZED) 367 new_l = op1_l; 368 else 369 { 370 /* At this point both numbers have only one component. If the 371 numbers are of opposite kind, the result is imaginary, 372 otherwise the result is real. The add/subtract translates 373 the real/imag from/to 0/1; the ^ performs the comparison. */ 374 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; 375 376 /* Don't allow the lattice value to flip-flop indefinitely. */ 377 new_l |= old_l; 378 } 379 break; 380 381 case NEGATE_EXPR: 382 case CONJ_EXPR: 383 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 384 break; 385 386 default: 387 new_l = VARYING; 388 break; 389 } 390 391 /* If nothing changed this round, let the propagator know. */ 392 if (new_l == old_l) 393 return SSA_PROP_NOT_INTERESTING; 394 395 complex_lattice_values[ver] = new_l; 396 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 397 } 398 399 /* Evaluate a PHI node against the complex lattice defined above. */ 400 401 static enum ssa_prop_result 402 complex_visit_phi (gphi *phi) 403 { 404 complex_lattice_t new_l, old_l; 405 unsigned int ver; 406 tree lhs; 407 int i; 408 409 lhs = gimple_phi_result (phi); 410 411 /* This condition should be satisfied due to the initial filter 412 set up in init_dont_simulate_again. */ 413 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 414 415 /* We've set up the lattice values such that IOR neatly models PHI meet. */ 416 new_l = UNINITIALIZED; 417 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) 418 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); 419 420 ver = SSA_NAME_VERSION (lhs); 421 old_l = complex_lattice_values[ver]; 422 423 if (new_l == old_l) 424 return SSA_PROP_NOT_INTERESTING; 425 426 complex_lattice_values[ver] = new_l; 427 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 428 } 429 430 /* Create one backing variable for a complex component of ORIG. */ 431 432 static tree 433 create_one_component_var (tree type, tree orig, const char *prefix, 434 const char *suffix, enum tree_code code) 435 { 436 tree r = create_tmp_var (type, prefix); 437 438 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); 439 DECL_ARTIFICIAL (r) = 1; 440 441 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) 442 { 443 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); 444 name = ACONCAT ((name, suffix, NULL)); 445 DECL_NAME (r) = get_identifier (name); 446 447 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); 448 DECL_HAS_DEBUG_EXPR_P (r) = 1; 449 DECL_IGNORED_P (r) = 0; 450 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); 451 } 452 else 453 { 454 DECL_IGNORED_P (r) = 1; 455 TREE_NO_WARNING (r) = 1; 456 } 457 458 return r; 459 } 460 461 /* Retrieve a value for a complex component of VAR. */ 462 463 static tree 464 get_component_var (tree var, bool imag_p) 465 { 466 size_t decl_index = DECL_UID (var) * 2 + imag_p; 467 tree ret = cvc_lookup (decl_index); 468 469 if (ret == NULL) 470 { 471 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, 472 imag_p ? "CI" : "CR", 473 imag_p ? "$imag" : "$real", 474 imag_p ? IMAGPART_EXPR : REALPART_EXPR); 475 cvc_insert (decl_index, ret); 476 } 477 478 return ret; 479 } 480 481 /* Retrieve a value for a complex component of SSA_NAME. */ 482 483 static tree 484 get_component_ssa_name (tree ssa_name, bool imag_p) 485 { 486 complex_lattice_t lattice = find_lattice_value (ssa_name); 487 size_t ssa_name_index; 488 tree ret; 489 490 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 491 { 492 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); 493 if (SCALAR_FLOAT_TYPE_P (inner_type)) 494 return build_real (inner_type, dconst0); 495 else 496 return build_int_cst (inner_type, 0); 497 } 498 499 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 500 ret = complex_ssa_name_components[ssa_name_index]; 501 if (ret == NULL) 502 { 503 if (SSA_NAME_VAR (ssa_name)) 504 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 505 else 506 ret = TREE_TYPE (TREE_TYPE (ssa_name)); 507 ret = make_ssa_name (ret); 508 509 /* Copy some properties from the original. In particular, whether it 510 is used in an abnormal phi, and whether it's uninitialized. */ 511 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) 512 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); 513 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) 514 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) 515 { 516 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); 517 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); 518 } 519 520 complex_ssa_name_components[ssa_name_index] = ret; 521 } 522 523 return ret; 524 } 525 526 /* Set a value for a complex component of SSA_NAME, return a 527 gimple_seq of stuff that needs doing. */ 528 529 static gimple_seq 530 set_component_ssa_name (tree ssa_name, bool imag_p, tree value) 531 { 532 complex_lattice_t lattice = find_lattice_value (ssa_name); 533 size_t ssa_name_index; 534 tree comp; 535 gimple *last; 536 gimple_seq list; 537 538 /* We know the value must be zero, else there's a bug in our lattice 539 analysis. But the value may well be a variable known to contain 540 zero. We should be safe ignoring it. */ 541 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 542 return NULL; 543 544 /* If we've already assigned an SSA_NAME to this component, then this 545 means that our walk of the basic blocks found a use before the set. 546 This is fine. Now we should create an initialization for the value 547 we created earlier. */ 548 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 549 comp = complex_ssa_name_components[ssa_name_index]; 550 if (comp) 551 ; 552 553 /* If we've nothing assigned, and the value we're given is already stable, 554 then install that as the value for this SSA_NAME. This preemptively 555 copy-propagates the value, which avoids unnecessary memory allocation. */ 556 else if (is_gimple_min_invariant (value) 557 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 558 { 559 complex_ssa_name_components[ssa_name_index] = value; 560 return NULL; 561 } 562 else if (TREE_CODE (value) == SSA_NAME 563 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 564 { 565 /* Replace an anonymous base value with the variable from cvc_lookup. 566 This should result in better debug info. */ 567 if (SSA_NAME_VAR (ssa_name) 568 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) 569 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) 570 { 571 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 572 replace_ssa_name_symbol (value, comp); 573 } 574 575 complex_ssa_name_components[ssa_name_index] = value; 576 return NULL; 577 } 578 579 /* Finally, we need to stabilize the result by installing the value into 580 a new ssa name. */ 581 else 582 comp = get_component_ssa_name (ssa_name, imag_p); 583 584 /* Do all the work to assign VALUE to COMP. */ 585 list = NULL; 586 value = force_gimple_operand (value, &list, false, NULL); 587 last = gimple_build_assign (comp, value); 588 gimple_seq_add_stmt (&list, last); 589 gcc_assert (SSA_NAME_DEF_STMT (comp) == last); 590 591 return list; 592 } 593 594 /* Extract the real or imaginary part of a complex variable or constant. 595 Make sure that it's a proper gimple_val and gimplify it if not. 596 Emit any new code before gsi. */ 597 598 static tree 599 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, 600 bool gimple_p, bool phiarg_p = false) 601 { 602 switch (TREE_CODE (t)) 603 { 604 case COMPLEX_CST: 605 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); 606 607 case COMPLEX_EXPR: 608 gcc_unreachable (); 609 610 case BIT_FIELD_REF: 611 { 612 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 613 t = unshare_expr (t); 614 TREE_TYPE (t) = inner_type; 615 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); 616 if (imagpart_p) 617 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), 618 TYPE_SIZE (inner_type)); 619 if (gimple_p) 620 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 621 GSI_SAME_STMT); 622 return t; 623 } 624 625 case VAR_DECL: 626 case RESULT_DECL: 627 case PARM_DECL: 628 case COMPONENT_REF: 629 case ARRAY_REF: 630 case VIEW_CONVERT_EXPR: 631 case MEM_REF: 632 { 633 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 634 635 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), 636 inner_type, unshare_expr (t)); 637 638 if (gimple_p) 639 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 640 GSI_SAME_STMT); 641 642 return t; 643 } 644 645 case SSA_NAME: 646 t = get_component_ssa_name (t, imagpart_p); 647 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) 648 gcc_assert (phiarg_p); 649 return t; 650 651 default: 652 gcc_unreachable (); 653 } 654 } 655 656 /* Update the complex components of the ssa name on the lhs of STMT. */ 657 658 static void 659 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, 660 tree i) 661 { 662 tree lhs; 663 gimple_seq list; 664 665 lhs = gimple_get_lhs (stmt); 666 667 list = set_component_ssa_name (lhs, false, r); 668 if (list) 669 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 670 671 list = set_component_ssa_name (lhs, true, i); 672 if (list) 673 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 674 } 675 676 static void 677 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) 678 { 679 gimple_seq list; 680 681 list = set_component_ssa_name (lhs, false, r); 682 if (list) 683 gsi_insert_seq_on_edge (e, list); 684 685 list = set_component_ssa_name (lhs, true, i); 686 if (list) 687 gsi_insert_seq_on_edge (e, list); 688 } 689 690 691 /* Update an assignment to a complex variable in place. */ 692 693 static void 694 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) 695 { 696 gimple *old_stmt = gsi_stmt (*gsi); 697 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); 698 gimple *stmt = gsi_stmt (*gsi); 699 update_stmt (stmt); 700 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 701 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 702 703 if (gimple_in_ssa_p (cfun)) 704 update_complex_components (gsi, gsi_stmt (*gsi), r, i); 705 } 706 707 708 /* Generate code at the entry point of the function to initialize the 709 component variables for a complex parameter. */ 710 711 static void 712 update_parameter_components (void) 713 { 714 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 715 tree parm; 716 717 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 718 { 719 tree type = TREE_TYPE (parm); 720 tree ssa_name, r, i; 721 722 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) 723 continue; 724 725 type = TREE_TYPE (type); 726 ssa_name = ssa_default_def (cfun, parm); 727 if (!ssa_name) 728 continue; 729 730 r = build1 (REALPART_EXPR, type, ssa_name); 731 i = build1 (IMAGPART_EXPR, type, ssa_name); 732 update_complex_components_on_edge (entry_edge, ssa_name, r, i); 733 } 734 } 735 736 /* Generate code to set the component variables of a complex variable 737 to match the PHI statements in block BB. */ 738 739 static void 740 update_phi_components (basic_block bb) 741 { 742 gphi_iterator gsi; 743 744 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 745 { 746 gphi *phi = gsi.phi (); 747 748 if (is_complex_reg (gimple_phi_result (phi))) 749 { 750 gphi *p[2] = { NULL, NULL }; 751 unsigned int i, j, n; 752 bool revisit_phi = false; 753 754 for (j = 0; j < 2; j++) 755 { 756 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); 757 if (TREE_CODE (l) == SSA_NAME) 758 p[j] = create_phi_node (l, bb); 759 } 760 761 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) 762 { 763 tree comp, arg = gimple_phi_arg_def (phi, i); 764 for (j = 0; j < 2; j++) 765 if (p[j]) 766 { 767 comp = extract_component (NULL, arg, j > 0, false, true); 768 if (TREE_CODE (comp) == SSA_NAME 769 && SSA_NAME_DEF_STMT (comp) == NULL) 770 { 771 /* For the benefit of any gimple simplification during 772 this pass that might walk SSA_NAME def stmts, 773 don't add SSA_NAMEs without definitions into the 774 PHI arguments, but put a decl in there instead 775 temporarily, and revisit this PHI later on. */ 776 if (SSA_NAME_VAR (comp)) 777 comp = SSA_NAME_VAR (comp); 778 else 779 comp = create_tmp_reg (TREE_TYPE (comp), 780 get_name (comp)); 781 revisit_phi = true; 782 } 783 SET_PHI_ARG_DEF (p[j], i, comp); 784 } 785 } 786 787 if (revisit_phi) 788 { 789 phis_to_revisit.safe_push (phi); 790 phis_to_revisit.safe_push (p[0]); 791 phis_to_revisit.safe_push (p[1]); 792 } 793 } 794 } 795 } 796 797 /* Expand a complex move to scalars. */ 798 799 static void 800 expand_complex_move (gimple_stmt_iterator *gsi, tree type) 801 { 802 tree inner_type = TREE_TYPE (type); 803 tree r, i, lhs, rhs; 804 gimple *stmt = gsi_stmt (*gsi); 805 806 if (is_gimple_assign (stmt)) 807 { 808 lhs = gimple_assign_lhs (stmt); 809 if (gimple_num_ops (stmt) == 2) 810 rhs = gimple_assign_rhs1 (stmt); 811 else 812 rhs = NULL_TREE; 813 } 814 else if (is_gimple_call (stmt)) 815 { 816 lhs = gimple_call_lhs (stmt); 817 rhs = NULL_TREE; 818 } 819 else 820 gcc_unreachable (); 821 822 if (TREE_CODE (lhs) == SSA_NAME) 823 { 824 if (is_ctrl_altering_stmt (stmt)) 825 { 826 edge e; 827 828 /* The value is not assigned on the exception edges, so we need not 829 concern ourselves there. We do need to update on the fallthru 830 edge. Find it. */ 831 e = find_fallthru_edge (gsi_bb (*gsi)->succs); 832 if (!e) 833 gcc_unreachable (); 834 835 r = build1 (REALPART_EXPR, inner_type, lhs); 836 i = build1 (IMAGPART_EXPR, inner_type, lhs); 837 update_complex_components_on_edge (e, lhs, r, i); 838 } 839 else if (is_gimple_call (stmt) 840 || gimple_has_side_effects (stmt) 841 || gimple_assign_rhs_code (stmt) == PAREN_EXPR) 842 { 843 r = build1 (REALPART_EXPR, inner_type, lhs); 844 i = build1 (IMAGPART_EXPR, inner_type, lhs); 845 update_complex_components (gsi, stmt, r, i); 846 } 847 else 848 { 849 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) 850 { 851 r = extract_component (gsi, rhs, 0, true); 852 i = extract_component (gsi, rhs, 1, true); 853 } 854 else 855 { 856 r = gimple_assign_rhs1 (stmt); 857 i = gimple_assign_rhs2 (stmt); 858 } 859 update_complex_assignment (gsi, r, i); 860 } 861 } 862 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) 863 { 864 tree x; 865 gimple *t; 866 location_t loc; 867 868 loc = gimple_location (stmt); 869 r = extract_component (gsi, rhs, 0, false); 870 i = extract_component (gsi, rhs, 1, false); 871 872 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); 873 t = gimple_build_assign (x, r); 874 gimple_set_location (t, loc); 875 gsi_insert_before (gsi, t, GSI_SAME_STMT); 876 877 if (stmt == gsi_stmt (*gsi)) 878 { 879 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 880 gimple_assign_set_lhs (stmt, x); 881 gimple_assign_set_rhs1 (stmt, i); 882 } 883 else 884 { 885 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 886 t = gimple_build_assign (x, i); 887 gimple_set_location (t, loc); 888 gsi_insert_before (gsi, t, GSI_SAME_STMT); 889 890 stmt = gsi_stmt (*gsi); 891 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); 892 gimple_return_set_retval (as_a <greturn *> (stmt), lhs); 893 } 894 895 update_stmt (stmt); 896 } 897 } 898 899 /* Expand complex addition to scalars: 900 a + b = (ar + br) + i(ai + bi) 901 a - b = (ar - br) + i(ai + bi) 902 */ 903 904 static void 905 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, 906 tree ar, tree ai, tree br, tree bi, 907 enum tree_code code, 908 complex_lattice_t al, complex_lattice_t bl) 909 { 910 tree rr, ri; 911 912 switch (PAIR (al, bl)) 913 { 914 case PAIR (ONLY_REAL, ONLY_REAL): 915 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 916 ri = ai; 917 break; 918 919 case PAIR (ONLY_REAL, ONLY_IMAG): 920 rr = ar; 921 if (code == MINUS_EXPR) 922 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); 923 else 924 ri = bi; 925 break; 926 927 case PAIR (ONLY_IMAG, ONLY_REAL): 928 if (code == MINUS_EXPR) 929 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); 930 else 931 rr = br; 932 ri = ai; 933 break; 934 935 case PAIR (ONLY_IMAG, ONLY_IMAG): 936 rr = ar; 937 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 938 break; 939 940 case PAIR (VARYING, ONLY_REAL): 941 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 942 ri = ai; 943 break; 944 945 case PAIR (VARYING, ONLY_IMAG): 946 rr = ar; 947 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 948 break; 949 950 case PAIR (ONLY_REAL, VARYING): 951 if (code == MINUS_EXPR) 952 goto general; 953 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 954 ri = bi; 955 break; 956 957 case PAIR (ONLY_IMAG, VARYING): 958 if (code == MINUS_EXPR) 959 goto general; 960 rr = br; 961 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 962 break; 963 964 case PAIR (VARYING, VARYING): 965 general: 966 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 967 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 968 break; 969 970 default: 971 gcc_unreachable (); 972 } 973 974 update_complex_assignment (gsi, rr, ri); 975 } 976 977 /* Expand a complex multiplication or division to a libcall to the c99 978 compliant routines. */ 979 980 static void 981 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai, 982 tree br, tree bi, enum tree_code code) 983 { 984 machine_mode mode; 985 enum built_in_function bcode; 986 tree fn, type, lhs; 987 gimple *old_stmt; 988 gcall *stmt; 989 990 old_stmt = gsi_stmt (*gsi); 991 lhs = gimple_assign_lhs (old_stmt); 992 type = TREE_TYPE (lhs); 993 994 mode = TYPE_MODE (type); 995 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); 996 997 if (code == MULT_EXPR) 998 bcode = ((enum built_in_function) 999 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1000 else if (code == RDIV_EXPR) 1001 bcode = ((enum built_in_function) 1002 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1003 else 1004 gcc_unreachable (); 1005 fn = builtin_decl_explicit (bcode); 1006 1007 stmt = gimple_build_call (fn, 4, ar, ai, br, bi); 1008 gimple_call_set_lhs (stmt, lhs); 1009 update_stmt (stmt); 1010 gsi_replace (gsi, stmt, false); 1011 1012 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1013 gimple_purge_dead_eh_edges (gsi_bb (*gsi)); 1014 1015 if (gimple_in_ssa_p (cfun)) 1016 { 1017 type = TREE_TYPE (type); 1018 update_complex_components (gsi, stmt, 1019 build1 (REALPART_EXPR, type, lhs), 1020 build1 (IMAGPART_EXPR, type, lhs)); 1021 SSA_NAME_DEF_STMT (lhs) = stmt; 1022 } 1023 } 1024 1025 /* Expand complex multiplication to scalars: 1026 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) 1027 */ 1028 1029 static void 1030 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type, 1031 tree ar, tree ai, tree br, tree bi, 1032 complex_lattice_t al, complex_lattice_t bl) 1033 { 1034 tree rr, ri; 1035 1036 if (al < bl) 1037 { 1038 complex_lattice_t tl; 1039 rr = ar, ar = br, br = rr; 1040 ri = ai, ai = bi, bi = ri; 1041 tl = al, al = bl, bl = tl; 1042 } 1043 1044 switch (PAIR (al, bl)) 1045 { 1046 case PAIR (ONLY_REAL, ONLY_REAL): 1047 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1048 ri = ai; 1049 break; 1050 1051 case PAIR (ONLY_IMAG, ONLY_REAL): 1052 rr = ar; 1053 if (TREE_CODE (ai) == REAL_CST 1054 && real_identical (&TREE_REAL_CST (ai), &dconst1)) 1055 ri = br; 1056 else 1057 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1058 break; 1059 1060 case PAIR (ONLY_IMAG, ONLY_IMAG): 1061 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1062 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1063 ri = ar; 1064 break; 1065 1066 case PAIR (VARYING, ONLY_REAL): 1067 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1068 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1069 break; 1070 1071 case PAIR (VARYING, ONLY_IMAG): 1072 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1073 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1074 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1075 break; 1076 1077 case PAIR (VARYING, VARYING): 1078 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) 1079 { 1080 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR); 1081 return; 1082 } 1083 else 1084 { 1085 tree t1, t2, t3, t4; 1086 1087 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1088 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1089 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1090 1091 /* Avoid expanding redundant multiplication for the common 1092 case of squaring a complex number. */ 1093 if (ar == br && ai == bi) 1094 t4 = t3; 1095 else 1096 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1097 1098 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1099 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4); 1100 } 1101 break; 1102 1103 default: 1104 gcc_unreachable (); 1105 } 1106 1107 update_complex_assignment (gsi, rr, ri); 1108 } 1109 1110 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1111 1112 Expand complex division to scalars, straightforward algorithm. 1113 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1114 t = br*br + bi*bi 1115 */ 1116 1117 static void 1118 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, 1119 tree ar, tree ai, tree br, tree bi, 1120 enum tree_code code) 1121 { 1122 tree rr, ri, div, t1, t2, t3; 1123 1124 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); 1125 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); 1126 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1127 1128 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1129 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1130 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1131 rr = gimplify_build2 (gsi, code, inner_type, t3, div); 1132 1133 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1134 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1135 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1136 ri = gimplify_build2 (gsi, code, inner_type, t3, div); 1137 1138 update_complex_assignment (gsi, rr, ri); 1139 } 1140 1141 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1142 1143 Expand complex division to scalars, modified algorithm to minimize 1144 overflow with wide input ranges. */ 1145 1146 static void 1147 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, 1148 tree ar, tree ai, tree br, tree bi, 1149 enum tree_code code) 1150 { 1151 tree rr, ri, ratio, div, t1, t2, tr, ti, compare; 1152 basic_block bb_cond, bb_true, bb_false, bb_join; 1153 gimple *stmt; 1154 1155 /* Examine |br| < |bi|, and branch. */ 1156 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); 1157 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); 1158 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), 1159 LT_EXPR, boolean_type_node, t1, t2); 1160 STRIP_NOPS (compare); 1161 1162 bb_cond = bb_true = bb_false = bb_join = NULL; 1163 rr = ri = tr = ti = NULL; 1164 if (TREE_CODE (compare) != INTEGER_CST) 1165 { 1166 edge e; 1167 gimple *stmt; 1168 tree cond, tmp; 1169 1170 tmp = create_tmp_var (boolean_type_node); 1171 stmt = gimple_build_assign (tmp, compare); 1172 if (gimple_in_ssa_p (cfun)) 1173 { 1174 tmp = make_ssa_name (tmp, stmt); 1175 gimple_assign_set_lhs (stmt, tmp); 1176 } 1177 1178 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1179 1180 cond = fold_build2_loc (gimple_location (stmt), 1181 EQ_EXPR, boolean_type_node, tmp, boolean_true_node); 1182 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); 1183 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1184 1185 /* Split the original block, and create the TRUE and FALSE blocks. */ 1186 e = split_block (gsi_bb (*gsi), stmt); 1187 bb_cond = e->src; 1188 bb_join = e->dest; 1189 bb_true = create_empty_bb (bb_cond); 1190 bb_false = create_empty_bb (bb_true); 1191 1192 /* Wire the blocks together. */ 1193 e->flags = EDGE_TRUE_VALUE; 1194 redirect_edge_succ (e, bb_true); 1195 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); 1196 make_edge (bb_true, bb_join, EDGE_FALLTHRU); 1197 make_edge (bb_false, bb_join, EDGE_FALLTHRU); 1198 add_bb_to_loop (bb_true, bb_cond->loop_father); 1199 add_bb_to_loop (bb_false, bb_cond->loop_father); 1200 1201 /* Update dominance info. Note that bb_join's data was 1202 updated by split_block. */ 1203 if (dom_info_available_p (CDI_DOMINATORS)) 1204 { 1205 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); 1206 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); 1207 } 1208 1209 rr = create_tmp_reg (inner_type); 1210 ri = create_tmp_reg (inner_type); 1211 } 1212 1213 /* In the TRUE branch, we compute 1214 ratio = br/bi; 1215 div = (br * ratio) + bi; 1216 tr = (ar * ratio) + ai; 1217 ti = (ai * ratio) - ar; 1218 tr = tr / div; 1219 ti = ti / div; */ 1220 if (bb_true || integer_nonzerop (compare)) 1221 { 1222 if (bb_true) 1223 { 1224 *gsi = gsi_last_bb (bb_true); 1225 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1226 } 1227 1228 ratio = gimplify_build2 (gsi, code, inner_type, br, bi); 1229 1230 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); 1231 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); 1232 1233 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1234 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); 1235 1236 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1237 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); 1238 1239 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1240 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1241 1242 if (bb_true) 1243 { 1244 stmt = gimple_build_assign (rr, tr); 1245 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1246 stmt = gimple_build_assign (ri, ti); 1247 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1248 gsi_remove (gsi, true); 1249 } 1250 } 1251 1252 /* In the FALSE branch, we compute 1253 ratio = d/c; 1254 divisor = (d * ratio) + c; 1255 tr = (b * ratio) + a; 1256 ti = b - (a * ratio); 1257 tr = tr / div; 1258 ti = ti / div; */ 1259 if (bb_false || integer_zerop (compare)) 1260 { 1261 if (bb_false) 1262 { 1263 *gsi = gsi_last_bb (bb_false); 1264 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1265 } 1266 1267 ratio = gimplify_build2 (gsi, code, inner_type, bi, br); 1268 1269 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); 1270 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); 1271 1272 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1273 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); 1274 1275 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1276 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); 1277 1278 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1279 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1280 1281 if (bb_false) 1282 { 1283 stmt = gimple_build_assign (rr, tr); 1284 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1285 stmt = gimple_build_assign (ri, ti); 1286 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1287 gsi_remove (gsi, true); 1288 } 1289 } 1290 1291 if (bb_join) 1292 *gsi = gsi_start_bb (bb_join); 1293 else 1294 rr = tr, ri = ti; 1295 1296 update_complex_assignment (gsi, rr, ri); 1297 } 1298 1299 /* Expand complex division to scalars. */ 1300 1301 static void 1302 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type, 1303 tree ar, tree ai, tree br, tree bi, 1304 enum tree_code code, 1305 complex_lattice_t al, complex_lattice_t bl) 1306 { 1307 tree rr, ri; 1308 1309 switch (PAIR (al, bl)) 1310 { 1311 case PAIR (ONLY_REAL, ONLY_REAL): 1312 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1313 ri = ai; 1314 break; 1315 1316 case PAIR (ONLY_REAL, ONLY_IMAG): 1317 rr = ai; 1318 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1319 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1320 break; 1321 1322 case PAIR (ONLY_IMAG, ONLY_REAL): 1323 rr = ar; 1324 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1325 break; 1326 1327 case PAIR (ONLY_IMAG, ONLY_IMAG): 1328 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1329 ri = ar; 1330 break; 1331 1332 case PAIR (VARYING, ONLY_REAL): 1333 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1334 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1335 break; 1336 1337 case PAIR (VARYING, ONLY_IMAG): 1338 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1339 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1340 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1341 break; 1342 1343 case PAIR (ONLY_REAL, VARYING): 1344 case PAIR (ONLY_IMAG, VARYING): 1345 case PAIR (VARYING, VARYING): 1346 switch (flag_complex_method) 1347 { 1348 case 0: 1349 /* straightforward implementation of complex divide acceptable. */ 1350 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); 1351 break; 1352 1353 case 2: 1354 if (SCALAR_FLOAT_TYPE_P (inner_type)) 1355 { 1356 expand_complex_libcall (gsi, ar, ai, br, bi, code); 1357 break; 1358 } 1359 /* FALLTHRU */ 1360 1361 case 1: 1362 /* wide ranges of inputs must work for complex divide. */ 1363 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); 1364 break; 1365 1366 default: 1367 gcc_unreachable (); 1368 } 1369 return; 1370 1371 default: 1372 gcc_unreachable (); 1373 } 1374 1375 update_complex_assignment (gsi, rr, ri); 1376 } 1377 1378 /* Expand complex negation to scalars: 1379 -a = (-ar) + i(-ai) 1380 */ 1381 1382 static void 1383 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, 1384 tree ar, tree ai) 1385 { 1386 tree rr, ri; 1387 1388 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); 1389 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1390 1391 update_complex_assignment (gsi, rr, ri); 1392 } 1393 1394 /* Expand complex conjugate to scalars: 1395 ~a = (ar) + i(-ai) 1396 */ 1397 1398 static void 1399 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, 1400 tree ar, tree ai) 1401 { 1402 tree ri; 1403 1404 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1405 1406 update_complex_assignment (gsi, ar, ri); 1407 } 1408 1409 /* Expand complex comparison (EQ or NE only). */ 1410 1411 static void 1412 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, 1413 tree br, tree bi, enum tree_code code) 1414 { 1415 tree cr, ci, cc, type; 1416 gimple *stmt; 1417 1418 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); 1419 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); 1420 cc = gimplify_build2 (gsi, 1421 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), 1422 boolean_type_node, cr, ci); 1423 1424 stmt = gsi_stmt (*gsi); 1425 1426 switch (gimple_code (stmt)) 1427 { 1428 case GIMPLE_RETURN: 1429 { 1430 greturn *return_stmt = as_a <greturn *> (stmt); 1431 type = TREE_TYPE (gimple_return_retval (return_stmt)); 1432 gimple_return_set_retval (return_stmt, fold_convert (type, cc)); 1433 } 1434 break; 1435 1436 case GIMPLE_ASSIGN: 1437 type = TREE_TYPE (gimple_assign_lhs (stmt)); 1438 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); 1439 stmt = gsi_stmt (*gsi); 1440 break; 1441 1442 case GIMPLE_COND: 1443 { 1444 gcond *cond_stmt = as_a <gcond *> (stmt); 1445 gimple_cond_set_code (cond_stmt, EQ_EXPR); 1446 gimple_cond_set_lhs (cond_stmt, cc); 1447 gimple_cond_set_rhs (cond_stmt, boolean_true_node); 1448 } 1449 break; 1450 1451 default: 1452 gcc_unreachable (); 1453 } 1454 1455 update_stmt (stmt); 1456 if (maybe_clean_eh_stmt (stmt)) 1457 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 1458 } 1459 1460 /* Expand inline asm that sets some complex SSA_NAMEs. */ 1461 1462 static void 1463 expand_complex_asm (gimple_stmt_iterator *gsi) 1464 { 1465 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); 1466 unsigned int i; 1467 1468 for (i = 0; i < gimple_asm_noutputs (stmt); ++i) 1469 { 1470 tree link = gimple_asm_output_op (stmt, i); 1471 tree op = TREE_VALUE (link); 1472 if (TREE_CODE (op) == SSA_NAME 1473 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) 1474 { 1475 tree type = TREE_TYPE (op); 1476 tree inner_type = TREE_TYPE (type); 1477 tree r = build1 (REALPART_EXPR, inner_type, op); 1478 tree i = build1 (IMAGPART_EXPR, inner_type, op); 1479 gimple_seq list = set_component_ssa_name (op, false, r); 1480 1481 if (list) 1482 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1483 1484 list = set_component_ssa_name (op, true, i); 1485 if (list) 1486 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1487 } 1488 } 1489 } 1490 1491 /* Process one statement. If we identify a complex operation, expand it. */ 1492 1493 static void 1494 expand_complex_operations_1 (gimple_stmt_iterator *gsi) 1495 { 1496 gimple *stmt = gsi_stmt (*gsi); 1497 tree type, inner_type, lhs; 1498 tree ac, ar, ai, bc, br, bi; 1499 complex_lattice_t al, bl; 1500 enum tree_code code; 1501 1502 if (gimple_code (stmt) == GIMPLE_ASM) 1503 { 1504 expand_complex_asm (gsi); 1505 return; 1506 } 1507 1508 lhs = gimple_get_lhs (stmt); 1509 if (!lhs && gimple_code (stmt) != GIMPLE_COND) 1510 return; 1511 1512 type = TREE_TYPE (gimple_op (stmt, 0)); 1513 code = gimple_expr_code (stmt); 1514 1515 /* Initial filter for operations we handle. */ 1516 switch (code) 1517 { 1518 case PLUS_EXPR: 1519 case MINUS_EXPR: 1520 case MULT_EXPR: 1521 case TRUNC_DIV_EXPR: 1522 case CEIL_DIV_EXPR: 1523 case FLOOR_DIV_EXPR: 1524 case ROUND_DIV_EXPR: 1525 case RDIV_EXPR: 1526 case NEGATE_EXPR: 1527 case CONJ_EXPR: 1528 if (TREE_CODE (type) != COMPLEX_TYPE) 1529 return; 1530 inner_type = TREE_TYPE (type); 1531 break; 1532 1533 case EQ_EXPR: 1534 case NE_EXPR: 1535 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR 1536 subcode, so we need to access the operands using gimple_op. */ 1537 inner_type = TREE_TYPE (gimple_op (stmt, 1)); 1538 if (TREE_CODE (inner_type) != COMPLEX_TYPE) 1539 return; 1540 break; 1541 1542 default: 1543 { 1544 tree rhs; 1545 1546 /* GIMPLE_COND may also fallthru here, but we do not need to 1547 do anything with it. */ 1548 if (gimple_code (stmt) == GIMPLE_COND) 1549 return; 1550 1551 if (TREE_CODE (type) == COMPLEX_TYPE) 1552 expand_complex_move (gsi, type); 1553 else if (is_gimple_assign (stmt) 1554 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR 1555 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 1556 && TREE_CODE (lhs) == SSA_NAME) 1557 { 1558 rhs = gimple_assign_rhs1 (stmt); 1559 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), 1560 gimple_assign_rhs_code (stmt) 1561 == IMAGPART_EXPR, 1562 false); 1563 gimple_assign_set_rhs_from_tree (gsi, rhs); 1564 stmt = gsi_stmt (*gsi); 1565 update_stmt (stmt); 1566 } 1567 } 1568 return; 1569 } 1570 1571 /* Extract the components of the two complex values. Make sure and 1572 handle the common case of the same value used twice specially. */ 1573 if (is_gimple_assign (stmt)) 1574 { 1575 ac = gimple_assign_rhs1 (stmt); 1576 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; 1577 } 1578 /* GIMPLE_CALL can not get here. */ 1579 else 1580 { 1581 ac = gimple_cond_lhs (stmt); 1582 bc = gimple_cond_rhs (stmt); 1583 } 1584 1585 ar = extract_component (gsi, ac, false, true); 1586 ai = extract_component (gsi, ac, true, true); 1587 1588 if (ac == bc) 1589 br = ar, bi = ai; 1590 else if (bc) 1591 { 1592 br = extract_component (gsi, bc, 0, true); 1593 bi = extract_component (gsi, bc, 1, true); 1594 } 1595 else 1596 br = bi = NULL_TREE; 1597 1598 if (gimple_in_ssa_p (cfun)) 1599 { 1600 al = find_lattice_value (ac); 1601 if (al == UNINITIALIZED) 1602 al = VARYING; 1603 1604 if (TREE_CODE_CLASS (code) == tcc_unary) 1605 bl = UNINITIALIZED; 1606 else if (ac == bc) 1607 bl = al; 1608 else 1609 { 1610 bl = find_lattice_value (bc); 1611 if (bl == UNINITIALIZED) 1612 bl = VARYING; 1613 } 1614 } 1615 else 1616 al = bl = VARYING; 1617 1618 switch (code) 1619 { 1620 case PLUS_EXPR: 1621 case MINUS_EXPR: 1622 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1623 break; 1624 1625 case MULT_EXPR: 1626 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl); 1627 break; 1628 1629 case TRUNC_DIV_EXPR: 1630 case CEIL_DIV_EXPR: 1631 case FLOOR_DIV_EXPR: 1632 case ROUND_DIV_EXPR: 1633 case RDIV_EXPR: 1634 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1635 break; 1636 1637 case NEGATE_EXPR: 1638 expand_complex_negation (gsi, inner_type, ar, ai); 1639 break; 1640 1641 case CONJ_EXPR: 1642 expand_complex_conjugate (gsi, inner_type, ar, ai); 1643 break; 1644 1645 case EQ_EXPR: 1646 case NE_EXPR: 1647 expand_complex_comparison (gsi, ar, ai, br, bi, code); 1648 break; 1649 1650 default: 1651 gcc_unreachable (); 1652 } 1653 } 1654 1655 1656 /* Entry point for complex operation lowering during optimization. */ 1657 1658 static unsigned int 1659 tree_lower_complex (void) 1660 { 1661 gimple_stmt_iterator gsi; 1662 basic_block bb; 1663 int n_bbs, i; 1664 int *rpo; 1665 1666 if (!init_dont_simulate_again ()) 1667 return 0; 1668 1669 complex_lattice_values.create (num_ssa_names); 1670 complex_lattice_values.safe_grow_cleared (num_ssa_names); 1671 1672 init_parameter_lattice_values (); 1673 ssa_propagate (complex_visit_stmt, complex_visit_phi); 1674 1675 need_eh_cleanup = BITMAP_ALLOC (NULL); 1676 1677 complex_variable_components = new int_tree_htab_type (10); 1678 1679 complex_ssa_name_components.create (2 * num_ssa_names); 1680 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names); 1681 1682 update_parameter_components (); 1683 1684 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); 1685 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); 1686 for (i = 0; i < n_bbs; i++) 1687 { 1688 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); 1689 update_phi_components (bb); 1690 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1691 expand_complex_operations_1 (&gsi); 1692 } 1693 1694 free (rpo); 1695 1696 if (!phis_to_revisit.is_empty ()) 1697 { 1698 unsigned int n = phis_to_revisit.length (); 1699 for (unsigned int j = 0; j < n; j += 3) 1700 for (unsigned int k = 0; k < 2; k++) 1701 if (gphi *phi = phis_to_revisit[j + k + 1]) 1702 { 1703 unsigned int m = gimple_phi_num_args (phi); 1704 for (unsigned int l = 0; l < m; ++l) 1705 { 1706 tree op = gimple_phi_arg_def (phi, l); 1707 if (TREE_CODE (op) == SSA_NAME 1708 || is_gimple_min_invariant (op)) 1709 continue; 1710 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); 1711 op = extract_component (NULL, arg, k > 0, false, false); 1712 SET_PHI_ARG_DEF (phi, l, op); 1713 } 1714 } 1715 phis_to_revisit.release (); 1716 } 1717 1718 gsi_commit_edge_inserts (); 1719 1720 unsigned todo 1721 = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0; 1722 BITMAP_FREE (need_eh_cleanup); 1723 1724 delete complex_variable_components; 1725 complex_variable_components = NULL; 1726 complex_ssa_name_components.release (); 1727 complex_lattice_values.release (); 1728 return todo; 1729 } 1730 1731 namespace { 1732 1733 const pass_data pass_data_lower_complex = 1734 { 1735 GIMPLE_PASS, /* type */ 1736 "cplxlower", /* name */ 1737 OPTGROUP_NONE, /* optinfo_flags */ 1738 TV_NONE, /* tv_id */ 1739 PROP_ssa, /* properties_required */ 1740 PROP_gimple_lcx, /* properties_provided */ 1741 0, /* properties_destroyed */ 1742 0, /* todo_flags_start */ 1743 TODO_update_ssa, /* todo_flags_finish */ 1744 }; 1745 1746 class pass_lower_complex : public gimple_opt_pass 1747 { 1748 public: 1749 pass_lower_complex (gcc::context *ctxt) 1750 : gimple_opt_pass (pass_data_lower_complex, ctxt) 1751 {} 1752 1753 /* opt_pass methods: */ 1754 opt_pass * clone () { return new pass_lower_complex (m_ctxt); } 1755 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1756 1757 }; // class pass_lower_complex 1758 1759 } // anon namespace 1760 1761 gimple_opt_pass * 1762 make_pass_lower_complex (gcc::context *ctxt) 1763 { 1764 return new pass_lower_complex (ctxt); 1765 } 1766 1767 1768 namespace { 1769 1770 const pass_data pass_data_lower_complex_O0 = 1771 { 1772 GIMPLE_PASS, /* type */ 1773 "cplxlower0", /* name */ 1774 OPTGROUP_NONE, /* optinfo_flags */ 1775 TV_NONE, /* tv_id */ 1776 PROP_cfg, /* properties_required */ 1777 PROP_gimple_lcx, /* properties_provided */ 1778 0, /* properties_destroyed */ 1779 0, /* todo_flags_start */ 1780 TODO_update_ssa, /* todo_flags_finish */ 1781 }; 1782 1783 class pass_lower_complex_O0 : public gimple_opt_pass 1784 { 1785 public: 1786 pass_lower_complex_O0 (gcc::context *ctxt) 1787 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) 1788 {} 1789 1790 /* opt_pass methods: */ 1791 virtual bool gate (function *fun) 1792 { 1793 /* With errors, normal optimization passes are not run. If we don't 1794 lower complex operations at all, rtl expansion will abort. */ 1795 return !(fun->curr_properties & PROP_gimple_lcx); 1796 } 1797 1798 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1799 1800 }; // class pass_lower_complex_O0 1801 1802 } // anon namespace 1803 1804 gimple_opt_pass * 1805 make_pass_lower_complex_O0 (gcc::context *ctxt) 1806 { 1807 return new pass_lower_complex_O0 (ctxt); 1808 } 1809