xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-complex.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Lower complex number operations to scalar operations.
2    Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "real.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "flags.h"
38 #include "predict.h"
39 #include "hard-reg-set.h"
40 #include "function.h"
41 #include "dominance.h"
42 #include "cfg.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "tree-eh.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimplify.h"
51 #include "gimple-iterator.h"
52 #include "gimplify-me.h"
53 #include "gimple-ssa.h"
54 #include "tree-cfg.h"
55 #include "tree-phinodes.h"
56 #include "ssa-iterators.h"
57 #include "stringpool.h"
58 #include "tree-ssanames.h"
59 #include "hashtab.h"
60 #include "rtl.h"
61 #include "statistics.h"
62 #include "fixed-value.h"
63 #include "insn-config.h"
64 #include "expmed.h"
65 #include "dojump.h"
66 #include "explow.h"
67 #include "calls.h"
68 #include "emit-rtl.h"
69 #include "varasm.h"
70 #include "stmt.h"
71 #include "expr.h"
72 #include "tree-dfa.h"
73 #include "tree-ssa.h"
74 #include "tree-iterator.h"
75 #include "tree-pass.h"
76 #include "tree-ssa-propagate.h"
77 #include "tree-hasher.h"
78 #include "cfgloop.h"
79 
80 
81 /* For each complex ssa name, a lattice value.  We're interested in finding
82    out whether a complex number is degenerate in some way, having only real
83    or only complex parts.  */
84 
85 enum
86 {
87   UNINITIALIZED = 0,
88   ONLY_REAL = 1,
89   ONLY_IMAG = 2,
90   VARYING = 3
91 };
92 
93 /* The type complex_lattice_t holds combinations of the above
94    constants.  */
95 typedef int complex_lattice_t;
96 
97 #define PAIR(a, b)  ((a) << 2 | (b))
98 
99 
100 static vec<complex_lattice_t> complex_lattice_values;
101 
102 /* For each complex variable, a pair of variables for the components exists in
103    the hashtable.  */
104 static int_tree_htab_type *complex_variable_components;
105 
106 /* For each complex SSA_NAME, a pair of ssa names for the components.  */
107 static vec<tree> complex_ssa_name_components;
108 
109 /* Lookup UID in the complex_variable_components hashtable and return the
110    associated tree.  */
111 static tree
112 cvc_lookup (unsigned int uid)
113 {
114   struct int_tree_map in;
115   in.uid = uid;
116   return complex_variable_components->find_with_hash (in, uid).to;
117 }
118 
119 /* Insert the pair UID, TO into the complex_variable_components hashtable.  */
120 
121 static void
122 cvc_insert (unsigned int uid, tree to)
123 {
124   int_tree_map h;
125   int_tree_map *loc;
126 
127   h.uid = uid;
128   loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
129   loc->uid = uid;
130   loc->to = to;
131 }
132 
133 /* Return true if T is not a zero constant.  In the case of real values,
134    we're only interested in +0.0.  */
135 
136 static int
137 some_nonzerop (tree t)
138 {
139   int zerop = false;
140 
141   /* Operations with real or imaginary part of a complex number zero
142      cannot be treated the same as operations with a real or imaginary
143      operand if we care about the signs of zeros in the result.  */
144   if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
145     zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
146   else if (TREE_CODE (t) == FIXED_CST)
147     zerop = fixed_zerop (t);
148   else if (TREE_CODE (t) == INTEGER_CST)
149     zerop = integer_zerop (t);
150 
151   return !zerop;
152 }
153 
154 
155 /* Compute a lattice value from the components of a complex type REAL
156    and IMAG.  */
157 
158 static complex_lattice_t
159 find_lattice_value_parts (tree real, tree imag)
160 {
161   int r, i;
162   complex_lattice_t ret;
163 
164   r = some_nonzerop (real);
165   i = some_nonzerop (imag);
166   ret = r * ONLY_REAL + i * ONLY_IMAG;
167 
168   /* ??? On occasion we could do better than mapping 0+0i to real, but we
169      certainly don't want to leave it UNINITIALIZED, which eventually gets
170      mapped to VARYING.  */
171   if (ret == UNINITIALIZED)
172     ret = ONLY_REAL;
173 
174   return ret;
175 }
176 
177 
178 /* Compute a lattice value from gimple_val T.  */
179 
180 static complex_lattice_t
181 find_lattice_value (tree t)
182 {
183   tree real, imag;
184 
185   switch (TREE_CODE (t))
186     {
187     case SSA_NAME:
188       return complex_lattice_values[SSA_NAME_VERSION (t)];
189 
190     case COMPLEX_CST:
191       real = TREE_REALPART (t);
192       imag = TREE_IMAGPART (t);
193       break;
194 
195     default:
196       gcc_unreachable ();
197     }
198 
199   return find_lattice_value_parts (real, imag);
200 }
201 
202 /* Determine if LHS is something for which we're interested in seeing
203    simulation results.  */
204 
205 static bool
206 is_complex_reg (tree lhs)
207 {
208   return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
209 }
210 
211 /* Mark the incoming parameters to the function as VARYING.  */
212 
213 static void
214 init_parameter_lattice_values (void)
215 {
216   tree parm, ssa_name;
217 
218   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
219     if (is_complex_reg (parm)
220 	&& (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
221       complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
222 }
223 
224 /* Initialize simulation state for each statement.  Return false if we
225    found no statements we want to simulate, and thus there's nothing
226    for the entire pass to do.  */
227 
228 static bool
229 init_dont_simulate_again (void)
230 {
231   basic_block bb;
232   bool saw_a_complex_op = false;
233 
234   FOR_EACH_BB_FN (bb, cfun)
235     {
236       for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
237 	   gsi_next (&gsi))
238 	{
239 	  gphi *phi = gsi.phi ();
240 	  prop_set_simulate_again (phi,
241 				   is_complex_reg (gimple_phi_result (phi)));
242 	}
243 
244       for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
245 	   gsi_next (&gsi))
246 	{
247 	  gimple stmt;
248 	  tree op0, op1;
249 	  bool sim_again_p;
250 
251 	  stmt = gsi_stmt (gsi);
252 	  op0 = op1 = NULL_TREE;
253 
254 	  /* Most control-altering statements must be initially
255 	     simulated, else we won't cover the entire cfg.  */
256 	  sim_again_p = stmt_ends_bb_p (stmt);
257 
258 	  switch (gimple_code (stmt))
259 	    {
260 	    case GIMPLE_CALL:
261 	      if (gimple_call_lhs (stmt))
262 	        sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
263 	      break;
264 
265 	    case GIMPLE_ASSIGN:
266 	      sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
267 	      if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
268 		  || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
269 		op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
270 	      else
271 		op0 = gimple_assign_rhs1 (stmt);
272 	      if (gimple_num_ops (stmt) > 2)
273 		op1 = gimple_assign_rhs2 (stmt);
274 	      break;
275 
276 	    case GIMPLE_COND:
277 	      op0 = gimple_cond_lhs (stmt);
278 	      op1 = gimple_cond_rhs (stmt);
279 	      break;
280 
281 	    default:
282 	      break;
283 	    }
284 
285 	  if (op0 || op1)
286 	    switch (gimple_expr_code (stmt))
287 	      {
288 	      case EQ_EXPR:
289 	      case NE_EXPR:
290 	      case PLUS_EXPR:
291 	      case MINUS_EXPR:
292 	      case MULT_EXPR:
293 	      case TRUNC_DIV_EXPR:
294 	      case CEIL_DIV_EXPR:
295 	      case FLOOR_DIV_EXPR:
296 	      case ROUND_DIV_EXPR:
297 	      case RDIV_EXPR:
298 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
299 		    || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
300 		  saw_a_complex_op = true;
301 		break;
302 
303 	      case NEGATE_EXPR:
304 	      case CONJ_EXPR:
305 		if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
306 		  saw_a_complex_op = true;
307 		break;
308 
309 	      case REALPART_EXPR:
310 	      case IMAGPART_EXPR:
311 		/* The total store transformation performed during
312 		  gimplification creates such uninitialized loads
313 		  and we need to lower the statement to be able
314 		  to fix things up.  */
315 		if (TREE_CODE (op0) == SSA_NAME
316 		    && ssa_undefined_value_p (op0))
317 		  saw_a_complex_op = true;
318 		break;
319 
320 	      default:
321 		break;
322 	      }
323 
324 	  prop_set_simulate_again (stmt, sim_again_p);
325 	}
326     }
327 
328   return saw_a_complex_op;
329 }
330 
331 
332 /* Evaluate statement STMT against the complex lattice defined above.  */
333 
334 static enum ssa_prop_result
335 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
336 		    tree *result_p)
337 {
338   complex_lattice_t new_l, old_l, op1_l, op2_l;
339   unsigned int ver;
340   tree lhs;
341 
342   lhs = gimple_get_lhs (stmt);
343   /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs.  */
344   if (!lhs)
345     return SSA_PROP_VARYING;
346 
347   /* These conditions should be satisfied due to the initial filter
348      set up in init_dont_simulate_again.  */
349   gcc_assert (TREE_CODE (lhs) == SSA_NAME);
350   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
351 
352   *result_p = lhs;
353   ver = SSA_NAME_VERSION (lhs);
354   old_l = complex_lattice_values[ver];
355 
356   switch (gimple_expr_code (stmt))
357     {
358     case SSA_NAME:
359     case COMPLEX_CST:
360       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
361       break;
362 
363     case COMPLEX_EXPR:
364       new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
365 				        gimple_assign_rhs2 (stmt));
366       break;
367 
368     case PLUS_EXPR:
369     case MINUS_EXPR:
370       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
371       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
372 
373       /* We've set up the lattice values such that IOR neatly
374 	 models addition.  */
375       new_l = op1_l | op2_l;
376       break;
377 
378     case MULT_EXPR:
379     case RDIV_EXPR:
380     case TRUNC_DIV_EXPR:
381     case CEIL_DIV_EXPR:
382     case FLOOR_DIV_EXPR:
383     case ROUND_DIV_EXPR:
384       op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
385       op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
386 
387       /* Obviously, if either varies, so does the result.  */
388       if (op1_l == VARYING || op2_l == VARYING)
389 	new_l = VARYING;
390       /* Don't prematurely promote variables if we've not yet seen
391 	 their inputs.  */
392       else if (op1_l == UNINITIALIZED)
393 	new_l = op2_l;
394       else if (op2_l == UNINITIALIZED)
395 	new_l = op1_l;
396       else
397 	{
398 	  /* At this point both numbers have only one component. If the
399 	     numbers are of opposite kind, the result is imaginary,
400 	     otherwise the result is real. The add/subtract translates
401 	     the real/imag from/to 0/1; the ^ performs the comparison.  */
402 	  new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
403 
404 	  /* Don't allow the lattice value to flip-flop indefinitely.  */
405 	  new_l |= old_l;
406 	}
407       break;
408 
409     case NEGATE_EXPR:
410     case CONJ_EXPR:
411       new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
412       break;
413 
414     default:
415       new_l = VARYING;
416       break;
417     }
418 
419   /* If nothing changed this round, let the propagator know.  */
420   if (new_l == old_l)
421     return SSA_PROP_NOT_INTERESTING;
422 
423   complex_lattice_values[ver] = new_l;
424   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
425 }
426 
427 /* Evaluate a PHI node against the complex lattice defined above.  */
428 
429 static enum ssa_prop_result
430 complex_visit_phi (gphi *phi)
431 {
432   complex_lattice_t new_l, old_l;
433   unsigned int ver;
434   tree lhs;
435   int i;
436 
437   lhs = gimple_phi_result (phi);
438 
439   /* This condition should be satisfied due to the initial filter
440      set up in init_dont_simulate_again.  */
441   gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
442 
443   /* We've set up the lattice values such that IOR neatly models PHI meet.  */
444   new_l = UNINITIALIZED;
445   for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
446     new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
447 
448   ver = SSA_NAME_VERSION (lhs);
449   old_l = complex_lattice_values[ver];
450 
451   if (new_l == old_l)
452     return SSA_PROP_NOT_INTERESTING;
453 
454   complex_lattice_values[ver] = new_l;
455   return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
456 }
457 
458 /* Create one backing variable for a complex component of ORIG.  */
459 
460 static tree
461 create_one_component_var (tree type, tree orig, const char *prefix,
462 			  const char *suffix, enum tree_code code)
463 {
464   tree r = create_tmp_var (type, prefix);
465 
466   DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
467   DECL_ARTIFICIAL (r) = 1;
468 
469   if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
470     {
471       const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
472 
473       DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
474 
475       SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
476       DECL_HAS_DEBUG_EXPR_P (r) = 1;
477       DECL_IGNORED_P (r) = 0;
478       TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
479     }
480   else
481     {
482       DECL_IGNORED_P (r) = 1;
483       TREE_NO_WARNING (r) = 1;
484     }
485 
486   return r;
487 }
488 
489 /* Retrieve a value for a complex component of VAR.  */
490 
491 static tree
492 get_component_var (tree var, bool imag_p)
493 {
494   size_t decl_index = DECL_UID (var) * 2 + imag_p;
495   tree ret = cvc_lookup (decl_index);
496 
497   if (ret == NULL)
498     {
499       ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
500 				      imag_p ? "CI" : "CR",
501 				      imag_p ? "$imag" : "$real",
502 				      imag_p ? IMAGPART_EXPR : REALPART_EXPR);
503       cvc_insert (decl_index, ret);
504     }
505 
506   return ret;
507 }
508 
509 /* Retrieve a value for a complex component of SSA_NAME.  */
510 
511 static tree
512 get_component_ssa_name (tree ssa_name, bool imag_p)
513 {
514   complex_lattice_t lattice = find_lattice_value (ssa_name);
515   size_t ssa_name_index;
516   tree ret;
517 
518   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
519     {
520       tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
521       if (SCALAR_FLOAT_TYPE_P (inner_type))
522 	return build_real (inner_type, dconst0);
523       else
524 	return build_int_cst (inner_type, 0);
525     }
526 
527   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
528   ret = complex_ssa_name_components[ssa_name_index];
529   if (ret == NULL)
530     {
531       if (SSA_NAME_VAR (ssa_name))
532 	ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
533       else
534 	ret = TREE_TYPE (TREE_TYPE (ssa_name));
535       ret = make_ssa_name (ret);
536 
537       /* Copy some properties from the original.  In particular, whether it
538 	 is used in an abnormal phi, and whether it's uninitialized.  */
539       SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
540 	= SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
541       if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
542 	  && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
543 	{
544 	  SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
545 	  set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
546 	}
547 
548       complex_ssa_name_components[ssa_name_index] = ret;
549     }
550 
551   return ret;
552 }
553 
554 /* Set a value for a complex component of SSA_NAME, return a
555    gimple_seq of stuff that needs doing.  */
556 
557 static gimple_seq
558 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
559 {
560   complex_lattice_t lattice = find_lattice_value (ssa_name);
561   size_t ssa_name_index;
562   tree comp;
563   gimple last;
564   gimple_seq list;
565 
566   /* We know the value must be zero, else there's a bug in our lattice
567      analysis.  But the value may well be a variable known to contain
568      zero.  We should be safe ignoring it.  */
569   if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
570     return NULL;
571 
572   /* If we've already assigned an SSA_NAME to this component, then this
573      means that our walk of the basic blocks found a use before the set.
574      This is fine.  Now we should create an initialization for the value
575      we created earlier.  */
576   ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
577   comp = complex_ssa_name_components[ssa_name_index];
578   if (comp)
579     ;
580 
581   /* If we've nothing assigned, and the value we're given is already stable,
582      then install that as the value for this SSA_NAME.  This preemptively
583      copy-propagates the value, which avoids unnecessary memory allocation.  */
584   else if (is_gimple_min_invariant (value)
585 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
586     {
587       complex_ssa_name_components[ssa_name_index] = value;
588       return NULL;
589     }
590   else if (TREE_CODE (value) == SSA_NAME
591 	   && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
592     {
593       /* Replace an anonymous base value with the variable from cvc_lookup.
594 	 This should result in better debug info.  */
595       if (SSA_NAME_VAR (ssa_name)
596 	  && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
597 	  && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
598 	{
599 	  comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
600 	  replace_ssa_name_symbol (value, comp);
601 	}
602 
603       complex_ssa_name_components[ssa_name_index] = value;
604       return NULL;
605     }
606 
607   /* Finally, we need to stabilize the result by installing the value into
608      a new ssa name.  */
609   else
610     comp = get_component_ssa_name (ssa_name, imag_p);
611 
612   /* Do all the work to assign VALUE to COMP.  */
613   list = NULL;
614   value = force_gimple_operand (value, &list, false, NULL);
615   last =  gimple_build_assign (comp, value);
616   gimple_seq_add_stmt (&list, last);
617   gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
618 
619   return list;
620 }
621 
622 /* Extract the real or imaginary part of a complex variable or constant.
623    Make sure that it's a proper gimple_val and gimplify it if not.
624    Emit any new code before gsi.  */
625 
626 static tree
627 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
628 		   bool gimple_p)
629 {
630   switch (TREE_CODE (t))
631     {
632     case COMPLEX_CST:
633       return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
634 
635     case COMPLEX_EXPR:
636       gcc_unreachable ();
637 
638     case VAR_DECL:
639     case RESULT_DECL:
640     case PARM_DECL:
641     case COMPONENT_REF:
642     case ARRAY_REF:
643     case VIEW_CONVERT_EXPR:
644     case MEM_REF:
645       {
646 	tree inner_type = TREE_TYPE (TREE_TYPE (t));
647 
648 	t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
649 		    inner_type, unshare_expr (t));
650 
651 	if (gimple_p)
652 	  t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
653                                         GSI_SAME_STMT);
654 
655 	return t;
656       }
657 
658     case SSA_NAME:
659       return get_component_ssa_name (t, imagpart_p);
660 
661     default:
662       gcc_unreachable ();
663     }
664 }
665 
666 /* Update the complex components of the ssa name on the lhs of STMT.  */
667 
668 static void
669 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
670 			   tree i)
671 {
672   tree lhs;
673   gimple_seq list;
674 
675   lhs = gimple_get_lhs (stmt);
676 
677   list = set_component_ssa_name (lhs, false, r);
678   if (list)
679     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
680 
681   list = set_component_ssa_name (lhs, true, i);
682   if (list)
683     gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
684 }
685 
686 static void
687 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
688 {
689   gimple_seq list;
690 
691   list = set_component_ssa_name (lhs, false, r);
692   if (list)
693     gsi_insert_seq_on_edge (e, list);
694 
695   list = set_component_ssa_name (lhs, true, i);
696   if (list)
697     gsi_insert_seq_on_edge (e, list);
698 }
699 
700 
701 /* Update an assignment to a complex variable in place.  */
702 
703 static void
704 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
705 {
706   gimple stmt;
707 
708   gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
709   stmt = gsi_stmt (*gsi);
710   update_stmt (stmt);
711   if (maybe_clean_eh_stmt (stmt))
712     gimple_purge_dead_eh_edges (gimple_bb (stmt));
713 
714   if (gimple_in_ssa_p (cfun))
715     update_complex_components (gsi, gsi_stmt (*gsi), r, i);
716 }
717 
718 
719 /* Generate code at the entry point of the function to initialize the
720    component variables for a complex parameter.  */
721 
722 static void
723 update_parameter_components (void)
724 {
725   edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
726   tree parm;
727 
728   for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
729     {
730       tree type = TREE_TYPE (parm);
731       tree ssa_name, r, i;
732 
733       if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
734 	continue;
735 
736       type = TREE_TYPE (type);
737       ssa_name = ssa_default_def (cfun, parm);
738       if (!ssa_name)
739 	continue;
740 
741       r = build1 (REALPART_EXPR, type, ssa_name);
742       i = build1 (IMAGPART_EXPR, type, ssa_name);
743       update_complex_components_on_edge (entry_edge, ssa_name, r, i);
744     }
745 }
746 
747 /* Generate code to set the component variables of a complex variable
748    to match the PHI statements in block BB.  */
749 
750 static void
751 update_phi_components (basic_block bb)
752 {
753   gphi_iterator gsi;
754 
755   for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
756     {
757       gphi *phi = gsi.phi ();
758 
759       if (is_complex_reg (gimple_phi_result (phi)))
760 	{
761 	  tree lr, li;
762 	  gimple pr = NULL, pi = NULL;
763 	  unsigned int i, n;
764 
765 	  lr = get_component_ssa_name (gimple_phi_result (phi), false);
766 	  if (TREE_CODE (lr) == SSA_NAME)
767 	    pr = create_phi_node (lr, bb);
768 
769 	  li = get_component_ssa_name (gimple_phi_result (phi), true);
770 	  if (TREE_CODE (li) == SSA_NAME)
771 	    pi = create_phi_node (li, bb);
772 
773 	  for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
774 	    {
775 	      tree comp, arg = gimple_phi_arg_def (phi, i);
776 	      if (pr)
777 		{
778 		  comp = extract_component (NULL, arg, false, false);
779 		  SET_PHI_ARG_DEF (pr, i, comp);
780 		}
781 	      if (pi)
782 		{
783 		  comp = extract_component (NULL, arg, true, false);
784 		  SET_PHI_ARG_DEF (pi, i, comp);
785 		}
786 	    }
787 	}
788     }
789 }
790 
791 /* Expand a complex move to scalars.  */
792 
793 static void
794 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
795 {
796   tree inner_type = TREE_TYPE (type);
797   tree r, i, lhs, rhs;
798   gimple stmt = gsi_stmt (*gsi);
799 
800   if (is_gimple_assign (stmt))
801     {
802       lhs = gimple_assign_lhs (stmt);
803       if (gimple_num_ops (stmt) == 2)
804 	rhs = gimple_assign_rhs1 (stmt);
805       else
806 	rhs = NULL_TREE;
807     }
808   else if (is_gimple_call (stmt))
809     {
810       lhs = gimple_call_lhs (stmt);
811       rhs = NULL_TREE;
812     }
813   else
814     gcc_unreachable ();
815 
816   if (TREE_CODE (lhs) == SSA_NAME)
817     {
818       if (is_ctrl_altering_stmt (stmt))
819 	{
820 	  edge e;
821 
822 	  /* The value is not assigned on the exception edges, so we need not
823 	     concern ourselves there.  We do need to update on the fallthru
824 	     edge.  Find it.  */
825 	  e = find_fallthru_edge (gsi_bb (*gsi)->succs);
826 	  if (!e)
827 	    gcc_unreachable ();
828 
829 	  r = build1 (REALPART_EXPR, inner_type, lhs);
830 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
831 	  update_complex_components_on_edge (e, lhs, r, i);
832 	}
833       else if (is_gimple_call (stmt)
834 	       || gimple_has_side_effects (stmt)
835 	       || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
836 	{
837 	  r = build1 (REALPART_EXPR, inner_type, lhs);
838 	  i = build1 (IMAGPART_EXPR, inner_type, lhs);
839 	  update_complex_components (gsi, stmt, r, i);
840 	}
841       else
842 	{
843 	  if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
844 	    {
845 	      r = extract_component (gsi, rhs, 0, true);
846 	      i = extract_component (gsi, rhs, 1, true);
847 	    }
848 	  else
849 	    {
850 	      r = gimple_assign_rhs1 (stmt);
851 	      i = gimple_assign_rhs2 (stmt);
852 	    }
853 	  update_complex_assignment (gsi, r, i);
854 	}
855     }
856   else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
857     {
858       tree x;
859       gimple t;
860       location_t loc;
861 
862       loc = gimple_location (stmt);
863       r = extract_component (gsi, rhs, 0, false);
864       i = extract_component (gsi, rhs, 1, false);
865 
866       x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
867       t = gimple_build_assign (x, r);
868       gimple_set_location (t, loc);
869       gsi_insert_before (gsi, t, GSI_SAME_STMT);
870 
871       if (stmt == gsi_stmt (*gsi))
872 	{
873 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
874 	  gimple_assign_set_lhs (stmt, x);
875 	  gimple_assign_set_rhs1 (stmt, i);
876 	}
877       else
878 	{
879 	  x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
880 	  t = gimple_build_assign (x, i);
881 	  gimple_set_location (t, loc);
882 	  gsi_insert_before (gsi, t, GSI_SAME_STMT);
883 
884 	  stmt = gsi_stmt (*gsi);
885 	  gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
886 	  gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
887 	}
888 
889       update_stmt (stmt);
890     }
891 }
892 
893 /* Expand complex addition to scalars:
894 	a + b = (ar + br) + i(ai + bi)
895 	a - b = (ar - br) + i(ai + bi)
896 */
897 
898 static void
899 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
900 			 tree ar, tree ai, tree br, tree bi,
901 			 enum tree_code code,
902 			 complex_lattice_t al, complex_lattice_t bl)
903 {
904   tree rr, ri;
905 
906   switch (PAIR (al, bl))
907     {
908     case PAIR (ONLY_REAL, ONLY_REAL):
909       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
910       ri = ai;
911       break;
912 
913     case PAIR (ONLY_REAL, ONLY_IMAG):
914       rr = ar;
915       if (code == MINUS_EXPR)
916 	ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
917       else
918 	ri = bi;
919       break;
920 
921     case PAIR (ONLY_IMAG, ONLY_REAL):
922       if (code == MINUS_EXPR)
923 	rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
924       else
925 	rr = br;
926       ri = ai;
927       break;
928 
929     case PAIR (ONLY_IMAG, ONLY_IMAG):
930       rr = ar;
931       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
932       break;
933 
934     case PAIR (VARYING, ONLY_REAL):
935       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
936       ri = ai;
937       break;
938 
939     case PAIR (VARYING, ONLY_IMAG):
940       rr = ar;
941       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
942       break;
943 
944     case PAIR (ONLY_REAL, VARYING):
945       if (code == MINUS_EXPR)
946 	goto general;
947       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
948       ri = bi;
949       break;
950 
951     case PAIR (ONLY_IMAG, VARYING):
952       if (code == MINUS_EXPR)
953 	goto general;
954       rr = br;
955       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
956       break;
957 
958     case PAIR (VARYING, VARYING):
959     general:
960       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
961       ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
962       break;
963 
964     default:
965       gcc_unreachable ();
966     }
967 
968   update_complex_assignment (gsi, rr, ri);
969 }
970 
971 /* Expand a complex multiplication or division to a libcall to the c99
972    compliant routines.  */
973 
974 static void
975 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
976 			tree br, tree bi, enum tree_code code)
977 {
978   machine_mode mode;
979   enum built_in_function bcode;
980   tree fn, type, lhs;
981   gimple old_stmt;
982   gcall *stmt;
983 
984   old_stmt = gsi_stmt (*gsi);
985   lhs = gimple_assign_lhs (old_stmt);
986   type = TREE_TYPE (lhs);
987 
988   mode = TYPE_MODE (type);
989   gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
990 
991   if (code == MULT_EXPR)
992     bcode = ((enum built_in_function)
993 	     (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
994   else if (code == RDIV_EXPR)
995     bcode = ((enum built_in_function)
996 	     (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
997   else
998     gcc_unreachable ();
999   fn = builtin_decl_explicit (bcode);
1000 
1001   stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
1002   gimple_call_set_lhs (stmt, lhs);
1003   update_stmt (stmt);
1004   gsi_replace (gsi, stmt, false);
1005 
1006   if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1007     gimple_purge_dead_eh_edges (gsi_bb (*gsi));
1008 
1009   if (gimple_in_ssa_p (cfun))
1010     {
1011       type = TREE_TYPE (type);
1012       update_complex_components (gsi, stmt,
1013 				 build1 (REALPART_EXPR, type, lhs),
1014 				 build1 (IMAGPART_EXPR, type, lhs));
1015       SSA_NAME_DEF_STMT (lhs) = stmt;
1016     }
1017 }
1018 
1019 /* Expand complex multiplication to scalars:
1020 	a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
1021 */
1022 
1023 static void
1024 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
1025 			       tree ar, tree ai, tree br, tree bi,
1026 			       complex_lattice_t al, complex_lattice_t bl)
1027 {
1028   tree rr, ri;
1029 
1030   if (al < bl)
1031     {
1032       complex_lattice_t tl;
1033       rr = ar, ar = br, br = rr;
1034       ri = ai, ai = bi, bi = ri;
1035       tl = al, al = bl, bl = tl;
1036     }
1037 
1038   switch (PAIR (al, bl))
1039     {
1040     case PAIR (ONLY_REAL, ONLY_REAL):
1041       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1042       ri = ai;
1043       break;
1044 
1045     case PAIR (ONLY_IMAG, ONLY_REAL):
1046       rr = ar;
1047       if (TREE_CODE (ai) == REAL_CST
1048 	  && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1049 	ri = br;
1050       else
1051 	ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1052       break;
1053 
1054     case PAIR (ONLY_IMAG, ONLY_IMAG):
1055       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1056       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1057       ri = ar;
1058       break;
1059 
1060     case PAIR (VARYING, ONLY_REAL):
1061       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1062       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1063       break;
1064 
1065     case PAIR (VARYING, ONLY_IMAG):
1066       rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1067       rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1068       ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1069       break;
1070 
1071     case PAIR (VARYING, VARYING):
1072       if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1073 	{
1074 	  expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1075 	  return;
1076 	}
1077       else
1078 	{
1079 	  tree t1, t2, t3, t4;
1080 
1081 	  t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1082 	  t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1083 	  t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1084 
1085 	  /* Avoid expanding redundant multiplication for the common
1086 	     case of squaring a complex number.  */
1087 	  if (ar == br && ai == bi)
1088 	    t4 = t3;
1089 	  else
1090 	    t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1091 
1092 	  rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1093 	  ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1094 	}
1095       break;
1096 
1097     default:
1098       gcc_unreachable ();
1099     }
1100 
1101   update_complex_assignment (gsi, rr, ri);
1102 }
1103 
1104 /* Keep this algorithm in sync with fold-const.c:const_binop().
1105 
1106    Expand complex division to scalars, straightforward algorithm.
1107 	a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1108 	    t = br*br + bi*bi
1109 */
1110 
1111 static void
1112 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1113 			     tree ar, tree ai, tree br, tree bi,
1114 			     enum tree_code code)
1115 {
1116   tree rr, ri, div, t1, t2, t3;
1117 
1118   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1119   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1120   div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1121 
1122   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1123   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1124   t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1125   rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1126 
1127   t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1128   t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1129   t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1130   ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1131 
1132   update_complex_assignment (gsi, rr, ri);
1133 }
1134 
1135 /* Keep this algorithm in sync with fold-const.c:const_binop().
1136 
1137    Expand complex division to scalars, modified algorithm to minimize
1138    overflow with wide input ranges.  */
1139 
1140 static void
1141 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1142 			 tree ar, tree ai, tree br, tree bi,
1143 			 enum tree_code code)
1144 {
1145   tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1146   basic_block bb_cond, bb_true, bb_false, bb_join;
1147   gimple stmt;
1148 
1149   /* Examine |br| < |bi|, and branch.  */
1150   t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1151   t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1152   compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1153 			     LT_EXPR, boolean_type_node, t1, t2);
1154   STRIP_NOPS (compare);
1155 
1156   bb_cond = bb_true = bb_false = bb_join = NULL;
1157   rr = ri = tr = ti = NULL;
1158   if (TREE_CODE (compare) != INTEGER_CST)
1159     {
1160       edge e;
1161       gimple stmt;
1162       tree cond, tmp;
1163 
1164       tmp = create_tmp_var (boolean_type_node);
1165       stmt = gimple_build_assign (tmp, compare);
1166       if (gimple_in_ssa_p (cfun))
1167 	{
1168 	  tmp = make_ssa_name (tmp, stmt);
1169 	  gimple_assign_set_lhs (stmt, tmp);
1170 	}
1171 
1172       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1173 
1174       cond = fold_build2_loc (gimple_location (stmt),
1175 			  EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1176       stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1177       gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1178 
1179       /* Split the original block, and create the TRUE and FALSE blocks.  */
1180       e = split_block (gsi_bb (*gsi), stmt);
1181       bb_cond = e->src;
1182       bb_join = e->dest;
1183       bb_true = create_empty_bb (bb_cond);
1184       bb_false = create_empty_bb (bb_true);
1185 
1186       /* Wire the blocks together.  */
1187       e->flags = EDGE_TRUE_VALUE;
1188       redirect_edge_succ (e, bb_true);
1189       make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1190       make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1191       make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1192       add_bb_to_loop (bb_true, bb_cond->loop_father);
1193       add_bb_to_loop (bb_false, bb_cond->loop_father);
1194 
1195       /* Update dominance info.  Note that bb_join's data was
1196          updated by split_block.  */
1197       if (dom_info_available_p (CDI_DOMINATORS))
1198         {
1199           set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1200           set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1201         }
1202 
1203       rr = create_tmp_reg (inner_type);
1204       ri = create_tmp_reg (inner_type);
1205     }
1206 
1207   /* In the TRUE branch, we compute
1208       ratio = br/bi;
1209       div = (br * ratio) + bi;
1210       tr = (ar * ratio) + ai;
1211       ti = (ai * ratio) - ar;
1212       tr = tr / div;
1213       ti = ti / div;  */
1214   if (bb_true || integer_nonzerop (compare))
1215     {
1216       if (bb_true)
1217 	{
1218 	  *gsi = gsi_last_bb (bb_true);
1219 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1220 	}
1221 
1222       ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1223 
1224       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1225       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1226 
1227       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1228       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1229 
1230       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1231       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1232 
1233       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1234       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1235 
1236      if (bb_true)
1237        {
1238 	 stmt = gimple_build_assign (rr, tr);
1239 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1240 	 stmt = gimple_build_assign (ri, ti);
1241 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1242 	 gsi_remove (gsi, true);
1243        }
1244     }
1245 
1246   /* In the FALSE branch, we compute
1247       ratio = d/c;
1248       divisor = (d * ratio) + c;
1249       tr = (b * ratio) + a;
1250       ti = b - (a * ratio);
1251       tr = tr / div;
1252       ti = ti / div;  */
1253   if (bb_false || integer_zerop (compare))
1254     {
1255       if (bb_false)
1256 	{
1257 	  *gsi = gsi_last_bb (bb_false);
1258 	  gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1259 	}
1260 
1261       ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1262 
1263       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1264       div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1265 
1266       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1267       tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1268 
1269       t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1270       ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1271 
1272       tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1273       ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1274 
1275      if (bb_false)
1276        {
1277 	 stmt = gimple_build_assign (rr, tr);
1278 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1279 	 stmt = gimple_build_assign (ri, ti);
1280 	 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1281 	 gsi_remove (gsi, true);
1282        }
1283     }
1284 
1285   if (bb_join)
1286     *gsi = gsi_start_bb (bb_join);
1287   else
1288     rr = tr, ri = ti;
1289 
1290   update_complex_assignment (gsi, rr, ri);
1291 }
1292 
1293 /* Expand complex division to scalars.  */
1294 
1295 static void
1296 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1297 			 tree ar, tree ai, tree br, tree bi,
1298 			 enum tree_code code,
1299 			 complex_lattice_t al, complex_lattice_t bl)
1300 {
1301   tree rr, ri;
1302 
1303   switch (PAIR (al, bl))
1304     {
1305     case PAIR (ONLY_REAL, ONLY_REAL):
1306       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1307       ri = ai;
1308       break;
1309 
1310     case PAIR (ONLY_REAL, ONLY_IMAG):
1311       rr = ai;
1312       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1313       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1314       break;
1315 
1316     case PAIR (ONLY_IMAG, ONLY_REAL):
1317       rr = ar;
1318       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1319       break;
1320 
1321     case PAIR (ONLY_IMAG, ONLY_IMAG):
1322       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1323       ri = ar;
1324       break;
1325 
1326     case PAIR (VARYING, ONLY_REAL):
1327       rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1328       ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1329       break;
1330 
1331     case PAIR (VARYING, ONLY_IMAG):
1332       rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1333       ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1334       ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1335 
1336     case PAIR (ONLY_REAL, VARYING):
1337     case PAIR (ONLY_IMAG, VARYING):
1338     case PAIR (VARYING, VARYING):
1339       switch (flag_complex_method)
1340 	{
1341 	case 0:
1342 	  /* straightforward implementation of complex divide acceptable.  */
1343 	  expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1344 	  break;
1345 
1346 	case 2:
1347 	  if (SCALAR_FLOAT_TYPE_P (inner_type))
1348 	    {
1349 	      expand_complex_libcall (gsi, ar, ai, br, bi, code);
1350 	      break;
1351 	    }
1352 	  /* FALLTHRU */
1353 
1354 	case 1:
1355 	  /* wide ranges of inputs must work for complex divide.  */
1356 	  expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1357 	  break;
1358 
1359 	default:
1360 	  gcc_unreachable ();
1361 	}
1362       return;
1363 
1364     default:
1365       gcc_unreachable ();
1366     }
1367 
1368   update_complex_assignment (gsi, rr, ri);
1369 }
1370 
1371 /* Expand complex negation to scalars:
1372 	-a = (-ar) + i(-ai)
1373 */
1374 
1375 static void
1376 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1377 			 tree ar, tree ai)
1378 {
1379   tree rr, ri;
1380 
1381   rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1382   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1383 
1384   update_complex_assignment (gsi, rr, ri);
1385 }
1386 
1387 /* Expand complex conjugate to scalars:
1388 	~a = (ar) + i(-ai)
1389 */
1390 
1391 static void
1392 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1393 			  tree ar, tree ai)
1394 {
1395   tree ri;
1396 
1397   ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1398 
1399   update_complex_assignment (gsi, ar, ri);
1400 }
1401 
1402 /* Expand complex comparison (EQ or NE only).  */
1403 
1404 static void
1405 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1406 			   tree br, tree bi, enum tree_code code)
1407 {
1408   tree cr, ci, cc, type;
1409   gimple stmt;
1410 
1411   cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1412   ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1413   cc = gimplify_build2 (gsi,
1414 			(code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1415 			boolean_type_node, cr, ci);
1416 
1417   stmt = gsi_stmt (*gsi);
1418 
1419   switch (gimple_code (stmt))
1420     {
1421     case GIMPLE_RETURN:
1422       {
1423 	greturn *return_stmt = as_a <greturn *> (stmt);
1424 	type = TREE_TYPE (gimple_return_retval (return_stmt));
1425 	gimple_return_set_retval (return_stmt, fold_convert (type, cc));
1426       }
1427       break;
1428 
1429     case GIMPLE_ASSIGN:
1430       type = TREE_TYPE (gimple_assign_lhs (stmt));
1431       gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1432       stmt = gsi_stmt (*gsi);
1433       break;
1434 
1435     case GIMPLE_COND:
1436       {
1437 	gcond *cond_stmt = as_a <gcond *> (stmt);
1438 	gimple_cond_set_code (cond_stmt, EQ_EXPR);
1439 	gimple_cond_set_lhs (cond_stmt, cc);
1440 	gimple_cond_set_rhs (cond_stmt, boolean_true_node);
1441       }
1442       break;
1443 
1444     default:
1445       gcc_unreachable ();
1446     }
1447 
1448   update_stmt (stmt);
1449 }
1450 
1451 /* Expand inline asm that sets some complex SSA_NAMEs.  */
1452 
1453 static void
1454 expand_complex_asm (gimple_stmt_iterator *gsi)
1455 {
1456   gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
1457   unsigned int i;
1458 
1459   for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
1460     {
1461       tree link = gimple_asm_output_op (stmt, i);
1462       tree op = TREE_VALUE (link);
1463       if (TREE_CODE (op) == SSA_NAME
1464 	  && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
1465 	{
1466 	  tree type = TREE_TYPE (op);
1467 	  tree inner_type = TREE_TYPE (type);
1468 	  tree r = build1 (REALPART_EXPR, inner_type, op);
1469 	  tree i = build1 (IMAGPART_EXPR, inner_type, op);
1470 	  gimple_seq list = set_component_ssa_name (op, false, r);
1471 
1472 	  if (list)
1473 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1474 
1475 	  list = set_component_ssa_name (op, true, i);
1476 	  if (list)
1477 	    gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
1478 	}
1479     }
1480 }
1481 
1482 /* Process one statement.  If we identify a complex operation, expand it.  */
1483 
1484 static void
1485 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1486 {
1487   gimple stmt = gsi_stmt (*gsi);
1488   tree type, inner_type, lhs;
1489   tree ac, ar, ai, bc, br, bi;
1490   complex_lattice_t al, bl;
1491   enum tree_code code;
1492 
1493   if (gimple_code (stmt) == GIMPLE_ASM)
1494     {
1495       expand_complex_asm (gsi);
1496       return;
1497     }
1498 
1499   lhs = gimple_get_lhs (stmt);
1500   if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1501     return;
1502 
1503   type = TREE_TYPE (gimple_op (stmt, 0));
1504   code = gimple_expr_code (stmt);
1505 
1506   /* Initial filter for operations we handle.  */
1507   switch (code)
1508     {
1509     case PLUS_EXPR:
1510     case MINUS_EXPR:
1511     case MULT_EXPR:
1512     case TRUNC_DIV_EXPR:
1513     case CEIL_DIV_EXPR:
1514     case FLOOR_DIV_EXPR:
1515     case ROUND_DIV_EXPR:
1516     case RDIV_EXPR:
1517     case NEGATE_EXPR:
1518     case CONJ_EXPR:
1519       if (TREE_CODE (type) != COMPLEX_TYPE)
1520 	return;
1521       inner_type = TREE_TYPE (type);
1522       break;
1523 
1524     case EQ_EXPR:
1525     case NE_EXPR:
1526       /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1527 	 subcode, so we need to access the operands using gimple_op.  */
1528       inner_type = TREE_TYPE (gimple_op (stmt, 1));
1529       if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1530 	return;
1531       break;
1532 
1533     default:
1534       {
1535 	tree rhs;
1536 
1537 	/* GIMPLE_COND may also fallthru here, but we do not need to
1538 	   do anything with it.  */
1539 	if (gimple_code (stmt) == GIMPLE_COND)
1540 	  return;
1541 
1542 	if (TREE_CODE (type) == COMPLEX_TYPE)
1543 	  expand_complex_move (gsi, type);
1544 	else if (is_gimple_assign (stmt)
1545 		 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1546 		     || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1547 		 && TREE_CODE (lhs) == SSA_NAME)
1548 	  {
1549 	    rhs = gimple_assign_rhs1 (stmt);
1550 	    rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1551 		                     gimple_assign_rhs_code (stmt)
1552 				       == IMAGPART_EXPR,
1553 				     false);
1554 	    gimple_assign_set_rhs_from_tree (gsi, rhs);
1555 	    stmt = gsi_stmt (*gsi);
1556 	    update_stmt (stmt);
1557 	  }
1558       }
1559       return;
1560     }
1561 
1562   /* Extract the components of the two complex values.  Make sure and
1563      handle the common case of the same value used twice specially.  */
1564   if (is_gimple_assign (stmt))
1565     {
1566       ac = gimple_assign_rhs1 (stmt);
1567       bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1568     }
1569   /* GIMPLE_CALL can not get here.  */
1570   else
1571     {
1572       ac = gimple_cond_lhs (stmt);
1573       bc = gimple_cond_rhs (stmt);
1574     }
1575 
1576   ar = extract_component (gsi, ac, false, true);
1577   ai = extract_component (gsi, ac, true, true);
1578 
1579   if (ac == bc)
1580     br = ar, bi = ai;
1581   else if (bc)
1582     {
1583       br = extract_component (gsi, bc, 0, true);
1584       bi = extract_component (gsi, bc, 1, true);
1585     }
1586   else
1587     br = bi = NULL_TREE;
1588 
1589   if (gimple_in_ssa_p (cfun))
1590     {
1591       al = find_lattice_value (ac);
1592       if (al == UNINITIALIZED)
1593 	al = VARYING;
1594 
1595       if (TREE_CODE_CLASS (code) == tcc_unary)
1596 	bl = UNINITIALIZED;
1597       else if (ac == bc)
1598 	bl = al;
1599       else
1600 	{
1601 	  bl = find_lattice_value (bc);
1602 	  if (bl == UNINITIALIZED)
1603 	    bl = VARYING;
1604 	}
1605     }
1606   else
1607     al = bl = VARYING;
1608 
1609   switch (code)
1610     {
1611     case PLUS_EXPR:
1612     case MINUS_EXPR:
1613       expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1614       break;
1615 
1616     case MULT_EXPR:
1617       expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1618       break;
1619 
1620     case TRUNC_DIV_EXPR:
1621     case CEIL_DIV_EXPR:
1622     case FLOOR_DIV_EXPR:
1623     case ROUND_DIV_EXPR:
1624     case RDIV_EXPR:
1625       expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1626       break;
1627 
1628     case NEGATE_EXPR:
1629       expand_complex_negation (gsi, inner_type, ar, ai);
1630       break;
1631 
1632     case CONJ_EXPR:
1633       expand_complex_conjugate (gsi, inner_type, ar, ai);
1634       break;
1635 
1636     case EQ_EXPR:
1637     case NE_EXPR:
1638       expand_complex_comparison (gsi, ar, ai, br, bi, code);
1639       break;
1640 
1641     default:
1642       gcc_unreachable ();
1643     }
1644 }
1645 
1646 
1647 /* Entry point for complex operation lowering during optimization.  */
1648 
1649 static unsigned int
1650 tree_lower_complex (void)
1651 {
1652   int old_last_basic_block;
1653   gimple_stmt_iterator gsi;
1654   basic_block bb;
1655 
1656   if (!init_dont_simulate_again ())
1657     return 0;
1658 
1659   complex_lattice_values.create (num_ssa_names);
1660   complex_lattice_values.safe_grow_cleared (num_ssa_names);
1661 
1662   init_parameter_lattice_values ();
1663   ssa_propagate (complex_visit_stmt, complex_visit_phi);
1664 
1665   complex_variable_components = new int_tree_htab_type (10);
1666 
1667   complex_ssa_name_components.create (2 * num_ssa_names);
1668   complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
1669 
1670   update_parameter_components ();
1671 
1672   /* ??? Ideally we'd traverse the blocks in breadth-first order.  */
1673   old_last_basic_block = last_basic_block_for_fn (cfun);
1674   FOR_EACH_BB_FN (bb, cfun)
1675     {
1676       if (bb->index >= old_last_basic_block)
1677 	continue;
1678 
1679       update_phi_components (bb);
1680       for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1681 	expand_complex_operations_1 (&gsi);
1682     }
1683 
1684   gsi_commit_edge_inserts ();
1685 
1686   delete complex_variable_components;
1687   complex_variable_components = NULL;
1688   complex_ssa_name_components.release ();
1689   complex_lattice_values.release ();
1690   return 0;
1691 }
1692 
1693 namespace {
1694 
1695 const pass_data pass_data_lower_complex =
1696 {
1697   GIMPLE_PASS, /* type */
1698   "cplxlower", /* name */
1699   OPTGROUP_NONE, /* optinfo_flags */
1700   TV_NONE, /* tv_id */
1701   PROP_ssa, /* properties_required */
1702   PROP_gimple_lcx, /* properties_provided */
1703   0, /* properties_destroyed */
1704   0, /* todo_flags_start */
1705   TODO_update_ssa, /* todo_flags_finish */
1706 };
1707 
1708 class pass_lower_complex : public gimple_opt_pass
1709 {
1710 public:
1711   pass_lower_complex (gcc::context *ctxt)
1712     : gimple_opt_pass (pass_data_lower_complex, ctxt)
1713   {}
1714 
1715   /* opt_pass methods: */
1716   opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
1717   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1718 
1719 }; // class pass_lower_complex
1720 
1721 } // anon namespace
1722 
1723 gimple_opt_pass *
1724 make_pass_lower_complex (gcc::context *ctxt)
1725 {
1726   return new pass_lower_complex (ctxt);
1727 }
1728 
1729 
1730 namespace {
1731 
1732 const pass_data pass_data_lower_complex_O0 =
1733 {
1734   GIMPLE_PASS, /* type */
1735   "cplxlower0", /* name */
1736   OPTGROUP_NONE, /* optinfo_flags */
1737   TV_NONE, /* tv_id */
1738   PROP_cfg, /* properties_required */
1739   PROP_gimple_lcx, /* properties_provided */
1740   0, /* properties_destroyed */
1741   0, /* todo_flags_start */
1742   TODO_update_ssa, /* todo_flags_finish */
1743 };
1744 
1745 class pass_lower_complex_O0 : public gimple_opt_pass
1746 {
1747 public:
1748   pass_lower_complex_O0 (gcc::context *ctxt)
1749     : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
1750   {}
1751 
1752   /* opt_pass methods: */
1753   virtual bool gate (function *fun)
1754     {
1755       /* With errors, normal optimization passes are not run.  If we don't
1756 	 lower complex operations at all, rtl expansion will abort.  */
1757       return !(fun->curr_properties & PROP_gimple_lcx);
1758     }
1759 
1760   virtual unsigned int execute (function *) { return tree_lower_complex (); }
1761 
1762 }; // class pass_lower_complex_O0
1763 
1764 } // anon namespace
1765 
1766 gimple_opt_pass *
1767 make_pass_lower_complex_O0 (gcc::context *ctxt)
1768 {
1769   return new pass_lower_complex_O0 (ctxt);
1770 }
1771