1 /* Lower complex number operations to scalar operations. 2 Copyright (C) 2004-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "fold-const.h" 31 #include "stor-layout.h" 32 #include "tree-eh.h" 33 #include "gimplify.h" 34 #include "gimple-iterator.h" 35 #include "gimplify-me.h" 36 #include "tree-cfg.h" 37 #include "tree-dfa.h" 38 #include "tree-ssa.h" 39 #include "tree-ssa-propagate.h" 40 #include "tree-hasher.h" 41 #include "cfgloop.h" 42 #include "cfganal.h" 43 44 45 /* For each complex ssa name, a lattice value. We're interested in finding 46 out whether a complex number is degenerate in some way, having only real 47 or only complex parts. */ 48 49 enum 50 { 51 UNINITIALIZED = 0, 52 ONLY_REAL = 1, 53 ONLY_IMAG = 2, 54 VARYING = 3 55 }; 56 57 /* The type complex_lattice_t holds combinations of the above 58 constants. */ 59 typedef int complex_lattice_t; 60 61 #define PAIR(a, b) ((a) << 2 | (b)) 62 63 class complex_propagate : public ssa_propagation_engine 64 { 65 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE; 66 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE; 67 }; 68 69 static vec<complex_lattice_t> complex_lattice_values; 70 71 /* For each complex variable, a pair of variables for the components exists in 72 the hashtable. */ 73 static int_tree_htab_type *complex_variable_components; 74 75 /* For each complex SSA_NAME, a pair of ssa names for the components. */ 76 static vec<tree> complex_ssa_name_components; 77 78 /* Vector of PHI triplets (original complex PHI and corresponding real and 79 imag PHIs if real and/or imag PHIs contain temporarily 80 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ 81 static vec<gphi *> phis_to_revisit; 82 83 /* BBs that need EH cleanup. */ 84 static bitmap need_eh_cleanup; 85 86 /* Lookup UID in the complex_variable_components hashtable and return the 87 associated tree. */ 88 static tree 89 cvc_lookup (unsigned int uid) 90 { 91 struct int_tree_map in; 92 in.uid = uid; 93 return complex_variable_components->find_with_hash (in, uid).to; 94 } 95 96 /* Insert the pair UID, TO into the complex_variable_components hashtable. */ 97 98 static void 99 cvc_insert (unsigned int uid, tree to) 100 { 101 int_tree_map h; 102 int_tree_map *loc; 103 104 h.uid = uid; 105 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); 106 loc->uid = uid; 107 loc->to = to; 108 } 109 110 /* Return true if T is not a zero constant. In the case of real values, 111 we're only interested in +0.0. */ 112 113 static int 114 some_nonzerop (tree t) 115 { 116 int zerop = false; 117 118 /* Operations with real or imaginary part of a complex number zero 119 cannot be treated the same as operations with a real or imaginary 120 operand if we care about the signs of zeros in the result. */ 121 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) 122 zerop = real_identical (&TREE_REAL_CST (t), &dconst0); 123 else if (TREE_CODE (t) == FIXED_CST) 124 zerop = fixed_zerop (t); 125 else if (TREE_CODE (t) == INTEGER_CST) 126 zerop = integer_zerop (t); 127 128 return !zerop; 129 } 130 131 132 /* Compute a lattice value from the components of a complex type REAL 133 and IMAG. */ 134 135 static complex_lattice_t 136 find_lattice_value_parts (tree real, tree imag) 137 { 138 int r, i; 139 complex_lattice_t ret; 140 141 r = some_nonzerop (real); 142 i = some_nonzerop (imag); 143 ret = r * ONLY_REAL + i * ONLY_IMAG; 144 145 /* ??? On occasion we could do better than mapping 0+0i to real, but we 146 certainly don't want to leave it UNINITIALIZED, which eventually gets 147 mapped to VARYING. */ 148 if (ret == UNINITIALIZED) 149 ret = ONLY_REAL; 150 151 return ret; 152 } 153 154 155 /* Compute a lattice value from gimple_val T. */ 156 157 static complex_lattice_t 158 find_lattice_value (tree t) 159 { 160 tree real, imag; 161 162 switch (TREE_CODE (t)) 163 { 164 case SSA_NAME: 165 return complex_lattice_values[SSA_NAME_VERSION (t)]; 166 167 case COMPLEX_CST: 168 real = TREE_REALPART (t); 169 imag = TREE_IMAGPART (t); 170 break; 171 172 default: 173 gcc_unreachable (); 174 } 175 176 return find_lattice_value_parts (real, imag); 177 } 178 179 /* Determine if LHS is something for which we're interested in seeing 180 simulation results. */ 181 182 static bool 183 is_complex_reg (tree lhs) 184 { 185 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); 186 } 187 188 /* Mark the incoming parameters to the function as VARYING. */ 189 190 static void 191 init_parameter_lattice_values (void) 192 { 193 tree parm, ssa_name; 194 195 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 196 if (is_complex_reg (parm) 197 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) 198 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; 199 } 200 201 /* Initialize simulation state for each statement. Return false if we 202 found no statements we want to simulate, and thus there's nothing 203 for the entire pass to do. */ 204 205 static bool 206 init_dont_simulate_again (void) 207 { 208 basic_block bb; 209 bool saw_a_complex_op = false; 210 211 FOR_EACH_BB_FN (bb, cfun) 212 { 213 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 214 gsi_next (&gsi)) 215 { 216 gphi *phi = gsi.phi (); 217 prop_set_simulate_again (phi, 218 is_complex_reg (gimple_phi_result (phi))); 219 } 220 221 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 222 gsi_next (&gsi)) 223 { 224 gimple *stmt; 225 tree op0, op1; 226 bool sim_again_p; 227 228 stmt = gsi_stmt (gsi); 229 op0 = op1 = NULL_TREE; 230 231 /* Most control-altering statements must be initially 232 simulated, else we won't cover the entire cfg. */ 233 sim_again_p = stmt_ends_bb_p (stmt); 234 235 switch (gimple_code (stmt)) 236 { 237 case GIMPLE_CALL: 238 if (gimple_call_lhs (stmt)) 239 sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); 240 break; 241 242 case GIMPLE_ASSIGN: 243 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); 244 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR 245 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 246 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); 247 else 248 op0 = gimple_assign_rhs1 (stmt); 249 if (gimple_num_ops (stmt) > 2) 250 op1 = gimple_assign_rhs2 (stmt); 251 break; 252 253 case GIMPLE_COND: 254 op0 = gimple_cond_lhs (stmt); 255 op1 = gimple_cond_rhs (stmt); 256 break; 257 258 default: 259 break; 260 } 261 262 if (op0 || op1) 263 switch (gimple_expr_code (stmt)) 264 { 265 case EQ_EXPR: 266 case NE_EXPR: 267 case PLUS_EXPR: 268 case MINUS_EXPR: 269 case MULT_EXPR: 270 case TRUNC_DIV_EXPR: 271 case CEIL_DIV_EXPR: 272 case FLOOR_DIV_EXPR: 273 case ROUND_DIV_EXPR: 274 case RDIV_EXPR: 275 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE 276 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) 277 saw_a_complex_op = true; 278 break; 279 280 case NEGATE_EXPR: 281 case CONJ_EXPR: 282 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) 283 saw_a_complex_op = true; 284 break; 285 286 case REALPART_EXPR: 287 case IMAGPART_EXPR: 288 /* The total store transformation performed during 289 gimplification creates such uninitialized loads 290 and we need to lower the statement to be able 291 to fix things up. */ 292 if (TREE_CODE (op0) == SSA_NAME 293 && ssa_undefined_value_p (op0)) 294 saw_a_complex_op = true; 295 break; 296 297 default: 298 break; 299 } 300 301 prop_set_simulate_again (stmt, sim_again_p); 302 } 303 } 304 305 return saw_a_complex_op; 306 } 307 308 309 /* Evaluate statement STMT against the complex lattice defined above. */ 310 311 enum ssa_prop_result 312 complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, 313 tree *result_p) 314 { 315 complex_lattice_t new_l, old_l, op1_l, op2_l; 316 unsigned int ver; 317 tree lhs; 318 319 lhs = gimple_get_lhs (stmt); 320 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ 321 if (!lhs) 322 return SSA_PROP_VARYING; 323 324 /* These conditions should be satisfied due to the initial filter 325 set up in init_dont_simulate_again. */ 326 gcc_assert (TREE_CODE (lhs) == SSA_NAME); 327 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 328 329 *result_p = lhs; 330 ver = SSA_NAME_VERSION (lhs); 331 old_l = complex_lattice_values[ver]; 332 333 switch (gimple_expr_code (stmt)) 334 { 335 case SSA_NAME: 336 case COMPLEX_CST: 337 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 338 break; 339 340 case COMPLEX_EXPR: 341 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), 342 gimple_assign_rhs2 (stmt)); 343 break; 344 345 case PLUS_EXPR: 346 case MINUS_EXPR: 347 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 348 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 349 350 /* We've set up the lattice values such that IOR neatly 351 models addition. */ 352 new_l = op1_l | op2_l; 353 break; 354 355 case MULT_EXPR: 356 case RDIV_EXPR: 357 case TRUNC_DIV_EXPR: 358 case CEIL_DIV_EXPR: 359 case FLOOR_DIV_EXPR: 360 case ROUND_DIV_EXPR: 361 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 362 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 363 364 /* Obviously, if either varies, so does the result. */ 365 if (op1_l == VARYING || op2_l == VARYING) 366 new_l = VARYING; 367 /* Don't prematurely promote variables if we've not yet seen 368 their inputs. */ 369 else if (op1_l == UNINITIALIZED) 370 new_l = op2_l; 371 else if (op2_l == UNINITIALIZED) 372 new_l = op1_l; 373 else 374 { 375 /* At this point both numbers have only one component. If the 376 numbers are of opposite kind, the result is imaginary, 377 otherwise the result is real. The add/subtract translates 378 the real/imag from/to 0/1; the ^ performs the comparison. */ 379 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; 380 381 /* Don't allow the lattice value to flip-flop indefinitely. */ 382 new_l |= old_l; 383 } 384 break; 385 386 case NEGATE_EXPR: 387 case CONJ_EXPR: 388 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 389 break; 390 391 default: 392 new_l = VARYING; 393 break; 394 } 395 396 /* If nothing changed this round, let the propagator know. */ 397 if (new_l == old_l) 398 return SSA_PROP_NOT_INTERESTING; 399 400 complex_lattice_values[ver] = new_l; 401 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 402 } 403 404 /* Evaluate a PHI node against the complex lattice defined above. */ 405 406 enum ssa_prop_result 407 complex_propagate::visit_phi (gphi *phi) 408 { 409 complex_lattice_t new_l, old_l; 410 unsigned int ver; 411 tree lhs; 412 int i; 413 414 lhs = gimple_phi_result (phi); 415 416 /* This condition should be satisfied due to the initial filter 417 set up in init_dont_simulate_again. */ 418 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 419 420 /* We've set up the lattice values such that IOR neatly models PHI meet. */ 421 new_l = UNINITIALIZED; 422 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) 423 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); 424 425 ver = SSA_NAME_VERSION (lhs); 426 old_l = complex_lattice_values[ver]; 427 428 if (new_l == old_l) 429 return SSA_PROP_NOT_INTERESTING; 430 431 complex_lattice_values[ver] = new_l; 432 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 433 } 434 435 /* Create one backing variable for a complex component of ORIG. */ 436 437 static tree 438 create_one_component_var (tree type, tree orig, const char *prefix, 439 const char *suffix, enum tree_code code) 440 { 441 tree r = create_tmp_var (type, prefix); 442 443 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); 444 DECL_ARTIFICIAL (r) = 1; 445 446 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) 447 { 448 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); 449 name = ACONCAT ((name, suffix, NULL)); 450 DECL_NAME (r) = get_identifier (name); 451 452 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); 453 DECL_HAS_DEBUG_EXPR_P (r) = 1; 454 DECL_IGNORED_P (r) = 0; 455 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); 456 } 457 else 458 { 459 DECL_IGNORED_P (r) = 1; 460 TREE_NO_WARNING (r) = 1; 461 } 462 463 return r; 464 } 465 466 /* Retrieve a value for a complex component of VAR. */ 467 468 static tree 469 get_component_var (tree var, bool imag_p) 470 { 471 size_t decl_index = DECL_UID (var) * 2 + imag_p; 472 tree ret = cvc_lookup (decl_index); 473 474 if (ret == NULL) 475 { 476 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, 477 imag_p ? "CI" : "CR", 478 imag_p ? "$imag" : "$real", 479 imag_p ? IMAGPART_EXPR : REALPART_EXPR); 480 cvc_insert (decl_index, ret); 481 } 482 483 return ret; 484 } 485 486 /* Retrieve a value for a complex component of SSA_NAME. */ 487 488 static tree 489 get_component_ssa_name (tree ssa_name, bool imag_p) 490 { 491 complex_lattice_t lattice = find_lattice_value (ssa_name); 492 size_t ssa_name_index; 493 tree ret; 494 495 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 496 { 497 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); 498 if (SCALAR_FLOAT_TYPE_P (inner_type)) 499 return build_real (inner_type, dconst0); 500 else 501 return build_int_cst (inner_type, 0); 502 } 503 504 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 505 ret = complex_ssa_name_components[ssa_name_index]; 506 if (ret == NULL) 507 { 508 if (SSA_NAME_VAR (ssa_name)) 509 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 510 else 511 ret = TREE_TYPE (TREE_TYPE (ssa_name)); 512 ret = make_ssa_name (ret); 513 514 /* Copy some properties from the original. In particular, whether it 515 is used in an abnormal phi, and whether it's uninitialized. */ 516 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) 517 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); 518 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) 519 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) 520 { 521 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); 522 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); 523 } 524 525 complex_ssa_name_components[ssa_name_index] = ret; 526 } 527 528 return ret; 529 } 530 531 /* Set a value for a complex component of SSA_NAME, return a 532 gimple_seq of stuff that needs doing. */ 533 534 static gimple_seq 535 set_component_ssa_name (tree ssa_name, bool imag_p, tree value) 536 { 537 complex_lattice_t lattice = find_lattice_value (ssa_name); 538 size_t ssa_name_index; 539 tree comp; 540 gimple *last; 541 gimple_seq list; 542 543 /* We know the value must be zero, else there's a bug in our lattice 544 analysis. But the value may well be a variable known to contain 545 zero. We should be safe ignoring it. */ 546 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 547 return NULL; 548 549 /* If we've already assigned an SSA_NAME to this component, then this 550 means that our walk of the basic blocks found a use before the set. 551 This is fine. Now we should create an initialization for the value 552 we created earlier. */ 553 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 554 comp = complex_ssa_name_components[ssa_name_index]; 555 if (comp) 556 ; 557 558 /* If we've nothing assigned, and the value we're given is already stable, 559 then install that as the value for this SSA_NAME. This preemptively 560 copy-propagates the value, which avoids unnecessary memory allocation. */ 561 else if (is_gimple_min_invariant (value) 562 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 563 { 564 complex_ssa_name_components[ssa_name_index] = value; 565 return NULL; 566 } 567 else if (TREE_CODE (value) == SSA_NAME 568 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 569 { 570 /* Replace an anonymous base value with the variable from cvc_lookup. 571 This should result in better debug info. */ 572 if (SSA_NAME_VAR (ssa_name) 573 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) 574 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) 575 { 576 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 577 replace_ssa_name_symbol (value, comp); 578 } 579 580 complex_ssa_name_components[ssa_name_index] = value; 581 return NULL; 582 } 583 584 /* Finally, we need to stabilize the result by installing the value into 585 a new ssa name. */ 586 else 587 comp = get_component_ssa_name (ssa_name, imag_p); 588 589 /* Do all the work to assign VALUE to COMP. */ 590 list = NULL; 591 value = force_gimple_operand (value, &list, false, NULL); 592 last = gimple_build_assign (comp, value); 593 gimple_seq_add_stmt (&list, last); 594 gcc_assert (SSA_NAME_DEF_STMT (comp) == last); 595 596 return list; 597 } 598 599 /* Extract the real or imaginary part of a complex variable or constant. 600 Make sure that it's a proper gimple_val and gimplify it if not. 601 Emit any new code before gsi. */ 602 603 static tree 604 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, 605 bool gimple_p, bool phiarg_p = false) 606 { 607 switch (TREE_CODE (t)) 608 { 609 case COMPLEX_CST: 610 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); 611 612 case COMPLEX_EXPR: 613 gcc_unreachable (); 614 615 case BIT_FIELD_REF: 616 { 617 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 618 t = unshare_expr (t); 619 TREE_TYPE (t) = inner_type; 620 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); 621 if (imagpart_p) 622 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), 623 TYPE_SIZE (inner_type)); 624 if (gimple_p) 625 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 626 GSI_SAME_STMT); 627 return t; 628 } 629 630 case VAR_DECL: 631 case RESULT_DECL: 632 case PARM_DECL: 633 case COMPONENT_REF: 634 case ARRAY_REF: 635 case VIEW_CONVERT_EXPR: 636 case MEM_REF: 637 { 638 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 639 640 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), 641 inner_type, unshare_expr (t)); 642 643 if (gimple_p) 644 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 645 GSI_SAME_STMT); 646 647 return t; 648 } 649 650 case SSA_NAME: 651 t = get_component_ssa_name (t, imagpart_p); 652 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) 653 gcc_assert (phiarg_p); 654 return t; 655 656 default: 657 gcc_unreachable (); 658 } 659 } 660 661 /* Update the complex components of the ssa name on the lhs of STMT. */ 662 663 static void 664 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, 665 tree i) 666 { 667 tree lhs; 668 gimple_seq list; 669 670 lhs = gimple_get_lhs (stmt); 671 672 list = set_component_ssa_name (lhs, false, r); 673 if (list) 674 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 675 676 list = set_component_ssa_name (lhs, true, i); 677 if (list) 678 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 679 } 680 681 static void 682 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) 683 { 684 gimple_seq list; 685 686 list = set_component_ssa_name (lhs, false, r); 687 if (list) 688 gsi_insert_seq_on_edge (e, list); 689 690 list = set_component_ssa_name (lhs, true, i); 691 if (list) 692 gsi_insert_seq_on_edge (e, list); 693 } 694 695 696 /* Update an assignment to a complex variable in place. */ 697 698 static void 699 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) 700 { 701 gimple *old_stmt = gsi_stmt (*gsi); 702 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); 703 gimple *stmt = gsi_stmt (*gsi); 704 update_stmt (stmt); 705 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 706 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 707 708 update_complex_components (gsi, gsi_stmt (*gsi), r, i); 709 } 710 711 712 /* Generate code at the entry point of the function to initialize the 713 component variables for a complex parameter. */ 714 715 static void 716 update_parameter_components (void) 717 { 718 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 719 tree parm; 720 721 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 722 { 723 tree type = TREE_TYPE (parm); 724 tree ssa_name, r, i; 725 726 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) 727 continue; 728 729 type = TREE_TYPE (type); 730 ssa_name = ssa_default_def (cfun, parm); 731 if (!ssa_name) 732 continue; 733 734 r = build1 (REALPART_EXPR, type, ssa_name); 735 i = build1 (IMAGPART_EXPR, type, ssa_name); 736 update_complex_components_on_edge (entry_edge, ssa_name, r, i); 737 } 738 } 739 740 /* Generate code to set the component variables of a complex variable 741 to match the PHI statements in block BB. */ 742 743 static void 744 update_phi_components (basic_block bb) 745 { 746 gphi_iterator gsi; 747 748 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 749 { 750 gphi *phi = gsi.phi (); 751 752 if (is_complex_reg (gimple_phi_result (phi))) 753 { 754 gphi *p[2] = { NULL, NULL }; 755 unsigned int i, j, n; 756 bool revisit_phi = false; 757 758 for (j = 0; j < 2; j++) 759 { 760 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); 761 if (TREE_CODE (l) == SSA_NAME) 762 p[j] = create_phi_node (l, bb); 763 } 764 765 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) 766 { 767 tree comp, arg = gimple_phi_arg_def (phi, i); 768 for (j = 0; j < 2; j++) 769 if (p[j]) 770 { 771 comp = extract_component (NULL, arg, j > 0, false, true); 772 if (TREE_CODE (comp) == SSA_NAME 773 && SSA_NAME_DEF_STMT (comp) == NULL) 774 { 775 /* For the benefit of any gimple simplification during 776 this pass that might walk SSA_NAME def stmts, 777 don't add SSA_NAMEs without definitions into the 778 PHI arguments, but put a decl in there instead 779 temporarily, and revisit this PHI later on. */ 780 if (SSA_NAME_VAR (comp)) 781 comp = SSA_NAME_VAR (comp); 782 else 783 comp = create_tmp_reg (TREE_TYPE (comp), 784 get_name (comp)); 785 revisit_phi = true; 786 } 787 SET_PHI_ARG_DEF (p[j], i, comp); 788 } 789 } 790 791 if (revisit_phi) 792 { 793 phis_to_revisit.safe_push (phi); 794 phis_to_revisit.safe_push (p[0]); 795 phis_to_revisit.safe_push (p[1]); 796 } 797 } 798 } 799 } 800 801 /* Expand a complex move to scalars. */ 802 803 static void 804 expand_complex_move (gimple_stmt_iterator *gsi, tree type) 805 { 806 tree inner_type = TREE_TYPE (type); 807 tree r, i, lhs, rhs; 808 gimple *stmt = gsi_stmt (*gsi); 809 810 if (is_gimple_assign (stmt)) 811 { 812 lhs = gimple_assign_lhs (stmt); 813 if (gimple_num_ops (stmt) == 2) 814 rhs = gimple_assign_rhs1 (stmt); 815 else 816 rhs = NULL_TREE; 817 } 818 else if (is_gimple_call (stmt)) 819 { 820 lhs = gimple_call_lhs (stmt); 821 rhs = NULL_TREE; 822 } 823 else 824 gcc_unreachable (); 825 826 if (TREE_CODE (lhs) == SSA_NAME) 827 { 828 if (is_ctrl_altering_stmt (stmt)) 829 { 830 edge e; 831 832 /* The value is not assigned on the exception edges, so we need not 833 concern ourselves there. We do need to update on the fallthru 834 edge. Find it. */ 835 e = find_fallthru_edge (gsi_bb (*gsi)->succs); 836 if (!e) 837 gcc_unreachable (); 838 839 r = build1 (REALPART_EXPR, inner_type, lhs); 840 i = build1 (IMAGPART_EXPR, inner_type, lhs); 841 update_complex_components_on_edge (e, lhs, r, i); 842 } 843 else if (is_gimple_call (stmt) 844 || gimple_has_side_effects (stmt) 845 || gimple_assign_rhs_code (stmt) == PAREN_EXPR) 846 { 847 r = build1 (REALPART_EXPR, inner_type, lhs); 848 i = build1 (IMAGPART_EXPR, inner_type, lhs); 849 update_complex_components (gsi, stmt, r, i); 850 } 851 else 852 { 853 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) 854 { 855 r = extract_component (gsi, rhs, 0, true); 856 i = extract_component (gsi, rhs, 1, true); 857 } 858 else 859 { 860 r = gimple_assign_rhs1 (stmt); 861 i = gimple_assign_rhs2 (stmt); 862 } 863 update_complex_assignment (gsi, r, i); 864 } 865 } 866 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) 867 { 868 tree x; 869 gimple *t; 870 location_t loc; 871 872 loc = gimple_location (stmt); 873 r = extract_component (gsi, rhs, 0, false); 874 i = extract_component (gsi, rhs, 1, false); 875 876 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); 877 t = gimple_build_assign (x, r); 878 gimple_set_location (t, loc); 879 gsi_insert_before (gsi, t, GSI_SAME_STMT); 880 881 if (stmt == gsi_stmt (*gsi)) 882 { 883 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 884 gimple_assign_set_lhs (stmt, x); 885 gimple_assign_set_rhs1 (stmt, i); 886 } 887 else 888 { 889 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 890 t = gimple_build_assign (x, i); 891 gimple_set_location (t, loc); 892 gsi_insert_before (gsi, t, GSI_SAME_STMT); 893 894 stmt = gsi_stmt (*gsi); 895 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); 896 gimple_return_set_retval (as_a <greturn *> (stmt), lhs); 897 } 898 899 update_stmt (stmt); 900 } 901 } 902 903 /* Expand complex addition to scalars: 904 a + b = (ar + br) + i(ai + bi) 905 a - b = (ar - br) + i(ai + bi) 906 */ 907 908 static void 909 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, 910 tree ar, tree ai, tree br, tree bi, 911 enum tree_code code, 912 complex_lattice_t al, complex_lattice_t bl) 913 { 914 tree rr, ri; 915 916 switch (PAIR (al, bl)) 917 { 918 case PAIR (ONLY_REAL, ONLY_REAL): 919 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 920 ri = ai; 921 break; 922 923 case PAIR (ONLY_REAL, ONLY_IMAG): 924 rr = ar; 925 if (code == MINUS_EXPR) 926 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); 927 else 928 ri = bi; 929 break; 930 931 case PAIR (ONLY_IMAG, ONLY_REAL): 932 if (code == MINUS_EXPR) 933 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); 934 else 935 rr = br; 936 ri = ai; 937 break; 938 939 case PAIR (ONLY_IMAG, ONLY_IMAG): 940 rr = ar; 941 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 942 break; 943 944 case PAIR (VARYING, ONLY_REAL): 945 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 946 ri = ai; 947 break; 948 949 case PAIR (VARYING, ONLY_IMAG): 950 rr = ar; 951 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 952 break; 953 954 case PAIR (ONLY_REAL, VARYING): 955 if (code == MINUS_EXPR) 956 goto general; 957 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 958 ri = bi; 959 break; 960 961 case PAIR (ONLY_IMAG, VARYING): 962 if (code == MINUS_EXPR) 963 goto general; 964 rr = br; 965 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 966 break; 967 968 case PAIR (VARYING, VARYING): 969 general: 970 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 971 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 972 break; 973 974 default: 975 gcc_unreachable (); 976 } 977 978 update_complex_assignment (gsi, rr, ri); 979 } 980 981 /* Expand a complex multiplication or division to a libcall to the c99 982 compliant routines. TYPE is the complex type of the operation. 983 If INPLACE_P replace the statement at GSI with 984 the libcall and return NULL_TREE. Else insert the call, assign its 985 result to an output variable and return that variable. If INPLACE_P 986 is true then the statement being replaced should be an assignment 987 statement. */ 988 989 static tree 990 expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai, 991 tree br, tree bi, enum tree_code code, bool inplace_p) 992 { 993 machine_mode mode; 994 enum built_in_function bcode; 995 tree fn, lhs; 996 gcall *stmt; 997 998 mode = TYPE_MODE (type); 999 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); 1000 1001 if (code == MULT_EXPR) 1002 bcode = ((enum built_in_function) 1003 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1004 else if (code == RDIV_EXPR) 1005 bcode = ((enum built_in_function) 1006 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1007 else 1008 gcc_unreachable (); 1009 fn = builtin_decl_explicit (bcode); 1010 stmt = gimple_build_call (fn, 4, ar, ai, br, bi); 1011 1012 if (inplace_p) 1013 { 1014 gimple *old_stmt = gsi_stmt (*gsi); 1015 gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt)); 1016 lhs = gimple_assign_lhs (old_stmt); 1017 gimple_call_set_lhs (stmt, lhs); 1018 gsi_replace (gsi, stmt, true); 1019 1020 type = TREE_TYPE (type); 1021 if (stmt_can_throw_internal (cfun, stmt)) 1022 { 1023 edge_iterator ei; 1024 edge e; 1025 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) 1026 if (!(e->flags & EDGE_EH)) 1027 break; 1028 basic_block bb = split_edge (e); 1029 gimple_stmt_iterator gsi2 = gsi_start_bb (bb); 1030 update_complex_components (&gsi2, stmt, 1031 build1 (REALPART_EXPR, type, lhs), 1032 build1 (IMAGPART_EXPR, type, lhs)); 1033 return NULL_TREE; 1034 } 1035 else 1036 update_complex_components (gsi, stmt, 1037 build1 (REALPART_EXPR, type, lhs), 1038 build1 (IMAGPART_EXPR, type, lhs)); 1039 SSA_NAME_DEF_STMT (lhs) = stmt; 1040 return NULL_TREE; 1041 } 1042 1043 gimple_call_set_nothrow (stmt, true); 1044 lhs = make_ssa_name (type); 1045 gimple_call_set_lhs (stmt, lhs); 1046 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1047 1048 return lhs; 1049 } 1050 1051 /* Perform a complex multiplication on two complex constants A, B represented 1052 by AR, AI, BR, BI of type TYPE. 1053 The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai). 1054 Insert the GIMPLE statements into GSI. Store the real and imaginary 1055 components of the result into RR and RI. */ 1056 1057 static void 1058 expand_complex_multiplication_components (gimple_stmt_iterator *gsi, 1059 tree type, tree ar, tree ai, 1060 tree br, tree bi, 1061 tree *rr, tree *ri) 1062 { 1063 tree t1, t2, t3, t4; 1064 1065 t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br); 1066 t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi); 1067 t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi); 1068 1069 /* Avoid expanding redundant multiplication for the common 1070 case of squaring a complex number. */ 1071 if (ar == br && ai == bi) 1072 t4 = t3; 1073 else 1074 t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br); 1075 1076 *rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2); 1077 *ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4); 1078 } 1079 1080 /* Expand complex multiplication to scalars: 1081 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) 1082 */ 1083 1084 static void 1085 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type, 1086 tree ar, tree ai, tree br, tree bi, 1087 complex_lattice_t al, complex_lattice_t bl) 1088 { 1089 tree rr, ri; 1090 tree inner_type = TREE_TYPE (type); 1091 1092 if (al < bl) 1093 { 1094 complex_lattice_t tl; 1095 rr = ar, ar = br, br = rr; 1096 ri = ai, ai = bi, bi = ri; 1097 tl = al, al = bl, bl = tl; 1098 } 1099 1100 switch (PAIR (al, bl)) 1101 { 1102 case PAIR (ONLY_REAL, ONLY_REAL): 1103 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1104 ri = ai; 1105 break; 1106 1107 case PAIR (ONLY_IMAG, ONLY_REAL): 1108 rr = ar; 1109 if (TREE_CODE (ai) == REAL_CST 1110 && real_identical (&TREE_REAL_CST (ai), &dconst1)) 1111 ri = br; 1112 else 1113 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1114 break; 1115 1116 case PAIR (ONLY_IMAG, ONLY_IMAG): 1117 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1118 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1119 ri = ar; 1120 break; 1121 1122 case PAIR (VARYING, ONLY_REAL): 1123 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1124 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1125 break; 1126 1127 case PAIR (VARYING, ONLY_IMAG): 1128 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1129 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1130 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1131 break; 1132 1133 case PAIR (VARYING, VARYING): 1134 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) 1135 { 1136 /* If optimizing for size or not at all just do a libcall. 1137 Same if there are exception-handling edges or signaling NaNs. */ 1138 if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi)) 1139 || stmt_can_throw_internal (cfun, gsi_stmt (*gsi)) 1140 || flag_signaling_nans) 1141 { 1142 expand_complex_libcall (gsi, type, ar, ai, br, bi, 1143 MULT_EXPR, true); 1144 return; 1145 } 1146 1147 /* Else, expand x = a * b into 1148 x = (ar*br - ai*bi) + i(ar*bi + br*ai); 1149 if (isunordered (__real__ x, __imag__ x)) 1150 x = __muldc3 (a, b); */ 1151 1152 tree tmpr, tmpi; 1153 expand_complex_multiplication_components (gsi, inner_type, ar, ai, 1154 br, bi, &tmpr, &tmpi); 1155 1156 gimple *check 1157 = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi, 1158 NULL_TREE, NULL_TREE); 1159 1160 basic_block orig_bb = gsi_bb (*gsi); 1161 /* We want to keep track of the original complex multiplication 1162 statement as we're going to modify it later in 1163 update_complex_assignment. Make sure that insert_cond_bb leaves 1164 that statement in the join block. */ 1165 gsi_prev (gsi); 1166 basic_block cond_bb 1167 = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check, 1168 profile_probability::very_unlikely ()); 1169 1170 1171 gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb); 1172 gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT); 1173 1174 tree libcall_res 1175 = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br, 1176 bi, MULT_EXPR, false); 1177 tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR, 1178 inner_type, libcall_res); 1179 tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR, 1180 inner_type, libcall_res); 1181 1182 basic_block join_bb = single_succ_edge (cond_bb)->dest; 1183 *gsi = gsi_start_nondebug_after_labels_bb (join_bb); 1184 1185 /* We have a conditional block with some assignments in cond_bb. 1186 Wire up the PHIs to wrap up. */ 1187 rr = make_ssa_name (inner_type); 1188 ri = make_ssa_name (inner_type); 1189 edge cond_to_join = single_succ_edge (cond_bb); 1190 edge orig_to_join = find_edge (orig_bb, join_bb); 1191 1192 gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi)); 1193 add_phi_arg (real_phi, cond_real, cond_to_join, 1194 UNKNOWN_LOCATION); 1195 add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION); 1196 1197 gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi)); 1198 add_phi_arg (imag_phi, cond_imag, cond_to_join, 1199 UNKNOWN_LOCATION); 1200 add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION); 1201 } 1202 else 1203 /* If we are not worrying about NaNs expand to 1204 (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */ 1205 expand_complex_multiplication_components (gsi, inner_type, ar, ai, 1206 br, bi, &rr, &ri); 1207 break; 1208 1209 default: 1210 gcc_unreachable (); 1211 } 1212 1213 update_complex_assignment (gsi, rr, ri); 1214 } 1215 1216 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1217 1218 Expand complex division to scalars, straightforward algorithm. 1219 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1220 t = br*br + bi*bi 1221 */ 1222 1223 static void 1224 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, 1225 tree ar, tree ai, tree br, tree bi, 1226 enum tree_code code) 1227 { 1228 tree rr, ri, div, t1, t2, t3; 1229 1230 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); 1231 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); 1232 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1233 1234 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1235 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1236 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1237 rr = gimplify_build2 (gsi, code, inner_type, t3, div); 1238 1239 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1240 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1241 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1242 ri = gimplify_build2 (gsi, code, inner_type, t3, div); 1243 1244 update_complex_assignment (gsi, rr, ri); 1245 } 1246 1247 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1248 1249 Expand complex division to scalars, modified algorithm to minimize 1250 overflow with wide input ranges. */ 1251 1252 static void 1253 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, 1254 tree ar, tree ai, tree br, tree bi, 1255 enum tree_code code) 1256 { 1257 tree rr, ri, ratio, div, t1, t2, tr, ti, compare; 1258 basic_block bb_cond, bb_true, bb_false, bb_join; 1259 gimple *stmt; 1260 1261 /* Examine |br| < |bi|, and branch. */ 1262 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); 1263 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); 1264 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), 1265 LT_EXPR, boolean_type_node, t1, t2); 1266 STRIP_NOPS (compare); 1267 1268 bb_cond = bb_true = bb_false = bb_join = NULL; 1269 rr = ri = tr = ti = NULL; 1270 if (TREE_CODE (compare) != INTEGER_CST) 1271 { 1272 edge e; 1273 gimple *stmt; 1274 tree cond, tmp; 1275 1276 tmp = make_ssa_name (boolean_type_node); 1277 stmt = gimple_build_assign (tmp, compare); 1278 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1279 1280 cond = fold_build2_loc (gimple_location (stmt), 1281 EQ_EXPR, boolean_type_node, tmp, boolean_true_node); 1282 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); 1283 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1284 1285 /* Split the original block, and create the TRUE and FALSE blocks. */ 1286 e = split_block (gsi_bb (*gsi), stmt); 1287 bb_cond = e->src; 1288 bb_join = e->dest; 1289 bb_true = create_empty_bb (bb_cond); 1290 bb_false = create_empty_bb (bb_true); 1291 bb_true->count = bb_false->count 1292 = bb_cond->count.apply_probability (profile_probability::even ()); 1293 1294 /* Wire the blocks together. */ 1295 e->flags = EDGE_TRUE_VALUE; 1296 /* TODO: With value profile we could add an historgram to determine real 1297 branch outcome. */ 1298 e->probability = profile_probability::even (); 1299 redirect_edge_succ (e, bb_true); 1300 edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); 1301 e2->probability = profile_probability::even (); 1302 make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU); 1303 make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU); 1304 add_bb_to_loop (bb_true, bb_cond->loop_father); 1305 add_bb_to_loop (bb_false, bb_cond->loop_father); 1306 1307 /* Update dominance info. Note that bb_join's data was 1308 updated by split_block. */ 1309 if (dom_info_available_p (CDI_DOMINATORS)) 1310 { 1311 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); 1312 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); 1313 } 1314 1315 rr = create_tmp_reg (inner_type); 1316 ri = create_tmp_reg (inner_type); 1317 } 1318 1319 /* In the TRUE branch, we compute 1320 ratio = br/bi; 1321 div = (br * ratio) + bi; 1322 tr = (ar * ratio) + ai; 1323 ti = (ai * ratio) - ar; 1324 tr = tr / div; 1325 ti = ti / div; */ 1326 if (bb_true || integer_nonzerop (compare)) 1327 { 1328 if (bb_true) 1329 { 1330 *gsi = gsi_last_bb (bb_true); 1331 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1332 } 1333 1334 ratio = gimplify_build2 (gsi, code, inner_type, br, bi); 1335 1336 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); 1337 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); 1338 1339 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1340 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); 1341 1342 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1343 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); 1344 1345 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1346 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1347 1348 if (bb_true) 1349 { 1350 stmt = gimple_build_assign (rr, tr); 1351 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1352 stmt = gimple_build_assign (ri, ti); 1353 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1354 gsi_remove (gsi, true); 1355 } 1356 } 1357 1358 /* In the FALSE branch, we compute 1359 ratio = d/c; 1360 divisor = (d * ratio) + c; 1361 tr = (b * ratio) + a; 1362 ti = b - (a * ratio); 1363 tr = tr / div; 1364 ti = ti / div; */ 1365 if (bb_false || integer_zerop (compare)) 1366 { 1367 if (bb_false) 1368 { 1369 *gsi = gsi_last_bb (bb_false); 1370 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1371 } 1372 1373 ratio = gimplify_build2 (gsi, code, inner_type, bi, br); 1374 1375 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); 1376 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); 1377 1378 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1379 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); 1380 1381 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1382 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); 1383 1384 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1385 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1386 1387 if (bb_false) 1388 { 1389 stmt = gimple_build_assign (rr, tr); 1390 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1391 stmt = gimple_build_assign (ri, ti); 1392 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1393 gsi_remove (gsi, true); 1394 } 1395 } 1396 1397 if (bb_join) 1398 *gsi = gsi_start_bb (bb_join); 1399 else 1400 rr = tr, ri = ti; 1401 1402 update_complex_assignment (gsi, rr, ri); 1403 } 1404 1405 /* Expand complex division to scalars. */ 1406 1407 static void 1408 expand_complex_division (gimple_stmt_iterator *gsi, tree type, 1409 tree ar, tree ai, tree br, tree bi, 1410 enum tree_code code, 1411 complex_lattice_t al, complex_lattice_t bl) 1412 { 1413 tree rr, ri; 1414 1415 tree inner_type = TREE_TYPE (type); 1416 switch (PAIR (al, bl)) 1417 { 1418 case PAIR (ONLY_REAL, ONLY_REAL): 1419 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1420 ri = ai; 1421 break; 1422 1423 case PAIR (ONLY_REAL, ONLY_IMAG): 1424 rr = ai; 1425 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1426 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1427 break; 1428 1429 case PAIR (ONLY_IMAG, ONLY_REAL): 1430 rr = ar; 1431 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1432 break; 1433 1434 case PAIR (ONLY_IMAG, ONLY_IMAG): 1435 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1436 ri = ar; 1437 break; 1438 1439 case PAIR (VARYING, ONLY_REAL): 1440 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1441 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1442 break; 1443 1444 case PAIR (VARYING, ONLY_IMAG): 1445 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1446 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1447 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1448 break; 1449 1450 case PAIR (ONLY_REAL, VARYING): 1451 case PAIR (ONLY_IMAG, VARYING): 1452 case PAIR (VARYING, VARYING): 1453 switch (flag_complex_method) 1454 { 1455 case 0: 1456 /* straightforward implementation of complex divide acceptable. */ 1457 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); 1458 break; 1459 1460 case 2: 1461 if (SCALAR_FLOAT_TYPE_P (inner_type)) 1462 { 1463 expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true); 1464 break; 1465 } 1466 /* FALLTHRU */ 1467 1468 case 1: 1469 /* wide ranges of inputs must work for complex divide. */ 1470 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); 1471 break; 1472 1473 default: 1474 gcc_unreachable (); 1475 } 1476 return; 1477 1478 default: 1479 gcc_unreachable (); 1480 } 1481 1482 update_complex_assignment (gsi, rr, ri); 1483 } 1484 1485 /* Expand complex negation to scalars: 1486 -a = (-ar) + i(-ai) 1487 */ 1488 1489 static void 1490 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, 1491 tree ar, tree ai) 1492 { 1493 tree rr, ri; 1494 1495 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); 1496 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1497 1498 update_complex_assignment (gsi, rr, ri); 1499 } 1500 1501 /* Expand complex conjugate to scalars: 1502 ~a = (ar) + i(-ai) 1503 */ 1504 1505 static void 1506 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, 1507 tree ar, tree ai) 1508 { 1509 tree ri; 1510 1511 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1512 1513 update_complex_assignment (gsi, ar, ri); 1514 } 1515 1516 /* Expand complex comparison (EQ or NE only). */ 1517 1518 static void 1519 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, 1520 tree br, tree bi, enum tree_code code) 1521 { 1522 tree cr, ci, cc, type; 1523 gimple *stmt; 1524 1525 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); 1526 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); 1527 cc = gimplify_build2 (gsi, 1528 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), 1529 boolean_type_node, cr, ci); 1530 1531 stmt = gsi_stmt (*gsi); 1532 1533 switch (gimple_code (stmt)) 1534 { 1535 case GIMPLE_RETURN: 1536 { 1537 greturn *return_stmt = as_a <greturn *> (stmt); 1538 type = TREE_TYPE (gimple_return_retval (return_stmt)); 1539 gimple_return_set_retval (return_stmt, fold_convert (type, cc)); 1540 } 1541 break; 1542 1543 case GIMPLE_ASSIGN: 1544 type = TREE_TYPE (gimple_assign_lhs (stmt)); 1545 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); 1546 stmt = gsi_stmt (*gsi); 1547 break; 1548 1549 case GIMPLE_COND: 1550 { 1551 gcond *cond_stmt = as_a <gcond *> (stmt); 1552 gimple_cond_set_code (cond_stmt, EQ_EXPR); 1553 gimple_cond_set_lhs (cond_stmt, cc); 1554 gimple_cond_set_rhs (cond_stmt, boolean_true_node); 1555 } 1556 break; 1557 1558 default: 1559 gcc_unreachable (); 1560 } 1561 1562 update_stmt (stmt); 1563 if (maybe_clean_eh_stmt (stmt)) 1564 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index); 1565 } 1566 1567 /* Expand inline asm that sets some complex SSA_NAMEs. */ 1568 1569 static void 1570 expand_complex_asm (gimple_stmt_iterator *gsi) 1571 { 1572 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); 1573 unsigned int i; 1574 1575 for (i = 0; i < gimple_asm_noutputs (stmt); ++i) 1576 { 1577 tree link = gimple_asm_output_op (stmt, i); 1578 tree op = TREE_VALUE (link); 1579 if (TREE_CODE (op) == SSA_NAME 1580 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) 1581 { 1582 tree type = TREE_TYPE (op); 1583 tree inner_type = TREE_TYPE (type); 1584 tree r = build1 (REALPART_EXPR, inner_type, op); 1585 tree i = build1 (IMAGPART_EXPR, inner_type, op); 1586 gimple_seq list = set_component_ssa_name (op, false, r); 1587 1588 if (list) 1589 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1590 1591 list = set_component_ssa_name (op, true, i); 1592 if (list) 1593 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1594 } 1595 } 1596 } 1597 1598 /* Process one statement. If we identify a complex operation, expand it. */ 1599 1600 static void 1601 expand_complex_operations_1 (gimple_stmt_iterator *gsi) 1602 { 1603 gimple *stmt = gsi_stmt (*gsi); 1604 tree type, inner_type, lhs; 1605 tree ac, ar, ai, bc, br, bi; 1606 complex_lattice_t al, bl; 1607 enum tree_code code; 1608 1609 if (gimple_code (stmt) == GIMPLE_ASM) 1610 { 1611 expand_complex_asm (gsi); 1612 return; 1613 } 1614 1615 lhs = gimple_get_lhs (stmt); 1616 if (!lhs && gimple_code (stmt) != GIMPLE_COND) 1617 return; 1618 1619 type = TREE_TYPE (gimple_op (stmt, 0)); 1620 code = gimple_expr_code (stmt); 1621 1622 /* Initial filter for operations we handle. */ 1623 switch (code) 1624 { 1625 case PLUS_EXPR: 1626 case MINUS_EXPR: 1627 case MULT_EXPR: 1628 case TRUNC_DIV_EXPR: 1629 case CEIL_DIV_EXPR: 1630 case FLOOR_DIV_EXPR: 1631 case ROUND_DIV_EXPR: 1632 case RDIV_EXPR: 1633 case NEGATE_EXPR: 1634 case CONJ_EXPR: 1635 if (TREE_CODE (type) != COMPLEX_TYPE) 1636 return; 1637 inner_type = TREE_TYPE (type); 1638 break; 1639 1640 case EQ_EXPR: 1641 case NE_EXPR: 1642 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR 1643 subcode, so we need to access the operands using gimple_op. */ 1644 inner_type = TREE_TYPE (gimple_op (stmt, 1)); 1645 if (TREE_CODE (inner_type) != COMPLEX_TYPE) 1646 return; 1647 break; 1648 1649 default: 1650 { 1651 tree rhs; 1652 1653 /* GIMPLE_COND may also fallthru here, but we do not need to 1654 do anything with it. */ 1655 if (gimple_code (stmt) == GIMPLE_COND) 1656 return; 1657 1658 if (TREE_CODE (type) == COMPLEX_TYPE) 1659 expand_complex_move (gsi, type); 1660 else if (is_gimple_assign (stmt) 1661 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR 1662 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 1663 && TREE_CODE (lhs) == SSA_NAME) 1664 { 1665 rhs = gimple_assign_rhs1 (stmt); 1666 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), 1667 gimple_assign_rhs_code (stmt) 1668 == IMAGPART_EXPR, 1669 false); 1670 gimple_assign_set_rhs_from_tree (gsi, rhs); 1671 stmt = gsi_stmt (*gsi); 1672 update_stmt (stmt); 1673 } 1674 } 1675 return; 1676 } 1677 1678 /* Extract the components of the two complex values. Make sure and 1679 handle the common case of the same value used twice specially. */ 1680 if (is_gimple_assign (stmt)) 1681 { 1682 ac = gimple_assign_rhs1 (stmt); 1683 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; 1684 } 1685 /* GIMPLE_CALL cannot get here. */ 1686 else 1687 { 1688 ac = gimple_cond_lhs (stmt); 1689 bc = gimple_cond_rhs (stmt); 1690 } 1691 1692 ar = extract_component (gsi, ac, false, true); 1693 ai = extract_component (gsi, ac, true, true); 1694 1695 if (ac == bc) 1696 br = ar, bi = ai; 1697 else if (bc) 1698 { 1699 br = extract_component (gsi, bc, 0, true); 1700 bi = extract_component (gsi, bc, 1, true); 1701 } 1702 else 1703 br = bi = NULL_TREE; 1704 1705 al = find_lattice_value (ac); 1706 if (al == UNINITIALIZED) 1707 al = VARYING; 1708 1709 if (TREE_CODE_CLASS (code) == tcc_unary) 1710 bl = UNINITIALIZED; 1711 else if (ac == bc) 1712 bl = al; 1713 else 1714 { 1715 bl = find_lattice_value (bc); 1716 if (bl == UNINITIALIZED) 1717 bl = VARYING; 1718 } 1719 1720 switch (code) 1721 { 1722 case PLUS_EXPR: 1723 case MINUS_EXPR: 1724 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1725 break; 1726 1727 case MULT_EXPR: 1728 expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl); 1729 break; 1730 1731 case TRUNC_DIV_EXPR: 1732 case CEIL_DIV_EXPR: 1733 case FLOOR_DIV_EXPR: 1734 case ROUND_DIV_EXPR: 1735 case RDIV_EXPR: 1736 expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl); 1737 break; 1738 1739 case NEGATE_EXPR: 1740 expand_complex_negation (gsi, inner_type, ar, ai); 1741 break; 1742 1743 case CONJ_EXPR: 1744 expand_complex_conjugate (gsi, inner_type, ar, ai); 1745 break; 1746 1747 case EQ_EXPR: 1748 case NE_EXPR: 1749 expand_complex_comparison (gsi, ar, ai, br, bi, code); 1750 break; 1751 1752 default: 1753 gcc_unreachable (); 1754 } 1755 } 1756 1757 1758 /* Entry point for complex operation lowering during optimization. */ 1759 1760 static unsigned int 1761 tree_lower_complex (void) 1762 { 1763 gimple_stmt_iterator gsi; 1764 basic_block bb; 1765 int n_bbs, i; 1766 int *rpo; 1767 1768 if (!init_dont_simulate_again ()) 1769 return 0; 1770 1771 complex_lattice_values.create (num_ssa_names); 1772 complex_lattice_values.safe_grow_cleared (num_ssa_names); 1773 1774 init_parameter_lattice_values (); 1775 class complex_propagate complex_propagate; 1776 complex_propagate.ssa_propagate (); 1777 1778 need_eh_cleanup = BITMAP_ALLOC (NULL); 1779 1780 complex_variable_components = new int_tree_htab_type (10); 1781 1782 complex_ssa_name_components.create (2 * num_ssa_names); 1783 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names); 1784 1785 update_parameter_components (); 1786 1787 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); 1788 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); 1789 for (i = 0; i < n_bbs; i++) 1790 { 1791 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); 1792 if (!bb) 1793 continue; 1794 update_phi_components (bb); 1795 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1796 expand_complex_operations_1 (&gsi); 1797 } 1798 1799 free (rpo); 1800 1801 if (!phis_to_revisit.is_empty ()) 1802 { 1803 unsigned int n = phis_to_revisit.length (); 1804 for (unsigned int j = 0; j < n; j += 3) 1805 for (unsigned int k = 0; k < 2; k++) 1806 if (gphi *phi = phis_to_revisit[j + k + 1]) 1807 { 1808 unsigned int m = gimple_phi_num_args (phi); 1809 for (unsigned int l = 0; l < m; ++l) 1810 { 1811 tree op = gimple_phi_arg_def (phi, l); 1812 if (TREE_CODE (op) == SSA_NAME 1813 || is_gimple_min_invariant (op)) 1814 continue; 1815 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); 1816 op = extract_component (NULL, arg, k > 0, false, false); 1817 SET_PHI_ARG_DEF (phi, l, op); 1818 } 1819 } 1820 phis_to_revisit.release (); 1821 } 1822 1823 gsi_commit_edge_inserts (); 1824 1825 unsigned todo 1826 = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0; 1827 BITMAP_FREE (need_eh_cleanup); 1828 1829 delete complex_variable_components; 1830 complex_variable_components = NULL; 1831 complex_ssa_name_components.release (); 1832 complex_lattice_values.release (); 1833 return todo; 1834 } 1835 1836 namespace { 1837 1838 const pass_data pass_data_lower_complex = 1839 { 1840 GIMPLE_PASS, /* type */ 1841 "cplxlower", /* name */ 1842 OPTGROUP_NONE, /* optinfo_flags */ 1843 TV_NONE, /* tv_id */ 1844 PROP_ssa, /* properties_required */ 1845 PROP_gimple_lcx, /* properties_provided */ 1846 0, /* properties_destroyed */ 1847 0, /* todo_flags_start */ 1848 TODO_update_ssa, /* todo_flags_finish */ 1849 }; 1850 1851 class pass_lower_complex : public gimple_opt_pass 1852 { 1853 public: 1854 pass_lower_complex (gcc::context *ctxt) 1855 : gimple_opt_pass (pass_data_lower_complex, ctxt) 1856 {} 1857 1858 /* opt_pass methods: */ 1859 opt_pass * clone () { return new pass_lower_complex (m_ctxt); } 1860 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1861 1862 }; // class pass_lower_complex 1863 1864 } // anon namespace 1865 1866 gimple_opt_pass * 1867 make_pass_lower_complex (gcc::context *ctxt) 1868 { 1869 return new pass_lower_complex (ctxt); 1870 } 1871 1872 1873 namespace { 1874 1875 const pass_data pass_data_lower_complex_O0 = 1876 { 1877 GIMPLE_PASS, /* type */ 1878 "cplxlower0", /* name */ 1879 OPTGROUP_NONE, /* optinfo_flags */ 1880 TV_NONE, /* tv_id */ 1881 PROP_cfg, /* properties_required */ 1882 PROP_gimple_lcx, /* properties_provided */ 1883 0, /* properties_destroyed */ 1884 0, /* todo_flags_start */ 1885 TODO_update_ssa, /* todo_flags_finish */ 1886 }; 1887 1888 class pass_lower_complex_O0 : public gimple_opt_pass 1889 { 1890 public: 1891 pass_lower_complex_O0 (gcc::context *ctxt) 1892 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) 1893 {} 1894 1895 /* opt_pass methods: */ 1896 virtual bool gate (function *fun) 1897 { 1898 /* With errors, normal optimization passes are not run. If we don't 1899 lower complex operations at all, rtl expansion will abort. */ 1900 return !(fun->curr_properties & PROP_gimple_lcx); 1901 } 1902 1903 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1904 1905 }; // class pass_lower_complex_O0 1906 1907 } // anon namespace 1908 1909 gimple_opt_pass * 1910 make_pass_lower_complex_O0 (gcc::context *ctxt) 1911 { 1912 return new pass_lower_complex_O0 (ctxt); 1913 } 1914