1 /* Lower complex number operations to scalar operations. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "rtl.h" 25 #include "tree.h" 26 #include "gimple.h" 27 #include "cfghooks.h" 28 #include "tree-pass.h" 29 #include "ssa.h" 30 #include "fold-const.h" 31 #include "stor-layout.h" 32 #include "tree-eh.h" 33 #include "gimplify.h" 34 #include "gimple-iterator.h" 35 #include "gimplify-me.h" 36 #include "tree-cfg.h" 37 #include "tree-dfa.h" 38 #include "tree-ssa.h" 39 #include "tree-ssa-propagate.h" 40 #include "tree-hasher.h" 41 #include "cfgloop.h" 42 #include "cfganal.h" 43 44 45 /* For each complex ssa name, a lattice value. We're interested in finding 46 out whether a complex number is degenerate in some way, having only real 47 or only complex parts. */ 48 49 enum 50 { 51 UNINITIALIZED = 0, 52 ONLY_REAL = 1, 53 ONLY_IMAG = 2, 54 VARYING = 3 55 }; 56 57 /* The type complex_lattice_t holds combinations of the above 58 constants. */ 59 typedef int complex_lattice_t; 60 61 #define PAIR(a, b) ((a) << 2 | (b)) 62 63 64 static vec<complex_lattice_t> complex_lattice_values; 65 66 /* For each complex variable, a pair of variables for the components exists in 67 the hashtable. */ 68 static int_tree_htab_type *complex_variable_components; 69 70 /* For each complex SSA_NAME, a pair of ssa names for the components. */ 71 static vec<tree> complex_ssa_name_components; 72 73 /* Vector of PHI triplets (original complex PHI and corresponding real and 74 imag PHIs if real and/or imag PHIs contain temporarily 75 non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */ 76 static vec<gphi *> phis_to_revisit; 77 78 /* Lookup UID in the complex_variable_components hashtable and return the 79 associated tree. */ 80 static tree 81 cvc_lookup (unsigned int uid) 82 { 83 struct int_tree_map in; 84 in.uid = uid; 85 return complex_variable_components->find_with_hash (in, uid).to; 86 } 87 88 /* Insert the pair UID, TO into the complex_variable_components hashtable. */ 89 90 static void 91 cvc_insert (unsigned int uid, tree to) 92 { 93 int_tree_map h; 94 int_tree_map *loc; 95 96 h.uid = uid; 97 loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT); 98 loc->uid = uid; 99 loc->to = to; 100 } 101 102 /* Return true if T is not a zero constant. In the case of real values, 103 we're only interested in +0.0. */ 104 105 static int 106 some_nonzerop (tree t) 107 { 108 int zerop = false; 109 110 /* Operations with real or imaginary part of a complex number zero 111 cannot be treated the same as operations with a real or imaginary 112 operand if we care about the signs of zeros in the result. */ 113 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros) 114 zerop = real_identical (&TREE_REAL_CST (t), &dconst0); 115 else if (TREE_CODE (t) == FIXED_CST) 116 zerop = fixed_zerop (t); 117 else if (TREE_CODE (t) == INTEGER_CST) 118 zerop = integer_zerop (t); 119 120 return !zerop; 121 } 122 123 124 /* Compute a lattice value from the components of a complex type REAL 125 and IMAG. */ 126 127 static complex_lattice_t 128 find_lattice_value_parts (tree real, tree imag) 129 { 130 int r, i; 131 complex_lattice_t ret; 132 133 r = some_nonzerop (real); 134 i = some_nonzerop (imag); 135 ret = r * ONLY_REAL + i * ONLY_IMAG; 136 137 /* ??? On occasion we could do better than mapping 0+0i to real, but we 138 certainly don't want to leave it UNINITIALIZED, which eventually gets 139 mapped to VARYING. */ 140 if (ret == UNINITIALIZED) 141 ret = ONLY_REAL; 142 143 return ret; 144 } 145 146 147 /* Compute a lattice value from gimple_val T. */ 148 149 static complex_lattice_t 150 find_lattice_value (tree t) 151 { 152 tree real, imag; 153 154 switch (TREE_CODE (t)) 155 { 156 case SSA_NAME: 157 return complex_lattice_values[SSA_NAME_VERSION (t)]; 158 159 case COMPLEX_CST: 160 real = TREE_REALPART (t); 161 imag = TREE_IMAGPART (t); 162 break; 163 164 default: 165 gcc_unreachable (); 166 } 167 168 return find_lattice_value_parts (real, imag); 169 } 170 171 /* Determine if LHS is something for which we're interested in seeing 172 simulation results. */ 173 174 static bool 175 is_complex_reg (tree lhs) 176 { 177 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs); 178 } 179 180 /* Mark the incoming parameters to the function as VARYING. */ 181 182 static void 183 init_parameter_lattice_values (void) 184 { 185 tree parm, ssa_name; 186 187 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 188 if (is_complex_reg (parm) 189 && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE) 190 complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING; 191 } 192 193 /* Initialize simulation state for each statement. Return false if we 194 found no statements we want to simulate, and thus there's nothing 195 for the entire pass to do. */ 196 197 static bool 198 init_dont_simulate_again (void) 199 { 200 basic_block bb; 201 bool saw_a_complex_op = false; 202 203 FOR_EACH_BB_FN (bb, cfun) 204 { 205 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi); 206 gsi_next (&gsi)) 207 { 208 gphi *phi = gsi.phi (); 209 prop_set_simulate_again (phi, 210 is_complex_reg (gimple_phi_result (phi))); 211 } 212 213 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); 214 gsi_next (&gsi)) 215 { 216 gimple *stmt; 217 tree op0, op1; 218 bool sim_again_p; 219 220 stmt = gsi_stmt (gsi); 221 op0 = op1 = NULL_TREE; 222 223 /* Most control-altering statements must be initially 224 simulated, else we won't cover the entire cfg. */ 225 sim_again_p = stmt_ends_bb_p (stmt); 226 227 switch (gimple_code (stmt)) 228 { 229 case GIMPLE_CALL: 230 if (gimple_call_lhs (stmt)) 231 sim_again_p = is_complex_reg (gimple_call_lhs (stmt)); 232 break; 233 234 case GIMPLE_ASSIGN: 235 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt)); 236 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR 237 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 238 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); 239 else 240 op0 = gimple_assign_rhs1 (stmt); 241 if (gimple_num_ops (stmt) > 2) 242 op1 = gimple_assign_rhs2 (stmt); 243 break; 244 245 case GIMPLE_COND: 246 op0 = gimple_cond_lhs (stmt); 247 op1 = gimple_cond_rhs (stmt); 248 break; 249 250 default: 251 break; 252 } 253 254 if (op0 || op1) 255 switch (gimple_expr_code (stmt)) 256 { 257 case EQ_EXPR: 258 case NE_EXPR: 259 case PLUS_EXPR: 260 case MINUS_EXPR: 261 case MULT_EXPR: 262 case TRUNC_DIV_EXPR: 263 case CEIL_DIV_EXPR: 264 case FLOOR_DIV_EXPR: 265 case ROUND_DIV_EXPR: 266 case RDIV_EXPR: 267 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE 268 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE) 269 saw_a_complex_op = true; 270 break; 271 272 case NEGATE_EXPR: 273 case CONJ_EXPR: 274 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE) 275 saw_a_complex_op = true; 276 break; 277 278 case REALPART_EXPR: 279 case IMAGPART_EXPR: 280 /* The total store transformation performed during 281 gimplification creates such uninitialized loads 282 and we need to lower the statement to be able 283 to fix things up. */ 284 if (TREE_CODE (op0) == SSA_NAME 285 && ssa_undefined_value_p (op0)) 286 saw_a_complex_op = true; 287 break; 288 289 default: 290 break; 291 } 292 293 prop_set_simulate_again (stmt, sim_again_p); 294 } 295 } 296 297 return saw_a_complex_op; 298 } 299 300 301 /* Evaluate statement STMT against the complex lattice defined above. */ 302 303 static enum ssa_prop_result 304 complex_visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED, 305 tree *result_p) 306 { 307 complex_lattice_t new_l, old_l, op1_l, op2_l; 308 unsigned int ver; 309 tree lhs; 310 311 lhs = gimple_get_lhs (stmt); 312 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */ 313 if (!lhs) 314 return SSA_PROP_VARYING; 315 316 /* These conditions should be satisfied due to the initial filter 317 set up in init_dont_simulate_again. */ 318 gcc_assert (TREE_CODE (lhs) == SSA_NAME); 319 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 320 321 *result_p = lhs; 322 ver = SSA_NAME_VERSION (lhs); 323 old_l = complex_lattice_values[ver]; 324 325 switch (gimple_expr_code (stmt)) 326 { 327 case SSA_NAME: 328 case COMPLEX_CST: 329 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 330 break; 331 332 case COMPLEX_EXPR: 333 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt), 334 gimple_assign_rhs2 (stmt)); 335 break; 336 337 case PLUS_EXPR: 338 case MINUS_EXPR: 339 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 340 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 341 342 /* We've set up the lattice values such that IOR neatly 343 models addition. */ 344 new_l = op1_l | op2_l; 345 break; 346 347 case MULT_EXPR: 348 case RDIV_EXPR: 349 case TRUNC_DIV_EXPR: 350 case CEIL_DIV_EXPR: 351 case FLOOR_DIV_EXPR: 352 case ROUND_DIV_EXPR: 353 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 354 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt)); 355 356 /* Obviously, if either varies, so does the result. */ 357 if (op1_l == VARYING || op2_l == VARYING) 358 new_l = VARYING; 359 /* Don't prematurely promote variables if we've not yet seen 360 their inputs. */ 361 else if (op1_l == UNINITIALIZED) 362 new_l = op2_l; 363 else if (op2_l == UNINITIALIZED) 364 new_l = op1_l; 365 else 366 { 367 /* At this point both numbers have only one component. If the 368 numbers are of opposite kind, the result is imaginary, 369 otherwise the result is real. The add/subtract translates 370 the real/imag from/to 0/1; the ^ performs the comparison. */ 371 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL; 372 373 /* Don't allow the lattice value to flip-flop indefinitely. */ 374 new_l |= old_l; 375 } 376 break; 377 378 case NEGATE_EXPR: 379 case CONJ_EXPR: 380 new_l = find_lattice_value (gimple_assign_rhs1 (stmt)); 381 break; 382 383 default: 384 new_l = VARYING; 385 break; 386 } 387 388 /* If nothing changed this round, let the propagator know. */ 389 if (new_l == old_l) 390 return SSA_PROP_NOT_INTERESTING; 391 392 complex_lattice_values[ver] = new_l; 393 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 394 } 395 396 /* Evaluate a PHI node against the complex lattice defined above. */ 397 398 static enum ssa_prop_result 399 complex_visit_phi (gphi *phi) 400 { 401 complex_lattice_t new_l, old_l; 402 unsigned int ver; 403 tree lhs; 404 int i; 405 406 lhs = gimple_phi_result (phi); 407 408 /* This condition should be satisfied due to the initial filter 409 set up in init_dont_simulate_again. */ 410 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE); 411 412 /* We've set up the lattice values such that IOR neatly models PHI meet. */ 413 new_l = UNINITIALIZED; 414 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i) 415 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i)); 416 417 ver = SSA_NAME_VERSION (lhs); 418 old_l = complex_lattice_values[ver]; 419 420 if (new_l == old_l) 421 return SSA_PROP_NOT_INTERESTING; 422 423 complex_lattice_values[ver] = new_l; 424 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING; 425 } 426 427 /* Create one backing variable for a complex component of ORIG. */ 428 429 static tree 430 create_one_component_var (tree type, tree orig, const char *prefix, 431 const char *suffix, enum tree_code code) 432 { 433 tree r = create_tmp_var (type, prefix); 434 435 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig); 436 DECL_ARTIFICIAL (r) = 1; 437 438 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig)) 439 { 440 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig)); 441 name = ACONCAT ((name, suffix, NULL)); 442 DECL_NAME (r) = get_identifier (name); 443 444 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig)); 445 DECL_HAS_DEBUG_EXPR_P (r) = 1; 446 DECL_IGNORED_P (r) = 0; 447 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig); 448 } 449 else 450 { 451 DECL_IGNORED_P (r) = 1; 452 TREE_NO_WARNING (r) = 1; 453 } 454 455 return r; 456 } 457 458 /* Retrieve a value for a complex component of VAR. */ 459 460 static tree 461 get_component_var (tree var, bool imag_p) 462 { 463 size_t decl_index = DECL_UID (var) * 2 + imag_p; 464 tree ret = cvc_lookup (decl_index); 465 466 if (ret == NULL) 467 { 468 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var, 469 imag_p ? "CI" : "CR", 470 imag_p ? "$imag" : "$real", 471 imag_p ? IMAGPART_EXPR : REALPART_EXPR); 472 cvc_insert (decl_index, ret); 473 } 474 475 return ret; 476 } 477 478 /* Retrieve a value for a complex component of SSA_NAME. */ 479 480 static tree 481 get_component_ssa_name (tree ssa_name, bool imag_p) 482 { 483 complex_lattice_t lattice = find_lattice_value (ssa_name); 484 size_t ssa_name_index; 485 tree ret; 486 487 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 488 { 489 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name)); 490 if (SCALAR_FLOAT_TYPE_P (inner_type)) 491 return build_real (inner_type, dconst0); 492 else 493 return build_int_cst (inner_type, 0); 494 } 495 496 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 497 ret = complex_ssa_name_components[ssa_name_index]; 498 if (ret == NULL) 499 { 500 if (SSA_NAME_VAR (ssa_name)) 501 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 502 else 503 ret = TREE_TYPE (TREE_TYPE (ssa_name)); 504 ret = make_ssa_name (ret); 505 506 /* Copy some properties from the original. In particular, whether it 507 is used in an abnormal phi, and whether it's uninitialized. */ 508 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret) 509 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name); 510 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name) 511 && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL) 512 { 513 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name); 514 set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret); 515 } 516 517 complex_ssa_name_components[ssa_name_index] = ret; 518 } 519 520 return ret; 521 } 522 523 /* Set a value for a complex component of SSA_NAME, return a 524 gimple_seq of stuff that needs doing. */ 525 526 static gimple_seq 527 set_component_ssa_name (tree ssa_name, bool imag_p, tree value) 528 { 529 complex_lattice_t lattice = find_lattice_value (ssa_name); 530 size_t ssa_name_index; 531 tree comp; 532 gimple *last; 533 gimple_seq list; 534 535 /* We know the value must be zero, else there's a bug in our lattice 536 analysis. But the value may well be a variable known to contain 537 zero. We should be safe ignoring it. */ 538 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG)) 539 return NULL; 540 541 /* If we've already assigned an SSA_NAME to this component, then this 542 means that our walk of the basic blocks found a use before the set. 543 This is fine. Now we should create an initialization for the value 544 we created earlier. */ 545 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p; 546 comp = complex_ssa_name_components[ssa_name_index]; 547 if (comp) 548 ; 549 550 /* If we've nothing assigned, and the value we're given is already stable, 551 then install that as the value for this SSA_NAME. This preemptively 552 copy-propagates the value, which avoids unnecessary memory allocation. */ 553 else if (is_gimple_min_invariant (value) 554 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 555 { 556 complex_ssa_name_components[ssa_name_index] = value; 557 return NULL; 558 } 559 else if (TREE_CODE (value) == SSA_NAME 560 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name)) 561 { 562 /* Replace an anonymous base value with the variable from cvc_lookup. 563 This should result in better debug info. */ 564 if (SSA_NAME_VAR (ssa_name) 565 && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value))) 566 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name))) 567 { 568 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p); 569 replace_ssa_name_symbol (value, comp); 570 } 571 572 complex_ssa_name_components[ssa_name_index] = value; 573 return NULL; 574 } 575 576 /* Finally, we need to stabilize the result by installing the value into 577 a new ssa name. */ 578 else 579 comp = get_component_ssa_name (ssa_name, imag_p); 580 581 /* Do all the work to assign VALUE to COMP. */ 582 list = NULL; 583 value = force_gimple_operand (value, &list, false, NULL); 584 last = gimple_build_assign (comp, value); 585 gimple_seq_add_stmt (&list, last); 586 gcc_assert (SSA_NAME_DEF_STMT (comp) == last); 587 588 return list; 589 } 590 591 /* Extract the real or imaginary part of a complex variable or constant. 592 Make sure that it's a proper gimple_val and gimplify it if not. 593 Emit any new code before gsi. */ 594 595 static tree 596 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p, 597 bool gimple_p, bool phiarg_p = false) 598 { 599 switch (TREE_CODE (t)) 600 { 601 case COMPLEX_CST: 602 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t); 603 604 case COMPLEX_EXPR: 605 gcc_unreachable (); 606 607 case BIT_FIELD_REF: 608 { 609 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 610 t = unshare_expr (t); 611 TREE_TYPE (t) = inner_type; 612 TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type); 613 if (imagpart_p) 614 TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2), 615 TYPE_SIZE (inner_type)); 616 if (gimple_p) 617 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 618 GSI_SAME_STMT); 619 return t; 620 } 621 622 case VAR_DECL: 623 case RESULT_DECL: 624 case PARM_DECL: 625 case COMPONENT_REF: 626 case ARRAY_REF: 627 case VIEW_CONVERT_EXPR: 628 case MEM_REF: 629 { 630 tree inner_type = TREE_TYPE (TREE_TYPE (t)); 631 632 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR), 633 inner_type, unshare_expr (t)); 634 635 if (gimple_p) 636 t = force_gimple_operand_gsi (gsi, t, true, NULL, true, 637 GSI_SAME_STMT); 638 639 return t; 640 } 641 642 case SSA_NAME: 643 t = get_component_ssa_name (t, imagpart_p); 644 if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL) 645 gcc_assert (phiarg_p); 646 return t; 647 648 default: 649 gcc_unreachable (); 650 } 651 } 652 653 /* Update the complex components of the ssa name on the lhs of STMT. */ 654 655 static void 656 update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r, 657 tree i) 658 { 659 tree lhs; 660 gimple_seq list; 661 662 lhs = gimple_get_lhs (stmt); 663 664 list = set_component_ssa_name (lhs, false, r); 665 if (list) 666 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 667 668 list = set_component_ssa_name (lhs, true, i); 669 if (list) 670 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 671 } 672 673 static void 674 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i) 675 { 676 gimple_seq list; 677 678 list = set_component_ssa_name (lhs, false, r); 679 if (list) 680 gsi_insert_seq_on_edge (e, list); 681 682 list = set_component_ssa_name (lhs, true, i); 683 if (list) 684 gsi_insert_seq_on_edge (e, list); 685 } 686 687 688 /* Update an assignment to a complex variable in place. */ 689 690 static void 691 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i) 692 { 693 gimple *stmt; 694 695 gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i); 696 stmt = gsi_stmt (*gsi); 697 update_stmt (stmt); 698 if (maybe_clean_eh_stmt (stmt)) 699 gimple_purge_dead_eh_edges (gimple_bb (stmt)); 700 701 if (gimple_in_ssa_p (cfun)) 702 update_complex_components (gsi, gsi_stmt (*gsi), r, i); 703 } 704 705 706 /* Generate code at the entry point of the function to initialize the 707 component variables for a complex parameter. */ 708 709 static void 710 update_parameter_components (void) 711 { 712 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 713 tree parm; 714 715 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm)) 716 { 717 tree type = TREE_TYPE (parm); 718 tree ssa_name, r, i; 719 720 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm)) 721 continue; 722 723 type = TREE_TYPE (type); 724 ssa_name = ssa_default_def (cfun, parm); 725 if (!ssa_name) 726 continue; 727 728 r = build1 (REALPART_EXPR, type, ssa_name); 729 i = build1 (IMAGPART_EXPR, type, ssa_name); 730 update_complex_components_on_edge (entry_edge, ssa_name, r, i); 731 } 732 } 733 734 /* Generate code to set the component variables of a complex variable 735 to match the PHI statements in block BB. */ 736 737 static void 738 update_phi_components (basic_block bb) 739 { 740 gphi_iterator gsi; 741 742 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 743 { 744 gphi *phi = gsi.phi (); 745 746 if (is_complex_reg (gimple_phi_result (phi))) 747 { 748 gphi *p[2] = { NULL, NULL }; 749 unsigned int i, j, n; 750 bool revisit_phi = false; 751 752 for (j = 0; j < 2; j++) 753 { 754 tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0); 755 if (TREE_CODE (l) == SSA_NAME) 756 p[j] = create_phi_node (l, bb); 757 } 758 759 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i) 760 { 761 tree comp, arg = gimple_phi_arg_def (phi, i); 762 for (j = 0; j < 2; j++) 763 if (p[j]) 764 { 765 comp = extract_component (NULL, arg, j > 0, false, true); 766 if (TREE_CODE (comp) == SSA_NAME 767 && SSA_NAME_DEF_STMT (comp) == NULL) 768 { 769 /* For the benefit of any gimple simplification during 770 this pass that might walk SSA_NAME def stmts, 771 don't add SSA_NAMEs without definitions into the 772 PHI arguments, but put a decl in there instead 773 temporarily, and revisit this PHI later on. */ 774 if (SSA_NAME_VAR (comp)) 775 comp = SSA_NAME_VAR (comp); 776 else 777 comp = create_tmp_reg (TREE_TYPE (comp), 778 get_name (comp)); 779 revisit_phi = true; 780 } 781 SET_PHI_ARG_DEF (p[j], i, comp); 782 } 783 } 784 785 if (revisit_phi) 786 { 787 phis_to_revisit.safe_push (phi); 788 phis_to_revisit.safe_push (p[0]); 789 phis_to_revisit.safe_push (p[1]); 790 } 791 } 792 } 793 } 794 795 /* Expand a complex move to scalars. */ 796 797 static void 798 expand_complex_move (gimple_stmt_iterator *gsi, tree type) 799 { 800 tree inner_type = TREE_TYPE (type); 801 tree r, i, lhs, rhs; 802 gimple *stmt = gsi_stmt (*gsi); 803 804 if (is_gimple_assign (stmt)) 805 { 806 lhs = gimple_assign_lhs (stmt); 807 if (gimple_num_ops (stmt) == 2) 808 rhs = gimple_assign_rhs1 (stmt); 809 else 810 rhs = NULL_TREE; 811 } 812 else if (is_gimple_call (stmt)) 813 { 814 lhs = gimple_call_lhs (stmt); 815 rhs = NULL_TREE; 816 } 817 else 818 gcc_unreachable (); 819 820 if (TREE_CODE (lhs) == SSA_NAME) 821 { 822 if (is_ctrl_altering_stmt (stmt)) 823 { 824 edge e; 825 826 /* The value is not assigned on the exception edges, so we need not 827 concern ourselves there. We do need to update on the fallthru 828 edge. Find it. */ 829 e = find_fallthru_edge (gsi_bb (*gsi)->succs); 830 if (!e) 831 gcc_unreachable (); 832 833 r = build1 (REALPART_EXPR, inner_type, lhs); 834 i = build1 (IMAGPART_EXPR, inner_type, lhs); 835 update_complex_components_on_edge (e, lhs, r, i); 836 } 837 else if (is_gimple_call (stmt) 838 || gimple_has_side_effects (stmt) 839 || gimple_assign_rhs_code (stmt) == PAREN_EXPR) 840 { 841 r = build1 (REALPART_EXPR, inner_type, lhs); 842 i = build1 (IMAGPART_EXPR, inner_type, lhs); 843 update_complex_components (gsi, stmt, r, i); 844 } 845 else 846 { 847 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR) 848 { 849 r = extract_component (gsi, rhs, 0, true); 850 i = extract_component (gsi, rhs, 1, true); 851 } 852 else 853 { 854 r = gimple_assign_rhs1 (stmt); 855 i = gimple_assign_rhs2 (stmt); 856 } 857 update_complex_assignment (gsi, r, i); 858 } 859 } 860 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs)) 861 { 862 tree x; 863 gimple *t; 864 location_t loc; 865 866 loc = gimple_location (stmt); 867 r = extract_component (gsi, rhs, 0, false); 868 i = extract_component (gsi, rhs, 1, false); 869 870 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs)); 871 t = gimple_build_assign (x, r); 872 gimple_set_location (t, loc); 873 gsi_insert_before (gsi, t, GSI_SAME_STMT); 874 875 if (stmt == gsi_stmt (*gsi)) 876 { 877 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 878 gimple_assign_set_lhs (stmt, x); 879 gimple_assign_set_rhs1 (stmt, i); 880 } 881 else 882 { 883 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs)); 884 t = gimple_build_assign (x, i); 885 gimple_set_location (t, loc); 886 gsi_insert_before (gsi, t, GSI_SAME_STMT); 887 888 stmt = gsi_stmt (*gsi); 889 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN); 890 gimple_return_set_retval (as_a <greturn *> (stmt), lhs); 891 } 892 893 update_stmt (stmt); 894 } 895 } 896 897 /* Expand complex addition to scalars: 898 a + b = (ar + br) + i(ai + bi) 899 a - b = (ar - br) + i(ai + bi) 900 */ 901 902 static void 903 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type, 904 tree ar, tree ai, tree br, tree bi, 905 enum tree_code code, 906 complex_lattice_t al, complex_lattice_t bl) 907 { 908 tree rr, ri; 909 910 switch (PAIR (al, bl)) 911 { 912 case PAIR (ONLY_REAL, ONLY_REAL): 913 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 914 ri = ai; 915 break; 916 917 case PAIR (ONLY_REAL, ONLY_IMAG): 918 rr = ar; 919 if (code == MINUS_EXPR) 920 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi); 921 else 922 ri = bi; 923 break; 924 925 case PAIR (ONLY_IMAG, ONLY_REAL): 926 if (code == MINUS_EXPR) 927 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br); 928 else 929 rr = br; 930 ri = ai; 931 break; 932 933 case PAIR (ONLY_IMAG, ONLY_IMAG): 934 rr = ar; 935 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 936 break; 937 938 case PAIR (VARYING, ONLY_REAL): 939 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 940 ri = ai; 941 break; 942 943 case PAIR (VARYING, ONLY_IMAG): 944 rr = ar; 945 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 946 break; 947 948 case PAIR (ONLY_REAL, VARYING): 949 if (code == MINUS_EXPR) 950 goto general; 951 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 952 ri = bi; 953 break; 954 955 case PAIR (ONLY_IMAG, VARYING): 956 if (code == MINUS_EXPR) 957 goto general; 958 rr = br; 959 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 960 break; 961 962 case PAIR (VARYING, VARYING): 963 general: 964 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 965 ri = gimplify_build2 (gsi, code, inner_type, ai, bi); 966 break; 967 968 default: 969 gcc_unreachable (); 970 } 971 972 update_complex_assignment (gsi, rr, ri); 973 } 974 975 /* Expand a complex multiplication or division to a libcall to the c99 976 compliant routines. */ 977 978 static void 979 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai, 980 tree br, tree bi, enum tree_code code) 981 { 982 machine_mode mode; 983 enum built_in_function bcode; 984 tree fn, type, lhs; 985 gimple *old_stmt; 986 gcall *stmt; 987 988 old_stmt = gsi_stmt (*gsi); 989 lhs = gimple_assign_lhs (old_stmt); 990 type = TREE_TYPE (lhs); 991 992 mode = TYPE_MODE (type); 993 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT); 994 995 if (code == MULT_EXPR) 996 bcode = ((enum built_in_function) 997 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 998 else if (code == RDIV_EXPR) 999 bcode = ((enum built_in_function) 1000 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT)); 1001 else 1002 gcc_unreachable (); 1003 fn = builtin_decl_explicit (bcode); 1004 1005 stmt = gimple_build_call (fn, 4, ar, ai, br, bi); 1006 gimple_call_set_lhs (stmt, lhs); 1007 update_stmt (stmt); 1008 gsi_replace (gsi, stmt, false); 1009 1010 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)) 1011 gimple_purge_dead_eh_edges (gsi_bb (*gsi)); 1012 1013 if (gimple_in_ssa_p (cfun)) 1014 { 1015 type = TREE_TYPE (type); 1016 update_complex_components (gsi, stmt, 1017 build1 (REALPART_EXPR, type, lhs), 1018 build1 (IMAGPART_EXPR, type, lhs)); 1019 SSA_NAME_DEF_STMT (lhs) = stmt; 1020 } 1021 } 1022 1023 /* Expand complex multiplication to scalars: 1024 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai) 1025 */ 1026 1027 static void 1028 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type, 1029 tree ar, tree ai, tree br, tree bi, 1030 complex_lattice_t al, complex_lattice_t bl) 1031 { 1032 tree rr, ri; 1033 1034 if (al < bl) 1035 { 1036 complex_lattice_t tl; 1037 rr = ar, ar = br, br = rr; 1038 ri = ai, ai = bi, bi = ri; 1039 tl = al, al = bl, bl = tl; 1040 } 1041 1042 switch (PAIR (al, bl)) 1043 { 1044 case PAIR (ONLY_REAL, ONLY_REAL): 1045 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1046 ri = ai; 1047 break; 1048 1049 case PAIR (ONLY_IMAG, ONLY_REAL): 1050 rr = ar; 1051 if (TREE_CODE (ai) == REAL_CST 1052 && real_identical (&TREE_REAL_CST (ai), &dconst1)) 1053 ri = br; 1054 else 1055 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1056 break; 1057 1058 case PAIR (ONLY_IMAG, ONLY_IMAG): 1059 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1060 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1061 ri = ar; 1062 break; 1063 1064 case PAIR (VARYING, ONLY_REAL): 1065 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1066 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1067 break; 1068 1069 case PAIR (VARYING, ONLY_IMAG): 1070 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1071 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr); 1072 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1073 break; 1074 1075 case PAIR (VARYING, VARYING): 1076 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type)) 1077 { 1078 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR); 1079 return; 1080 } 1081 else 1082 { 1083 tree t1, t2, t3, t4; 1084 1085 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1086 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1087 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1088 1089 /* Avoid expanding redundant multiplication for the common 1090 case of squaring a complex number. */ 1091 if (ar == br && ai == bi) 1092 t4 = t3; 1093 else 1094 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1095 1096 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1097 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4); 1098 } 1099 break; 1100 1101 default: 1102 gcc_unreachable (); 1103 } 1104 1105 update_complex_assignment (gsi, rr, ri); 1106 } 1107 1108 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1109 1110 Expand complex division to scalars, straightforward algorithm. 1111 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1112 t = br*br + bi*bi 1113 */ 1114 1115 static void 1116 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type, 1117 tree ar, tree ai, tree br, tree bi, 1118 enum tree_code code) 1119 { 1120 tree rr, ri, div, t1, t2, t3; 1121 1122 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br); 1123 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi); 1124 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1125 1126 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br); 1127 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi); 1128 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2); 1129 rr = gimplify_build2 (gsi, code, inner_type, t3, div); 1130 1131 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br); 1132 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi); 1133 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2); 1134 ri = gimplify_build2 (gsi, code, inner_type, t3, div); 1135 1136 update_complex_assignment (gsi, rr, ri); 1137 } 1138 1139 /* Keep this algorithm in sync with fold-const.c:const_binop(). 1140 1141 Expand complex division to scalars, modified algorithm to minimize 1142 overflow with wide input ranges. */ 1143 1144 static void 1145 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type, 1146 tree ar, tree ai, tree br, tree bi, 1147 enum tree_code code) 1148 { 1149 tree rr, ri, ratio, div, t1, t2, tr, ti, compare; 1150 basic_block bb_cond, bb_true, bb_false, bb_join; 1151 gimple *stmt; 1152 1153 /* Examine |br| < |bi|, and branch. */ 1154 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br); 1155 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi); 1156 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), 1157 LT_EXPR, boolean_type_node, t1, t2); 1158 STRIP_NOPS (compare); 1159 1160 bb_cond = bb_true = bb_false = bb_join = NULL; 1161 rr = ri = tr = ti = NULL; 1162 if (TREE_CODE (compare) != INTEGER_CST) 1163 { 1164 edge e; 1165 gimple *stmt; 1166 tree cond, tmp; 1167 1168 tmp = create_tmp_var (boolean_type_node); 1169 stmt = gimple_build_assign (tmp, compare); 1170 if (gimple_in_ssa_p (cfun)) 1171 { 1172 tmp = make_ssa_name (tmp, stmt); 1173 gimple_assign_set_lhs (stmt, tmp); 1174 } 1175 1176 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1177 1178 cond = fold_build2_loc (gimple_location (stmt), 1179 EQ_EXPR, boolean_type_node, tmp, boolean_true_node); 1180 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE); 1181 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1182 1183 /* Split the original block, and create the TRUE and FALSE blocks. */ 1184 e = split_block (gsi_bb (*gsi), stmt); 1185 bb_cond = e->src; 1186 bb_join = e->dest; 1187 bb_true = create_empty_bb (bb_cond); 1188 bb_false = create_empty_bb (bb_true); 1189 1190 /* Wire the blocks together. */ 1191 e->flags = EDGE_TRUE_VALUE; 1192 redirect_edge_succ (e, bb_true); 1193 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE); 1194 make_edge (bb_true, bb_join, EDGE_FALLTHRU); 1195 make_edge (bb_false, bb_join, EDGE_FALLTHRU); 1196 add_bb_to_loop (bb_true, bb_cond->loop_father); 1197 add_bb_to_loop (bb_false, bb_cond->loop_father); 1198 1199 /* Update dominance info. Note that bb_join's data was 1200 updated by split_block. */ 1201 if (dom_info_available_p (CDI_DOMINATORS)) 1202 { 1203 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond); 1204 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond); 1205 } 1206 1207 rr = create_tmp_reg (inner_type); 1208 ri = create_tmp_reg (inner_type); 1209 } 1210 1211 /* In the TRUE branch, we compute 1212 ratio = br/bi; 1213 div = (br * ratio) + bi; 1214 tr = (ar * ratio) + ai; 1215 ti = (ai * ratio) - ar; 1216 tr = tr / div; 1217 ti = ti / div; */ 1218 if (bb_true || integer_nonzerop (compare)) 1219 { 1220 if (bb_true) 1221 { 1222 *gsi = gsi_last_bb (bb_true); 1223 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1224 } 1225 1226 ratio = gimplify_build2 (gsi, code, inner_type, br, bi); 1227 1228 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio); 1229 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi); 1230 1231 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1232 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai); 1233 1234 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1235 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar); 1236 1237 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1238 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1239 1240 if (bb_true) 1241 { 1242 stmt = gimple_build_assign (rr, tr); 1243 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1244 stmt = gimple_build_assign (ri, ti); 1245 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1246 gsi_remove (gsi, true); 1247 } 1248 } 1249 1250 /* In the FALSE branch, we compute 1251 ratio = d/c; 1252 divisor = (d * ratio) + c; 1253 tr = (b * ratio) + a; 1254 ti = b - (a * ratio); 1255 tr = tr / div; 1256 ti = ti / div; */ 1257 if (bb_false || integer_zerop (compare)) 1258 { 1259 if (bb_false) 1260 { 1261 *gsi = gsi_last_bb (bb_false); 1262 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT); 1263 } 1264 1265 ratio = gimplify_build2 (gsi, code, inner_type, bi, br); 1266 1267 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio); 1268 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br); 1269 1270 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio); 1271 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar); 1272 1273 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio); 1274 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1); 1275 1276 tr = gimplify_build2 (gsi, code, inner_type, tr, div); 1277 ti = gimplify_build2 (gsi, code, inner_type, ti, div); 1278 1279 if (bb_false) 1280 { 1281 stmt = gimple_build_assign (rr, tr); 1282 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1283 stmt = gimple_build_assign (ri, ti); 1284 gsi_insert_before (gsi, stmt, GSI_SAME_STMT); 1285 gsi_remove (gsi, true); 1286 } 1287 } 1288 1289 if (bb_join) 1290 *gsi = gsi_start_bb (bb_join); 1291 else 1292 rr = tr, ri = ti; 1293 1294 update_complex_assignment (gsi, rr, ri); 1295 } 1296 1297 /* Expand complex division to scalars. */ 1298 1299 static void 1300 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type, 1301 tree ar, tree ai, tree br, tree bi, 1302 enum tree_code code, 1303 complex_lattice_t al, complex_lattice_t bl) 1304 { 1305 tree rr, ri; 1306 1307 switch (PAIR (al, bl)) 1308 { 1309 case PAIR (ONLY_REAL, ONLY_REAL): 1310 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1311 ri = ai; 1312 break; 1313 1314 case PAIR (ONLY_REAL, ONLY_IMAG): 1315 rr = ai; 1316 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1317 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1318 break; 1319 1320 case PAIR (ONLY_IMAG, ONLY_REAL): 1321 rr = ar; 1322 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1323 break; 1324 1325 case PAIR (ONLY_IMAG, ONLY_IMAG): 1326 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1327 ri = ar; 1328 break; 1329 1330 case PAIR (VARYING, ONLY_REAL): 1331 rr = gimplify_build2 (gsi, code, inner_type, ar, br); 1332 ri = gimplify_build2 (gsi, code, inner_type, ai, br); 1333 break; 1334 1335 case PAIR (VARYING, ONLY_IMAG): 1336 rr = gimplify_build2 (gsi, code, inner_type, ai, bi); 1337 ri = gimplify_build2 (gsi, code, inner_type, ar, bi); 1338 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri); 1339 break; 1340 1341 case PAIR (ONLY_REAL, VARYING): 1342 case PAIR (ONLY_IMAG, VARYING): 1343 case PAIR (VARYING, VARYING): 1344 switch (flag_complex_method) 1345 { 1346 case 0: 1347 /* straightforward implementation of complex divide acceptable. */ 1348 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code); 1349 break; 1350 1351 case 2: 1352 if (SCALAR_FLOAT_TYPE_P (inner_type)) 1353 { 1354 expand_complex_libcall (gsi, ar, ai, br, bi, code); 1355 break; 1356 } 1357 /* FALLTHRU */ 1358 1359 case 1: 1360 /* wide ranges of inputs must work for complex divide. */ 1361 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code); 1362 break; 1363 1364 default: 1365 gcc_unreachable (); 1366 } 1367 return; 1368 1369 default: 1370 gcc_unreachable (); 1371 } 1372 1373 update_complex_assignment (gsi, rr, ri); 1374 } 1375 1376 /* Expand complex negation to scalars: 1377 -a = (-ar) + i(-ai) 1378 */ 1379 1380 static void 1381 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type, 1382 tree ar, tree ai) 1383 { 1384 tree rr, ri; 1385 1386 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar); 1387 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1388 1389 update_complex_assignment (gsi, rr, ri); 1390 } 1391 1392 /* Expand complex conjugate to scalars: 1393 ~a = (ar) + i(-ai) 1394 */ 1395 1396 static void 1397 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type, 1398 tree ar, tree ai) 1399 { 1400 tree ri; 1401 1402 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai); 1403 1404 update_complex_assignment (gsi, ar, ri); 1405 } 1406 1407 /* Expand complex comparison (EQ or NE only). */ 1408 1409 static void 1410 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai, 1411 tree br, tree bi, enum tree_code code) 1412 { 1413 tree cr, ci, cc, type; 1414 gimple *stmt; 1415 1416 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br); 1417 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi); 1418 cc = gimplify_build2 (gsi, 1419 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR), 1420 boolean_type_node, cr, ci); 1421 1422 stmt = gsi_stmt (*gsi); 1423 1424 switch (gimple_code (stmt)) 1425 { 1426 case GIMPLE_RETURN: 1427 { 1428 greturn *return_stmt = as_a <greturn *> (stmt); 1429 type = TREE_TYPE (gimple_return_retval (return_stmt)); 1430 gimple_return_set_retval (return_stmt, fold_convert (type, cc)); 1431 } 1432 break; 1433 1434 case GIMPLE_ASSIGN: 1435 type = TREE_TYPE (gimple_assign_lhs (stmt)); 1436 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc)); 1437 stmt = gsi_stmt (*gsi); 1438 break; 1439 1440 case GIMPLE_COND: 1441 { 1442 gcond *cond_stmt = as_a <gcond *> (stmt); 1443 gimple_cond_set_code (cond_stmt, EQ_EXPR); 1444 gimple_cond_set_lhs (cond_stmt, cc); 1445 gimple_cond_set_rhs (cond_stmt, boolean_true_node); 1446 } 1447 break; 1448 1449 default: 1450 gcc_unreachable (); 1451 } 1452 1453 update_stmt (stmt); 1454 } 1455 1456 /* Expand inline asm that sets some complex SSA_NAMEs. */ 1457 1458 static void 1459 expand_complex_asm (gimple_stmt_iterator *gsi) 1460 { 1461 gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi)); 1462 unsigned int i; 1463 1464 for (i = 0; i < gimple_asm_noutputs (stmt); ++i) 1465 { 1466 tree link = gimple_asm_output_op (stmt, i); 1467 tree op = TREE_VALUE (link); 1468 if (TREE_CODE (op) == SSA_NAME 1469 && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE) 1470 { 1471 tree type = TREE_TYPE (op); 1472 tree inner_type = TREE_TYPE (type); 1473 tree r = build1 (REALPART_EXPR, inner_type, op); 1474 tree i = build1 (IMAGPART_EXPR, inner_type, op); 1475 gimple_seq list = set_component_ssa_name (op, false, r); 1476 1477 if (list) 1478 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1479 1480 list = set_component_ssa_name (op, true, i); 1481 if (list) 1482 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING); 1483 } 1484 } 1485 } 1486 1487 /* Process one statement. If we identify a complex operation, expand it. */ 1488 1489 static void 1490 expand_complex_operations_1 (gimple_stmt_iterator *gsi) 1491 { 1492 gimple *stmt = gsi_stmt (*gsi); 1493 tree type, inner_type, lhs; 1494 tree ac, ar, ai, bc, br, bi; 1495 complex_lattice_t al, bl; 1496 enum tree_code code; 1497 1498 if (gimple_code (stmt) == GIMPLE_ASM) 1499 { 1500 expand_complex_asm (gsi); 1501 return; 1502 } 1503 1504 lhs = gimple_get_lhs (stmt); 1505 if (!lhs && gimple_code (stmt) != GIMPLE_COND) 1506 return; 1507 1508 type = TREE_TYPE (gimple_op (stmt, 0)); 1509 code = gimple_expr_code (stmt); 1510 1511 /* Initial filter for operations we handle. */ 1512 switch (code) 1513 { 1514 case PLUS_EXPR: 1515 case MINUS_EXPR: 1516 case MULT_EXPR: 1517 case TRUNC_DIV_EXPR: 1518 case CEIL_DIV_EXPR: 1519 case FLOOR_DIV_EXPR: 1520 case ROUND_DIV_EXPR: 1521 case RDIV_EXPR: 1522 case NEGATE_EXPR: 1523 case CONJ_EXPR: 1524 if (TREE_CODE (type) != COMPLEX_TYPE) 1525 return; 1526 inner_type = TREE_TYPE (type); 1527 break; 1528 1529 case EQ_EXPR: 1530 case NE_EXPR: 1531 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR 1532 subcode, so we need to access the operands using gimple_op. */ 1533 inner_type = TREE_TYPE (gimple_op (stmt, 1)); 1534 if (TREE_CODE (inner_type) != COMPLEX_TYPE) 1535 return; 1536 break; 1537 1538 default: 1539 { 1540 tree rhs; 1541 1542 /* GIMPLE_COND may also fallthru here, but we do not need to 1543 do anything with it. */ 1544 if (gimple_code (stmt) == GIMPLE_COND) 1545 return; 1546 1547 if (TREE_CODE (type) == COMPLEX_TYPE) 1548 expand_complex_move (gsi, type); 1549 else if (is_gimple_assign (stmt) 1550 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR 1551 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR) 1552 && TREE_CODE (lhs) == SSA_NAME) 1553 { 1554 rhs = gimple_assign_rhs1 (stmt); 1555 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0), 1556 gimple_assign_rhs_code (stmt) 1557 == IMAGPART_EXPR, 1558 false); 1559 gimple_assign_set_rhs_from_tree (gsi, rhs); 1560 stmt = gsi_stmt (*gsi); 1561 update_stmt (stmt); 1562 } 1563 } 1564 return; 1565 } 1566 1567 /* Extract the components of the two complex values. Make sure and 1568 handle the common case of the same value used twice specially. */ 1569 if (is_gimple_assign (stmt)) 1570 { 1571 ac = gimple_assign_rhs1 (stmt); 1572 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL; 1573 } 1574 /* GIMPLE_CALL can not get here. */ 1575 else 1576 { 1577 ac = gimple_cond_lhs (stmt); 1578 bc = gimple_cond_rhs (stmt); 1579 } 1580 1581 ar = extract_component (gsi, ac, false, true); 1582 ai = extract_component (gsi, ac, true, true); 1583 1584 if (ac == bc) 1585 br = ar, bi = ai; 1586 else if (bc) 1587 { 1588 br = extract_component (gsi, bc, 0, true); 1589 bi = extract_component (gsi, bc, 1, true); 1590 } 1591 else 1592 br = bi = NULL_TREE; 1593 1594 if (gimple_in_ssa_p (cfun)) 1595 { 1596 al = find_lattice_value (ac); 1597 if (al == UNINITIALIZED) 1598 al = VARYING; 1599 1600 if (TREE_CODE_CLASS (code) == tcc_unary) 1601 bl = UNINITIALIZED; 1602 else if (ac == bc) 1603 bl = al; 1604 else 1605 { 1606 bl = find_lattice_value (bc); 1607 if (bl == UNINITIALIZED) 1608 bl = VARYING; 1609 } 1610 } 1611 else 1612 al = bl = VARYING; 1613 1614 switch (code) 1615 { 1616 case PLUS_EXPR: 1617 case MINUS_EXPR: 1618 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1619 break; 1620 1621 case MULT_EXPR: 1622 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl); 1623 break; 1624 1625 case TRUNC_DIV_EXPR: 1626 case CEIL_DIV_EXPR: 1627 case FLOOR_DIV_EXPR: 1628 case ROUND_DIV_EXPR: 1629 case RDIV_EXPR: 1630 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl); 1631 break; 1632 1633 case NEGATE_EXPR: 1634 expand_complex_negation (gsi, inner_type, ar, ai); 1635 break; 1636 1637 case CONJ_EXPR: 1638 expand_complex_conjugate (gsi, inner_type, ar, ai); 1639 break; 1640 1641 case EQ_EXPR: 1642 case NE_EXPR: 1643 expand_complex_comparison (gsi, ar, ai, br, bi, code); 1644 break; 1645 1646 default: 1647 gcc_unreachable (); 1648 } 1649 } 1650 1651 1652 /* Entry point for complex operation lowering during optimization. */ 1653 1654 static unsigned int 1655 tree_lower_complex (void) 1656 { 1657 gimple_stmt_iterator gsi; 1658 basic_block bb; 1659 int n_bbs, i; 1660 int *rpo; 1661 1662 if (!init_dont_simulate_again ()) 1663 return 0; 1664 1665 complex_lattice_values.create (num_ssa_names); 1666 complex_lattice_values.safe_grow_cleared (num_ssa_names); 1667 1668 init_parameter_lattice_values (); 1669 ssa_propagate (complex_visit_stmt, complex_visit_phi); 1670 1671 complex_variable_components = new int_tree_htab_type (10); 1672 1673 complex_ssa_name_components.create (2 * num_ssa_names); 1674 complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names); 1675 1676 update_parameter_components (); 1677 1678 rpo = XNEWVEC (int, last_basic_block_for_fn (cfun)); 1679 n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false); 1680 for (i = 0; i < n_bbs; i++) 1681 { 1682 bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]); 1683 update_phi_components (bb); 1684 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1685 expand_complex_operations_1 (&gsi); 1686 } 1687 1688 free (rpo); 1689 1690 if (!phis_to_revisit.is_empty ()) 1691 { 1692 unsigned int n = phis_to_revisit.length (); 1693 for (unsigned int j = 0; j < n; j += 3) 1694 for (unsigned int k = 0; k < 2; k++) 1695 if (gphi *phi = phis_to_revisit[j + k + 1]) 1696 { 1697 unsigned int m = gimple_phi_num_args (phi); 1698 for (unsigned int l = 0; l < m; ++l) 1699 { 1700 tree op = gimple_phi_arg_def (phi, l); 1701 if (TREE_CODE (op) == SSA_NAME 1702 || is_gimple_min_invariant (op)) 1703 continue; 1704 tree arg = gimple_phi_arg_def (phis_to_revisit[j], l); 1705 op = extract_component (NULL, arg, k > 0, false, false); 1706 SET_PHI_ARG_DEF (phi, l, op); 1707 } 1708 } 1709 phis_to_revisit.release (); 1710 } 1711 1712 gsi_commit_edge_inserts (); 1713 1714 delete complex_variable_components; 1715 complex_variable_components = NULL; 1716 complex_ssa_name_components.release (); 1717 complex_lattice_values.release (); 1718 return 0; 1719 } 1720 1721 namespace { 1722 1723 const pass_data pass_data_lower_complex = 1724 { 1725 GIMPLE_PASS, /* type */ 1726 "cplxlower", /* name */ 1727 OPTGROUP_NONE, /* optinfo_flags */ 1728 TV_NONE, /* tv_id */ 1729 PROP_ssa, /* properties_required */ 1730 PROP_gimple_lcx, /* properties_provided */ 1731 0, /* properties_destroyed */ 1732 0, /* todo_flags_start */ 1733 TODO_update_ssa, /* todo_flags_finish */ 1734 }; 1735 1736 class pass_lower_complex : public gimple_opt_pass 1737 { 1738 public: 1739 pass_lower_complex (gcc::context *ctxt) 1740 : gimple_opt_pass (pass_data_lower_complex, ctxt) 1741 {} 1742 1743 /* opt_pass methods: */ 1744 opt_pass * clone () { return new pass_lower_complex (m_ctxt); } 1745 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1746 1747 }; // class pass_lower_complex 1748 1749 } // anon namespace 1750 1751 gimple_opt_pass * 1752 make_pass_lower_complex (gcc::context *ctxt) 1753 { 1754 return new pass_lower_complex (ctxt); 1755 } 1756 1757 1758 namespace { 1759 1760 const pass_data pass_data_lower_complex_O0 = 1761 { 1762 GIMPLE_PASS, /* type */ 1763 "cplxlower0", /* name */ 1764 OPTGROUP_NONE, /* optinfo_flags */ 1765 TV_NONE, /* tv_id */ 1766 PROP_cfg, /* properties_required */ 1767 PROP_gimple_lcx, /* properties_provided */ 1768 0, /* properties_destroyed */ 1769 0, /* todo_flags_start */ 1770 TODO_update_ssa, /* todo_flags_finish */ 1771 }; 1772 1773 class pass_lower_complex_O0 : public gimple_opt_pass 1774 { 1775 public: 1776 pass_lower_complex_O0 (gcc::context *ctxt) 1777 : gimple_opt_pass (pass_data_lower_complex_O0, ctxt) 1778 {} 1779 1780 /* opt_pass methods: */ 1781 virtual bool gate (function *fun) 1782 { 1783 /* With errors, normal optimization passes are not run. If we don't 1784 lower complex operations at all, rtl expansion will abort. */ 1785 return !(fun->curr_properties & PROP_gimple_lcx); 1786 } 1787 1788 virtual unsigned int execute (function *) { return tree_lower_complex (); } 1789 1790 }; // class pass_lower_complex_O0 1791 1792 } // anon namespace 1793 1794 gimple_opt_pass * 1795 make_pass_lower_complex_O0 (gcc::context *ctxt) 1796 { 1797 return new pass_lower_complex_O0 (ctxt); 1798 } 1799