11debfc3dSmrg /* Lower complex number operations to scalar operations.
2*8feb0f0bSmrg Copyright (C) 2004-2020 Free Software Foundation, Inc.
31debfc3dSmrg
41debfc3dSmrg This file is part of GCC.
51debfc3dSmrg
61debfc3dSmrg GCC is free software; you can redistribute it and/or modify it
71debfc3dSmrg under the terms of the GNU General Public License as published by the
81debfc3dSmrg Free Software Foundation; either version 3, or (at your option) any
91debfc3dSmrg later version.
101debfc3dSmrg
111debfc3dSmrg GCC is distributed in the hope that it will be useful, but WITHOUT
121debfc3dSmrg ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
131debfc3dSmrg FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
141debfc3dSmrg for more details.
151debfc3dSmrg
161debfc3dSmrg You should have received a copy of the GNU General Public License
171debfc3dSmrg along with GCC; see the file COPYING3. If not see
181debfc3dSmrg <http://www.gnu.org/licenses/>. */
191debfc3dSmrg
201debfc3dSmrg #include "config.h"
211debfc3dSmrg #include "system.h"
221debfc3dSmrg #include "coretypes.h"
231debfc3dSmrg #include "backend.h"
241debfc3dSmrg #include "rtl.h"
251debfc3dSmrg #include "tree.h"
261debfc3dSmrg #include "gimple.h"
271debfc3dSmrg #include "cfghooks.h"
281debfc3dSmrg #include "tree-pass.h"
291debfc3dSmrg #include "ssa.h"
301debfc3dSmrg #include "fold-const.h"
311debfc3dSmrg #include "stor-layout.h"
321debfc3dSmrg #include "tree-eh.h"
331debfc3dSmrg #include "gimplify.h"
341debfc3dSmrg #include "gimple-iterator.h"
351debfc3dSmrg #include "gimplify-me.h"
361debfc3dSmrg #include "tree-cfg.h"
371debfc3dSmrg #include "tree-dfa.h"
381debfc3dSmrg #include "tree-ssa.h"
391debfc3dSmrg #include "tree-ssa-propagate.h"
401debfc3dSmrg #include "tree-hasher.h"
411debfc3dSmrg #include "cfgloop.h"
421debfc3dSmrg #include "cfganal.h"
431debfc3dSmrg
441debfc3dSmrg
451debfc3dSmrg /* For each complex ssa name, a lattice value. We're interested in finding
461debfc3dSmrg out whether a complex number is degenerate in some way, having only real
471debfc3dSmrg or only complex parts. */
481debfc3dSmrg
491debfc3dSmrg enum
501debfc3dSmrg {
511debfc3dSmrg UNINITIALIZED = 0,
521debfc3dSmrg ONLY_REAL = 1,
531debfc3dSmrg ONLY_IMAG = 2,
541debfc3dSmrg VARYING = 3
551debfc3dSmrg };
561debfc3dSmrg
571debfc3dSmrg /* The type complex_lattice_t holds combinations of the above
581debfc3dSmrg constants. */
591debfc3dSmrg typedef int complex_lattice_t;
601debfc3dSmrg
611debfc3dSmrg #define PAIR(a, b) ((a) << 2 | (b))
621debfc3dSmrg
63a2dc1f3fSmrg class complex_propagate : public ssa_propagation_engine
64a2dc1f3fSmrg {
65a2dc1f3fSmrg enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
66a2dc1f3fSmrg enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
67a2dc1f3fSmrg };
681debfc3dSmrg
691debfc3dSmrg static vec<complex_lattice_t> complex_lattice_values;
701debfc3dSmrg
711debfc3dSmrg /* For each complex variable, a pair of variables for the components exists in
721debfc3dSmrg the hashtable. */
731debfc3dSmrg static int_tree_htab_type *complex_variable_components;
741debfc3dSmrg
751debfc3dSmrg /* For each complex SSA_NAME, a pair of ssa names for the components. */
761debfc3dSmrg static vec<tree> complex_ssa_name_components;
771debfc3dSmrg
781debfc3dSmrg /* Vector of PHI triplets (original complex PHI and corresponding real and
791debfc3dSmrg imag PHIs if real and/or imag PHIs contain temporarily
801debfc3dSmrg non-SSA_NAME/non-invariant args that need to be replaced by SSA_NAMEs. */
811debfc3dSmrg static vec<gphi *> phis_to_revisit;
821debfc3dSmrg
83a05ac97eSmrg /* BBs that need EH cleanup. */
84a05ac97eSmrg static bitmap need_eh_cleanup;
85a05ac97eSmrg
861debfc3dSmrg /* Lookup UID in the complex_variable_components hashtable and return the
871debfc3dSmrg associated tree. */
881debfc3dSmrg static tree
cvc_lookup(unsigned int uid)891debfc3dSmrg cvc_lookup (unsigned int uid)
901debfc3dSmrg {
911debfc3dSmrg struct int_tree_map in;
921debfc3dSmrg in.uid = uid;
931debfc3dSmrg return complex_variable_components->find_with_hash (in, uid).to;
941debfc3dSmrg }
951debfc3dSmrg
961debfc3dSmrg /* Insert the pair UID, TO into the complex_variable_components hashtable. */
971debfc3dSmrg
981debfc3dSmrg static void
cvc_insert(unsigned int uid,tree to)991debfc3dSmrg cvc_insert (unsigned int uid, tree to)
1001debfc3dSmrg {
1011debfc3dSmrg int_tree_map h;
1021debfc3dSmrg int_tree_map *loc;
1031debfc3dSmrg
1041debfc3dSmrg h.uid = uid;
1051debfc3dSmrg loc = complex_variable_components->find_slot_with_hash (h, uid, INSERT);
1061debfc3dSmrg loc->uid = uid;
1071debfc3dSmrg loc->to = to;
1081debfc3dSmrg }
1091debfc3dSmrg
1101debfc3dSmrg /* Return true if T is not a zero constant. In the case of real values,
1111debfc3dSmrg we're only interested in +0.0. */
1121debfc3dSmrg
1131debfc3dSmrg static int
some_nonzerop(tree t)1141debfc3dSmrg some_nonzerop (tree t)
1151debfc3dSmrg {
1161debfc3dSmrg int zerop = false;
1171debfc3dSmrg
1181debfc3dSmrg /* Operations with real or imaginary part of a complex number zero
1191debfc3dSmrg cannot be treated the same as operations with a real or imaginary
1201debfc3dSmrg operand if we care about the signs of zeros in the result. */
1211debfc3dSmrg if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
1221debfc3dSmrg zerop = real_identical (&TREE_REAL_CST (t), &dconst0);
1231debfc3dSmrg else if (TREE_CODE (t) == FIXED_CST)
1241debfc3dSmrg zerop = fixed_zerop (t);
1251debfc3dSmrg else if (TREE_CODE (t) == INTEGER_CST)
1261debfc3dSmrg zerop = integer_zerop (t);
1271debfc3dSmrg
1281debfc3dSmrg return !zerop;
1291debfc3dSmrg }
1301debfc3dSmrg
1311debfc3dSmrg
1321debfc3dSmrg /* Compute a lattice value from the components of a complex type REAL
1331debfc3dSmrg and IMAG. */
1341debfc3dSmrg
1351debfc3dSmrg static complex_lattice_t
find_lattice_value_parts(tree real,tree imag)1361debfc3dSmrg find_lattice_value_parts (tree real, tree imag)
1371debfc3dSmrg {
1381debfc3dSmrg int r, i;
1391debfc3dSmrg complex_lattice_t ret;
1401debfc3dSmrg
1411debfc3dSmrg r = some_nonzerop (real);
1421debfc3dSmrg i = some_nonzerop (imag);
1431debfc3dSmrg ret = r * ONLY_REAL + i * ONLY_IMAG;
1441debfc3dSmrg
1451debfc3dSmrg /* ??? On occasion we could do better than mapping 0+0i to real, but we
1461debfc3dSmrg certainly don't want to leave it UNINITIALIZED, which eventually gets
1471debfc3dSmrg mapped to VARYING. */
1481debfc3dSmrg if (ret == UNINITIALIZED)
1491debfc3dSmrg ret = ONLY_REAL;
1501debfc3dSmrg
1511debfc3dSmrg return ret;
1521debfc3dSmrg }
1531debfc3dSmrg
1541debfc3dSmrg
1551debfc3dSmrg /* Compute a lattice value from gimple_val T. */
1561debfc3dSmrg
1571debfc3dSmrg static complex_lattice_t
find_lattice_value(tree t)1581debfc3dSmrg find_lattice_value (tree t)
1591debfc3dSmrg {
1601debfc3dSmrg tree real, imag;
1611debfc3dSmrg
1621debfc3dSmrg switch (TREE_CODE (t))
1631debfc3dSmrg {
1641debfc3dSmrg case SSA_NAME:
1651debfc3dSmrg return complex_lattice_values[SSA_NAME_VERSION (t)];
1661debfc3dSmrg
1671debfc3dSmrg case COMPLEX_CST:
1681debfc3dSmrg real = TREE_REALPART (t);
1691debfc3dSmrg imag = TREE_IMAGPART (t);
1701debfc3dSmrg break;
1711debfc3dSmrg
1721debfc3dSmrg default:
1731debfc3dSmrg gcc_unreachable ();
1741debfc3dSmrg }
1751debfc3dSmrg
1761debfc3dSmrg return find_lattice_value_parts (real, imag);
1771debfc3dSmrg }
1781debfc3dSmrg
1791debfc3dSmrg /* Determine if LHS is something for which we're interested in seeing
1801debfc3dSmrg simulation results. */
1811debfc3dSmrg
1821debfc3dSmrg static bool
is_complex_reg(tree lhs)1831debfc3dSmrg is_complex_reg (tree lhs)
1841debfc3dSmrg {
1851debfc3dSmrg return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
1861debfc3dSmrg }
1871debfc3dSmrg
1881debfc3dSmrg /* Mark the incoming parameters to the function as VARYING. */
1891debfc3dSmrg
1901debfc3dSmrg static void
init_parameter_lattice_values(void)1911debfc3dSmrg init_parameter_lattice_values (void)
1921debfc3dSmrg {
1931debfc3dSmrg tree parm, ssa_name;
1941debfc3dSmrg
1951debfc3dSmrg for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
1961debfc3dSmrg if (is_complex_reg (parm)
1971debfc3dSmrg && (ssa_name = ssa_default_def (cfun, parm)) != NULL_TREE)
1981debfc3dSmrg complex_lattice_values[SSA_NAME_VERSION (ssa_name)] = VARYING;
1991debfc3dSmrg }
2001debfc3dSmrg
2011debfc3dSmrg /* Initialize simulation state for each statement. Return false if we
2021debfc3dSmrg found no statements we want to simulate, and thus there's nothing
2031debfc3dSmrg for the entire pass to do. */
2041debfc3dSmrg
2051debfc3dSmrg static bool
init_dont_simulate_again(void)2061debfc3dSmrg init_dont_simulate_again (void)
2071debfc3dSmrg {
2081debfc3dSmrg basic_block bb;
2091debfc3dSmrg bool saw_a_complex_op = false;
2101debfc3dSmrg
2111debfc3dSmrg FOR_EACH_BB_FN (bb, cfun)
2121debfc3dSmrg {
2131debfc3dSmrg for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2141debfc3dSmrg gsi_next (&gsi))
2151debfc3dSmrg {
2161debfc3dSmrg gphi *phi = gsi.phi ();
2171debfc3dSmrg prop_set_simulate_again (phi,
2181debfc3dSmrg is_complex_reg (gimple_phi_result (phi)));
2191debfc3dSmrg }
2201debfc3dSmrg
2211debfc3dSmrg for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2221debfc3dSmrg gsi_next (&gsi))
2231debfc3dSmrg {
2241debfc3dSmrg gimple *stmt;
2251debfc3dSmrg tree op0, op1;
2261debfc3dSmrg bool sim_again_p;
2271debfc3dSmrg
2281debfc3dSmrg stmt = gsi_stmt (gsi);
2291debfc3dSmrg op0 = op1 = NULL_TREE;
2301debfc3dSmrg
2311debfc3dSmrg /* Most control-altering statements must be initially
2321debfc3dSmrg simulated, else we won't cover the entire cfg. */
2331debfc3dSmrg sim_again_p = stmt_ends_bb_p (stmt);
2341debfc3dSmrg
2351debfc3dSmrg switch (gimple_code (stmt))
2361debfc3dSmrg {
2371debfc3dSmrg case GIMPLE_CALL:
2381debfc3dSmrg if (gimple_call_lhs (stmt))
2391debfc3dSmrg sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
2401debfc3dSmrg break;
2411debfc3dSmrg
2421debfc3dSmrg case GIMPLE_ASSIGN:
2431debfc3dSmrg sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
2441debfc3dSmrg if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
2451debfc3dSmrg || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
2461debfc3dSmrg op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
2471debfc3dSmrg else
2481debfc3dSmrg op0 = gimple_assign_rhs1 (stmt);
2491debfc3dSmrg if (gimple_num_ops (stmt) > 2)
2501debfc3dSmrg op1 = gimple_assign_rhs2 (stmt);
2511debfc3dSmrg break;
2521debfc3dSmrg
2531debfc3dSmrg case GIMPLE_COND:
2541debfc3dSmrg op0 = gimple_cond_lhs (stmt);
2551debfc3dSmrg op1 = gimple_cond_rhs (stmt);
2561debfc3dSmrg break;
2571debfc3dSmrg
2581debfc3dSmrg default:
2591debfc3dSmrg break;
2601debfc3dSmrg }
2611debfc3dSmrg
2621debfc3dSmrg if (op0 || op1)
2631debfc3dSmrg switch (gimple_expr_code (stmt))
2641debfc3dSmrg {
2651debfc3dSmrg case EQ_EXPR:
2661debfc3dSmrg case NE_EXPR:
2671debfc3dSmrg case PLUS_EXPR:
2681debfc3dSmrg case MINUS_EXPR:
2691debfc3dSmrg case MULT_EXPR:
2701debfc3dSmrg case TRUNC_DIV_EXPR:
2711debfc3dSmrg case CEIL_DIV_EXPR:
2721debfc3dSmrg case FLOOR_DIV_EXPR:
2731debfc3dSmrg case ROUND_DIV_EXPR:
2741debfc3dSmrg case RDIV_EXPR:
2751debfc3dSmrg if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
2761debfc3dSmrg || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
2771debfc3dSmrg saw_a_complex_op = true;
2781debfc3dSmrg break;
2791debfc3dSmrg
2801debfc3dSmrg case NEGATE_EXPR:
2811debfc3dSmrg case CONJ_EXPR:
2821debfc3dSmrg if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
2831debfc3dSmrg saw_a_complex_op = true;
2841debfc3dSmrg break;
2851debfc3dSmrg
2861debfc3dSmrg case REALPART_EXPR:
2871debfc3dSmrg case IMAGPART_EXPR:
2881debfc3dSmrg /* The total store transformation performed during
2891debfc3dSmrg gimplification creates such uninitialized loads
2901debfc3dSmrg and we need to lower the statement to be able
2911debfc3dSmrg to fix things up. */
2921debfc3dSmrg if (TREE_CODE (op0) == SSA_NAME
2931debfc3dSmrg && ssa_undefined_value_p (op0))
2941debfc3dSmrg saw_a_complex_op = true;
2951debfc3dSmrg break;
2961debfc3dSmrg
2971debfc3dSmrg default:
2981debfc3dSmrg break;
2991debfc3dSmrg }
3001debfc3dSmrg
3011debfc3dSmrg prop_set_simulate_again (stmt, sim_again_p);
3021debfc3dSmrg }
3031debfc3dSmrg }
3041debfc3dSmrg
3051debfc3dSmrg return saw_a_complex_op;
3061debfc3dSmrg }
3071debfc3dSmrg
3081debfc3dSmrg
3091debfc3dSmrg /* Evaluate statement STMT against the complex lattice defined above. */
3101debfc3dSmrg
311a2dc1f3fSmrg enum ssa_prop_result
visit_stmt(gimple * stmt,edge * taken_edge_p ATTRIBUTE_UNUSED,tree * result_p)312a2dc1f3fSmrg complex_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
3131debfc3dSmrg tree *result_p)
3141debfc3dSmrg {
3151debfc3dSmrg complex_lattice_t new_l, old_l, op1_l, op2_l;
3161debfc3dSmrg unsigned int ver;
3171debfc3dSmrg tree lhs;
3181debfc3dSmrg
3191debfc3dSmrg lhs = gimple_get_lhs (stmt);
3201debfc3dSmrg /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
321*8feb0f0bSmrg if (!lhs || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3221debfc3dSmrg return SSA_PROP_VARYING;
3231debfc3dSmrg
3241debfc3dSmrg /* These conditions should be satisfied due to the initial filter
3251debfc3dSmrg set up in init_dont_simulate_again. */
3261debfc3dSmrg gcc_assert (TREE_CODE (lhs) == SSA_NAME);
3271debfc3dSmrg gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
3281debfc3dSmrg
3291debfc3dSmrg *result_p = lhs;
3301debfc3dSmrg ver = SSA_NAME_VERSION (lhs);
3311debfc3dSmrg old_l = complex_lattice_values[ver];
3321debfc3dSmrg
3331debfc3dSmrg switch (gimple_expr_code (stmt))
3341debfc3dSmrg {
3351debfc3dSmrg case SSA_NAME:
3361debfc3dSmrg case COMPLEX_CST:
3371debfc3dSmrg new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
3381debfc3dSmrg break;
3391debfc3dSmrg
3401debfc3dSmrg case COMPLEX_EXPR:
3411debfc3dSmrg new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
3421debfc3dSmrg gimple_assign_rhs2 (stmt));
3431debfc3dSmrg break;
3441debfc3dSmrg
3451debfc3dSmrg case PLUS_EXPR:
3461debfc3dSmrg case MINUS_EXPR:
3471debfc3dSmrg op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
3481debfc3dSmrg op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
3491debfc3dSmrg
3501debfc3dSmrg /* We've set up the lattice values such that IOR neatly
3511debfc3dSmrg models addition. */
3521debfc3dSmrg new_l = op1_l | op2_l;
3531debfc3dSmrg break;
3541debfc3dSmrg
3551debfc3dSmrg case MULT_EXPR:
3561debfc3dSmrg case RDIV_EXPR:
3571debfc3dSmrg case TRUNC_DIV_EXPR:
3581debfc3dSmrg case CEIL_DIV_EXPR:
3591debfc3dSmrg case FLOOR_DIV_EXPR:
3601debfc3dSmrg case ROUND_DIV_EXPR:
3611debfc3dSmrg op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
3621debfc3dSmrg op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
3631debfc3dSmrg
3641debfc3dSmrg /* Obviously, if either varies, so does the result. */
3651debfc3dSmrg if (op1_l == VARYING || op2_l == VARYING)
3661debfc3dSmrg new_l = VARYING;
3671debfc3dSmrg /* Don't prematurely promote variables if we've not yet seen
3681debfc3dSmrg their inputs. */
3691debfc3dSmrg else if (op1_l == UNINITIALIZED)
3701debfc3dSmrg new_l = op2_l;
3711debfc3dSmrg else if (op2_l == UNINITIALIZED)
3721debfc3dSmrg new_l = op1_l;
3731debfc3dSmrg else
3741debfc3dSmrg {
3751debfc3dSmrg /* At this point both numbers have only one component. If the
3761debfc3dSmrg numbers are of opposite kind, the result is imaginary,
3771debfc3dSmrg otherwise the result is real. The add/subtract translates
3781debfc3dSmrg the real/imag from/to 0/1; the ^ performs the comparison. */
3791debfc3dSmrg new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
3801debfc3dSmrg
3811debfc3dSmrg /* Don't allow the lattice value to flip-flop indefinitely. */
3821debfc3dSmrg new_l |= old_l;
3831debfc3dSmrg }
3841debfc3dSmrg break;
3851debfc3dSmrg
3861debfc3dSmrg case NEGATE_EXPR:
3871debfc3dSmrg case CONJ_EXPR:
3881debfc3dSmrg new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
3891debfc3dSmrg break;
3901debfc3dSmrg
3911debfc3dSmrg default:
3921debfc3dSmrg new_l = VARYING;
3931debfc3dSmrg break;
3941debfc3dSmrg }
3951debfc3dSmrg
3961debfc3dSmrg /* If nothing changed this round, let the propagator know. */
3971debfc3dSmrg if (new_l == old_l)
3981debfc3dSmrg return SSA_PROP_NOT_INTERESTING;
3991debfc3dSmrg
4001debfc3dSmrg complex_lattice_values[ver] = new_l;
4011debfc3dSmrg return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
4021debfc3dSmrg }
4031debfc3dSmrg
4041debfc3dSmrg /* Evaluate a PHI node against the complex lattice defined above. */
4051debfc3dSmrg
406a2dc1f3fSmrg enum ssa_prop_result
visit_phi(gphi * phi)407a2dc1f3fSmrg complex_propagate::visit_phi (gphi *phi)
4081debfc3dSmrg {
4091debfc3dSmrg complex_lattice_t new_l, old_l;
4101debfc3dSmrg unsigned int ver;
4111debfc3dSmrg tree lhs;
4121debfc3dSmrg int i;
4131debfc3dSmrg
4141debfc3dSmrg lhs = gimple_phi_result (phi);
4151debfc3dSmrg
4161debfc3dSmrg /* This condition should be satisfied due to the initial filter
4171debfc3dSmrg set up in init_dont_simulate_again. */
4181debfc3dSmrg gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
4191debfc3dSmrg
420*8feb0f0bSmrg if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
421*8feb0f0bSmrg return SSA_PROP_VARYING;
422*8feb0f0bSmrg
4231debfc3dSmrg /* We've set up the lattice values such that IOR neatly models PHI meet. */
4241debfc3dSmrg new_l = UNINITIALIZED;
4251debfc3dSmrg for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
4261debfc3dSmrg new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
4271debfc3dSmrg
4281debfc3dSmrg ver = SSA_NAME_VERSION (lhs);
4291debfc3dSmrg old_l = complex_lattice_values[ver];
4301debfc3dSmrg
4311debfc3dSmrg if (new_l == old_l)
4321debfc3dSmrg return SSA_PROP_NOT_INTERESTING;
4331debfc3dSmrg
4341debfc3dSmrg complex_lattice_values[ver] = new_l;
4351debfc3dSmrg return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
4361debfc3dSmrg }
4371debfc3dSmrg
4381debfc3dSmrg /* Create one backing variable for a complex component of ORIG. */
4391debfc3dSmrg
4401debfc3dSmrg static tree
create_one_component_var(tree type,tree orig,const char * prefix,const char * suffix,enum tree_code code)4411debfc3dSmrg create_one_component_var (tree type, tree orig, const char *prefix,
4421debfc3dSmrg const char *suffix, enum tree_code code)
4431debfc3dSmrg {
4441debfc3dSmrg tree r = create_tmp_var (type, prefix);
4451debfc3dSmrg
4461debfc3dSmrg DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
4471debfc3dSmrg DECL_ARTIFICIAL (r) = 1;
4481debfc3dSmrg
4491debfc3dSmrg if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
4501debfc3dSmrg {
4511debfc3dSmrg const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
4521debfc3dSmrg name = ACONCAT ((name, suffix, NULL));
4531debfc3dSmrg DECL_NAME (r) = get_identifier (name);
4541debfc3dSmrg
4551debfc3dSmrg SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
4561debfc3dSmrg DECL_HAS_DEBUG_EXPR_P (r) = 1;
4571debfc3dSmrg DECL_IGNORED_P (r) = 0;
4581debfc3dSmrg TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
4591debfc3dSmrg }
4601debfc3dSmrg else
4611debfc3dSmrg {
4621debfc3dSmrg DECL_IGNORED_P (r) = 1;
4631debfc3dSmrg TREE_NO_WARNING (r) = 1;
4641debfc3dSmrg }
4651debfc3dSmrg
4661debfc3dSmrg return r;
4671debfc3dSmrg }
4681debfc3dSmrg
4691debfc3dSmrg /* Retrieve a value for a complex component of VAR. */
4701debfc3dSmrg
4711debfc3dSmrg static tree
get_component_var(tree var,bool imag_p)4721debfc3dSmrg get_component_var (tree var, bool imag_p)
4731debfc3dSmrg {
4741debfc3dSmrg size_t decl_index = DECL_UID (var) * 2 + imag_p;
4751debfc3dSmrg tree ret = cvc_lookup (decl_index);
4761debfc3dSmrg
4771debfc3dSmrg if (ret == NULL)
4781debfc3dSmrg {
4791debfc3dSmrg ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
4801debfc3dSmrg imag_p ? "CI" : "CR",
4811debfc3dSmrg imag_p ? "$imag" : "$real",
4821debfc3dSmrg imag_p ? IMAGPART_EXPR : REALPART_EXPR);
4831debfc3dSmrg cvc_insert (decl_index, ret);
4841debfc3dSmrg }
4851debfc3dSmrg
4861debfc3dSmrg return ret;
4871debfc3dSmrg }
4881debfc3dSmrg
4891debfc3dSmrg /* Retrieve a value for a complex component of SSA_NAME. */
4901debfc3dSmrg
4911debfc3dSmrg static tree
get_component_ssa_name(tree ssa_name,bool imag_p)4921debfc3dSmrg get_component_ssa_name (tree ssa_name, bool imag_p)
4931debfc3dSmrg {
4941debfc3dSmrg complex_lattice_t lattice = find_lattice_value (ssa_name);
4951debfc3dSmrg size_t ssa_name_index;
4961debfc3dSmrg tree ret;
4971debfc3dSmrg
4981debfc3dSmrg if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
4991debfc3dSmrg {
5001debfc3dSmrg tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
5011debfc3dSmrg if (SCALAR_FLOAT_TYPE_P (inner_type))
5021debfc3dSmrg return build_real (inner_type, dconst0);
5031debfc3dSmrg else
5041debfc3dSmrg return build_int_cst (inner_type, 0);
5051debfc3dSmrg }
5061debfc3dSmrg
5071debfc3dSmrg ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
5081debfc3dSmrg ret = complex_ssa_name_components[ssa_name_index];
5091debfc3dSmrg if (ret == NULL)
5101debfc3dSmrg {
5111debfc3dSmrg if (SSA_NAME_VAR (ssa_name))
5121debfc3dSmrg ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
5131debfc3dSmrg else
5141debfc3dSmrg ret = TREE_TYPE (TREE_TYPE (ssa_name));
5151debfc3dSmrg ret = make_ssa_name (ret);
5161debfc3dSmrg
5171debfc3dSmrg /* Copy some properties from the original. In particular, whether it
5181debfc3dSmrg is used in an abnormal phi, and whether it's uninitialized. */
5191debfc3dSmrg SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
5201debfc3dSmrg = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
5211debfc3dSmrg if (SSA_NAME_IS_DEFAULT_DEF (ssa_name)
5221debfc3dSmrg && TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL)
5231debfc3dSmrg {
5241debfc3dSmrg SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
5251debfc3dSmrg set_ssa_default_def (cfun, SSA_NAME_VAR (ret), ret);
5261debfc3dSmrg }
5271debfc3dSmrg
5281debfc3dSmrg complex_ssa_name_components[ssa_name_index] = ret;
5291debfc3dSmrg }
5301debfc3dSmrg
5311debfc3dSmrg return ret;
5321debfc3dSmrg }
5331debfc3dSmrg
5341debfc3dSmrg /* Set a value for a complex component of SSA_NAME, return a
5351debfc3dSmrg gimple_seq of stuff that needs doing. */
5361debfc3dSmrg
5371debfc3dSmrg static gimple_seq
set_component_ssa_name(tree ssa_name,bool imag_p,tree value)5381debfc3dSmrg set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
5391debfc3dSmrg {
5401debfc3dSmrg complex_lattice_t lattice = find_lattice_value (ssa_name);
5411debfc3dSmrg size_t ssa_name_index;
5421debfc3dSmrg tree comp;
5431debfc3dSmrg gimple *last;
5441debfc3dSmrg gimple_seq list;
5451debfc3dSmrg
5461debfc3dSmrg /* We know the value must be zero, else there's a bug in our lattice
5471debfc3dSmrg analysis. But the value may well be a variable known to contain
5481debfc3dSmrg zero. We should be safe ignoring it. */
5491debfc3dSmrg if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
5501debfc3dSmrg return NULL;
5511debfc3dSmrg
5521debfc3dSmrg /* If we've already assigned an SSA_NAME to this component, then this
5531debfc3dSmrg means that our walk of the basic blocks found a use before the set.
5541debfc3dSmrg This is fine. Now we should create an initialization for the value
5551debfc3dSmrg we created earlier. */
5561debfc3dSmrg ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
5571debfc3dSmrg comp = complex_ssa_name_components[ssa_name_index];
5581debfc3dSmrg if (comp)
5591debfc3dSmrg ;
5601debfc3dSmrg
5611debfc3dSmrg /* If we've nothing assigned, and the value we're given is already stable,
5621debfc3dSmrg then install that as the value for this SSA_NAME. This preemptively
5631debfc3dSmrg copy-propagates the value, which avoids unnecessary memory allocation. */
5641debfc3dSmrg else if (is_gimple_min_invariant (value)
5651debfc3dSmrg && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
5661debfc3dSmrg {
5671debfc3dSmrg complex_ssa_name_components[ssa_name_index] = value;
5681debfc3dSmrg return NULL;
5691debfc3dSmrg }
5701debfc3dSmrg else if (TREE_CODE (value) == SSA_NAME
5711debfc3dSmrg && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
5721debfc3dSmrg {
5731debfc3dSmrg /* Replace an anonymous base value with the variable from cvc_lookup.
5741debfc3dSmrg This should result in better debug info. */
575*8feb0f0bSmrg if (!SSA_NAME_IS_DEFAULT_DEF (value)
576*8feb0f0bSmrg && SSA_NAME_VAR (ssa_name)
5771debfc3dSmrg && (!SSA_NAME_VAR (value) || DECL_IGNORED_P (SSA_NAME_VAR (value)))
5781debfc3dSmrg && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
5791debfc3dSmrg {
5801debfc3dSmrg comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
5811debfc3dSmrg replace_ssa_name_symbol (value, comp);
5821debfc3dSmrg }
5831debfc3dSmrg
5841debfc3dSmrg complex_ssa_name_components[ssa_name_index] = value;
5851debfc3dSmrg return NULL;
5861debfc3dSmrg }
5871debfc3dSmrg
5881debfc3dSmrg /* Finally, we need to stabilize the result by installing the value into
5891debfc3dSmrg a new ssa name. */
5901debfc3dSmrg else
5911debfc3dSmrg comp = get_component_ssa_name (ssa_name, imag_p);
5921debfc3dSmrg
5931debfc3dSmrg /* Do all the work to assign VALUE to COMP. */
5941debfc3dSmrg list = NULL;
5951debfc3dSmrg value = force_gimple_operand (value, &list, false, NULL);
5961debfc3dSmrg last = gimple_build_assign (comp, value);
5971debfc3dSmrg gimple_seq_add_stmt (&list, last);
5981debfc3dSmrg gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
5991debfc3dSmrg
6001debfc3dSmrg return list;
6011debfc3dSmrg }
6021debfc3dSmrg
6031debfc3dSmrg /* Extract the real or imaginary part of a complex variable or constant.
6041debfc3dSmrg Make sure that it's a proper gimple_val and gimplify it if not.
6051debfc3dSmrg Emit any new code before gsi. */
6061debfc3dSmrg
6071debfc3dSmrg static tree
6081debfc3dSmrg extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
6091debfc3dSmrg bool gimple_p, bool phiarg_p = false)
6101debfc3dSmrg {
6111debfc3dSmrg switch (TREE_CODE (t))
6121debfc3dSmrg {
6131debfc3dSmrg case COMPLEX_CST:
6141debfc3dSmrg return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
6151debfc3dSmrg
6161debfc3dSmrg case COMPLEX_EXPR:
6171debfc3dSmrg gcc_unreachable ();
6181debfc3dSmrg
6191debfc3dSmrg case BIT_FIELD_REF:
6201debfc3dSmrg {
6211debfc3dSmrg tree inner_type = TREE_TYPE (TREE_TYPE (t));
6221debfc3dSmrg t = unshare_expr (t);
6231debfc3dSmrg TREE_TYPE (t) = inner_type;
6241debfc3dSmrg TREE_OPERAND (t, 1) = TYPE_SIZE (inner_type);
6251debfc3dSmrg if (imagpart_p)
6261debfc3dSmrg TREE_OPERAND (t, 2) = size_binop (PLUS_EXPR, TREE_OPERAND (t, 2),
6271debfc3dSmrg TYPE_SIZE (inner_type));
6281debfc3dSmrg if (gimple_p)
6291debfc3dSmrg t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
6301debfc3dSmrg GSI_SAME_STMT);
6311debfc3dSmrg return t;
6321debfc3dSmrg }
6331debfc3dSmrg
6341debfc3dSmrg case VAR_DECL:
6351debfc3dSmrg case RESULT_DECL:
6361debfc3dSmrg case PARM_DECL:
6371debfc3dSmrg case COMPONENT_REF:
6381debfc3dSmrg case ARRAY_REF:
6391debfc3dSmrg case VIEW_CONVERT_EXPR:
6401debfc3dSmrg case MEM_REF:
6411debfc3dSmrg {
6421debfc3dSmrg tree inner_type = TREE_TYPE (TREE_TYPE (t));
6431debfc3dSmrg
6441debfc3dSmrg t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
6451debfc3dSmrg inner_type, unshare_expr (t));
6461debfc3dSmrg
6471debfc3dSmrg if (gimple_p)
6481debfc3dSmrg t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
6491debfc3dSmrg GSI_SAME_STMT);
6501debfc3dSmrg
6511debfc3dSmrg return t;
6521debfc3dSmrg }
6531debfc3dSmrg
6541debfc3dSmrg case SSA_NAME:
6551debfc3dSmrg t = get_component_ssa_name (t, imagpart_p);
6561debfc3dSmrg if (TREE_CODE (t) == SSA_NAME && SSA_NAME_DEF_STMT (t) == NULL)
6571debfc3dSmrg gcc_assert (phiarg_p);
6581debfc3dSmrg return t;
6591debfc3dSmrg
6601debfc3dSmrg default:
6611debfc3dSmrg gcc_unreachable ();
6621debfc3dSmrg }
6631debfc3dSmrg }
6641debfc3dSmrg
6651debfc3dSmrg /* Update the complex components of the ssa name on the lhs of STMT. */
6661debfc3dSmrg
6671debfc3dSmrg static void
update_complex_components(gimple_stmt_iterator * gsi,gimple * stmt,tree r,tree i)6681debfc3dSmrg update_complex_components (gimple_stmt_iterator *gsi, gimple *stmt, tree r,
6691debfc3dSmrg tree i)
6701debfc3dSmrg {
6711debfc3dSmrg tree lhs;
6721debfc3dSmrg gimple_seq list;
6731debfc3dSmrg
6741debfc3dSmrg lhs = gimple_get_lhs (stmt);
6751debfc3dSmrg
6761debfc3dSmrg list = set_component_ssa_name (lhs, false, r);
6771debfc3dSmrg if (list)
6781debfc3dSmrg gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6791debfc3dSmrg
6801debfc3dSmrg list = set_component_ssa_name (lhs, true, i);
6811debfc3dSmrg if (list)
6821debfc3dSmrg gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
6831debfc3dSmrg }
6841debfc3dSmrg
6851debfc3dSmrg static void
update_complex_components_on_edge(edge e,tree lhs,tree r,tree i)6861debfc3dSmrg update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
6871debfc3dSmrg {
6881debfc3dSmrg gimple_seq list;
6891debfc3dSmrg
6901debfc3dSmrg list = set_component_ssa_name (lhs, false, r);
6911debfc3dSmrg if (list)
6921debfc3dSmrg gsi_insert_seq_on_edge (e, list);
6931debfc3dSmrg
6941debfc3dSmrg list = set_component_ssa_name (lhs, true, i);
6951debfc3dSmrg if (list)
6961debfc3dSmrg gsi_insert_seq_on_edge (e, list);
6971debfc3dSmrg }
6981debfc3dSmrg
6991debfc3dSmrg
7001debfc3dSmrg /* Update an assignment to a complex variable in place. */
7011debfc3dSmrg
7021debfc3dSmrg static void
update_complex_assignment(gimple_stmt_iterator * gsi,tree r,tree i)7031debfc3dSmrg update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
7041debfc3dSmrg {
705a05ac97eSmrg gimple *old_stmt = gsi_stmt (*gsi);
7061debfc3dSmrg gimple_assign_set_rhs_with_ops (gsi, COMPLEX_EXPR, r, i);
707a05ac97eSmrg gimple *stmt = gsi_stmt (*gsi);
7081debfc3dSmrg update_stmt (stmt);
709a05ac97eSmrg if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
710a05ac97eSmrg bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
7111debfc3dSmrg
7121debfc3dSmrg update_complex_components (gsi, gsi_stmt (*gsi), r, i);
7131debfc3dSmrg }
7141debfc3dSmrg
7151debfc3dSmrg
7161debfc3dSmrg /* Generate code at the entry point of the function to initialize the
7171debfc3dSmrg component variables for a complex parameter. */
7181debfc3dSmrg
7191debfc3dSmrg static void
update_parameter_components(void)7201debfc3dSmrg update_parameter_components (void)
7211debfc3dSmrg {
7221debfc3dSmrg edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
7231debfc3dSmrg tree parm;
7241debfc3dSmrg
7251debfc3dSmrg for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
7261debfc3dSmrg {
7271debfc3dSmrg tree type = TREE_TYPE (parm);
7281debfc3dSmrg tree ssa_name, r, i;
7291debfc3dSmrg
7301debfc3dSmrg if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
7311debfc3dSmrg continue;
7321debfc3dSmrg
7331debfc3dSmrg type = TREE_TYPE (type);
7341debfc3dSmrg ssa_name = ssa_default_def (cfun, parm);
7351debfc3dSmrg if (!ssa_name)
7361debfc3dSmrg continue;
7371debfc3dSmrg
7381debfc3dSmrg r = build1 (REALPART_EXPR, type, ssa_name);
7391debfc3dSmrg i = build1 (IMAGPART_EXPR, type, ssa_name);
7401debfc3dSmrg update_complex_components_on_edge (entry_edge, ssa_name, r, i);
7411debfc3dSmrg }
7421debfc3dSmrg }
7431debfc3dSmrg
7441debfc3dSmrg /* Generate code to set the component variables of a complex variable
7451debfc3dSmrg to match the PHI statements in block BB. */
7461debfc3dSmrg
7471debfc3dSmrg static void
update_phi_components(basic_block bb)7481debfc3dSmrg update_phi_components (basic_block bb)
7491debfc3dSmrg {
7501debfc3dSmrg gphi_iterator gsi;
7511debfc3dSmrg
7521debfc3dSmrg for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
7531debfc3dSmrg {
7541debfc3dSmrg gphi *phi = gsi.phi ();
7551debfc3dSmrg
7561debfc3dSmrg if (is_complex_reg (gimple_phi_result (phi)))
7571debfc3dSmrg {
7581debfc3dSmrg gphi *p[2] = { NULL, NULL };
7591debfc3dSmrg unsigned int i, j, n;
7601debfc3dSmrg bool revisit_phi = false;
7611debfc3dSmrg
7621debfc3dSmrg for (j = 0; j < 2; j++)
7631debfc3dSmrg {
7641debfc3dSmrg tree l = get_component_ssa_name (gimple_phi_result (phi), j > 0);
7651debfc3dSmrg if (TREE_CODE (l) == SSA_NAME)
7661debfc3dSmrg p[j] = create_phi_node (l, bb);
7671debfc3dSmrg }
7681debfc3dSmrg
7691debfc3dSmrg for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
7701debfc3dSmrg {
7711debfc3dSmrg tree comp, arg = gimple_phi_arg_def (phi, i);
7721debfc3dSmrg for (j = 0; j < 2; j++)
7731debfc3dSmrg if (p[j])
7741debfc3dSmrg {
7751debfc3dSmrg comp = extract_component (NULL, arg, j > 0, false, true);
7761debfc3dSmrg if (TREE_CODE (comp) == SSA_NAME
7771debfc3dSmrg && SSA_NAME_DEF_STMT (comp) == NULL)
7781debfc3dSmrg {
7791debfc3dSmrg /* For the benefit of any gimple simplification during
7801debfc3dSmrg this pass that might walk SSA_NAME def stmts,
7811debfc3dSmrg don't add SSA_NAMEs without definitions into the
7821debfc3dSmrg PHI arguments, but put a decl in there instead
7831debfc3dSmrg temporarily, and revisit this PHI later on. */
7841debfc3dSmrg if (SSA_NAME_VAR (comp))
7851debfc3dSmrg comp = SSA_NAME_VAR (comp);
7861debfc3dSmrg else
7871debfc3dSmrg comp = create_tmp_reg (TREE_TYPE (comp),
7881debfc3dSmrg get_name (comp));
7891debfc3dSmrg revisit_phi = true;
7901debfc3dSmrg }
7911debfc3dSmrg SET_PHI_ARG_DEF (p[j], i, comp);
7921debfc3dSmrg }
7931debfc3dSmrg }
7941debfc3dSmrg
7951debfc3dSmrg if (revisit_phi)
7961debfc3dSmrg {
7971debfc3dSmrg phis_to_revisit.safe_push (phi);
7981debfc3dSmrg phis_to_revisit.safe_push (p[0]);
7991debfc3dSmrg phis_to_revisit.safe_push (p[1]);
8001debfc3dSmrg }
8011debfc3dSmrg }
8021debfc3dSmrg }
8031debfc3dSmrg }
8041debfc3dSmrg
8051debfc3dSmrg /* Expand a complex move to scalars. */
8061debfc3dSmrg
8071debfc3dSmrg static void
expand_complex_move(gimple_stmt_iterator * gsi,tree type)8081debfc3dSmrg expand_complex_move (gimple_stmt_iterator *gsi, tree type)
8091debfc3dSmrg {
8101debfc3dSmrg tree inner_type = TREE_TYPE (type);
8111debfc3dSmrg tree r, i, lhs, rhs;
8121debfc3dSmrg gimple *stmt = gsi_stmt (*gsi);
8131debfc3dSmrg
8141debfc3dSmrg if (is_gimple_assign (stmt))
8151debfc3dSmrg {
8161debfc3dSmrg lhs = gimple_assign_lhs (stmt);
8171debfc3dSmrg if (gimple_num_ops (stmt) == 2)
8181debfc3dSmrg rhs = gimple_assign_rhs1 (stmt);
8191debfc3dSmrg else
8201debfc3dSmrg rhs = NULL_TREE;
8211debfc3dSmrg }
8221debfc3dSmrg else if (is_gimple_call (stmt))
8231debfc3dSmrg {
8241debfc3dSmrg lhs = gimple_call_lhs (stmt);
8251debfc3dSmrg rhs = NULL_TREE;
8261debfc3dSmrg }
8271debfc3dSmrg else
8281debfc3dSmrg gcc_unreachable ();
8291debfc3dSmrg
8301debfc3dSmrg if (TREE_CODE (lhs) == SSA_NAME)
8311debfc3dSmrg {
8321debfc3dSmrg if (is_ctrl_altering_stmt (stmt))
8331debfc3dSmrg {
8341debfc3dSmrg edge e;
8351debfc3dSmrg
8361debfc3dSmrg /* The value is not assigned on the exception edges, so we need not
8371debfc3dSmrg concern ourselves there. We do need to update on the fallthru
8381debfc3dSmrg edge. Find it. */
8391debfc3dSmrg e = find_fallthru_edge (gsi_bb (*gsi)->succs);
8401debfc3dSmrg if (!e)
8411debfc3dSmrg gcc_unreachable ();
8421debfc3dSmrg
8431debfc3dSmrg r = build1 (REALPART_EXPR, inner_type, lhs);
8441debfc3dSmrg i = build1 (IMAGPART_EXPR, inner_type, lhs);
8451debfc3dSmrg update_complex_components_on_edge (e, lhs, r, i);
8461debfc3dSmrg }
8471debfc3dSmrg else if (is_gimple_call (stmt)
8481debfc3dSmrg || gimple_has_side_effects (stmt)
8491debfc3dSmrg || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
8501debfc3dSmrg {
8511debfc3dSmrg r = build1 (REALPART_EXPR, inner_type, lhs);
8521debfc3dSmrg i = build1 (IMAGPART_EXPR, inner_type, lhs);
8531debfc3dSmrg update_complex_components (gsi, stmt, r, i);
8541debfc3dSmrg }
8551debfc3dSmrg else
8561debfc3dSmrg {
8571debfc3dSmrg if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
8581debfc3dSmrg {
8591debfc3dSmrg r = extract_component (gsi, rhs, 0, true);
8601debfc3dSmrg i = extract_component (gsi, rhs, 1, true);
8611debfc3dSmrg }
8621debfc3dSmrg else
8631debfc3dSmrg {
8641debfc3dSmrg r = gimple_assign_rhs1 (stmt);
8651debfc3dSmrg i = gimple_assign_rhs2 (stmt);
8661debfc3dSmrg }
8671debfc3dSmrg update_complex_assignment (gsi, r, i);
8681debfc3dSmrg }
8691debfc3dSmrg }
8701debfc3dSmrg else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
8711debfc3dSmrg {
8721debfc3dSmrg tree x;
8731debfc3dSmrg gimple *t;
8741debfc3dSmrg location_t loc;
8751debfc3dSmrg
8761debfc3dSmrg loc = gimple_location (stmt);
8771debfc3dSmrg r = extract_component (gsi, rhs, 0, false);
8781debfc3dSmrg i = extract_component (gsi, rhs, 1, false);
8791debfc3dSmrg
8801debfc3dSmrg x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
8811debfc3dSmrg t = gimple_build_assign (x, r);
8821debfc3dSmrg gimple_set_location (t, loc);
8831debfc3dSmrg gsi_insert_before (gsi, t, GSI_SAME_STMT);
8841debfc3dSmrg
8851debfc3dSmrg if (stmt == gsi_stmt (*gsi))
8861debfc3dSmrg {
8871debfc3dSmrg x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
8881debfc3dSmrg gimple_assign_set_lhs (stmt, x);
8891debfc3dSmrg gimple_assign_set_rhs1 (stmt, i);
8901debfc3dSmrg }
8911debfc3dSmrg else
8921debfc3dSmrg {
8931debfc3dSmrg x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
8941debfc3dSmrg t = gimple_build_assign (x, i);
8951debfc3dSmrg gimple_set_location (t, loc);
8961debfc3dSmrg gsi_insert_before (gsi, t, GSI_SAME_STMT);
8971debfc3dSmrg
8981debfc3dSmrg stmt = gsi_stmt (*gsi);
8991debfc3dSmrg gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
9001debfc3dSmrg gimple_return_set_retval (as_a <greturn *> (stmt), lhs);
9011debfc3dSmrg }
9021debfc3dSmrg
9031debfc3dSmrg update_stmt (stmt);
9041debfc3dSmrg }
9051debfc3dSmrg }
9061debfc3dSmrg
9071debfc3dSmrg /* Expand complex addition to scalars:
9081debfc3dSmrg a + b = (ar + br) + i(ai + bi)
9091debfc3dSmrg a - b = (ar - br) + i(ai + bi)
9101debfc3dSmrg */
9111debfc3dSmrg
9121debfc3dSmrg static void
expand_complex_addition(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)9131debfc3dSmrg expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
9141debfc3dSmrg tree ar, tree ai, tree br, tree bi,
9151debfc3dSmrg enum tree_code code,
9161debfc3dSmrg complex_lattice_t al, complex_lattice_t bl)
9171debfc3dSmrg {
9181debfc3dSmrg tree rr, ri;
9191debfc3dSmrg
9201debfc3dSmrg switch (PAIR (al, bl))
9211debfc3dSmrg {
9221debfc3dSmrg case PAIR (ONLY_REAL, ONLY_REAL):
9231debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
9241debfc3dSmrg ri = ai;
9251debfc3dSmrg break;
9261debfc3dSmrg
9271debfc3dSmrg case PAIR (ONLY_REAL, ONLY_IMAG):
9281debfc3dSmrg rr = ar;
9291debfc3dSmrg if (code == MINUS_EXPR)
9301debfc3dSmrg ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
9311debfc3dSmrg else
9321debfc3dSmrg ri = bi;
9331debfc3dSmrg break;
9341debfc3dSmrg
9351debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_REAL):
9361debfc3dSmrg if (code == MINUS_EXPR)
9371debfc3dSmrg rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
9381debfc3dSmrg else
9391debfc3dSmrg rr = br;
9401debfc3dSmrg ri = ai;
9411debfc3dSmrg break;
9421debfc3dSmrg
9431debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_IMAG):
9441debfc3dSmrg rr = ar;
9451debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
9461debfc3dSmrg break;
9471debfc3dSmrg
9481debfc3dSmrg case PAIR (VARYING, ONLY_REAL):
9491debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
9501debfc3dSmrg ri = ai;
9511debfc3dSmrg break;
9521debfc3dSmrg
9531debfc3dSmrg case PAIR (VARYING, ONLY_IMAG):
9541debfc3dSmrg rr = ar;
9551debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
9561debfc3dSmrg break;
9571debfc3dSmrg
9581debfc3dSmrg case PAIR (ONLY_REAL, VARYING):
9591debfc3dSmrg if (code == MINUS_EXPR)
9601debfc3dSmrg goto general;
9611debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
9621debfc3dSmrg ri = bi;
9631debfc3dSmrg break;
9641debfc3dSmrg
9651debfc3dSmrg case PAIR (ONLY_IMAG, VARYING):
9661debfc3dSmrg if (code == MINUS_EXPR)
9671debfc3dSmrg goto general;
9681debfc3dSmrg rr = br;
9691debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
9701debfc3dSmrg break;
9711debfc3dSmrg
9721debfc3dSmrg case PAIR (VARYING, VARYING):
9731debfc3dSmrg general:
9741debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
9751debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
9761debfc3dSmrg break;
9771debfc3dSmrg
9781debfc3dSmrg default:
9791debfc3dSmrg gcc_unreachable ();
9801debfc3dSmrg }
9811debfc3dSmrg
9821debfc3dSmrg update_complex_assignment (gsi, rr, ri);
9831debfc3dSmrg }
9841debfc3dSmrg
9851debfc3dSmrg /* Expand a complex multiplication or division to a libcall to the c99
986c0a68be4Smrg compliant routines. TYPE is the complex type of the operation.
987c0a68be4Smrg If INPLACE_P replace the statement at GSI with
988c0a68be4Smrg the libcall and return NULL_TREE. Else insert the call, assign its
989c0a68be4Smrg result to an output variable and return that variable. If INPLACE_P
990c0a68be4Smrg is true then the statement being replaced should be an assignment
991c0a68be4Smrg statement. */
9921debfc3dSmrg
993c0a68be4Smrg static tree
expand_complex_libcall(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,enum tree_code code,bool inplace_p)994c0a68be4Smrg expand_complex_libcall (gimple_stmt_iterator *gsi, tree type, tree ar, tree ai,
995c0a68be4Smrg tree br, tree bi, enum tree_code code, bool inplace_p)
9961debfc3dSmrg {
9971debfc3dSmrg machine_mode mode;
9981debfc3dSmrg enum built_in_function bcode;
999c0a68be4Smrg tree fn, lhs;
10001debfc3dSmrg gcall *stmt;
10011debfc3dSmrg
10021debfc3dSmrg mode = TYPE_MODE (type);
10031debfc3dSmrg gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
10041debfc3dSmrg
10051debfc3dSmrg if (code == MULT_EXPR)
10061debfc3dSmrg bcode = ((enum built_in_function)
10071debfc3dSmrg (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10081debfc3dSmrg else if (code == RDIV_EXPR)
10091debfc3dSmrg bcode = ((enum built_in_function)
10101debfc3dSmrg (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10111debfc3dSmrg else
10121debfc3dSmrg gcc_unreachable ();
10131debfc3dSmrg fn = builtin_decl_explicit (bcode);
10141debfc3dSmrg stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
10151debfc3dSmrg
1016c0a68be4Smrg if (inplace_p)
10171debfc3dSmrg {
1018c0a68be4Smrg gimple *old_stmt = gsi_stmt (*gsi);
1019c0a68be4Smrg gimple_call_set_nothrow (stmt, !stmt_could_throw_p (cfun, old_stmt));
1020c0a68be4Smrg lhs = gimple_assign_lhs (old_stmt);
1021c0a68be4Smrg gimple_call_set_lhs (stmt, lhs);
1022c0a68be4Smrg gsi_replace (gsi, stmt, true);
1023c0a68be4Smrg
10241debfc3dSmrg type = TREE_TYPE (type);
1025c0a68be4Smrg if (stmt_can_throw_internal (cfun, stmt))
1026c0a68be4Smrg {
1027c0a68be4Smrg edge_iterator ei;
1028c0a68be4Smrg edge e;
1029c0a68be4Smrg FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
1030c0a68be4Smrg if (!(e->flags & EDGE_EH))
1031c0a68be4Smrg break;
1032c0a68be4Smrg basic_block bb = split_edge (e);
1033c0a68be4Smrg gimple_stmt_iterator gsi2 = gsi_start_bb (bb);
1034c0a68be4Smrg update_complex_components (&gsi2, stmt,
1035c0a68be4Smrg build1 (REALPART_EXPR, type, lhs),
1036c0a68be4Smrg build1 (IMAGPART_EXPR, type, lhs));
1037c0a68be4Smrg return NULL_TREE;
1038c0a68be4Smrg }
1039c0a68be4Smrg else
10401debfc3dSmrg update_complex_components (gsi, stmt,
10411debfc3dSmrg build1 (REALPART_EXPR, type, lhs),
10421debfc3dSmrg build1 (IMAGPART_EXPR, type, lhs));
10431debfc3dSmrg SSA_NAME_DEF_STMT (lhs) = stmt;
1044c0a68be4Smrg return NULL_TREE;
10451debfc3dSmrg }
1046c0a68be4Smrg
1047c0a68be4Smrg gimple_call_set_nothrow (stmt, true);
1048c0a68be4Smrg lhs = make_ssa_name (type);
1049c0a68be4Smrg gimple_call_set_lhs (stmt, lhs);
1050c0a68be4Smrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1051c0a68be4Smrg
1052c0a68be4Smrg return lhs;
1053c0a68be4Smrg }
1054c0a68be4Smrg
1055c0a68be4Smrg /* Perform a complex multiplication on two complex constants A, B represented
1056c0a68be4Smrg by AR, AI, BR, BI of type TYPE.
1057c0a68be4Smrg The operation we want is: a * b = (ar*br - ai*bi) + i(ar*bi + br*ai).
1058c0a68be4Smrg Insert the GIMPLE statements into GSI. Store the real and imaginary
1059c0a68be4Smrg components of the result into RR and RI. */
1060c0a68be4Smrg
1061c0a68be4Smrg static void
expand_complex_multiplication_components(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,tree * rr,tree * ri)1062c0a68be4Smrg expand_complex_multiplication_components (gimple_stmt_iterator *gsi,
1063c0a68be4Smrg tree type, tree ar, tree ai,
1064c0a68be4Smrg tree br, tree bi,
1065c0a68be4Smrg tree *rr, tree *ri)
1066c0a68be4Smrg {
1067c0a68be4Smrg tree t1, t2, t3, t4;
1068c0a68be4Smrg
1069c0a68be4Smrg t1 = gimplify_build2 (gsi, MULT_EXPR, type, ar, br);
1070c0a68be4Smrg t2 = gimplify_build2 (gsi, MULT_EXPR, type, ai, bi);
1071c0a68be4Smrg t3 = gimplify_build2 (gsi, MULT_EXPR, type, ar, bi);
1072c0a68be4Smrg
1073c0a68be4Smrg /* Avoid expanding redundant multiplication for the common
1074c0a68be4Smrg case of squaring a complex number. */
1075c0a68be4Smrg if (ar == br && ai == bi)
1076c0a68be4Smrg t4 = t3;
1077c0a68be4Smrg else
1078c0a68be4Smrg t4 = gimplify_build2 (gsi, MULT_EXPR, type, ai, br);
1079c0a68be4Smrg
1080c0a68be4Smrg *rr = gimplify_build2 (gsi, MINUS_EXPR, type, t1, t2);
1081c0a68be4Smrg *ri = gimplify_build2 (gsi, PLUS_EXPR, type, t3, t4);
10821debfc3dSmrg }
10831debfc3dSmrg
10841debfc3dSmrg /* Expand complex multiplication to scalars:
10851debfc3dSmrg a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
10861debfc3dSmrg */
10871debfc3dSmrg
10881debfc3dSmrg static void
expand_complex_multiplication(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,complex_lattice_t al,complex_lattice_t bl)1089c0a68be4Smrg expand_complex_multiplication (gimple_stmt_iterator *gsi, tree type,
10901debfc3dSmrg tree ar, tree ai, tree br, tree bi,
10911debfc3dSmrg complex_lattice_t al, complex_lattice_t bl)
10921debfc3dSmrg {
10931debfc3dSmrg tree rr, ri;
1094c0a68be4Smrg tree inner_type = TREE_TYPE (type);
10951debfc3dSmrg
10961debfc3dSmrg if (al < bl)
10971debfc3dSmrg {
10981debfc3dSmrg complex_lattice_t tl;
10991debfc3dSmrg rr = ar, ar = br, br = rr;
11001debfc3dSmrg ri = ai, ai = bi, bi = ri;
11011debfc3dSmrg tl = al, al = bl, bl = tl;
11021debfc3dSmrg }
11031debfc3dSmrg
11041debfc3dSmrg switch (PAIR (al, bl))
11051debfc3dSmrg {
11061debfc3dSmrg case PAIR (ONLY_REAL, ONLY_REAL):
11071debfc3dSmrg rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
11081debfc3dSmrg ri = ai;
11091debfc3dSmrg break;
11101debfc3dSmrg
11111debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_REAL):
11121debfc3dSmrg rr = ar;
11131debfc3dSmrg if (TREE_CODE (ai) == REAL_CST
11141debfc3dSmrg && real_identical (&TREE_REAL_CST (ai), &dconst1))
11151debfc3dSmrg ri = br;
11161debfc3dSmrg else
11171debfc3dSmrg ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
11181debfc3dSmrg break;
11191debfc3dSmrg
11201debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_IMAG):
11211debfc3dSmrg rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
11221debfc3dSmrg rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
11231debfc3dSmrg ri = ar;
11241debfc3dSmrg break;
11251debfc3dSmrg
11261debfc3dSmrg case PAIR (VARYING, ONLY_REAL):
11271debfc3dSmrg rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
11281debfc3dSmrg ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
11291debfc3dSmrg break;
11301debfc3dSmrg
11311debfc3dSmrg case PAIR (VARYING, ONLY_IMAG):
11321debfc3dSmrg rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
11331debfc3dSmrg rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
11341debfc3dSmrg ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
11351debfc3dSmrg break;
11361debfc3dSmrg
11371debfc3dSmrg case PAIR (VARYING, VARYING):
11381debfc3dSmrg if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
11391debfc3dSmrg {
1140c0a68be4Smrg /* If optimizing for size or not at all just do a libcall.
1141c0a68be4Smrg Same if there are exception-handling edges or signaling NaNs. */
1142c0a68be4Smrg if (optimize == 0 || optimize_bb_for_size_p (gsi_bb (*gsi))
1143c0a68be4Smrg || stmt_can_throw_internal (cfun, gsi_stmt (*gsi))
1144c0a68be4Smrg || flag_signaling_nans)
1145c0a68be4Smrg {
1146c0a68be4Smrg expand_complex_libcall (gsi, type, ar, ai, br, bi,
1147c0a68be4Smrg MULT_EXPR, true);
11481debfc3dSmrg return;
11491debfc3dSmrg }
11501debfc3dSmrg
1151*8feb0f0bSmrg if (!HONOR_NANS (inner_type))
1152*8feb0f0bSmrg {
1153*8feb0f0bSmrg /* If we are not worrying about NaNs expand to
1154*8feb0f0bSmrg (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1155*8feb0f0bSmrg expand_complex_multiplication_components (gsi, inner_type,
1156*8feb0f0bSmrg ar, ai, br, bi,
1157*8feb0f0bSmrg &rr, &ri);
1158*8feb0f0bSmrg break;
1159*8feb0f0bSmrg }
1160*8feb0f0bSmrg
1161c0a68be4Smrg /* Else, expand x = a * b into
1162c0a68be4Smrg x = (ar*br - ai*bi) + i(ar*bi + br*ai);
1163c0a68be4Smrg if (isunordered (__real__ x, __imag__ x))
1164c0a68be4Smrg x = __muldc3 (a, b); */
11651debfc3dSmrg
1166c0a68be4Smrg tree tmpr, tmpi;
1167c0a68be4Smrg expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1168c0a68be4Smrg br, bi, &tmpr, &tmpi);
11691debfc3dSmrg
1170c0a68be4Smrg gimple *check
1171c0a68be4Smrg = gimple_build_cond (UNORDERED_EXPR, tmpr, tmpi,
1172c0a68be4Smrg NULL_TREE, NULL_TREE);
1173c0a68be4Smrg
1174c0a68be4Smrg basic_block orig_bb = gsi_bb (*gsi);
1175c0a68be4Smrg /* We want to keep track of the original complex multiplication
1176c0a68be4Smrg statement as we're going to modify it later in
1177c0a68be4Smrg update_complex_assignment. Make sure that insert_cond_bb leaves
1178c0a68be4Smrg that statement in the join block. */
1179c0a68be4Smrg gsi_prev (gsi);
1180c0a68be4Smrg basic_block cond_bb
1181c0a68be4Smrg = insert_cond_bb (gsi_bb (*gsi), gsi_stmt (*gsi), check,
1182c0a68be4Smrg profile_probability::very_unlikely ());
1183c0a68be4Smrg
1184c0a68be4Smrg gimple_stmt_iterator cond_bb_gsi = gsi_last_bb (cond_bb);
1185c0a68be4Smrg gsi_insert_after (&cond_bb_gsi, gimple_build_nop (), GSI_NEW_STMT);
1186c0a68be4Smrg
1187c0a68be4Smrg tree libcall_res
1188c0a68be4Smrg = expand_complex_libcall (&cond_bb_gsi, type, ar, ai, br,
1189c0a68be4Smrg bi, MULT_EXPR, false);
1190c0a68be4Smrg tree cond_real = gimplify_build1 (&cond_bb_gsi, REALPART_EXPR,
1191c0a68be4Smrg inner_type, libcall_res);
1192c0a68be4Smrg tree cond_imag = gimplify_build1 (&cond_bb_gsi, IMAGPART_EXPR,
1193c0a68be4Smrg inner_type, libcall_res);
1194c0a68be4Smrg
1195c0a68be4Smrg basic_block join_bb = single_succ_edge (cond_bb)->dest;
1196c0a68be4Smrg *gsi = gsi_start_nondebug_after_labels_bb (join_bb);
1197c0a68be4Smrg
1198c0a68be4Smrg /* We have a conditional block with some assignments in cond_bb.
1199c0a68be4Smrg Wire up the PHIs to wrap up. */
1200c0a68be4Smrg rr = make_ssa_name (inner_type);
1201c0a68be4Smrg ri = make_ssa_name (inner_type);
1202c0a68be4Smrg edge cond_to_join = single_succ_edge (cond_bb);
1203c0a68be4Smrg edge orig_to_join = find_edge (orig_bb, join_bb);
1204c0a68be4Smrg
1205c0a68be4Smrg gphi *real_phi = create_phi_node (rr, gsi_bb (*gsi));
1206*8feb0f0bSmrg add_phi_arg (real_phi, cond_real, cond_to_join, UNKNOWN_LOCATION);
1207c0a68be4Smrg add_phi_arg (real_phi, tmpr, orig_to_join, UNKNOWN_LOCATION);
1208c0a68be4Smrg
1209c0a68be4Smrg gphi *imag_phi = create_phi_node (ri, gsi_bb (*gsi));
1210*8feb0f0bSmrg add_phi_arg (imag_phi, cond_imag, cond_to_join, UNKNOWN_LOCATION);
1211c0a68be4Smrg add_phi_arg (imag_phi, tmpi, orig_to_join, UNKNOWN_LOCATION);
12121debfc3dSmrg }
1213c0a68be4Smrg else
1214c0a68be4Smrg /* If we are not worrying about NaNs expand to
1215c0a68be4Smrg (ar*br - ai*bi) + i(ar*bi + br*ai) directly. */
1216c0a68be4Smrg expand_complex_multiplication_components (gsi, inner_type, ar, ai,
1217c0a68be4Smrg br, bi, &rr, &ri);
12181debfc3dSmrg break;
12191debfc3dSmrg
12201debfc3dSmrg default:
12211debfc3dSmrg gcc_unreachable ();
12221debfc3dSmrg }
12231debfc3dSmrg
12241debfc3dSmrg update_complex_assignment (gsi, rr, ri);
12251debfc3dSmrg }
12261debfc3dSmrg
12271debfc3dSmrg /* Keep this algorithm in sync with fold-const.c:const_binop().
12281debfc3dSmrg
12291debfc3dSmrg Expand complex division to scalars, straightforward algorithm.
12301debfc3dSmrg a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
12311debfc3dSmrg t = br*br + bi*bi
12321debfc3dSmrg */
12331debfc3dSmrg
12341debfc3dSmrg static void
expand_complex_div_straight(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)12351debfc3dSmrg expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
12361debfc3dSmrg tree ar, tree ai, tree br, tree bi,
12371debfc3dSmrg enum tree_code code)
12381debfc3dSmrg {
12391debfc3dSmrg tree rr, ri, div, t1, t2, t3;
12401debfc3dSmrg
12411debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
12421debfc3dSmrg t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
12431debfc3dSmrg div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
12441debfc3dSmrg
12451debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
12461debfc3dSmrg t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
12471debfc3dSmrg t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
12481debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, t3, div);
12491debfc3dSmrg
12501debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
12511debfc3dSmrg t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
12521debfc3dSmrg t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
12531debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, t3, div);
12541debfc3dSmrg
12551debfc3dSmrg update_complex_assignment (gsi, rr, ri);
12561debfc3dSmrg }
12571debfc3dSmrg
12581debfc3dSmrg /* Keep this algorithm in sync with fold-const.c:const_binop().
12591debfc3dSmrg
12601debfc3dSmrg Expand complex division to scalars, modified algorithm to minimize
12611debfc3dSmrg overflow with wide input ranges. */
12621debfc3dSmrg
12631debfc3dSmrg static void
expand_complex_div_wide(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai,tree br,tree bi,enum tree_code code)12641debfc3dSmrg expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
12651debfc3dSmrg tree ar, tree ai, tree br, tree bi,
12661debfc3dSmrg enum tree_code code)
12671debfc3dSmrg {
12681debfc3dSmrg tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
12691debfc3dSmrg basic_block bb_cond, bb_true, bb_false, bb_join;
12701debfc3dSmrg gimple *stmt;
12711debfc3dSmrg
12721debfc3dSmrg /* Examine |br| < |bi|, and branch. */
12731debfc3dSmrg t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
12741debfc3dSmrg t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
12751debfc3dSmrg compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
12761debfc3dSmrg LT_EXPR, boolean_type_node, t1, t2);
12771debfc3dSmrg STRIP_NOPS (compare);
12781debfc3dSmrg
12791debfc3dSmrg bb_cond = bb_true = bb_false = bb_join = NULL;
12801debfc3dSmrg rr = ri = tr = ti = NULL;
12811debfc3dSmrg if (TREE_CODE (compare) != INTEGER_CST)
12821debfc3dSmrg {
12831debfc3dSmrg edge e;
12841debfc3dSmrg gimple *stmt;
12851debfc3dSmrg tree cond, tmp;
12861debfc3dSmrg
1287c0a68be4Smrg tmp = make_ssa_name (boolean_type_node);
12881debfc3dSmrg stmt = gimple_build_assign (tmp, compare);
12891debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
12901debfc3dSmrg
12911debfc3dSmrg cond = fold_build2_loc (gimple_location (stmt),
12921debfc3dSmrg EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
12931debfc3dSmrg stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
12941debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
12951debfc3dSmrg
12961debfc3dSmrg /* Split the original block, and create the TRUE and FALSE blocks. */
12971debfc3dSmrg e = split_block (gsi_bb (*gsi), stmt);
12981debfc3dSmrg bb_cond = e->src;
12991debfc3dSmrg bb_join = e->dest;
13001debfc3dSmrg bb_true = create_empty_bb (bb_cond);
13011debfc3dSmrg bb_false = create_empty_bb (bb_true);
1302a2dc1f3fSmrg bb_true->count = bb_false->count
1303a2dc1f3fSmrg = bb_cond->count.apply_probability (profile_probability::even ());
13041debfc3dSmrg
13051debfc3dSmrg /* Wire the blocks together. */
13061debfc3dSmrg e->flags = EDGE_TRUE_VALUE;
1307a2dc1f3fSmrg /* TODO: With value profile we could add an historgram to determine real
1308a2dc1f3fSmrg branch outcome. */
1309a2dc1f3fSmrg e->probability = profile_probability::even ();
13101debfc3dSmrg redirect_edge_succ (e, bb_true);
1311a2dc1f3fSmrg edge e2 = make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1312a2dc1f3fSmrg e2->probability = profile_probability::even ();
1313a2dc1f3fSmrg make_single_succ_edge (bb_true, bb_join, EDGE_FALLTHRU);
1314a2dc1f3fSmrg make_single_succ_edge (bb_false, bb_join, EDGE_FALLTHRU);
13151debfc3dSmrg add_bb_to_loop (bb_true, bb_cond->loop_father);
13161debfc3dSmrg add_bb_to_loop (bb_false, bb_cond->loop_father);
13171debfc3dSmrg
13181debfc3dSmrg /* Update dominance info. Note that bb_join's data was
13191debfc3dSmrg updated by split_block. */
13201debfc3dSmrg if (dom_info_available_p (CDI_DOMINATORS))
13211debfc3dSmrg {
13221debfc3dSmrg set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
13231debfc3dSmrg set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
13241debfc3dSmrg }
13251debfc3dSmrg
13261debfc3dSmrg rr = create_tmp_reg (inner_type);
13271debfc3dSmrg ri = create_tmp_reg (inner_type);
13281debfc3dSmrg }
13291debfc3dSmrg
13301debfc3dSmrg /* In the TRUE branch, we compute
13311debfc3dSmrg ratio = br/bi;
13321debfc3dSmrg div = (br * ratio) + bi;
13331debfc3dSmrg tr = (ar * ratio) + ai;
13341debfc3dSmrg ti = (ai * ratio) - ar;
13351debfc3dSmrg tr = tr / div;
13361debfc3dSmrg ti = ti / div; */
13371debfc3dSmrg if (bb_true || integer_nonzerop (compare))
13381debfc3dSmrg {
13391debfc3dSmrg if (bb_true)
13401debfc3dSmrg {
13411debfc3dSmrg *gsi = gsi_last_bb (bb_true);
13421debfc3dSmrg gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
13431debfc3dSmrg }
13441debfc3dSmrg
13451debfc3dSmrg ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
13461debfc3dSmrg
13471debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
13481debfc3dSmrg div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
13491debfc3dSmrg
13501debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
13511debfc3dSmrg tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
13521debfc3dSmrg
13531debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
13541debfc3dSmrg ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
13551debfc3dSmrg
13561debfc3dSmrg tr = gimplify_build2 (gsi, code, inner_type, tr, div);
13571debfc3dSmrg ti = gimplify_build2 (gsi, code, inner_type, ti, div);
13581debfc3dSmrg
13591debfc3dSmrg if (bb_true)
13601debfc3dSmrg {
13611debfc3dSmrg stmt = gimple_build_assign (rr, tr);
13621debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
13631debfc3dSmrg stmt = gimple_build_assign (ri, ti);
13641debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
13651debfc3dSmrg gsi_remove (gsi, true);
13661debfc3dSmrg }
13671debfc3dSmrg }
13681debfc3dSmrg
13691debfc3dSmrg /* In the FALSE branch, we compute
13701debfc3dSmrg ratio = d/c;
13711debfc3dSmrg divisor = (d * ratio) + c;
13721debfc3dSmrg tr = (b * ratio) + a;
13731debfc3dSmrg ti = b - (a * ratio);
13741debfc3dSmrg tr = tr / div;
13751debfc3dSmrg ti = ti / div; */
13761debfc3dSmrg if (bb_false || integer_zerop (compare))
13771debfc3dSmrg {
13781debfc3dSmrg if (bb_false)
13791debfc3dSmrg {
13801debfc3dSmrg *gsi = gsi_last_bb (bb_false);
13811debfc3dSmrg gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
13821debfc3dSmrg }
13831debfc3dSmrg
13841debfc3dSmrg ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
13851debfc3dSmrg
13861debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
13871debfc3dSmrg div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
13881debfc3dSmrg
13891debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
13901debfc3dSmrg tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
13911debfc3dSmrg
13921debfc3dSmrg t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
13931debfc3dSmrg ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
13941debfc3dSmrg
13951debfc3dSmrg tr = gimplify_build2 (gsi, code, inner_type, tr, div);
13961debfc3dSmrg ti = gimplify_build2 (gsi, code, inner_type, ti, div);
13971debfc3dSmrg
13981debfc3dSmrg if (bb_false)
13991debfc3dSmrg {
14001debfc3dSmrg stmt = gimple_build_assign (rr, tr);
14011debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
14021debfc3dSmrg stmt = gimple_build_assign (ri, ti);
14031debfc3dSmrg gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
14041debfc3dSmrg gsi_remove (gsi, true);
14051debfc3dSmrg }
14061debfc3dSmrg }
14071debfc3dSmrg
14081debfc3dSmrg if (bb_join)
14091debfc3dSmrg *gsi = gsi_start_bb (bb_join);
14101debfc3dSmrg else
14111debfc3dSmrg rr = tr, ri = ti;
14121debfc3dSmrg
14131debfc3dSmrg update_complex_assignment (gsi, rr, ri);
14141debfc3dSmrg }
14151debfc3dSmrg
14161debfc3dSmrg /* Expand complex division to scalars. */
14171debfc3dSmrg
14181debfc3dSmrg static void
expand_complex_division(gimple_stmt_iterator * gsi,tree type,tree ar,tree ai,tree br,tree bi,enum tree_code code,complex_lattice_t al,complex_lattice_t bl)1419c0a68be4Smrg expand_complex_division (gimple_stmt_iterator *gsi, tree type,
14201debfc3dSmrg tree ar, tree ai, tree br, tree bi,
14211debfc3dSmrg enum tree_code code,
14221debfc3dSmrg complex_lattice_t al, complex_lattice_t bl)
14231debfc3dSmrg {
14241debfc3dSmrg tree rr, ri;
14251debfc3dSmrg
1426c0a68be4Smrg tree inner_type = TREE_TYPE (type);
14271debfc3dSmrg switch (PAIR (al, bl))
14281debfc3dSmrg {
14291debfc3dSmrg case PAIR (ONLY_REAL, ONLY_REAL):
14301debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
14311debfc3dSmrg ri = ai;
14321debfc3dSmrg break;
14331debfc3dSmrg
14341debfc3dSmrg case PAIR (ONLY_REAL, ONLY_IMAG):
14351debfc3dSmrg rr = ai;
14361debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
14371debfc3dSmrg ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
14381debfc3dSmrg break;
14391debfc3dSmrg
14401debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_REAL):
14411debfc3dSmrg rr = ar;
14421debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, br);
14431debfc3dSmrg break;
14441debfc3dSmrg
14451debfc3dSmrg case PAIR (ONLY_IMAG, ONLY_IMAG):
14461debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
14471debfc3dSmrg ri = ar;
14481debfc3dSmrg break;
14491debfc3dSmrg
14501debfc3dSmrg case PAIR (VARYING, ONLY_REAL):
14511debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ar, br);
14521debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ai, br);
14531debfc3dSmrg break;
14541debfc3dSmrg
14551debfc3dSmrg case PAIR (VARYING, ONLY_IMAG):
14561debfc3dSmrg rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
14571debfc3dSmrg ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
14581debfc3dSmrg ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
14591debfc3dSmrg break;
14601debfc3dSmrg
14611debfc3dSmrg case PAIR (ONLY_REAL, VARYING):
14621debfc3dSmrg case PAIR (ONLY_IMAG, VARYING):
14631debfc3dSmrg case PAIR (VARYING, VARYING):
14641debfc3dSmrg switch (flag_complex_method)
14651debfc3dSmrg {
14661debfc3dSmrg case 0:
14671debfc3dSmrg /* straightforward implementation of complex divide acceptable. */
14681debfc3dSmrg expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
14691debfc3dSmrg break;
14701debfc3dSmrg
14711debfc3dSmrg case 2:
14721debfc3dSmrg if (SCALAR_FLOAT_TYPE_P (inner_type))
14731debfc3dSmrg {
1474c0a68be4Smrg expand_complex_libcall (gsi, type, ar, ai, br, bi, code, true);
14751debfc3dSmrg break;
14761debfc3dSmrg }
14771debfc3dSmrg /* FALLTHRU */
14781debfc3dSmrg
14791debfc3dSmrg case 1:
14801debfc3dSmrg /* wide ranges of inputs must work for complex divide. */
14811debfc3dSmrg expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
14821debfc3dSmrg break;
14831debfc3dSmrg
14841debfc3dSmrg default:
14851debfc3dSmrg gcc_unreachable ();
14861debfc3dSmrg }
14871debfc3dSmrg return;
14881debfc3dSmrg
14891debfc3dSmrg default:
14901debfc3dSmrg gcc_unreachable ();
14911debfc3dSmrg }
14921debfc3dSmrg
14931debfc3dSmrg update_complex_assignment (gsi, rr, ri);
14941debfc3dSmrg }
14951debfc3dSmrg
14961debfc3dSmrg /* Expand complex negation to scalars:
14971debfc3dSmrg -a = (-ar) + i(-ai)
14981debfc3dSmrg */
14991debfc3dSmrg
15001debfc3dSmrg static void
expand_complex_negation(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)15011debfc3dSmrg expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
15021debfc3dSmrg tree ar, tree ai)
15031debfc3dSmrg {
15041debfc3dSmrg tree rr, ri;
15051debfc3dSmrg
15061debfc3dSmrg rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
15071debfc3dSmrg ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
15081debfc3dSmrg
15091debfc3dSmrg update_complex_assignment (gsi, rr, ri);
15101debfc3dSmrg }
15111debfc3dSmrg
15121debfc3dSmrg /* Expand complex conjugate to scalars:
15131debfc3dSmrg ~a = (ar) + i(-ai)
15141debfc3dSmrg */
15151debfc3dSmrg
15161debfc3dSmrg static void
expand_complex_conjugate(gimple_stmt_iterator * gsi,tree inner_type,tree ar,tree ai)15171debfc3dSmrg expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
15181debfc3dSmrg tree ar, tree ai)
15191debfc3dSmrg {
15201debfc3dSmrg tree ri;
15211debfc3dSmrg
15221debfc3dSmrg ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
15231debfc3dSmrg
15241debfc3dSmrg update_complex_assignment (gsi, ar, ri);
15251debfc3dSmrg }
15261debfc3dSmrg
15271debfc3dSmrg /* Expand complex comparison (EQ or NE only). */
15281debfc3dSmrg
15291debfc3dSmrg static void
expand_complex_comparison(gimple_stmt_iterator * gsi,tree ar,tree ai,tree br,tree bi,enum tree_code code)15301debfc3dSmrg expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
15311debfc3dSmrg tree br, tree bi, enum tree_code code)
15321debfc3dSmrg {
15331debfc3dSmrg tree cr, ci, cc, type;
15341debfc3dSmrg gimple *stmt;
15351debfc3dSmrg
15361debfc3dSmrg cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
15371debfc3dSmrg ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
15381debfc3dSmrg cc = gimplify_build2 (gsi,
15391debfc3dSmrg (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
15401debfc3dSmrg boolean_type_node, cr, ci);
15411debfc3dSmrg
15421debfc3dSmrg stmt = gsi_stmt (*gsi);
15431debfc3dSmrg
15441debfc3dSmrg switch (gimple_code (stmt))
15451debfc3dSmrg {
15461debfc3dSmrg case GIMPLE_RETURN:
15471debfc3dSmrg {
15481debfc3dSmrg greturn *return_stmt = as_a <greturn *> (stmt);
15491debfc3dSmrg type = TREE_TYPE (gimple_return_retval (return_stmt));
15501debfc3dSmrg gimple_return_set_retval (return_stmt, fold_convert (type, cc));
15511debfc3dSmrg }
15521debfc3dSmrg break;
15531debfc3dSmrg
15541debfc3dSmrg case GIMPLE_ASSIGN:
15551debfc3dSmrg type = TREE_TYPE (gimple_assign_lhs (stmt));
15561debfc3dSmrg gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
15571debfc3dSmrg stmt = gsi_stmt (*gsi);
15581debfc3dSmrg break;
15591debfc3dSmrg
15601debfc3dSmrg case GIMPLE_COND:
15611debfc3dSmrg {
15621debfc3dSmrg gcond *cond_stmt = as_a <gcond *> (stmt);
15631debfc3dSmrg gimple_cond_set_code (cond_stmt, EQ_EXPR);
15641debfc3dSmrg gimple_cond_set_lhs (cond_stmt, cc);
15651debfc3dSmrg gimple_cond_set_rhs (cond_stmt, boolean_true_node);
15661debfc3dSmrg }
15671debfc3dSmrg break;
15681debfc3dSmrg
15691debfc3dSmrg default:
15701debfc3dSmrg gcc_unreachable ();
15711debfc3dSmrg }
15721debfc3dSmrg
15731debfc3dSmrg update_stmt (stmt);
1574a05ac97eSmrg if (maybe_clean_eh_stmt (stmt))
1575a05ac97eSmrg bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
15761debfc3dSmrg }
15771debfc3dSmrg
15781debfc3dSmrg /* Expand inline asm that sets some complex SSA_NAMEs. */
15791debfc3dSmrg
15801debfc3dSmrg static void
expand_complex_asm(gimple_stmt_iterator * gsi)15811debfc3dSmrg expand_complex_asm (gimple_stmt_iterator *gsi)
15821debfc3dSmrg {
15831debfc3dSmrg gasm *stmt = as_a <gasm *> (gsi_stmt (*gsi));
15841debfc3dSmrg unsigned int i;
15851debfc3dSmrg
15861debfc3dSmrg for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
15871debfc3dSmrg {
15881debfc3dSmrg tree link = gimple_asm_output_op (stmt, i);
15891debfc3dSmrg tree op = TREE_VALUE (link);
15901debfc3dSmrg if (TREE_CODE (op) == SSA_NAME
15911debfc3dSmrg && TREE_CODE (TREE_TYPE (op)) == COMPLEX_TYPE)
15921debfc3dSmrg {
15931debfc3dSmrg tree type = TREE_TYPE (op);
15941debfc3dSmrg tree inner_type = TREE_TYPE (type);
15951debfc3dSmrg tree r = build1 (REALPART_EXPR, inner_type, op);
15961debfc3dSmrg tree i = build1 (IMAGPART_EXPR, inner_type, op);
15971debfc3dSmrg gimple_seq list = set_component_ssa_name (op, false, r);
15981debfc3dSmrg
15991debfc3dSmrg if (list)
16001debfc3dSmrg gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
16011debfc3dSmrg
16021debfc3dSmrg list = set_component_ssa_name (op, true, i);
16031debfc3dSmrg if (list)
16041debfc3dSmrg gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
16051debfc3dSmrg }
16061debfc3dSmrg }
16071debfc3dSmrg }
16081debfc3dSmrg
16091debfc3dSmrg /* Process one statement. If we identify a complex operation, expand it. */
16101debfc3dSmrg
16111debfc3dSmrg static void
expand_complex_operations_1(gimple_stmt_iterator * gsi)16121debfc3dSmrg expand_complex_operations_1 (gimple_stmt_iterator *gsi)
16131debfc3dSmrg {
16141debfc3dSmrg gimple *stmt = gsi_stmt (*gsi);
16151debfc3dSmrg tree type, inner_type, lhs;
16161debfc3dSmrg tree ac, ar, ai, bc, br, bi;
16171debfc3dSmrg complex_lattice_t al, bl;
16181debfc3dSmrg enum tree_code code;
16191debfc3dSmrg
16201debfc3dSmrg if (gimple_code (stmt) == GIMPLE_ASM)
16211debfc3dSmrg {
16221debfc3dSmrg expand_complex_asm (gsi);
16231debfc3dSmrg return;
16241debfc3dSmrg }
16251debfc3dSmrg
16261debfc3dSmrg lhs = gimple_get_lhs (stmt);
16271debfc3dSmrg if (!lhs && gimple_code (stmt) != GIMPLE_COND)
16281debfc3dSmrg return;
16291debfc3dSmrg
16301debfc3dSmrg type = TREE_TYPE (gimple_op (stmt, 0));
16311debfc3dSmrg code = gimple_expr_code (stmt);
16321debfc3dSmrg
16331debfc3dSmrg /* Initial filter for operations we handle. */
16341debfc3dSmrg switch (code)
16351debfc3dSmrg {
16361debfc3dSmrg case PLUS_EXPR:
16371debfc3dSmrg case MINUS_EXPR:
16381debfc3dSmrg case MULT_EXPR:
16391debfc3dSmrg case TRUNC_DIV_EXPR:
16401debfc3dSmrg case CEIL_DIV_EXPR:
16411debfc3dSmrg case FLOOR_DIV_EXPR:
16421debfc3dSmrg case ROUND_DIV_EXPR:
16431debfc3dSmrg case RDIV_EXPR:
16441debfc3dSmrg case NEGATE_EXPR:
16451debfc3dSmrg case CONJ_EXPR:
16461debfc3dSmrg if (TREE_CODE (type) != COMPLEX_TYPE)
16471debfc3dSmrg return;
16481debfc3dSmrg inner_type = TREE_TYPE (type);
16491debfc3dSmrg break;
16501debfc3dSmrg
16511debfc3dSmrg case EQ_EXPR:
16521debfc3dSmrg case NE_EXPR:
16531debfc3dSmrg /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
16541debfc3dSmrg subcode, so we need to access the operands using gimple_op. */
16551debfc3dSmrg inner_type = TREE_TYPE (gimple_op (stmt, 1));
16561debfc3dSmrg if (TREE_CODE (inner_type) != COMPLEX_TYPE)
16571debfc3dSmrg return;
16581debfc3dSmrg break;
16591debfc3dSmrg
16601debfc3dSmrg default:
16611debfc3dSmrg {
16621debfc3dSmrg tree rhs;
16631debfc3dSmrg
16641debfc3dSmrg /* GIMPLE_COND may also fallthru here, but we do not need to
16651debfc3dSmrg do anything with it. */
16661debfc3dSmrg if (gimple_code (stmt) == GIMPLE_COND)
16671debfc3dSmrg return;
16681debfc3dSmrg
16691debfc3dSmrg if (TREE_CODE (type) == COMPLEX_TYPE)
16701debfc3dSmrg expand_complex_move (gsi, type);
16711debfc3dSmrg else if (is_gimple_assign (stmt)
16721debfc3dSmrg && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
16731debfc3dSmrg || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
16741debfc3dSmrg && TREE_CODE (lhs) == SSA_NAME)
16751debfc3dSmrg {
16761debfc3dSmrg rhs = gimple_assign_rhs1 (stmt);
16771debfc3dSmrg rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
16781debfc3dSmrg gimple_assign_rhs_code (stmt)
16791debfc3dSmrg == IMAGPART_EXPR,
16801debfc3dSmrg false);
16811debfc3dSmrg gimple_assign_set_rhs_from_tree (gsi, rhs);
16821debfc3dSmrg stmt = gsi_stmt (*gsi);
16831debfc3dSmrg update_stmt (stmt);
16841debfc3dSmrg }
16851debfc3dSmrg }
16861debfc3dSmrg return;
16871debfc3dSmrg }
16881debfc3dSmrg
16891debfc3dSmrg /* Extract the components of the two complex values. Make sure and
16901debfc3dSmrg handle the common case of the same value used twice specially. */
16911debfc3dSmrg if (is_gimple_assign (stmt))
16921debfc3dSmrg {
16931debfc3dSmrg ac = gimple_assign_rhs1 (stmt);
16941debfc3dSmrg bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
16951debfc3dSmrg }
16961debfc3dSmrg /* GIMPLE_CALL cannot get here. */
16971debfc3dSmrg else
16981debfc3dSmrg {
16991debfc3dSmrg ac = gimple_cond_lhs (stmt);
17001debfc3dSmrg bc = gimple_cond_rhs (stmt);
17011debfc3dSmrg }
17021debfc3dSmrg
17031debfc3dSmrg ar = extract_component (gsi, ac, false, true);
17041debfc3dSmrg ai = extract_component (gsi, ac, true, true);
17051debfc3dSmrg
17061debfc3dSmrg if (ac == bc)
17071debfc3dSmrg br = ar, bi = ai;
17081debfc3dSmrg else if (bc)
17091debfc3dSmrg {
17101debfc3dSmrg br = extract_component (gsi, bc, 0, true);
17111debfc3dSmrg bi = extract_component (gsi, bc, 1, true);
17121debfc3dSmrg }
17131debfc3dSmrg else
17141debfc3dSmrg br = bi = NULL_TREE;
17151debfc3dSmrg
17161debfc3dSmrg al = find_lattice_value (ac);
17171debfc3dSmrg if (al == UNINITIALIZED)
17181debfc3dSmrg al = VARYING;
17191debfc3dSmrg
17201debfc3dSmrg if (TREE_CODE_CLASS (code) == tcc_unary)
17211debfc3dSmrg bl = UNINITIALIZED;
17221debfc3dSmrg else if (ac == bc)
17231debfc3dSmrg bl = al;
17241debfc3dSmrg else
17251debfc3dSmrg {
17261debfc3dSmrg bl = find_lattice_value (bc);
17271debfc3dSmrg if (bl == UNINITIALIZED)
17281debfc3dSmrg bl = VARYING;
17291debfc3dSmrg }
17301debfc3dSmrg
17311debfc3dSmrg switch (code)
17321debfc3dSmrg {
17331debfc3dSmrg case PLUS_EXPR:
17341debfc3dSmrg case MINUS_EXPR:
17351debfc3dSmrg expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
17361debfc3dSmrg break;
17371debfc3dSmrg
17381debfc3dSmrg case MULT_EXPR:
1739c0a68be4Smrg expand_complex_multiplication (gsi, type, ar, ai, br, bi, al, bl);
17401debfc3dSmrg break;
17411debfc3dSmrg
17421debfc3dSmrg case TRUNC_DIV_EXPR:
17431debfc3dSmrg case CEIL_DIV_EXPR:
17441debfc3dSmrg case FLOOR_DIV_EXPR:
17451debfc3dSmrg case ROUND_DIV_EXPR:
17461debfc3dSmrg case RDIV_EXPR:
1747c0a68be4Smrg expand_complex_division (gsi, type, ar, ai, br, bi, code, al, bl);
17481debfc3dSmrg break;
17491debfc3dSmrg
17501debfc3dSmrg case NEGATE_EXPR:
17511debfc3dSmrg expand_complex_negation (gsi, inner_type, ar, ai);
17521debfc3dSmrg break;
17531debfc3dSmrg
17541debfc3dSmrg case CONJ_EXPR:
17551debfc3dSmrg expand_complex_conjugate (gsi, inner_type, ar, ai);
17561debfc3dSmrg break;
17571debfc3dSmrg
17581debfc3dSmrg case EQ_EXPR:
17591debfc3dSmrg case NE_EXPR:
17601debfc3dSmrg expand_complex_comparison (gsi, ar, ai, br, bi, code);
17611debfc3dSmrg break;
17621debfc3dSmrg
17631debfc3dSmrg default:
17641debfc3dSmrg gcc_unreachable ();
17651debfc3dSmrg }
17661debfc3dSmrg }
17671debfc3dSmrg
17681debfc3dSmrg
17691debfc3dSmrg /* Entry point for complex operation lowering during optimization. */
17701debfc3dSmrg
17711debfc3dSmrg static unsigned int
tree_lower_complex(void)17721debfc3dSmrg tree_lower_complex (void)
17731debfc3dSmrg {
17741debfc3dSmrg gimple_stmt_iterator gsi;
17751debfc3dSmrg basic_block bb;
17761debfc3dSmrg int n_bbs, i;
17771debfc3dSmrg int *rpo;
17781debfc3dSmrg
17791debfc3dSmrg if (!init_dont_simulate_again ())
17801debfc3dSmrg return 0;
17811debfc3dSmrg
17821debfc3dSmrg complex_lattice_values.create (num_ssa_names);
17831debfc3dSmrg complex_lattice_values.safe_grow_cleared (num_ssa_names);
17841debfc3dSmrg
17851debfc3dSmrg init_parameter_lattice_values ();
1786a2dc1f3fSmrg class complex_propagate complex_propagate;
1787a2dc1f3fSmrg complex_propagate.ssa_propagate ();
17881debfc3dSmrg
1789a05ac97eSmrg need_eh_cleanup = BITMAP_ALLOC (NULL);
1790a05ac97eSmrg
17911debfc3dSmrg complex_variable_components = new int_tree_htab_type (10);
17921debfc3dSmrg
17931debfc3dSmrg complex_ssa_name_components.create (2 * num_ssa_names);
17941debfc3dSmrg complex_ssa_name_components.safe_grow_cleared (2 * num_ssa_names);
17951debfc3dSmrg
17961debfc3dSmrg update_parameter_components ();
17971debfc3dSmrg
17981debfc3dSmrg rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
17991debfc3dSmrg n_bbs = pre_and_rev_post_order_compute (NULL, rpo, false);
18001debfc3dSmrg for (i = 0; i < n_bbs; i++)
18011debfc3dSmrg {
18021debfc3dSmrg bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
1803a2dc1f3fSmrg if (!bb)
1804a2dc1f3fSmrg continue;
18051debfc3dSmrg update_phi_components (bb);
18061debfc3dSmrg for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
18071debfc3dSmrg expand_complex_operations_1 (&gsi);
18081debfc3dSmrg }
18091debfc3dSmrg
18101debfc3dSmrg free (rpo);
18111debfc3dSmrg
18121debfc3dSmrg if (!phis_to_revisit.is_empty ())
18131debfc3dSmrg {
18141debfc3dSmrg unsigned int n = phis_to_revisit.length ();
18151debfc3dSmrg for (unsigned int j = 0; j < n; j += 3)
18161debfc3dSmrg for (unsigned int k = 0; k < 2; k++)
18171debfc3dSmrg if (gphi *phi = phis_to_revisit[j + k + 1])
18181debfc3dSmrg {
18191debfc3dSmrg unsigned int m = gimple_phi_num_args (phi);
18201debfc3dSmrg for (unsigned int l = 0; l < m; ++l)
18211debfc3dSmrg {
18221debfc3dSmrg tree op = gimple_phi_arg_def (phi, l);
18231debfc3dSmrg if (TREE_CODE (op) == SSA_NAME
18241debfc3dSmrg || is_gimple_min_invariant (op))
18251debfc3dSmrg continue;
18261debfc3dSmrg tree arg = gimple_phi_arg_def (phis_to_revisit[j], l);
18271debfc3dSmrg op = extract_component (NULL, arg, k > 0, false, false);
18281debfc3dSmrg SET_PHI_ARG_DEF (phi, l, op);
18291debfc3dSmrg }
18301debfc3dSmrg }
18311debfc3dSmrg phis_to_revisit.release ();
18321debfc3dSmrg }
18331debfc3dSmrg
18341debfc3dSmrg gsi_commit_edge_inserts ();
18351debfc3dSmrg
1836a05ac97eSmrg unsigned todo
1837a05ac97eSmrg = gimple_purge_all_dead_eh_edges (need_eh_cleanup) ? TODO_cleanup_cfg : 0;
1838a05ac97eSmrg BITMAP_FREE (need_eh_cleanup);
1839a05ac97eSmrg
18401debfc3dSmrg delete complex_variable_components;
18411debfc3dSmrg complex_variable_components = NULL;
18421debfc3dSmrg complex_ssa_name_components.release ();
18431debfc3dSmrg complex_lattice_values.release ();
1844a05ac97eSmrg return todo;
18451debfc3dSmrg }
18461debfc3dSmrg
18471debfc3dSmrg namespace {
18481debfc3dSmrg
18491debfc3dSmrg const pass_data pass_data_lower_complex =
18501debfc3dSmrg {
18511debfc3dSmrg GIMPLE_PASS, /* type */
18521debfc3dSmrg "cplxlower", /* name */
18531debfc3dSmrg OPTGROUP_NONE, /* optinfo_flags */
18541debfc3dSmrg TV_NONE, /* tv_id */
18551debfc3dSmrg PROP_ssa, /* properties_required */
18561debfc3dSmrg PROP_gimple_lcx, /* properties_provided */
18571debfc3dSmrg 0, /* properties_destroyed */
18581debfc3dSmrg 0, /* todo_flags_start */
18591debfc3dSmrg TODO_update_ssa, /* todo_flags_finish */
18601debfc3dSmrg };
18611debfc3dSmrg
18621debfc3dSmrg class pass_lower_complex : public gimple_opt_pass
18631debfc3dSmrg {
18641debfc3dSmrg public:
pass_lower_complex(gcc::context * ctxt)18651debfc3dSmrg pass_lower_complex (gcc::context *ctxt)
18661debfc3dSmrg : gimple_opt_pass (pass_data_lower_complex, ctxt)
18671debfc3dSmrg {}
18681debfc3dSmrg
18691debfc3dSmrg /* opt_pass methods: */
clone()18701debfc3dSmrg opt_pass * clone () { return new pass_lower_complex (m_ctxt); }
execute(function *)18711debfc3dSmrg virtual unsigned int execute (function *) { return tree_lower_complex (); }
18721debfc3dSmrg
18731debfc3dSmrg }; // class pass_lower_complex
18741debfc3dSmrg
18751debfc3dSmrg } // anon namespace
18761debfc3dSmrg
18771debfc3dSmrg gimple_opt_pass *
make_pass_lower_complex(gcc::context * ctxt)18781debfc3dSmrg make_pass_lower_complex (gcc::context *ctxt)
18791debfc3dSmrg {
18801debfc3dSmrg return new pass_lower_complex (ctxt);
18811debfc3dSmrg }
18821debfc3dSmrg
18831debfc3dSmrg
18841debfc3dSmrg namespace {
18851debfc3dSmrg
18861debfc3dSmrg const pass_data pass_data_lower_complex_O0 =
18871debfc3dSmrg {
18881debfc3dSmrg GIMPLE_PASS, /* type */
18891debfc3dSmrg "cplxlower0", /* name */
18901debfc3dSmrg OPTGROUP_NONE, /* optinfo_flags */
18911debfc3dSmrg TV_NONE, /* tv_id */
18921debfc3dSmrg PROP_cfg, /* properties_required */
18931debfc3dSmrg PROP_gimple_lcx, /* properties_provided */
18941debfc3dSmrg 0, /* properties_destroyed */
18951debfc3dSmrg 0, /* todo_flags_start */
18961debfc3dSmrg TODO_update_ssa, /* todo_flags_finish */
18971debfc3dSmrg };
18981debfc3dSmrg
18991debfc3dSmrg class pass_lower_complex_O0 : public gimple_opt_pass
19001debfc3dSmrg {
19011debfc3dSmrg public:
pass_lower_complex_O0(gcc::context * ctxt)19021debfc3dSmrg pass_lower_complex_O0 (gcc::context *ctxt)
19031debfc3dSmrg : gimple_opt_pass (pass_data_lower_complex_O0, ctxt)
19041debfc3dSmrg {}
19051debfc3dSmrg
19061debfc3dSmrg /* opt_pass methods: */
gate(function * fun)19071debfc3dSmrg virtual bool gate (function *fun)
19081debfc3dSmrg {
19091debfc3dSmrg /* With errors, normal optimization passes are not run. If we don't
19101debfc3dSmrg lower complex operations at all, rtl expansion will abort. */
19111debfc3dSmrg return !(fun->curr_properties & PROP_gimple_lcx);
19121debfc3dSmrg }
19131debfc3dSmrg
execute(function *)19141debfc3dSmrg virtual unsigned int execute (function *) { return tree_lower_complex (); }
19151debfc3dSmrg
19161debfc3dSmrg }; // class pass_lower_complex_O0
19171debfc3dSmrg
19181debfc3dSmrg } // anon namespace
19191debfc3dSmrg
19201debfc3dSmrg gimple_opt_pass *
make_pass_lower_complex_O0(gcc::context * ctxt)19211debfc3dSmrg make_pass_lower_complex_O0 (gcc::context *ctxt)
19221debfc3dSmrg {
19231debfc3dSmrg return new pass_lower_complex_O0 (ctxt);
19241debfc3dSmrg }
1925