xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-chrec.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Chains of recurrences.
2    Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This file implements operations on chains of recurrences.  Chains
23    of recurrences are used for modeling evolution functions of scalar
24    variables.
25 */
26 
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "flags.h"
41 #include "tree-scalar-evolution.h"
42 
43 
44 
45 /* Extended folder for chrecs.  */
46 
47 /* Determines whether CST is not a constant evolution.  */
48 
49 static inline bool
50 is_not_constant_evolution (const_tree cst)
51 {
52   return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
53 }
54 
55 /* Fold CODE for a polynomial function and a constant.  */
56 
57 static inline tree
58 chrec_fold_poly_cst (enum tree_code code,
59 		     tree type,
60 		     tree poly,
61 		     tree cst)
62 {
63   gcc_assert (poly);
64   gcc_assert (cst);
65   gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
66   gcc_assert (!is_not_constant_evolution (cst));
67   gcc_assert (type == chrec_type (poly));
68 
69   switch (code)
70     {
71     case PLUS_EXPR:
72       return build_polynomial_chrec
73 	(CHREC_VARIABLE (poly),
74 	 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
75 	 CHREC_RIGHT (poly));
76 
77     case MINUS_EXPR:
78       return build_polynomial_chrec
79 	(CHREC_VARIABLE (poly),
80 	 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
81 	 CHREC_RIGHT (poly));
82 
83     case MULT_EXPR:
84       return build_polynomial_chrec
85 	(CHREC_VARIABLE (poly),
86 	 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
87 	 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88 
89     default:
90       return chrec_dont_know;
91     }
92 }
93 
94 /* Fold the addition of two polynomial functions.  */
95 
96 static inline tree
97 chrec_fold_plus_poly_poly (enum tree_code code,
98 			   tree type,
99 			   tree poly0,
100 			   tree poly1)
101 {
102   tree left, right;
103   struct loop *loop0 = get_chrec_loop (poly0);
104   struct loop *loop1 = get_chrec_loop (poly1);
105   tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
106 
107   gcc_assert (poly0);
108   gcc_assert (poly1);
109   gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
110   gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
111   if (POINTER_TYPE_P (chrec_type (poly0)))
112     gcc_assert (chrec_type (poly1) == sizetype);
113   else
114     gcc_assert (chrec_type (poly0) == chrec_type (poly1));
115   gcc_assert (type == chrec_type (poly0));
116 
117   /*
118     {a, +, b}_1 + {c, +, d}_2  ->  {{a, +, b}_1 + c, +, d}_2,
119     {a, +, b}_2 + {c, +, d}_1  ->  {{c, +, d}_1 + a, +, b}_2,
120     {a, +, b}_x + {c, +, d}_x  ->  {a+c, +, b+d}_x.  */
121   if (flow_loop_nested_p (loop0, loop1))
122     {
123       if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
124 	return build_polynomial_chrec
125 	  (CHREC_VARIABLE (poly1),
126 	   chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
127 	   CHREC_RIGHT (poly1));
128       else
129 	return build_polynomial_chrec
130 	  (CHREC_VARIABLE (poly1),
131 	   chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
132 	   chrec_fold_multiply (type, CHREC_RIGHT (poly1),
133 				SCALAR_FLOAT_TYPE_P (type)
134 				? build_real (type, dconstm1)
135 				: build_int_cst_type (type, -1)));
136     }
137 
138   if (flow_loop_nested_p (loop1, loop0))
139     {
140       if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
141 	return build_polynomial_chrec
142 	  (CHREC_VARIABLE (poly0),
143 	   chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
144 	   CHREC_RIGHT (poly0));
145       else
146 	return build_polynomial_chrec
147 	  (CHREC_VARIABLE (poly0),
148 	   chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
149 	   CHREC_RIGHT (poly0));
150     }
151 
152   /* This function should never be called for chrecs of loops that
153      do not belong to the same loop nest.  */
154   gcc_assert (loop0 == loop1);
155 
156   if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
157     {
158       left = chrec_fold_plus
159 	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
160       right = chrec_fold_plus
161 	(rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
162     }
163   else
164     {
165       left = chrec_fold_minus
166 	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
167       right = chrec_fold_minus
168 	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
169     }
170 
171   if (chrec_zerop (right))
172     return left;
173   else
174     return build_polynomial_chrec
175       (CHREC_VARIABLE (poly0), left, right);
176 }
177 
178 
179 
180 /* Fold the multiplication of two polynomial functions.  */
181 
182 static inline tree
183 chrec_fold_multiply_poly_poly (tree type,
184 			       tree poly0,
185 			       tree poly1)
186 {
187   tree t0, t1, t2;
188   int var;
189   struct loop *loop0 = get_chrec_loop (poly0);
190   struct loop *loop1 = get_chrec_loop (poly1);
191 
192   gcc_assert (poly0);
193   gcc_assert (poly1);
194   gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
195   gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
196   gcc_assert (chrec_type (poly0) == chrec_type (poly1));
197   gcc_assert (type == chrec_type (poly0));
198 
199   /* {a, +, b}_1 * {c, +, d}_2  ->  {c*{a, +, b}_1, +, d}_2,
200      {a, +, b}_2 * {c, +, d}_1  ->  {a*{c, +, d}_1, +, b}_2,
201      {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
202   if (flow_loop_nested_p (loop0, loop1))
203     /* poly0 is a constant wrt. poly1.  */
204     return build_polynomial_chrec
205       (CHREC_VARIABLE (poly1),
206        chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
207        CHREC_RIGHT (poly1));
208 
209   if (flow_loop_nested_p (loop1, loop0))
210     /* poly1 is a constant wrt. poly0.  */
211     return build_polynomial_chrec
212       (CHREC_VARIABLE (poly0),
213        chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
214        CHREC_RIGHT (poly0));
215 
216   gcc_assert (loop0 == loop1);
217 
218   /* poly0 and poly1 are two polynomials in the same variable,
219      {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
220 
221   /* "a*c".  */
222   t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
223 
224   /* "a*d + b*c".  */
225   t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
226   t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
227 						       CHREC_RIGHT (poly0),
228 						       CHREC_LEFT (poly1)));
229   /* "b*d".  */
230   t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
231   /* "a*d + b*c + b*d".  */
232   t1 = chrec_fold_plus (type, t1, t2);
233   /* "2*b*d".  */
234   t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
235 			    ? build_real (type, dconst2)
236 			    : build_int_cst (type, 2), t2);
237 
238   var = CHREC_VARIABLE (poly0);
239   return build_polynomial_chrec (var, t0,
240 				 build_polynomial_chrec (var, t1, t2));
241 }
242 
243 /* When the operands are automatically_generated_chrec_p, the fold has
244    to respect the semantics of the operands.  */
245 
246 static inline tree
247 chrec_fold_automatically_generated_operands (tree op0,
248 					     tree op1)
249 {
250   if (op0 == chrec_dont_know
251       || op1 == chrec_dont_know)
252     return chrec_dont_know;
253 
254   if (op0 == chrec_known
255       || op1 == chrec_known)
256     return chrec_known;
257 
258   if (op0 == chrec_not_analyzed_yet
259       || op1 == chrec_not_analyzed_yet)
260     return chrec_not_analyzed_yet;
261 
262   /* The default case produces a safe result.  */
263   return chrec_dont_know;
264 }
265 
266 /* Fold the addition of two chrecs.  */
267 
268 static tree
269 chrec_fold_plus_1 (enum tree_code code, tree type,
270 		   tree op0, tree op1)
271 {
272   tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
273 
274   if (automatically_generated_chrec_p (op0)
275       || automatically_generated_chrec_p (op1))
276     return chrec_fold_automatically_generated_operands (op0, op1);
277 
278   switch (TREE_CODE (op0))
279     {
280     case POLYNOMIAL_CHREC:
281       switch (TREE_CODE (op1))
282 	{
283 	case POLYNOMIAL_CHREC:
284 	  return chrec_fold_plus_poly_poly (code, type, op0, op1);
285 
286 	CASE_CONVERT:
287 	  if (tree_contains_chrecs (op1, NULL))
288 	    return chrec_dont_know;
289 
290 	default:
291 	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
292 	    return build_polynomial_chrec
293 	      (CHREC_VARIABLE (op0),
294 	       chrec_fold_plus (type, CHREC_LEFT (op0), op1),
295 	       CHREC_RIGHT (op0));
296 	  else
297 	    return build_polynomial_chrec
298 	      (CHREC_VARIABLE (op0),
299 	       chrec_fold_minus (type, CHREC_LEFT (op0), op1),
300 	       CHREC_RIGHT (op0));
301 	}
302 
303     CASE_CONVERT:
304       if (tree_contains_chrecs (op0, NULL))
305 	return chrec_dont_know;
306 
307     default:
308       switch (TREE_CODE (op1))
309 	{
310 	case POLYNOMIAL_CHREC:
311 	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
312 	    return build_polynomial_chrec
313 	      (CHREC_VARIABLE (op1),
314 	       chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
315 	       CHREC_RIGHT (op1));
316 	  else
317 	    return build_polynomial_chrec
318 	      (CHREC_VARIABLE (op1),
319 	       chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
320 	       chrec_fold_multiply (type, CHREC_RIGHT (op1),
321 				    SCALAR_FLOAT_TYPE_P (type)
322 				    ? build_real (type, dconstm1)
323 				    : build_int_cst_type (type, -1)));
324 
325 	CASE_CONVERT:
326 	  if (tree_contains_chrecs (op1, NULL))
327 	    return chrec_dont_know;
328 
329 	default:
330 	  {
331 	    int size = 0;
332 	    if ((tree_contains_chrecs (op0, &size)
333 		 || tree_contains_chrecs (op1, &size))
334 		&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
335 	      return build2 (code, type, op0, op1);
336 	    else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
337 	      return fold_build2 (code, type,
338 				  fold_convert (type, op0),
339 				  fold_convert (op1_type, op1));
340 	    else
341 	      return chrec_dont_know;
342 	  }
343 	}
344     }
345 }
346 
347 /* Fold the addition of two chrecs.  */
348 
349 tree
350 chrec_fold_plus (tree type,
351 		 tree op0,
352 		 tree op1)
353 {
354   enum tree_code code;
355   if (automatically_generated_chrec_p (op0)
356       || automatically_generated_chrec_p (op1))
357     return chrec_fold_automatically_generated_operands (op0, op1);
358 
359   if (integer_zerop (op0))
360     return chrec_convert (type, op1, NULL);
361   if (integer_zerop (op1))
362     return chrec_convert (type, op0, NULL);
363 
364   if (POINTER_TYPE_P (type))
365     code = POINTER_PLUS_EXPR;
366   else
367     code = PLUS_EXPR;
368 
369   return chrec_fold_plus_1 (code, type, op0, op1);
370 }
371 
372 /* Fold the subtraction of two chrecs.  */
373 
374 tree
375 chrec_fold_minus (tree type,
376 		  tree op0,
377 		  tree op1)
378 {
379   if (automatically_generated_chrec_p (op0)
380       || automatically_generated_chrec_p (op1))
381     return chrec_fold_automatically_generated_operands (op0, op1);
382 
383   if (integer_zerop (op1))
384     return op0;
385 
386   return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
387 }
388 
389 /* Fold the multiplication of two chrecs.  */
390 
391 tree
392 chrec_fold_multiply (tree type,
393 		     tree op0,
394 		     tree op1)
395 {
396   if (automatically_generated_chrec_p (op0)
397       || automatically_generated_chrec_p (op1))
398     return chrec_fold_automatically_generated_operands (op0, op1);
399 
400   switch (TREE_CODE (op0))
401     {
402     case POLYNOMIAL_CHREC:
403       switch (TREE_CODE (op1))
404 	{
405 	case POLYNOMIAL_CHREC:
406 	  return chrec_fold_multiply_poly_poly (type, op0, op1);
407 
408 	CASE_CONVERT:
409 	  if (tree_contains_chrecs (op1, NULL))
410 	    return chrec_dont_know;
411 
412 	default:
413 	  if (integer_onep (op1))
414 	    return op0;
415 	  if (integer_zerop (op1))
416 	    return build_int_cst (type, 0);
417 
418 	  return build_polynomial_chrec
419 	    (CHREC_VARIABLE (op0),
420 	     chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
421 	     chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
422 	}
423 
424     CASE_CONVERT:
425       if (tree_contains_chrecs (op0, NULL))
426 	return chrec_dont_know;
427 
428     default:
429       if (integer_onep (op0))
430 	return op1;
431 
432       if (integer_zerop (op0))
433     	return build_int_cst (type, 0);
434 
435       switch (TREE_CODE (op1))
436 	{
437 	case POLYNOMIAL_CHREC:
438 	  return build_polynomial_chrec
439 	    (CHREC_VARIABLE (op1),
440 	     chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
441 	     chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
442 
443 	CASE_CONVERT:
444 	  if (tree_contains_chrecs (op1, NULL))
445 	    return chrec_dont_know;
446 
447 	default:
448 	  if (integer_onep (op1))
449 	    return op0;
450 	  if (integer_zerop (op1))
451 	    return build_int_cst (type, 0);
452 	  return fold_build2 (MULT_EXPR, type, op0, op1);
453 	}
454     }
455 }
456 
457 
458 
459 /* Operations.  */
460 
461 /* Evaluate the binomial coefficient.  Return NULL_TREE if the intermediate
462    calculation overflows, otherwise return C(n,k) with type TYPE.  */
463 
464 static tree
465 tree_fold_binomial (tree type, tree n, unsigned int k)
466 {
467   unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
468   HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
469   unsigned int i;
470   tree res;
471 
472   /* Handle the most frequent cases.  */
473   if (k == 0)
474     return build_int_cst (type, 1);
475   if (k == 1)
476     return fold_convert (type, n);
477 
478   /* Check that k <= n.  */
479   if (TREE_INT_CST_HIGH (n) == 0
480       && TREE_INT_CST_LOW (n) < k)
481     return NULL_TREE;
482 
483   /* Numerator = n.  */
484   lnum = TREE_INT_CST_LOW (n);
485   hnum = TREE_INT_CST_HIGH (n);
486 
487   /* Denominator = 2.  */
488   ldenom = 2;
489   hdenom = 0;
490 
491   /* Index = Numerator-1.  */
492   if (lnum == 0)
493     {
494       hidx = hnum - 1;
495       lidx = ~ (unsigned HOST_WIDE_INT) 0;
496     }
497   else
498     {
499       hidx = hnum;
500       lidx = lnum - 1;
501     }
502 
503   /* Numerator = Numerator*Index = n*(n-1).  */
504   if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
505     return NULL_TREE;
506 
507   for (i = 3; i <= k; i++)
508     {
509       /* Index--.  */
510       if (lidx == 0)
511 	{
512 	  hidx--;
513 	  lidx = ~ (unsigned HOST_WIDE_INT) 0;
514 	}
515       else
516         lidx--;
517 
518       /* Numerator *= Index.  */
519       if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
520 	return NULL_TREE;
521 
522       /* Denominator *= i.  */
523       mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
524     }
525 
526   /* Result = Numerator / Denominator.  */
527   div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
528 			&lres, &hres, &ldum, &hdum);
529 
530   res = build_int_cst_wide (type, lres, hres);
531   return int_fits_type_p (res, type) ? res : NULL_TREE;
532 }
533 
534 /* Helper function.  Use the Newton's interpolating formula for
535    evaluating the value of the evolution function.  */
536 
537 static tree
538 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
539 {
540   tree arg0, arg1, binomial_n_k;
541   tree type = TREE_TYPE (chrec);
542   struct loop *var_loop = get_loop (var);
543 
544   while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
545 	 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
546     chrec = CHREC_LEFT (chrec);
547 
548   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
549       && CHREC_VARIABLE (chrec) == var)
550     {
551       arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
552       if (arg1 == chrec_dont_know)
553 	return chrec_dont_know;
554       binomial_n_k = tree_fold_binomial (type, n, k);
555       if (!binomial_n_k)
556 	return chrec_dont_know;
557       arg0 = fold_build2 (MULT_EXPR, type,
558 			  CHREC_LEFT (chrec), binomial_n_k);
559       return chrec_fold_plus (type, arg0, arg1);
560     }
561 
562   binomial_n_k = tree_fold_binomial (type, n, k);
563   if (!binomial_n_k)
564     return chrec_dont_know;
565 
566   return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
567 }
568 
569 /* Evaluates "CHREC (X)" when the varying variable is VAR.
570    Example:  Given the following parameters,
571 
572    var = 1
573    chrec = {3, +, 4}_1
574    x = 10
575 
576    The result is given by the Newton's interpolating formula:
577    3 * \binom{10}{0} + 4 * \binom{10}{1}.
578 */
579 
580 tree
581 chrec_apply (unsigned var,
582 	     tree chrec,
583 	     tree x)
584 {
585   tree type = chrec_type (chrec);
586   tree res = chrec_dont_know;
587 
588   if (automatically_generated_chrec_p (chrec)
589       || automatically_generated_chrec_p (x)
590 
591       /* When the symbols are defined in an outer loop, it is possible
592 	 to symbolically compute the apply, since the symbols are
593 	 constants with respect to the varying loop.  */
594       || chrec_contains_symbols_defined_in_loop (chrec, var))
595     return chrec_dont_know;
596 
597   if (dump_file && (dump_flags & TDF_DETAILS))
598     fprintf (dump_file, "(chrec_apply \n");
599 
600   if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
601     x = build_real_from_int_cst (type, x);
602 
603   if (evolution_function_is_affine_p (chrec))
604     {
605       /* "{a, +, b} (x)"  ->  "a + b*x".  */
606       x = chrec_convert_rhs (type, x, NULL);
607       res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
608       res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
609     }
610 
611   else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
612     res = chrec;
613 
614   else if (TREE_CODE (x) == INTEGER_CST
615 	   && tree_int_cst_sgn (x) == 1)
616     /* testsuite/.../ssa-chrec-38.c.  */
617     res = chrec_evaluate (var, chrec, x, 0);
618   else
619     res = chrec_dont_know;
620 
621   if (dump_file && (dump_flags & TDF_DETAILS))
622     {
623       fprintf (dump_file, "  (varying_loop = %d\n", var);
624       fprintf (dump_file, ")\n  (chrec = ");
625       print_generic_expr (dump_file, chrec, 0);
626       fprintf (dump_file, ")\n  (x = ");
627       print_generic_expr (dump_file, x, 0);
628       fprintf (dump_file, ")\n  (res = ");
629       print_generic_expr (dump_file, res, 0);
630       fprintf (dump_file, "))\n");
631     }
632 
633   return res;
634 }
635 
636 /* Replaces the initial condition in CHREC with INIT_COND.  */
637 
638 tree
639 chrec_replace_initial_condition (tree chrec,
640 				 tree init_cond)
641 {
642   if (automatically_generated_chrec_p (chrec))
643     return chrec;
644 
645   gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
646 
647   switch (TREE_CODE (chrec))
648     {
649     case POLYNOMIAL_CHREC:
650       return build_polynomial_chrec
651 	(CHREC_VARIABLE (chrec),
652 	 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
653 	 CHREC_RIGHT (chrec));
654 
655     default:
656       return init_cond;
657     }
658 }
659 
660 /* Returns the initial condition of a given CHREC.  */
661 
662 tree
663 initial_condition (tree chrec)
664 {
665   if (automatically_generated_chrec_p (chrec))
666     return chrec;
667 
668   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
669     return initial_condition (CHREC_LEFT (chrec));
670   else
671     return chrec;
672 }
673 
674 /* Returns a univariate function that represents the evolution in
675    LOOP_NUM.  Mask the evolution of any other loop.  */
676 
677 tree
678 hide_evolution_in_other_loops_than_loop (tree chrec,
679 					 unsigned loop_num)
680 {
681   struct loop *loop = get_loop (loop_num), *chloop;
682   if (automatically_generated_chrec_p (chrec))
683     return chrec;
684 
685   switch (TREE_CODE (chrec))
686     {
687     case POLYNOMIAL_CHREC:
688       chloop = get_chrec_loop (chrec);
689 
690       if (chloop == loop)
691 	return build_polynomial_chrec
692 	  (loop_num,
693 	   hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
694 						    loop_num),
695 	   CHREC_RIGHT (chrec));
696 
697       else if (flow_loop_nested_p (chloop, loop))
698 	/* There is no evolution in this loop.  */
699 	return initial_condition (chrec);
700 
701       else
702 	{
703 	  gcc_assert (flow_loop_nested_p (loop, chloop));
704 	  return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
705 							  loop_num);
706 	}
707 
708     default:
709       return chrec;
710     }
711 }
712 
713 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
714    true, otherwise returns the initial condition in LOOP_NUM.  */
715 
716 static tree
717 chrec_component_in_loop_num (tree chrec,
718 			     unsigned loop_num,
719 			     bool right)
720 {
721   tree component;
722   struct loop *loop = get_loop (loop_num), *chloop;
723 
724   if (automatically_generated_chrec_p (chrec))
725     return chrec;
726 
727   switch (TREE_CODE (chrec))
728     {
729     case POLYNOMIAL_CHREC:
730       chloop = get_chrec_loop (chrec);
731 
732       if (chloop == loop)
733 	{
734 	  if (right)
735 	    component = CHREC_RIGHT (chrec);
736 	  else
737 	    component = CHREC_LEFT (chrec);
738 
739 	  if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
740 	      || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
741 	    return component;
742 
743 	  else
744 	    return build_polynomial_chrec
745 	      (loop_num,
746 	       chrec_component_in_loop_num (CHREC_LEFT (chrec),
747 					    loop_num,
748 					    right),
749 	       component);
750 	}
751 
752       else if (flow_loop_nested_p (chloop, loop))
753 	/* There is no evolution part in this loop.  */
754 	return NULL_TREE;
755 
756       else
757 	{
758 	  gcc_assert (flow_loop_nested_p (loop, chloop));
759 	  return chrec_component_in_loop_num (CHREC_LEFT (chrec),
760 					      loop_num,
761 					      right);
762 	}
763 
764      default:
765       if (right)
766 	return NULL_TREE;
767       else
768 	return chrec;
769     }
770 }
771 
772 /* Returns the evolution part in LOOP_NUM.  Example: the call
773    evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
774    {1, +, 2}_1  */
775 
776 tree
777 evolution_part_in_loop_num (tree chrec,
778 			    unsigned loop_num)
779 {
780   return chrec_component_in_loop_num (chrec, loop_num, true);
781 }
782 
783 /* Returns the initial condition in LOOP_NUM.  Example: the call
784    initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
785    {0, +, 1}_1  */
786 
787 tree
788 initial_condition_in_loop_num (tree chrec,
789 			       unsigned loop_num)
790 {
791   return chrec_component_in_loop_num (chrec, loop_num, false);
792 }
793 
794 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
795    This function is essentially used for setting the evolution to
796    chrec_dont_know, for example after having determined that it is
797    impossible to say how many times a loop will execute.  */
798 
799 tree
800 reset_evolution_in_loop (unsigned loop_num,
801 			 tree chrec,
802 			 tree new_evol)
803 {
804   struct loop *loop = get_loop (loop_num);
805 
806   if (POINTER_TYPE_P (chrec_type (chrec)))
807     gcc_assert (sizetype == chrec_type (new_evol));
808   else
809     gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
810 
811   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
812       && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
813     {
814       tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
815 					   new_evol);
816       tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
817 					    new_evol);
818       return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
819 		     build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
820 		     left, right);
821     }
822 
823   while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
824 	 && CHREC_VARIABLE (chrec) == loop_num)
825     chrec = CHREC_LEFT (chrec);
826 
827   return build_polynomial_chrec (loop_num, chrec, new_evol);
828 }
829 
830 /* Merges two evolution functions that were found by following two
831    alternate paths of a conditional expression.  */
832 
833 tree
834 chrec_merge (tree chrec1,
835 	     tree chrec2)
836 {
837   if (chrec1 == chrec_dont_know
838       || chrec2 == chrec_dont_know)
839     return chrec_dont_know;
840 
841   if (chrec1 == chrec_known
842       || chrec2 == chrec_known)
843     return chrec_known;
844 
845   if (chrec1 == chrec_not_analyzed_yet)
846     return chrec2;
847   if (chrec2 == chrec_not_analyzed_yet)
848     return chrec1;
849 
850   if (eq_evolutions_p (chrec1, chrec2))
851     return chrec1;
852 
853   return chrec_dont_know;
854 }
855 
856 
857 
858 /* Observers.  */
859 
860 /* Helper function for is_multivariate_chrec.  */
861 
862 static bool
863 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
864 {
865   if (chrec == NULL_TREE)
866     return false;
867 
868   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
869     {
870       if (CHREC_VARIABLE (chrec) != rec_var)
871 	return true;
872       else
873 	return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
874 		|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
875     }
876   else
877     return false;
878 }
879 
880 /* Determine whether the given chrec is multivariate or not.  */
881 
882 bool
883 is_multivariate_chrec (const_tree chrec)
884 {
885   if (chrec == NULL_TREE)
886     return false;
887 
888   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
889     return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
890 				       CHREC_VARIABLE (chrec))
891 	    || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
892 					  CHREC_VARIABLE (chrec)));
893   else
894     return false;
895 }
896 
897 /* Determines whether the chrec contains symbolic names or not.  */
898 
899 bool
900 chrec_contains_symbols (const_tree chrec)
901 {
902   int i, n;
903 
904   if (chrec == NULL_TREE)
905     return false;
906 
907   if (TREE_CODE (chrec) == SSA_NAME
908       || TREE_CODE (chrec) == VAR_DECL
909       || TREE_CODE (chrec) == PARM_DECL
910       || TREE_CODE (chrec) == FUNCTION_DECL
911       || TREE_CODE (chrec) == LABEL_DECL
912       || TREE_CODE (chrec) == RESULT_DECL
913       || TREE_CODE (chrec) == FIELD_DECL)
914     return true;
915 
916   n = TREE_OPERAND_LENGTH (chrec);
917   for (i = 0; i < n; i++)
918     if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
919       return true;
920   return false;
921 }
922 
923 /* Determines whether the chrec contains undetermined coefficients.  */
924 
925 bool
926 chrec_contains_undetermined (const_tree chrec)
927 {
928   int i, n;
929 
930   if (chrec == chrec_dont_know)
931     return true;
932 
933   if (chrec == NULL_TREE)
934     return false;
935 
936   n = TREE_OPERAND_LENGTH (chrec);
937   for (i = 0; i < n; i++)
938     if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
939       return true;
940   return false;
941 }
942 
943 /* Determines whether the tree EXPR contains chrecs, and increment
944    SIZE if it is not a NULL pointer by an estimation of the depth of
945    the tree.  */
946 
947 bool
948 tree_contains_chrecs (const_tree expr, int *size)
949 {
950   int i, n;
951 
952   if (expr == NULL_TREE)
953     return false;
954 
955   if (size)
956     (*size)++;
957 
958   if (tree_is_chrec (expr))
959     return true;
960 
961   n = TREE_OPERAND_LENGTH (expr);
962   for (i = 0; i < n; i++)
963     if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
964       return true;
965   return false;
966 }
967 
968 /* Recursive helper function.  */
969 
970 static bool
971 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
972 {
973   if (evolution_function_is_constant_p (chrec))
974     return true;
975 
976   if (TREE_CODE (chrec) == SSA_NAME
977       && (loopnum == 0
978 	  || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
979     return true;
980 
981   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
982     {
983       if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
984 	  || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
985 						     loopnum)
986 	  || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
987 						     loopnum))
988 	return false;
989       return true;
990     }
991 
992   switch (TREE_OPERAND_LENGTH (chrec))
993     {
994     case 2:
995       if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
996 						  loopnum))
997 	return false;
998 
999     case 1:
1000       if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1001 						  loopnum))
1002 	return false;
1003       return true;
1004 
1005     default:
1006       return false;
1007     }
1008 
1009   return false;
1010 }
1011 
1012 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1013 
1014 bool
1015 evolution_function_is_invariant_p (tree chrec, int loopnum)
1016 {
1017   return evolution_function_is_invariant_rec_p (chrec, loopnum);
1018 }
1019 
1020 /* Determine whether the given tree is an affine multivariate
1021    evolution.  */
1022 
1023 bool
1024 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1025 {
1026   if (chrec == NULL_TREE)
1027     return false;
1028 
1029   switch (TREE_CODE (chrec))
1030     {
1031     case POLYNOMIAL_CHREC:
1032       if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1033 	{
1034 	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1035 	    return true;
1036 	  else
1037 	    {
1038 	      if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1039 		  && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1040 		     != CHREC_VARIABLE (chrec)
1041 		  && evolution_function_is_affine_multivariate_p
1042 		  (CHREC_RIGHT (chrec), loopnum))
1043 		return true;
1044 	      else
1045 		return false;
1046 	    }
1047 	}
1048       else
1049 	{
1050 	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1051 	      && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1052 	      && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1053 	      && evolution_function_is_affine_multivariate_p
1054 	      (CHREC_LEFT (chrec), loopnum))
1055 	    return true;
1056 	  else
1057 	    return false;
1058 	}
1059 
1060     default:
1061       return false;
1062     }
1063 }
1064 
1065 /* Determine whether the given tree is a function in zero or one
1066    variables.  */
1067 
1068 bool
1069 evolution_function_is_univariate_p (const_tree chrec)
1070 {
1071   if (chrec == NULL_TREE)
1072     return true;
1073 
1074   switch (TREE_CODE (chrec))
1075     {
1076     case POLYNOMIAL_CHREC:
1077       switch (TREE_CODE (CHREC_LEFT (chrec)))
1078 	{
1079 	case POLYNOMIAL_CHREC:
1080 	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1081 	    return false;
1082 	  if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1083 	    return false;
1084 	  break;
1085 
1086 	default:
1087 	  break;
1088 	}
1089 
1090       switch (TREE_CODE (CHREC_RIGHT (chrec)))
1091 	{
1092 	case POLYNOMIAL_CHREC:
1093 	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1094 	    return false;
1095 	  if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1096 	    return false;
1097 	  break;
1098 
1099 	default:
1100 	  break;
1101 	}
1102 
1103     default:
1104       return true;
1105     }
1106 }
1107 
1108 /* Returns the number of variables of CHREC.  Example: the call
1109    nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2.  */
1110 
1111 unsigned
1112 nb_vars_in_chrec (tree chrec)
1113 {
1114   if (chrec == NULL_TREE)
1115     return 0;
1116 
1117   switch (TREE_CODE (chrec))
1118     {
1119     case POLYNOMIAL_CHREC:
1120       return 1 + nb_vars_in_chrec
1121 	(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1122 
1123     default:
1124       return 0;
1125     }
1126 }
1127 
1128 static tree chrec_convert_1 (tree, tree, gimple, bool);
1129 
1130 /* Converts BASE and STEP of affine scev to TYPE.  LOOP is the loop whose iv
1131    the scev corresponds to.  AT_STMT is the statement at that the scev is
1132    evaluated.  USE_OVERFLOW_SEMANTICS is true if this function should assume that
1133    the rules for overflow of the given language apply (e.g., that signed
1134    arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1135    tests, but also to enforce that the result follows them.  Returns true if the
1136    conversion succeeded, false otherwise.  */
1137 
1138 bool
1139 convert_affine_scev (struct loop *loop, tree type,
1140 		     tree *base, tree *step, gimple at_stmt,
1141 		     bool use_overflow_semantics)
1142 {
1143   tree ct = TREE_TYPE (*step);
1144   bool enforce_overflow_semantics;
1145   bool must_check_src_overflow, must_check_rslt_overflow;
1146   tree new_base, new_step;
1147   tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1148 
1149   /* In general,
1150      (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1151      but we must check some assumptions.
1152 
1153      1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1154         of CT is smaller than the precision of TYPE.  For example, when we
1155 	cast unsigned char [254, +, 1] to unsigned, the values on left side
1156 	are 254, 255, 0, 1, ..., but those on the right side are
1157 	254, 255, 256, 257, ...
1158      2) In case that we must also preserve the fact that signed ivs do not
1159         overflow, we must additionally check that the new iv does not wrap.
1160 	For example, unsigned char [125, +, 1] casted to signed char could
1161 	become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1162 	which would confuse optimizers that assume that this does not
1163 	happen.  */
1164   must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1165 
1166   enforce_overflow_semantics = (use_overflow_semantics
1167 				&& nowrap_type_p (type));
1168   if (enforce_overflow_semantics)
1169     {
1170       /* We can avoid checking whether the result overflows in the following
1171 	 cases:
1172 
1173 	 -- must_check_src_overflow is true, and the range of TYPE is superset
1174 	    of the range of CT -- i.e., in all cases except if CT signed and
1175 	    TYPE unsigned.
1176          -- both CT and TYPE have the same precision and signedness, and we
1177 	    verify instead that the source does not overflow (this may be
1178 	    easier than verifying it for the result, as we may use the
1179 	    information about the semantics of overflow in CT).  */
1180       if (must_check_src_overflow)
1181 	{
1182 	  if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1183 	    must_check_rslt_overflow = true;
1184 	  else
1185 	    must_check_rslt_overflow = false;
1186 	}
1187       else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1188 	       && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1189 	{
1190 	  must_check_rslt_overflow = false;
1191 	  must_check_src_overflow = true;
1192 	}
1193       else
1194 	must_check_rslt_overflow = true;
1195     }
1196   else
1197     must_check_rslt_overflow = false;
1198 
1199   if (must_check_src_overflow
1200       && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1201 				use_overflow_semantics))
1202     return false;
1203 
1204   new_base = chrec_convert_1 (type, *base, at_stmt,
1205 			      use_overflow_semantics);
1206   /* The step must be sign extended, regardless of the signedness
1207      of CT and TYPE.  This only needs to be handled specially when
1208      CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1209      (with values 100, 99, 98, ...) from becoming signed or unsigned
1210      [100, +, 255] with values 100, 355, ...; the sign-extension is
1211      performed by default when CT is signed.  */
1212   new_step = *step;
1213   if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1214     new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1215 				use_overflow_semantics);
1216   new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1217 
1218   if (automatically_generated_chrec_p (new_base)
1219       || automatically_generated_chrec_p (new_step))
1220     return false;
1221 
1222   if (must_check_rslt_overflow
1223       /* Note that in this case we cannot use the fact that signed variables
1224 	 do not overflow, as this is what we are verifying for the new iv.  */
1225       && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1226     return false;
1227 
1228   *base = new_base;
1229   *step = new_step;
1230   return true;
1231 }
1232 
1233 
1234 /* Convert CHREC for the right hand side of a CREC.
1235    The increment for a pointer type is always sizetype.  */
1236 tree
1237 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1238 {
1239   if (POINTER_TYPE_P (type))
1240    type = sizetype;
1241   return chrec_convert (type, chrec, at_stmt);
1242 }
1243 
1244 /* Convert CHREC to TYPE.  When the analyzer knows the context in
1245    which the CHREC is built, it sets AT_STMT to the statement that
1246    contains the definition of the analyzed variable, otherwise the
1247    conversion is less accurate: the information is used for
1248    determining a more accurate estimation of the number of iterations.
1249    By default AT_STMT could be safely set to NULL_TREE.
1250 
1251    The following rule is always true: TREE_TYPE (chrec) ==
1252    TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1253    An example of what could happen when adding two chrecs and the type
1254    of the CHREC_RIGHT is different than CHREC_LEFT is:
1255 
1256    {(uint) 0, +, (uchar) 10} +
1257    {(uint) 0, +, (uchar) 250}
1258 
1259    that would produce a wrong result if CHREC_RIGHT is not (uint):
1260 
1261    {(uint) 0, +, (uchar) 4}
1262 
1263    instead of
1264 
1265    {(uint) 0, +, (uint) 260}
1266 */
1267 
1268 tree
1269 chrec_convert (tree type, tree chrec, gimple at_stmt)
1270 {
1271   return chrec_convert_1 (type, chrec, at_stmt, true);
1272 }
1273 
1274 /* Convert CHREC to TYPE.  When the analyzer knows the context in
1275    which the CHREC is built, it sets AT_STMT to the statement that
1276    contains the definition of the analyzed variable, otherwise the
1277    conversion is less accurate: the information is used for
1278    determining a more accurate estimation of the number of iterations.
1279    By default AT_STMT could be safely set to NULL_TREE.
1280 
1281    USE_OVERFLOW_SEMANTICS is true if this function should assume that
1282    the rules for overflow of the given language apply (e.g., that signed
1283    arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1284    tests, but also to enforce that the result follows them.  */
1285 
1286 static tree
1287 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1288 		 bool use_overflow_semantics)
1289 {
1290   tree ct, res;
1291   tree base, step;
1292   struct loop *loop;
1293 
1294   if (automatically_generated_chrec_p (chrec))
1295     return chrec;
1296 
1297   ct = chrec_type (chrec);
1298   if (ct == type)
1299     return chrec;
1300 
1301   if (!evolution_function_is_affine_p (chrec))
1302     goto keep_cast;
1303 
1304   loop = get_chrec_loop (chrec);
1305   base = CHREC_LEFT (chrec);
1306   step = CHREC_RIGHT (chrec);
1307 
1308   if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1309 			   use_overflow_semantics))
1310     return build_polynomial_chrec (loop->num, base, step);
1311 
1312   /* If we cannot propagate the cast inside the chrec, just keep the cast.  */
1313 keep_cast:
1314   /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1315      may be more expensive.  We do want to perform this optimization here
1316      though for canonicalization reasons.  */
1317   if (use_overflow_semantics
1318       && (TREE_CODE (chrec) == PLUS_EXPR
1319 	  || TREE_CODE (chrec) == MINUS_EXPR)
1320       && TREE_CODE (type) == INTEGER_TYPE
1321       && TREE_CODE (ct) == INTEGER_TYPE
1322       && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1323       && TYPE_OVERFLOW_UNDEFINED (ct))
1324     res = fold_build2 (TREE_CODE (chrec), type,
1325 		       fold_convert (type, TREE_OPERAND (chrec, 0)),
1326 		       fold_convert (type, TREE_OPERAND (chrec, 1)));
1327   else
1328     res = fold_convert (type, chrec);
1329 
1330   /* Don't propagate overflows.  */
1331   if (CONSTANT_CLASS_P (res))
1332     TREE_OVERFLOW (res) = 0;
1333 
1334   /* But reject constants that don't fit in their type after conversion.
1335      This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1336      natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1337      and can cause problems later when computing niters of loops.  Note
1338      that we don't do the check before converting because we don't want
1339      to reject conversions of negative chrecs to unsigned types.  */
1340   if (TREE_CODE (res) == INTEGER_CST
1341       && TREE_CODE (type) == INTEGER_TYPE
1342       && !int_fits_type_p (res, type))
1343     res = chrec_dont_know;
1344 
1345   return res;
1346 }
1347 
1348 /* Convert CHREC to TYPE, without regard to signed overflows.  Returns the new
1349    chrec if something else than what chrec_convert would do happens, NULL_TREE
1350    otherwise.  */
1351 
1352 tree
1353 chrec_convert_aggressive (tree type, tree chrec)
1354 {
1355   tree inner_type, left, right, lc, rc, rtype;
1356 
1357   if (automatically_generated_chrec_p (chrec)
1358       || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1359     return NULL_TREE;
1360 
1361   inner_type = TREE_TYPE (chrec);
1362   if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1363     return NULL_TREE;
1364 
1365   rtype = POINTER_TYPE_P (type) ? sizetype : type;
1366 
1367   left = CHREC_LEFT (chrec);
1368   right = CHREC_RIGHT (chrec);
1369   lc = chrec_convert_aggressive (type, left);
1370   if (!lc)
1371     lc = chrec_convert (type, left, NULL);
1372   rc = chrec_convert_aggressive (rtype, right);
1373   if (!rc)
1374     rc = chrec_convert (rtype, right, NULL);
1375 
1376   return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1377 }
1378 
1379 /* Returns true when CHREC0 == CHREC1.  */
1380 
1381 bool
1382 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1383 {
1384   if (chrec0 == NULL_TREE
1385       || chrec1 == NULL_TREE
1386       || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1387     return false;
1388 
1389   if (chrec0 == chrec1)
1390     return true;
1391 
1392   switch (TREE_CODE (chrec0))
1393     {
1394     case INTEGER_CST:
1395       return operand_equal_p (chrec0, chrec1, 0);
1396 
1397     case POLYNOMIAL_CHREC:
1398       return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1399 	      && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1400 	      && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1401     default:
1402       return false;
1403     }
1404 }
1405 
1406 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1407    EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1408    which of these cases happens.  */
1409 
1410 enum ev_direction
1411 scev_direction (const_tree chrec)
1412 {
1413   const_tree step;
1414 
1415   if (!evolution_function_is_affine_p (chrec))
1416     return EV_DIR_UNKNOWN;
1417 
1418   step = CHREC_RIGHT (chrec);
1419   if (TREE_CODE (step) != INTEGER_CST)
1420     return EV_DIR_UNKNOWN;
1421 
1422   if (tree_int_cst_sign_bit (step))
1423     return EV_DIR_DECREASES;
1424   else
1425     return EV_DIR_GROWS;
1426 }
1427 
1428 /* Iterates over all the components of SCEV, and calls CBCK.  */
1429 
1430 void
1431 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1432 {
1433   switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1434     {
1435     case 3:
1436       for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1437 
1438     case 2:
1439       for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1440 
1441     case 1:
1442       for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1443 
1444     default:
1445       cbck (scev, data);
1446       break;
1447     }
1448 }
1449 
1450 /* Returns true when the operation can be part of a linear
1451    expression.  */
1452 
1453 static inline bool
1454 operator_is_linear (tree scev)
1455 {
1456   switch (TREE_CODE (scev))
1457     {
1458     case INTEGER_CST:
1459     case POLYNOMIAL_CHREC:
1460     case PLUS_EXPR:
1461     case POINTER_PLUS_EXPR:
1462     case MULT_EXPR:
1463     case MINUS_EXPR:
1464     case NEGATE_EXPR:
1465     case SSA_NAME:
1466     case NON_LVALUE_EXPR:
1467     case BIT_NOT_EXPR:
1468     CASE_CONVERT:
1469       return true;
1470 
1471     default:
1472       return false;
1473     }
1474 }
1475 
1476 /* Return true when SCEV is a linear expression.  Linear expressions
1477    can contain additions, substractions and multiplications.
1478    Multiplications are restricted to constant scaling: "cst * x".  */
1479 
1480 bool
1481 scev_is_linear_expression (tree scev)
1482 {
1483   if (scev == NULL
1484       || !operator_is_linear (scev))
1485     return false;
1486 
1487   if (TREE_CODE (scev) == MULT_EXPR)
1488     return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1489 	     && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1490 
1491   if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1492       && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1493     return false;
1494 
1495   switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1496     {
1497     case 3:
1498       return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1499 	&& scev_is_linear_expression (TREE_OPERAND (scev, 1))
1500 	&& scev_is_linear_expression (TREE_OPERAND (scev, 2));
1501 
1502     case 2:
1503       return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1504 	&& scev_is_linear_expression (TREE_OPERAND (scev, 1));
1505 
1506     case 1:
1507       return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1508 
1509     case 0:
1510       return true;
1511 
1512     default:
1513       return false;
1514     }
1515 }
1516 
1517 /* Determines whether the expression CHREC contains only interger consts
1518    in the right parts.  */
1519 
1520 bool
1521 evolution_function_right_is_integer_cst (const_tree chrec)
1522 {
1523   if (chrec == NULL_TREE)
1524     return false;
1525 
1526   switch (TREE_CODE (chrec))
1527     {
1528     case INTEGER_CST:
1529       return true;
1530 
1531     case POLYNOMIAL_CHREC:
1532       return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1533 	&& (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1534 	    || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1535 
1536     CASE_CONVERT:
1537       return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1538 
1539     default:
1540       return false;
1541     }
1542 }
1543 
1544