xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/tree-chrec.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* Chains of recurrences.
2    Copyright (C) 2003-2013 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* This file implements operations on chains of recurrences.  Chains
22    of recurrences are used for modeling evolution functions of scalar
23    variables.
24 */
25 
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree-pretty-print.h"
30 #include "cfgloop.h"
31 #include "tree-flow.h"
32 #include "tree-chrec.h"
33 #include "dumpfile.h"
34 #include "params.h"
35 #include "tree-scalar-evolution.h"
36 
37 /* Extended folder for chrecs.  */
38 
39 /* Determines whether CST is not a constant evolution.  */
40 
41 static inline bool
42 is_not_constant_evolution (const_tree cst)
43 {
44   return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
45 }
46 
47 /* Fold CODE for a polynomial function and a constant.  */
48 
49 static inline tree
50 chrec_fold_poly_cst (enum tree_code code,
51 		     tree type,
52 		     tree poly,
53 		     tree cst)
54 {
55   gcc_assert (poly);
56   gcc_assert (cst);
57   gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
58   gcc_assert (!is_not_constant_evolution (cst));
59   gcc_assert (type == chrec_type (poly));
60 
61   switch (code)
62     {
63     case PLUS_EXPR:
64       return build_polynomial_chrec
65 	(CHREC_VARIABLE (poly),
66 	 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
67 	 CHREC_RIGHT (poly));
68 
69     case MINUS_EXPR:
70       return build_polynomial_chrec
71 	(CHREC_VARIABLE (poly),
72 	 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
73 	 CHREC_RIGHT (poly));
74 
75     case MULT_EXPR:
76       return build_polynomial_chrec
77 	(CHREC_VARIABLE (poly),
78 	 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
79 	 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
80 
81     default:
82       return chrec_dont_know;
83     }
84 }
85 
86 /* Fold the addition of two polynomial functions.  */
87 
88 static inline tree
89 chrec_fold_plus_poly_poly (enum tree_code code,
90 			   tree type,
91 			   tree poly0,
92 			   tree poly1)
93 {
94   tree left, right;
95   struct loop *loop0 = get_chrec_loop (poly0);
96   struct loop *loop1 = get_chrec_loop (poly1);
97   tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
98 
99   gcc_assert (poly0);
100   gcc_assert (poly1);
101   gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
102   gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
103   if (POINTER_TYPE_P (chrec_type (poly0)))
104     gcc_assert (ptrofftype_p (chrec_type (poly1)));
105   else
106     gcc_assert (chrec_type (poly0) == chrec_type (poly1));
107   gcc_assert (type == chrec_type (poly0));
108 
109   /*
110     {a, +, b}_1 + {c, +, d}_2  ->  {{a, +, b}_1 + c, +, d}_2,
111     {a, +, b}_2 + {c, +, d}_1  ->  {{c, +, d}_1 + a, +, b}_2,
112     {a, +, b}_x + {c, +, d}_x  ->  {a+c, +, b+d}_x.  */
113   if (flow_loop_nested_p (loop0, loop1))
114     {
115       if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
116 	return build_polynomial_chrec
117 	  (CHREC_VARIABLE (poly1),
118 	   chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
119 	   CHREC_RIGHT (poly1));
120       else
121 	return build_polynomial_chrec
122 	  (CHREC_VARIABLE (poly1),
123 	   chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
124 	   chrec_fold_multiply (type, CHREC_RIGHT (poly1),
125 				SCALAR_FLOAT_TYPE_P (type)
126 				? build_real (type, dconstm1)
127 				: build_int_cst_type (type, -1)));
128     }
129 
130   if (flow_loop_nested_p (loop1, loop0))
131     {
132       if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
133 	return build_polynomial_chrec
134 	  (CHREC_VARIABLE (poly0),
135 	   chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
136 	   CHREC_RIGHT (poly0));
137       else
138 	return build_polynomial_chrec
139 	  (CHREC_VARIABLE (poly0),
140 	   chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
141 	   CHREC_RIGHT (poly0));
142     }
143 
144   /* This function should never be called for chrecs of loops that
145      do not belong to the same loop nest.  */
146   gcc_assert (loop0 == loop1);
147 
148   if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
149     {
150       left = chrec_fold_plus
151 	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
152       right = chrec_fold_plus
153 	(rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
154     }
155   else
156     {
157       left = chrec_fold_minus
158 	(type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159       right = chrec_fold_minus
160 	(type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
161     }
162 
163   if (chrec_zerop (right))
164     return left;
165   else
166     return build_polynomial_chrec
167       (CHREC_VARIABLE (poly0), left, right);
168 }
169 
170 
171 
172 /* Fold the multiplication of two polynomial functions.  */
173 
174 static inline tree
175 chrec_fold_multiply_poly_poly (tree type,
176 			       tree poly0,
177 			       tree poly1)
178 {
179   tree t0, t1, t2;
180   int var;
181   struct loop *loop0 = get_chrec_loop (poly0);
182   struct loop *loop1 = get_chrec_loop (poly1);
183 
184   gcc_assert (poly0);
185   gcc_assert (poly1);
186   gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
187   gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
188   gcc_assert (chrec_type (poly0) == chrec_type (poly1));
189   gcc_assert (type == chrec_type (poly0));
190 
191   /* {a, +, b}_1 * {c, +, d}_2  ->  {c*{a, +, b}_1, +, d}_2,
192      {a, +, b}_2 * {c, +, d}_1  ->  {a*{c, +, d}_1, +, b}_2,
193      {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
194   if (flow_loop_nested_p (loop0, loop1))
195     /* poly0 is a constant wrt. poly1.  */
196     return build_polynomial_chrec
197       (CHREC_VARIABLE (poly1),
198        chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
199        CHREC_RIGHT (poly1));
200 
201   if (flow_loop_nested_p (loop1, loop0))
202     /* poly1 is a constant wrt. poly0.  */
203     return build_polynomial_chrec
204       (CHREC_VARIABLE (poly0),
205        chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
206        CHREC_RIGHT (poly0));
207 
208   gcc_assert (loop0 == loop1);
209 
210   /* poly0 and poly1 are two polynomials in the same variable,
211      {a, +, b}_x * {c, +, d}_x  ->  {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x.  */
212 
213   /* "a*c".  */
214   t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
215 
216   /* "a*d + b*c".  */
217   t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
218   t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
219 						       CHREC_RIGHT (poly0),
220 						       CHREC_LEFT (poly1)));
221   /* "b*d".  */
222   t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
223   /* "a*d + b*c + b*d".  */
224   t1 = chrec_fold_plus (type, t1, t2);
225   /* "2*b*d".  */
226   t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
227 			    ? build_real (type, dconst2)
228 			    : build_int_cst (type, 2), t2);
229 
230   var = CHREC_VARIABLE (poly0);
231   return build_polynomial_chrec (var, t0,
232 				 build_polynomial_chrec (var, t1, t2));
233 }
234 
235 /* When the operands are automatically_generated_chrec_p, the fold has
236    to respect the semantics of the operands.  */
237 
238 static inline tree
239 chrec_fold_automatically_generated_operands (tree op0,
240 					     tree op1)
241 {
242   if (op0 == chrec_dont_know
243       || op1 == chrec_dont_know)
244     return chrec_dont_know;
245 
246   if (op0 == chrec_known
247       || op1 == chrec_known)
248     return chrec_known;
249 
250   if (op0 == chrec_not_analyzed_yet
251       || op1 == chrec_not_analyzed_yet)
252     return chrec_not_analyzed_yet;
253 
254   /* The default case produces a safe result.  */
255   return chrec_dont_know;
256 }
257 
258 /* Fold the addition of two chrecs.  */
259 
260 static tree
261 chrec_fold_plus_1 (enum tree_code code, tree type,
262 		   tree op0, tree op1)
263 {
264   if (automatically_generated_chrec_p (op0)
265       || automatically_generated_chrec_p (op1))
266     return chrec_fold_automatically_generated_operands (op0, op1);
267 
268   switch (TREE_CODE (op0))
269     {
270     case POLYNOMIAL_CHREC:
271       switch (TREE_CODE (op1))
272 	{
273 	case POLYNOMIAL_CHREC:
274 	  return chrec_fold_plus_poly_poly (code, type, op0, op1);
275 
276 	CASE_CONVERT:
277 	  if (tree_contains_chrecs (op1, NULL))
278 	    return chrec_dont_know;
279 
280 	default:
281 	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
282 	    return build_polynomial_chrec
283 	      (CHREC_VARIABLE (op0),
284 	       chrec_fold_plus (type, CHREC_LEFT (op0), op1),
285 	       CHREC_RIGHT (op0));
286 	  else
287 	    return build_polynomial_chrec
288 	      (CHREC_VARIABLE (op0),
289 	       chrec_fold_minus (type, CHREC_LEFT (op0), op1),
290 	       CHREC_RIGHT (op0));
291 	}
292 
293     CASE_CONVERT:
294       if (tree_contains_chrecs (op0, NULL))
295 	return chrec_dont_know;
296 
297     default:
298       switch (TREE_CODE (op1))
299 	{
300 	case POLYNOMIAL_CHREC:
301 	  if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
302 	    return build_polynomial_chrec
303 	      (CHREC_VARIABLE (op1),
304 	       chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
305 	       CHREC_RIGHT (op1));
306 	  else
307 	    return build_polynomial_chrec
308 	      (CHREC_VARIABLE (op1),
309 	       chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
310 	       chrec_fold_multiply (type, CHREC_RIGHT (op1),
311 				    SCALAR_FLOAT_TYPE_P (type)
312 				    ? build_real (type, dconstm1)
313 				    : build_int_cst_type (type, -1)));
314 
315 	CASE_CONVERT:
316 	  if (tree_contains_chrecs (op1, NULL))
317 	    return chrec_dont_know;
318 
319 	default:
320 	  {
321 	    int size = 0;
322 	    if ((tree_contains_chrecs (op0, &size)
323 		 || tree_contains_chrecs (op1, &size))
324 		&& size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
325 	      return build2 (code, type, op0, op1);
326 	    else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
327 	      {
328 		if (code == POINTER_PLUS_EXPR)
329 		  return fold_build_pointer_plus (fold_convert (type, op0),
330 						  op1);
331 		else
332 		  return fold_build2 (code, type,
333 				      fold_convert (type, op0),
334 				      fold_convert (type, op1));
335 	      }
336 	    else
337 	      return chrec_dont_know;
338 	  }
339 	}
340     }
341 }
342 
343 /* Fold the addition of two chrecs.  */
344 
345 tree
346 chrec_fold_plus (tree type,
347 		 tree op0,
348 		 tree op1)
349 {
350   enum tree_code code;
351   if (automatically_generated_chrec_p (op0)
352       || automatically_generated_chrec_p (op1))
353     return chrec_fold_automatically_generated_operands (op0, op1);
354 
355   if (integer_zerop (op0))
356     return chrec_convert (type, op1, NULL);
357   if (integer_zerop (op1))
358     return chrec_convert (type, op0, NULL);
359 
360   if (POINTER_TYPE_P (type))
361     code = POINTER_PLUS_EXPR;
362   else
363     code = PLUS_EXPR;
364 
365   return chrec_fold_plus_1 (code, type, op0, op1);
366 }
367 
368 /* Fold the subtraction of two chrecs.  */
369 
370 tree
371 chrec_fold_minus (tree type,
372 		  tree op0,
373 		  tree op1)
374 {
375   if (automatically_generated_chrec_p (op0)
376       || automatically_generated_chrec_p (op1))
377     return chrec_fold_automatically_generated_operands (op0, op1);
378 
379   if (integer_zerop (op1))
380     return op0;
381 
382   return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
383 }
384 
385 /* Fold the multiplication of two chrecs.  */
386 
387 tree
388 chrec_fold_multiply (tree type,
389 		     tree op0,
390 		     tree op1)
391 {
392   if (automatically_generated_chrec_p (op0)
393       || automatically_generated_chrec_p (op1))
394     return chrec_fold_automatically_generated_operands (op0, op1);
395 
396   switch (TREE_CODE (op0))
397     {
398     case POLYNOMIAL_CHREC:
399       switch (TREE_CODE (op1))
400 	{
401 	case POLYNOMIAL_CHREC:
402 	  return chrec_fold_multiply_poly_poly (type, op0, op1);
403 
404 	CASE_CONVERT:
405 	  if (tree_contains_chrecs (op1, NULL))
406 	    return chrec_dont_know;
407 
408 	default:
409 	  if (integer_onep (op1))
410 	    return op0;
411 	  if (integer_zerop (op1))
412 	    return build_int_cst (type, 0);
413 
414 	  return build_polynomial_chrec
415 	    (CHREC_VARIABLE (op0),
416 	     chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
417 	     chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
418 	}
419 
420     CASE_CONVERT:
421       if (tree_contains_chrecs (op0, NULL))
422 	return chrec_dont_know;
423 
424     default:
425       if (integer_onep (op0))
426 	return op1;
427 
428       if (integer_zerop (op0))
429     	return build_int_cst (type, 0);
430 
431       switch (TREE_CODE (op1))
432 	{
433 	case POLYNOMIAL_CHREC:
434 	  return build_polynomial_chrec
435 	    (CHREC_VARIABLE (op1),
436 	     chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
437 	     chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
438 
439 	CASE_CONVERT:
440 	  if (tree_contains_chrecs (op1, NULL))
441 	    return chrec_dont_know;
442 
443 	default:
444 	  if (integer_onep (op1))
445 	    return op0;
446 	  if (integer_zerop (op1))
447 	    return build_int_cst (type, 0);
448 	  return fold_build2 (MULT_EXPR, type, op0, op1);
449 	}
450     }
451 }
452 
453 
454 
455 /* Operations.  */
456 
457 /* Evaluate the binomial coefficient.  Return NULL_TREE if the intermediate
458    calculation overflows, otherwise return C(n,k) with type TYPE.  */
459 
460 static tree
461 tree_fold_binomial (tree type, tree n, unsigned int k)
462 {
463   double_int num, denom, idx, di_res;
464   bool overflow;
465   unsigned int i;
466   tree res;
467 
468   /* Handle the most frequent cases.  */
469   if (k == 0)
470     return build_int_cst (type, 1);
471   if (k == 1)
472     return fold_convert (type, n);
473 
474   /* Numerator = n.  */
475   num = TREE_INT_CST (n);
476 
477   /* Check that k <= n.  */
478   if (num.ult (double_int::from_uhwi (k)))
479     return NULL_TREE;
480 
481   /* Denominator = 2.  */
482   denom = double_int::from_uhwi (2);
483 
484   /* Index = Numerator-1.  */
485   idx = num - double_int_one;
486 
487   /* Numerator = Numerator*Index = n*(n-1).  */
488   num = num.mul_with_sign (idx, false, &overflow);
489   if (overflow)
490     return NULL_TREE;
491 
492   for (i = 3; i <= k; i++)
493     {
494       /* Index--.  */
495       --idx;
496 
497       /* Numerator *= Index.  */
498       num = num.mul_with_sign (idx, false, &overflow);
499       if (overflow)
500 	return NULL_TREE;
501 
502       /* Denominator *= i.  */
503       denom *= double_int::from_uhwi (i);
504     }
505 
506   /* Result = Numerator / Denominator.  */
507   di_res = num.div (denom, true, EXACT_DIV_EXPR);
508   res = build_int_cst_wide (type, di_res.low, di_res.high);
509   return int_fits_type_p (res, type) ? res : NULL_TREE;
510 }
511 
512 /* Helper function.  Use the Newton's interpolating formula for
513    evaluating the value of the evolution function.  */
514 
515 static tree
516 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
517 {
518   tree arg0, arg1, binomial_n_k;
519   tree type = TREE_TYPE (chrec);
520   struct loop *var_loop = get_loop (var);
521 
522   while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
523 	 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
524     chrec = CHREC_LEFT (chrec);
525 
526   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
527       && CHREC_VARIABLE (chrec) == var)
528     {
529       arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
530       if (arg1 == chrec_dont_know)
531 	return chrec_dont_know;
532       binomial_n_k = tree_fold_binomial (type, n, k);
533       if (!binomial_n_k)
534 	return chrec_dont_know;
535       arg0 = fold_build2 (MULT_EXPR, type,
536 			  CHREC_LEFT (chrec), binomial_n_k);
537       return chrec_fold_plus (type, arg0, arg1);
538     }
539 
540   binomial_n_k = tree_fold_binomial (type, n, k);
541   if (!binomial_n_k)
542     return chrec_dont_know;
543 
544   return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
545 }
546 
547 /* Evaluates "CHREC (X)" when the varying variable is VAR.
548    Example:  Given the following parameters,
549 
550    var = 1
551    chrec = {3, +, 4}_1
552    x = 10
553 
554    The result is given by the Newton's interpolating formula:
555    3 * \binom{10}{0} + 4 * \binom{10}{1}.
556 */
557 
558 tree
559 chrec_apply (unsigned var,
560 	     tree chrec,
561 	     tree x)
562 {
563   tree type = chrec_type (chrec);
564   tree res = chrec_dont_know;
565 
566   if (automatically_generated_chrec_p (chrec)
567       || automatically_generated_chrec_p (x)
568 
569       /* When the symbols are defined in an outer loop, it is possible
570 	 to symbolically compute the apply, since the symbols are
571 	 constants with respect to the varying loop.  */
572       || chrec_contains_symbols_defined_in_loop (chrec, var))
573     return chrec_dont_know;
574 
575   if (dump_file && (dump_flags & TDF_SCEV))
576     fprintf (dump_file, "(chrec_apply \n");
577 
578   if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
579     x = build_real_from_int_cst (type, x);
580 
581   switch (TREE_CODE (chrec))
582     {
583     case POLYNOMIAL_CHREC:
584       if (evolution_function_is_affine_p (chrec))
585 	{
586 	  if (CHREC_VARIABLE (chrec) != var)
587 	    return build_polynomial_chrec
588 	      (CHREC_VARIABLE (chrec),
589 	       chrec_apply (var, CHREC_LEFT (chrec), x),
590 	       chrec_apply (var, CHREC_RIGHT (chrec), x));
591 
592 	  /* "{a, +, b} (x)"  ->  "a + b*x".  */
593 	  x = chrec_convert_rhs (type, x, NULL);
594 	  res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
595 	  res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
596 	}
597       else if (TREE_CODE (x) == INTEGER_CST
598 	       && tree_int_cst_sgn (x) == 1)
599 	/* testsuite/.../ssa-chrec-38.c.  */
600 	res = chrec_evaluate (var, chrec, x, 0);
601       else
602 	res = chrec_dont_know;
603       break;
604 
605     CASE_CONVERT:
606       res = chrec_convert (TREE_TYPE (chrec),
607 			   chrec_apply (var, TREE_OPERAND (chrec, 0), x),
608 			   NULL);
609       break;
610 
611     default:
612       res = chrec;
613       break;
614     }
615 
616   if (dump_file && (dump_flags & TDF_SCEV))
617     {
618       fprintf (dump_file, "  (varying_loop = %d\n", var);
619       fprintf (dump_file, ")\n  (chrec = ");
620       print_generic_expr (dump_file, chrec, 0);
621       fprintf (dump_file, ")\n  (x = ");
622       print_generic_expr (dump_file, x, 0);
623       fprintf (dump_file, ")\n  (res = ");
624       print_generic_expr (dump_file, res, 0);
625       fprintf (dump_file, "))\n");
626     }
627 
628   return res;
629 }
630 
631 /* For a given CHREC and an induction variable map IV_MAP that maps
632    (loop->num, expr) for every loop number of the current_loops an
633    expression, calls chrec_apply when the expression is not NULL.  */
634 
635 tree
636 chrec_apply_map (tree chrec, vec<tree> iv_map)
637 {
638   int i;
639   tree expr;
640 
641   FOR_EACH_VEC_ELT (iv_map, i, expr)
642     if (expr)
643       chrec = chrec_apply (i, chrec, expr);
644 
645   return chrec;
646 }
647 
648 /* Replaces the initial condition in CHREC with INIT_COND.  */
649 
650 tree
651 chrec_replace_initial_condition (tree chrec,
652 				 tree init_cond)
653 {
654   if (automatically_generated_chrec_p (chrec))
655     return chrec;
656 
657   gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
658 
659   switch (TREE_CODE (chrec))
660     {
661     case POLYNOMIAL_CHREC:
662       return build_polynomial_chrec
663 	(CHREC_VARIABLE (chrec),
664 	 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
665 	 CHREC_RIGHT (chrec));
666 
667     default:
668       return init_cond;
669     }
670 }
671 
672 /* Returns the initial condition of a given CHREC.  */
673 
674 tree
675 initial_condition (tree chrec)
676 {
677   if (automatically_generated_chrec_p (chrec))
678     return chrec;
679 
680   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
681     return initial_condition (CHREC_LEFT (chrec));
682   else
683     return chrec;
684 }
685 
686 /* Returns a univariate function that represents the evolution in
687    LOOP_NUM.  Mask the evolution of any other loop.  */
688 
689 tree
690 hide_evolution_in_other_loops_than_loop (tree chrec,
691 					 unsigned loop_num)
692 {
693   struct loop *loop = get_loop (loop_num), *chloop;
694   if (automatically_generated_chrec_p (chrec))
695     return chrec;
696 
697   switch (TREE_CODE (chrec))
698     {
699     case POLYNOMIAL_CHREC:
700       chloop = get_chrec_loop (chrec);
701 
702       if (chloop == loop)
703 	return build_polynomial_chrec
704 	  (loop_num,
705 	   hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
706 						    loop_num),
707 	   CHREC_RIGHT (chrec));
708 
709       else if (flow_loop_nested_p (chloop, loop))
710 	/* There is no evolution in this loop.  */
711 	return initial_condition (chrec);
712 
713       else
714 	{
715 	  gcc_assert (flow_loop_nested_p (loop, chloop));
716 	  return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
717 							  loop_num);
718 	}
719 
720     default:
721       return chrec;
722     }
723 }
724 
725 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
726    true, otherwise returns the initial condition in LOOP_NUM.  */
727 
728 static tree
729 chrec_component_in_loop_num (tree chrec,
730 			     unsigned loop_num,
731 			     bool right)
732 {
733   tree component;
734   struct loop *loop = get_loop (loop_num), *chloop;
735 
736   if (automatically_generated_chrec_p (chrec))
737     return chrec;
738 
739   switch (TREE_CODE (chrec))
740     {
741     case POLYNOMIAL_CHREC:
742       chloop = get_chrec_loop (chrec);
743 
744       if (chloop == loop)
745 	{
746 	  if (right)
747 	    component = CHREC_RIGHT (chrec);
748 	  else
749 	    component = CHREC_LEFT (chrec);
750 
751 	  if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
752 	      || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
753 	    return component;
754 
755 	  else
756 	    return build_polynomial_chrec
757 	      (loop_num,
758 	       chrec_component_in_loop_num (CHREC_LEFT (chrec),
759 					    loop_num,
760 					    right),
761 	       component);
762 	}
763 
764       else if (flow_loop_nested_p (chloop, loop))
765 	/* There is no evolution part in this loop.  */
766 	return NULL_TREE;
767 
768       else
769 	{
770 	  gcc_assert (flow_loop_nested_p (loop, chloop));
771 	  return chrec_component_in_loop_num (CHREC_LEFT (chrec),
772 					      loop_num,
773 					      right);
774 	}
775 
776      default:
777       if (right)
778 	return NULL_TREE;
779       else
780 	return chrec;
781     }
782 }
783 
784 /* Returns the evolution part in LOOP_NUM.  Example: the call
785    evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
786    {1, +, 2}_1  */
787 
788 tree
789 evolution_part_in_loop_num (tree chrec,
790 			    unsigned loop_num)
791 {
792   return chrec_component_in_loop_num (chrec, loop_num, true);
793 }
794 
795 /* Returns the initial condition in LOOP_NUM.  Example: the call
796    initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
797    {0, +, 1}_1  */
798 
799 tree
800 initial_condition_in_loop_num (tree chrec,
801 			       unsigned loop_num)
802 {
803   return chrec_component_in_loop_num (chrec, loop_num, false);
804 }
805 
806 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
807    This function is essentially used for setting the evolution to
808    chrec_dont_know, for example after having determined that it is
809    impossible to say how many times a loop will execute.  */
810 
811 tree
812 reset_evolution_in_loop (unsigned loop_num,
813 			 tree chrec,
814 			 tree new_evol)
815 {
816   struct loop *loop = get_loop (loop_num);
817 
818   if (POINTER_TYPE_P (chrec_type (chrec)))
819     gcc_assert (ptrofftype_p (chrec_type (new_evol)));
820   else
821     gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
822 
823   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
824       && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
825     {
826       tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
827 					   new_evol);
828       tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
829 					    new_evol);
830       return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
831 		     CHREC_VAR (chrec), left, right);
832     }
833 
834   while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
835 	 && CHREC_VARIABLE (chrec) == loop_num)
836     chrec = CHREC_LEFT (chrec);
837 
838   return build_polynomial_chrec (loop_num, chrec, new_evol);
839 }
840 
841 /* Merges two evolution functions that were found by following two
842    alternate paths of a conditional expression.  */
843 
844 tree
845 chrec_merge (tree chrec1,
846 	     tree chrec2)
847 {
848   if (chrec1 == chrec_dont_know
849       || chrec2 == chrec_dont_know)
850     return chrec_dont_know;
851 
852   if (chrec1 == chrec_known
853       || chrec2 == chrec_known)
854     return chrec_known;
855 
856   if (chrec1 == chrec_not_analyzed_yet)
857     return chrec2;
858   if (chrec2 == chrec_not_analyzed_yet)
859     return chrec1;
860 
861   if (eq_evolutions_p (chrec1, chrec2))
862     return chrec1;
863 
864   return chrec_dont_know;
865 }
866 
867 
868 
869 /* Observers.  */
870 
871 /* Helper function for is_multivariate_chrec.  */
872 
873 static bool
874 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
875 {
876   if (chrec == NULL_TREE)
877     return false;
878 
879   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
880     {
881       if (CHREC_VARIABLE (chrec) != rec_var)
882 	return true;
883       else
884 	return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
885 		|| is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
886     }
887   else
888     return false;
889 }
890 
891 /* Determine whether the given chrec is multivariate or not.  */
892 
893 bool
894 is_multivariate_chrec (const_tree chrec)
895 {
896   if (chrec == NULL_TREE)
897     return false;
898 
899   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
900     return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
901 				       CHREC_VARIABLE (chrec))
902 	    || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
903 					  CHREC_VARIABLE (chrec)));
904   else
905     return false;
906 }
907 
908 /* Determines whether the chrec contains symbolic names or not.  */
909 
910 bool
911 chrec_contains_symbols (const_tree chrec)
912 {
913   int i, n;
914 
915   if (chrec == NULL_TREE)
916     return false;
917 
918   if (TREE_CODE (chrec) == SSA_NAME
919       || TREE_CODE (chrec) == VAR_DECL
920       || TREE_CODE (chrec) == PARM_DECL
921       || TREE_CODE (chrec) == FUNCTION_DECL
922       || TREE_CODE (chrec) == LABEL_DECL
923       || TREE_CODE (chrec) == RESULT_DECL
924       || TREE_CODE (chrec) == FIELD_DECL)
925     return true;
926 
927   n = TREE_OPERAND_LENGTH (chrec);
928   for (i = 0; i < n; i++)
929     if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
930       return true;
931   return false;
932 }
933 
934 /* Determines whether the chrec contains undetermined coefficients.  */
935 
936 bool
937 chrec_contains_undetermined (const_tree chrec)
938 {
939   int i, n;
940 
941   if (chrec == chrec_dont_know)
942     return true;
943 
944   if (chrec == NULL_TREE)
945     return false;
946 
947   n = TREE_OPERAND_LENGTH (chrec);
948   for (i = 0; i < n; i++)
949     if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
950       return true;
951   return false;
952 }
953 
954 /* Determines whether the tree EXPR contains chrecs, and increment
955    SIZE if it is not a NULL pointer by an estimation of the depth of
956    the tree.  */
957 
958 bool
959 tree_contains_chrecs (const_tree expr, int *size)
960 {
961   int i, n;
962 
963   if (expr == NULL_TREE)
964     return false;
965 
966   if (size)
967     (*size)++;
968 
969   if (tree_is_chrec (expr))
970     return true;
971 
972   n = TREE_OPERAND_LENGTH (expr);
973   for (i = 0; i < n; i++)
974     if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
975       return true;
976   return false;
977 }
978 
979 /* Recursive helper function.  */
980 
981 static bool
982 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
983 {
984   if (evolution_function_is_constant_p (chrec))
985     return true;
986 
987   if (TREE_CODE (chrec) == SSA_NAME
988       && (loopnum == 0
989 	  || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
990     return true;
991 
992   if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
993     {
994       if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
995 	  || flow_loop_nested_p (get_loop (loopnum),
996 				 get_loop (CHREC_VARIABLE (chrec)))
997 	  || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
998 						     loopnum)
999 	  || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1000 						     loopnum))
1001 	return false;
1002       return true;
1003     }
1004 
1005   switch (TREE_OPERAND_LENGTH (chrec))
1006     {
1007     case 2:
1008       if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1009 						  loopnum))
1010 	return false;
1011 
1012     case 1:
1013       if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1014 						  loopnum))
1015 	return false;
1016       return true;
1017 
1018     default:
1019       return false;
1020     }
1021 
1022   return false;
1023 }
1024 
1025 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1026 
1027 bool
1028 evolution_function_is_invariant_p (tree chrec, int loopnum)
1029 {
1030   return evolution_function_is_invariant_rec_p (chrec, loopnum);
1031 }
1032 
1033 /* Determine whether the given tree is an affine multivariate
1034    evolution.  */
1035 
1036 bool
1037 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1038 {
1039   if (chrec == NULL_TREE)
1040     return false;
1041 
1042   switch (TREE_CODE (chrec))
1043     {
1044     case POLYNOMIAL_CHREC:
1045       if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1046 	{
1047 	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1048 	    return true;
1049 	  else
1050 	    {
1051 	      if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1052 		  && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1053 		     != CHREC_VARIABLE (chrec)
1054 		  && evolution_function_is_affine_multivariate_p
1055 		  (CHREC_RIGHT (chrec), loopnum))
1056 		return true;
1057 	      else
1058 		return false;
1059 	    }
1060 	}
1061       else
1062 	{
1063 	  if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1064 	      && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1065 	      && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1066 	      && evolution_function_is_affine_multivariate_p
1067 	      (CHREC_LEFT (chrec), loopnum))
1068 	    return true;
1069 	  else
1070 	    return false;
1071 	}
1072 
1073     default:
1074       return false;
1075     }
1076 }
1077 
1078 /* Determine whether the given tree is a function in zero or one
1079    variables.  */
1080 
1081 bool
1082 evolution_function_is_univariate_p (const_tree chrec)
1083 {
1084   if (chrec == NULL_TREE)
1085     return true;
1086 
1087   switch (TREE_CODE (chrec))
1088     {
1089     case POLYNOMIAL_CHREC:
1090       switch (TREE_CODE (CHREC_LEFT (chrec)))
1091 	{
1092 	case POLYNOMIAL_CHREC:
1093 	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1094 	    return false;
1095 	  if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1096 	    return false;
1097 	  break;
1098 
1099 	default:
1100 	  if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1101 	    return false;
1102 	  break;
1103 	}
1104 
1105       switch (TREE_CODE (CHREC_RIGHT (chrec)))
1106 	{
1107 	case POLYNOMIAL_CHREC:
1108 	  if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1109 	    return false;
1110 	  if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1111 	    return false;
1112 	  break;
1113 
1114 	default:
1115 	  if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1116 	    return false;
1117 	  break;
1118 	}
1119 
1120     default:
1121       return true;
1122     }
1123 }
1124 
1125 /* Returns the number of variables of CHREC.  Example: the call
1126    nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2.  */
1127 
1128 unsigned
1129 nb_vars_in_chrec (tree chrec)
1130 {
1131   if (chrec == NULL_TREE)
1132     return 0;
1133 
1134   switch (TREE_CODE (chrec))
1135     {
1136     case POLYNOMIAL_CHREC:
1137       return 1 + nb_vars_in_chrec
1138 	(initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1139 
1140     default:
1141       return 0;
1142     }
1143 }
1144 
1145 static tree chrec_convert_1 (tree, tree, gimple, bool);
1146 
1147 /* Converts BASE and STEP of affine scev to TYPE.  LOOP is the loop whose iv
1148    the scev corresponds to.  AT_STMT is the statement at that the scev is
1149    evaluated.  USE_OVERFLOW_SEMANTICS is true if this function should assume that
1150    the rules for overflow of the given language apply (e.g., that signed
1151    arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1152    tests, but also to enforce that the result follows them.  Returns true if the
1153    conversion succeeded, false otherwise.  */
1154 
1155 bool
1156 convert_affine_scev (struct loop *loop, tree type,
1157 		     tree *base, tree *step, gimple at_stmt,
1158 		     bool use_overflow_semantics)
1159 {
1160   tree ct = TREE_TYPE (*step);
1161   bool enforce_overflow_semantics;
1162   bool must_check_src_overflow, must_check_rslt_overflow;
1163   tree new_base, new_step;
1164   tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1165 
1166   /* In general,
1167      (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1168      but we must check some assumptions.
1169 
1170      1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1171         of CT is smaller than the precision of TYPE.  For example, when we
1172 	cast unsigned char [254, +, 1] to unsigned, the values on left side
1173 	are 254, 255, 0, 1, ..., but those on the right side are
1174 	254, 255, 256, 257, ...
1175      2) In case that we must also preserve the fact that signed ivs do not
1176         overflow, we must additionally check that the new iv does not wrap.
1177 	For example, unsigned char [125, +, 1] casted to signed char could
1178 	become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1179 	which would confuse optimizers that assume that this does not
1180 	happen.  */
1181   must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1182 
1183   enforce_overflow_semantics = (use_overflow_semantics
1184 				&& nowrap_type_p (type));
1185   if (enforce_overflow_semantics)
1186     {
1187       /* We can avoid checking whether the result overflows in the following
1188 	 cases:
1189 
1190 	 -- must_check_src_overflow is true, and the range of TYPE is superset
1191 	    of the range of CT -- i.e., in all cases except if CT signed and
1192 	    TYPE unsigned.
1193          -- both CT and TYPE have the same precision and signedness, and we
1194 	    verify instead that the source does not overflow (this may be
1195 	    easier than verifying it for the result, as we may use the
1196 	    information about the semantics of overflow in CT).  */
1197       if (must_check_src_overflow)
1198 	{
1199 	  if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1200 	    must_check_rslt_overflow = true;
1201 	  else
1202 	    must_check_rslt_overflow = false;
1203 	}
1204       else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1205 	       && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1206 	{
1207 	  must_check_rslt_overflow = false;
1208 	  must_check_src_overflow = true;
1209 	}
1210       else
1211 	must_check_rslt_overflow = true;
1212     }
1213   else
1214     must_check_rslt_overflow = false;
1215 
1216   if (must_check_src_overflow
1217       && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1218 				use_overflow_semantics))
1219     return false;
1220 
1221   new_base = chrec_convert_1 (type, *base, at_stmt,
1222 			      use_overflow_semantics);
1223   /* The step must be sign extended, regardless of the signedness
1224      of CT and TYPE.  This only needs to be handled specially when
1225      CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1226      (with values 100, 99, 98, ...) from becoming signed or unsigned
1227      [100, +, 255] with values 100, 355, ...; the sign-extension is
1228      performed by default when CT is signed.  */
1229   new_step = *step;
1230   if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1231     {
1232       tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1233       new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1234                                   use_overflow_semantics);
1235     }
1236   new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1237 
1238   if (automatically_generated_chrec_p (new_base)
1239       || automatically_generated_chrec_p (new_step))
1240     return false;
1241 
1242   if (must_check_rslt_overflow
1243       /* Note that in this case we cannot use the fact that signed variables
1244 	 do not overflow, as this is what we are verifying for the new iv.  */
1245       && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1246     return false;
1247 
1248   *base = new_base;
1249   *step = new_step;
1250   return true;
1251 }
1252 
1253 
1254 /* Convert CHREC for the right hand side of a CHREC.
1255    The increment for a pointer type is always sizetype.  */
1256 
1257 tree
1258 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1259 {
1260   if (POINTER_TYPE_P (type))
1261     type = sizetype;
1262 
1263   return chrec_convert (type, chrec, at_stmt);
1264 }
1265 
1266 /* Convert CHREC to TYPE.  When the analyzer knows the context in
1267    which the CHREC is built, it sets AT_STMT to the statement that
1268    contains the definition of the analyzed variable, otherwise the
1269    conversion is less accurate: the information is used for
1270    determining a more accurate estimation of the number of iterations.
1271    By default AT_STMT could be safely set to NULL_TREE.
1272 
1273    The following rule is always true: TREE_TYPE (chrec) ==
1274    TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1275    An example of what could happen when adding two chrecs and the type
1276    of the CHREC_RIGHT is different than CHREC_LEFT is:
1277 
1278    {(uint) 0, +, (uchar) 10} +
1279    {(uint) 0, +, (uchar) 250}
1280 
1281    that would produce a wrong result if CHREC_RIGHT is not (uint):
1282 
1283    {(uint) 0, +, (uchar) 4}
1284 
1285    instead of
1286 
1287    {(uint) 0, +, (uint) 260}
1288 */
1289 
1290 tree
1291 chrec_convert (tree type, tree chrec, gimple at_stmt)
1292 {
1293   return chrec_convert_1 (type, chrec, at_stmt, true);
1294 }
1295 
1296 /* Convert CHREC to TYPE.  When the analyzer knows the context in
1297    which the CHREC is built, it sets AT_STMT to the statement that
1298    contains the definition of the analyzed variable, otherwise the
1299    conversion is less accurate: the information is used for
1300    determining a more accurate estimation of the number of iterations.
1301    By default AT_STMT could be safely set to NULL_TREE.
1302 
1303    USE_OVERFLOW_SEMANTICS is true if this function should assume that
1304    the rules for overflow of the given language apply (e.g., that signed
1305    arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1306    tests, but also to enforce that the result follows them.  */
1307 
1308 static tree
1309 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1310 		 bool use_overflow_semantics)
1311 {
1312   tree ct, res;
1313   tree base, step;
1314   struct loop *loop;
1315 
1316   if (automatically_generated_chrec_p (chrec))
1317     return chrec;
1318 
1319   ct = chrec_type (chrec);
1320   if (ct == type)
1321     return chrec;
1322 
1323   if (!evolution_function_is_affine_p (chrec))
1324     goto keep_cast;
1325 
1326   loop = get_chrec_loop (chrec);
1327   base = CHREC_LEFT (chrec);
1328   step = CHREC_RIGHT (chrec);
1329 
1330   if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1331 			   use_overflow_semantics))
1332     return build_polynomial_chrec (loop->num, base, step);
1333 
1334   /* If we cannot propagate the cast inside the chrec, just keep the cast.  */
1335 keep_cast:
1336   /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1337      may be more expensive.  We do want to perform this optimization here
1338      though for canonicalization reasons.  */
1339   if (use_overflow_semantics
1340       && (TREE_CODE (chrec) == PLUS_EXPR
1341 	  || TREE_CODE (chrec) == MINUS_EXPR)
1342       && TREE_CODE (type) == INTEGER_TYPE
1343       && TREE_CODE (ct) == INTEGER_TYPE
1344       && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1345       && TYPE_OVERFLOW_UNDEFINED (ct))
1346     res = fold_build2 (TREE_CODE (chrec), type,
1347 		       fold_convert (type, TREE_OPERAND (chrec, 0)),
1348 		       fold_convert (type, TREE_OPERAND (chrec, 1)));
1349   /* Similar perform the trick that (signed char)((int)x + 2) can be
1350      narrowed to (signed char)((unsigned char)x + 2).  */
1351   else if (use_overflow_semantics
1352 	   && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1353 	   && TREE_CODE (ct) == INTEGER_TYPE
1354 	   && TREE_CODE (type) == INTEGER_TYPE
1355 	   && TYPE_OVERFLOW_UNDEFINED (type)
1356 	   && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1357     {
1358       tree utype = unsigned_type_for (type);
1359       res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1360 				    fold_convert (utype,
1361 						  CHREC_LEFT (chrec)),
1362 				    fold_convert (utype,
1363 						  CHREC_RIGHT (chrec)));
1364       res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1365     }
1366   else
1367     res = fold_convert (type, chrec);
1368 
1369   /* Don't propagate overflows.  */
1370   if (CONSTANT_CLASS_P (res))
1371     TREE_OVERFLOW (res) = 0;
1372 
1373   /* But reject constants that don't fit in their type after conversion.
1374      This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1375      natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1376      and can cause problems later when computing niters of loops.  Note
1377      that we don't do the check before converting because we don't want
1378      to reject conversions of negative chrecs to unsigned types.  */
1379   if (TREE_CODE (res) == INTEGER_CST
1380       && TREE_CODE (type) == INTEGER_TYPE
1381       && !int_fits_type_p (res, type))
1382     res = chrec_dont_know;
1383 
1384   return res;
1385 }
1386 
1387 /* Convert CHREC to TYPE, without regard to signed overflows.  Returns the new
1388    chrec if something else than what chrec_convert would do happens, NULL_TREE
1389    otherwise.  */
1390 
1391 tree
1392 chrec_convert_aggressive (tree type, tree chrec)
1393 {
1394   tree inner_type, left, right, lc, rc, rtype;
1395 
1396   if (automatically_generated_chrec_p (chrec)
1397       || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1398     return NULL_TREE;
1399 
1400   inner_type = TREE_TYPE (chrec);
1401   if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1402     return NULL_TREE;
1403 
1404   rtype = POINTER_TYPE_P (type) ? sizetype : type;
1405 
1406   left = CHREC_LEFT (chrec);
1407   right = CHREC_RIGHT (chrec);
1408   lc = chrec_convert_aggressive (type, left);
1409   if (!lc)
1410     lc = chrec_convert (type, left, NULL);
1411   rc = chrec_convert_aggressive (rtype, right);
1412   if (!rc)
1413     rc = chrec_convert (rtype, right, NULL);
1414 
1415   return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1416 }
1417 
1418 /* Returns true when CHREC0 == CHREC1.  */
1419 
1420 bool
1421 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1422 {
1423   if (chrec0 == NULL_TREE
1424       || chrec1 == NULL_TREE
1425       || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1426     return false;
1427 
1428   if (chrec0 == chrec1)
1429     return true;
1430 
1431   switch (TREE_CODE (chrec0))
1432     {
1433     case INTEGER_CST:
1434       return operand_equal_p (chrec0, chrec1, 0);
1435 
1436     case POLYNOMIAL_CHREC:
1437       return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1438 	      && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1439 	      && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1440 
1441     case PLUS_EXPR:
1442     case MULT_EXPR:
1443     case MINUS_EXPR:
1444     case POINTER_PLUS_EXPR:
1445       return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1446 			      TREE_OPERAND (chrec1, 0))
1447 	  && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1448 			      TREE_OPERAND (chrec1, 1));
1449 
1450     default:
1451       return false;
1452     }
1453 }
1454 
1455 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1456    EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1457    which of these cases happens.  */
1458 
1459 enum ev_direction
1460 scev_direction (const_tree chrec)
1461 {
1462   const_tree step;
1463 
1464   if (!evolution_function_is_affine_p (chrec))
1465     return EV_DIR_UNKNOWN;
1466 
1467   step = CHREC_RIGHT (chrec);
1468   if (TREE_CODE (step) != INTEGER_CST)
1469     return EV_DIR_UNKNOWN;
1470 
1471   if (tree_int_cst_sign_bit (step))
1472     return EV_DIR_DECREASES;
1473   else
1474     return EV_DIR_GROWS;
1475 }
1476 
1477 /* Iterates over all the components of SCEV, and calls CBCK.  */
1478 
1479 void
1480 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1481 {
1482   switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1483     {
1484     case 3:
1485       for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1486 
1487     case 2:
1488       for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1489 
1490     case 1:
1491       for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1492 
1493     default:
1494       cbck (scev, data);
1495       break;
1496     }
1497 }
1498 
1499 /* Returns true when the operation can be part of a linear
1500    expression.  */
1501 
1502 static inline bool
1503 operator_is_linear (tree scev)
1504 {
1505   switch (TREE_CODE (scev))
1506     {
1507     case INTEGER_CST:
1508     case POLYNOMIAL_CHREC:
1509     case PLUS_EXPR:
1510     case POINTER_PLUS_EXPR:
1511     case MULT_EXPR:
1512     case MINUS_EXPR:
1513     case NEGATE_EXPR:
1514     case SSA_NAME:
1515     case NON_LVALUE_EXPR:
1516     case BIT_NOT_EXPR:
1517     CASE_CONVERT:
1518       return true;
1519 
1520     default:
1521       return false;
1522     }
1523 }
1524 
1525 /* Return true when SCEV is a linear expression.  Linear expressions
1526    can contain additions, substractions and multiplications.
1527    Multiplications are restricted to constant scaling: "cst * x".  */
1528 
1529 bool
1530 scev_is_linear_expression (tree scev)
1531 {
1532   if (scev == NULL
1533       || !operator_is_linear (scev))
1534     return false;
1535 
1536   if (TREE_CODE (scev) == MULT_EXPR)
1537     return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1538 	     && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1539 
1540   if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1541       && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1542     return false;
1543 
1544   switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1545     {
1546     case 3:
1547       return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1548 	&& scev_is_linear_expression (TREE_OPERAND (scev, 1))
1549 	&& scev_is_linear_expression (TREE_OPERAND (scev, 2));
1550 
1551     case 2:
1552       return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1553 	&& scev_is_linear_expression (TREE_OPERAND (scev, 1));
1554 
1555     case 1:
1556       return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1557 
1558     case 0:
1559       return true;
1560 
1561     default:
1562       return false;
1563     }
1564 }
1565 
1566 /* Determines whether the expression CHREC contains only interger consts
1567    in the right parts.  */
1568 
1569 bool
1570 evolution_function_right_is_integer_cst (const_tree chrec)
1571 {
1572   if (chrec == NULL_TREE)
1573     return false;
1574 
1575   switch (TREE_CODE (chrec))
1576     {
1577     case INTEGER_CST:
1578       return true;
1579 
1580     case POLYNOMIAL_CHREC:
1581       return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1582 	&& (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1583 	    || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1584 
1585     CASE_CONVERT:
1586       return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1587 
1588     default:
1589       return false;
1590     }
1591 }
1592