1 /* Control flow functions for trees. 2 Copyright (C) 2001-2017 Free Software Foundation, Inc. 3 Contributed by Diego Novillo <dnovillo@redhat.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "target.h" 26 #include "rtl.h" 27 #include "tree.h" 28 #include "gimple.h" 29 #include "cfghooks.h" 30 #include "tree-pass.h" 31 #include "ssa.h" 32 #include "cgraph.h" 33 #include "gimple-pretty-print.h" 34 #include "diagnostic-core.h" 35 #include "fold-const.h" 36 #include "trans-mem.h" 37 #include "stor-layout.h" 38 #include "print-tree.h" 39 #include "cfganal.h" 40 #include "gimple-fold.h" 41 #include "tree-eh.h" 42 #include "gimple-iterator.h" 43 #include "gimplify-me.h" 44 #include "gimple-walk.h" 45 #include "tree-cfg.h" 46 #include "tree-ssa-loop-manip.h" 47 #include "tree-ssa-loop-niter.h" 48 #include "tree-into-ssa.h" 49 #include "tree-dfa.h" 50 #include "tree-ssa.h" 51 #include "except.h" 52 #include "cfgloop.h" 53 #include "tree-ssa-propagate.h" 54 #include "value-prof.h" 55 #include "tree-inline.h" 56 #include "tree-ssa-live.h" 57 #include "omp-general.h" 58 #include "omp-expand.h" 59 #include "tree-cfgcleanup.h" 60 #include "gimplify.h" 61 #include "attribs.h" 62 #include "selftest.h" 63 64 /* This file contains functions for building the Control Flow Graph (CFG) 65 for a function tree. */ 66 67 /* Local declarations. */ 68 69 /* Initial capacity for the basic block array. */ 70 static const int initial_cfg_capacity = 20; 71 72 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs 73 which use a particular edge. The CASE_LABEL_EXPRs are chained together 74 via their CASE_CHAIN field, which we clear after we're done with the 75 hash table to prevent problems with duplication of GIMPLE_SWITCHes. 76 77 Access to this list of CASE_LABEL_EXPRs allows us to efficiently 78 update the case vector in response to edge redirections. 79 80 Right now this table is set up and torn down at key points in the 81 compilation process. It would be nice if we could make the table 82 more persistent. The key is getting notification of changes to 83 the CFG (particularly edge removal, creation and redirection). */ 84 85 static hash_map<edge, tree> *edge_to_cases; 86 87 /* If we record edge_to_cases, this bitmap will hold indexes 88 of basic blocks that end in a GIMPLE_SWITCH which we touched 89 due to edge manipulations. */ 90 91 static bitmap touched_switch_bbs; 92 93 /* CFG statistics. */ 94 struct cfg_stats_d 95 { 96 long num_merged_labels; 97 }; 98 99 static struct cfg_stats_d cfg_stats; 100 101 /* Data to pass to replace_block_vars_by_duplicates_1. */ 102 struct replace_decls_d 103 { 104 hash_map<tree, tree> *vars_map; 105 tree to_context; 106 }; 107 108 /* Hash table to store last discriminator assigned for each locus. */ 109 struct locus_discrim_map 110 { 111 location_t locus; 112 int discriminator; 113 }; 114 115 /* Hashtable helpers. */ 116 117 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map> 118 { 119 static inline hashval_t hash (const locus_discrim_map *); 120 static inline bool equal (const locus_discrim_map *, 121 const locus_discrim_map *); 122 }; 123 124 /* Trivial hash function for a location_t. ITEM is a pointer to 125 a hash table entry that maps a location_t to a discriminator. */ 126 127 inline hashval_t 128 locus_discrim_hasher::hash (const locus_discrim_map *item) 129 { 130 return LOCATION_LINE (item->locus); 131 } 132 133 /* Equality function for the locus-to-discriminator map. A and B 134 point to the two hash table entries to compare. */ 135 136 inline bool 137 locus_discrim_hasher::equal (const locus_discrim_map *a, 138 const locus_discrim_map *b) 139 { 140 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus); 141 } 142 143 static hash_table<locus_discrim_hasher> *discriminator_per_locus; 144 145 /* Basic blocks and flowgraphs. */ 146 static void make_blocks (gimple_seq); 147 148 /* Edges. */ 149 static void make_edges (void); 150 static void assign_discriminators (void); 151 static void make_cond_expr_edges (basic_block); 152 static void make_gimple_switch_edges (gswitch *, basic_block); 153 static bool make_goto_expr_edges (basic_block); 154 static void make_gimple_asm_edges (basic_block); 155 static edge gimple_redirect_edge_and_branch (edge, basic_block); 156 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block); 157 158 /* Various helpers. */ 159 static inline bool stmt_starts_bb_p (gimple *, gimple *); 160 static int gimple_verify_flow_info (void); 161 static void gimple_make_forwarder_block (edge); 162 static gimple *first_non_label_stmt (basic_block); 163 static bool verify_gimple_transaction (gtransaction *); 164 static bool call_can_make_abnormal_goto (gimple *); 165 166 /* Flowgraph optimization and cleanup. */ 167 static void gimple_merge_blocks (basic_block, basic_block); 168 static bool gimple_can_merge_blocks_p (basic_block, basic_block); 169 static void remove_bb (basic_block); 170 static edge find_taken_edge_computed_goto (basic_block, tree); 171 static edge find_taken_edge_cond_expr (basic_block, tree); 172 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree); 173 static tree find_case_label_for_value (gswitch *, tree); 174 static void lower_phi_internal_fn (); 175 176 void 177 init_empty_tree_cfg_for_function (struct function *fn) 178 { 179 /* Initialize the basic block array. */ 180 init_flow (fn); 181 profile_status_for_fn (fn) = PROFILE_ABSENT; 182 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS; 183 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS; 184 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity); 185 vec_safe_grow_cleared (basic_block_info_for_fn (fn), 186 initial_cfg_capacity); 187 188 /* Build a mapping of labels to their associated blocks. */ 189 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity); 190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn), 191 initial_cfg_capacity); 192 193 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn)); 194 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn)); 195 196 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb 197 = EXIT_BLOCK_PTR_FOR_FN (fn); 198 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb 199 = ENTRY_BLOCK_PTR_FOR_FN (fn); 200 } 201 202 void 203 init_empty_tree_cfg (void) 204 { 205 init_empty_tree_cfg_for_function (cfun); 206 } 207 208 /*--------------------------------------------------------------------------- 209 Create basic blocks 210 ---------------------------------------------------------------------------*/ 211 212 /* Entry point to the CFG builder for trees. SEQ is the sequence of 213 statements to be added to the flowgraph. */ 214 215 static void 216 build_gimple_cfg (gimple_seq seq) 217 { 218 /* Register specific gimple functions. */ 219 gimple_register_cfg_hooks (); 220 221 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats)); 222 223 init_empty_tree_cfg (); 224 225 make_blocks (seq); 226 227 /* Make sure there is always at least one block, even if it's empty. */ 228 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 230 231 /* Adjust the size of the array. */ 232 if (basic_block_info_for_fn (cfun)->length () 233 < (size_t) n_basic_blocks_for_fn (cfun)) 234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), 235 n_basic_blocks_for_fn (cfun)); 236 237 /* To speed up statement iterator walks, we first purge dead labels. */ 238 cleanup_dead_labels (); 239 240 /* Group case nodes to reduce the number of edges. 241 We do this after cleaning up dead labels because otherwise we miss 242 a lot of obvious case merging opportunities. */ 243 group_case_labels (); 244 245 /* Create the edges of the flowgraph. */ 246 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13); 247 make_edges (); 248 assign_discriminators (); 249 lower_phi_internal_fn (); 250 cleanup_dead_labels (); 251 delete discriminator_per_locus; 252 discriminator_per_locus = NULL; 253 } 254 255 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove 256 them and propagate the information to LOOP. We assume that the annotations 257 come immediately before the condition in BB, if any. */ 258 259 static void 260 replace_loop_annotate_in_block (basic_block bb, struct loop *loop) 261 { 262 gimple_stmt_iterator gsi = gsi_last_bb (bb); 263 gimple *stmt = gsi_stmt (gsi); 264 265 if (!(stmt && gimple_code (stmt) == GIMPLE_COND)) 266 return; 267 268 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi)) 269 { 270 stmt = gsi_stmt (gsi); 271 if (gimple_code (stmt) != GIMPLE_CALL) 272 break; 273 if (!gimple_call_internal_p (stmt) 274 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) 275 break; 276 277 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) 278 { 279 case annot_expr_ivdep_kind: 280 loop->safelen = INT_MAX; 281 break; 282 case annot_expr_no_vector_kind: 283 loop->dont_vectorize = true; 284 break; 285 case annot_expr_vector_kind: 286 loop->force_vectorize = true; 287 cfun->has_force_vectorize_loops = true; 288 break; 289 default: 290 gcc_unreachable (); 291 } 292 293 stmt = gimple_build_assign (gimple_call_lhs (stmt), 294 gimple_call_arg (stmt, 0)); 295 gsi_replace (&gsi, stmt, true); 296 } 297 } 298 299 /* Look for ANNOTATE calls with loop annotation kind; if found, remove 300 them and propagate the information to the loop. We assume that the 301 annotations come immediately before the condition of the loop. */ 302 303 static void 304 replace_loop_annotate (void) 305 { 306 struct loop *loop; 307 basic_block bb; 308 gimple_stmt_iterator gsi; 309 gimple *stmt; 310 311 FOR_EACH_LOOP (loop, 0) 312 { 313 /* First look into the header. */ 314 replace_loop_annotate_in_block (loop->header, loop); 315 316 /* Then look into the latch, if any. */ 317 if (loop->latch) 318 replace_loop_annotate_in_block (loop->latch, loop); 319 } 320 321 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */ 322 FOR_EACH_BB_FN (bb, cfun) 323 { 324 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 325 { 326 stmt = gsi_stmt (gsi); 327 if (gimple_code (stmt) != GIMPLE_CALL) 328 continue; 329 if (!gimple_call_internal_p (stmt) 330 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE) 331 continue; 332 333 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))) 334 { 335 case annot_expr_ivdep_kind: 336 case annot_expr_no_vector_kind: 337 case annot_expr_vector_kind: 338 break; 339 default: 340 gcc_unreachable (); 341 } 342 343 warning_at (gimple_location (stmt), 0, "ignoring loop annotation"); 344 stmt = gimple_build_assign (gimple_call_lhs (stmt), 345 gimple_call_arg (stmt, 0)); 346 gsi_replace (&gsi, stmt, true); 347 } 348 } 349 } 350 351 /* Lower internal PHI function from GIMPLE FE. */ 352 353 static void 354 lower_phi_internal_fn () 355 { 356 basic_block bb, pred = NULL; 357 gimple_stmt_iterator gsi; 358 tree lhs; 359 gphi *phi_node; 360 gimple *stmt; 361 362 /* After edge creation, handle __PHI function from GIMPLE FE. */ 363 FOR_EACH_BB_FN (bb, cfun) 364 { 365 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) 366 { 367 stmt = gsi_stmt (gsi); 368 if (! gimple_call_internal_p (stmt, IFN_PHI)) 369 break; 370 371 lhs = gimple_call_lhs (stmt); 372 phi_node = create_phi_node (lhs, bb); 373 374 /* Add arguments to the PHI node. */ 375 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i) 376 { 377 tree arg = gimple_call_arg (stmt, i); 378 if (TREE_CODE (arg) == LABEL_DECL) 379 pred = label_to_block (arg); 380 else 381 { 382 edge e = find_edge (pred, bb); 383 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION); 384 } 385 } 386 387 gsi_remove (&gsi, true); 388 } 389 } 390 } 391 392 static unsigned int 393 execute_build_cfg (void) 394 { 395 gimple_seq body = gimple_body (current_function_decl); 396 397 build_gimple_cfg (body); 398 gimple_set_body (current_function_decl, NULL); 399 if (dump_file && (dump_flags & TDF_DETAILS)) 400 { 401 fprintf (dump_file, "Scope blocks:\n"); 402 dump_scope_blocks (dump_file, dump_flags); 403 } 404 cleanup_tree_cfg (); 405 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 406 replace_loop_annotate (); 407 return 0; 408 } 409 410 namespace { 411 412 const pass_data pass_data_build_cfg = 413 { 414 GIMPLE_PASS, /* type */ 415 "cfg", /* name */ 416 OPTGROUP_NONE, /* optinfo_flags */ 417 TV_TREE_CFG, /* tv_id */ 418 PROP_gimple_leh, /* properties_required */ 419 ( PROP_cfg | PROP_loops ), /* properties_provided */ 420 0, /* properties_destroyed */ 421 0, /* todo_flags_start */ 422 0, /* todo_flags_finish */ 423 }; 424 425 class pass_build_cfg : public gimple_opt_pass 426 { 427 public: 428 pass_build_cfg (gcc::context *ctxt) 429 : gimple_opt_pass (pass_data_build_cfg, ctxt) 430 {} 431 432 /* opt_pass methods: */ 433 virtual unsigned int execute (function *) { return execute_build_cfg (); } 434 435 }; // class pass_build_cfg 436 437 } // anon namespace 438 439 gimple_opt_pass * 440 make_pass_build_cfg (gcc::context *ctxt) 441 { 442 return new pass_build_cfg (ctxt); 443 } 444 445 446 /* Return true if T is a computed goto. */ 447 448 bool 449 computed_goto_p (gimple *t) 450 { 451 return (gimple_code (t) == GIMPLE_GOTO 452 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL); 453 } 454 455 /* Returns true for edge E where e->src ends with a GIMPLE_COND and 456 the other edge points to a bb with just __builtin_unreachable (). 457 I.e. return true for C->M edge in: 458 <bb C>: 459 ... 460 if (something) 461 goto <bb N>; 462 else 463 goto <bb M>; 464 <bb N>: 465 __builtin_unreachable (); 466 <bb M>: */ 467 468 bool 469 assert_unreachable_fallthru_edge_p (edge e) 470 { 471 basic_block pred_bb = e->src; 472 gimple *last = last_stmt (pred_bb); 473 if (last && gimple_code (last) == GIMPLE_COND) 474 { 475 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest; 476 if (other_bb == e->dest) 477 other_bb = EDGE_SUCC (pred_bb, 1)->dest; 478 if (EDGE_COUNT (other_bb->succs) == 0) 479 { 480 gimple_stmt_iterator gsi = gsi_after_labels (other_bb); 481 gimple *stmt; 482 483 if (gsi_end_p (gsi)) 484 return false; 485 stmt = gsi_stmt (gsi); 486 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt)) 487 { 488 gsi_next (&gsi); 489 if (gsi_end_p (gsi)) 490 return false; 491 stmt = gsi_stmt (gsi); 492 } 493 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE); 494 } 495 } 496 return false; 497 } 498 499 500 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call 501 could alter control flow except via eh. We initialize the flag at 502 CFG build time and only ever clear it later. */ 503 504 static void 505 gimple_call_initialize_ctrl_altering (gimple *stmt) 506 { 507 int flags = gimple_call_flags (stmt); 508 509 /* A call alters control flow if it can make an abnormal goto. */ 510 if (call_can_make_abnormal_goto (stmt) 511 /* A call also alters control flow if it does not return. */ 512 || flags & ECF_NORETURN 513 /* TM ending statements have backedges out of the transaction. 514 Return true so we split the basic block containing them. 515 Note that the TM_BUILTIN test is merely an optimization. */ 516 || ((flags & ECF_TM_BUILTIN) 517 && is_tm_ending_fndecl (gimple_call_fndecl (stmt))) 518 /* BUILT_IN_RETURN call is same as return statement. */ 519 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN) 520 /* IFN_UNIQUE should be the last insn, to make checking for it 521 as cheap as possible. */ 522 || (gimple_call_internal_p (stmt) 523 && gimple_call_internal_unique_p (stmt))) 524 gimple_call_set_ctrl_altering (stmt, true); 525 else 526 gimple_call_set_ctrl_altering (stmt, false); 527 } 528 529 530 /* Insert SEQ after BB and build a flowgraph. */ 531 532 static basic_block 533 make_blocks_1 (gimple_seq seq, basic_block bb) 534 { 535 gimple_stmt_iterator i = gsi_start (seq); 536 gimple *stmt = NULL; 537 bool start_new_block = true; 538 bool first_stmt_of_seq = true; 539 540 while (!gsi_end_p (i)) 541 { 542 gimple *prev_stmt; 543 544 prev_stmt = stmt; 545 stmt = gsi_stmt (i); 546 547 if (stmt && is_gimple_call (stmt)) 548 gimple_call_initialize_ctrl_altering (stmt); 549 550 /* If the statement starts a new basic block or if we have determined 551 in a previous pass that we need to create a new block for STMT, do 552 so now. */ 553 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt)) 554 { 555 if (!first_stmt_of_seq) 556 gsi_split_seq_before (&i, &seq); 557 bb = create_basic_block (seq, bb); 558 start_new_block = false; 559 } 560 561 /* Now add STMT to BB and create the subgraphs for special statement 562 codes. */ 563 gimple_set_bb (stmt, bb); 564 565 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the 566 next iteration. */ 567 if (stmt_ends_bb_p (stmt)) 568 { 569 /* If the stmt can make abnormal goto use a new temporary 570 for the assignment to the LHS. This makes sure the old value 571 of the LHS is available on the abnormal edge. Otherwise 572 we will end up with overlapping life-ranges for abnormal 573 SSA names. */ 574 if (gimple_has_lhs (stmt) 575 && stmt_can_make_abnormal_goto (stmt) 576 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt)))) 577 { 578 tree lhs = gimple_get_lhs (stmt); 579 tree tmp = create_tmp_var (TREE_TYPE (lhs)); 580 gimple *s = gimple_build_assign (lhs, tmp); 581 gimple_set_location (s, gimple_location (stmt)); 582 gimple_set_block (s, gimple_block (stmt)); 583 gimple_set_lhs (stmt, tmp); 584 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE 585 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE) 586 DECL_GIMPLE_REG_P (tmp) = 1; 587 gsi_insert_after (&i, s, GSI_SAME_STMT); 588 } 589 start_new_block = true; 590 } 591 592 gsi_next (&i); 593 first_stmt_of_seq = false; 594 } 595 return bb; 596 } 597 598 /* Build a flowgraph for the sequence of stmts SEQ. */ 599 600 static void 601 make_blocks (gimple_seq seq) 602 { 603 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun)); 604 } 605 606 /* Create and return a new empty basic block after bb AFTER. */ 607 608 static basic_block 609 create_bb (void *h, void *e, basic_block after) 610 { 611 basic_block bb; 612 613 gcc_assert (!e); 614 615 /* Create and initialize a new basic block. Since alloc_block uses 616 GC allocation that clears memory to allocate a basic block, we do 617 not have to clear the newly allocated basic block here. */ 618 bb = alloc_block (); 619 620 bb->index = last_basic_block_for_fn (cfun); 621 bb->flags = BB_NEW; 622 set_bb_seq (bb, h ? (gimple_seq) h : NULL); 623 624 /* Add the new block to the linked list of blocks. */ 625 link_block (bb, after); 626 627 /* Grow the basic block array if needed. */ 628 if ((size_t) last_basic_block_for_fn (cfun) 629 == basic_block_info_for_fn (cfun)->length ()) 630 { 631 size_t new_size = 632 (last_basic_block_for_fn (cfun) 633 + (last_basic_block_for_fn (cfun) + 3) / 4); 634 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size); 635 } 636 637 /* Add the newly created block to the array. */ 638 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb); 639 640 n_basic_blocks_for_fn (cfun)++; 641 last_basic_block_for_fn (cfun)++; 642 643 return bb; 644 } 645 646 647 /*--------------------------------------------------------------------------- 648 Edge creation 649 ---------------------------------------------------------------------------*/ 650 651 /* If basic block BB has an abnormal edge to a basic block 652 containing IFN_ABNORMAL_DISPATCHER internal call, return 653 that the dispatcher's basic block, otherwise return NULL. */ 654 655 basic_block 656 get_abnormal_succ_dispatcher (basic_block bb) 657 { 658 edge e; 659 edge_iterator ei; 660 661 FOR_EACH_EDGE (e, ei, bb->succs) 662 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL) 663 { 664 gimple_stmt_iterator gsi 665 = gsi_start_nondebug_after_labels_bb (e->dest); 666 gimple *g = gsi_stmt (gsi); 667 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER)) 668 return e->dest; 669 } 670 return NULL; 671 } 672 673 /* Helper function for make_edges. Create a basic block with 674 with ABNORMAL_DISPATCHER internal call in it if needed, and 675 create abnormal edges from BBS to it and from it to FOR_BB 676 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */ 677 678 static void 679 handle_abnormal_edges (basic_block *dispatcher_bbs, 680 basic_block for_bb, int *bb_to_omp_idx, 681 auto_vec<basic_block> *bbs, bool computed_goto) 682 { 683 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0); 684 unsigned int idx = 0; 685 basic_block bb; 686 bool inner = false; 687 688 if (bb_to_omp_idx) 689 { 690 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index]; 691 if (bb_to_omp_idx[for_bb->index] != 0) 692 inner = true; 693 } 694 695 /* If the dispatcher has been created already, then there are basic 696 blocks with abnormal edges to it, so just make a new edge to 697 for_bb. */ 698 if (*dispatcher == NULL) 699 { 700 /* Check if there are any basic blocks that need to have 701 abnormal edges to this dispatcher. If there are none, return 702 early. */ 703 if (bb_to_omp_idx == NULL) 704 { 705 if (bbs->is_empty ()) 706 return; 707 } 708 else 709 { 710 FOR_EACH_VEC_ELT (*bbs, idx, bb) 711 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index]) 712 break; 713 if (bb == NULL) 714 return; 715 } 716 717 /* Create the dispatcher bb. */ 718 *dispatcher = create_basic_block (NULL, for_bb); 719 if (computed_goto) 720 { 721 /* Factor computed gotos into a common computed goto site. Also 722 record the location of that site so that we can un-factor the 723 gotos after we have converted back to normal form. */ 724 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher); 725 726 /* Create the destination of the factored goto. Each original 727 computed goto will put its desired destination into this 728 variable and jump to the label we create immediately below. */ 729 tree var = create_tmp_var (ptr_type_node, "gotovar"); 730 731 /* Build a label for the new block which will contain the 732 factored computed goto. */ 733 tree factored_label_decl 734 = create_artificial_label (UNKNOWN_LOCATION); 735 gimple *factored_computed_goto_label 736 = gimple_build_label (factored_label_decl); 737 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT); 738 739 /* Build our new computed goto. */ 740 gimple *factored_computed_goto = gimple_build_goto (var); 741 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT); 742 743 FOR_EACH_VEC_ELT (*bbs, idx, bb) 744 { 745 if (bb_to_omp_idx 746 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) 747 continue; 748 749 gsi = gsi_last_bb (bb); 750 gimple *last = gsi_stmt (gsi); 751 752 gcc_assert (computed_goto_p (last)); 753 754 /* Copy the original computed goto's destination into VAR. */ 755 gimple *assignment 756 = gimple_build_assign (var, gimple_goto_dest (last)); 757 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT); 758 759 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU); 760 e->goto_locus = gimple_location (last); 761 gsi_remove (&gsi, true); 762 } 763 } 764 else 765 { 766 tree arg = inner ? boolean_true_node : boolean_false_node; 767 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER, 768 1, arg); 769 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher); 770 gsi_insert_after (&gsi, g, GSI_NEW_STMT); 771 772 /* Create predecessor edges of the dispatcher. */ 773 FOR_EACH_VEC_ELT (*bbs, idx, bb) 774 { 775 if (bb_to_omp_idx 776 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index]) 777 continue; 778 make_edge (bb, *dispatcher, EDGE_ABNORMAL); 779 } 780 } 781 } 782 783 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL); 784 } 785 786 /* Creates outgoing edges for BB. Returns 1 when it ends with an 787 computed goto, returns 2 when it ends with a statement that 788 might return to this function via an nonlocal goto, otherwise 789 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */ 790 791 static int 792 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index) 793 { 794 gimple *last = last_stmt (bb); 795 bool fallthru = false; 796 int ret = 0; 797 798 if (!last) 799 return ret; 800 801 switch (gimple_code (last)) 802 { 803 case GIMPLE_GOTO: 804 if (make_goto_expr_edges (bb)) 805 ret = 1; 806 fallthru = false; 807 break; 808 case GIMPLE_RETURN: 809 { 810 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 811 e->goto_locus = gimple_location (last); 812 fallthru = false; 813 } 814 break; 815 case GIMPLE_COND: 816 make_cond_expr_edges (bb); 817 fallthru = false; 818 break; 819 case GIMPLE_SWITCH: 820 make_gimple_switch_edges (as_a <gswitch *> (last), bb); 821 fallthru = false; 822 break; 823 case GIMPLE_RESX: 824 make_eh_edges (last); 825 fallthru = false; 826 break; 827 case GIMPLE_EH_DISPATCH: 828 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last)); 829 break; 830 831 case GIMPLE_CALL: 832 /* If this function receives a nonlocal goto, then we need to 833 make edges from this call site to all the nonlocal goto 834 handlers. */ 835 if (stmt_can_make_abnormal_goto (last)) 836 ret = 2; 837 838 /* If this statement has reachable exception handlers, then 839 create abnormal edges to them. */ 840 make_eh_edges (last); 841 842 /* BUILTIN_RETURN is really a return statement. */ 843 if (gimple_call_builtin_p (last, BUILT_IN_RETURN)) 844 { 845 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 846 fallthru = false; 847 } 848 /* Some calls are known not to return. */ 849 else 850 fallthru = !gimple_call_noreturn_p (last); 851 break; 852 853 case GIMPLE_ASSIGN: 854 /* A GIMPLE_ASSIGN may throw internally and thus be considered 855 control-altering. */ 856 if (is_ctrl_altering_stmt (last)) 857 make_eh_edges (last); 858 fallthru = true; 859 break; 860 861 case GIMPLE_ASM: 862 make_gimple_asm_edges (bb); 863 fallthru = true; 864 break; 865 866 CASE_GIMPLE_OMP: 867 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index); 868 break; 869 870 case GIMPLE_TRANSACTION: 871 { 872 gtransaction *txn = as_a <gtransaction *> (last); 873 tree label1 = gimple_transaction_label_norm (txn); 874 tree label2 = gimple_transaction_label_uninst (txn); 875 876 if (label1) 877 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU); 878 if (label2) 879 make_edge (bb, label_to_block (label2), 880 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU)); 881 882 tree label3 = gimple_transaction_label_over (txn); 883 if (gimple_transaction_subcode (txn) 884 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER)) 885 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT); 886 887 fallthru = false; 888 } 889 break; 890 891 default: 892 gcc_assert (!stmt_ends_bb_p (last)); 893 fallthru = true; 894 break; 895 } 896 897 if (fallthru) 898 make_edge (bb, bb->next_bb, EDGE_FALLTHRU); 899 900 return ret; 901 } 902 903 /* Join all the blocks in the flowgraph. */ 904 905 static void 906 make_edges (void) 907 { 908 basic_block bb; 909 struct omp_region *cur_region = NULL; 910 auto_vec<basic_block> ab_edge_goto; 911 auto_vec<basic_block> ab_edge_call; 912 int *bb_to_omp_idx = NULL; 913 int cur_omp_region_idx = 0; 914 915 /* Create an edge from entry to the first block with executable 916 statements in it. */ 917 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), 918 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS), 919 EDGE_FALLTHRU); 920 921 /* Traverse the basic block array placing edges. */ 922 FOR_EACH_BB_FN (bb, cfun) 923 { 924 int mer; 925 926 if (bb_to_omp_idx) 927 bb_to_omp_idx[bb->index] = cur_omp_region_idx; 928 929 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); 930 if (mer == 1) 931 ab_edge_goto.safe_push (bb); 932 else if (mer == 2) 933 ab_edge_call.safe_push (bb); 934 935 if (cur_region && bb_to_omp_idx == NULL) 936 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun)); 937 } 938 939 /* Computed gotos are hell to deal with, especially if there are 940 lots of them with a large number of destinations. So we factor 941 them to a common computed goto location before we build the 942 edge list. After we convert back to normal form, we will un-factor 943 the computed gotos since factoring introduces an unwanted jump. 944 For non-local gotos and abnormal edges from calls to calls that return 945 twice or forced labels, factor the abnormal edges too, by having all 946 abnormal edges from the calls go to a common artificial basic block 947 with ABNORMAL_DISPATCHER internal call and abnormal edges from that 948 basic block to all forced labels and calls returning twice. 949 We do this per-OpenMP structured block, because those regions 950 are guaranteed to be single entry single exit by the standard, 951 so it is not allowed to enter or exit such regions abnormally this way, 952 thus all computed gotos, non-local gotos and setjmp/longjmp calls 953 must not transfer control across SESE region boundaries. */ 954 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ()) 955 { 956 gimple_stmt_iterator gsi; 957 basic_block dispatcher_bb_array[2] = { NULL, NULL }; 958 basic_block *dispatcher_bbs = dispatcher_bb_array; 959 int count = n_basic_blocks_for_fn (cfun); 960 961 if (bb_to_omp_idx) 962 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count); 963 964 FOR_EACH_BB_FN (bb, cfun) 965 { 966 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 967 { 968 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 969 tree target; 970 971 if (!label_stmt) 972 break; 973 974 target = gimple_label_label (label_stmt); 975 976 /* Make an edge to every label block that has been marked as a 977 potential target for a computed goto or a non-local goto. */ 978 if (FORCED_LABEL (target)) 979 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 980 &ab_edge_goto, true); 981 if (DECL_NONLOCAL (target)) 982 { 983 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 984 &ab_edge_call, false); 985 break; 986 } 987 } 988 989 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi))) 990 gsi_next_nondebug (&gsi); 991 if (!gsi_end_p (gsi)) 992 { 993 /* Make an edge to every setjmp-like call. */ 994 gimple *call_stmt = gsi_stmt (gsi); 995 if (is_gimple_call (call_stmt) 996 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE) 997 || gimple_call_builtin_p (call_stmt, 998 BUILT_IN_SETJMP_RECEIVER))) 999 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx, 1000 &ab_edge_call, false); 1001 } 1002 } 1003 1004 if (bb_to_omp_idx) 1005 XDELETE (dispatcher_bbs); 1006 } 1007 1008 XDELETE (bb_to_omp_idx); 1009 1010 omp_free_regions (); 1011 } 1012 1013 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as 1014 needed. Returns true if new bbs were created. 1015 Note: This is transitional code, and should not be used for new code. We 1016 should be able to get rid of this by rewriting all target va-arg 1017 gimplification hooks to use an interface gimple_build_cond_value as described 1018 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */ 1019 1020 bool 1021 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi) 1022 { 1023 gimple *stmt = gsi_stmt (*gsi); 1024 basic_block bb = gimple_bb (stmt); 1025 basic_block lastbb, afterbb; 1026 int old_num_bbs = n_basic_blocks_for_fn (cfun); 1027 edge e; 1028 lastbb = make_blocks_1 (seq, bb); 1029 if (old_num_bbs == n_basic_blocks_for_fn (cfun)) 1030 return false; 1031 e = split_block (bb, stmt); 1032 /* Move e->dest to come after the new basic blocks. */ 1033 afterbb = e->dest; 1034 unlink_block (afterbb); 1035 link_block (afterbb, lastbb); 1036 redirect_edge_succ (e, bb->next_bb); 1037 bb = bb->next_bb; 1038 while (bb != afterbb) 1039 { 1040 struct omp_region *cur_region = NULL; 1041 int cur_omp_region_idx = 0; 1042 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx); 1043 gcc_assert (!mer && !cur_region); 1044 add_bb_to_loop (bb, afterbb->loop_father); 1045 bb = bb->next_bb; 1046 } 1047 return true; 1048 } 1049 1050 /* Find the next available discriminator value for LOCUS. The 1051 discriminator distinguishes among several basic blocks that 1052 share a common locus, allowing for more accurate sample-based 1053 profiling. */ 1054 1055 static int 1056 next_discriminator_for_locus (location_t locus) 1057 { 1058 struct locus_discrim_map item; 1059 struct locus_discrim_map **slot; 1060 1061 item.locus = locus; 1062 item.discriminator = 0; 1063 slot = discriminator_per_locus->find_slot_with_hash ( 1064 &item, LOCATION_LINE (locus), INSERT); 1065 gcc_assert (slot); 1066 if (*slot == HTAB_EMPTY_ENTRY) 1067 { 1068 *slot = XNEW (struct locus_discrim_map); 1069 gcc_assert (*slot); 1070 (*slot)->locus = locus; 1071 (*slot)->discriminator = 0; 1072 } 1073 (*slot)->discriminator++; 1074 return (*slot)->discriminator; 1075 } 1076 1077 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */ 1078 1079 static bool 1080 same_line_p (location_t locus1, location_t locus2) 1081 { 1082 expanded_location from, to; 1083 1084 if (locus1 == locus2) 1085 return true; 1086 1087 from = expand_location (locus1); 1088 to = expand_location (locus2); 1089 1090 if (from.line != to.line) 1091 return false; 1092 if (from.file == to.file) 1093 return true; 1094 return (from.file != NULL 1095 && to.file != NULL 1096 && filename_cmp (from.file, to.file) == 0); 1097 } 1098 1099 /* Assign discriminators to each basic block. */ 1100 1101 static void 1102 assign_discriminators (void) 1103 { 1104 basic_block bb; 1105 1106 FOR_EACH_BB_FN (bb, cfun) 1107 { 1108 edge e; 1109 edge_iterator ei; 1110 gimple *last = last_stmt (bb); 1111 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION; 1112 1113 if (locus == UNKNOWN_LOCATION) 1114 continue; 1115 1116 FOR_EACH_EDGE (e, ei, bb->succs) 1117 { 1118 gimple *first = first_non_label_stmt (e->dest); 1119 gimple *last = last_stmt (e->dest); 1120 if ((first && same_line_p (locus, gimple_location (first))) 1121 || (last && same_line_p (locus, gimple_location (last)))) 1122 { 1123 if (e->dest->discriminator != 0 && bb->discriminator == 0) 1124 bb->discriminator = next_discriminator_for_locus (locus); 1125 else 1126 e->dest->discriminator = next_discriminator_for_locus (locus); 1127 } 1128 } 1129 } 1130 } 1131 1132 /* Create the edges for a GIMPLE_COND starting at block BB. */ 1133 1134 static void 1135 make_cond_expr_edges (basic_block bb) 1136 { 1137 gcond *entry = as_a <gcond *> (last_stmt (bb)); 1138 gimple *then_stmt, *else_stmt; 1139 basic_block then_bb, else_bb; 1140 tree then_label, else_label; 1141 edge e; 1142 1143 gcc_assert (entry); 1144 gcc_assert (gimple_code (entry) == GIMPLE_COND); 1145 1146 /* Entry basic blocks for each component. */ 1147 then_label = gimple_cond_true_label (entry); 1148 else_label = gimple_cond_false_label (entry); 1149 then_bb = label_to_block (then_label); 1150 else_bb = label_to_block (else_label); 1151 then_stmt = first_stmt (then_bb); 1152 else_stmt = first_stmt (else_bb); 1153 1154 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE); 1155 e->goto_locus = gimple_location (then_stmt); 1156 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE); 1157 if (e) 1158 e->goto_locus = gimple_location (else_stmt); 1159 1160 /* We do not need the labels anymore. */ 1161 gimple_cond_set_true_label (entry, NULL_TREE); 1162 gimple_cond_set_false_label (entry, NULL_TREE); 1163 } 1164 1165 1166 /* Called for each element in the hash table (P) as we delete the 1167 edge to cases hash table. 1168 1169 Clear all the CASE_CHAINs to prevent problems with copying of 1170 SWITCH_EXPRs and structure sharing rules, then free the hash table 1171 element. */ 1172 1173 bool 1174 edge_to_cases_cleanup (edge const &, tree const &value, void *) 1175 { 1176 tree t, next; 1177 1178 for (t = value; t; t = next) 1179 { 1180 next = CASE_CHAIN (t); 1181 CASE_CHAIN (t) = NULL; 1182 } 1183 1184 return true; 1185 } 1186 1187 /* Start recording information mapping edges to case labels. */ 1188 1189 void 1190 start_recording_case_labels (void) 1191 { 1192 gcc_assert (edge_to_cases == NULL); 1193 edge_to_cases = new hash_map<edge, tree>; 1194 touched_switch_bbs = BITMAP_ALLOC (NULL); 1195 } 1196 1197 /* Return nonzero if we are recording information for case labels. */ 1198 1199 static bool 1200 recording_case_labels_p (void) 1201 { 1202 return (edge_to_cases != NULL); 1203 } 1204 1205 /* Stop recording information mapping edges to case labels and 1206 remove any information we have recorded. */ 1207 void 1208 end_recording_case_labels (void) 1209 { 1210 bitmap_iterator bi; 1211 unsigned i; 1212 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL); 1213 delete edge_to_cases; 1214 edge_to_cases = NULL; 1215 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi) 1216 { 1217 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 1218 if (bb) 1219 { 1220 gimple *stmt = last_stmt (bb); 1221 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 1222 group_case_labels_stmt (as_a <gswitch *> (stmt)); 1223 } 1224 } 1225 BITMAP_FREE (touched_switch_bbs); 1226 } 1227 1228 /* If we are inside a {start,end}_recording_cases block, then return 1229 a chain of CASE_LABEL_EXPRs from T which reference E. 1230 1231 Otherwise return NULL. */ 1232 1233 static tree 1234 get_cases_for_edge (edge e, gswitch *t) 1235 { 1236 tree *slot; 1237 size_t i, n; 1238 1239 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR 1240 chains available. Return NULL so the caller can detect this case. */ 1241 if (!recording_case_labels_p ()) 1242 return NULL; 1243 1244 slot = edge_to_cases->get (e); 1245 if (slot) 1246 return *slot; 1247 1248 /* If we did not find E in the hash table, then this must be the first 1249 time we have been queried for information about E & T. Add all the 1250 elements from T to the hash table then perform the query again. */ 1251 1252 n = gimple_switch_num_labels (t); 1253 for (i = 0; i < n; i++) 1254 { 1255 tree elt = gimple_switch_label (t, i); 1256 tree lab = CASE_LABEL (elt); 1257 basic_block label_bb = label_to_block (lab); 1258 edge this_edge = find_edge (e->src, label_bb); 1259 1260 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create 1261 a new chain. */ 1262 tree &s = edge_to_cases->get_or_insert (this_edge); 1263 CASE_CHAIN (elt) = s; 1264 s = elt; 1265 } 1266 1267 return *edge_to_cases->get (e); 1268 } 1269 1270 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */ 1271 1272 static void 1273 make_gimple_switch_edges (gswitch *entry, basic_block bb) 1274 { 1275 size_t i, n; 1276 1277 n = gimple_switch_num_labels (entry); 1278 1279 for (i = 0; i < n; ++i) 1280 { 1281 tree lab = CASE_LABEL (gimple_switch_label (entry, i)); 1282 basic_block label_bb = label_to_block (lab); 1283 make_edge (bb, label_bb, 0); 1284 } 1285 } 1286 1287 1288 /* Return the basic block holding label DEST. */ 1289 1290 basic_block 1291 label_to_block_fn (struct function *ifun, tree dest) 1292 { 1293 int uid = LABEL_DECL_UID (dest); 1294 1295 /* We would die hard when faced by an undefined label. Emit a label to 1296 the very first basic block. This will hopefully make even the dataflow 1297 and undefined variable warnings quite right. */ 1298 if (seen_error () && uid < 0) 1299 { 1300 gimple_stmt_iterator gsi = 1301 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS)); 1302 gimple *stmt; 1303 1304 stmt = gimple_build_label (dest); 1305 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); 1306 uid = LABEL_DECL_UID (dest); 1307 } 1308 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid) 1309 return NULL; 1310 return (*ifun->cfg->x_label_to_block_map)[uid]; 1311 } 1312 1313 /* Create edges for a goto statement at block BB. Returns true 1314 if abnormal edges should be created. */ 1315 1316 static bool 1317 make_goto_expr_edges (basic_block bb) 1318 { 1319 gimple_stmt_iterator last = gsi_last_bb (bb); 1320 gimple *goto_t = gsi_stmt (last); 1321 1322 /* A simple GOTO creates normal edges. */ 1323 if (simple_goto_p (goto_t)) 1324 { 1325 tree dest = gimple_goto_dest (goto_t); 1326 basic_block label_bb = label_to_block (dest); 1327 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU); 1328 e->goto_locus = gimple_location (goto_t); 1329 gsi_remove (&last, true); 1330 return false; 1331 } 1332 1333 /* A computed GOTO creates abnormal edges. */ 1334 return true; 1335 } 1336 1337 /* Create edges for an asm statement with labels at block BB. */ 1338 1339 static void 1340 make_gimple_asm_edges (basic_block bb) 1341 { 1342 gasm *stmt = as_a <gasm *> (last_stmt (bb)); 1343 int i, n = gimple_asm_nlabels (stmt); 1344 1345 for (i = 0; i < n; ++i) 1346 { 1347 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i)); 1348 basic_block label_bb = label_to_block (label); 1349 make_edge (bb, label_bb, 0); 1350 } 1351 } 1352 1353 /*--------------------------------------------------------------------------- 1354 Flowgraph analysis 1355 ---------------------------------------------------------------------------*/ 1356 1357 /* Cleanup useless labels in basic blocks. This is something we wish 1358 to do early because it allows us to group case labels before creating 1359 the edges for the CFG, and it speeds up block statement iterators in 1360 all passes later on. 1361 We rerun this pass after CFG is created, to get rid of the labels that 1362 are no longer referenced. After then we do not run it any more, since 1363 (almost) no new labels should be created. */ 1364 1365 /* A map from basic block index to the leading label of that block. */ 1366 static struct label_record 1367 { 1368 /* The label. */ 1369 tree label; 1370 1371 /* True if the label is referenced from somewhere. */ 1372 bool used; 1373 } *label_for_bb; 1374 1375 /* Given LABEL return the first label in the same basic block. */ 1376 1377 static tree 1378 main_block_label (tree label) 1379 { 1380 basic_block bb = label_to_block (label); 1381 tree main_label = label_for_bb[bb->index].label; 1382 1383 /* label_to_block possibly inserted undefined label into the chain. */ 1384 if (!main_label) 1385 { 1386 label_for_bb[bb->index].label = label; 1387 main_label = label; 1388 } 1389 1390 label_for_bb[bb->index].used = true; 1391 return main_label; 1392 } 1393 1394 /* Clean up redundant labels within the exception tree. */ 1395 1396 static void 1397 cleanup_dead_labels_eh (void) 1398 { 1399 eh_landing_pad lp; 1400 eh_region r; 1401 tree lab; 1402 int i; 1403 1404 if (cfun->eh == NULL) 1405 return; 1406 1407 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i) 1408 if (lp && lp->post_landing_pad) 1409 { 1410 lab = main_block_label (lp->post_landing_pad); 1411 if (lab != lp->post_landing_pad) 1412 { 1413 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0; 1414 EH_LANDING_PAD_NR (lab) = lp->index; 1415 } 1416 } 1417 1418 FOR_ALL_EH_REGION (r) 1419 switch (r->type) 1420 { 1421 case ERT_CLEANUP: 1422 case ERT_MUST_NOT_THROW: 1423 break; 1424 1425 case ERT_TRY: 1426 { 1427 eh_catch c; 1428 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch) 1429 { 1430 lab = c->label; 1431 if (lab) 1432 c->label = main_block_label (lab); 1433 } 1434 } 1435 break; 1436 1437 case ERT_ALLOWED_EXCEPTIONS: 1438 lab = r->u.allowed.label; 1439 if (lab) 1440 r->u.allowed.label = main_block_label (lab); 1441 break; 1442 } 1443 } 1444 1445 1446 /* Cleanup redundant labels. This is a three-step process: 1447 1) Find the leading label for each block. 1448 2) Redirect all references to labels to the leading labels. 1449 3) Cleanup all useless labels. */ 1450 1451 void 1452 cleanup_dead_labels (void) 1453 { 1454 basic_block bb; 1455 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun)); 1456 1457 /* Find a suitable label for each block. We use the first user-defined 1458 label if there is one, or otherwise just the first label we see. */ 1459 FOR_EACH_BB_FN (bb, cfun) 1460 { 1461 gimple_stmt_iterator i; 1462 1463 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) 1464 { 1465 tree label; 1466 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); 1467 1468 if (!label_stmt) 1469 break; 1470 1471 label = gimple_label_label (label_stmt); 1472 1473 /* If we have not yet seen a label for the current block, 1474 remember this one and see if there are more labels. */ 1475 if (!label_for_bb[bb->index].label) 1476 { 1477 label_for_bb[bb->index].label = label; 1478 continue; 1479 } 1480 1481 /* If we did see a label for the current block already, but it 1482 is an artificially created label, replace it if the current 1483 label is a user defined label. */ 1484 if (!DECL_ARTIFICIAL (label) 1485 && DECL_ARTIFICIAL (label_for_bb[bb->index].label)) 1486 { 1487 label_for_bb[bb->index].label = label; 1488 break; 1489 } 1490 } 1491 } 1492 1493 /* Now redirect all jumps/branches to the selected label. 1494 First do so for each block ending in a control statement. */ 1495 FOR_EACH_BB_FN (bb, cfun) 1496 { 1497 gimple *stmt = last_stmt (bb); 1498 tree label, new_label; 1499 1500 if (!stmt) 1501 continue; 1502 1503 switch (gimple_code (stmt)) 1504 { 1505 case GIMPLE_COND: 1506 { 1507 gcond *cond_stmt = as_a <gcond *> (stmt); 1508 label = gimple_cond_true_label (cond_stmt); 1509 if (label) 1510 { 1511 new_label = main_block_label (label); 1512 if (new_label != label) 1513 gimple_cond_set_true_label (cond_stmt, new_label); 1514 } 1515 1516 label = gimple_cond_false_label (cond_stmt); 1517 if (label) 1518 { 1519 new_label = main_block_label (label); 1520 if (new_label != label) 1521 gimple_cond_set_false_label (cond_stmt, new_label); 1522 } 1523 } 1524 break; 1525 1526 case GIMPLE_SWITCH: 1527 { 1528 gswitch *switch_stmt = as_a <gswitch *> (stmt); 1529 size_t i, n = gimple_switch_num_labels (switch_stmt); 1530 1531 /* Replace all destination labels. */ 1532 for (i = 0; i < n; ++i) 1533 { 1534 tree case_label = gimple_switch_label (switch_stmt, i); 1535 label = CASE_LABEL (case_label); 1536 new_label = main_block_label (label); 1537 if (new_label != label) 1538 CASE_LABEL (case_label) = new_label; 1539 } 1540 break; 1541 } 1542 1543 case GIMPLE_ASM: 1544 { 1545 gasm *asm_stmt = as_a <gasm *> (stmt); 1546 int i, n = gimple_asm_nlabels (asm_stmt); 1547 1548 for (i = 0; i < n; ++i) 1549 { 1550 tree cons = gimple_asm_label_op (asm_stmt, i); 1551 tree label = main_block_label (TREE_VALUE (cons)); 1552 TREE_VALUE (cons) = label; 1553 } 1554 break; 1555 } 1556 1557 /* We have to handle gotos until they're removed, and we don't 1558 remove them until after we've created the CFG edges. */ 1559 case GIMPLE_GOTO: 1560 if (!computed_goto_p (stmt)) 1561 { 1562 ggoto *goto_stmt = as_a <ggoto *> (stmt); 1563 label = gimple_goto_dest (goto_stmt); 1564 new_label = main_block_label (label); 1565 if (new_label != label) 1566 gimple_goto_set_dest (goto_stmt, new_label); 1567 } 1568 break; 1569 1570 case GIMPLE_TRANSACTION: 1571 { 1572 gtransaction *txn = as_a <gtransaction *> (stmt); 1573 1574 label = gimple_transaction_label_norm (txn); 1575 if (label) 1576 { 1577 new_label = main_block_label (label); 1578 if (new_label != label) 1579 gimple_transaction_set_label_norm (txn, new_label); 1580 } 1581 1582 label = gimple_transaction_label_uninst (txn); 1583 if (label) 1584 { 1585 new_label = main_block_label (label); 1586 if (new_label != label) 1587 gimple_transaction_set_label_uninst (txn, new_label); 1588 } 1589 1590 label = gimple_transaction_label_over (txn); 1591 if (label) 1592 { 1593 new_label = main_block_label (label); 1594 if (new_label != label) 1595 gimple_transaction_set_label_over (txn, new_label); 1596 } 1597 } 1598 break; 1599 1600 default: 1601 break; 1602 } 1603 } 1604 1605 /* Do the same for the exception region tree labels. */ 1606 cleanup_dead_labels_eh (); 1607 1608 /* Finally, purge dead labels. All user-defined labels and labels that 1609 can be the target of non-local gotos and labels which have their 1610 address taken are preserved. */ 1611 FOR_EACH_BB_FN (bb, cfun) 1612 { 1613 gimple_stmt_iterator i; 1614 tree label_for_this_bb = label_for_bb[bb->index].label; 1615 1616 if (!label_for_this_bb) 1617 continue; 1618 1619 /* If the main label of the block is unused, we may still remove it. */ 1620 if (!label_for_bb[bb->index].used) 1621 label_for_this_bb = NULL; 1622 1623 for (i = gsi_start_bb (bb); !gsi_end_p (i); ) 1624 { 1625 tree label; 1626 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i)); 1627 1628 if (!label_stmt) 1629 break; 1630 1631 label = gimple_label_label (label_stmt); 1632 1633 if (label == label_for_this_bb 1634 || !DECL_ARTIFICIAL (label) 1635 || DECL_NONLOCAL (label) 1636 || FORCED_LABEL (label)) 1637 gsi_next (&i); 1638 else 1639 gsi_remove (&i, true); 1640 } 1641 } 1642 1643 free (label_for_bb); 1644 } 1645 1646 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine 1647 the ones jumping to the same label. 1648 Eg. three separate entries 1: 2: 3: become one entry 1..3: */ 1649 1650 void 1651 group_case_labels_stmt (gswitch *stmt) 1652 { 1653 int old_size = gimple_switch_num_labels (stmt); 1654 int i, j, new_size = old_size; 1655 basic_block default_bb = NULL; 1656 1657 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt))); 1658 1659 /* Look for possible opportunities to merge cases. */ 1660 i = 1; 1661 while (i < old_size) 1662 { 1663 tree base_case, base_high; 1664 basic_block base_bb; 1665 1666 base_case = gimple_switch_label (stmt, i); 1667 1668 gcc_assert (base_case); 1669 base_bb = label_to_block (CASE_LABEL (base_case)); 1670 1671 /* Discard cases that have the same destination as the 1672 default case. */ 1673 if (base_bb == default_bb) 1674 { 1675 gimple_switch_set_label (stmt, i, NULL_TREE); 1676 i++; 1677 new_size--; 1678 continue; 1679 } 1680 1681 base_high = CASE_HIGH (base_case) 1682 ? CASE_HIGH (base_case) 1683 : CASE_LOW (base_case); 1684 i++; 1685 1686 /* Try to merge case labels. Break out when we reach the end 1687 of the label vector or when we cannot merge the next case 1688 label with the current one. */ 1689 while (i < old_size) 1690 { 1691 tree merge_case = gimple_switch_label (stmt, i); 1692 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case)); 1693 wide_int bhp1 = wi::add (base_high, 1); 1694 1695 /* Merge the cases if they jump to the same place, 1696 and their ranges are consecutive. */ 1697 if (merge_bb == base_bb 1698 && wi::eq_p (CASE_LOW (merge_case), bhp1)) 1699 { 1700 base_high = CASE_HIGH (merge_case) ? 1701 CASE_HIGH (merge_case) : CASE_LOW (merge_case); 1702 CASE_HIGH (base_case) = base_high; 1703 gimple_switch_set_label (stmt, i, NULL_TREE); 1704 new_size--; 1705 i++; 1706 } 1707 else 1708 break; 1709 } 1710 } 1711 1712 /* Compress the case labels in the label vector, and adjust the 1713 length of the vector. */ 1714 for (i = 0, j = 0; i < new_size; i++) 1715 { 1716 while (! gimple_switch_label (stmt, j)) 1717 j++; 1718 gimple_switch_set_label (stmt, i, 1719 gimple_switch_label (stmt, j++)); 1720 } 1721 1722 gcc_assert (new_size <= old_size); 1723 gimple_switch_set_num_labels (stmt, new_size); 1724 } 1725 1726 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH), 1727 and scan the sorted vector of cases. Combine the ones jumping to the 1728 same label. */ 1729 1730 void 1731 group_case_labels (void) 1732 { 1733 basic_block bb; 1734 1735 FOR_EACH_BB_FN (bb, cfun) 1736 { 1737 gimple *stmt = last_stmt (bb); 1738 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH) 1739 group_case_labels_stmt (as_a <gswitch *> (stmt)); 1740 } 1741 } 1742 1743 /* Checks whether we can merge block B into block A. */ 1744 1745 static bool 1746 gimple_can_merge_blocks_p (basic_block a, basic_block b) 1747 { 1748 gimple *stmt; 1749 1750 if (!single_succ_p (a)) 1751 return false; 1752 1753 if (single_succ_edge (a)->flags & EDGE_COMPLEX) 1754 return false; 1755 1756 if (single_succ (a) != b) 1757 return false; 1758 1759 if (!single_pred_p (b)) 1760 return false; 1761 1762 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun) 1763 || b == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1764 return false; 1765 1766 /* If A ends by a statement causing exceptions or something similar, we 1767 cannot merge the blocks. */ 1768 stmt = last_stmt (a); 1769 if (stmt && stmt_ends_bb_p (stmt)) 1770 return false; 1771 1772 /* Do not allow a block with only a non-local label to be merged. */ 1773 if (stmt) 1774 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 1775 if (DECL_NONLOCAL (gimple_label_label (label_stmt))) 1776 return false; 1777 1778 /* Examine the labels at the beginning of B. */ 1779 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi); 1780 gsi_next (&gsi)) 1781 { 1782 tree lab; 1783 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi)); 1784 if (!label_stmt) 1785 break; 1786 lab = gimple_label_label (label_stmt); 1787 1788 /* Do not remove user forced labels or for -O0 any user labels. */ 1789 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab))) 1790 return false; 1791 } 1792 1793 /* Protect simple loop latches. We only want to avoid merging 1794 the latch with the loop header or with a block in another 1795 loop in this case. */ 1796 if (current_loops 1797 && b->loop_father->latch == b 1798 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES) 1799 && (b->loop_father->header == a 1800 || b->loop_father != a->loop_father)) 1801 return false; 1802 1803 /* It must be possible to eliminate all phi nodes in B. If ssa form 1804 is not up-to-date and a name-mapping is registered, we cannot eliminate 1805 any phis. Symbols marked for renaming are never a problem though. */ 1806 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi); 1807 gsi_next (&gsi)) 1808 { 1809 gphi *phi = gsi.phi (); 1810 /* Technically only new names matter. */ 1811 if (name_registered_for_update_p (PHI_RESULT (phi))) 1812 return false; 1813 } 1814 1815 /* When not optimizing, don't merge if we'd lose goto_locus. */ 1816 if (!optimize 1817 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION) 1818 { 1819 location_t goto_locus = single_succ_edge (a)->goto_locus; 1820 gimple_stmt_iterator prev, next; 1821 prev = gsi_last_nondebug_bb (a); 1822 next = gsi_after_labels (b); 1823 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next))) 1824 gsi_next_nondebug (&next); 1825 if ((gsi_end_p (prev) 1826 || gimple_location (gsi_stmt (prev)) != goto_locus) 1827 && (gsi_end_p (next) 1828 || gimple_location (gsi_stmt (next)) != goto_locus)) 1829 return false; 1830 } 1831 1832 return true; 1833 } 1834 1835 /* Replaces all uses of NAME by VAL. */ 1836 1837 void 1838 replace_uses_by (tree name, tree val) 1839 { 1840 imm_use_iterator imm_iter; 1841 use_operand_p use; 1842 gimple *stmt; 1843 edge e; 1844 1845 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name) 1846 { 1847 /* Mark the block if we change the last stmt in it. */ 1848 if (cfgcleanup_altered_bbs 1849 && stmt_ends_bb_p (stmt)) 1850 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index); 1851 1852 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter) 1853 { 1854 replace_exp (use, val); 1855 1856 if (gimple_code (stmt) == GIMPLE_PHI) 1857 { 1858 e = gimple_phi_arg_edge (as_a <gphi *> (stmt), 1859 PHI_ARG_INDEX_FROM_USE (use)); 1860 if (e->flags & EDGE_ABNORMAL 1861 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val)) 1862 { 1863 /* This can only occur for virtual operands, since 1864 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)) 1865 would prevent replacement. */ 1866 gcc_checking_assert (virtual_operand_p (name)); 1867 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1; 1868 } 1869 } 1870 } 1871 1872 if (gimple_code (stmt) != GIMPLE_PHI) 1873 { 1874 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 1875 gimple *orig_stmt = stmt; 1876 size_t i; 1877 1878 /* FIXME. It shouldn't be required to keep TREE_CONSTANT 1879 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will 1880 only change sth from non-invariant to invariant, and only 1881 when propagating constants. */ 1882 if (is_gimple_min_invariant (val)) 1883 for (i = 0; i < gimple_num_ops (stmt); i++) 1884 { 1885 tree op = gimple_op (stmt, i); 1886 /* Operands may be empty here. For example, the labels 1887 of a GIMPLE_COND are nulled out following the creation 1888 of the corresponding CFG edges. */ 1889 if (op && TREE_CODE (op) == ADDR_EXPR) 1890 recompute_tree_invariant_for_addr_expr (op); 1891 } 1892 1893 if (fold_stmt (&gsi)) 1894 stmt = gsi_stmt (gsi); 1895 1896 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt)) 1897 gimple_purge_dead_eh_edges (gimple_bb (stmt)); 1898 1899 update_stmt (stmt); 1900 } 1901 } 1902 1903 gcc_checking_assert (has_zero_uses (name)); 1904 1905 /* Also update the trees stored in loop structures. */ 1906 if (current_loops) 1907 { 1908 struct loop *loop; 1909 1910 FOR_EACH_LOOP (loop, 0) 1911 { 1912 substitute_in_loop_info (loop, name, val); 1913 } 1914 } 1915 } 1916 1917 /* Merge block B into block A. */ 1918 1919 static void 1920 gimple_merge_blocks (basic_block a, basic_block b) 1921 { 1922 gimple_stmt_iterator last, gsi; 1923 gphi_iterator psi; 1924 1925 if (dump_file) 1926 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index); 1927 1928 /* Remove all single-valued PHI nodes from block B of the form 1929 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */ 1930 gsi = gsi_last_bb (a); 1931 for (psi = gsi_start_phis (b); !gsi_end_p (psi); ) 1932 { 1933 gimple *phi = gsi_stmt (psi); 1934 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0); 1935 gimple *copy; 1936 bool may_replace_uses = (virtual_operand_p (def) 1937 || may_propagate_copy (def, use)); 1938 1939 /* In case we maintain loop closed ssa form, do not propagate arguments 1940 of loop exit phi nodes. */ 1941 if (current_loops 1942 && loops_state_satisfies_p (LOOP_CLOSED_SSA) 1943 && !virtual_operand_p (def) 1944 && TREE_CODE (use) == SSA_NAME 1945 && a->loop_father != b->loop_father) 1946 may_replace_uses = false; 1947 1948 if (!may_replace_uses) 1949 { 1950 gcc_assert (!virtual_operand_p (def)); 1951 1952 /* Note that just emitting the copies is fine -- there is no problem 1953 with ordering of phi nodes. This is because A is the single 1954 predecessor of B, therefore results of the phi nodes cannot 1955 appear as arguments of the phi nodes. */ 1956 copy = gimple_build_assign (def, use); 1957 gsi_insert_after (&gsi, copy, GSI_NEW_STMT); 1958 remove_phi_node (&psi, false); 1959 } 1960 else 1961 { 1962 /* If we deal with a PHI for virtual operands, we can simply 1963 propagate these without fussing with folding or updating 1964 the stmt. */ 1965 if (virtual_operand_p (def)) 1966 { 1967 imm_use_iterator iter; 1968 use_operand_p use_p; 1969 gimple *stmt; 1970 1971 FOR_EACH_IMM_USE_STMT (stmt, iter, def) 1972 FOR_EACH_IMM_USE_ON_STMT (use_p, iter) 1973 SET_USE (use_p, use); 1974 1975 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)) 1976 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1; 1977 } 1978 else 1979 replace_uses_by (def, use); 1980 1981 remove_phi_node (&psi, true); 1982 } 1983 } 1984 1985 /* Ensure that B follows A. */ 1986 move_block_after (b, a); 1987 1988 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU); 1989 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a))); 1990 1991 /* Remove labels from B and set gimple_bb to A for other statements. */ 1992 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);) 1993 { 1994 gimple *stmt = gsi_stmt (gsi); 1995 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 1996 { 1997 tree label = gimple_label_label (label_stmt); 1998 int lp_nr; 1999 2000 gsi_remove (&gsi, false); 2001 2002 /* Now that we can thread computed gotos, we might have 2003 a situation where we have a forced label in block B 2004 However, the label at the start of block B might still be 2005 used in other ways (think about the runtime checking for 2006 Fortran assigned gotos). So we can not just delete the 2007 label. Instead we move the label to the start of block A. */ 2008 if (FORCED_LABEL (label)) 2009 { 2010 gimple_stmt_iterator dest_gsi = gsi_start_bb (a); 2011 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT); 2012 } 2013 /* Other user labels keep around in a form of a debug stmt. */ 2014 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS) 2015 { 2016 gimple *dbg = gimple_build_debug_bind (label, 2017 integer_zero_node, 2018 stmt); 2019 gimple_debug_bind_reset_value (dbg); 2020 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT); 2021 } 2022 2023 lp_nr = EH_LANDING_PAD_NR (label); 2024 if (lp_nr) 2025 { 2026 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr); 2027 lp->post_landing_pad = NULL; 2028 } 2029 } 2030 else 2031 { 2032 gimple_set_bb (stmt, a); 2033 gsi_next (&gsi); 2034 } 2035 } 2036 2037 /* When merging two BBs, if their counts are different, the larger count 2038 is selected as the new bb count. This is to handle inconsistent 2039 profiles. */ 2040 if (a->loop_father == b->loop_father) 2041 { 2042 a->count = MAX (a->count, b->count); 2043 a->frequency = MAX (a->frequency, b->frequency); 2044 } 2045 2046 /* Merge the sequences. */ 2047 last = gsi_last_bb (a); 2048 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT); 2049 set_bb_seq (b, NULL); 2050 2051 if (cfgcleanup_altered_bbs) 2052 bitmap_set_bit (cfgcleanup_altered_bbs, a->index); 2053 } 2054 2055 2056 /* Return the one of two successors of BB that is not reachable by a 2057 complex edge, if there is one. Else, return BB. We use 2058 this in optimizations that use post-dominators for their heuristics, 2059 to catch the cases in C++ where function calls are involved. */ 2060 2061 basic_block 2062 single_noncomplex_succ (basic_block bb) 2063 { 2064 edge e0, e1; 2065 if (EDGE_COUNT (bb->succs) != 2) 2066 return bb; 2067 2068 e0 = EDGE_SUCC (bb, 0); 2069 e1 = EDGE_SUCC (bb, 1); 2070 if (e0->flags & EDGE_COMPLEX) 2071 return e1->dest; 2072 if (e1->flags & EDGE_COMPLEX) 2073 return e0->dest; 2074 2075 return bb; 2076 } 2077 2078 /* T is CALL_EXPR. Set current_function_calls_* flags. */ 2079 2080 void 2081 notice_special_calls (gcall *call) 2082 { 2083 int flags = gimple_call_flags (call); 2084 2085 if (flags & ECF_MAY_BE_ALLOCA) 2086 cfun->calls_alloca = true; 2087 if (flags & ECF_RETURNS_TWICE) 2088 cfun->calls_setjmp = true; 2089 } 2090 2091 2092 /* Clear flags set by notice_special_calls. Used by dead code removal 2093 to update the flags. */ 2094 2095 void 2096 clear_special_calls (void) 2097 { 2098 cfun->calls_alloca = false; 2099 cfun->calls_setjmp = false; 2100 } 2101 2102 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */ 2103 2104 static void 2105 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb) 2106 { 2107 /* Since this block is no longer reachable, we can just delete all 2108 of its PHI nodes. */ 2109 remove_phi_nodes (bb); 2110 2111 /* Remove edges to BB's successors. */ 2112 while (EDGE_COUNT (bb->succs) > 0) 2113 remove_edge (EDGE_SUCC (bb, 0)); 2114 } 2115 2116 2117 /* Remove statements of basic block BB. */ 2118 2119 static void 2120 remove_bb (basic_block bb) 2121 { 2122 gimple_stmt_iterator i; 2123 2124 if (dump_file) 2125 { 2126 fprintf (dump_file, "Removing basic block %d\n", bb->index); 2127 if (dump_flags & TDF_DETAILS) 2128 { 2129 dump_bb (dump_file, bb, 0, TDF_BLOCKS); 2130 fprintf (dump_file, "\n"); 2131 } 2132 } 2133 2134 if (current_loops) 2135 { 2136 struct loop *loop = bb->loop_father; 2137 2138 /* If a loop gets removed, clean up the information associated 2139 with it. */ 2140 if (loop->latch == bb 2141 || loop->header == bb) 2142 free_numbers_of_iterations_estimates_loop (loop); 2143 } 2144 2145 /* Remove all the instructions in the block. */ 2146 if (bb_seq (bb) != NULL) 2147 { 2148 /* Walk backwards so as to get a chance to substitute all 2149 released DEFs into debug stmts. See 2150 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more 2151 details. */ 2152 for (i = gsi_last_bb (bb); !gsi_end_p (i);) 2153 { 2154 gimple *stmt = gsi_stmt (i); 2155 glabel *label_stmt = dyn_cast <glabel *> (stmt); 2156 if (label_stmt 2157 && (FORCED_LABEL (gimple_label_label (label_stmt)) 2158 || DECL_NONLOCAL (gimple_label_label (label_stmt)))) 2159 { 2160 basic_block new_bb; 2161 gimple_stmt_iterator new_gsi; 2162 2163 /* A non-reachable non-local label may still be referenced. 2164 But it no longer needs to carry the extra semantics of 2165 non-locality. */ 2166 if (DECL_NONLOCAL (gimple_label_label (label_stmt))) 2167 { 2168 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0; 2169 FORCED_LABEL (gimple_label_label (label_stmt)) = 1; 2170 } 2171 2172 new_bb = bb->prev_bb; 2173 new_gsi = gsi_start_bb (new_bb); 2174 gsi_remove (&i, false); 2175 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT); 2176 } 2177 else 2178 { 2179 /* Release SSA definitions. */ 2180 release_defs (stmt); 2181 gsi_remove (&i, true); 2182 } 2183 2184 if (gsi_end_p (i)) 2185 i = gsi_last_bb (bb); 2186 else 2187 gsi_prev (&i); 2188 } 2189 } 2190 2191 remove_phi_nodes_and_edges_for_unreachable_block (bb); 2192 bb->il.gimple.seq = NULL; 2193 bb->il.gimple.phi_nodes = NULL; 2194 } 2195 2196 2197 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a 2198 predicate VAL, return the edge that will be taken out of the block. 2199 If VAL does not match a unique edge, NULL is returned. */ 2200 2201 edge 2202 find_taken_edge (basic_block bb, tree val) 2203 { 2204 gimple *stmt; 2205 2206 stmt = last_stmt (bb); 2207 2208 gcc_assert (stmt); 2209 gcc_assert (is_ctrl_stmt (stmt)); 2210 2211 if (val == NULL) 2212 return NULL; 2213 2214 if (!is_gimple_min_invariant (val)) 2215 return NULL; 2216 2217 if (gimple_code (stmt) == GIMPLE_COND) 2218 return find_taken_edge_cond_expr (bb, val); 2219 2220 if (gimple_code (stmt) == GIMPLE_SWITCH) 2221 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val); 2222 2223 if (computed_goto_p (stmt)) 2224 { 2225 /* Only optimize if the argument is a label, if the argument is 2226 not a label then we can not construct a proper CFG. 2227 2228 It may be the case that we only need to allow the LABEL_REF to 2229 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to 2230 appear inside a LABEL_EXPR just to be safe. */ 2231 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR) 2232 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL) 2233 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0)); 2234 return NULL; 2235 } 2236 2237 gcc_unreachable (); 2238 } 2239 2240 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR 2241 statement, determine which of the outgoing edges will be taken out of the 2242 block. Return NULL if either edge may be taken. */ 2243 2244 static edge 2245 find_taken_edge_computed_goto (basic_block bb, tree val) 2246 { 2247 basic_block dest; 2248 edge e = NULL; 2249 2250 dest = label_to_block (val); 2251 if (dest) 2252 { 2253 e = find_edge (bb, dest); 2254 gcc_assert (e != NULL); 2255 } 2256 2257 return e; 2258 } 2259 2260 /* Given a constant value VAL and the entry block BB to a COND_EXPR 2261 statement, determine which of the two edges will be taken out of the 2262 block. Return NULL if either edge may be taken. */ 2263 2264 static edge 2265 find_taken_edge_cond_expr (basic_block bb, tree val) 2266 { 2267 edge true_edge, false_edge; 2268 2269 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); 2270 2271 gcc_assert (TREE_CODE (val) == INTEGER_CST); 2272 return (integer_zerop (val) ? false_edge : true_edge); 2273 } 2274 2275 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR 2276 statement, determine which edge will be taken out of the block. Return 2277 NULL if any edge may be taken. */ 2278 2279 static edge 2280 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb, 2281 tree val) 2282 { 2283 basic_block dest_bb; 2284 edge e; 2285 tree taken_case; 2286 2287 taken_case = find_case_label_for_value (switch_stmt, val); 2288 dest_bb = label_to_block (CASE_LABEL (taken_case)); 2289 2290 e = find_edge (bb, dest_bb); 2291 gcc_assert (e); 2292 return e; 2293 } 2294 2295 2296 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL. 2297 We can make optimal use here of the fact that the case labels are 2298 sorted: We can do a binary search for a case matching VAL. */ 2299 2300 static tree 2301 find_case_label_for_value (gswitch *switch_stmt, tree val) 2302 { 2303 size_t low, high, n = gimple_switch_num_labels (switch_stmt); 2304 tree default_case = gimple_switch_default_label (switch_stmt); 2305 2306 for (low = 0, high = n; high - low > 1; ) 2307 { 2308 size_t i = (high + low) / 2; 2309 tree t = gimple_switch_label (switch_stmt, i); 2310 int cmp; 2311 2312 /* Cache the result of comparing CASE_LOW and val. */ 2313 cmp = tree_int_cst_compare (CASE_LOW (t), val); 2314 2315 if (cmp > 0) 2316 high = i; 2317 else 2318 low = i; 2319 2320 if (CASE_HIGH (t) == NULL) 2321 { 2322 /* A singe-valued case label. */ 2323 if (cmp == 0) 2324 return t; 2325 } 2326 else 2327 { 2328 /* A case range. We can only handle integer ranges. */ 2329 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0) 2330 return t; 2331 } 2332 } 2333 2334 return default_case; 2335 } 2336 2337 2338 /* Dump a basic block on stderr. */ 2339 2340 void 2341 gimple_debug_bb (basic_block bb) 2342 { 2343 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS); 2344 } 2345 2346 2347 /* Dump basic block with index N on stderr. */ 2348 2349 basic_block 2350 gimple_debug_bb_n (int n) 2351 { 2352 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n)); 2353 return BASIC_BLOCK_FOR_FN (cfun, n); 2354 } 2355 2356 2357 /* Dump the CFG on stderr. 2358 2359 FLAGS are the same used by the tree dumping functions 2360 (see TDF_* in dumpfile.h). */ 2361 2362 void 2363 gimple_debug_cfg (int flags) 2364 { 2365 gimple_dump_cfg (stderr, flags); 2366 } 2367 2368 2369 /* Dump the program showing basic block boundaries on the given FILE. 2370 2371 FLAGS are the same used by the tree dumping functions (see TDF_* in 2372 tree.h). */ 2373 2374 void 2375 gimple_dump_cfg (FILE *file, int flags) 2376 { 2377 if (flags & TDF_DETAILS) 2378 { 2379 dump_function_header (file, current_function_decl, flags); 2380 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n", 2381 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun), 2382 last_basic_block_for_fn (cfun)); 2383 2384 brief_dump_cfg (file, flags | TDF_COMMENT); 2385 fprintf (file, "\n"); 2386 } 2387 2388 if (flags & TDF_STATS) 2389 dump_cfg_stats (file); 2390 2391 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS); 2392 } 2393 2394 2395 /* Dump CFG statistics on FILE. */ 2396 2397 void 2398 dump_cfg_stats (FILE *file) 2399 { 2400 static long max_num_merged_labels = 0; 2401 unsigned long size, total = 0; 2402 long num_edges; 2403 basic_block bb; 2404 const char * const fmt_str = "%-30s%-13s%12s\n"; 2405 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n"; 2406 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n"; 2407 const char * const fmt_str_3 = "%-43s%11lu%c\n"; 2408 const char *funcname = current_function_name (); 2409 2410 fprintf (file, "\nCFG Statistics for %s\n\n", funcname); 2411 2412 fprintf (file, "---------------------------------------------------------\n"); 2413 fprintf (file, fmt_str, "", " Number of ", "Memory"); 2414 fprintf (file, fmt_str, "", " instances ", "used "); 2415 fprintf (file, "---------------------------------------------------------\n"); 2416 2417 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def); 2418 total += size; 2419 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun), 2420 SCALE (size), LABEL (size)); 2421 2422 num_edges = 0; 2423 FOR_EACH_BB_FN (bb, cfun) 2424 num_edges += EDGE_COUNT (bb->succs); 2425 size = num_edges * sizeof (struct edge_def); 2426 total += size; 2427 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size)); 2428 2429 fprintf (file, "---------------------------------------------------------\n"); 2430 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total), 2431 LABEL (total)); 2432 fprintf (file, "---------------------------------------------------------\n"); 2433 fprintf (file, "\n"); 2434 2435 if (cfg_stats.num_merged_labels > max_num_merged_labels) 2436 max_num_merged_labels = cfg_stats.num_merged_labels; 2437 2438 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n", 2439 cfg_stats.num_merged_labels, max_num_merged_labels); 2440 2441 fprintf (file, "\n"); 2442 } 2443 2444 2445 /* Dump CFG statistics on stderr. Keep extern so that it's always 2446 linked in the final executable. */ 2447 2448 DEBUG_FUNCTION void 2449 debug_cfg_stats (void) 2450 { 2451 dump_cfg_stats (stderr); 2452 } 2453 2454 /*--------------------------------------------------------------------------- 2455 Miscellaneous helpers 2456 ---------------------------------------------------------------------------*/ 2457 2458 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control 2459 flow. Transfers of control flow associated with EH are excluded. */ 2460 2461 static bool 2462 call_can_make_abnormal_goto (gimple *t) 2463 { 2464 /* If the function has no non-local labels, then a call cannot make an 2465 abnormal transfer of control. */ 2466 if (!cfun->has_nonlocal_label 2467 && !cfun->calls_setjmp) 2468 return false; 2469 2470 /* Likewise if the call has no side effects. */ 2471 if (!gimple_has_side_effects (t)) 2472 return false; 2473 2474 /* Likewise if the called function is leaf. */ 2475 if (gimple_call_flags (t) & ECF_LEAF) 2476 return false; 2477 2478 return true; 2479 } 2480 2481 2482 /* Return true if T can make an abnormal transfer of control flow. 2483 Transfers of control flow associated with EH are excluded. */ 2484 2485 bool 2486 stmt_can_make_abnormal_goto (gimple *t) 2487 { 2488 if (computed_goto_p (t)) 2489 return true; 2490 if (is_gimple_call (t)) 2491 return call_can_make_abnormal_goto (t); 2492 return false; 2493 } 2494 2495 2496 /* Return true if T represents a stmt that always transfers control. */ 2497 2498 bool 2499 is_ctrl_stmt (gimple *t) 2500 { 2501 switch (gimple_code (t)) 2502 { 2503 case GIMPLE_COND: 2504 case GIMPLE_SWITCH: 2505 case GIMPLE_GOTO: 2506 case GIMPLE_RETURN: 2507 case GIMPLE_RESX: 2508 return true; 2509 default: 2510 return false; 2511 } 2512 } 2513 2514 2515 /* Return true if T is a statement that may alter the flow of control 2516 (e.g., a call to a non-returning function). */ 2517 2518 bool 2519 is_ctrl_altering_stmt (gimple *t) 2520 { 2521 gcc_assert (t); 2522 2523 switch (gimple_code (t)) 2524 { 2525 case GIMPLE_CALL: 2526 /* Per stmt call flag indicates whether the call could alter 2527 controlflow. */ 2528 if (gimple_call_ctrl_altering_p (t)) 2529 return true; 2530 break; 2531 2532 case GIMPLE_EH_DISPATCH: 2533 /* EH_DISPATCH branches to the individual catch handlers at 2534 this level of a try or allowed-exceptions region. It can 2535 fallthru to the next statement as well. */ 2536 return true; 2537 2538 case GIMPLE_ASM: 2539 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0) 2540 return true; 2541 break; 2542 2543 CASE_GIMPLE_OMP: 2544 /* OpenMP directives alter control flow. */ 2545 return true; 2546 2547 case GIMPLE_TRANSACTION: 2548 /* A transaction start alters control flow. */ 2549 return true; 2550 2551 default: 2552 break; 2553 } 2554 2555 /* If a statement can throw, it alters control flow. */ 2556 return stmt_can_throw_internal (t); 2557 } 2558 2559 2560 /* Return true if T is a simple local goto. */ 2561 2562 bool 2563 simple_goto_p (gimple *t) 2564 { 2565 return (gimple_code (t) == GIMPLE_GOTO 2566 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL); 2567 } 2568 2569 2570 /* Return true if STMT should start a new basic block. PREV_STMT is 2571 the statement preceding STMT. It is used when STMT is a label or a 2572 case label. Labels should only start a new basic block if their 2573 previous statement wasn't a label. Otherwise, sequence of labels 2574 would generate unnecessary basic blocks that only contain a single 2575 label. */ 2576 2577 static inline bool 2578 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt) 2579 { 2580 if (stmt == NULL) 2581 return false; 2582 2583 /* Labels start a new basic block only if the preceding statement 2584 wasn't a label of the same type. This prevents the creation of 2585 consecutive blocks that have nothing but a single label. */ 2586 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 2587 { 2588 /* Nonlocal and computed GOTO targets always start a new block. */ 2589 if (DECL_NONLOCAL (gimple_label_label (label_stmt)) 2590 || FORCED_LABEL (gimple_label_label (label_stmt))) 2591 return true; 2592 2593 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL) 2594 { 2595 if (DECL_NONLOCAL (gimple_label_label ( 2596 as_a <glabel *> (prev_stmt)))) 2597 return true; 2598 2599 cfg_stats.num_merged_labels++; 2600 return false; 2601 } 2602 else 2603 return true; 2604 } 2605 else if (gimple_code (stmt) == GIMPLE_CALL) 2606 { 2607 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE) 2608 /* setjmp acts similar to a nonlocal GOTO target and thus should 2609 start a new block. */ 2610 return true; 2611 if (gimple_call_internal_p (stmt, IFN_PHI) 2612 && prev_stmt 2613 && gimple_code (prev_stmt) != GIMPLE_LABEL 2614 && (gimple_code (prev_stmt) != GIMPLE_CALL 2615 || ! gimple_call_internal_p (prev_stmt, IFN_PHI))) 2616 /* PHI nodes start a new block unless preceeded by a label 2617 or another PHI. */ 2618 return true; 2619 } 2620 2621 return false; 2622 } 2623 2624 2625 /* Return true if T should end a basic block. */ 2626 2627 bool 2628 stmt_ends_bb_p (gimple *t) 2629 { 2630 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t); 2631 } 2632 2633 /* Remove block annotations and other data structures. */ 2634 2635 void 2636 delete_tree_cfg_annotations (struct function *fn) 2637 { 2638 vec_free (label_to_block_map_for_fn (fn)); 2639 } 2640 2641 /* Return the virtual phi in BB. */ 2642 2643 gphi * 2644 get_virtual_phi (basic_block bb) 2645 { 2646 for (gphi_iterator gsi = gsi_start_phis (bb); 2647 !gsi_end_p (gsi); 2648 gsi_next (&gsi)) 2649 { 2650 gphi *phi = gsi.phi (); 2651 2652 if (virtual_operand_p (PHI_RESULT (phi))) 2653 return phi; 2654 } 2655 2656 return NULL; 2657 } 2658 2659 /* Return the first statement in basic block BB. */ 2660 2661 gimple * 2662 first_stmt (basic_block bb) 2663 { 2664 gimple_stmt_iterator i = gsi_start_bb (bb); 2665 gimple *stmt = NULL; 2666 2667 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) 2668 { 2669 gsi_next (&i); 2670 stmt = NULL; 2671 } 2672 return stmt; 2673 } 2674 2675 /* Return the first non-label statement in basic block BB. */ 2676 2677 static gimple * 2678 first_non_label_stmt (basic_block bb) 2679 { 2680 gimple_stmt_iterator i = gsi_start_bb (bb); 2681 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL) 2682 gsi_next (&i); 2683 return !gsi_end_p (i) ? gsi_stmt (i) : NULL; 2684 } 2685 2686 /* Return the last statement in basic block BB. */ 2687 2688 gimple * 2689 last_stmt (basic_block bb) 2690 { 2691 gimple_stmt_iterator i = gsi_last_bb (bb); 2692 gimple *stmt = NULL; 2693 2694 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i)))) 2695 { 2696 gsi_prev (&i); 2697 stmt = NULL; 2698 } 2699 return stmt; 2700 } 2701 2702 /* Return the last statement of an otherwise empty block. Return NULL 2703 if the block is totally empty, or if it contains more than one 2704 statement. */ 2705 2706 gimple * 2707 last_and_only_stmt (basic_block bb) 2708 { 2709 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb); 2710 gimple *last, *prev; 2711 2712 if (gsi_end_p (i)) 2713 return NULL; 2714 2715 last = gsi_stmt (i); 2716 gsi_prev_nondebug (&i); 2717 if (gsi_end_p (i)) 2718 return last; 2719 2720 /* Empty statements should no longer appear in the instruction stream. 2721 Everything that might have appeared before should be deleted by 2722 remove_useless_stmts, and the optimizers should just gsi_remove 2723 instead of smashing with build_empty_stmt. 2724 2725 Thus the only thing that should appear here in a block containing 2726 one executable statement is a label. */ 2727 prev = gsi_stmt (i); 2728 if (gimple_code (prev) == GIMPLE_LABEL) 2729 return last; 2730 else 2731 return NULL; 2732 } 2733 2734 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */ 2735 2736 static void 2737 reinstall_phi_args (edge new_edge, edge old_edge) 2738 { 2739 edge_var_map *vm; 2740 int i; 2741 gphi_iterator phis; 2742 2743 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge); 2744 if (!v) 2745 return; 2746 2747 for (i = 0, phis = gsi_start_phis (new_edge->dest); 2748 v->iterate (i, &vm) && !gsi_end_p (phis); 2749 i++, gsi_next (&phis)) 2750 { 2751 gphi *phi = phis.phi (); 2752 tree result = redirect_edge_var_map_result (vm); 2753 tree arg = redirect_edge_var_map_def (vm); 2754 2755 gcc_assert (result == gimple_phi_result (phi)); 2756 2757 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm)); 2758 } 2759 2760 redirect_edge_var_map_clear (old_edge); 2761 } 2762 2763 /* Returns the basic block after which the new basic block created 2764 by splitting edge EDGE_IN should be placed. Tries to keep the new block 2765 near its "logical" location. This is of most help to humans looking 2766 at debugging dumps. */ 2767 2768 basic_block 2769 split_edge_bb_loc (edge edge_in) 2770 { 2771 basic_block dest = edge_in->dest; 2772 basic_block dest_prev = dest->prev_bb; 2773 2774 if (dest_prev) 2775 { 2776 edge e = find_edge (dest_prev, dest); 2777 if (e && !(e->flags & EDGE_COMPLEX)) 2778 return edge_in->src; 2779 } 2780 return dest_prev; 2781 } 2782 2783 /* Split a (typically critical) edge EDGE_IN. Return the new block. 2784 Abort on abnormal edges. */ 2785 2786 static basic_block 2787 gimple_split_edge (edge edge_in) 2788 { 2789 basic_block new_bb, after_bb, dest; 2790 edge new_edge, e; 2791 2792 /* Abnormal edges cannot be split. */ 2793 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL)); 2794 2795 dest = edge_in->dest; 2796 2797 after_bb = split_edge_bb_loc (edge_in); 2798 2799 new_bb = create_empty_bb (after_bb); 2800 new_bb->frequency = EDGE_FREQUENCY (edge_in); 2801 new_bb->count = edge_in->count; 2802 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU); 2803 new_edge->probability = REG_BR_PROB_BASE; 2804 new_edge->count = edge_in->count; 2805 2806 e = redirect_edge_and_branch (edge_in, new_bb); 2807 gcc_assert (e == edge_in); 2808 reinstall_phi_args (new_edge, e); 2809 2810 return new_bb; 2811 } 2812 2813 2814 /* Verify properties of the address expression T with base object BASE. */ 2815 2816 static tree 2817 verify_address (tree t, tree base) 2818 { 2819 bool old_constant; 2820 bool old_side_effects; 2821 bool new_constant; 2822 bool new_side_effects; 2823 2824 old_constant = TREE_CONSTANT (t); 2825 old_side_effects = TREE_SIDE_EFFECTS (t); 2826 2827 recompute_tree_invariant_for_addr_expr (t); 2828 new_side_effects = TREE_SIDE_EFFECTS (t); 2829 new_constant = TREE_CONSTANT (t); 2830 2831 if (old_constant != new_constant) 2832 { 2833 error ("constant not recomputed when ADDR_EXPR changed"); 2834 return t; 2835 } 2836 if (old_side_effects != new_side_effects) 2837 { 2838 error ("side effects not recomputed when ADDR_EXPR changed"); 2839 return t; 2840 } 2841 2842 if (!(VAR_P (base) 2843 || TREE_CODE (base) == PARM_DECL 2844 || TREE_CODE (base) == RESULT_DECL)) 2845 return NULL_TREE; 2846 2847 if (DECL_GIMPLE_REG_P (base)) 2848 { 2849 error ("DECL_GIMPLE_REG_P set on a variable with address taken"); 2850 return base; 2851 } 2852 2853 return NULL_TREE; 2854 } 2855 2856 /* Callback for walk_tree, check that all elements with address taken are 2857 properly noticed as such. The DATA is an int* that is 1 if TP was seen 2858 inside a PHI node. */ 2859 2860 static tree 2861 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) 2862 { 2863 tree t = *tp, x; 2864 2865 if (TYPE_P (t)) 2866 *walk_subtrees = 0; 2867 2868 /* Check operand N for being valid GIMPLE and give error MSG if not. */ 2869 #define CHECK_OP(N, MSG) \ 2870 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \ 2871 { error (MSG); return TREE_OPERAND (t, N); }} while (0) 2872 2873 switch (TREE_CODE (t)) 2874 { 2875 case SSA_NAME: 2876 if (SSA_NAME_IN_FREE_LIST (t)) 2877 { 2878 error ("SSA name in freelist but still referenced"); 2879 return *tp; 2880 } 2881 break; 2882 2883 case PARM_DECL: 2884 case VAR_DECL: 2885 case RESULT_DECL: 2886 { 2887 tree context = decl_function_context (t); 2888 if (context != cfun->decl 2889 && !SCOPE_FILE_SCOPE_P (context) 2890 && !TREE_STATIC (t) 2891 && !DECL_EXTERNAL (t)) 2892 { 2893 error ("Local declaration from a different function"); 2894 return t; 2895 } 2896 } 2897 break; 2898 2899 case INDIRECT_REF: 2900 error ("INDIRECT_REF in gimple IL"); 2901 return t; 2902 2903 case MEM_REF: 2904 x = TREE_OPERAND (t, 0); 2905 if (!POINTER_TYPE_P (TREE_TYPE (x)) 2906 || !is_gimple_mem_ref_addr (x)) 2907 { 2908 error ("invalid first operand of MEM_REF"); 2909 return x; 2910 } 2911 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST 2912 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1)))) 2913 { 2914 error ("invalid offset operand of MEM_REF"); 2915 return TREE_OPERAND (t, 1); 2916 } 2917 if (TREE_CODE (x) == ADDR_EXPR) 2918 { 2919 tree va = verify_address (x, TREE_OPERAND (x, 0)); 2920 if (va) 2921 return va; 2922 x = TREE_OPERAND (x, 0); 2923 } 2924 walk_tree (&x, verify_expr, data, NULL); 2925 *walk_subtrees = 0; 2926 break; 2927 2928 case ASSERT_EXPR: 2929 x = fold (ASSERT_EXPR_COND (t)); 2930 if (x == boolean_false_node) 2931 { 2932 error ("ASSERT_EXPR with an always-false condition"); 2933 return *tp; 2934 } 2935 break; 2936 2937 case MODIFY_EXPR: 2938 error ("MODIFY_EXPR not expected while having tuples"); 2939 return *tp; 2940 2941 case ADDR_EXPR: 2942 { 2943 tree tem; 2944 2945 gcc_assert (is_gimple_address (t)); 2946 2947 /* Skip any references (they will be checked when we recurse down the 2948 tree) and ensure that any variable used as a prefix is marked 2949 addressable. */ 2950 for (x = TREE_OPERAND (t, 0); 2951 handled_component_p (x); 2952 x = TREE_OPERAND (x, 0)) 2953 ; 2954 2955 if ((tem = verify_address (t, x))) 2956 return tem; 2957 2958 if (!(VAR_P (x) 2959 || TREE_CODE (x) == PARM_DECL 2960 || TREE_CODE (x) == RESULT_DECL)) 2961 return NULL; 2962 2963 if (!TREE_ADDRESSABLE (x)) 2964 { 2965 error ("address taken, but ADDRESSABLE bit not set"); 2966 return x; 2967 } 2968 2969 break; 2970 } 2971 2972 case COND_EXPR: 2973 x = COND_EXPR_COND (t); 2974 if (!INTEGRAL_TYPE_P (TREE_TYPE (x))) 2975 { 2976 error ("non-integral used in condition"); 2977 return x; 2978 } 2979 if (!is_gimple_condexpr (x)) 2980 { 2981 error ("invalid conditional operand"); 2982 return x; 2983 } 2984 break; 2985 2986 case NON_LVALUE_EXPR: 2987 case TRUTH_NOT_EXPR: 2988 gcc_unreachable (); 2989 2990 CASE_CONVERT: 2991 case FIX_TRUNC_EXPR: 2992 case FLOAT_EXPR: 2993 case NEGATE_EXPR: 2994 case ABS_EXPR: 2995 case BIT_NOT_EXPR: 2996 CHECK_OP (0, "invalid operand to unary operator"); 2997 break; 2998 2999 case REALPART_EXPR: 3000 case IMAGPART_EXPR: 3001 case BIT_FIELD_REF: 3002 if (!is_gimple_reg_type (TREE_TYPE (t))) 3003 { 3004 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR"); 3005 return t; 3006 } 3007 3008 if (TREE_CODE (t) == BIT_FIELD_REF) 3009 { 3010 tree t0 = TREE_OPERAND (t, 0); 3011 tree t1 = TREE_OPERAND (t, 1); 3012 tree t2 = TREE_OPERAND (t, 2); 3013 if (!tree_fits_uhwi_p (t1) 3014 || !tree_fits_uhwi_p (t2)) 3015 { 3016 error ("invalid position or size operand to BIT_FIELD_REF"); 3017 return t; 3018 } 3019 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 3020 && (TYPE_PRECISION (TREE_TYPE (t)) 3021 != tree_to_uhwi (t1))) 3022 { 3023 error ("integral result type precision does not match " 3024 "field size of BIT_FIELD_REF"); 3025 return t; 3026 } 3027 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t)) 3028 && TYPE_MODE (TREE_TYPE (t)) != BLKmode 3029 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) 3030 != tree_to_uhwi (t1))) 3031 { 3032 error ("mode size of non-integral result does not " 3033 "match field size of BIT_FIELD_REF"); 3034 return t; 3035 } 3036 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0)) 3037 && (tree_to_uhwi (t1) + tree_to_uhwi (t2) 3038 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0))))) 3039 { 3040 error ("position plus size exceeds size of referenced object in " 3041 "BIT_FIELD_REF"); 3042 return t; 3043 } 3044 } 3045 t = TREE_OPERAND (t, 0); 3046 3047 /* Fall-through. */ 3048 case COMPONENT_REF: 3049 case ARRAY_REF: 3050 case ARRAY_RANGE_REF: 3051 case VIEW_CONVERT_EXPR: 3052 /* We have a nest of references. Verify that each of the operands 3053 that determine where to reference is either a constant or a variable, 3054 verify that the base is valid, and then show we've already checked 3055 the subtrees. */ 3056 while (handled_component_p (t)) 3057 { 3058 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2)) 3059 CHECK_OP (2, "invalid COMPONENT_REF offset operator"); 3060 else if (TREE_CODE (t) == ARRAY_REF 3061 || TREE_CODE (t) == ARRAY_RANGE_REF) 3062 { 3063 CHECK_OP (1, "invalid array index"); 3064 if (TREE_OPERAND (t, 2)) 3065 CHECK_OP (2, "invalid array lower bound"); 3066 if (TREE_OPERAND (t, 3)) 3067 CHECK_OP (3, "invalid array stride"); 3068 } 3069 else if (TREE_CODE (t) == BIT_FIELD_REF 3070 || TREE_CODE (t) == REALPART_EXPR 3071 || TREE_CODE (t) == IMAGPART_EXPR) 3072 { 3073 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or " 3074 "REALPART_EXPR"); 3075 return t; 3076 } 3077 3078 t = TREE_OPERAND (t, 0); 3079 } 3080 3081 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t)) 3082 { 3083 error ("invalid reference prefix"); 3084 return t; 3085 } 3086 walk_tree (&t, verify_expr, data, NULL); 3087 *walk_subtrees = 0; 3088 break; 3089 case PLUS_EXPR: 3090 case MINUS_EXPR: 3091 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using 3092 POINTER_PLUS_EXPR. */ 3093 if (POINTER_TYPE_P (TREE_TYPE (t))) 3094 { 3095 error ("invalid operand to plus/minus, type is a pointer"); 3096 return t; 3097 } 3098 CHECK_OP (0, "invalid operand to binary operator"); 3099 CHECK_OP (1, "invalid operand to binary operator"); 3100 break; 3101 3102 case POINTER_PLUS_EXPR: 3103 /* Check to make sure the first operand is a pointer or reference type. */ 3104 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))) 3105 { 3106 error ("invalid operand to pointer plus, first operand is not a pointer"); 3107 return t; 3108 } 3109 /* Check to make sure the second operand is a ptrofftype. */ 3110 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1)))) 3111 { 3112 error ("invalid operand to pointer plus, second operand is not an " 3113 "integer type of appropriate width"); 3114 return t; 3115 } 3116 /* FALLTHROUGH */ 3117 case LT_EXPR: 3118 case LE_EXPR: 3119 case GT_EXPR: 3120 case GE_EXPR: 3121 case EQ_EXPR: 3122 case NE_EXPR: 3123 case UNORDERED_EXPR: 3124 case ORDERED_EXPR: 3125 case UNLT_EXPR: 3126 case UNLE_EXPR: 3127 case UNGT_EXPR: 3128 case UNGE_EXPR: 3129 case UNEQ_EXPR: 3130 case LTGT_EXPR: 3131 case MULT_EXPR: 3132 case TRUNC_DIV_EXPR: 3133 case CEIL_DIV_EXPR: 3134 case FLOOR_DIV_EXPR: 3135 case ROUND_DIV_EXPR: 3136 case TRUNC_MOD_EXPR: 3137 case CEIL_MOD_EXPR: 3138 case FLOOR_MOD_EXPR: 3139 case ROUND_MOD_EXPR: 3140 case RDIV_EXPR: 3141 case EXACT_DIV_EXPR: 3142 case MIN_EXPR: 3143 case MAX_EXPR: 3144 case LSHIFT_EXPR: 3145 case RSHIFT_EXPR: 3146 case LROTATE_EXPR: 3147 case RROTATE_EXPR: 3148 case BIT_IOR_EXPR: 3149 case BIT_XOR_EXPR: 3150 case BIT_AND_EXPR: 3151 CHECK_OP (0, "invalid operand to binary operator"); 3152 CHECK_OP (1, "invalid operand to binary operator"); 3153 break; 3154 3155 case CONSTRUCTOR: 3156 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) 3157 *walk_subtrees = 0; 3158 break; 3159 3160 case CASE_LABEL_EXPR: 3161 if (CASE_CHAIN (t)) 3162 { 3163 error ("invalid CASE_CHAIN"); 3164 return t; 3165 } 3166 break; 3167 3168 default: 3169 break; 3170 } 3171 return NULL; 3172 3173 #undef CHECK_OP 3174 } 3175 3176 3177 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference. 3178 Returns true if there is an error, otherwise false. */ 3179 3180 static bool 3181 verify_types_in_gimple_min_lval (tree expr) 3182 { 3183 tree op; 3184 3185 if (is_gimple_id (expr)) 3186 return false; 3187 3188 if (TREE_CODE (expr) != TARGET_MEM_REF 3189 && TREE_CODE (expr) != MEM_REF) 3190 { 3191 error ("invalid expression for min lvalue"); 3192 return true; 3193 } 3194 3195 /* TARGET_MEM_REFs are strange beasts. */ 3196 if (TREE_CODE (expr) == TARGET_MEM_REF) 3197 return false; 3198 3199 op = TREE_OPERAND (expr, 0); 3200 if (!is_gimple_val (op)) 3201 { 3202 error ("invalid operand in indirect reference"); 3203 debug_generic_stmt (op); 3204 return true; 3205 } 3206 /* Memory references now generally can involve a value conversion. */ 3207 3208 return false; 3209 } 3210 3211 /* Verify if EXPR is a valid GIMPLE reference expression. If 3212 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true 3213 if there is an error, otherwise false. */ 3214 3215 static bool 3216 verify_types_in_gimple_reference (tree expr, bool require_lvalue) 3217 { 3218 while (handled_component_p (expr)) 3219 { 3220 tree op = TREE_OPERAND (expr, 0); 3221 3222 if (TREE_CODE (expr) == ARRAY_REF 3223 || TREE_CODE (expr) == ARRAY_RANGE_REF) 3224 { 3225 if (!is_gimple_val (TREE_OPERAND (expr, 1)) 3226 || (TREE_OPERAND (expr, 2) 3227 && !is_gimple_val (TREE_OPERAND (expr, 2))) 3228 || (TREE_OPERAND (expr, 3) 3229 && !is_gimple_val (TREE_OPERAND (expr, 3)))) 3230 { 3231 error ("invalid operands to array reference"); 3232 debug_generic_stmt (expr); 3233 return true; 3234 } 3235 } 3236 3237 /* Verify if the reference array element types are compatible. */ 3238 if (TREE_CODE (expr) == ARRAY_REF 3239 && !useless_type_conversion_p (TREE_TYPE (expr), 3240 TREE_TYPE (TREE_TYPE (op)))) 3241 { 3242 error ("type mismatch in array reference"); 3243 debug_generic_stmt (TREE_TYPE (expr)); 3244 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3245 return true; 3246 } 3247 if (TREE_CODE (expr) == ARRAY_RANGE_REF 3248 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)), 3249 TREE_TYPE (TREE_TYPE (op)))) 3250 { 3251 error ("type mismatch in array range reference"); 3252 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr))); 3253 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3254 return true; 3255 } 3256 3257 if ((TREE_CODE (expr) == REALPART_EXPR 3258 || TREE_CODE (expr) == IMAGPART_EXPR) 3259 && !useless_type_conversion_p (TREE_TYPE (expr), 3260 TREE_TYPE (TREE_TYPE (op)))) 3261 { 3262 error ("type mismatch in real/imagpart reference"); 3263 debug_generic_stmt (TREE_TYPE (expr)); 3264 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op))); 3265 return true; 3266 } 3267 3268 if (TREE_CODE (expr) == COMPONENT_REF 3269 && !useless_type_conversion_p (TREE_TYPE (expr), 3270 TREE_TYPE (TREE_OPERAND (expr, 1)))) 3271 { 3272 error ("type mismatch in component reference"); 3273 debug_generic_stmt (TREE_TYPE (expr)); 3274 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1))); 3275 return true; 3276 } 3277 3278 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR) 3279 { 3280 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check 3281 that their operand is not an SSA name or an invariant when 3282 requiring an lvalue (this usually means there is a SRA or IPA-SRA 3283 bug). Otherwise there is nothing to verify, gross mismatches at 3284 most invoke undefined behavior. */ 3285 if (require_lvalue 3286 && (TREE_CODE (op) == SSA_NAME 3287 || is_gimple_min_invariant (op))) 3288 { 3289 error ("conversion of an SSA_NAME on the left hand side"); 3290 debug_generic_stmt (expr); 3291 return true; 3292 } 3293 else if (TREE_CODE (op) == SSA_NAME 3294 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op))) 3295 { 3296 error ("conversion of register to a different size"); 3297 debug_generic_stmt (expr); 3298 return true; 3299 } 3300 else if (!handled_component_p (op)) 3301 return false; 3302 } 3303 3304 expr = op; 3305 } 3306 3307 if (TREE_CODE (expr) == MEM_REF) 3308 { 3309 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))) 3310 { 3311 error ("invalid address operand in MEM_REF"); 3312 debug_generic_stmt (expr); 3313 return true; 3314 } 3315 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST 3316 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) 3317 { 3318 error ("invalid offset operand in MEM_REF"); 3319 debug_generic_stmt (expr); 3320 return true; 3321 } 3322 } 3323 else if (TREE_CODE (expr) == TARGET_MEM_REF) 3324 { 3325 if (!TMR_BASE (expr) 3326 || !is_gimple_mem_ref_addr (TMR_BASE (expr))) 3327 { 3328 error ("invalid address operand in TARGET_MEM_REF"); 3329 return true; 3330 } 3331 if (!TMR_OFFSET (expr) 3332 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST 3333 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr)))) 3334 { 3335 error ("invalid offset operand in TARGET_MEM_REF"); 3336 debug_generic_stmt (expr); 3337 return true; 3338 } 3339 } 3340 3341 return ((require_lvalue || !is_gimple_min_invariant (expr)) 3342 && verify_types_in_gimple_min_lval (expr)); 3343 } 3344 3345 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ) 3346 list of pointer-to types that is trivially convertible to DEST. */ 3347 3348 static bool 3349 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj) 3350 { 3351 tree src; 3352 3353 if (!TYPE_POINTER_TO (src_obj)) 3354 return true; 3355 3356 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src)) 3357 if (useless_type_conversion_p (dest, src)) 3358 return true; 3359 3360 return false; 3361 } 3362 3363 /* Return true if TYPE1 is a fixed-point type and if conversions to and 3364 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */ 3365 3366 static bool 3367 valid_fixed_convert_types_p (tree type1, tree type2) 3368 { 3369 return (FIXED_POINT_TYPE_P (type1) 3370 && (INTEGRAL_TYPE_P (type2) 3371 || SCALAR_FLOAT_TYPE_P (type2) 3372 || FIXED_POINT_TYPE_P (type2))); 3373 } 3374 3375 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there 3376 is a problem, otherwise false. */ 3377 3378 static bool 3379 verify_gimple_call (gcall *stmt) 3380 { 3381 tree fn = gimple_call_fn (stmt); 3382 tree fntype, fndecl; 3383 unsigned i; 3384 3385 if (gimple_call_internal_p (stmt)) 3386 { 3387 if (fn) 3388 { 3389 error ("gimple call has two targets"); 3390 debug_generic_stmt (fn); 3391 return true; 3392 } 3393 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/ 3394 else if (gimple_call_internal_fn (stmt) == IFN_PHI) 3395 { 3396 return false; 3397 } 3398 } 3399 else 3400 { 3401 if (!fn) 3402 { 3403 error ("gimple call has no target"); 3404 return true; 3405 } 3406 } 3407 3408 if (fn && !is_gimple_call_addr (fn)) 3409 { 3410 error ("invalid function in gimple call"); 3411 debug_generic_stmt (fn); 3412 return true; 3413 } 3414 3415 if (fn 3416 && (!POINTER_TYPE_P (TREE_TYPE (fn)) 3417 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE 3418 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))) 3419 { 3420 error ("non-function in gimple call"); 3421 return true; 3422 } 3423 3424 fndecl = gimple_call_fndecl (stmt); 3425 if (fndecl 3426 && TREE_CODE (fndecl) == FUNCTION_DECL 3427 && DECL_LOOPING_CONST_OR_PURE_P (fndecl) 3428 && !DECL_PURE_P (fndecl) 3429 && !TREE_READONLY (fndecl)) 3430 { 3431 error ("invalid pure const state for function"); 3432 return true; 3433 } 3434 3435 tree lhs = gimple_call_lhs (stmt); 3436 if (lhs 3437 && (!is_gimple_lvalue (lhs) 3438 || verify_types_in_gimple_reference (lhs, true))) 3439 { 3440 error ("invalid LHS in gimple call"); 3441 return true; 3442 } 3443 3444 if (gimple_call_ctrl_altering_p (stmt) 3445 && gimple_call_noreturn_p (stmt) 3446 && should_remove_lhs_p (lhs)) 3447 { 3448 error ("LHS in noreturn call"); 3449 return true; 3450 } 3451 3452 fntype = gimple_call_fntype (stmt); 3453 if (fntype 3454 && lhs 3455 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype)) 3456 /* ??? At least C++ misses conversions at assignments from 3457 void * call results. 3458 ??? Java is completely off. Especially with functions 3459 returning java.lang.Object. 3460 For now simply allow arbitrary pointer type conversions. */ 3461 && !(POINTER_TYPE_P (TREE_TYPE (lhs)) 3462 && POINTER_TYPE_P (TREE_TYPE (fntype)))) 3463 { 3464 error ("invalid conversion in gimple call"); 3465 debug_generic_stmt (TREE_TYPE (lhs)); 3466 debug_generic_stmt (TREE_TYPE (fntype)); 3467 return true; 3468 } 3469 3470 if (gimple_call_chain (stmt) 3471 && !is_gimple_val (gimple_call_chain (stmt))) 3472 { 3473 error ("invalid static chain in gimple call"); 3474 debug_generic_stmt (gimple_call_chain (stmt)); 3475 return true; 3476 } 3477 3478 /* If there is a static chain argument, the call should either be 3479 indirect, or the decl should have DECL_STATIC_CHAIN set. */ 3480 if (gimple_call_chain (stmt) 3481 && fndecl 3482 && !DECL_STATIC_CHAIN (fndecl)) 3483 { 3484 error ("static chain with function that doesn%'t use one"); 3485 return true; 3486 } 3487 3488 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) 3489 { 3490 switch (DECL_FUNCTION_CODE (fndecl)) 3491 { 3492 case BUILT_IN_UNREACHABLE: 3493 case BUILT_IN_TRAP: 3494 if (gimple_call_num_args (stmt) > 0) 3495 { 3496 /* Built-in unreachable with parameters might not be caught by 3497 undefined behavior sanitizer. Front-ends do check users do not 3498 call them that way but we also produce calls to 3499 __builtin_unreachable internally, for example when IPA figures 3500 out a call cannot happen in a legal program. In such cases, 3501 we must make sure arguments are stripped off. */ 3502 error ("__builtin_unreachable or __builtin_trap call with " 3503 "arguments"); 3504 return true; 3505 } 3506 break; 3507 default: 3508 break; 3509 } 3510 } 3511 3512 /* ??? The C frontend passes unpromoted arguments in case it 3513 didn't see a function declaration before the call. So for now 3514 leave the call arguments mostly unverified. Once we gimplify 3515 unit-at-a-time we have a chance to fix this. */ 3516 3517 for (i = 0; i < gimple_call_num_args (stmt); ++i) 3518 { 3519 tree arg = gimple_call_arg (stmt, i); 3520 if ((is_gimple_reg_type (TREE_TYPE (arg)) 3521 && !is_gimple_val (arg)) 3522 || (!is_gimple_reg_type (TREE_TYPE (arg)) 3523 && !is_gimple_lvalue (arg))) 3524 { 3525 error ("invalid argument to gimple call"); 3526 debug_generic_expr (arg); 3527 return true; 3528 } 3529 } 3530 3531 return false; 3532 } 3533 3534 /* Verifies the gimple comparison with the result type TYPE and 3535 the operands OP0 and OP1, comparison code is CODE. */ 3536 3537 static bool 3538 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code) 3539 { 3540 tree op0_type = TREE_TYPE (op0); 3541 tree op1_type = TREE_TYPE (op1); 3542 3543 if (!is_gimple_val (op0) || !is_gimple_val (op1)) 3544 { 3545 error ("invalid operands in gimple comparison"); 3546 return true; 3547 } 3548 3549 /* For comparisons we do not have the operations type as the 3550 effective type the comparison is carried out in. Instead 3551 we require that either the first operand is trivially 3552 convertible into the second, or the other way around. 3553 Because we special-case pointers to void we allow 3554 comparisons of pointers with the same mode as well. */ 3555 if (!useless_type_conversion_p (op0_type, op1_type) 3556 && !useless_type_conversion_p (op1_type, op0_type) 3557 && (!POINTER_TYPE_P (op0_type) 3558 || !POINTER_TYPE_P (op1_type) 3559 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type))) 3560 { 3561 error ("mismatching comparison operand types"); 3562 debug_generic_expr (op0_type); 3563 debug_generic_expr (op1_type); 3564 return true; 3565 } 3566 3567 /* The resulting type of a comparison may be an effective boolean type. */ 3568 if (INTEGRAL_TYPE_P (type) 3569 && (TREE_CODE (type) == BOOLEAN_TYPE 3570 || TYPE_PRECISION (type) == 1)) 3571 { 3572 if ((TREE_CODE (op0_type) == VECTOR_TYPE 3573 || TREE_CODE (op1_type) == VECTOR_TYPE) 3574 && code != EQ_EXPR && code != NE_EXPR 3575 && !VECTOR_BOOLEAN_TYPE_P (op0_type) 3576 && !VECTOR_INTEGER_TYPE_P (op0_type)) 3577 { 3578 error ("unsupported operation or type for vector comparison" 3579 " returning a boolean"); 3580 debug_generic_expr (op0_type); 3581 debug_generic_expr (op1_type); 3582 return true; 3583 } 3584 } 3585 /* Or a boolean vector type with the same element count 3586 as the comparison operand types. */ 3587 else if (TREE_CODE (type) == VECTOR_TYPE 3588 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE) 3589 { 3590 if (TREE_CODE (op0_type) != VECTOR_TYPE 3591 || TREE_CODE (op1_type) != VECTOR_TYPE) 3592 { 3593 error ("non-vector operands in vector comparison"); 3594 debug_generic_expr (op0_type); 3595 debug_generic_expr (op1_type); 3596 return true; 3597 } 3598 3599 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)) 3600 { 3601 error ("invalid vector comparison resulting type"); 3602 debug_generic_expr (type); 3603 return true; 3604 } 3605 } 3606 else 3607 { 3608 error ("bogus comparison result type"); 3609 debug_generic_expr (type); 3610 return true; 3611 } 3612 3613 return false; 3614 } 3615 3616 /* Verify a gimple assignment statement STMT with an unary rhs. 3617 Returns true if anything is wrong. */ 3618 3619 static bool 3620 verify_gimple_assign_unary (gassign *stmt) 3621 { 3622 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 3623 tree lhs = gimple_assign_lhs (stmt); 3624 tree lhs_type = TREE_TYPE (lhs); 3625 tree rhs1 = gimple_assign_rhs1 (stmt); 3626 tree rhs1_type = TREE_TYPE (rhs1); 3627 3628 if (!is_gimple_reg (lhs)) 3629 { 3630 error ("non-register as LHS of unary operation"); 3631 return true; 3632 } 3633 3634 if (!is_gimple_val (rhs1)) 3635 { 3636 error ("invalid operand in unary operation"); 3637 return true; 3638 } 3639 3640 /* First handle conversions. */ 3641 switch (rhs_code) 3642 { 3643 CASE_CONVERT: 3644 { 3645 /* Allow conversions from pointer type to integral type only if 3646 there is no sign or zero extension involved. 3647 For targets were the precision of ptrofftype doesn't match that 3648 of pointers we need to allow arbitrary conversions to ptrofftype. */ 3649 if ((POINTER_TYPE_P (lhs_type) 3650 && INTEGRAL_TYPE_P (rhs1_type)) 3651 || (POINTER_TYPE_P (rhs1_type) 3652 && INTEGRAL_TYPE_P (lhs_type) 3653 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type) 3654 || ptrofftype_p (sizetype)))) 3655 return false; 3656 3657 /* Allow conversion from integral to offset type and vice versa. */ 3658 if ((TREE_CODE (lhs_type) == OFFSET_TYPE 3659 && INTEGRAL_TYPE_P (rhs1_type)) 3660 || (INTEGRAL_TYPE_P (lhs_type) 3661 && TREE_CODE (rhs1_type) == OFFSET_TYPE)) 3662 return false; 3663 3664 /* Otherwise assert we are converting between types of the 3665 same kind. */ 3666 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type)) 3667 { 3668 error ("invalid types in nop conversion"); 3669 debug_generic_expr (lhs_type); 3670 debug_generic_expr (rhs1_type); 3671 return true; 3672 } 3673 3674 return false; 3675 } 3676 3677 case ADDR_SPACE_CONVERT_EXPR: 3678 { 3679 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type) 3680 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type)) 3681 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type)))) 3682 { 3683 error ("invalid types in address space conversion"); 3684 debug_generic_expr (lhs_type); 3685 debug_generic_expr (rhs1_type); 3686 return true; 3687 } 3688 3689 return false; 3690 } 3691 3692 case FIXED_CONVERT_EXPR: 3693 { 3694 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type) 3695 && !valid_fixed_convert_types_p (rhs1_type, lhs_type)) 3696 { 3697 error ("invalid types in fixed-point conversion"); 3698 debug_generic_expr (lhs_type); 3699 debug_generic_expr (rhs1_type); 3700 return true; 3701 } 3702 3703 return false; 3704 } 3705 3706 case FLOAT_EXPR: 3707 { 3708 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type)) 3709 && (!VECTOR_INTEGER_TYPE_P (rhs1_type) 3710 || !VECTOR_FLOAT_TYPE_P (lhs_type))) 3711 { 3712 error ("invalid types in conversion to floating point"); 3713 debug_generic_expr (lhs_type); 3714 debug_generic_expr (rhs1_type); 3715 return true; 3716 } 3717 3718 return false; 3719 } 3720 3721 case FIX_TRUNC_EXPR: 3722 { 3723 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type)) 3724 && (!VECTOR_INTEGER_TYPE_P (lhs_type) 3725 || !VECTOR_FLOAT_TYPE_P (rhs1_type))) 3726 { 3727 error ("invalid types in conversion to integer"); 3728 debug_generic_expr (lhs_type); 3729 debug_generic_expr (rhs1_type); 3730 return true; 3731 } 3732 3733 return false; 3734 } 3735 case REDUC_MAX_EXPR: 3736 case REDUC_MIN_EXPR: 3737 case REDUC_PLUS_EXPR: 3738 if (!VECTOR_TYPE_P (rhs1_type) 3739 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type))) 3740 { 3741 error ("reduction should convert from vector to element type"); 3742 debug_generic_expr (lhs_type); 3743 debug_generic_expr (rhs1_type); 3744 return true; 3745 } 3746 return false; 3747 3748 case VEC_UNPACK_HI_EXPR: 3749 case VEC_UNPACK_LO_EXPR: 3750 case VEC_UNPACK_FLOAT_HI_EXPR: 3751 case VEC_UNPACK_FLOAT_LO_EXPR: 3752 /* FIXME. */ 3753 return false; 3754 3755 case NEGATE_EXPR: 3756 case ABS_EXPR: 3757 case BIT_NOT_EXPR: 3758 case PAREN_EXPR: 3759 case CONJ_EXPR: 3760 break; 3761 3762 default: 3763 gcc_unreachable (); 3764 } 3765 3766 /* For the remaining codes assert there is no conversion involved. */ 3767 if (!useless_type_conversion_p (lhs_type, rhs1_type)) 3768 { 3769 error ("non-trivial conversion in unary operation"); 3770 debug_generic_expr (lhs_type); 3771 debug_generic_expr (rhs1_type); 3772 return true; 3773 } 3774 3775 return false; 3776 } 3777 3778 /* Verify a gimple assignment statement STMT with a binary rhs. 3779 Returns true if anything is wrong. */ 3780 3781 static bool 3782 verify_gimple_assign_binary (gassign *stmt) 3783 { 3784 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 3785 tree lhs = gimple_assign_lhs (stmt); 3786 tree lhs_type = TREE_TYPE (lhs); 3787 tree rhs1 = gimple_assign_rhs1 (stmt); 3788 tree rhs1_type = TREE_TYPE (rhs1); 3789 tree rhs2 = gimple_assign_rhs2 (stmt); 3790 tree rhs2_type = TREE_TYPE (rhs2); 3791 3792 if (!is_gimple_reg (lhs)) 3793 { 3794 error ("non-register as LHS of binary operation"); 3795 return true; 3796 } 3797 3798 if (!is_gimple_val (rhs1) 3799 || !is_gimple_val (rhs2)) 3800 { 3801 error ("invalid operands in binary operation"); 3802 return true; 3803 } 3804 3805 /* First handle operations that involve different types. */ 3806 switch (rhs_code) 3807 { 3808 case COMPLEX_EXPR: 3809 { 3810 if (TREE_CODE (lhs_type) != COMPLEX_TYPE 3811 || !(INTEGRAL_TYPE_P (rhs1_type) 3812 || SCALAR_FLOAT_TYPE_P (rhs1_type)) 3813 || !(INTEGRAL_TYPE_P (rhs2_type) 3814 || SCALAR_FLOAT_TYPE_P (rhs2_type))) 3815 { 3816 error ("type mismatch in complex expression"); 3817 debug_generic_expr (lhs_type); 3818 debug_generic_expr (rhs1_type); 3819 debug_generic_expr (rhs2_type); 3820 return true; 3821 } 3822 3823 return false; 3824 } 3825 3826 case LSHIFT_EXPR: 3827 case RSHIFT_EXPR: 3828 case LROTATE_EXPR: 3829 case RROTATE_EXPR: 3830 { 3831 /* Shifts and rotates are ok on integral types, fixed point 3832 types and integer vector types. */ 3833 if ((!INTEGRAL_TYPE_P (rhs1_type) 3834 && !FIXED_POINT_TYPE_P (rhs1_type) 3835 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE 3836 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)))) 3837 || (!INTEGRAL_TYPE_P (rhs2_type) 3838 /* Vector shifts of vectors are also ok. */ 3839 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE 3840 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) 3841 && TREE_CODE (rhs2_type) == VECTOR_TYPE 3842 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type)))) 3843 || !useless_type_conversion_p (lhs_type, rhs1_type)) 3844 { 3845 error ("type mismatch in shift expression"); 3846 debug_generic_expr (lhs_type); 3847 debug_generic_expr (rhs1_type); 3848 debug_generic_expr (rhs2_type); 3849 return true; 3850 } 3851 3852 return false; 3853 } 3854 3855 case WIDEN_LSHIFT_EXPR: 3856 { 3857 if (!INTEGRAL_TYPE_P (lhs_type) 3858 || !INTEGRAL_TYPE_P (rhs1_type) 3859 || TREE_CODE (rhs2) != INTEGER_CST 3860 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))) 3861 { 3862 error ("type mismatch in widening vector shift expression"); 3863 debug_generic_expr (lhs_type); 3864 debug_generic_expr (rhs1_type); 3865 debug_generic_expr (rhs2_type); 3866 return true; 3867 } 3868 3869 return false; 3870 } 3871 3872 case VEC_WIDEN_LSHIFT_HI_EXPR: 3873 case VEC_WIDEN_LSHIFT_LO_EXPR: 3874 { 3875 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 3876 || TREE_CODE (lhs_type) != VECTOR_TYPE 3877 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type)) 3878 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)) 3879 || TREE_CODE (rhs2) != INTEGER_CST 3880 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type)) 3881 > TYPE_PRECISION (TREE_TYPE (lhs_type)))) 3882 { 3883 error ("type mismatch in widening vector shift expression"); 3884 debug_generic_expr (lhs_type); 3885 debug_generic_expr (rhs1_type); 3886 debug_generic_expr (rhs2_type); 3887 return true; 3888 } 3889 3890 return false; 3891 } 3892 3893 case PLUS_EXPR: 3894 case MINUS_EXPR: 3895 { 3896 tree lhs_etype = lhs_type; 3897 tree rhs1_etype = rhs1_type; 3898 tree rhs2_etype = rhs2_type; 3899 if (TREE_CODE (lhs_type) == VECTOR_TYPE) 3900 { 3901 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 3902 || TREE_CODE (rhs2_type) != VECTOR_TYPE) 3903 { 3904 error ("invalid non-vector operands to vector valued plus"); 3905 return true; 3906 } 3907 lhs_etype = TREE_TYPE (lhs_type); 3908 rhs1_etype = TREE_TYPE (rhs1_type); 3909 rhs2_etype = TREE_TYPE (rhs2_type); 3910 } 3911 if (POINTER_TYPE_P (lhs_etype) 3912 || POINTER_TYPE_P (rhs1_etype) 3913 || POINTER_TYPE_P (rhs2_etype)) 3914 { 3915 error ("invalid (pointer) operands to plus/minus"); 3916 return true; 3917 } 3918 3919 /* Continue with generic binary expression handling. */ 3920 break; 3921 } 3922 3923 case POINTER_PLUS_EXPR: 3924 { 3925 if (!POINTER_TYPE_P (rhs1_type) 3926 || !useless_type_conversion_p (lhs_type, rhs1_type) 3927 || !ptrofftype_p (rhs2_type)) 3928 { 3929 error ("type mismatch in pointer plus expression"); 3930 debug_generic_stmt (lhs_type); 3931 debug_generic_stmt (rhs1_type); 3932 debug_generic_stmt (rhs2_type); 3933 return true; 3934 } 3935 3936 return false; 3937 } 3938 3939 case TRUTH_ANDIF_EXPR: 3940 case TRUTH_ORIF_EXPR: 3941 case TRUTH_AND_EXPR: 3942 case TRUTH_OR_EXPR: 3943 case TRUTH_XOR_EXPR: 3944 3945 gcc_unreachable (); 3946 3947 case LT_EXPR: 3948 case LE_EXPR: 3949 case GT_EXPR: 3950 case GE_EXPR: 3951 case EQ_EXPR: 3952 case NE_EXPR: 3953 case UNORDERED_EXPR: 3954 case ORDERED_EXPR: 3955 case UNLT_EXPR: 3956 case UNLE_EXPR: 3957 case UNGT_EXPR: 3958 case UNGE_EXPR: 3959 case UNEQ_EXPR: 3960 case LTGT_EXPR: 3961 /* Comparisons are also binary, but the result type is not 3962 connected to the operand types. */ 3963 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code); 3964 3965 case WIDEN_MULT_EXPR: 3966 if (TREE_CODE (lhs_type) != INTEGER_TYPE) 3967 return true; 3968 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)) 3969 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))); 3970 3971 case WIDEN_SUM_EXPR: 3972 case VEC_WIDEN_MULT_HI_EXPR: 3973 case VEC_WIDEN_MULT_LO_EXPR: 3974 case VEC_WIDEN_MULT_EVEN_EXPR: 3975 case VEC_WIDEN_MULT_ODD_EXPR: 3976 case VEC_PACK_TRUNC_EXPR: 3977 case VEC_PACK_SAT_EXPR: 3978 case VEC_PACK_FIX_TRUNC_EXPR: 3979 /* FIXME. */ 3980 return false; 3981 3982 case MULT_EXPR: 3983 case MULT_HIGHPART_EXPR: 3984 case TRUNC_DIV_EXPR: 3985 case CEIL_DIV_EXPR: 3986 case FLOOR_DIV_EXPR: 3987 case ROUND_DIV_EXPR: 3988 case TRUNC_MOD_EXPR: 3989 case CEIL_MOD_EXPR: 3990 case FLOOR_MOD_EXPR: 3991 case ROUND_MOD_EXPR: 3992 case RDIV_EXPR: 3993 case EXACT_DIV_EXPR: 3994 case MIN_EXPR: 3995 case MAX_EXPR: 3996 case BIT_IOR_EXPR: 3997 case BIT_XOR_EXPR: 3998 case BIT_AND_EXPR: 3999 /* Continue with generic binary expression handling. */ 4000 break; 4001 4002 default: 4003 gcc_unreachable (); 4004 } 4005 4006 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4007 || !useless_type_conversion_p (lhs_type, rhs2_type)) 4008 { 4009 error ("type mismatch in binary expression"); 4010 debug_generic_stmt (lhs_type); 4011 debug_generic_stmt (rhs1_type); 4012 debug_generic_stmt (rhs2_type); 4013 return true; 4014 } 4015 4016 return false; 4017 } 4018 4019 /* Verify a gimple assignment statement STMT with a ternary rhs. 4020 Returns true if anything is wrong. */ 4021 4022 static bool 4023 verify_gimple_assign_ternary (gassign *stmt) 4024 { 4025 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 4026 tree lhs = gimple_assign_lhs (stmt); 4027 tree lhs_type = TREE_TYPE (lhs); 4028 tree rhs1 = gimple_assign_rhs1 (stmt); 4029 tree rhs1_type = TREE_TYPE (rhs1); 4030 tree rhs2 = gimple_assign_rhs2 (stmt); 4031 tree rhs2_type = TREE_TYPE (rhs2); 4032 tree rhs3 = gimple_assign_rhs3 (stmt); 4033 tree rhs3_type = TREE_TYPE (rhs3); 4034 4035 if (!is_gimple_reg (lhs)) 4036 { 4037 error ("non-register as LHS of ternary operation"); 4038 return true; 4039 } 4040 4041 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR) 4042 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1)) 4043 || !is_gimple_val (rhs2) 4044 || !is_gimple_val (rhs3)) 4045 { 4046 error ("invalid operands in ternary operation"); 4047 return true; 4048 } 4049 4050 /* First handle operations that involve different types. */ 4051 switch (rhs_code) 4052 { 4053 case WIDEN_MULT_PLUS_EXPR: 4054 case WIDEN_MULT_MINUS_EXPR: 4055 if ((!INTEGRAL_TYPE_P (rhs1_type) 4056 && !FIXED_POINT_TYPE_P (rhs1_type)) 4057 || !useless_type_conversion_p (rhs1_type, rhs2_type) 4058 || !useless_type_conversion_p (lhs_type, rhs3_type) 4059 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type) 4060 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)) 4061 { 4062 error ("type mismatch in widening multiply-accumulate expression"); 4063 debug_generic_expr (lhs_type); 4064 debug_generic_expr (rhs1_type); 4065 debug_generic_expr (rhs2_type); 4066 debug_generic_expr (rhs3_type); 4067 return true; 4068 } 4069 break; 4070 4071 case FMA_EXPR: 4072 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4073 || !useless_type_conversion_p (lhs_type, rhs2_type) 4074 || !useless_type_conversion_p (lhs_type, rhs3_type)) 4075 { 4076 error ("type mismatch in fused multiply-add expression"); 4077 debug_generic_expr (lhs_type); 4078 debug_generic_expr (rhs1_type); 4079 debug_generic_expr (rhs2_type); 4080 debug_generic_expr (rhs3_type); 4081 return true; 4082 } 4083 break; 4084 4085 case VEC_COND_EXPR: 4086 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type) 4087 || TYPE_VECTOR_SUBPARTS (rhs1_type) 4088 != TYPE_VECTOR_SUBPARTS (lhs_type)) 4089 { 4090 error ("the first argument of a VEC_COND_EXPR must be of a " 4091 "boolean vector type of the same number of elements " 4092 "as the result"); 4093 debug_generic_expr (lhs_type); 4094 debug_generic_expr (rhs1_type); 4095 return true; 4096 } 4097 /* Fallthrough. */ 4098 case COND_EXPR: 4099 if (!useless_type_conversion_p (lhs_type, rhs2_type) 4100 || !useless_type_conversion_p (lhs_type, rhs3_type)) 4101 { 4102 error ("type mismatch in conditional expression"); 4103 debug_generic_expr (lhs_type); 4104 debug_generic_expr (rhs2_type); 4105 debug_generic_expr (rhs3_type); 4106 return true; 4107 } 4108 break; 4109 4110 case VEC_PERM_EXPR: 4111 if (!useless_type_conversion_p (lhs_type, rhs1_type) 4112 || !useless_type_conversion_p (lhs_type, rhs2_type)) 4113 { 4114 error ("type mismatch in vector permute expression"); 4115 debug_generic_expr (lhs_type); 4116 debug_generic_expr (rhs1_type); 4117 debug_generic_expr (rhs2_type); 4118 debug_generic_expr (rhs3_type); 4119 return true; 4120 } 4121 4122 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4123 || TREE_CODE (rhs2_type) != VECTOR_TYPE 4124 || TREE_CODE (rhs3_type) != VECTOR_TYPE) 4125 { 4126 error ("vector types expected in vector permute expression"); 4127 debug_generic_expr (lhs_type); 4128 debug_generic_expr (rhs1_type); 4129 debug_generic_expr (rhs2_type); 4130 debug_generic_expr (rhs3_type); 4131 return true; 4132 } 4133 4134 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type) 4135 || TYPE_VECTOR_SUBPARTS (rhs2_type) 4136 != TYPE_VECTOR_SUBPARTS (rhs3_type) 4137 || TYPE_VECTOR_SUBPARTS (rhs3_type) 4138 != TYPE_VECTOR_SUBPARTS (lhs_type)) 4139 { 4140 error ("vectors with different element number found " 4141 "in vector permute expression"); 4142 debug_generic_expr (lhs_type); 4143 debug_generic_expr (rhs1_type); 4144 debug_generic_expr (rhs2_type); 4145 debug_generic_expr (rhs3_type); 4146 return true; 4147 } 4148 4149 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE 4150 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type))) 4151 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))) 4152 { 4153 error ("invalid mask type in vector permute expression"); 4154 debug_generic_expr (lhs_type); 4155 debug_generic_expr (rhs1_type); 4156 debug_generic_expr (rhs2_type); 4157 debug_generic_expr (rhs3_type); 4158 return true; 4159 } 4160 4161 return false; 4162 4163 case SAD_EXPR: 4164 if (!useless_type_conversion_p (rhs1_type, rhs2_type) 4165 || !useless_type_conversion_p (lhs_type, rhs3_type) 4166 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))) 4167 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type)))) 4168 { 4169 error ("type mismatch in sad expression"); 4170 debug_generic_expr (lhs_type); 4171 debug_generic_expr (rhs1_type); 4172 debug_generic_expr (rhs2_type); 4173 debug_generic_expr (rhs3_type); 4174 return true; 4175 } 4176 4177 if (TREE_CODE (rhs1_type) != VECTOR_TYPE 4178 || TREE_CODE (rhs2_type) != VECTOR_TYPE 4179 || TREE_CODE (rhs3_type) != VECTOR_TYPE) 4180 { 4181 error ("vector types expected in sad expression"); 4182 debug_generic_expr (lhs_type); 4183 debug_generic_expr (rhs1_type); 4184 debug_generic_expr (rhs2_type); 4185 debug_generic_expr (rhs3_type); 4186 return true; 4187 } 4188 4189 return false; 4190 4191 case BIT_INSERT_EXPR: 4192 if (! useless_type_conversion_p (lhs_type, rhs1_type)) 4193 { 4194 error ("type mismatch in BIT_INSERT_EXPR"); 4195 debug_generic_expr (lhs_type); 4196 debug_generic_expr (rhs1_type); 4197 return true; 4198 } 4199 if (! ((INTEGRAL_TYPE_P (rhs1_type) 4200 && INTEGRAL_TYPE_P (rhs2_type)) 4201 || (VECTOR_TYPE_P (rhs1_type) 4202 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type)))) 4203 { 4204 error ("not allowed type combination in BIT_INSERT_EXPR"); 4205 debug_generic_expr (rhs1_type); 4206 debug_generic_expr (rhs2_type); 4207 return true; 4208 } 4209 if (! tree_fits_uhwi_p (rhs3) 4210 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type))) 4211 { 4212 error ("invalid position or size in BIT_INSERT_EXPR"); 4213 return true; 4214 } 4215 if (INTEGRAL_TYPE_P (rhs1_type)) 4216 { 4217 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); 4218 if (bitpos >= TYPE_PRECISION (rhs1_type) 4219 || (bitpos + TYPE_PRECISION (rhs2_type) 4220 > TYPE_PRECISION (rhs1_type))) 4221 { 4222 error ("insertion out of range in BIT_INSERT_EXPR"); 4223 return true; 4224 } 4225 } 4226 else if (VECTOR_TYPE_P (rhs1_type)) 4227 { 4228 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3); 4229 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type)); 4230 if (bitpos % bitsize != 0) 4231 { 4232 error ("vector insertion not at element boundary"); 4233 return true; 4234 } 4235 } 4236 return false; 4237 4238 case DOT_PROD_EXPR: 4239 case REALIGN_LOAD_EXPR: 4240 /* FIXME. */ 4241 return false; 4242 4243 default: 4244 gcc_unreachable (); 4245 } 4246 return false; 4247 } 4248 4249 /* Verify a gimple assignment statement STMT with a single rhs. 4250 Returns true if anything is wrong. */ 4251 4252 static bool 4253 verify_gimple_assign_single (gassign *stmt) 4254 { 4255 enum tree_code rhs_code = gimple_assign_rhs_code (stmt); 4256 tree lhs = gimple_assign_lhs (stmt); 4257 tree lhs_type = TREE_TYPE (lhs); 4258 tree rhs1 = gimple_assign_rhs1 (stmt); 4259 tree rhs1_type = TREE_TYPE (rhs1); 4260 bool res = false; 4261 4262 if (!useless_type_conversion_p (lhs_type, rhs1_type)) 4263 { 4264 error ("non-trivial conversion at assignment"); 4265 debug_generic_expr (lhs_type); 4266 debug_generic_expr (rhs1_type); 4267 return true; 4268 } 4269 4270 if (gimple_clobber_p (stmt) 4271 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF)) 4272 { 4273 error ("non-decl/MEM_REF LHS in clobber statement"); 4274 debug_generic_expr (lhs); 4275 return true; 4276 } 4277 4278 if (handled_component_p (lhs) 4279 || TREE_CODE (lhs) == MEM_REF 4280 || TREE_CODE (lhs) == TARGET_MEM_REF) 4281 res |= verify_types_in_gimple_reference (lhs, true); 4282 4283 /* Special codes we cannot handle via their class. */ 4284 switch (rhs_code) 4285 { 4286 case ADDR_EXPR: 4287 { 4288 tree op = TREE_OPERAND (rhs1, 0); 4289 if (!is_gimple_addressable (op)) 4290 { 4291 error ("invalid operand in unary expression"); 4292 return true; 4293 } 4294 4295 /* Technically there is no longer a need for matching types, but 4296 gimple hygiene asks for this check. In LTO we can end up 4297 combining incompatible units and thus end up with addresses 4298 of globals that change their type to a common one. */ 4299 if (!in_lto_p 4300 && !types_compatible_p (TREE_TYPE (op), 4301 TREE_TYPE (TREE_TYPE (rhs1))) 4302 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1), 4303 TREE_TYPE (op))) 4304 { 4305 error ("type mismatch in address expression"); 4306 debug_generic_stmt (TREE_TYPE (rhs1)); 4307 debug_generic_stmt (TREE_TYPE (op)); 4308 return true; 4309 } 4310 4311 return verify_types_in_gimple_reference (op, true); 4312 } 4313 4314 /* tcc_reference */ 4315 case INDIRECT_REF: 4316 error ("INDIRECT_REF in gimple IL"); 4317 return true; 4318 4319 case COMPONENT_REF: 4320 case BIT_FIELD_REF: 4321 case ARRAY_REF: 4322 case ARRAY_RANGE_REF: 4323 case VIEW_CONVERT_EXPR: 4324 case REALPART_EXPR: 4325 case IMAGPART_EXPR: 4326 case TARGET_MEM_REF: 4327 case MEM_REF: 4328 if (!is_gimple_reg (lhs) 4329 && is_gimple_reg_type (TREE_TYPE (lhs))) 4330 { 4331 error ("invalid rhs for gimple memory store"); 4332 debug_generic_stmt (lhs); 4333 debug_generic_stmt (rhs1); 4334 return true; 4335 } 4336 return res || verify_types_in_gimple_reference (rhs1, false); 4337 4338 /* tcc_constant */ 4339 case SSA_NAME: 4340 case INTEGER_CST: 4341 case REAL_CST: 4342 case FIXED_CST: 4343 case COMPLEX_CST: 4344 case VECTOR_CST: 4345 case STRING_CST: 4346 return res; 4347 4348 /* tcc_declaration */ 4349 case CONST_DECL: 4350 return res; 4351 case VAR_DECL: 4352 case PARM_DECL: 4353 if (!is_gimple_reg (lhs) 4354 && !is_gimple_reg (rhs1) 4355 && is_gimple_reg_type (TREE_TYPE (lhs))) 4356 { 4357 error ("invalid rhs for gimple memory store"); 4358 debug_generic_stmt (lhs); 4359 debug_generic_stmt (rhs1); 4360 return true; 4361 } 4362 return res; 4363 4364 case CONSTRUCTOR: 4365 if (TREE_CODE (rhs1_type) == VECTOR_TYPE) 4366 { 4367 unsigned int i; 4368 tree elt_i, elt_v, elt_t = NULL_TREE; 4369 4370 if (CONSTRUCTOR_NELTS (rhs1) == 0) 4371 return res; 4372 /* For vector CONSTRUCTORs we require that either it is empty 4373 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements 4374 (then the element count must be correct to cover the whole 4375 outer vector and index must be NULL on all elements, or it is 4376 a CONSTRUCTOR of scalar elements, where we as an exception allow 4377 smaller number of elements (assuming zero filling) and 4378 consecutive indexes as compared to NULL indexes (such 4379 CONSTRUCTORs can appear in the IL from FEs). */ 4380 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v) 4381 { 4382 if (elt_t == NULL_TREE) 4383 { 4384 elt_t = TREE_TYPE (elt_v); 4385 if (TREE_CODE (elt_t) == VECTOR_TYPE) 4386 { 4387 tree elt_t = TREE_TYPE (elt_v); 4388 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), 4389 TREE_TYPE (elt_t))) 4390 { 4391 error ("incorrect type of vector CONSTRUCTOR" 4392 " elements"); 4393 debug_generic_stmt (rhs1); 4394 return true; 4395 } 4396 else if (CONSTRUCTOR_NELTS (rhs1) 4397 * TYPE_VECTOR_SUBPARTS (elt_t) 4398 != TYPE_VECTOR_SUBPARTS (rhs1_type)) 4399 { 4400 error ("incorrect number of vector CONSTRUCTOR" 4401 " elements"); 4402 debug_generic_stmt (rhs1); 4403 return true; 4404 } 4405 } 4406 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type), 4407 elt_t)) 4408 { 4409 error ("incorrect type of vector CONSTRUCTOR elements"); 4410 debug_generic_stmt (rhs1); 4411 return true; 4412 } 4413 else if (CONSTRUCTOR_NELTS (rhs1) 4414 > TYPE_VECTOR_SUBPARTS (rhs1_type)) 4415 { 4416 error ("incorrect number of vector CONSTRUCTOR elements"); 4417 debug_generic_stmt (rhs1); 4418 return true; 4419 } 4420 } 4421 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v))) 4422 { 4423 error ("incorrect type of vector CONSTRUCTOR elements"); 4424 debug_generic_stmt (rhs1); 4425 return true; 4426 } 4427 if (elt_i != NULL_TREE 4428 && (TREE_CODE (elt_t) == VECTOR_TYPE 4429 || TREE_CODE (elt_i) != INTEGER_CST 4430 || compare_tree_int (elt_i, i) != 0)) 4431 { 4432 error ("vector CONSTRUCTOR with non-NULL element index"); 4433 debug_generic_stmt (rhs1); 4434 return true; 4435 } 4436 if (!is_gimple_val (elt_v)) 4437 { 4438 error ("vector CONSTRUCTOR element is not a GIMPLE value"); 4439 debug_generic_stmt (rhs1); 4440 return true; 4441 } 4442 } 4443 } 4444 else if (CONSTRUCTOR_NELTS (rhs1) != 0) 4445 { 4446 error ("non-vector CONSTRUCTOR with elements"); 4447 debug_generic_stmt (rhs1); 4448 return true; 4449 } 4450 return res; 4451 case OBJ_TYPE_REF: 4452 case ASSERT_EXPR: 4453 case WITH_SIZE_EXPR: 4454 /* FIXME. */ 4455 return res; 4456 4457 default:; 4458 } 4459 4460 return res; 4461 } 4462 4463 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there 4464 is a problem, otherwise false. */ 4465 4466 static bool 4467 verify_gimple_assign (gassign *stmt) 4468 { 4469 switch (gimple_assign_rhs_class (stmt)) 4470 { 4471 case GIMPLE_SINGLE_RHS: 4472 return verify_gimple_assign_single (stmt); 4473 4474 case GIMPLE_UNARY_RHS: 4475 return verify_gimple_assign_unary (stmt); 4476 4477 case GIMPLE_BINARY_RHS: 4478 return verify_gimple_assign_binary (stmt); 4479 4480 case GIMPLE_TERNARY_RHS: 4481 return verify_gimple_assign_ternary (stmt); 4482 4483 default: 4484 gcc_unreachable (); 4485 } 4486 } 4487 4488 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there 4489 is a problem, otherwise false. */ 4490 4491 static bool 4492 verify_gimple_return (greturn *stmt) 4493 { 4494 tree op = gimple_return_retval (stmt); 4495 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl)); 4496 4497 /* We cannot test for present return values as we do not fix up missing 4498 return values from the original source. */ 4499 if (op == NULL) 4500 return false; 4501 4502 if (!is_gimple_val (op) 4503 && TREE_CODE (op) != RESULT_DECL) 4504 { 4505 error ("invalid operand in return statement"); 4506 debug_generic_stmt (op); 4507 return true; 4508 } 4509 4510 if ((TREE_CODE (op) == RESULT_DECL 4511 && DECL_BY_REFERENCE (op)) 4512 || (TREE_CODE (op) == SSA_NAME 4513 && SSA_NAME_VAR (op) 4514 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL 4515 && DECL_BY_REFERENCE (SSA_NAME_VAR (op)))) 4516 op = TREE_TYPE (op); 4517 4518 if (!useless_type_conversion_p (restype, TREE_TYPE (op))) 4519 { 4520 error ("invalid conversion in return statement"); 4521 debug_generic_stmt (restype); 4522 debug_generic_stmt (TREE_TYPE (op)); 4523 return true; 4524 } 4525 4526 return false; 4527 } 4528 4529 4530 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there 4531 is a problem, otherwise false. */ 4532 4533 static bool 4534 verify_gimple_goto (ggoto *stmt) 4535 { 4536 tree dest = gimple_goto_dest (stmt); 4537 4538 /* ??? We have two canonical forms of direct goto destinations, a 4539 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */ 4540 if (TREE_CODE (dest) != LABEL_DECL 4541 && (!is_gimple_val (dest) 4542 || !POINTER_TYPE_P (TREE_TYPE (dest)))) 4543 { 4544 error ("goto destination is neither a label nor a pointer"); 4545 return true; 4546 } 4547 4548 return false; 4549 } 4550 4551 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there 4552 is a problem, otherwise false. */ 4553 4554 static bool 4555 verify_gimple_switch (gswitch *stmt) 4556 { 4557 unsigned int i, n; 4558 tree elt, prev_upper_bound = NULL_TREE; 4559 tree index_type, elt_type = NULL_TREE; 4560 4561 if (!is_gimple_val (gimple_switch_index (stmt))) 4562 { 4563 error ("invalid operand to switch statement"); 4564 debug_generic_stmt (gimple_switch_index (stmt)); 4565 return true; 4566 } 4567 4568 index_type = TREE_TYPE (gimple_switch_index (stmt)); 4569 if (! INTEGRAL_TYPE_P (index_type)) 4570 { 4571 error ("non-integral type switch statement"); 4572 debug_generic_expr (index_type); 4573 return true; 4574 } 4575 4576 elt = gimple_switch_label (stmt, 0); 4577 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE) 4578 { 4579 error ("invalid default case label in switch statement"); 4580 debug_generic_expr (elt); 4581 return true; 4582 } 4583 4584 n = gimple_switch_num_labels (stmt); 4585 for (i = 1; i < n; i++) 4586 { 4587 elt = gimple_switch_label (stmt, i); 4588 4589 if (! CASE_LOW (elt)) 4590 { 4591 error ("invalid case label in switch statement"); 4592 debug_generic_expr (elt); 4593 return true; 4594 } 4595 if (CASE_HIGH (elt) 4596 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt))) 4597 { 4598 error ("invalid case range in switch statement"); 4599 debug_generic_expr (elt); 4600 return true; 4601 } 4602 4603 if (elt_type) 4604 { 4605 if (TREE_TYPE (CASE_LOW (elt)) != elt_type 4606 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type)) 4607 { 4608 error ("type mismatch for case label in switch statement"); 4609 debug_generic_expr (elt); 4610 return true; 4611 } 4612 } 4613 else 4614 { 4615 elt_type = TREE_TYPE (CASE_LOW (elt)); 4616 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type)) 4617 { 4618 error ("type precision mismatch in switch statement"); 4619 return true; 4620 } 4621 } 4622 4623 if (prev_upper_bound) 4624 { 4625 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt))) 4626 { 4627 error ("case labels not sorted in switch statement"); 4628 return true; 4629 } 4630 } 4631 4632 prev_upper_bound = CASE_HIGH (elt); 4633 if (! prev_upper_bound) 4634 prev_upper_bound = CASE_LOW (elt); 4635 } 4636 4637 return false; 4638 } 4639 4640 /* Verify a gimple debug statement STMT. 4641 Returns true if anything is wrong. */ 4642 4643 static bool 4644 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED) 4645 { 4646 /* There isn't much that could be wrong in a gimple debug stmt. A 4647 gimple debug bind stmt, for example, maps a tree, that's usually 4648 a VAR_DECL or a PARM_DECL, but that could also be some scalarized 4649 component or member of an aggregate type, to another tree, that 4650 can be an arbitrary expression. These stmts expand into debug 4651 insns, and are converted to debug notes by var-tracking.c. */ 4652 return false; 4653 } 4654 4655 /* Verify a gimple label statement STMT. 4656 Returns true if anything is wrong. */ 4657 4658 static bool 4659 verify_gimple_label (glabel *stmt) 4660 { 4661 tree decl = gimple_label_label (stmt); 4662 int uid; 4663 bool err = false; 4664 4665 if (TREE_CODE (decl) != LABEL_DECL) 4666 return true; 4667 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl) 4668 && DECL_CONTEXT (decl) != current_function_decl) 4669 { 4670 error ("label's context is not the current function decl"); 4671 err |= true; 4672 } 4673 4674 uid = LABEL_DECL_UID (decl); 4675 if (cfun->cfg 4676 && (uid == -1 4677 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt))) 4678 { 4679 error ("incorrect entry in label_to_block_map"); 4680 err |= true; 4681 } 4682 4683 uid = EH_LANDING_PAD_NR (decl); 4684 if (uid) 4685 { 4686 eh_landing_pad lp = get_eh_landing_pad_from_number (uid); 4687 if (decl != lp->post_landing_pad) 4688 { 4689 error ("incorrect setting of landing pad number"); 4690 err |= true; 4691 } 4692 } 4693 4694 return err; 4695 } 4696 4697 /* Verify a gimple cond statement STMT. 4698 Returns true if anything is wrong. */ 4699 4700 static bool 4701 verify_gimple_cond (gcond *stmt) 4702 { 4703 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison) 4704 { 4705 error ("invalid comparison code in gimple cond"); 4706 return true; 4707 } 4708 if (!(!gimple_cond_true_label (stmt) 4709 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL) 4710 || !(!gimple_cond_false_label (stmt) 4711 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL)) 4712 { 4713 error ("invalid labels in gimple cond"); 4714 return true; 4715 } 4716 4717 return verify_gimple_comparison (boolean_type_node, 4718 gimple_cond_lhs (stmt), 4719 gimple_cond_rhs (stmt), 4720 gimple_cond_code (stmt)); 4721 } 4722 4723 /* Verify the GIMPLE statement STMT. Returns true if there is an 4724 error, otherwise false. */ 4725 4726 static bool 4727 verify_gimple_stmt (gimple *stmt) 4728 { 4729 switch (gimple_code (stmt)) 4730 { 4731 case GIMPLE_ASSIGN: 4732 return verify_gimple_assign (as_a <gassign *> (stmt)); 4733 4734 case GIMPLE_LABEL: 4735 return verify_gimple_label (as_a <glabel *> (stmt)); 4736 4737 case GIMPLE_CALL: 4738 return verify_gimple_call (as_a <gcall *> (stmt)); 4739 4740 case GIMPLE_COND: 4741 return verify_gimple_cond (as_a <gcond *> (stmt)); 4742 4743 case GIMPLE_GOTO: 4744 return verify_gimple_goto (as_a <ggoto *> (stmt)); 4745 4746 case GIMPLE_SWITCH: 4747 return verify_gimple_switch (as_a <gswitch *> (stmt)); 4748 4749 case GIMPLE_RETURN: 4750 return verify_gimple_return (as_a <greturn *> (stmt)); 4751 4752 case GIMPLE_ASM: 4753 return false; 4754 4755 case GIMPLE_TRANSACTION: 4756 return verify_gimple_transaction (as_a <gtransaction *> (stmt)); 4757 4758 /* Tuples that do not have tree operands. */ 4759 case GIMPLE_NOP: 4760 case GIMPLE_PREDICT: 4761 case GIMPLE_RESX: 4762 case GIMPLE_EH_DISPATCH: 4763 case GIMPLE_EH_MUST_NOT_THROW: 4764 return false; 4765 4766 CASE_GIMPLE_OMP: 4767 /* OpenMP directives are validated by the FE and never operated 4768 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain 4769 non-gimple expressions when the main index variable has had 4770 its address taken. This does not affect the loop itself 4771 because the header of an GIMPLE_OMP_FOR is merely used to determine 4772 how to setup the parallel iteration. */ 4773 return false; 4774 4775 case GIMPLE_DEBUG: 4776 return verify_gimple_debug (stmt); 4777 4778 default: 4779 gcc_unreachable (); 4780 } 4781 } 4782 4783 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem, 4784 and false otherwise. */ 4785 4786 static bool 4787 verify_gimple_phi (gimple *phi) 4788 { 4789 bool err = false; 4790 unsigned i; 4791 tree phi_result = gimple_phi_result (phi); 4792 bool virtual_p; 4793 4794 if (!phi_result) 4795 { 4796 error ("invalid PHI result"); 4797 return true; 4798 } 4799 4800 virtual_p = virtual_operand_p (phi_result); 4801 if (TREE_CODE (phi_result) != SSA_NAME 4802 || (virtual_p 4803 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun))) 4804 { 4805 error ("invalid PHI result"); 4806 err = true; 4807 } 4808 4809 for (i = 0; i < gimple_phi_num_args (phi); i++) 4810 { 4811 tree t = gimple_phi_arg_def (phi, i); 4812 4813 if (!t) 4814 { 4815 error ("missing PHI def"); 4816 err |= true; 4817 continue; 4818 } 4819 /* Addressable variables do have SSA_NAMEs but they 4820 are not considered gimple values. */ 4821 else if ((TREE_CODE (t) == SSA_NAME 4822 && virtual_p != virtual_operand_p (t)) 4823 || (virtual_p 4824 && (TREE_CODE (t) != SSA_NAME 4825 || SSA_NAME_VAR (t) != gimple_vop (cfun))) 4826 || (!virtual_p 4827 && !is_gimple_val (t))) 4828 { 4829 error ("invalid PHI argument"); 4830 debug_generic_expr (t); 4831 err |= true; 4832 } 4833 #ifdef ENABLE_TYPES_CHECKING 4834 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t))) 4835 { 4836 error ("incompatible types in PHI argument %u", i); 4837 debug_generic_stmt (TREE_TYPE (phi_result)); 4838 debug_generic_stmt (TREE_TYPE (t)); 4839 err |= true; 4840 } 4841 #endif 4842 } 4843 4844 return err; 4845 } 4846 4847 /* Verify the GIMPLE statements inside the sequence STMTS. */ 4848 4849 static bool 4850 verify_gimple_in_seq_2 (gimple_seq stmts) 4851 { 4852 gimple_stmt_iterator ittr; 4853 bool err = false; 4854 4855 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr)) 4856 { 4857 gimple *stmt = gsi_stmt (ittr); 4858 4859 switch (gimple_code (stmt)) 4860 { 4861 case GIMPLE_BIND: 4862 err |= verify_gimple_in_seq_2 ( 4863 gimple_bind_body (as_a <gbind *> (stmt))); 4864 break; 4865 4866 case GIMPLE_TRY: 4867 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt)); 4868 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt)); 4869 break; 4870 4871 case GIMPLE_EH_FILTER: 4872 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt)); 4873 break; 4874 4875 case GIMPLE_EH_ELSE: 4876 { 4877 geh_else *eh_else = as_a <geh_else *> (stmt); 4878 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else)); 4879 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else)); 4880 } 4881 break; 4882 4883 case GIMPLE_CATCH: 4884 err |= verify_gimple_in_seq_2 (gimple_catch_handler ( 4885 as_a <gcatch *> (stmt))); 4886 break; 4887 4888 case GIMPLE_TRANSACTION: 4889 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt)); 4890 break; 4891 4892 default: 4893 { 4894 bool err2 = verify_gimple_stmt (stmt); 4895 if (err2) 4896 debug_gimple_stmt (stmt); 4897 err |= err2; 4898 } 4899 } 4900 } 4901 4902 return err; 4903 } 4904 4905 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there 4906 is a problem, otherwise false. */ 4907 4908 static bool 4909 verify_gimple_transaction (gtransaction *stmt) 4910 { 4911 tree lab; 4912 4913 lab = gimple_transaction_label_norm (stmt); 4914 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 4915 return true; 4916 lab = gimple_transaction_label_uninst (stmt); 4917 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 4918 return true; 4919 lab = gimple_transaction_label_over (stmt); 4920 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL) 4921 return true; 4922 4923 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt)); 4924 } 4925 4926 4927 /* Verify the GIMPLE statements inside the statement list STMTS. */ 4928 4929 DEBUG_FUNCTION void 4930 verify_gimple_in_seq (gimple_seq stmts) 4931 { 4932 timevar_push (TV_TREE_STMT_VERIFY); 4933 if (verify_gimple_in_seq_2 (stmts)) 4934 internal_error ("verify_gimple failed"); 4935 timevar_pop (TV_TREE_STMT_VERIFY); 4936 } 4937 4938 /* Return true when the T can be shared. */ 4939 4940 static bool 4941 tree_node_can_be_shared (tree t) 4942 { 4943 if (IS_TYPE_OR_DECL_P (t) 4944 || is_gimple_min_invariant (t) 4945 || TREE_CODE (t) == SSA_NAME 4946 || t == error_mark_node 4947 || TREE_CODE (t) == IDENTIFIER_NODE) 4948 return true; 4949 4950 if (TREE_CODE (t) == CASE_LABEL_EXPR) 4951 return true; 4952 4953 if (DECL_P (t)) 4954 return true; 4955 4956 return false; 4957 } 4958 4959 /* Called via walk_tree. Verify tree sharing. */ 4960 4961 static tree 4962 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data) 4963 { 4964 hash_set<void *> *visited = (hash_set<void *> *) data; 4965 4966 if (tree_node_can_be_shared (*tp)) 4967 { 4968 *walk_subtrees = false; 4969 return NULL; 4970 } 4971 4972 if (visited->add (*tp)) 4973 return *tp; 4974 4975 return NULL; 4976 } 4977 4978 /* Called via walk_gimple_stmt. Verify tree sharing. */ 4979 4980 static tree 4981 verify_node_sharing (tree *tp, int *walk_subtrees, void *data) 4982 { 4983 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 4984 return verify_node_sharing_1 (tp, walk_subtrees, wi->info); 4985 } 4986 4987 static bool eh_error_found; 4988 bool 4989 verify_eh_throw_stmt_node (gimple *const &stmt, const int &, 4990 hash_set<gimple *> *visited) 4991 { 4992 if (!visited->contains (stmt)) 4993 { 4994 error ("dead STMT in EH table"); 4995 debug_gimple_stmt (stmt); 4996 eh_error_found = true; 4997 } 4998 return true; 4999 } 5000 5001 /* Verify if the location LOCs block is in BLOCKS. */ 5002 5003 static bool 5004 verify_location (hash_set<tree> *blocks, location_t loc) 5005 { 5006 tree block = LOCATION_BLOCK (loc); 5007 if (block != NULL_TREE 5008 && !blocks->contains (block)) 5009 { 5010 error ("location references block not in block tree"); 5011 return true; 5012 } 5013 if (block != NULL_TREE) 5014 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block)); 5015 return false; 5016 } 5017 5018 /* Called via walk_tree. Verify that expressions have no blocks. */ 5019 5020 static tree 5021 verify_expr_no_block (tree *tp, int *walk_subtrees, void *) 5022 { 5023 if (!EXPR_P (*tp)) 5024 { 5025 *walk_subtrees = false; 5026 return NULL; 5027 } 5028 5029 location_t loc = EXPR_LOCATION (*tp); 5030 if (LOCATION_BLOCK (loc) != NULL) 5031 return *tp; 5032 5033 return NULL; 5034 } 5035 5036 /* Called via walk_tree. Verify locations of expressions. */ 5037 5038 static tree 5039 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data) 5040 { 5041 hash_set<tree> *blocks = (hash_set<tree> *) data; 5042 5043 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp)) 5044 { 5045 tree t = DECL_DEBUG_EXPR (*tp); 5046 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); 5047 if (addr) 5048 return addr; 5049 } 5050 if ((VAR_P (*tp) 5051 || TREE_CODE (*tp) == PARM_DECL 5052 || TREE_CODE (*tp) == RESULT_DECL) 5053 && DECL_HAS_VALUE_EXPR_P (*tp)) 5054 { 5055 tree t = DECL_VALUE_EXPR (*tp); 5056 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL); 5057 if (addr) 5058 return addr; 5059 } 5060 5061 if (!EXPR_P (*tp)) 5062 { 5063 *walk_subtrees = false; 5064 return NULL; 5065 } 5066 5067 location_t loc = EXPR_LOCATION (*tp); 5068 if (verify_location (blocks, loc)) 5069 return *tp; 5070 5071 return NULL; 5072 } 5073 5074 /* Called via walk_gimple_op. Verify locations of expressions. */ 5075 5076 static tree 5077 verify_expr_location (tree *tp, int *walk_subtrees, void *data) 5078 { 5079 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 5080 return verify_expr_location_1 (tp, walk_subtrees, wi->info); 5081 } 5082 5083 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */ 5084 5085 static void 5086 collect_subblocks (hash_set<tree> *blocks, tree block) 5087 { 5088 tree t; 5089 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t)) 5090 { 5091 blocks->add (t); 5092 collect_subblocks (blocks, t); 5093 } 5094 } 5095 5096 /* Verify the GIMPLE statements in the CFG of FN. */ 5097 5098 DEBUG_FUNCTION void 5099 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow) 5100 { 5101 basic_block bb; 5102 bool err = false; 5103 5104 timevar_push (TV_TREE_STMT_VERIFY); 5105 hash_set<void *> visited; 5106 hash_set<gimple *> visited_stmts; 5107 5108 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */ 5109 hash_set<tree> blocks; 5110 if (DECL_INITIAL (fn->decl)) 5111 { 5112 blocks.add (DECL_INITIAL (fn->decl)); 5113 collect_subblocks (&blocks, DECL_INITIAL (fn->decl)); 5114 } 5115 5116 FOR_EACH_BB_FN (bb, fn) 5117 { 5118 gimple_stmt_iterator gsi; 5119 5120 for (gphi_iterator gpi = gsi_start_phis (bb); 5121 !gsi_end_p (gpi); 5122 gsi_next (&gpi)) 5123 { 5124 gphi *phi = gpi.phi (); 5125 bool err2 = false; 5126 unsigned i; 5127 5128 visited_stmts.add (phi); 5129 5130 if (gimple_bb (phi) != bb) 5131 { 5132 error ("gimple_bb (phi) is set to a wrong basic block"); 5133 err2 = true; 5134 } 5135 5136 err2 |= verify_gimple_phi (phi); 5137 5138 /* Only PHI arguments have locations. */ 5139 if (gimple_location (phi) != UNKNOWN_LOCATION) 5140 { 5141 error ("PHI node with location"); 5142 err2 = true; 5143 } 5144 5145 for (i = 0; i < gimple_phi_num_args (phi); i++) 5146 { 5147 tree arg = gimple_phi_arg_def (phi, i); 5148 tree addr = walk_tree (&arg, verify_node_sharing_1, 5149 &visited, NULL); 5150 if (addr) 5151 { 5152 error ("incorrect sharing of tree nodes"); 5153 debug_generic_expr (addr); 5154 err2 |= true; 5155 } 5156 location_t loc = gimple_phi_arg_location (phi, i); 5157 if (virtual_operand_p (gimple_phi_result (phi)) 5158 && loc != UNKNOWN_LOCATION) 5159 { 5160 error ("virtual PHI with argument locations"); 5161 err2 = true; 5162 } 5163 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL); 5164 if (addr) 5165 { 5166 debug_generic_expr (addr); 5167 err2 = true; 5168 } 5169 err2 |= verify_location (&blocks, loc); 5170 } 5171 5172 if (err2) 5173 debug_gimple_stmt (phi); 5174 err |= err2; 5175 } 5176 5177 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 5178 { 5179 gimple *stmt = gsi_stmt (gsi); 5180 bool err2 = false; 5181 struct walk_stmt_info wi; 5182 tree addr; 5183 int lp_nr; 5184 5185 visited_stmts.add (stmt); 5186 5187 if (gimple_bb (stmt) != bb) 5188 { 5189 error ("gimple_bb (stmt) is set to a wrong basic block"); 5190 err2 = true; 5191 } 5192 5193 err2 |= verify_gimple_stmt (stmt); 5194 err2 |= verify_location (&blocks, gimple_location (stmt)); 5195 5196 memset (&wi, 0, sizeof (wi)); 5197 wi.info = (void *) &visited; 5198 addr = walk_gimple_op (stmt, verify_node_sharing, &wi); 5199 if (addr) 5200 { 5201 error ("incorrect sharing of tree nodes"); 5202 debug_generic_expr (addr); 5203 err2 |= true; 5204 } 5205 5206 memset (&wi, 0, sizeof (wi)); 5207 wi.info = (void *) &blocks; 5208 addr = walk_gimple_op (stmt, verify_expr_location, &wi); 5209 if (addr) 5210 { 5211 debug_generic_expr (addr); 5212 err2 |= true; 5213 } 5214 5215 /* ??? Instead of not checking these stmts at all the walker 5216 should know its context via wi. */ 5217 if (!is_gimple_debug (stmt) 5218 && !is_gimple_omp (stmt)) 5219 { 5220 memset (&wi, 0, sizeof (wi)); 5221 addr = walk_gimple_op (stmt, verify_expr, &wi); 5222 if (addr) 5223 { 5224 debug_generic_expr (addr); 5225 inform (gimple_location (stmt), "in statement"); 5226 err2 |= true; 5227 } 5228 } 5229 5230 /* If the statement is marked as part of an EH region, then it is 5231 expected that the statement could throw. Verify that when we 5232 have optimizations that simplify statements such that we prove 5233 that they cannot throw, that we update other data structures 5234 to match. */ 5235 lp_nr = lookup_stmt_eh_lp (stmt); 5236 if (lp_nr > 0) 5237 { 5238 if (!stmt_could_throw_p (stmt)) 5239 { 5240 if (verify_nothrow) 5241 { 5242 error ("statement marked for throw, but doesn%'t"); 5243 err2 |= true; 5244 } 5245 } 5246 else if (!gsi_one_before_end_p (gsi)) 5247 { 5248 error ("statement marked for throw in middle of block"); 5249 err2 |= true; 5250 } 5251 } 5252 5253 if (err2) 5254 debug_gimple_stmt (stmt); 5255 err |= err2; 5256 } 5257 } 5258 5259 eh_error_found = false; 5260 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun); 5261 if (eh_table) 5262 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node> 5263 (&visited_stmts); 5264 5265 if (err || eh_error_found) 5266 internal_error ("verify_gimple failed"); 5267 5268 verify_histograms (); 5269 timevar_pop (TV_TREE_STMT_VERIFY); 5270 } 5271 5272 5273 /* Verifies that the flow information is OK. */ 5274 5275 static int 5276 gimple_verify_flow_info (void) 5277 { 5278 int err = 0; 5279 basic_block bb; 5280 gimple_stmt_iterator gsi; 5281 gimple *stmt; 5282 edge e; 5283 edge_iterator ei; 5284 5285 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq 5286 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) 5287 { 5288 error ("ENTRY_BLOCK has IL associated with it"); 5289 err = 1; 5290 } 5291 5292 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq 5293 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes) 5294 { 5295 error ("EXIT_BLOCK has IL associated with it"); 5296 err = 1; 5297 } 5298 5299 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 5300 if (e->flags & EDGE_FALLTHRU) 5301 { 5302 error ("fallthru to exit from bb %d", e->src->index); 5303 err = 1; 5304 } 5305 5306 FOR_EACH_BB_FN (bb, cfun) 5307 { 5308 bool found_ctrl_stmt = false; 5309 5310 stmt = NULL; 5311 5312 /* Skip labels on the start of basic block. */ 5313 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 5314 { 5315 tree label; 5316 gimple *prev_stmt = stmt; 5317 5318 stmt = gsi_stmt (gsi); 5319 5320 if (gimple_code (stmt) != GIMPLE_LABEL) 5321 break; 5322 5323 label = gimple_label_label (as_a <glabel *> (stmt)); 5324 if (prev_stmt && DECL_NONLOCAL (label)) 5325 { 5326 error ("nonlocal label "); 5327 print_generic_expr (stderr, label, 0); 5328 fprintf (stderr, " is not first in a sequence of labels in bb %d", 5329 bb->index); 5330 err = 1; 5331 } 5332 5333 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0) 5334 { 5335 error ("EH landing pad label "); 5336 print_generic_expr (stderr, label, 0); 5337 fprintf (stderr, " is not first in a sequence of labels in bb %d", 5338 bb->index); 5339 err = 1; 5340 } 5341 5342 if (label_to_block (label) != bb) 5343 { 5344 error ("label "); 5345 print_generic_expr (stderr, label, 0); 5346 fprintf (stderr, " to block does not match in bb %d", 5347 bb->index); 5348 err = 1; 5349 } 5350 5351 if (decl_function_context (label) != current_function_decl) 5352 { 5353 error ("label "); 5354 print_generic_expr (stderr, label, 0); 5355 fprintf (stderr, " has incorrect context in bb %d", 5356 bb->index); 5357 err = 1; 5358 } 5359 } 5360 5361 /* Verify that body of basic block BB is free of control flow. */ 5362 for (; !gsi_end_p (gsi); gsi_next (&gsi)) 5363 { 5364 gimple *stmt = gsi_stmt (gsi); 5365 5366 if (found_ctrl_stmt) 5367 { 5368 error ("control flow in the middle of basic block %d", 5369 bb->index); 5370 err = 1; 5371 } 5372 5373 if (stmt_ends_bb_p (stmt)) 5374 found_ctrl_stmt = true; 5375 5376 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 5377 { 5378 error ("label "); 5379 print_generic_expr (stderr, gimple_label_label (label_stmt), 0); 5380 fprintf (stderr, " in the middle of basic block %d", bb->index); 5381 err = 1; 5382 } 5383 } 5384 5385 gsi = gsi_last_bb (bb); 5386 if (gsi_end_p (gsi)) 5387 continue; 5388 5389 stmt = gsi_stmt (gsi); 5390 5391 if (gimple_code (stmt) == GIMPLE_LABEL) 5392 continue; 5393 5394 err |= verify_eh_edges (stmt); 5395 5396 if (is_ctrl_stmt (stmt)) 5397 { 5398 FOR_EACH_EDGE (e, ei, bb->succs) 5399 if (e->flags & EDGE_FALLTHRU) 5400 { 5401 error ("fallthru edge after a control statement in bb %d", 5402 bb->index); 5403 err = 1; 5404 } 5405 } 5406 5407 if (gimple_code (stmt) != GIMPLE_COND) 5408 { 5409 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set 5410 after anything else but if statement. */ 5411 FOR_EACH_EDGE (e, ei, bb->succs) 5412 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)) 5413 { 5414 error ("true/false edge after a non-GIMPLE_COND in bb %d", 5415 bb->index); 5416 err = 1; 5417 } 5418 } 5419 5420 switch (gimple_code (stmt)) 5421 { 5422 case GIMPLE_COND: 5423 { 5424 edge true_edge; 5425 edge false_edge; 5426 5427 extract_true_false_edges_from_block (bb, &true_edge, &false_edge); 5428 5429 if (!true_edge 5430 || !false_edge 5431 || !(true_edge->flags & EDGE_TRUE_VALUE) 5432 || !(false_edge->flags & EDGE_FALSE_VALUE) 5433 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) 5434 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL)) 5435 || EDGE_COUNT (bb->succs) >= 3) 5436 { 5437 error ("wrong outgoing edge flags at end of bb %d", 5438 bb->index); 5439 err = 1; 5440 } 5441 } 5442 break; 5443 5444 case GIMPLE_GOTO: 5445 if (simple_goto_p (stmt)) 5446 { 5447 error ("explicit goto at end of bb %d", bb->index); 5448 err = 1; 5449 } 5450 else 5451 { 5452 /* FIXME. We should double check that the labels in the 5453 destination blocks have their address taken. */ 5454 FOR_EACH_EDGE (e, ei, bb->succs) 5455 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE 5456 | EDGE_FALSE_VALUE)) 5457 || !(e->flags & EDGE_ABNORMAL)) 5458 { 5459 error ("wrong outgoing edge flags at end of bb %d", 5460 bb->index); 5461 err = 1; 5462 } 5463 } 5464 break; 5465 5466 case GIMPLE_CALL: 5467 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN)) 5468 break; 5469 /* fallthru */ 5470 case GIMPLE_RETURN: 5471 if (!single_succ_p (bb) 5472 || (single_succ_edge (bb)->flags 5473 & (EDGE_FALLTHRU | EDGE_ABNORMAL 5474 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 5475 { 5476 error ("wrong outgoing edge flags at end of bb %d", bb->index); 5477 err = 1; 5478 } 5479 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun)) 5480 { 5481 error ("return edge does not point to exit in bb %d", 5482 bb->index); 5483 err = 1; 5484 } 5485 break; 5486 5487 case GIMPLE_SWITCH: 5488 { 5489 gswitch *switch_stmt = as_a <gswitch *> (stmt); 5490 tree prev; 5491 edge e; 5492 size_t i, n; 5493 5494 n = gimple_switch_num_labels (switch_stmt); 5495 5496 /* Mark all the destination basic blocks. */ 5497 for (i = 0; i < n; ++i) 5498 { 5499 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i)); 5500 basic_block label_bb = label_to_block (lab); 5501 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1); 5502 label_bb->aux = (void *)1; 5503 } 5504 5505 /* Verify that the case labels are sorted. */ 5506 prev = gimple_switch_label (switch_stmt, 0); 5507 for (i = 1; i < n; ++i) 5508 { 5509 tree c = gimple_switch_label (switch_stmt, i); 5510 if (!CASE_LOW (c)) 5511 { 5512 error ("found default case not at the start of " 5513 "case vector"); 5514 err = 1; 5515 continue; 5516 } 5517 if (CASE_LOW (prev) 5518 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c))) 5519 { 5520 error ("case labels not sorted: "); 5521 print_generic_expr (stderr, prev, 0); 5522 fprintf (stderr," is greater than "); 5523 print_generic_expr (stderr, c, 0); 5524 fprintf (stderr," but comes before it.\n"); 5525 err = 1; 5526 } 5527 prev = c; 5528 } 5529 /* VRP will remove the default case if it can prove it will 5530 never be executed. So do not verify there always exists 5531 a default case here. */ 5532 5533 FOR_EACH_EDGE (e, ei, bb->succs) 5534 { 5535 if (!e->dest->aux) 5536 { 5537 error ("extra outgoing edge %d->%d", 5538 bb->index, e->dest->index); 5539 err = 1; 5540 } 5541 5542 e->dest->aux = (void *)2; 5543 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL 5544 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))) 5545 { 5546 error ("wrong outgoing edge flags at end of bb %d", 5547 bb->index); 5548 err = 1; 5549 } 5550 } 5551 5552 /* Check that we have all of them. */ 5553 for (i = 0; i < n; ++i) 5554 { 5555 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i)); 5556 basic_block label_bb = label_to_block (lab); 5557 5558 if (label_bb->aux != (void *)2) 5559 { 5560 error ("missing edge %i->%i", bb->index, label_bb->index); 5561 err = 1; 5562 } 5563 } 5564 5565 FOR_EACH_EDGE (e, ei, bb->succs) 5566 e->dest->aux = (void *)0; 5567 } 5568 break; 5569 5570 case GIMPLE_EH_DISPATCH: 5571 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt)); 5572 break; 5573 5574 default: 5575 break; 5576 } 5577 } 5578 5579 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY) 5580 verify_dominators (CDI_DOMINATORS); 5581 5582 return err; 5583 } 5584 5585 5586 /* Updates phi nodes after creating a forwarder block joined 5587 by edge FALLTHRU. */ 5588 5589 static void 5590 gimple_make_forwarder_block (edge fallthru) 5591 { 5592 edge e; 5593 edge_iterator ei; 5594 basic_block dummy, bb; 5595 tree var; 5596 gphi_iterator gsi; 5597 5598 dummy = fallthru->src; 5599 bb = fallthru->dest; 5600 5601 if (single_pred_p (bb)) 5602 return; 5603 5604 /* If we redirected a branch we must create new PHI nodes at the 5605 start of BB. */ 5606 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi)) 5607 { 5608 gphi *phi, *new_phi; 5609 5610 phi = gsi.phi (); 5611 var = gimple_phi_result (phi); 5612 new_phi = create_phi_node (var, bb); 5613 gimple_phi_set_result (phi, copy_ssa_name (var, phi)); 5614 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru, 5615 UNKNOWN_LOCATION); 5616 } 5617 5618 /* Add the arguments we have stored on edges. */ 5619 FOR_EACH_EDGE (e, ei, bb->preds) 5620 { 5621 if (e == fallthru) 5622 continue; 5623 5624 flush_pending_stmts (e); 5625 } 5626 } 5627 5628 5629 /* Return a non-special label in the head of basic block BLOCK. 5630 Create one if it doesn't exist. */ 5631 5632 tree 5633 gimple_block_label (basic_block bb) 5634 { 5635 gimple_stmt_iterator i, s = gsi_start_bb (bb); 5636 bool first = true; 5637 tree label; 5638 glabel *stmt; 5639 5640 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i)) 5641 { 5642 stmt = dyn_cast <glabel *> (gsi_stmt (i)); 5643 if (!stmt) 5644 break; 5645 label = gimple_label_label (stmt); 5646 if (!DECL_NONLOCAL (label)) 5647 { 5648 if (!first) 5649 gsi_move_before (&i, &s); 5650 return label; 5651 } 5652 } 5653 5654 label = create_artificial_label (UNKNOWN_LOCATION); 5655 stmt = gimple_build_label (label); 5656 gsi_insert_before (&s, stmt, GSI_NEW_STMT); 5657 return label; 5658 } 5659 5660 5661 /* Attempt to perform edge redirection by replacing a possibly complex 5662 jump instruction by a goto or by removing the jump completely. 5663 This can apply only if all edges now point to the same block. The 5664 parameters and return values are equivalent to 5665 redirect_edge_and_branch. */ 5666 5667 static edge 5668 gimple_try_redirect_by_replacing_jump (edge e, basic_block target) 5669 { 5670 basic_block src = e->src; 5671 gimple_stmt_iterator i; 5672 gimple *stmt; 5673 5674 /* We can replace or remove a complex jump only when we have exactly 5675 two edges. */ 5676 if (EDGE_COUNT (src->succs) != 2 5677 /* Verify that all targets will be TARGET. Specifically, the 5678 edge that is not E must also go to TARGET. */ 5679 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target) 5680 return NULL; 5681 5682 i = gsi_last_bb (src); 5683 if (gsi_end_p (i)) 5684 return NULL; 5685 5686 stmt = gsi_stmt (i); 5687 5688 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH) 5689 { 5690 gsi_remove (&i, true); 5691 e = ssa_redirect_edge (e, target); 5692 e->flags = EDGE_FALLTHRU; 5693 return e; 5694 } 5695 5696 return NULL; 5697 } 5698 5699 5700 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the 5701 edge representing the redirected branch. */ 5702 5703 static edge 5704 gimple_redirect_edge_and_branch (edge e, basic_block dest) 5705 { 5706 basic_block bb = e->src; 5707 gimple_stmt_iterator gsi; 5708 edge ret; 5709 gimple *stmt; 5710 5711 if (e->flags & EDGE_ABNORMAL) 5712 return NULL; 5713 5714 if (e->dest == dest) 5715 return NULL; 5716 5717 if (e->flags & EDGE_EH) 5718 return redirect_eh_edge (e, dest); 5719 5720 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 5721 { 5722 ret = gimple_try_redirect_by_replacing_jump (e, dest); 5723 if (ret) 5724 return ret; 5725 } 5726 5727 gsi = gsi_last_bb (bb); 5728 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi); 5729 5730 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK) 5731 { 5732 case GIMPLE_COND: 5733 /* For COND_EXPR, we only need to redirect the edge. */ 5734 break; 5735 5736 case GIMPLE_GOTO: 5737 /* No non-abnormal edges should lead from a non-simple goto, and 5738 simple ones should be represented implicitly. */ 5739 gcc_unreachable (); 5740 5741 case GIMPLE_SWITCH: 5742 { 5743 gswitch *switch_stmt = as_a <gswitch *> (stmt); 5744 tree label = gimple_block_label (dest); 5745 tree cases = get_cases_for_edge (e, switch_stmt); 5746 5747 /* If we have a list of cases associated with E, then use it 5748 as it's a lot faster than walking the entire case vector. */ 5749 if (cases) 5750 { 5751 edge e2 = find_edge (e->src, dest); 5752 tree last, first; 5753 5754 first = cases; 5755 while (cases) 5756 { 5757 last = cases; 5758 CASE_LABEL (cases) = label; 5759 cases = CASE_CHAIN (cases); 5760 } 5761 5762 /* If there was already an edge in the CFG, then we need 5763 to move all the cases associated with E to E2. */ 5764 if (e2) 5765 { 5766 tree cases2 = get_cases_for_edge (e2, switch_stmt); 5767 5768 CASE_CHAIN (last) = CASE_CHAIN (cases2); 5769 CASE_CHAIN (cases2) = first; 5770 } 5771 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index); 5772 } 5773 else 5774 { 5775 size_t i, n = gimple_switch_num_labels (switch_stmt); 5776 5777 for (i = 0; i < n; i++) 5778 { 5779 tree elt = gimple_switch_label (switch_stmt, i); 5780 if (label_to_block (CASE_LABEL (elt)) == e->dest) 5781 CASE_LABEL (elt) = label; 5782 } 5783 } 5784 } 5785 break; 5786 5787 case GIMPLE_ASM: 5788 { 5789 gasm *asm_stmt = as_a <gasm *> (stmt); 5790 int i, n = gimple_asm_nlabels (asm_stmt); 5791 tree label = NULL; 5792 5793 for (i = 0; i < n; ++i) 5794 { 5795 tree cons = gimple_asm_label_op (asm_stmt, i); 5796 if (label_to_block (TREE_VALUE (cons)) == e->dest) 5797 { 5798 if (!label) 5799 label = gimple_block_label (dest); 5800 TREE_VALUE (cons) = label; 5801 } 5802 } 5803 5804 /* If we didn't find any label matching the former edge in the 5805 asm labels, we must be redirecting the fallthrough 5806 edge. */ 5807 gcc_assert (label || (e->flags & EDGE_FALLTHRU)); 5808 } 5809 break; 5810 5811 case GIMPLE_RETURN: 5812 gsi_remove (&gsi, true); 5813 e->flags |= EDGE_FALLTHRU; 5814 break; 5815 5816 case GIMPLE_OMP_RETURN: 5817 case GIMPLE_OMP_CONTINUE: 5818 case GIMPLE_OMP_SECTIONS_SWITCH: 5819 case GIMPLE_OMP_FOR: 5820 /* The edges from OMP constructs can be simply redirected. */ 5821 break; 5822 5823 case GIMPLE_EH_DISPATCH: 5824 if (!(e->flags & EDGE_FALLTHRU)) 5825 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest); 5826 break; 5827 5828 case GIMPLE_TRANSACTION: 5829 if (e->flags & EDGE_TM_ABORT) 5830 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt), 5831 gimple_block_label (dest)); 5832 else if (e->flags & EDGE_TM_UNINSTRUMENTED) 5833 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt), 5834 gimple_block_label (dest)); 5835 else 5836 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt), 5837 gimple_block_label (dest)); 5838 break; 5839 5840 default: 5841 /* Otherwise it must be a fallthru edge, and we don't need to 5842 do anything besides redirecting it. */ 5843 gcc_assert (e->flags & EDGE_FALLTHRU); 5844 break; 5845 } 5846 5847 /* Update/insert PHI nodes as necessary. */ 5848 5849 /* Now update the edges in the CFG. */ 5850 e = ssa_redirect_edge (e, dest); 5851 5852 return e; 5853 } 5854 5855 /* Returns true if it is possible to remove edge E by redirecting 5856 it to the destination of the other edge from E->src. */ 5857 5858 static bool 5859 gimple_can_remove_branch_p (const_edge e) 5860 { 5861 if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) 5862 return false; 5863 5864 return true; 5865 } 5866 5867 /* Simple wrapper, as we can always redirect fallthru edges. */ 5868 5869 static basic_block 5870 gimple_redirect_edge_and_branch_force (edge e, basic_block dest) 5871 { 5872 e = gimple_redirect_edge_and_branch (e, dest); 5873 gcc_assert (e); 5874 5875 return NULL; 5876 } 5877 5878 5879 /* Splits basic block BB after statement STMT (but at least after the 5880 labels). If STMT is NULL, BB is split just after the labels. */ 5881 5882 static basic_block 5883 gimple_split_block (basic_block bb, void *stmt) 5884 { 5885 gimple_stmt_iterator gsi; 5886 gimple_stmt_iterator gsi_tgt; 5887 gimple_seq list; 5888 basic_block new_bb; 5889 edge e; 5890 edge_iterator ei; 5891 5892 new_bb = create_empty_bb (bb); 5893 5894 /* Redirect the outgoing edges. */ 5895 new_bb->succs = bb->succs; 5896 bb->succs = NULL; 5897 FOR_EACH_EDGE (e, ei, new_bb->succs) 5898 e->src = new_bb; 5899 5900 /* Get a stmt iterator pointing to the first stmt to move. */ 5901 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL) 5902 gsi = gsi_after_labels (bb); 5903 else 5904 { 5905 gsi = gsi_for_stmt ((gimple *) stmt); 5906 gsi_next (&gsi); 5907 } 5908 5909 /* Move everything from GSI to the new basic block. */ 5910 if (gsi_end_p (gsi)) 5911 return new_bb; 5912 5913 /* Split the statement list - avoid re-creating new containers as this 5914 brings ugly quadratic memory consumption in the inliner. 5915 (We are still quadratic since we need to update stmt BB pointers, 5916 sadly.) */ 5917 gsi_split_seq_before (&gsi, &list); 5918 set_bb_seq (new_bb, list); 5919 for (gsi_tgt = gsi_start (list); 5920 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt)) 5921 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb); 5922 5923 return new_bb; 5924 } 5925 5926 5927 /* Moves basic block BB after block AFTER. */ 5928 5929 static bool 5930 gimple_move_block_after (basic_block bb, basic_block after) 5931 { 5932 if (bb->prev_bb == after) 5933 return true; 5934 5935 unlink_block (bb); 5936 link_block (bb, after); 5937 5938 return true; 5939 } 5940 5941 5942 /* Return TRUE if block BB has no executable statements, otherwise return 5943 FALSE. */ 5944 5945 static bool 5946 gimple_empty_block_p (basic_block bb) 5947 { 5948 /* BB must have no executable statements. */ 5949 gimple_stmt_iterator gsi = gsi_after_labels (bb); 5950 if (phi_nodes (bb)) 5951 return false; 5952 if (gsi_end_p (gsi)) 5953 return true; 5954 if (is_gimple_debug (gsi_stmt (gsi))) 5955 gsi_next_nondebug (&gsi); 5956 return gsi_end_p (gsi); 5957 } 5958 5959 5960 /* Split a basic block if it ends with a conditional branch and if the 5961 other part of the block is not empty. */ 5962 5963 static basic_block 5964 gimple_split_block_before_cond_jump (basic_block bb) 5965 { 5966 gimple *last, *split_point; 5967 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 5968 if (gsi_end_p (gsi)) 5969 return NULL; 5970 last = gsi_stmt (gsi); 5971 if (gimple_code (last) != GIMPLE_COND 5972 && gimple_code (last) != GIMPLE_SWITCH) 5973 return NULL; 5974 gsi_prev (&gsi); 5975 split_point = gsi_stmt (gsi); 5976 return split_block (bb, split_point)->dest; 5977 } 5978 5979 5980 /* Return true if basic_block can be duplicated. */ 5981 5982 static bool 5983 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED) 5984 { 5985 return true; 5986 } 5987 5988 /* Create a duplicate of the basic block BB. NOTE: This does not 5989 preserve SSA form. */ 5990 5991 static basic_block 5992 gimple_duplicate_bb (basic_block bb) 5993 { 5994 basic_block new_bb; 5995 gimple_stmt_iterator gsi_tgt; 5996 5997 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); 5998 5999 /* Copy the PHI nodes. We ignore PHI node arguments here because 6000 the incoming edges have not been setup yet. */ 6001 for (gphi_iterator gpi = gsi_start_phis (bb); 6002 !gsi_end_p (gpi); 6003 gsi_next (&gpi)) 6004 { 6005 gphi *phi, *copy; 6006 phi = gpi.phi (); 6007 copy = create_phi_node (NULL_TREE, new_bb); 6008 create_new_def_for (gimple_phi_result (phi), copy, 6009 gimple_phi_result_ptr (copy)); 6010 gimple_set_uid (copy, gimple_uid (phi)); 6011 } 6012 6013 gsi_tgt = gsi_start_bb (new_bb); 6014 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); 6015 !gsi_end_p (gsi); 6016 gsi_next (&gsi)) 6017 { 6018 def_operand_p def_p; 6019 ssa_op_iter op_iter; 6020 tree lhs; 6021 gimple *stmt, *copy; 6022 6023 stmt = gsi_stmt (gsi); 6024 if (gimple_code (stmt) == GIMPLE_LABEL) 6025 continue; 6026 6027 /* Don't duplicate label debug stmts. */ 6028 if (gimple_debug_bind_p (stmt) 6029 && TREE_CODE (gimple_debug_bind_get_var (stmt)) 6030 == LABEL_DECL) 6031 continue; 6032 6033 /* Create a new copy of STMT and duplicate STMT's virtual 6034 operands. */ 6035 copy = gimple_copy (stmt); 6036 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); 6037 6038 maybe_duplicate_eh_stmt (copy, stmt); 6039 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); 6040 6041 /* When copying around a stmt writing into a local non-user 6042 aggregate, make sure it won't share stack slot with other 6043 vars. */ 6044 lhs = gimple_get_lhs (stmt); 6045 if (lhs && TREE_CODE (lhs) != SSA_NAME) 6046 { 6047 tree base = get_base_address (lhs); 6048 if (base 6049 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL) 6050 && DECL_IGNORED_P (base) 6051 && !TREE_STATIC (base) 6052 && !DECL_EXTERNAL (base) 6053 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base))) 6054 DECL_NONSHAREABLE (base) = 1; 6055 } 6056 6057 /* Create new names for all the definitions created by COPY and 6058 add replacement mappings for each new name. */ 6059 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) 6060 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p); 6061 } 6062 6063 return new_bb; 6064 } 6065 6066 /* Adds phi node arguments for edge E_COPY after basic block duplication. */ 6067 6068 static void 6069 add_phi_args_after_copy_edge (edge e_copy) 6070 { 6071 basic_block bb, bb_copy = e_copy->src, dest; 6072 edge e; 6073 edge_iterator ei; 6074 gphi *phi, *phi_copy; 6075 tree def; 6076 gphi_iterator psi, psi_copy; 6077 6078 if (gimple_seq_empty_p (phi_nodes (e_copy->dest))) 6079 return; 6080 6081 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy; 6082 6083 if (e_copy->dest->flags & BB_DUPLICATED) 6084 dest = get_bb_original (e_copy->dest); 6085 else 6086 dest = e_copy->dest; 6087 6088 e = find_edge (bb, dest); 6089 if (!e) 6090 { 6091 /* During loop unrolling the target of the latch edge is copied. 6092 In this case we are not looking for edge to dest, but to 6093 duplicated block whose original was dest. */ 6094 FOR_EACH_EDGE (e, ei, bb->succs) 6095 { 6096 if ((e->dest->flags & BB_DUPLICATED) 6097 && get_bb_original (e->dest) == dest) 6098 break; 6099 } 6100 6101 gcc_assert (e != NULL); 6102 } 6103 6104 for (psi = gsi_start_phis (e->dest), 6105 psi_copy = gsi_start_phis (e_copy->dest); 6106 !gsi_end_p (psi); 6107 gsi_next (&psi), gsi_next (&psi_copy)) 6108 { 6109 phi = psi.phi (); 6110 phi_copy = psi_copy.phi (); 6111 def = PHI_ARG_DEF_FROM_EDGE (phi, e); 6112 add_phi_arg (phi_copy, def, e_copy, 6113 gimple_phi_arg_location_from_edge (phi, e)); 6114 } 6115 } 6116 6117 6118 /* Basic block BB_COPY was created by code duplication. Add phi node 6119 arguments for edges going out of BB_COPY. The blocks that were 6120 duplicated have BB_DUPLICATED set. */ 6121 6122 void 6123 add_phi_args_after_copy_bb (basic_block bb_copy) 6124 { 6125 edge e_copy; 6126 edge_iterator ei; 6127 6128 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs) 6129 { 6130 add_phi_args_after_copy_edge (e_copy); 6131 } 6132 } 6133 6134 /* Blocks in REGION_COPY array of length N_REGION were created by 6135 duplication of basic blocks. Add phi node arguments for edges 6136 going from these blocks. If E_COPY is not NULL, also add 6137 phi node arguments for its destination.*/ 6138 6139 void 6140 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region, 6141 edge e_copy) 6142 { 6143 unsigned i; 6144 6145 for (i = 0; i < n_region; i++) 6146 region_copy[i]->flags |= BB_DUPLICATED; 6147 6148 for (i = 0; i < n_region; i++) 6149 add_phi_args_after_copy_bb (region_copy[i]); 6150 if (e_copy) 6151 add_phi_args_after_copy_edge (e_copy); 6152 6153 for (i = 0; i < n_region; i++) 6154 region_copy[i]->flags &= ~BB_DUPLICATED; 6155 } 6156 6157 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single 6158 important exit edge EXIT. By important we mean that no SSA name defined 6159 inside region is live over the other exit edges of the region. All entry 6160 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected 6161 to the duplicate of the region. Dominance and loop information is 6162 updated if UPDATE_DOMINANCE is true, but not the SSA web. If 6163 UPDATE_DOMINANCE is false then we assume that the caller will update the 6164 dominance information after calling this function. The new basic 6165 blocks are stored to REGION_COPY in the same order as they had in REGION, 6166 provided that REGION_COPY is not NULL. 6167 The function returns false if it is unable to copy the region, 6168 true otherwise. */ 6169 6170 bool 6171 gimple_duplicate_sese_region (edge entry, edge exit, 6172 basic_block *region, unsigned n_region, 6173 basic_block *region_copy, 6174 bool update_dominance) 6175 { 6176 unsigned i; 6177 bool free_region_copy = false, copying_header = false; 6178 struct loop *loop = entry->dest->loop_father; 6179 edge exit_copy; 6180 vec<basic_block> doms; 6181 edge redirected; 6182 int total_freq = 0, entry_freq = 0; 6183 gcov_type total_count = 0, entry_count = 0; 6184 6185 if (!can_copy_bbs_p (region, n_region)) 6186 return false; 6187 6188 /* Some sanity checking. Note that we do not check for all possible 6189 missuses of the functions. I.e. if you ask to copy something weird, 6190 it will work, but the state of structures probably will not be 6191 correct. */ 6192 for (i = 0; i < n_region; i++) 6193 { 6194 /* We do not handle subloops, i.e. all the blocks must belong to the 6195 same loop. */ 6196 if (region[i]->loop_father != loop) 6197 return false; 6198 6199 if (region[i] != entry->dest 6200 && region[i] == loop->header) 6201 return false; 6202 } 6203 6204 /* In case the function is used for loop header copying (which is the primary 6205 use), ensure that EXIT and its copy will be new latch and entry edges. */ 6206 if (loop->header == entry->dest) 6207 { 6208 copying_header = true; 6209 6210 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src)) 6211 return false; 6212 6213 for (i = 0; i < n_region; i++) 6214 if (region[i] != exit->src 6215 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src)) 6216 return false; 6217 } 6218 6219 initialize_original_copy_tables (); 6220 6221 if (copying_header) 6222 set_loop_copy (loop, loop_outer (loop)); 6223 else 6224 set_loop_copy (loop, loop); 6225 6226 if (!region_copy) 6227 { 6228 region_copy = XNEWVEC (basic_block, n_region); 6229 free_region_copy = true; 6230 } 6231 6232 /* Record blocks outside the region that are dominated by something 6233 inside. */ 6234 if (update_dominance) 6235 { 6236 doms.create (0); 6237 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); 6238 } 6239 6240 if (entry->dest->count) 6241 { 6242 total_count = entry->dest->count; 6243 entry_count = entry->count; 6244 /* Fix up corner cases, to avoid division by zero or creation of negative 6245 frequencies. */ 6246 if (entry_count > total_count) 6247 entry_count = total_count; 6248 } 6249 else 6250 { 6251 total_freq = entry->dest->frequency; 6252 entry_freq = EDGE_FREQUENCY (entry); 6253 /* Fix up corner cases, to avoid division by zero or creation of negative 6254 frequencies. */ 6255 if (total_freq == 0) 6256 total_freq = 1; 6257 else if (entry_freq > total_freq) 6258 entry_freq = total_freq; 6259 } 6260 6261 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop, 6262 split_edge_bb_loc (entry), update_dominance); 6263 if (total_count) 6264 { 6265 scale_bbs_frequencies_gcov_type (region, n_region, 6266 total_count - entry_count, 6267 total_count); 6268 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count, 6269 total_count); 6270 } 6271 else 6272 { 6273 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq, 6274 total_freq); 6275 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq); 6276 } 6277 6278 if (copying_header) 6279 { 6280 loop->header = exit->dest; 6281 loop->latch = exit->src; 6282 } 6283 6284 /* Redirect the entry and add the phi node arguments. */ 6285 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest)); 6286 gcc_assert (redirected != NULL); 6287 flush_pending_stmts (entry); 6288 6289 /* Concerning updating of dominators: We must recount dominators 6290 for entry block and its copy. Anything that is outside of the 6291 region, but was dominated by something inside needs recounting as 6292 well. */ 6293 if (update_dominance) 6294 { 6295 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src); 6296 doms.safe_push (get_bb_original (entry->dest)); 6297 iterate_fix_dominators (CDI_DOMINATORS, doms, false); 6298 doms.release (); 6299 } 6300 6301 /* Add the other PHI node arguments. */ 6302 add_phi_args_after_copy (region_copy, n_region, NULL); 6303 6304 if (free_region_copy) 6305 free (region_copy); 6306 6307 free_original_copy_tables (); 6308 return true; 6309 } 6310 6311 /* Checks if BB is part of the region defined by N_REGION BBS. */ 6312 static bool 6313 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region) 6314 { 6315 unsigned int n; 6316 6317 for (n = 0; n < n_region; n++) 6318 { 6319 if (bb == bbs[n]) 6320 return true; 6321 } 6322 return false; 6323 } 6324 6325 /* Duplicates REGION consisting of N_REGION blocks. The new blocks 6326 are stored to REGION_COPY in the same order in that they appear 6327 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to 6328 the region, EXIT an exit from it. The condition guarding EXIT 6329 is moved to ENTRY. Returns true if duplication succeeds, false 6330 otherwise. 6331 6332 For example, 6333 6334 some_code; 6335 if (cond) 6336 A; 6337 else 6338 B; 6339 6340 is transformed to 6341 6342 if (cond) 6343 { 6344 some_code; 6345 A; 6346 } 6347 else 6348 { 6349 some_code; 6350 B; 6351 } 6352 */ 6353 6354 bool 6355 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED, 6356 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED, 6357 basic_block *region_copy ATTRIBUTE_UNUSED) 6358 { 6359 unsigned i; 6360 bool free_region_copy = false; 6361 struct loop *loop = exit->dest->loop_father; 6362 struct loop *orig_loop = entry->dest->loop_father; 6363 basic_block switch_bb, entry_bb, nentry_bb; 6364 vec<basic_block> doms; 6365 int total_freq = 0, exit_freq = 0; 6366 gcov_type total_count = 0, exit_count = 0; 6367 edge exits[2], nexits[2], e; 6368 gimple_stmt_iterator gsi; 6369 gimple *cond_stmt; 6370 edge sorig, snew; 6371 basic_block exit_bb; 6372 gphi_iterator psi; 6373 gphi *phi; 6374 tree def; 6375 struct loop *target, *aloop, *cloop; 6376 6377 gcc_assert (EDGE_COUNT (exit->src->succs) == 2); 6378 exits[0] = exit; 6379 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit); 6380 6381 if (!can_copy_bbs_p (region, n_region)) 6382 return false; 6383 6384 initialize_original_copy_tables (); 6385 set_loop_copy (orig_loop, loop); 6386 6387 target= loop; 6388 for (aloop = orig_loop->inner; aloop; aloop = aloop->next) 6389 { 6390 if (bb_part_of_region_p (aloop->header, region, n_region)) 6391 { 6392 cloop = duplicate_loop (aloop, target); 6393 duplicate_subloops (aloop, cloop); 6394 } 6395 } 6396 6397 if (!region_copy) 6398 { 6399 region_copy = XNEWVEC (basic_block, n_region); 6400 free_region_copy = true; 6401 } 6402 6403 gcc_assert (!need_ssa_update_p (cfun)); 6404 6405 /* Record blocks outside the region that are dominated by something 6406 inside. */ 6407 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region); 6408 6409 if (exit->src->count) 6410 { 6411 total_count = exit->src->count; 6412 exit_count = exit->count; 6413 /* Fix up corner cases, to avoid division by zero or creation of negative 6414 frequencies. */ 6415 if (exit_count > total_count) 6416 exit_count = total_count; 6417 } 6418 else 6419 { 6420 total_freq = exit->src->frequency; 6421 exit_freq = EDGE_FREQUENCY (exit); 6422 /* Fix up corner cases, to avoid division by zero or creation of negative 6423 frequencies. */ 6424 if (total_freq == 0) 6425 total_freq = 1; 6426 if (exit_freq > total_freq) 6427 exit_freq = total_freq; 6428 } 6429 6430 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop, 6431 split_edge_bb_loc (exit), true); 6432 if (total_count) 6433 { 6434 scale_bbs_frequencies_gcov_type (region, n_region, 6435 total_count - exit_count, 6436 total_count); 6437 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count, 6438 total_count); 6439 } 6440 else 6441 { 6442 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq, 6443 total_freq); 6444 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq); 6445 } 6446 6447 /* Create the switch block, and put the exit condition to it. */ 6448 entry_bb = entry->dest; 6449 nentry_bb = get_bb_copy (entry_bb); 6450 if (!last_stmt (entry->src) 6451 || !stmt_ends_bb_p (last_stmt (entry->src))) 6452 switch_bb = entry->src; 6453 else 6454 switch_bb = split_edge (entry); 6455 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb); 6456 6457 gsi = gsi_last_bb (switch_bb); 6458 cond_stmt = last_stmt (exit->src); 6459 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND); 6460 cond_stmt = gimple_copy (cond_stmt); 6461 6462 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT); 6463 6464 sorig = single_succ_edge (switch_bb); 6465 sorig->flags = exits[1]->flags; 6466 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags); 6467 6468 /* Register the new edge from SWITCH_BB in loop exit lists. */ 6469 rescan_loop_exit (snew, true, false); 6470 6471 /* Add the PHI node arguments. */ 6472 add_phi_args_after_copy (region_copy, n_region, snew); 6473 6474 /* Get rid of now superfluous conditions and associated edges (and phi node 6475 arguments). */ 6476 exit_bb = exit->dest; 6477 6478 e = redirect_edge_and_branch (exits[0], exits[1]->dest); 6479 PENDING_STMT (e) = NULL; 6480 6481 /* The latch of ORIG_LOOP was copied, and so was the backedge 6482 to the original header. We redirect this backedge to EXIT_BB. */ 6483 for (i = 0; i < n_region; i++) 6484 if (get_bb_original (region_copy[i]) == orig_loop->latch) 6485 { 6486 gcc_assert (single_succ_edge (region_copy[i])); 6487 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb); 6488 PENDING_STMT (e) = NULL; 6489 for (psi = gsi_start_phis (exit_bb); 6490 !gsi_end_p (psi); 6491 gsi_next (&psi)) 6492 { 6493 phi = psi.phi (); 6494 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx); 6495 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e)); 6496 } 6497 } 6498 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest); 6499 PENDING_STMT (e) = NULL; 6500 6501 /* Anything that is outside of the region, but was dominated by something 6502 inside needs to update dominance info. */ 6503 iterate_fix_dominators (CDI_DOMINATORS, doms, false); 6504 doms.release (); 6505 /* Update the SSA web. */ 6506 update_ssa (TODO_update_ssa); 6507 6508 if (free_region_copy) 6509 free (region_copy); 6510 6511 free_original_copy_tables (); 6512 return true; 6513 } 6514 6515 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop 6516 adding blocks when the dominator traversal reaches EXIT. This 6517 function silently assumes that ENTRY strictly dominates EXIT. */ 6518 6519 void 6520 gather_blocks_in_sese_region (basic_block entry, basic_block exit, 6521 vec<basic_block> *bbs_p) 6522 { 6523 basic_block son; 6524 6525 for (son = first_dom_son (CDI_DOMINATORS, entry); 6526 son; 6527 son = next_dom_son (CDI_DOMINATORS, son)) 6528 { 6529 bbs_p->safe_push (son); 6530 if (son != exit) 6531 gather_blocks_in_sese_region (son, exit, bbs_p); 6532 } 6533 } 6534 6535 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT). 6536 The duplicates are recorded in VARS_MAP. */ 6537 6538 static void 6539 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map, 6540 tree to_context) 6541 { 6542 tree t = *tp, new_t; 6543 struct function *f = DECL_STRUCT_FUNCTION (to_context); 6544 6545 if (DECL_CONTEXT (t) == to_context) 6546 return; 6547 6548 bool existed; 6549 tree &loc = vars_map->get_or_insert (t, &existed); 6550 6551 if (!existed) 6552 { 6553 if (SSA_VAR_P (t)) 6554 { 6555 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t)); 6556 add_local_decl (f, new_t); 6557 } 6558 else 6559 { 6560 gcc_assert (TREE_CODE (t) == CONST_DECL); 6561 new_t = copy_node (t); 6562 } 6563 DECL_CONTEXT (new_t) = to_context; 6564 6565 loc = new_t; 6566 } 6567 else 6568 new_t = loc; 6569 6570 *tp = new_t; 6571 } 6572 6573 6574 /* Creates an ssa name in TO_CONTEXT equivalent to NAME. 6575 VARS_MAP maps old ssa names and var_decls to the new ones. */ 6576 6577 static tree 6578 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map, 6579 tree to_context) 6580 { 6581 tree new_name; 6582 6583 gcc_assert (!virtual_operand_p (name)); 6584 6585 tree *loc = vars_map->get (name); 6586 6587 if (!loc) 6588 { 6589 tree decl = SSA_NAME_VAR (name); 6590 if (decl) 6591 { 6592 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name)); 6593 replace_by_duplicate_decl (&decl, vars_map, to_context); 6594 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), 6595 decl, SSA_NAME_DEF_STMT (name)); 6596 } 6597 else 6598 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context), 6599 name, SSA_NAME_DEF_STMT (name)); 6600 6601 /* Now that we've used the def stmt to define new_name, make sure it 6602 doesn't define name anymore. */ 6603 SSA_NAME_DEF_STMT (name) = NULL; 6604 6605 vars_map->put (name, new_name); 6606 } 6607 else 6608 new_name = *loc; 6609 6610 return new_name; 6611 } 6612 6613 struct move_stmt_d 6614 { 6615 tree orig_block; 6616 tree new_block; 6617 tree from_context; 6618 tree to_context; 6619 hash_map<tree, tree> *vars_map; 6620 htab_t new_label_map; 6621 hash_map<void *, void *> *eh_map; 6622 bool remap_decls_p; 6623 }; 6624 6625 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression 6626 contained in *TP if it has been ORIG_BLOCK previously and change the 6627 DECL_CONTEXT of every local variable referenced in *TP. */ 6628 6629 static tree 6630 move_stmt_op (tree *tp, int *walk_subtrees, void *data) 6631 { 6632 struct walk_stmt_info *wi = (struct walk_stmt_info *) data; 6633 struct move_stmt_d *p = (struct move_stmt_d *) wi->info; 6634 tree t = *tp; 6635 6636 if (EXPR_P (t)) 6637 { 6638 tree block = TREE_BLOCK (t); 6639 if (block == NULL_TREE) 6640 ; 6641 else if (block == p->orig_block 6642 || p->orig_block == NULL_TREE) 6643 { 6644 /* tree_node_can_be_shared says we can share invariant 6645 addresses but unshare_expr copies them anyways. Make sure 6646 to unshare before adjusting the block in place - we do not 6647 always see a copy here. */ 6648 if (TREE_CODE (t) == ADDR_EXPR 6649 && is_gimple_min_invariant (t)) 6650 *tp = t = unshare_expr (t); 6651 TREE_SET_BLOCK (t, p->new_block); 6652 } 6653 else if (flag_checking) 6654 { 6655 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block) 6656 block = BLOCK_SUPERCONTEXT (block); 6657 gcc_assert (block == p->orig_block); 6658 } 6659 } 6660 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME) 6661 { 6662 if (TREE_CODE (t) == SSA_NAME) 6663 *tp = replace_ssa_name (t, p->vars_map, p->to_context); 6664 else if (TREE_CODE (t) == PARM_DECL 6665 && gimple_in_ssa_p (cfun)) 6666 *tp = *(p->vars_map->get (t)); 6667 else if (TREE_CODE (t) == LABEL_DECL) 6668 { 6669 if (p->new_label_map) 6670 { 6671 struct tree_map in, *out; 6672 in.base.from = t; 6673 out = (struct tree_map *) 6674 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t)); 6675 if (out) 6676 *tp = t = out->to; 6677 } 6678 6679 /* For FORCED_LABELs we can end up with references from other 6680 functions if some SESE regions are outlined. It is UB to 6681 jump in between them, but they could be used just for printing 6682 addresses etc. In that case, DECL_CONTEXT on the label should 6683 be the function containing the glabel stmt with that LABEL_DECL, 6684 rather than whatever function a reference to the label was seen 6685 last time. */ 6686 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t)) 6687 DECL_CONTEXT (t) = p->to_context; 6688 } 6689 else if (p->remap_decls_p) 6690 { 6691 /* Replace T with its duplicate. T should no longer appear in the 6692 parent function, so this looks wasteful; however, it may appear 6693 in referenced_vars, and more importantly, as virtual operands of 6694 statements, and in alias lists of other variables. It would be 6695 quite difficult to expunge it from all those places. ??? It might 6696 suffice to do this for addressable variables. */ 6697 if ((VAR_P (t) && !is_global_var (t)) 6698 || TREE_CODE (t) == CONST_DECL) 6699 replace_by_duplicate_decl (tp, p->vars_map, p->to_context); 6700 } 6701 *walk_subtrees = 0; 6702 } 6703 else if (TYPE_P (t)) 6704 *walk_subtrees = 0; 6705 6706 return NULL_TREE; 6707 } 6708 6709 /* Helper for move_stmt_r. Given an EH region number for the source 6710 function, map that to the duplicate EH regio number in the dest. */ 6711 6712 static int 6713 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p) 6714 { 6715 eh_region old_r, new_r; 6716 6717 old_r = get_eh_region_from_number (old_nr); 6718 new_r = static_cast<eh_region> (*p->eh_map->get (old_r)); 6719 6720 return new_r->index; 6721 } 6722 6723 /* Similar, but operate on INTEGER_CSTs. */ 6724 6725 static tree 6726 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p) 6727 { 6728 int old_nr, new_nr; 6729 6730 old_nr = tree_to_shwi (old_t_nr); 6731 new_nr = move_stmt_eh_region_nr (old_nr, p); 6732 6733 return build_int_cst (integer_type_node, new_nr); 6734 } 6735 6736 /* Like move_stmt_op, but for gimple statements. 6737 6738 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression 6739 contained in the current statement in *GSI_P and change the 6740 DECL_CONTEXT of every local variable referenced in the current 6741 statement. */ 6742 6743 static tree 6744 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p, 6745 struct walk_stmt_info *wi) 6746 { 6747 struct move_stmt_d *p = (struct move_stmt_d *) wi->info; 6748 gimple *stmt = gsi_stmt (*gsi_p); 6749 tree block = gimple_block (stmt); 6750 6751 if (block == p->orig_block 6752 || (p->orig_block == NULL_TREE 6753 && block != NULL_TREE)) 6754 gimple_set_block (stmt, p->new_block); 6755 6756 switch (gimple_code (stmt)) 6757 { 6758 case GIMPLE_CALL: 6759 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */ 6760 { 6761 tree r, fndecl = gimple_call_fndecl (stmt); 6762 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) 6763 switch (DECL_FUNCTION_CODE (fndecl)) 6764 { 6765 case BUILT_IN_EH_COPY_VALUES: 6766 r = gimple_call_arg (stmt, 1); 6767 r = move_stmt_eh_region_tree_nr (r, p); 6768 gimple_call_set_arg (stmt, 1, r); 6769 /* FALLTHRU */ 6770 6771 case BUILT_IN_EH_POINTER: 6772 case BUILT_IN_EH_FILTER: 6773 r = gimple_call_arg (stmt, 0); 6774 r = move_stmt_eh_region_tree_nr (r, p); 6775 gimple_call_set_arg (stmt, 0, r); 6776 break; 6777 6778 default: 6779 break; 6780 } 6781 } 6782 break; 6783 6784 case GIMPLE_RESX: 6785 { 6786 gresx *resx_stmt = as_a <gresx *> (stmt); 6787 int r = gimple_resx_region (resx_stmt); 6788 r = move_stmt_eh_region_nr (r, p); 6789 gimple_resx_set_region (resx_stmt, r); 6790 } 6791 break; 6792 6793 case GIMPLE_EH_DISPATCH: 6794 { 6795 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt); 6796 int r = gimple_eh_dispatch_region (eh_dispatch_stmt); 6797 r = move_stmt_eh_region_nr (r, p); 6798 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r); 6799 } 6800 break; 6801 6802 case GIMPLE_OMP_RETURN: 6803 case GIMPLE_OMP_CONTINUE: 6804 break; 6805 6806 case GIMPLE_LABEL: 6807 { 6808 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT, 6809 so that such labels can be referenced from other regions. 6810 Make sure to update it when seeing a GIMPLE_LABEL though, 6811 that is the owner of the label. */ 6812 walk_gimple_op (stmt, move_stmt_op, wi); 6813 *handled_ops_p = true; 6814 tree label = gimple_label_label (as_a <glabel *> (stmt)); 6815 if (FORCED_LABEL (label) || DECL_NONLOCAL (label)) 6816 DECL_CONTEXT (label) = p->to_context; 6817 } 6818 break; 6819 6820 default: 6821 if (is_gimple_omp (stmt)) 6822 { 6823 /* Do not remap variables inside OMP directives. Variables 6824 referenced in clauses and directive header belong to the 6825 parent function and should not be moved into the child 6826 function. */ 6827 bool save_remap_decls_p = p->remap_decls_p; 6828 p->remap_decls_p = false; 6829 *handled_ops_p = true; 6830 6831 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r, 6832 move_stmt_op, wi); 6833 6834 p->remap_decls_p = save_remap_decls_p; 6835 } 6836 break; 6837 } 6838 6839 return NULL_TREE; 6840 } 6841 6842 /* Move basic block BB from function CFUN to function DEST_FN. The 6843 block is moved out of the original linked list and placed after 6844 block AFTER in the new list. Also, the block is removed from the 6845 original array of blocks and placed in DEST_FN's array of blocks. 6846 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is 6847 updated to reflect the moved edges. 6848 6849 The local variables are remapped to new instances, VARS_MAP is used 6850 to record the mapping. */ 6851 6852 static void 6853 move_block_to_fn (struct function *dest_cfun, basic_block bb, 6854 basic_block after, bool update_edge_count_p, 6855 struct move_stmt_d *d) 6856 { 6857 struct control_flow_graph *cfg; 6858 edge_iterator ei; 6859 edge e; 6860 gimple_stmt_iterator si; 6861 unsigned old_len, new_len; 6862 6863 /* Remove BB from dominance structures. */ 6864 delete_from_dominance_info (CDI_DOMINATORS, bb); 6865 6866 /* Move BB from its current loop to the copy in the new function. */ 6867 if (current_loops) 6868 { 6869 struct loop *new_loop = (struct loop *)bb->loop_father->aux; 6870 if (new_loop) 6871 bb->loop_father = new_loop; 6872 } 6873 6874 /* Link BB to the new linked list. */ 6875 move_block_after (bb, after); 6876 6877 /* Update the edge count in the corresponding flowgraphs. */ 6878 if (update_edge_count_p) 6879 FOR_EACH_EDGE (e, ei, bb->succs) 6880 { 6881 cfun->cfg->x_n_edges--; 6882 dest_cfun->cfg->x_n_edges++; 6883 } 6884 6885 /* Remove BB from the original basic block array. */ 6886 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL; 6887 cfun->cfg->x_n_basic_blocks--; 6888 6889 /* Grow DEST_CFUN's basic block array if needed. */ 6890 cfg = dest_cfun->cfg; 6891 cfg->x_n_basic_blocks++; 6892 if (bb->index >= cfg->x_last_basic_block) 6893 cfg->x_last_basic_block = bb->index + 1; 6894 6895 old_len = vec_safe_length (cfg->x_basic_block_info); 6896 if ((unsigned) cfg->x_last_basic_block >= old_len) 6897 { 6898 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4; 6899 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len); 6900 } 6901 6902 (*cfg->x_basic_block_info)[bb->index] = bb; 6903 6904 /* Remap the variables in phi nodes. */ 6905 for (gphi_iterator psi = gsi_start_phis (bb); 6906 !gsi_end_p (psi); ) 6907 { 6908 gphi *phi = psi.phi (); 6909 use_operand_p use; 6910 tree op = PHI_RESULT (phi); 6911 ssa_op_iter oi; 6912 unsigned i; 6913 6914 if (virtual_operand_p (op)) 6915 { 6916 /* Remove the phi nodes for virtual operands (alias analysis will be 6917 run for the new function, anyway). */ 6918 remove_phi_node (&psi, true); 6919 continue; 6920 } 6921 6922 SET_PHI_RESULT (phi, 6923 replace_ssa_name (op, d->vars_map, dest_cfun->decl)); 6924 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE) 6925 { 6926 op = USE_FROM_PTR (use); 6927 if (TREE_CODE (op) == SSA_NAME) 6928 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl)); 6929 } 6930 6931 for (i = 0; i < EDGE_COUNT (bb->preds); i++) 6932 { 6933 location_t locus = gimple_phi_arg_location (phi, i); 6934 tree block = LOCATION_BLOCK (locus); 6935 6936 if (locus == UNKNOWN_LOCATION) 6937 continue; 6938 if (d->orig_block == NULL_TREE || block == d->orig_block) 6939 { 6940 locus = set_block (locus, d->new_block); 6941 gimple_phi_arg_set_location (phi, i, locus); 6942 } 6943 } 6944 6945 gsi_next (&psi); 6946 } 6947 6948 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 6949 { 6950 gimple *stmt = gsi_stmt (si); 6951 struct walk_stmt_info wi; 6952 6953 memset (&wi, 0, sizeof (wi)); 6954 wi.info = d; 6955 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi); 6956 6957 if (glabel *label_stmt = dyn_cast <glabel *> (stmt)) 6958 { 6959 tree label = gimple_label_label (label_stmt); 6960 int uid = LABEL_DECL_UID (label); 6961 6962 gcc_assert (uid > -1); 6963 6964 old_len = vec_safe_length (cfg->x_label_to_block_map); 6965 if (old_len <= (unsigned) uid) 6966 { 6967 new_len = 3 * uid / 2 + 1; 6968 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len); 6969 } 6970 6971 (*cfg->x_label_to_block_map)[uid] = bb; 6972 (*cfun->cfg->x_label_to_block_map)[uid] = NULL; 6973 6974 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl); 6975 6976 if (uid >= dest_cfun->cfg->last_label_uid) 6977 dest_cfun->cfg->last_label_uid = uid + 1; 6978 } 6979 6980 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0); 6981 remove_stmt_from_eh_lp_fn (cfun, stmt); 6982 6983 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt); 6984 gimple_remove_stmt_histograms (cfun, stmt); 6985 6986 /* We cannot leave any operands allocated from the operand caches of 6987 the current function. */ 6988 free_stmt_operands (cfun, stmt); 6989 push_cfun (dest_cfun); 6990 update_stmt (stmt); 6991 pop_cfun (); 6992 } 6993 6994 FOR_EACH_EDGE (e, ei, bb->succs) 6995 if (e->goto_locus != UNKNOWN_LOCATION) 6996 { 6997 tree block = LOCATION_BLOCK (e->goto_locus); 6998 if (d->orig_block == NULL_TREE 6999 || block == d->orig_block) 7000 e->goto_locus = set_block (e->goto_locus, d->new_block); 7001 } 7002 } 7003 7004 /* Examine the statements in BB (which is in SRC_CFUN); find and return 7005 the outermost EH region. Use REGION as the incoming base EH region. */ 7006 7007 static eh_region 7008 find_outermost_region_in_block (struct function *src_cfun, 7009 basic_block bb, eh_region region) 7010 { 7011 gimple_stmt_iterator si; 7012 7013 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) 7014 { 7015 gimple *stmt = gsi_stmt (si); 7016 eh_region stmt_region; 7017 int lp_nr; 7018 7019 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt); 7020 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr); 7021 if (stmt_region) 7022 { 7023 if (region == NULL) 7024 region = stmt_region; 7025 else if (stmt_region != region) 7026 { 7027 region = eh_region_outermost (src_cfun, stmt_region, region); 7028 gcc_assert (region != NULL); 7029 } 7030 } 7031 } 7032 7033 return region; 7034 } 7035 7036 static tree 7037 new_label_mapper (tree decl, void *data) 7038 { 7039 htab_t hash = (htab_t) data; 7040 struct tree_map *m; 7041 void **slot; 7042 7043 gcc_assert (TREE_CODE (decl) == LABEL_DECL); 7044 7045 m = XNEW (struct tree_map); 7046 m->hash = DECL_UID (decl); 7047 m->base.from = decl; 7048 m->to = create_artificial_label (UNKNOWN_LOCATION); 7049 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl); 7050 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid) 7051 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1; 7052 7053 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT); 7054 gcc_assert (*slot == NULL); 7055 7056 *slot = m; 7057 7058 return m->to; 7059 } 7060 7061 /* Tree walker to replace the decls used inside value expressions by 7062 duplicates. */ 7063 7064 static tree 7065 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data) 7066 { 7067 struct replace_decls_d *rd = (struct replace_decls_d *)data; 7068 7069 switch (TREE_CODE (*tp)) 7070 { 7071 case VAR_DECL: 7072 case PARM_DECL: 7073 case RESULT_DECL: 7074 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context); 7075 break; 7076 default: 7077 break; 7078 } 7079 7080 if (IS_TYPE_OR_DECL_P (*tp)) 7081 *walk_subtrees = false; 7082 7083 return NULL; 7084 } 7085 7086 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including 7087 subblocks. */ 7088 7089 static void 7090 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map, 7091 tree to_context) 7092 { 7093 tree *tp, t; 7094 7095 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp)) 7096 { 7097 t = *tp; 7098 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL) 7099 continue; 7100 replace_by_duplicate_decl (&t, vars_map, to_context); 7101 if (t != *tp) 7102 { 7103 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp)) 7104 { 7105 tree x = DECL_VALUE_EXPR (*tp); 7106 struct replace_decls_d rd = { vars_map, to_context }; 7107 unshare_expr (x); 7108 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL); 7109 SET_DECL_VALUE_EXPR (t, x); 7110 DECL_HAS_VALUE_EXPR_P (t) = 1; 7111 } 7112 DECL_CHAIN (t) = DECL_CHAIN (*tp); 7113 *tp = t; 7114 } 7115 } 7116 7117 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block)) 7118 replace_block_vars_by_duplicates (block, vars_map, to_context); 7119 } 7120 7121 /* Fixup the loop arrays and numbers after moving LOOP and its subloops 7122 from FN1 to FN2. */ 7123 7124 static void 7125 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2, 7126 struct loop *loop) 7127 { 7128 /* Discard it from the old loop array. */ 7129 (*get_loops (fn1))[loop->num] = NULL; 7130 7131 /* Place it in the new loop array, assigning it a new number. */ 7132 loop->num = number_of_loops (fn2); 7133 vec_safe_push (loops_for_fn (fn2)->larray, loop); 7134 7135 /* Recurse to children. */ 7136 for (loop = loop->inner; loop; loop = loop->next) 7137 fixup_loop_arrays_after_move (fn1, fn2, loop); 7138 } 7139 7140 /* Verify that the blocks in BBS_P are a single-entry, single-exit region 7141 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */ 7142 7143 DEBUG_FUNCTION void 7144 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p) 7145 { 7146 basic_block bb; 7147 edge_iterator ei; 7148 edge e; 7149 bitmap bbs = BITMAP_ALLOC (NULL); 7150 int i; 7151 7152 gcc_assert (entry != NULL); 7153 gcc_assert (entry != exit); 7154 gcc_assert (bbs_p != NULL); 7155 7156 gcc_assert (bbs_p->length () > 0); 7157 7158 FOR_EACH_VEC_ELT (*bbs_p, i, bb) 7159 bitmap_set_bit (bbs, bb->index); 7160 7161 gcc_assert (bitmap_bit_p (bbs, entry->index)); 7162 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index)); 7163 7164 FOR_EACH_VEC_ELT (*bbs_p, i, bb) 7165 { 7166 if (bb == entry) 7167 { 7168 gcc_assert (single_pred_p (entry)); 7169 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index)); 7170 } 7171 else 7172 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei)) 7173 { 7174 e = ei_edge (ei); 7175 gcc_assert (bitmap_bit_p (bbs, e->src->index)); 7176 } 7177 7178 if (bb == exit) 7179 { 7180 gcc_assert (single_succ_p (exit)); 7181 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index)); 7182 } 7183 else 7184 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei)) 7185 { 7186 e = ei_edge (ei); 7187 gcc_assert (bitmap_bit_p (bbs, e->dest->index)); 7188 } 7189 } 7190 7191 BITMAP_FREE (bbs); 7192 } 7193 7194 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */ 7195 7196 bool 7197 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data) 7198 { 7199 bitmap release_names = (bitmap)data; 7200 7201 if (TREE_CODE (from) != SSA_NAME) 7202 return true; 7203 7204 bitmap_set_bit (release_names, SSA_NAME_VERSION (from)); 7205 return true; 7206 } 7207 7208 /* Move a single-entry, single-exit region delimited by ENTRY_BB and 7209 EXIT_BB to function DEST_CFUN. The whole region is replaced by a 7210 single basic block in the original CFG and the new basic block is 7211 returned. DEST_CFUN must not have a CFG yet. 7212 7213 Note that the region need not be a pure SESE region. Blocks inside 7214 the region may contain calls to abort/exit. The only restriction 7215 is that ENTRY_BB should be the only entry point and it must 7216 dominate EXIT_BB. 7217 7218 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new 7219 functions outermost BLOCK, move all subblocks of ORIG_BLOCK 7220 to the new function. 7221 7222 All local variables referenced in the region are assumed to be in 7223 the corresponding BLOCK_VARS and unexpanded variable lists 7224 associated with DEST_CFUN. 7225 7226 TODO: investigate whether we can reuse gimple_duplicate_sese_region to 7227 reimplement move_sese_region_to_fn by duplicating the region rather than 7228 moving it. */ 7229 7230 basic_block 7231 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb, 7232 basic_block exit_bb, tree orig_block) 7233 { 7234 vec<basic_block> bbs, dom_bbs; 7235 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb); 7236 basic_block after, bb, *entry_pred, *exit_succ, abb; 7237 struct function *saved_cfun = cfun; 7238 int *entry_flag, *exit_flag; 7239 unsigned *entry_prob, *exit_prob; 7240 unsigned i, num_entry_edges, num_exit_edges, num_nodes; 7241 edge e; 7242 edge_iterator ei; 7243 htab_t new_label_map; 7244 hash_map<void *, void *> *eh_map; 7245 struct loop *loop = entry_bb->loop_father; 7246 struct loop *loop0 = get_loop (saved_cfun, 0); 7247 struct move_stmt_d d; 7248 7249 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE 7250 region. */ 7251 gcc_assert (entry_bb != exit_bb 7252 && (!exit_bb 7253 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb))); 7254 7255 /* Collect all the blocks in the region. Manually add ENTRY_BB 7256 because it won't be added by dfs_enumerate_from. */ 7257 bbs.create (0); 7258 bbs.safe_push (entry_bb); 7259 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs); 7260 7261 if (flag_checking) 7262 verify_sese (entry_bb, exit_bb, &bbs); 7263 7264 /* The blocks that used to be dominated by something in BBS will now be 7265 dominated by the new block. */ 7266 dom_bbs = get_dominated_by_region (CDI_DOMINATORS, 7267 bbs.address (), 7268 bbs.length ()); 7269 7270 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember 7271 the predecessor edges to ENTRY_BB and the successor edges to 7272 EXIT_BB so that we can re-attach them to the new basic block that 7273 will replace the region. */ 7274 num_entry_edges = EDGE_COUNT (entry_bb->preds); 7275 entry_pred = XNEWVEC (basic_block, num_entry_edges); 7276 entry_flag = XNEWVEC (int, num_entry_edges); 7277 entry_prob = XNEWVEC (unsigned, num_entry_edges); 7278 i = 0; 7279 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;) 7280 { 7281 entry_prob[i] = e->probability; 7282 entry_flag[i] = e->flags; 7283 entry_pred[i++] = e->src; 7284 remove_edge (e); 7285 } 7286 7287 if (exit_bb) 7288 { 7289 num_exit_edges = EDGE_COUNT (exit_bb->succs); 7290 exit_succ = XNEWVEC (basic_block, num_exit_edges); 7291 exit_flag = XNEWVEC (int, num_exit_edges); 7292 exit_prob = XNEWVEC (unsigned, num_exit_edges); 7293 i = 0; 7294 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;) 7295 { 7296 exit_prob[i] = e->probability; 7297 exit_flag[i] = e->flags; 7298 exit_succ[i++] = e->dest; 7299 remove_edge (e); 7300 } 7301 } 7302 else 7303 { 7304 num_exit_edges = 0; 7305 exit_succ = NULL; 7306 exit_flag = NULL; 7307 exit_prob = NULL; 7308 } 7309 7310 /* Switch context to the child function to initialize DEST_FN's CFG. */ 7311 gcc_assert (dest_cfun->cfg == NULL); 7312 push_cfun (dest_cfun); 7313 7314 init_empty_tree_cfg (); 7315 7316 /* Initialize EH information for the new function. */ 7317 eh_map = NULL; 7318 new_label_map = NULL; 7319 if (saved_cfun->eh) 7320 { 7321 eh_region region = NULL; 7322 7323 FOR_EACH_VEC_ELT (bbs, i, bb) 7324 region = find_outermost_region_in_block (saved_cfun, bb, region); 7325 7326 init_eh_for_function (); 7327 if (region != NULL) 7328 { 7329 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free); 7330 eh_map = duplicate_eh_regions (saved_cfun, region, 0, 7331 new_label_mapper, new_label_map); 7332 } 7333 } 7334 7335 /* Initialize an empty loop tree. */ 7336 struct loops *loops = ggc_cleared_alloc<struct loops> (); 7337 init_loops_structure (dest_cfun, loops, 1); 7338 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES; 7339 set_loops_for_fn (dest_cfun, loops); 7340 7341 /* Move the outlined loop tree part. */ 7342 num_nodes = bbs.length (); 7343 FOR_EACH_VEC_ELT (bbs, i, bb) 7344 { 7345 if (bb->loop_father->header == bb) 7346 { 7347 struct loop *this_loop = bb->loop_father; 7348 struct loop *outer = loop_outer (this_loop); 7349 if (outer == loop 7350 /* If the SESE region contains some bbs ending with 7351 a noreturn call, those are considered to belong 7352 to the outermost loop in saved_cfun, rather than 7353 the entry_bb's loop_father. */ 7354 || outer == loop0) 7355 { 7356 if (outer != loop) 7357 num_nodes -= this_loop->num_nodes; 7358 flow_loop_tree_node_remove (bb->loop_father); 7359 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop); 7360 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop); 7361 } 7362 } 7363 else if (bb->loop_father == loop0 && loop0 != loop) 7364 num_nodes--; 7365 7366 /* Remove loop exits from the outlined region. */ 7367 if (loops_for_fn (saved_cfun)->exits) 7368 FOR_EACH_EDGE (e, ei, bb->succs) 7369 { 7370 struct loops *l = loops_for_fn (saved_cfun); 7371 loop_exit **slot 7372 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e), 7373 NO_INSERT); 7374 if (slot) 7375 l->exits->clear_slot (slot); 7376 } 7377 } 7378 7379 7380 /* Adjust the number of blocks in the tree root of the outlined part. */ 7381 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2; 7382 7383 /* Setup a mapping to be used by move_block_to_fn. */ 7384 loop->aux = current_loops->tree_root; 7385 loop0->aux = current_loops->tree_root; 7386 7387 pop_cfun (); 7388 7389 /* Move blocks from BBS into DEST_CFUN. */ 7390 gcc_assert (bbs.length () >= 2); 7391 after = dest_cfun->cfg->x_entry_block_ptr; 7392 hash_map<tree, tree> vars_map; 7393 7394 memset (&d, 0, sizeof (d)); 7395 d.orig_block = orig_block; 7396 d.new_block = DECL_INITIAL (dest_cfun->decl); 7397 d.from_context = cfun->decl; 7398 d.to_context = dest_cfun->decl; 7399 d.vars_map = &vars_map; 7400 d.new_label_map = new_label_map; 7401 d.eh_map = eh_map; 7402 d.remap_decls_p = true; 7403 7404 if (gimple_in_ssa_p (cfun)) 7405 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg)) 7406 { 7407 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ()); 7408 set_ssa_default_def (dest_cfun, arg, narg); 7409 vars_map.put (arg, narg); 7410 } 7411 7412 FOR_EACH_VEC_ELT (bbs, i, bb) 7413 { 7414 /* No need to update edge counts on the last block. It has 7415 already been updated earlier when we detached the region from 7416 the original CFG. */ 7417 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d); 7418 after = bb; 7419 } 7420 7421 loop->aux = NULL; 7422 loop0->aux = NULL; 7423 /* Loop sizes are no longer correct, fix them up. */ 7424 loop->num_nodes -= num_nodes; 7425 for (struct loop *outer = loop_outer (loop); 7426 outer; outer = loop_outer (outer)) 7427 outer->num_nodes -= num_nodes; 7428 loop0->num_nodes -= bbs.length () - num_nodes; 7429 7430 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops) 7431 { 7432 struct loop *aloop; 7433 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++) 7434 if (aloop != NULL) 7435 { 7436 if (aloop->simduid) 7437 { 7438 replace_by_duplicate_decl (&aloop->simduid, d.vars_map, 7439 d.to_context); 7440 dest_cfun->has_simduid_loops = true; 7441 } 7442 if (aloop->force_vectorize) 7443 dest_cfun->has_force_vectorize_loops = true; 7444 } 7445 } 7446 7447 /* Rewire BLOCK_SUBBLOCKS of orig_block. */ 7448 if (orig_block) 7449 { 7450 tree block; 7451 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) 7452 == NULL_TREE); 7453 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl)) 7454 = BLOCK_SUBBLOCKS (orig_block); 7455 for (block = BLOCK_SUBBLOCKS (orig_block); 7456 block; block = BLOCK_CHAIN (block)) 7457 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl); 7458 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE; 7459 } 7460 7461 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl), 7462 &vars_map, dest_cfun->decl); 7463 7464 if (new_label_map) 7465 htab_delete (new_label_map); 7466 if (eh_map) 7467 delete eh_map; 7468 7469 if (gimple_in_ssa_p (cfun)) 7470 { 7471 /* We need to release ssa-names in a defined order, so first find them, 7472 and then iterate in ascending version order. */ 7473 bitmap release_names = BITMAP_ALLOC (NULL); 7474 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names); 7475 bitmap_iterator bi; 7476 unsigned i; 7477 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi) 7478 release_ssa_name (ssa_name (i)); 7479 BITMAP_FREE (release_names); 7480 } 7481 7482 /* Rewire the entry and exit blocks. The successor to the entry 7483 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in 7484 the child function. Similarly, the predecessor of DEST_FN's 7485 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We 7486 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the 7487 various CFG manipulation function get to the right CFG. 7488 7489 FIXME, this is silly. The CFG ought to become a parameter to 7490 these helpers. */ 7491 push_cfun (dest_cfun); 7492 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU); 7493 if (exit_bb) 7494 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0); 7495 pop_cfun (); 7496 7497 /* Back in the original function, the SESE region has disappeared, 7498 create a new basic block in its place. */ 7499 bb = create_empty_bb (entry_pred[0]); 7500 if (current_loops) 7501 add_bb_to_loop (bb, loop); 7502 for (i = 0; i < num_entry_edges; i++) 7503 { 7504 e = make_edge (entry_pred[i], bb, entry_flag[i]); 7505 e->probability = entry_prob[i]; 7506 } 7507 7508 for (i = 0; i < num_exit_edges; i++) 7509 { 7510 e = make_edge (bb, exit_succ[i], exit_flag[i]); 7511 e->probability = exit_prob[i]; 7512 } 7513 7514 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry); 7515 FOR_EACH_VEC_ELT (dom_bbs, i, abb) 7516 set_immediate_dominator (CDI_DOMINATORS, abb, bb); 7517 dom_bbs.release (); 7518 7519 if (exit_bb) 7520 { 7521 free (exit_prob); 7522 free (exit_flag); 7523 free (exit_succ); 7524 } 7525 free (entry_prob); 7526 free (entry_flag); 7527 free (entry_pred); 7528 bbs.release (); 7529 7530 return bb; 7531 } 7532 7533 /* Dump default def DEF to file FILE using FLAGS and indentation 7534 SPC. */ 7535 7536 static void 7537 dump_default_def (FILE *file, tree def, int spc, int flags) 7538 { 7539 for (int i = 0; i < spc; ++i) 7540 fprintf (file, " "); 7541 dump_ssaname_info_to_file (file, def, spc); 7542 7543 print_generic_expr (file, TREE_TYPE (def), flags); 7544 fprintf (file, " "); 7545 print_generic_expr (file, def, flags); 7546 fprintf (file, " = "); 7547 print_generic_expr (file, SSA_NAME_VAR (def), flags); 7548 fprintf (file, ";\n"); 7549 } 7550 7551 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h) 7552 */ 7553 7554 void 7555 dump_function_to_file (tree fndecl, FILE *file, int flags) 7556 { 7557 tree arg, var, old_current_fndecl = current_function_decl; 7558 struct function *dsf; 7559 bool ignore_topmost_bind = false, any_var = false; 7560 basic_block bb; 7561 tree chain; 7562 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL 7563 && decl_is_tm_clone (fndecl)); 7564 struct function *fun = DECL_STRUCT_FUNCTION (fndecl); 7565 7566 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE) 7567 { 7568 fprintf (file, "__attribute__(("); 7569 7570 bool first = true; 7571 tree chain; 7572 for (chain = DECL_ATTRIBUTES (fndecl); chain; 7573 first = false, chain = TREE_CHAIN (chain)) 7574 { 7575 if (!first) 7576 fprintf (file, ", "); 7577 7578 print_generic_expr (file, get_attribute_name (chain), dump_flags); 7579 if (TREE_VALUE (chain) != NULL_TREE) 7580 { 7581 fprintf (file, " ("); 7582 print_generic_expr (file, TREE_VALUE (chain), dump_flags); 7583 fprintf (file, ")"); 7584 } 7585 } 7586 7587 fprintf (file, "))\n"); 7588 } 7589 7590 current_function_decl = fndecl; 7591 if (flags & TDF_GIMPLE) 7592 { 7593 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)), 7594 dump_flags | TDF_SLIM); 7595 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun)); 7596 } 7597 else 7598 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : ""); 7599 7600 arg = DECL_ARGUMENTS (fndecl); 7601 while (arg) 7602 { 7603 print_generic_expr (file, TREE_TYPE (arg), dump_flags); 7604 fprintf (file, " "); 7605 print_generic_expr (file, arg, dump_flags); 7606 if (flags & TDF_VERBOSE) 7607 print_node (file, "", arg, 4); 7608 if (DECL_CHAIN (arg)) 7609 fprintf (file, ", "); 7610 arg = DECL_CHAIN (arg); 7611 } 7612 fprintf (file, ")\n"); 7613 7614 if (flags & TDF_VERBOSE) 7615 print_node (file, "", fndecl, 2); 7616 7617 dsf = DECL_STRUCT_FUNCTION (fndecl); 7618 if (dsf && (flags & TDF_EH)) 7619 dump_eh_tree (file, dsf); 7620 7621 if (flags & TDF_RAW && !gimple_has_body_p (fndecl)) 7622 { 7623 dump_node (fndecl, TDF_SLIM | flags, file); 7624 current_function_decl = old_current_fndecl; 7625 return; 7626 } 7627 7628 /* When GIMPLE is lowered, the variables are no longer available in 7629 BIND_EXPRs, so display them separately. */ 7630 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf)) 7631 { 7632 unsigned ix; 7633 ignore_topmost_bind = true; 7634 7635 fprintf (file, "{\n"); 7636 if (gimple_in_ssa_p (fun) 7637 && (flags & TDF_ALIAS)) 7638 { 7639 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL; 7640 arg = DECL_CHAIN (arg)) 7641 { 7642 tree def = ssa_default_def (fun, arg); 7643 if (def) 7644 dump_default_def (file, def, 2, flags); 7645 } 7646 7647 tree res = DECL_RESULT (fun->decl); 7648 if (res != NULL_TREE 7649 && DECL_BY_REFERENCE (res)) 7650 { 7651 tree def = ssa_default_def (fun, res); 7652 if (def) 7653 dump_default_def (file, def, 2, flags); 7654 } 7655 7656 tree static_chain = fun->static_chain_decl; 7657 if (static_chain != NULL_TREE) 7658 { 7659 tree def = ssa_default_def (fun, static_chain); 7660 if (def) 7661 dump_default_def (file, def, 2, flags); 7662 } 7663 } 7664 7665 if (!vec_safe_is_empty (fun->local_decls)) 7666 FOR_EACH_LOCAL_DECL (fun, ix, var) 7667 { 7668 print_generic_decl (file, var, flags); 7669 if (flags & TDF_VERBOSE) 7670 print_node (file, "", var, 4); 7671 fprintf (file, "\n"); 7672 7673 any_var = true; 7674 } 7675 7676 tree name; 7677 7678 if (gimple_in_ssa_p (cfun)) 7679 FOR_EACH_SSA_NAME (ix, name, cfun) 7680 { 7681 if (!SSA_NAME_VAR (name)) 7682 { 7683 fprintf (file, " "); 7684 print_generic_expr (file, TREE_TYPE (name), flags); 7685 fprintf (file, " "); 7686 print_generic_expr (file, name, flags); 7687 fprintf (file, ";\n"); 7688 7689 any_var = true; 7690 } 7691 } 7692 } 7693 7694 if (fun && fun->decl == fndecl 7695 && fun->cfg 7696 && basic_block_info_for_fn (fun)) 7697 { 7698 /* If the CFG has been built, emit a CFG-based dump. */ 7699 if (!ignore_topmost_bind) 7700 fprintf (file, "{\n"); 7701 7702 if (any_var && n_basic_blocks_for_fn (fun)) 7703 fprintf (file, "\n"); 7704 7705 FOR_EACH_BB_FN (bb, fun) 7706 dump_bb (file, bb, 2, flags | TDF_COMMENT); 7707 7708 fprintf (file, "}\n"); 7709 } 7710 else if (fun->curr_properties & PROP_gimple_any) 7711 { 7712 /* The function is now in GIMPLE form but the CFG has not been 7713 built yet. Emit the single sequence of GIMPLE statements 7714 that make up its body. */ 7715 gimple_seq body = gimple_body (fndecl); 7716 7717 if (gimple_seq_first_stmt (body) 7718 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body) 7719 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND) 7720 print_gimple_seq (file, body, 0, flags); 7721 else 7722 { 7723 if (!ignore_topmost_bind) 7724 fprintf (file, "{\n"); 7725 7726 if (any_var) 7727 fprintf (file, "\n"); 7728 7729 print_gimple_seq (file, body, 2, flags); 7730 fprintf (file, "}\n"); 7731 } 7732 } 7733 else 7734 { 7735 int indent; 7736 7737 /* Make a tree based dump. */ 7738 chain = DECL_SAVED_TREE (fndecl); 7739 if (chain && TREE_CODE (chain) == BIND_EXPR) 7740 { 7741 if (ignore_topmost_bind) 7742 { 7743 chain = BIND_EXPR_BODY (chain); 7744 indent = 2; 7745 } 7746 else 7747 indent = 0; 7748 } 7749 else 7750 { 7751 if (!ignore_topmost_bind) 7752 { 7753 fprintf (file, "{\n"); 7754 /* No topmost bind, pretend it's ignored for later. */ 7755 ignore_topmost_bind = true; 7756 } 7757 indent = 2; 7758 } 7759 7760 if (any_var) 7761 fprintf (file, "\n"); 7762 7763 print_generic_stmt_indented (file, chain, flags, indent); 7764 if (ignore_topmost_bind) 7765 fprintf (file, "}\n"); 7766 } 7767 7768 if (flags & TDF_ENUMERATE_LOCALS) 7769 dump_enumerated_decls (file, flags); 7770 fprintf (file, "\n\n"); 7771 7772 current_function_decl = old_current_fndecl; 7773 } 7774 7775 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */ 7776 7777 DEBUG_FUNCTION void 7778 debug_function (tree fn, int flags) 7779 { 7780 dump_function_to_file (fn, stderr, flags); 7781 } 7782 7783 7784 /* Print on FILE the indexes for the predecessors of basic_block BB. */ 7785 7786 static void 7787 print_pred_bbs (FILE *file, basic_block bb) 7788 { 7789 edge e; 7790 edge_iterator ei; 7791 7792 FOR_EACH_EDGE (e, ei, bb->preds) 7793 fprintf (file, "bb_%d ", e->src->index); 7794 } 7795 7796 7797 /* Print on FILE the indexes for the successors of basic_block BB. */ 7798 7799 static void 7800 print_succ_bbs (FILE *file, basic_block bb) 7801 { 7802 edge e; 7803 edge_iterator ei; 7804 7805 FOR_EACH_EDGE (e, ei, bb->succs) 7806 fprintf (file, "bb_%d ", e->dest->index); 7807 } 7808 7809 /* Print to FILE the basic block BB following the VERBOSITY level. */ 7810 7811 void 7812 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity) 7813 { 7814 char *s_indent = (char *) alloca ((size_t) indent + 1); 7815 memset ((void *) s_indent, ' ', (size_t) indent); 7816 s_indent[indent] = '\0'; 7817 7818 /* Print basic_block's header. */ 7819 if (verbosity >= 2) 7820 { 7821 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index); 7822 print_pred_bbs (file, bb); 7823 fprintf (file, "}, succs = {"); 7824 print_succ_bbs (file, bb); 7825 fprintf (file, "})\n"); 7826 } 7827 7828 /* Print basic_block's body. */ 7829 if (verbosity >= 3) 7830 { 7831 fprintf (file, "%s {\n", s_indent); 7832 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS); 7833 fprintf (file, "%s }\n", s_indent); 7834 } 7835 } 7836 7837 static void print_loop_and_siblings (FILE *, struct loop *, int, int); 7838 7839 /* Pretty print LOOP on FILE, indented INDENT spaces. Following 7840 VERBOSITY level this outputs the contents of the loop, or just its 7841 structure. */ 7842 7843 static void 7844 print_loop (FILE *file, struct loop *loop, int indent, int verbosity) 7845 { 7846 char *s_indent; 7847 basic_block bb; 7848 7849 if (loop == NULL) 7850 return; 7851 7852 s_indent = (char *) alloca ((size_t) indent + 1); 7853 memset ((void *) s_indent, ' ', (size_t) indent); 7854 s_indent[indent] = '\0'; 7855 7856 /* Print loop's header. */ 7857 fprintf (file, "%sloop_%d (", s_indent, loop->num); 7858 if (loop->header) 7859 fprintf (file, "header = %d", loop->header->index); 7860 else 7861 { 7862 fprintf (file, "deleted)\n"); 7863 return; 7864 } 7865 if (loop->latch) 7866 fprintf (file, ", latch = %d", loop->latch->index); 7867 else 7868 fprintf (file, ", multiple latches"); 7869 fprintf (file, ", niter = "); 7870 print_generic_expr (file, loop->nb_iterations, 0); 7871 7872 if (loop->any_upper_bound) 7873 { 7874 fprintf (file, ", upper_bound = "); 7875 print_decu (loop->nb_iterations_upper_bound, file); 7876 } 7877 if (loop->any_likely_upper_bound) 7878 { 7879 fprintf (file, ", likely_upper_bound = "); 7880 print_decu (loop->nb_iterations_likely_upper_bound, file); 7881 } 7882 7883 if (loop->any_estimate) 7884 { 7885 fprintf (file, ", estimate = "); 7886 print_decu (loop->nb_iterations_estimate, file); 7887 } 7888 fprintf (file, ")\n"); 7889 7890 /* Print loop's body. */ 7891 if (verbosity >= 1) 7892 { 7893 fprintf (file, "%s{\n", s_indent); 7894 FOR_EACH_BB_FN (bb, cfun) 7895 if (bb->loop_father == loop) 7896 print_loops_bb (file, bb, indent, verbosity); 7897 7898 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity); 7899 fprintf (file, "%s}\n", s_indent); 7900 } 7901 } 7902 7903 /* Print the LOOP and its sibling loops on FILE, indented INDENT 7904 spaces. Following VERBOSITY level this outputs the contents of the 7905 loop, or just its structure. */ 7906 7907 static void 7908 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, 7909 int verbosity) 7910 { 7911 if (loop == NULL) 7912 return; 7913 7914 print_loop (file, loop, indent, verbosity); 7915 print_loop_and_siblings (file, loop->next, indent, verbosity); 7916 } 7917 7918 /* Follow a CFG edge from the entry point of the program, and on entry 7919 of a loop, pretty print the loop structure on FILE. */ 7920 7921 void 7922 print_loops (FILE *file, int verbosity) 7923 { 7924 basic_block bb; 7925 7926 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun); 7927 fprintf (file, "\nLoops in function: %s\n", current_function_name ()); 7928 if (bb && bb->loop_father) 7929 print_loop_and_siblings (file, bb->loop_father, 0, verbosity); 7930 } 7931 7932 /* Dump a loop. */ 7933 7934 DEBUG_FUNCTION void 7935 debug (struct loop &ref) 7936 { 7937 print_loop (stderr, &ref, 0, /*verbosity*/0); 7938 } 7939 7940 DEBUG_FUNCTION void 7941 debug (struct loop *ptr) 7942 { 7943 if (ptr) 7944 debug (*ptr); 7945 else 7946 fprintf (stderr, "<nil>\n"); 7947 } 7948 7949 /* Dump a loop verbosely. */ 7950 7951 DEBUG_FUNCTION void 7952 debug_verbose (struct loop &ref) 7953 { 7954 print_loop (stderr, &ref, 0, /*verbosity*/3); 7955 } 7956 7957 DEBUG_FUNCTION void 7958 debug_verbose (struct loop *ptr) 7959 { 7960 if (ptr) 7961 debug (*ptr); 7962 else 7963 fprintf (stderr, "<nil>\n"); 7964 } 7965 7966 7967 /* Debugging loops structure at tree level, at some VERBOSITY level. */ 7968 7969 DEBUG_FUNCTION void 7970 debug_loops (int verbosity) 7971 { 7972 print_loops (stderr, verbosity); 7973 } 7974 7975 /* Print on stderr the code of LOOP, at some VERBOSITY level. */ 7976 7977 DEBUG_FUNCTION void 7978 debug_loop (struct loop *loop, int verbosity) 7979 { 7980 print_loop (stderr, loop, 0, verbosity); 7981 } 7982 7983 /* Print on stderr the code of loop number NUM, at some VERBOSITY 7984 level. */ 7985 7986 DEBUG_FUNCTION void 7987 debug_loop_num (unsigned num, int verbosity) 7988 { 7989 debug_loop (get_loop (cfun, num), verbosity); 7990 } 7991 7992 /* Return true if BB ends with a call, possibly followed by some 7993 instructions that must stay with the call. Return false, 7994 otherwise. */ 7995 7996 static bool 7997 gimple_block_ends_with_call_p (basic_block bb) 7998 { 7999 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 8000 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi)); 8001 } 8002 8003 8004 /* Return true if BB ends with a conditional branch. Return false, 8005 otherwise. */ 8006 8007 static bool 8008 gimple_block_ends_with_condjump_p (const_basic_block bb) 8009 { 8010 gimple *stmt = last_stmt (CONST_CAST_BB (bb)); 8011 return (stmt && gimple_code (stmt) == GIMPLE_COND); 8012 } 8013 8014 8015 /* Return true if statement T may terminate execution of BB in ways not 8016 explicitly represtented in the CFG. */ 8017 8018 bool 8019 stmt_can_terminate_bb_p (gimple *t) 8020 { 8021 tree fndecl = NULL_TREE; 8022 int call_flags = 0; 8023 8024 /* Eh exception not handled internally terminates execution of the whole 8025 function. */ 8026 if (stmt_can_throw_external (t)) 8027 return true; 8028 8029 /* NORETURN and LONGJMP calls already have an edge to exit. 8030 CONST and PURE calls do not need one. 8031 We don't currently check for CONST and PURE here, although 8032 it would be a good idea, because those attributes are 8033 figured out from the RTL in mark_constant_function, and 8034 the counter incrementation code from -fprofile-arcs 8035 leads to different results from -fbranch-probabilities. */ 8036 if (is_gimple_call (t)) 8037 { 8038 fndecl = gimple_call_fndecl (t); 8039 call_flags = gimple_call_flags (t); 8040 } 8041 8042 if (is_gimple_call (t) 8043 && fndecl 8044 && DECL_BUILT_IN (fndecl) 8045 && (call_flags & ECF_NOTHROW) 8046 && !(call_flags & ECF_RETURNS_TWICE) 8047 /* fork() doesn't really return twice, but the effect of 8048 wrapping it in __gcov_fork() which calls __gcov_flush() 8049 and clears the counters before forking has the same 8050 effect as returning twice. Force a fake edge. */ 8051 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 8052 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK)) 8053 return false; 8054 8055 if (is_gimple_call (t)) 8056 { 8057 edge_iterator ei; 8058 edge e; 8059 basic_block bb; 8060 8061 if (call_flags & (ECF_PURE | ECF_CONST) 8062 && !(call_flags & ECF_LOOPING_CONST_OR_PURE)) 8063 return false; 8064 8065 /* Function call may do longjmp, terminate program or do other things. 8066 Special case noreturn that have non-abnormal edges out as in this case 8067 the fact is sufficiently represented by lack of edges out of T. */ 8068 if (!(call_flags & ECF_NORETURN)) 8069 return true; 8070 8071 bb = gimple_bb (t); 8072 FOR_EACH_EDGE (e, ei, bb->succs) 8073 if ((e->flags & EDGE_FAKE) == 0) 8074 return true; 8075 } 8076 8077 if (gasm *asm_stmt = dyn_cast <gasm *> (t)) 8078 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt)) 8079 return true; 8080 8081 return false; 8082 } 8083 8084 8085 /* Add fake edges to the function exit for any non constant and non 8086 noreturn calls (or noreturn calls with EH/abnormal edges), 8087 volatile inline assembly in the bitmap of blocks specified by BLOCKS 8088 or to the whole CFG if BLOCKS is zero. Return the number of blocks 8089 that were split. 8090 8091 The goal is to expose cases in which entering a basic block does 8092 not imply that all subsequent instructions must be executed. */ 8093 8094 static int 8095 gimple_flow_call_edges_add (sbitmap blocks) 8096 { 8097 int i; 8098 int blocks_split = 0; 8099 int last_bb = last_basic_block_for_fn (cfun); 8100 bool check_last_block = false; 8101 8102 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 8103 return 0; 8104 8105 if (! blocks) 8106 check_last_block = true; 8107 else 8108 check_last_block = bitmap_bit_p (blocks, 8109 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index); 8110 8111 /* In the last basic block, before epilogue generation, there will be 8112 a fallthru edge to EXIT. Special care is required if the last insn 8113 of the last basic block is a call because make_edge folds duplicate 8114 edges, which would result in the fallthru edge also being marked 8115 fake, which would result in the fallthru edge being removed by 8116 remove_fake_edges, which would result in an invalid CFG. 8117 8118 Moreover, we can't elide the outgoing fake edge, since the block 8119 profiler needs to take this into account in order to solve the minimal 8120 spanning tree in the case that the call doesn't return. 8121 8122 Handle this by adding a dummy instruction in a new last basic block. */ 8123 if (check_last_block) 8124 { 8125 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; 8126 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb); 8127 gimple *t = NULL; 8128 8129 if (!gsi_end_p (gsi)) 8130 t = gsi_stmt (gsi); 8131 8132 if (t && stmt_can_terminate_bb_p (t)) 8133 { 8134 edge e; 8135 8136 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); 8137 if (e) 8138 { 8139 gsi_insert_on_edge (e, gimple_build_nop ()); 8140 gsi_commit_edge_inserts (); 8141 } 8142 } 8143 } 8144 8145 /* Now add fake edges to the function exit for any non constant 8146 calls since there is no way that we can determine if they will 8147 return or not... */ 8148 for (i = 0; i < last_bb; i++) 8149 { 8150 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8151 gimple_stmt_iterator gsi; 8152 gimple *stmt, *last_stmt; 8153 8154 if (!bb) 8155 continue; 8156 8157 if (blocks && !bitmap_bit_p (blocks, i)) 8158 continue; 8159 8160 gsi = gsi_last_nondebug_bb (bb); 8161 if (!gsi_end_p (gsi)) 8162 { 8163 last_stmt = gsi_stmt (gsi); 8164 do 8165 { 8166 stmt = gsi_stmt (gsi); 8167 if (stmt_can_terminate_bb_p (stmt)) 8168 { 8169 edge e; 8170 8171 /* The handling above of the final block before the 8172 epilogue should be enough to verify that there is 8173 no edge to the exit block in CFG already. 8174 Calling make_edge in such case would cause us to 8175 mark that edge as fake and remove it later. */ 8176 if (flag_checking && stmt == last_stmt) 8177 { 8178 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)); 8179 gcc_assert (e == NULL); 8180 } 8181 8182 /* Note that the following may create a new basic block 8183 and renumber the existing basic blocks. */ 8184 if (stmt != last_stmt) 8185 { 8186 e = split_block (bb, stmt); 8187 if (e) 8188 blocks_split++; 8189 } 8190 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 8191 } 8192 gsi_prev (&gsi); 8193 } 8194 while (!gsi_end_p (gsi)); 8195 } 8196 } 8197 8198 if (blocks_split) 8199 verify_flow_info (); 8200 8201 return blocks_split; 8202 } 8203 8204 /* Removes edge E and all the blocks dominated by it, and updates dominance 8205 information. The IL in E->src needs to be updated separately. 8206 If dominance info is not available, only the edge E is removed.*/ 8207 8208 void 8209 remove_edge_and_dominated_blocks (edge e) 8210 { 8211 vec<basic_block> bbs_to_remove = vNULL; 8212 vec<basic_block> bbs_to_fix_dom = vNULL; 8213 bitmap df, df_idom; 8214 edge f; 8215 edge_iterator ei; 8216 bool none_removed = false; 8217 unsigned i; 8218 basic_block bb, dbb; 8219 bitmap_iterator bi; 8220 8221 /* If we are removing a path inside a non-root loop that may change 8222 loop ownership of blocks or remove loops. Mark loops for fixup. */ 8223 if (current_loops 8224 && loop_outer (e->src->loop_father) != NULL 8225 && e->src->loop_father == e->dest->loop_father) 8226 loops_state_set (LOOPS_NEED_FIXUP); 8227 8228 if (!dom_info_available_p (CDI_DOMINATORS)) 8229 { 8230 remove_edge (e); 8231 return; 8232 } 8233 8234 /* No updating is needed for edges to exit. */ 8235 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 8236 { 8237 if (cfgcleanup_altered_bbs) 8238 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); 8239 remove_edge (e); 8240 return; 8241 } 8242 8243 /* First, we find the basic blocks to remove. If E->dest has a predecessor 8244 that is not dominated by E->dest, then this set is empty. Otherwise, 8245 all the basic blocks dominated by E->dest are removed. 8246 8247 Also, to DF_IDOM we store the immediate dominators of the blocks in 8248 the dominance frontier of E (i.e., of the successors of the 8249 removed blocks, if there are any, and of E->dest otherwise). */ 8250 FOR_EACH_EDGE (f, ei, e->dest->preds) 8251 { 8252 if (f == e) 8253 continue; 8254 8255 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest)) 8256 { 8257 none_removed = true; 8258 break; 8259 } 8260 } 8261 8262 df = BITMAP_ALLOC (NULL); 8263 df_idom = BITMAP_ALLOC (NULL); 8264 8265 if (none_removed) 8266 bitmap_set_bit (df_idom, 8267 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index); 8268 else 8269 { 8270 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest); 8271 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) 8272 { 8273 FOR_EACH_EDGE (f, ei, bb->succs) 8274 { 8275 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8276 bitmap_set_bit (df, f->dest->index); 8277 } 8278 } 8279 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb) 8280 bitmap_clear_bit (df, bb->index); 8281 8282 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi) 8283 { 8284 bb = BASIC_BLOCK_FOR_FN (cfun, i); 8285 bitmap_set_bit (df_idom, 8286 get_immediate_dominator (CDI_DOMINATORS, bb)->index); 8287 } 8288 } 8289 8290 if (cfgcleanup_altered_bbs) 8291 { 8292 /* Record the set of the altered basic blocks. */ 8293 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index); 8294 bitmap_ior_into (cfgcleanup_altered_bbs, df); 8295 } 8296 8297 /* Remove E and the cancelled blocks. */ 8298 if (none_removed) 8299 remove_edge (e); 8300 else 8301 { 8302 /* Walk backwards so as to get a chance to substitute all 8303 released DEFs into debug stmts. See 8304 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more 8305 details. */ 8306 for (i = bbs_to_remove.length (); i-- > 0; ) 8307 delete_basic_block (bbs_to_remove[i]); 8308 } 8309 8310 /* Update the dominance information. The immediate dominator may change only 8311 for blocks whose immediate dominator belongs to DF_IDOM: 8312 8313 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the 8314 removal. Let Z the arbitrary block such that idom(Z) = Y and 8315 Z dominates X after the removal. Before removal, there exists a path P 8316 from Y to X that avoids Z. Let F be the last edge on P that is 8317 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y 8318 dominates W, and because of P, Z does not dominate W), and W belongs to 8319 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */ 8320 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi) 8321 { 8322 bb = BASIC_BLOCK_FOR_FN (cfun, i); 8323 for (dbb = first_dom_son (CDI_DOMINATORS, bb); 8324 dbb; 8325 dbb = next_dom_son (CDI_DOMINATORS, dbb)) 8326 bbs_to_fix_dom.safe_push (dbb); 8327 } 8328 8329 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true); 8330 8331 BITMAP_FREE (df); 8332 BITMAP_FREE (df_idom); 8333 bbs_to_remove.release (); 8334 bbs_to_fix_dom.release (); 8335 } 8336 8337 /* Purge dead EH edges from basic block BB. */ 8338 8339 bool 8340 gimple_purge_dead_eh_edges (basic_block bb) 8341 { 8342 bool changed = false; 8343 edge e; 8344 edge_iterator ei; 8345 gimple *stmt = last_stmt (bb); 8346 8347 if (stmt && stmt_can_throw_internal (stmt)) 8348 return false; 8349 8350 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) 8351 { 8352 if (e->flags & EDGE_EH) 8353 { 8354 remove_edge_and_dominated_blocks (e); 8355 changed = true; 8356 } 8357 else 8358 ei_next (&ei); 8359 } 8360 8361 return changed; 8362 } 8363 8364 /* Purge dead EH edges from basic block listed in BLOCKS. */ 8365 8366 bool 8367 gimple_purge_all_dead_eh_edges (const_bitmap blocks) 8368 { 8369 bool changed = false; 8370 unsigned i; 8371 bitmap_iterator bi; 8372 8373 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 8374 { 8375 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8376 8377 /* Earlier gimple_purge_dead_eh_edges could have removed 8378 this basic block already. */ 8379 gcc_assert (bb || changed); 8380 if (bb != NULL) 8381 changed |= gimple_purge_dead_eh_edges (bb); 8382 } 8383 8384 return changed; 8385 } 8386 8387 /* Purge dead abnormal call edges from basic block BB. */ 8388 8389 bool 8390 gimple_purge_dead_abnormal_call_edges (basic_block bb) 8391 { 8392 bool changed = false; 8393 edge e; 8394 edge_iterator ei; 8395 gimple *stmt = last_stmt (bb); 8396 8397 if (!cfun->has_nonlocal_label 8398 && !cfun->calls_setjmp) 8399 return false; 8400 8401 if (stmt && stmt_can_make_abnormal_goto (stmt)) 8402 return false; 8403 8404 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) 8405 { 8406 if (e->flags & EDGE_ABNORMAL) 8407 { 8408 if (e->flags & EDGE_FALLTHRU) 8409 e->flags &= ~EDGE_ABNORMAL; 8410 else 8411 remove_edge_and_dominated_blocks (e); 8412 changed = true; 8413 } 8414 else 8415 ei_next (&ei); 8416 } 8417 8418 return changed; 8419 } 8420 8421 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */ 8422 8423 bool 8424 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks) 8425 { 8426 bool changed = false; 8427 unsigned i; 8428 bitmap_iterator bi; 8429 8430 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi) 8431 { 8432 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i); 8433 8434 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed 8435 this basic block already. */ 8436 gcc_assert (bb || changed); 8437 if (bb != NULL) 8438 changed |= gimple_purge_dead_abnormal_call_edges (bb); 8439 } 8440 8441 return changed; 8442 } 8443 8444 /* This function is called whenever a new edge is created or 8445 redirected. */ 8446 8447 static void 8448 gimple_execute_on_growing_pred (edge e) 8449 { 8450 basic_block bb = e->dest; 8451 8452 if (!gimple_seq_empty_p (phi_nodes (bb))) 8453 reserve_phi_args_for_new_edge (bb); 8454 } 8455 8456 /* This function is called immediately before edge E is removed from 8457 the edge vector E->dest->preds. */ 8458 8459 static void 8460 gimple_execute_on_shrinking_pred (edge e) 8461 { 8462 if (!gimple_seq_empty_p (phi_nodes (e->dest))) 8463 remove_phi_args (e); 8464 } 8465 8466 /*--------------------------------------------------------------------------- 8467 Helper functions for Loop versioning 8468 ---------------------------------------------------------------------------*/ 8469 8470 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy 8471 of 'first'. Both of them are dominated by 'new_head' basic block. When 8472 'new_head' was created by 'second's incoming edge it received phi arguments 8473 on the edge by split_edge(). Later, additional edge 'e' was created to 8474 connect 'new_head' and 'first'. Now this routine adds phi args on this 8475 additional edge 'e' that new_head to second edge received as part of edge 8476 splitting. */ 8477 8478 static void 8479 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second, 8480 basic_block new_head, edge e) 8481 { 8482 gphi *phi1, *phi2; 8483 gphi_iterator psi1, psi2; 8484 tree def; 8485 edge e2 = find_edge (new_head, second); 8486 8487 /* Because NEW_HEAD has been created by splitting SECOND's incoming 8488 edge, we should always have an edge from NEW_HEAD to SECOND. */ 8489 gcc_assert (e2 != NULL); 8490 8491 /* Browse all 'second' basic block phi nodes and add phi args to 8492 edge 'e' for 'first' head. PHI args are always in correct order. */ 8493 8494 for (psi2 = gsi_start_phis (second), 8495 psi1 = gsi_start_phis (first); 8496 !gsi_end_p (psi2) && !gsi_end_p (psi1); 8497 gsi_next (&psi2), gsi_next (&psi1)) 8498 { 8499 phi1 = psi1.phi (); 8500 phi2 = psi2.phi (); 8501 def = PHI_ARG_DEF (phi2, e2->dest_idx); 8502 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2)); 8503 } 8504 } 8505 8506 8507 /* Adds a if else statement to COND_BB with condition COND_EXPR. 8508 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is 8509 the destination of the ELSE part. */ 8510 8511 static void 8512 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED, 8513 basic_block second_head ATTRIBUTE_UNUSED, 8514 basic_block cond_bb, void *cond_e) 8515 { 8516 gimple_stmt_iterator gsi; 8517 gimple *new_cond_expr; 8518 tree cond_expr = (tree) cond_e; 8519 edge e0; 8520 8521 /* Build new conditional expr */ 8522 new_cond_expr = gimple_build_cond_from_tree (cond_expr, 8523 NULL_TREE, NULL_TREE); 8524 8525 /* Add new cond in cond_bb. */ 8526 gsi = gsi_last_bb (cond_bb); 8527 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT); 8528 8529 /* Adjust edges appropriately to connect new head with first head 8530 as well as second head. */ 8531 e0 = single_succ_edge (cond_bb); 8532 e0->flags &= ~EDGE_FALLTHRU; 8533 e0->flags |= EDGE_FALSE_VALUE; 8534 } 8535 8536 8537 /* Do book-keeping of basic block BB for the profile consistency checker. 8538 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1 8539 then do post-pass accounting. Store the counting in RECORD. */ 8540 static void 8541 gimple_account_profile_record (basic_block bb, int after_pass, 8542 struct profile_record *record) 8543 { 8544 gimple_stmt_iterator i; 8545 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i)) 8546 { 8547 record->size[after_pass] 8548 += estimate_num_insns (gsi_stmt (i), &eni_size_weights); 8549 if (profile_status_for_fn (cfun) == PROFILE_READ) 8550 record->time[after_pass] 8551 += estimate_num_insns (gsi_stmt (i), 8552 &eni_time_weights) * bb->count; 8553 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED) 8554 record->time[after_pass] 8555 += estimate_num_insns (gsi_stmt (i), 8556 &eni_time_weights) * bb->frequency; 8557 } 8558 } 8559 8560 struct cfg_hooks gimple_cfg_hooks = { 8561 "gimple", 8562 gimple_verify_flow_info, 8563 gimple_dump_bb, /* dump_bb */ 8564 gimple_dump_bb_for_graph, /* dump_bb_for_graph */ 8565 create_bb, /* create_basic_block */ 8566 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */ 8567 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */ 8568 gimple_can_remove_branch_p, /* can_remove_branch_p */ 8569 remove_bb, /* delete_basic_block */ 8570 gimple_split_block, /* split_block */ 8571 gimple_move_block_after, /* move_block_after */ 8572 gimple_can_merge_blocks_p, /* can_merge_blocks_p */ 8573 gimple_merge_blocks, /* merge_blocks */ 8574 gimple_predict_edge, /* predict_edge */ 8575 gimple_predicted_by_p, /* predicted_by_p */ 8576 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */ 8577 gimple_duplicate_bb, /* duplicate_block */ 8578 gimple_split_edge, /* split_edge */ 8579 gimple_make_forwarder_block, /* make_forward_block */ 8580 NULL, /* tidy_fallthru_edge */ 8581 NULL, /* force_nonfallthru */ 8582 gimple_block_ends_with_call_p,/* block_ends_with_call_p */ 8583 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */ 8584 gimple_flow_call_edges_add, /* flow_call_edges_add */ 8585 gimple_execute_on_growing_pred, /* execute_on_growing_pred */ 8586 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */ 8587 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */ 8588 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */ 8589 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/ 8590 extract_true_false_edges_from_block, /* extract_cond_bb_edges */ 8591 flush_pending_stmts, /* flush_pending_stmts */ 8592 gimple_empty_block_p, /* block_empty_p */ 8593 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */ 8594 gimple_account_profile_record, 8595 }; 8596 8597 8598 /* Split all critical edges. */ 8599 8600 unsigned int 8601 split_critical_edges (void) 8602 { 8603 basic_block bb; 8604 edge e; 8605 edge_iterator ei; 8606 8607 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get 8608 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR 8609 mappings around the calls to split_edge. */ 8610 start_recording_case_labels (); 8611 FOR_ALL_BB_FN (bb, cfun) 8612 { 8613 FOR_EACH_EDGE (e, ei, bb->succs) 8614 { 8615 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL)) 8616 split_edge (e); 8617 /* PRE inserts statements to edges and expects that 8618 since split_critical_edges was done beforehand, committing edge 8619 insertions will not split more edges. In addition to critical 8620 edges we must split edges that have multiple successors and 8621 end by control flow statements, such as RESX. 8622 Go ahead and split them too. This matches the logic in 8623 gimple_find_edge_insert_loc. */ 8624 else if ((!single_pred_p (e->dest) 8625 || !gimple_seq_empty_p (phi_nodes (e->dest)) 8626 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 8627 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) 8628 && !(e->flags & EDGE_ABNORMAL)) 8629 { 8630 gimple_stmt_iterator gsi; 8631 8632 gsi = gsi_last_bb (e->src); 8633 if (!gsi_end_p (gsi) 8634 && stmt_ends_bb_p (gsi_stmt (gsi)) 8635 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN 8636 && !gimple_call_builtin_p (gsi_stmt (gsi), 8637 BUILT_IN_RETURN))) 8638 split_edge (e); 8639 } 8640 } 8641 } 8642 end_recording_case_labels (); 8643 return 0; 8644 } 8645 8646 namespace { 8647 8648 const pass_data pass_data_split_crit_edges = 8649 { 8650 GIMPLE_PASS, /* type */ 8651 "crited", /* name */ 8652 OPTGROUP_NONE, /* optinfo_flags */ 8653 TV_TREE_SPLIT_EDGES, /* tv_id */ 8654 PROP_cfg, /* properties_required */ 8655 PROP_no_crit_edges, /* properties_provided */ 8656 0, /* properties_destroyed */ 8657 0, /* todo_flags_start */ 8658 0, /* todo_flags_finish */ 8659 }; 8660 8661 class pass_split_crit_edges : public gimple_opt_pass 8662 { 8663 public: 8664 pass_split_crit_edges (gcc::context *ctxt) 8665 : gimple_opt_pass (pass_data_split_crit_edges, ctxt) 8666 {} 8667 8668 /* opt_pass methods: */ 8669 virtual unsigned int execute (function *) { return split_critical_edges (); } 8670 8671 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); } 8672 }; // class pass_split_crit_edges 8673 8674 } // anon namespace 8675 8676 gimple_opt_pass * 8677 make_pass_split_crit_edges (gcc::context *ctxt) 8678 { 8679 return new pass_split_crit_edges (ctxt); 8680 } 8681 8682 8683 /* Insert COND expression which is GIMPLE_COND after STMT 8684 in basic block BB with appropriate basic block split 8685 and creation of a new conditionally executed basic block. 8686 Return created basic block. */ 8687 basic_block 8688 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond) 8689 { 8690 edge fall = split_block (bb, stmt); 8691 gimple_stmt_iterator iter = gsi_last_bb (bb); 8692 basic_block new_bb; 8693 8694 /* Insert cond statement. */ 8695 gcc_assert (gimple_code (cond) == GIMPLE_COND); 8696 if (gsi_end_p (iter)) 8697 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING); 8698 else 8699 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING); 8700 8701 /* Create conditionally executed block. */ 8702 new_bb = create_empty_bb (bb); 8703 make_edge (bb, new_bb, EDGE_TRUE_VALUE); 8704 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU); 8705 8706 /* Fix edge for split bb. */ 8707 fall->flags = EDGE_FALSE_VALUE; 8708 8709 /* Update dominance info. */ 8710 if (dom_info_available_p (CDI_DOMINATORS)) 8711 { 8712 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb); 8713 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb); 8714 } 8715 8716 /* Update loop info. */ 8717 if (current_loops) 8718 add_bb_to_loop (new_bb, bb->loop_father); 8719 8720 return new_bb; 8721 } 8722 8723 /* Build a ternary operation and gimplify it. Emit code before GSI. 8724 Return the gimple_val holding the result. */ 8725 8726 tree 8727 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code, 8728 tree type, tree a, tree b, tree c) 8729 { 8730 tree ret; 8731 location_t loc = gimple_location (gsi_stmt (*gsi)); 8732 8733 ret = fold_build3_loc (loc, code, type, a, b, c); 8734 STRIP_NOPS (ret); 8735 8736 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 8737 GSI_SAME_STMT); 8738 } 8739 8740 /* Build a binary operation and gimplify it. Emit code before GSI. 8741 Return the gimple_val holding the result. */ 8742 8743 tree 8744 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code, 8745 tree type, tree a, tree b) 8746 { 8747 tree ret; 8748 8749 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b); 8750 STRIP_NOPS (ret); 8751 8752 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 8753 GSI_SAME_STMT); 8754 } 8755 8756 /* Build a unary operation and gimplify it. Emit code before GSI. 8757 Return the gimple_val holding the result. */ 8758 8759 tree 8760 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type, 8761 tree a) 8762 { 8763 tree ret; 8764 8765 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a); 8766 STRIP_NOPS (ret); 8767 8768 return force_gimple_operand_gsi (gsi, ret, true, NULL, true, 8769 GSI_SAME_STMT); 8770 } 8771 8772 8773 8774 /* Given a basic block B which ends with a conditional and has 8775 precisely two successors, determine which of the edges is taken if 8776 the conditional is true and which is taken if the conditional is 8777 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */ 8778 8779 void 8780 extract_true_false_edges_from_block (basic_block b, 8781 edge *true_edge, 8782 edge *false_edge) 8783 { 8784 edge e = EDGE_SUCC (b, 0); 8785 8786 if (e->flags & EDGE_TRUE_VALUE) 8787 { 8788 *true_edge = e; 8789 *false_edge = EDGE_SUCC (b, 1); 8790 } 8791 else 8792 { 8793 *false_edge = e; 8794 *true_edge = EDGE_SUCC (b, 1); 8795 } 8796 } 8797 8798 8799 /* From a controlling predicate in the immediate dominator DOM of 8800 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the 8801 predicate evaluates to true and false and store them to 8802 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if 8803 they are non-NULL. Returns true if the edges can be determined, 8804 else return false. */ 8805 8806 bool 8807 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock, 8808 edge *true_controlled_edge, 8809 edge *false_controlled_edge) 8810 { 8811 basic_block bb = phiblock; 8812 edge true_edge, false_edge, tem; 8813 edge e0 = NULL, e1 = NULL; 8814 8815 /* We have to verify that one edge into the PHI node is dominated 8816 by the true edge of the predicate block and the other edge 8817 dominated by the false edge. This ensures that the PHI argument 8818 we are going to take is completely determined by the path we 8819 take from the predicate block. 8820 We can only use BB dominance checks below if the destination of 8821 the true/false edges are dominated by their edge, thus only 8822 have a single predecessor. */ 8823 extract_true_false_edges_from_block (dom, &true_edge, &false_edge); 8824 tem = EDGE_PRED (bb, 0); 8825 if (tem == true_edge 8826 || (single_pred_p (true_edge->dest) 8827 && (tem->src == true_edge->dest 8828 || dominated_by_p (CDI_DOMINATORS, 8829 tem->src, true_edge->dest)))) 8830 e0 = tem; 8831 else if (tem == false_edge 8832 || (single_pred_p (false_edge->dest) 8833 && (tem->src == false_edge->dest 8834 || dominated_by_p (CDI_DOMINATORS, 8835 tem->src, false_edge->dest)))) 8836 e1 = tem; 8837 else 8838 return false; 8839 tem = EDGE_PRED (bb, 1); 8840 if (tem == true_edge 8841 || (single_pred_p (true_edge->dest) 8842 && (tem->src == true_edge->dest 8843 || dominated_by_p (CDI_DOMINATORS, 8844 tem->src, true_edge->dest)))) 8845 e0 = tem; 8846 else if (tem == false_edge 8847 || (single_pred_p (false_edge->dest) 8848 && (tem->src == false_edge->dest 8849 || dominated_by_p (CDI_DOMINATORS, 8850 tem->src, false_edge->dest)))) 8851 e1 = tem; 8852 else 8853 return false; 8854 if (!e0 || !e1) 8855 return false; 8856 8857 if (true_controlled_edge) 8858 *true_controlled_edge = e0; 8859 if (false_controlled_edge) 8860 *false_controlled_edge = e1; 8861 8862 return true; 8863 } 8864 8865 8866 8867 /* Emit return warnings. */ 8868 8869 namespace { 8870 8871 const pass_data pass_data_warn_function_return = 8872 { 8873 GIMPLE_PASS, /* type */ 8874 "*warn_function_return", /* name */ 8875 OPTGROUP_NONE, /* optinfo_flags */ 8876 TV_NONE, /* tv_id */ 8877 PROP_cfg, /* properties_required */ 8878 0, /* properties_provided */ 8879 0, /* properties_destroyed */ 8880 0, /* todo_flags_start */ 8881 0, /* todo_flags_finish */ 8882 }; 8883 8884 class pass_warn_function_return : public gimple_opt_pass 8885 { 8886 public: 8887 pass_warn_function_return (gcc::context *ctxt) 8888 : gimple_opt_pass (pass_data_warn_function_return, ctxt) 8889 {} 8890 8891 /* opt_pass methods: */ 8892 virtual unsigned int execute (function *); 8893 8894 }; // class pass_warn_function_return 8895 8896 unsigned int 8897 pass_warn_function_return::execute (function *fun) 8898 { 8899 source_location location; 8900 gimple *last; 8901 edge e; 8902 edge_iterator ei; 8903 8904 if (!targetm.warn_func_return (fun->decl)) 8905 return 0; 8906 8907 /* If we have a path to EXIT, then we do return. */ 8908 if (TREE_THIS_VOLATILE (fun->decl) 8909 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0) 8910 { 8911 location = UNKNOWN_LOCATION; 8912 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds) 8913 { 8914 last = last_stmt (e->src); 8915 if ((gimple_code (last) == GIMPLE_RETURN 8916 || gimple_call_builtin_p (last, BUILT_IN_RETURN)) 8917 && (location = gimple_location (last)) != UNKNOWN_LOCATION) 8918 break; 8919 } 8920 if (location == UNKNOWN_LOCATION) 8921 location = cfun->function_end_locus; 8922 8923 #ifdef notyet 8924 if (warn_missing_noreturn) 8925 warning_at (location, 0, "%<noreturn%> function does return"); 8926 #endif 8927 } 8928 8929 /* If we see "return;" in some basic block, then we do reach the end 8930 without returning a value. */ 8931 else if (warn_return_type 8932 && !TREE_NO_WARNING (fun->decl) 8933 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl)))) 8934 { 8935 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds) 8936 { 8937 gimple *last = last_stmt (e->src); 8938 greturn *return_stmt = dyn_cast <greturn *> (last); 8939 if (return_stmt 8940 && gimple_return_retval (return_stmt) == NULL 8941 && !gimple_no_warning_p (last)) 8942 { 8943 location = gimple_location (last); 8944 if (location == UNKNOWN_LOCATION) 8945 location = fun->function_end_locus; 8946 warning_at (location, OPT_Wreturn_type, 8947 "control reaches end of non-void function"); 8948 TREE_NO_WARNING (fun->decl) = 1; 8949 break; 8950 } 8951 } 8952 /* -fsanitize=return turns fallthrough from the end of non-void function 8953 into __builtin___ubsan_handle_missing_return () call. 8954 Recognize those too. */ 8955 basic_block bb; 8956 if (!TREE_NO_WARNING (fun->decl) && (flag_sanitize & SANITIZE_RETURN)) 8957 FOR_EACH_BB_FN (bb, fun) 8958 if (EDGE_COUNT (bb->succs) == 0) 8959 { 8960 gimple *last = last_stmt (bb); 8961 const enum built_in_function ubsan_missing_ret 8962 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN; 8963 if (last && gimple_call_builtin_p (last, ubsan_missing_ret)) 8964 { 8965 gimple_stmt_iterator gsi = gsi_for_stmt (last); 8966 gsi_prev_nondebug (&gsi); 8967 gimple *prev = gsi_stmt (gsi); 8968 if (prev == NULL) 8969 location = UNKNOWN_LOCATION; 8970 else 8971 location = gimple_location (prev); 8972 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION) 8973 location = fun->function_end_locus; 8974 warning_at (location, OPT_Wreturn_type, 8975 "control reaches end of non-void function"); 8976 TREE_NO_WARNING (fun->decl) = 1; 8977 break; 8978 } 8979 } 8980 } 8981 return 0; 8982 } 8983 8984 } // anon namespace 8985 8986 gimple_opt_pass * 8987 make_pass_warn_function_return (gcc::context *ctxt) 8988 { 8989 return new pass_warn_function_return (ctxt); 8990 } 8991 8992 /* Walk a gimplified function and warn for functions whose return value is 8993 ignored and attribute((warn_unused_result)) is set. This is done before 8994 inlining, so we don't have to worry about that. */ 8995 8996 static void 8997 do_warn_unused_result (gimple_seq seq) 8998 { 8999 tree fdecl, ftype; 9000 gimple_stmt_iterator i; 9001 9002 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i)) 9003 { 9004 gimple *g = gsi_stmt (i); 9005 9006 switch (gimple_code (g)) 9007 { 9008 case GIMPLE_BIND: 9009 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g))); 9010 break; 9011 case GIMPLE_TRY: 9012 do_warn_unused_result (gimple_try_eval (g)); 9013 do_warn_unused_result (gimple_try_cleanup (g)); 9014 break; 9015 case GIMPLE_CATCH: 9016 do_warn_unused_result (gimple_catch_handler ( 9017 as_a <gcatch *> (g))); 9018 break; 9019 case GIMPLE_EH_FILTER: 9020 do_warn_unused_result (gimple_eh_filter_failure (g)); 9021 break; 9022 9023 case GIMPLE_CALL: 9024 if (gimple_call_lhs (g)) 9025 break; 9026 if (gimple_call_internal_p (g)) 9027 break; 9028 9029 /* This is a naked call, as opposed to a GIMPLE_CALL with an 9030 LHS. All calls whose value is ignored should be 9031 represented like this. Look for the attribute. */ 9032 fdecl = gimple_call_fndecl (g); 9033 ftype = gimple_call_fntype (g); 9034 9035 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype))) 9036 { 9037 location_t loc = gimple_location (g); 9038 9039 if (fdecl) 9040 warning_at (loc, OPT_Wunused_result, 9041 "ignoring return value of %qD, " 9042 "declared with attribute warn_unused_result", 9043 fdecl); 9044 else 9045 warning_at (loc, OPT_Wunused_result, 9046 "ignoring return value of function " 9047 "declared with attribute warn_unused_result"); 9048 } 9049 break; 9050 9051 default: 9052 /* Not a container, not a call, or a call whose value is used. */ 9053 break; 9054 } 9055 } 9056 } 9057 9058 namespace { 9059 9060 const pass_data pass_data_warn_unused_result = 9061 { 9062 GIMPLE_PASS, /* type */ 9063 "*warn_unused_result", /* name */ 9064 OPTGROUP_NONE, /* optinfo_flags */ 9065 TV_NONE, /* tv_id */ 9066 PROP_gimple_any, /* properties_required */ 9067 0, /* properties_provided */ 9068 0, /* properties_destroyed */ 9069 0, /* todo_flags_start */ 9070 0, /* todo_flags_finish */ 9071 }; 9072 9073 class pass_warn_unused_result : public gimple_opt_pass 9074 { 9075 public: 9076 pass_warn_unused_result (gcc::context *ctxt) 9077 : gimple_opt_pass (pass_data_warn_unused_result, ctxt) 9078 {} 9079 9080 /* opt_pass methods: */ 9081 virtual bool gate (function *) { return flag_warn_unused_result; } 9082 virtual unsigned int execute (function *) 9083 { 9084 do_warn_unused_result (gimple_body (current_function_decl)); 9085 return 0; 9086 } 9087 9088 }; // class pass_warn_unused_result 9089 9090 } // anon namespace 9091 9092 gimple_opt_pass * 9093 make_pass_warn_unused_result (gcc::context *ctxt) 9094 { 9095 return new pass_warn_unused_result (ctxt); 9096 } 9097 9098 /* IPA passes, compilation of earlier functions or inlining 9099 might have changed some properties, such as marked functions nothrow, 9100 pure, const or noreturn. 9101 Remove redundant edges and basic blocks, and create new ones if necessary. 9102 9103 This pass can't be executed as stand alone pass from pass manager, because 9104 in between inlining and this fixup the verify_flow_info would fail. */ 9105 9106 unsigned int 9107 execute_fixup_cfg (void) 9108 { 9109 basic_block bb; 9110 gimple_stmt_iterator gsi; 9111 int todo = 0; 9112 gcov_type count_scale; 9113 edge e; 9114 edge_iterator ei; 9115 cgraph_node *node = cgraph_node::get (current_function_decl); 9116 9117 count_scale 9118 = GCOV_COMPUTE_SCALE (node->count, ENTRY_BLOCK_PTR_FOR_FN (cfun)->count); 9119 9120 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count; 9121 EXIT_BLOCK_PTR_FOR_FN (cfun)->count 9122 = apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count, count_scale); 9123 9124 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 9125 e->count = apply_scale (e->count, count_scale); 9126 9127 FOR_EACH_BB_FN (bb, cfun) 9128 { 9129 bb->count = apply_scale (bb->count, count_scale); 9130 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) 9131 { 9132 gimple *stmt = gsi_stmt (gsi); 9133 tree decl = is_gimple_call (stmt) 9134 ? gimple_call_fndecl (stmt) 9135 : NULL; 9136 if (decl) 9137 { 9138 int flags = gimple_call_flags (stmt); 9139 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE)) 9140 { 9141 if (gimple_purge_dead_abnormal_call_edges (bb)) 9142 todo |= TODO_cleanup_cfg; 9143 9144 if (gimple_in_ssa_p (cfun)) 9145 { 9146 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9147 update_stmt (stmt); 9148 } 9149 } 9150 9151 if (flags & ECF_NORETURN 9152 && fixup_noreturn_call (stmt)) 9153 todo |= TODO_cleanup_cfg; 9154 } 9155 9156 /* Remove stores to variables we marked write-only. 9157 Keep access when store has side effect, i.e. in case when source 9158 is volatile. */ 9159 if (gimple_store_p (stmt) 9160 && !gimple_has_side_effects (stmt)) 9161 { 9162 tree lhs = get_base_address (gimple_get_lhs (stmt)); 9163 9164 if (VAR_P (lhs) 9165 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs)) 9166 && varpool_node::get (lhs)->writeonly) 9167 { 9168 unlink_stmt_vdef (stmt); 9169 gsi_remove (&gsi, true); 9170 release_defs (stmt); 9171 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9172 continue; 9173 } 9174 } 9175 /* For calls we can simply remove LHS when it is known 9176 to be write-only. */ 9177 if (is_gimple_call (stmt) 9178 && gimple_get_lhs (stmt)) 9179 { 9180 tree lhs = get_base_address (gimple_get_lhs (stmt)); 9181 9182 if (VAR_P (lhs) 9183 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs)) 9184 && varpool_node::get (lhs)->writeonly) 9185 { 9186 gimple_call_set_lhs (stmt, NULL); 9187 update_stmt (stmt); 9188 todo |= TODO_update_ssa | TODO_cleanup_cfg; 9189 } 9190 } 9191 9192 if (maybe_clean_eh_stmt (stmt) 9193 && gimple_purge_dead_eh_edges (bb)) 9194 todo |= TODO_cleanup_cfg; 9195 gsi_next (&gsi); 9196 } 9197 9198 FOR_EACH_EDGE (e, ei, bb->succs) 9199 e->count = apply_scale (e->count, count_scale); 9200 9201 /* If we have a basic block with no successors that does not 9202 end with a control statement or a noreturn call end it with 9203 a call to __builtin_unreachable. This situation can occur 9204 when inlining a noreturn call that does in fact return. */ 9205 if (EDGE_COUNT (bb->succs) == 0) 9206 { 9207 gimple *stmt = last_stmt (bb); 9208 if (!stmt 9209 || (!is_ctrl_stmt (stmt) 9210 && (!is_gimple_call (stmt) 9211 || !gimple_call_noreturn_p (stmt)))) 9212 { 9213 if (stmt && is_gimple_call (stmt)) 9214 gimple_call_set_ctrl_altering (stmt, false); 9215 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); 9216 stmt = gimple_build_call (fndecl, 0); 9217 gimple_stmt_iterator gsi = gsi_last_bb (bb); 9218 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); 9219 if (!cfun->after_inlining) 9220 { 9221 gcall *call_stmt = dyn_cast <gcall *> (stmt); 9222 int freq 9223 = compute_call_stmt_bb_frequency (current_function_decl, 9224 bb); 9225 node->create_edge (cgraph_node::get_create (fndecl), 9226 call_stmt, bb->count, freq); 9227 } 9228 } 9229 } 9230 } 9231 if (count_scale != REG_BR_PROB_BASE) 9232 compute_function_frequency (); 9233 9234 if (current_loops 9235 && (todo & TODO_cleanup_cfg)) 9236 loops_state_set (LOOPS_NEED_FIXUP); 9237 9238 return todo; 9239 } 9240 9241 namespace { 9242 9243 const pass_data pass_data_fixup_cfg = 9244 { 9245 GIMPLE_PASS, /* type */ 9246 "fixup_cfg", /* name */ 9247 OPTGROUP_NONE, /* optinfo_flags */ 9248 TV_NONE, /* tv_id */ 9249 PROP_cfg, /* properties_required */ 9250 0, /* properties_provided */ 9251 0, /* properties_destroyed */ 9252 0, /* todo_flags_start */ 9253 0, /* todo_flags_finish */ 9254 }; 9255 9256 class pass_fixup_cfg : public gimple_opt_pass 9257 { 9258 public: 9259 pass_fixup_cfg (gcc::context *ctxt) 9260 : gimple_opt_pass (pass_data_fixup_cfg, ctxt) 9261 {} 9262 9263 /* opt_pass methods: */ 9264 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); } 9265 virtual unsigned int execute (function *) { return execute_fixup_cfg (); } 9266 9267 }; // class pass_fixup_cfg 9268 9269 } // anon namespace 9270 9271 gimple_opt_pass * 9272 make_pass_fixup_cfg (gcc::context *ctxt) 9273 { 9274 return new pass_fixup_cfg (ctxt); 9275 } 9276 9277 /* Garbage collection support for edge_def. */ 9278 9279 extern void gt_ggc_mx (tree&); 9280 extern void gt_ggc_mx (gimple *&); 9281 extern void gt_ggc_mx (rtx&); 9282 extern void gt_ggc_mx (basic_block&); 9283 9284 static void 9285 gt_ggc_mx (rtx_insn *& x) 9286 { 9287 if (x) 9288 gt_ggc_mx_rtx_def ((void *) x); 9289 } 9290 9291 void 9292 gt_ggc_mx (edge_def *e) 9293 { 9294 tree block = LOCATION_BLOCK (e->goto_locus); 9295 gt_ggc_mx (e->src); 9296 gt_ggc_mx (e->dest); 9297 if (current_ir_type () == IR_GIMPLE) 9298 gt_ggc_mx (e->insns.g); 9299 else 9300 gt_ggc_mx (e->insns.r); 9301 gt_ggc_mx (block); 9302 } 9303 9304 /* PCH support for edge_def. */ 9305 9306 extern void gt_pch_nx (tree&); 9307 extern void gt_pch_nx (gimple *&); 9308 extern void gt_pch_nx (rtx&); 9309 extern void gt_pch_nx (basic_block&); 9310 9311 static void 9312 gt_pch_nx (rtx_insn *& x) 9313 { 9314 if (x) 9315 gt_pch_nx_rtx_def ((void *) x); 9316 } 9317 9318 void 9319 gt_pch_nx (edge_def *e) 9320 { 9321 tree block = LOCATION_BLOCK (e->goto_locus); 9322 gt_pch_nx (e->src); 9323 gt_pch_nx (e->dest); 9324 if (current_ir_type () == IR_GIMPLE) 9325 gt_pch_nx (e->insns.g); 9326 else 9327 gt_pch_nx (e->insns.r); 9328 gt_pch_nx (block); 9329 } 9330 9331 void 9332 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie) 9333 { 9334 tree block = LOCATION_BLOCK (e->goto_locus); 9335 op (&(e->src), cookie); 9336 op (&(e->dest), cookie); 9337 if (current_ir_type () == IR_GIMPLE) 9338 op (&(e->insns.g), cookie); 9339 else 9340 op (&(e->insns.r), cookie); 9341 op (&(block), cookie); 9342 } 9343 9344 #if CHECKING_P 9345 9346 namespace selftest { 9347 9348 /* Helper function for CFG selftests: create a dummy function decl 9349 and push it as cfun. */ 9350 9351 static tree 9352 push_fndecl (const char *name) 9353 { 9354 tree fn_type = build_function_type_array (integer_type_node, 0, NULL); 9355 /* FIXME: this uses input_location: */ 9356 tree fndecl = build_fn_decl (name, fn_type); 9357 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL, 9358 NULL_TREE, integer_type_node); 9359 DECL_RESULT (fndecl) = retval; 9360 push_struct_function (fndecl); 9361 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9362 ASSERT_TRUE (fun != NULL); 9363 init_empty_tree_cfg_for_function (fun); 9364 ASSERT_EQ (2, n_basic_blocks_for_fn (fun)); 9365 ASSERT_EQ (0, n_edges_for_fn (fun)); 9366 return fndecl; 9367 } 9368 9369 /* These tests directly create CFGs. 9370 Compare with the static fns within tree-cfg.c: 9371 - build_gimple_cfg 9372 - make_blocks: calls create_basic_block (seq, bb); 9373 - make_edges. */ 9374 9375 /* Verify a simple cfg of the form: 9376 ENTRY -> A -> B -> C -> EXIT. */ 9377 9378 static void 9379 test_linear_chain () 9380 { 9381 gimple_register_cfg_hooks (); 9382 9383 tree fndecl = push_fndecl ("cfg_test_linear_chain"); 9384 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9385 9386 /* Create some empty blocks. */ 9387 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); 9388 basic_block bb_b = create_empty_bb (bb_a); 9389 basic_block bb_c = create_empty_bb (bb_b); 9390 9391 ASSERT_EQ (5, n_basic_blocks_for_fn (fun)); 9392 ASSERT_EQ (0, n_edges_for_fn (fun)); 9393 9394 /* Create some edges: a simple linear chain of BBs. */ 9395 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); 9396 make_edge (bb_a, bb_b, 0); 9397 make_edge (bb_b, bb_c, 0); 9398 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0); 9399 9400 /* Verify the edges. */ 9401 ASSERT_EQ (4, n_edges_for_fn (fun)); 9402 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds); 9403 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ()); 9404 ASSERT_EQ (1, bb_a->preds->length ()); 9405 ASSERT_EQ (1, bb_a->succs->length ()); 9406 ASSERT_EQ (1, bb_b->preds->length ()); 9407 ASSERT_EQ (1, bb_b->succs->length ()); 9408 ASSERT_EQ (1, bb_c->preds->length ()); 9409 ASSERT_EQ (1, bb_c->succs->length ()); 9410 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ()); 9411 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs); 9412 9413 /* Verify the dominance information 9414 Each BB in our simple chain should be dominated by the one before 9415 it. */ 9416 calculate_dominance_info (CDI_DOMINATORS); 9417 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); 9418 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c)); 9419 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); 9420 ASSERT_EQ (1, dom_by_b.length ()); 9421 ASSERT_EQ (bb_c, dom_by_b[0]); 9422 free_dominance_info (CDI_DOMINATORS); 9423 dom_by_b.release (); 9424 9425 /* Similarly for post-dominance: each BB in our chain is post-dominated 9426 by the one after it. */ 9427 calculate_dominance_info (CDI_POST_DOMINATORS); 9428 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); 9429 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); 9430 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); 9431 ASSERT_EQ (1, postdom_by_b.length ()); 9432 ASSERT_EQ (bb_a, postdom_by_b[0]); 9433 free_dominance_info (CDI_POST_DOMINATORS); 9434 postdom_by_b.release (); 9435 9436 pop_cfun (); 9437 } 9438 9439 /* Verify a simple CFG of the form: 9440 ENTRY 9441 | 9442 A 9443 / \ 9444 /t \f 9445 B C 9446 \ / 9447 \ / 9448 D 9449 | 9450 EXIT. */ 9451 9452 static void 9453 test_diamond () 9454 { 9455 gimple_register_cfg_hooks (); 9456 9457 tree fndecl = push_fndecl ("cfg_test_diamond"); 9458 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9459 9460 /* Create some empty blocks. */ 9461 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)); 9462 basic_block bb_b = create_empty_bb (bb_a); 9463 basic_block bb_c = create_empty_bb (bb_a); 9464 basic_block bb_d = create_empty_bb (bb_b); 9465 9466 ASSERT_EQ (6, n_basic_blocks_for_fn (fun)); 9467 ASSERT_EQ (0, n_edges_for_fn (fun)); 9468 9469 /* Create the edges. */ 9470 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU); 9471 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE); 9472 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE); 9473 make_edge (bb_b, bb_d, 0); 9474 make_edge (bb_c, bb_d, 0); 9475 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0); 9476 9477 /* Verify the edges. */ 9478 ASSERT_EQ (6, n_edges_for_fn (fun)); 9479 ASSERT_EQ (1, bb_a->preds->length ()); 9480 ASSERT_EQ (2, bb_a->succs->length ()); 9481 ASSERT_EQ (1, bb_b->preds->length ()); 9482 ASSERT_EQ (1, bb_b->succs->length ()); 9483 ASSERT_EQ (1, bb_c->preds->length ()); 9484 ASSERT_EQ (1, bb_c->succs->length ()); 9485 ASSERT_EQ (2, bb_d->preds->length ()); 9486 ASSERT_EQ (1, bb_d->succs->length ()); 9487 9488 /* Verify the dominance information. */ 9489 calculate_dominance_info (CDI_DOMINATORS); 9490 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b)); 9491 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c)); 9492 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d)); 9493 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a); 9494 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */ 9495 dom_by_a.release (); 9496 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b); 9497 ASSERT_EQ (0, dom_by_b.length ()); 9498 dom_by_b.release (); 9499 free_dominance_info (CDI_DOMINATORS); 9500 9501 /* Similarly for post-dominance. */ 9502 calculate_dominance_info (CDI_POST_DOMINATORS); 9503 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a)); 9504 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b)); 9505 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c)); 9506 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d); 9507 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */ 9508 postdom_by_d.release (); 9509 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b); 9510 ASSERT_EQ (0, postdom_by_b.length ()); 9511 postdom_by_b.release (); 9512 free_dominance_info (CDI_POST_DOMINATORS); 9513 9514 pop_cfun (); 9515 } 9516 9517 /* Verify that we can handle a CFG containing a "complete" aka 9518 fully-connected subgraph (where A B C D below all have edges 9519 pointing to each other node, also to themselves). 9520 e.g.: 9521 ENTRY EXIT 9522 | ^ 9523 | / 9524 | / 9525 | / 9526 V/ 9527 A<--->B 9528 ^^ ^^ 9529 | \ / | 9530 | X | 9531 | / \ | 9532 VV VV 9533 C<--->D 9534 */ 9535 9536 static void 9537 test_fully_connected () 9538 { 9539 gimple_register_cfg_hooks (); 9540 9541 tree fndecl = push_fndecl ("cfg_fully_connected"); 9542 function *fun = DECL_STRUCT_FUNCTION (fndecl); 9543 9544 const int n = 4; 9545 9546 /* Create some empty blocks. */ 9547 auto_vec <basic_block> subgraph_nodes; 9548 for (int i = 0; i < n; i++) 9549 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun))); 9550 9551 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun)); 9552 ASSERT_EQ (0, n_edges_for_fn (fun)); 9553 9554 /* Create the edges. */ 9555 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU); 9556 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0); 9557 for (int i = 0; i < n; i++) 9558 for (int j = 0; j < n; j++) 9559 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0); 9560 9561 /* Verify the edges. */ 9562 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun)); 9563 /* The first one is linked to ENTRY/EXIT as well as itself and 9564 everything else. */ 9565 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ()); 9566 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ()); 9567 /* The other ones in the subgraph are linked to everything in 9568 the subgraph (including themselves). */ 9569 for (int i = 1; i < n; i++) 9570 { 9571 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ()); 9572 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ()); 9573 } 9574 9575 /* Verify the dominance information. */ 9576 calculate_dominance_info (CDI_DOMINATORS); 9577 /* The initial block in the subgraph should be dominated by ENTRY. */ 9578 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun), 9579 get_immediate_dominator (CDI_DOMINATORS, 9580 subgraph_nodes[0])); 9581 /* Every other block in the subgraph should be dominated by the 9582 initial block. */ 9583 for (int i = 1; i < n; i++) 9584 ASSERT_EQ (subgraph_nodes[0], 9585 get_immediate_dominator (CDI_DOMINATORS, 9586 subgraph_nodes[i])); 9587 free_dominance_info (CDI_DOMINATORS); 9588 9589 /* Similarly for post-dominance. */ 9590 calculate_dominance_info (CDI_POST_DOMINATORS); 9591 /* The initial block in the subgraph should be postdominated by EXIT. */ 9592 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun), 9593 get_immediate_dominator (CDI_POST_DOMINATORS, 9594 subgraph_nodes[0])); 9595 /* Every other block in the subgraph should be postdominated by the 9596 initial block, since that leads to EXIT. */ 9597 for (int i = 1; i < n; i++) 9598 ASSERT_EQ (subgraph_nodes[0], 9599 get_immediate_dominator (CDI_POST_DOMINATORS, 9600 subgraph_nodes[i])); 9601 free_dominance_info (CDI_POST_DOMINATORS); 9602 9603 pop_cfun (); 9604 } 9605 9606 /* Run all of the selftests within this file. */ 9607 9608 void 9609 tree_cfg_c_tests () 9610 { 9611 test_linear_chain (); 9612 test_diamond (); 9613 test_fully_connected (); 9614 } 9615 9616 } // namespace selftest 9617 9618 /* TODO: test the dominator/postdominator logic with various graphs/nodes: 9619 - loop 9620 - nested loops 9621 - switch statement (a block with many out-edges) 9622 - something that jumps to itself 9623 - etc */ 9624 9625 #endif /* CHECKING_P */ 9626