xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/sese.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Single entry single exit control flow regions.
2    Copyright (C) 2008, 2009, 2010
3    Free Software Foundation, Inc.
4    Contributed by Jan Sjodin <jan.sjodin@amd.com> and
5    Sebastian Pop <sebastian.pop@amd.com>.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13 
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 #ifndef GCC_SESE_H
24 #define GCC_SESE_H
25 
26 /* A Single Entry, Single Exit region is a part of the CFG delimited
27    by two edges.  */
28 typedef struct sese_s
29 {
30   /* Single ENTRY and single EXIT from the SESE region.  */
31   edge entry, exit;
32 
33   /* Parameters used within the SCOP.  */
34   VEC (tree, heap) *params;
35 
36   /* Loops completely contained in the SCOP.  */
37   bitmap loops;
38   VEC (loop_p, heap) *loop_nest;
39 
40   /* Are we allowed to add more params?  This is for debugging purpose.  We
41      can only add new params before generating the bb domains, otherwise they
42      become invalid.  */
43   bool add_params;
44 } *sese;
45 
46 #define SESE_ENTRY(S) (S->entry)
47 #define SESE_ENTRY_BB(S) (S->entry->dest)
48 #define SESE_EXIT(S) (S->exit)
49 #define SESE_EXIT_BB(S) (S->exit->dest)
50 #define SESE_PARAMS(S) (S->params)
51 #define SESE_LOOPS(S) (S->loops)
52 #define SESE_LOOP_NEST(S) (S->loop_nest)
53 #define SESE_ADD_PARAMS(S) (S->add_params)
54 
55 extern sese new_sese (edge, edge);
56 extern void free_sese (sese);
57 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
58 extern void sese_adjust_liveout_phis (sese, htab_t, basic_block, edge, edge);
59 extern void build_sese_loop_nests (sese);
60 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge, htab_t);
61 extern struct loop *outermost_loop_in_sese (sese, basic_block);
62 extern void insert_loop_close_phis (htab_t, loop_p);
63 extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
64 extern tree scalar_evolution_in_region (sese, loop_p, tree);
65 
66 /* Check that SESE contains LOOP.  */
67 
68 static inline bool
69 sese_contains_loop (sese sese, struct loop *loop)
70 {
71   return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
72 }
73 
74 /* The number of parameters in REGION. */
75 
76 static inline unsigned
77 sese_nb_params (sese region)
78 {
79   return VEC_length (tree, SESE_PARAMS (region));
80 }
81 
82 /* Checks whether BB is contained in the region delimited by ENTRY and
83    EXIT blocks.  */
84 
85 static inline bool
86 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
87 {
88 #ifdef ENABLE_CHECKING
89   {
90     edge e;
91     edge_iterator ei;
92 
93     /* Check that there are no edges coming in the region: all the
94        predecessors of EXIT are dominated by ENTRY.  */
95     FOR_EACH_EDGE (e, ei, exit->preds)
96       dominated_by_p (CDI_DOMINATORS, e->src, entry);
97 
98     /* Check that there are no edges going out of the region: the
99        entry is post-dominated by the exit.  FIXME: This cannot be
100        checked right now as the CDI_POST_DOMINATORS are needed.  */
101   }
102 #endif
103 
104   return dominated_by_p (CDI_DOMINATORS, bb, entry)
105 	 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
106 	      && !dominated_by_p (CDI_DOMINATORS, entry, exit));
107 }
108 
109 /* Checks whether BB is contained in the region delimited by ENTRY and
110    EXIT blocks.  */
111 
112 static inline bool
113 bb_in_sese_p (basic_block bb, sese region)
114 {
115   basic_block entry = SESE_ENTRY_BB (region);
116   basic_block exit = SESE_EXIT_BB (region);
117 
118   return bb_in_region (bb, entry, exit);
119 }
120 
121 /* Returns true when NAME is defined in REGION.  */
122 
123 static inline bool
124 defined_in_sese_p (tree name, sese region)
125 {
126   gimple stmt = SSA_NAME_DEF_STMT (name);
127   basic_block bb = gimple_bb (stmt);
128 
129   return bb && bb_in_sese_p (bb, region);
130 }
131 
132 /* Returns true when LOOP is in REGION.  */
133 
134 static inline bool
135 loop_in_sese_p (struct loop *loop, sese region)
136 {
137   return (bb_in_sese_p (loop->header, region)
138 	  && bb_in_sese_p (loop->latch, region));
139 }
140 
141 /* Returns the loop depth of LOOP in REGION.  The loop depth
142    is the same as the normal loop depth, but limited by a region.
143 
144    Example:
145 
146    loop_0
147      loop_1
148        {
149          S0
150             <- region start
151          S1
152 
153          loop_2
154            S2
155 
156          S3
157             <- region end
158        }
159 
160     loop_0 does not exist in the region -> invalid
161     loop_1 exists, but is not completely contained in the region -> depth 0
162     loop_2 is completely contained -> depth 1  */
163 
164 static inline unsigned int
165 sese_loop_depth (sese region, loop_p loop)
166 {
167   unsigned int depth = 0;
168 
169   gcc_assert ((!loop_in_sese_p (loop, region)
170 	       && (SESE_ENTRY_BB (region)->loop_father == loop
171 	           || SESE_EXIT (region)->src->loop_father == loop))
172               || loop_in_sese_p (loop, region));
173 
174   while (loop_in_sese_p (loop, region))
175     {
176       depth++;
177       loop = loop_outer (loop);
178     }
179 
180   return depth;
181 }
182 
183 /* Splits BB to make a single entry single exit region.  */
184 
185 static inline sese
186 split_region_for_bb (basic_block bb)
187 {
188   edge entry, exit;
189 
190   if (single_pred_p (bb))
191     entry = single_pred_edge (bb);
192   else
193     {
194       entry = split_block_after_labels (bb);
195       bb = single_succ (bb);
196     }
197 
198   if (single_succ_p (bb))
199     exit = single_succ_edge (bb);
200   else
201     {
202       gimple_stmt_iterator gsi = gsi_last_bb (bb);
203       gsi_prev (&gsi);
204       exit = split_block (bb, gsi_stmt (gsi));
205     }
206 
207   return new_sese (entry, exit);
208 }
209 
210 /* Returns the block preceding the entry of a SESE.  */
211 
212 static inline basic_block
213 block_before_sese (sese sese)
214 {
215   return SESE_ENTRY (sese)->src;
216 }
217 
218 
219 
220 /* A single entry single exit specialized for conditions.  */
221 
222 typedef struct ifsese_s {
223   sese region;
224   sese true_region;
225   sese false_region;
226 } *ifsese;
227 
228 extern void if_region_set_false_region (ifsese, sese);
229 extern ifsese create_if_region_on_edge (edge, tree);
230 extern ifsese move_sese_in_condition (sese);
231 extern edge get_true_edge_from_guard_bb (basic_block);
232 extern edge get_false_edge_from_guard_bb (basic_block);
233 extern void set_ifsese_condition (ifsese, tree);
234 
235 static inline edge
236 if_region_entry (ifsese if_region)
237 {
238   return SESE_ENTRY (if_region->region);
239 }
240 
241 static inline edge
242 if_region_exit (ifsese if_region)
243 {
244   return SESE_EXIT (if_region->region);
245 }
246 
247 static inline basic_block
248 if_region_get_condition_block (ifsese if_region)
249 {
250   return if_region_entry (if_region)->dest;
251 }
252 
253 /* Structure containing the mapping between the old names and the new
254    names used after block copy in the new loop context.  */
255 typedef struct rename_map_elt_s
256 {
257   tree old_name, expr;
258 } *rename_map_elt;
259 
260 DEF_VEC_P(rename_map_elt);
261 DEF_VEC_ALLOC_P (rename_map_elt, heap);
262 
263 extern void debug_rename_map (htab_t);
264 extern hashval_t rename_map_elt_info (const void *);
265 extern int eq_rename_map_elts (const void *, const void *);
266 extern void set_rename (htab_t, tree, tree);
267 extern void rename_nb_iterations (htab_t);
268 extern void rename_sese_parameters (htab_t, sese);
269 
270 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW.  */
271 
272 static inline rename_map_elt
273 new_rename_map_elt (tree old_name, tree expr)
274 {
275   rename_map_elt res;
276 
277   res = XNEW (struct rename_map_elt_s);
278   res->old_name = old_name;
279   res->expr = expr;
280 
281   return res;
282 }
283 
284 /* Structure containing the mapping between the CLooG's induction
285    variable and the type of the old induction variable.  */
286 typedef struct ivtype_map_elt_s
287 {
288   tree type;
289   const char *cloog_iv;
290 } *ivtype_map_elt;
291 
292 extern void debug_ivtype_map (htab_t);
293 extern hashval_t ivtype_map_elt_info (const void *);
294 extern int eq_ivtype_map_elts (const void *, const void *);
295 
296 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW.  */
297 
298 static inline ivtype_map_elt
299 new_ivtype_map_elt (const char *cloog_iv, tree type)
300 {
301   ivtype_map_elt res;
302 
303   res = XNEW (struct ivtype_map_elt_s);
304   res->cloog_iv = cloog_iv;
305   res->type = type;
306 
307   return res;
308 }
309 
310 /* Free and compute again all the dominators information.  */
311 
312 static inline void
313 recompute_all_dominators (void)
314 {
315   mark_irreducible_loops ();
316   free_dominance_info (CDI_DOMINATORS);
317   free_dominance_info (CDI_POST_DOMINATORS);
318   calculate_dominance_info (CDI_DOMINATORS);
319   calculate_dominance_info (CDI_POST_DOMINATORS);
320 }
321 
322 typedef struct gimple_bb
323 {
324   basic_block bb;
325 
326   /* Lists containing the restrictions of the conditional statements
327      dominating this bb.  This bb can only be executed, if all conditions
328      are true.
329 
330      Example:
331 
332      for (i = 0; i <= 20; i++)
333      {
334        A
335 
336        if (2i <= 8)
337          B
338      }
339 
340      So for B there is an additional condition (2i <= 8).
341 
342      List of COND_EXPR and SWITCH_EXPR.  A COND_EXPR is true only if the
343      corresponding element in CONDITION_CASES is not NULL_TREE.  For a
344      SWITCH_EXPR the corresponding element in CONDITION_CASES is a
345      CASE_LABEL_EXPR.  */
346   VEC (gimple, heap) *conditions;
347   VEC (gimple, heap) *condition_cases;
348   VEC (data_reference_p, heap) *data_refs;
349   htab_t cloog_iv_types;
350 } *gimple_bb_p;
351 
352 #define GBB_BB(GBB) GBB->bb
353 #define GBB_DATA_REFS(GBB) GBB->data_refs
354 #define GBB_CONDITIONS(GBB) GBB->conditions
355 #define GBB_CONDITION_CASES(GBB) GBB->condition_cases
356 #define GBB_CLOOG_IV_TYPES(GBB) GBB->cloog_iv_types
357 
358 /* Return the innermost loop that contains the basic block GBB.  */
359 
360 static inline struct loop *
361 gbb_loop (struct gimple_bb *gbb)
362 {
363   return GBB_BB (gbb)->loop_father;
364 }
365 
366 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
367    If there is no corresponding gimple loop, we return NULL.  */
368 
369 static inline loop_p
370 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
371 {
372   loop_p loop = gbb_loop (gbb);
373   int depth = sese_loop_depth (region, loop);
374 
375   while (--depth > index)
376     loop = loop_outer (loop);
377 
378   gcc_assert (sese_contains_loop (region, loop));
379 
380   return loop;
381 }
382 
383 /* The number of common loops in REGION for GBB1 and GBB2.  */
384 
385 static inline int
386 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
387 {
388   loop_p l1 = gbb_loop (gbb1);
389   loop_p l2 = gbb_loop (gbb2);
390   loop_p common = find_common_loop (l1, l2);
391 
392   return sese_loop_depth (region, common);
393 }
394 
395 #endif
396