1 /* Instruction scheduling pass. Selective scheduler and pipeliner. 2 Copyright (C) 2006-2015 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "rtl-error.h" 25 #include "tm_p.h" 26 #include "hard-reg-set.h" 27 #include "regs.h" 28 #include "hashtab.h" 29 #include "hash-set.h" 30 #include "vec.h" 31 #include "machmode.h" 32 #include "input.h" 33 #include "function.h" 34 #include "predict.h" 35 #include "dominance.h" 36 #include "cfg.h" 37 #include "cfgbuild.h" 38 #include "basic-block.h" 39 #include "flags.h" 40 #include "insn-config.h" 41 #include "insn-attr.h" 42 #include "except.h" 43 #include "recog.h" 44 #include "params.h" 45 #include "target.h" 46 #include "output.h" 47 #include "sched-int.h" 48 #include "ggc.h" 49 #include "symtab.h" 50 #include "wide-int.h" 51 #include "inchash.h" 52 #include "tree.h" 53 #include "langhooks.h" 54 #include "rtlhooks-def.h" 55 #include "emit-rtl.h" 56 #include "ira.h" 57 #include "ira-int.h" 58 #include "rtl-iter.h" 59 60 #ifdef INSN_SCHEDULING 61 #include "sel-sched-ir.h" 62 #include "sel-sched-dump.h" 63 #include "sel-sched.h" 64 #include "dbgcnt.h" 65 66 /* Implementation of selective scheduling approach. 67 The below implementation follows the original approach with the following 68 changes: 69 70 o the scheduler works after register allocation (but can be also tuned 71 to work before RA); 72 o some instructions are not copied or register renamed; 73 o conditional jumps are not moved with code duplication; 74 o several jumps in one parallel group are not supported; 75 o when pipelining outer loops, code motion through inner loops 76 is not supported; 77 o control and data speculation are supported; 78 o some improvements for better compile time/performance were made. 79 80 Terminology 81 =========== 82 83 A vinsn, or virtual insn, is an insn with additional data characterizing 84 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc. 85 Vinsns also act as smart pointers to save memory by reusing them in 86 different expressions. A vinsn is described by vinsn_t type. 87 88 An expression is a vinsn with additional data characterizing its properties 89 at some point in the control flow graph. The data may be its usefulness, 90 priority, speculative status, whether it was renamed/subsituted, etc. 91 An expression is described by expr_t type. 92 93 Availability set (av_set) is a set of expressions at a given control flow 94 point. It is represented as av_set_t. The expressions in av sets are kept 95 sorted in the terms of expr_greater_p function. It allows to truncate 96 the set while leaving the best expressions. 97 98 A fence is a point through which code motion is prohibited. On each step, 99 we gather a parallel group of insns at a fence. It is possible to have 100 multiple fences. A fence is represented via fence_t. 101 102 A boundary is the border between the fence group and the rest of the code. 103 Currently, we never have more than one boundary per fence, as we finalize 104 the fence group when a jump is scheduled. A boundary is represented 105 via bnd_t. 106 107 High-level overview 108 =================== 109 110 The scheduler finds regions to schedule, schedules each one, and finalizes. 111 The regions are formed starting from innermost loops, so that when the inner 112 loop is pipelined, its prologue can be scheduled together with yet unprocessed 113 outer loop. The rest of acyclic regions are found using extend_rgns: 114 the blocks that are not yet allocated to any regions are traversed in top-down 115 order, and a block is added to a region to which all its predecessors belong; 116 otherwise, the block starts its own region. 117 118 The main scheduling loop (sel_sched_region_2) consists of just 119 scheduling on each fence and updating fences. For each fence, 120 we fill a parallel group of insns (fill_insns) until some insns can be added. 121 First, we compute available exprs (av-set) at the boundary of the current 122 group. Second, we choose the best expression from it. If the stall is 123 required to schedule any of the expressions, we advance the current cycle 124 appropriately. So, the final group does not exactly correspond to a VLIW 125 word. Third, we move the chosen expression to the boundary (move_op) 126 and update the intermediate av sets and liveness sets. We quit fill_insns 127 when either no insns left for scheduling or we have scheduled enough insns 128 so we feel like advancing a scheduling point. 129 130 Computing available expressions 131 =============================== 132 133 The computation (compute_av_set) is a bottom-up traversal. At each insn, 134 we're moving the union of its successors' sets through it via 135 moveup_expr_set. The dependent expressions are removed. Local 136 transformations (substitution, speculation) are applied to move more 137 exprs. Then the expr corresponding to the current insn is added. 138 The result is saved on each basic block header. 139 140 When traversing the CFG, we're moving down for no more than max_ws insns. 141 Also, we do not move down to ineligible successors (is_ineligible_successor), 142 which include moving along a back-edge, moving to already scheduled code, 143 and moving to another fence. The first two restrictions are lifted during 144 pipelining, which allows us to move insns along a back-edge. We always have 145 an acyclic region for scheduling because we forbid motion through fences. 146 147 Choosing the best expression 148 ============================ 149 150 We sort the final availability set via sel_rank_for_schedule, then we remove 151 expressions which are not yet ready (tick_check_p) or which dest registers 152 cannot be used. For some of them, we choose another register via 153 find_best_reg. To do this, we run find_used_regs to calculate the set of 154 registers which cannot be used. The find_used_regs function performs 155 a traversal of code motion paths for an expr. We consider for renaming 156 only registers which are from the same regclass as the original one and 157 using which does not interfere with any live ranges. Finally, we convert 158 the resulting set to the ready list format and use max_issue and reorder* 159 hooks similarly to the Haifa scheduler. 160 161 Scheduling the best expression 162 ============================== 163 164 We run the move_op routine to perform the same type of code motion paths 165 traversal as in find_used_regs. (These are working via the same driver, 166 code_motion_path_driver.) When moving down the CFG, we look for original 167 instruction that gave birth to a chosen expression. We undo 168 the transformations performed on an expression via the history saved in it. 169 When found, we remove the instruction or leave a reg-reg copy/speculation 170 check if needed. On a way up, we insert bookkeeping copies at each join 171 point. If a copy is not needed, it will be removed later during this 172 traversal. We update the saved av sets and liveness sets on the way up, too. 173 174 Finalizing the schedule 175 ======================= 176 177 When pipelining, we reschedule the blocks from which insns were pipelined 178 to get a tighter schedule. On Itanium, we also perform bundling via 179 the same routine from ia64.c. 180 181 Dependence analysis changes 182 =========================== 183 184 We augmented the sched-deps.c with hooks that get called when a particular 185 dependence is found in a particular part of an insn. Using these hooks, we 186 can do several actions such as: determine whether an insn can be moved through 187 another (has_dependence_p, moveup_expr); find out whether an insn can be 188 scheduled on the current cycle (tick_check_p); find out registers that 189 are set/used/clobbered by an insn and find out all the strange stuff that 190 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in 191 init_global_and_expr_for_insn). 192 193 Initialization changes 194 ====================== 195 196 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are 197 reused in all of the schedulers. We have split up the initialization of data 198 of such parts into different functions prefixed with scheduler type and 199 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish}, 200 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc. 201 The same splitting is done with current_sched_info structure: 202 dependence-related parts are in sched_deps_info, common part is in 203 common_sched_info, and haifa/sel/etc part is in current_sched_info. 204 205 Target contexts 206 =============== 207 208 As we now have multiple-point scheduling, this would not work with backends 209 which save some of the scheduler state to use it in the target hooks. 210 For this purpose, we introduce a concept of target contexts, which 211 encapsulate such information. The backend should implement simple routines 212 of allocating/freeing/setting such a context. The scheduler calls these 213 as target hooks and handles the target context as an opaque pointer (similar 214 to the DFA state type, state_t). 215 216 Various speedups 217 ================ 218 219 As the correct data dependence graph is not supported during scheduling (which 220 is to be changed in mid-term), we cache as much of the dependence analysis 221 results as possible to avoid reanalyzing. This includes: bitmap caches on 222 each insn in stream of the region saying yes/no for a query with a pair of 223 UIDs; hashtables with the previously done transformations on each insn in 224 stream; a vector keeping a history of transformations on each expr. 225 226 Also, we try to minimize the dependence context used on each fence to check 227 whether the given expression is ready for scheduling by removing from it 228 insns that are definitely completed the execution. The results of 229 tick_check_p checks are also cached in a vector on each fence. 230 231 We keep a valid liveness set on each insn in a region to avoid the high 232 cost of recomputation on large basic blocks. 233 234 Finally, we try to minimize the number of needed updates to the availability 235 sets. The updates happen in two cases: when fill_insns terminates, 236 we advance all fences and increase the stage number to show that the region 237 has changed and the sets are to be recomputed; and when the next iteration 238 of a loop in fill_insns happens (but this one reuses the saved av sets 239 on bb headers.) Thus, we try to break the fill_insns loop only when 240 "significant" number of insns from the current scheduling window was 241 scheduled. This should be made a target param. 242 243 244 TODO: correctly support the data dependence graph at all stages and get rid 245 of all caches. This should speed up the scheduler. 246 TODO: implement moving cond jumps with bookkeeping copies on both targets. 247 TODO: tune the scheduler before RA so it does not create too much pseudos. 248 249 250 References: 251 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with 252 selective scheduling and software pipelining. 253 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997. 254 255 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik, 256 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler 257 for GCC. In Proceedings of GCC Developers' Summit 2006. 258 259 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction 260 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop. 261 http://rogue.colorado.edu/EPIC7/. 262 263 */ 264 265 /* True when pipelining is enabled. */ 266 bool pipelining_p; 267 268 /* True if bookkeeping is enabled. */ 269 bool bookkeeping_p; 270 271 /* Maximum number of insns that are eligible for renaming. */ 272 int max_insns_to_rename; 273 274 275 /* Definitions of local types and macros. */ 276 277 /* Represents possible outcomes of moving an expression through an insn. */ 278 enum MOVEUP_EXPR_CODE 279 { 280 /* The expression is not changed. */ 281 MOVEUP_EXPR_SAME, 282 283 /* Not changed, but requires a new destination register. */ 284 MOVEUP_EXPR_AS_RHS, 285 286 /* Cannot be moved. */ 287 MOVEUP_EXPR_NULL, 288 289 /* Changed (substituted or speculated). */ 290 MOVEUP_EXPR_CHANGED 291 }; 292 293 /* The container to be passed into rtx search & replace functions. */ 294 struct rtx_search_arg 295 { 296 /* What we are searching for. */ 297 rtx x; 298 299 /* The occurrence counter. */ 300 int n; 301 }; 302 303 typedef struct rtx_search_arg *rtx_search_arg_p; 304 305 /* This struct contains precomputed hard reg sets that are needed when 306 computing registers available for renaming. */ 307 struct hard_regs_data 308 { 309 /* For every mode, this stores registers available for use with 310 that mode. */ 311 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES]; 312 313 /* True when regs_for_mode[mode] is initialized. */ 314 bool regs_for_mode_ok[NUM_MACHINE_MODES]; 315 316 /* For every register, it has regs that are ok to rename into it. 317 The register in question is always set. If not, this means 318 that the whole set is not computed yet. */ 319 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER]; 320 321 /* For every mode, this stores registers not available due to 322 call clobbering. */ 323 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES]; 324 325 /* All registers that are used or call used. */ 326 HARD_REG_SET regs_ever_used; 327 328 #ifdef STACK_REGS 329 /* Stack registers. */ 330 HARD_REG_SET stack_regs; 331 #endif 332 }; 333 334 /* Holds the results of computation of available for renaming and 335 unavailable hard registers. */ 336 struct reg_rename 337 { 338 /* These are unavailable due to calls crossing, globalness, etc. */ 339 HARD_REG_SET unavailable_hard_regs; 340 341 /* These are *available* for renaming. */ 342 HARD_REG_SET available_for_renaming; 343 344 /* Whether this code motion path crosses a call. */ 345 bool crosses_call; 346 }; 347 348 /* A global structure that contains the needed information about harg 349 regs. */ 350 static struct hard_regs_data sel_hrd; 351 352 353 /* This structure holds local data used in code_motion_path_driver hooks on 354 the same or adjacent levels of recursion. Here we keep those parameters 355 that are not used in code_motion_path_driver routine itself, but only in 356 its hooks. Moreover, all parameters that can be modified in hooks are 357 in this structure, so all other parameters passed explicitly to hooks are 358 read-only. */ 359 struct cmpd_local_params 360 { 361 /* Local params used in move_op_* functions. */ 362 363 /* Edges for bookkeeping generation. */ 364 edge e1, e2; 365 366 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */ 367 expr_t c_expr_merged, c_expr_local; 368 369 /* Local params used in fur_* functions. */ 370 /* Copy of the ORIGINAL_INSN list, stores the original insns already 371 found before entering the current level of code_motion_path_driver. */ 372 def_list_t old_original_insns; 373 374 /* Local params used in move_op_* functions. */ 375 /* True when we have removed last insn in the block which was 376 also a boundary. Do not update anything or create bookkeeping copies. */ 377 BOOL_BITFIELD removed_last_insn : 1; 378 }; 379 380 /* Stores the static parameters for move_op_* calls. */ 381 struct moveop_static_params 382 { 383 /* Destination register. */ 384 rtx dest; 385 386 /* Current C_EXPR. */ 387 expr_t c_expr; 388 389 /* An UID of expr_vliw which is to be moved up. If we find other exprs, 390 they are to be removed. */ 391 int uid; 392 393 #ifdef ENABLE_CHECKING 394 /* This is initialized to the insn on which the driver stopped its traversal. */ 395 insn_t failed_insn; 396 #endif 397 398 /* True if we scheduled an insn with different register. */ 399 bool was_renamed; 400 }; 401 402 /* Stores the static parameters for fur_* calls. */ 403 struct fur_static_params 404 { 405 /* Set of registers unavailable on the code motion path. */ 406 regset used_regs; 407 408 /* Pointer to the list of original insns definitions. */ 409 def_list_t *original_insns; 410 411 /* True if a code motion path contains a CALL insn. */ 412 bool crosses_call; 413 }; 414 415 typedef struct fur_static_params *fur_static_params_p; 416 typedef struct cmpd_local_params *cmpd_local_params_p; 417 typedef struct moveop_static_params *moveop_static_params_p; 418 419 /* Set of hooks and parameters that determine behaviour specific to 420 move_op or find_used_regs functions. */ 421 struct code_motion_path_driver_info_def 422 { 423 /* Called on enter to the basic block. */ 424 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool); 425 426 /* Called when original expr is found. */ 427 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *); 428 429 /* Called while descending current basic block if current insn is not 430 the original EXPR we're searching for. */ 431 bool (*orig_expr_not_found) (insn_t, av_set_t, void *); 432 433 /* Function to merge C_EXPRes from different successors. */ 434 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *); 435 436 /* Function to finalize merge from different successors and possibly 437 deallocate temporary data structures used for merging. */ 438 void (*after_merge_succs) (cmpd_local_params_p, void *); 439 440 /* Called on the backward stage of recursion to do moveup_expr. 441 Used only with move_op_*. */ 442 void (*ascend) (insn_t, void *); 443 444 /* Called on the ascending pass, before returning from the current basic 445 block or from the whole traversal. */ 446 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *); 447 448 /* When processing successors in move_op we need only descend into 449 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */ 450 int succ_flags; 451 452 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */ 453 const char *routine_name; 454 }; 455 456 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or 457 FUR_HOOKS. */ 458 struct code_motion_path_driver_info_def *code_motion_path_driver_info; 459 460 /* Set of hooks for performing move_op and find_used_regs routines with 461 code_motion_path_driver. */ 462 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks; 463 464 /* True if/when we want to emulate Haifa scheduler in the common code. 465 This is used in sched_rgn_local_init and in various places in 466 sched-deps.c. */ 467 int sched_emulate_haifa_p; 468 469 /* GLOBAL_LEVEL is used to discard information stored in basic block headers 470 av_sets. Av_set of bb header is valid if its (bb header's) level is equal 471 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance 472 scheduling window. */ 473 int global_level; 474 475 /* Current fences. */ 476 flist_t fences; 477 478 /* True when separable insns should be scheduled as RHSes. */ 479 static bool enable_schedule_as_rhs_p; 480 481 /* Used in verify_target_availability to assert that target reg is reported 482 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if 483 we haven't scheduled anything on the previous fence. 484 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can 485 have more conservative value than the one returned by the 486 find_used_regs, thus we shouldn't assert that these values are equal. */ 487 static bool scheduled_something_on_previous_fence; 488 489 /* All newly emitted insns will have their uids greater than this value. */ 490 static int first_emitted_uid; 491 492 /* Set of basic blocks that are forced to start new ebbs. This is a subset 493 of all the ebb heads. */ 494 static bitmap_head _forced_ebb_heads; 495 bitmap_head *forced_ebb_heads = &_forced_ebb_heads; 496 497 /* Blocks that need to be rescheduled after pipelining. */ 498 bitmap blocks_to_reschedule = NULL; 499 500 /* True when the first lv set should be ignored when updating liveness. */ 501 static bool ignore_first = false; 502 503 /* Number of insns max_issue has initialized data structures for. */ 504 static int max_issue_size = 0; 505 506 /* Whether we can issue more instructions. */ 507 static int can_issue_more; 508 509 /* Maximum software lookahead window size, reduced when rescheduling after 510 pipelining. */ 511 static int max_ws; 512 513 /* Number of insns scheduled in current region. */ 514 static int num_insns_scheduled; 515 516 /* A vector of expressions is used to be able to sort them. */ 517 static vec<expr_t> vec_av_set = vNULL; 518 519 /* A vector of vinsns is used to hold temporary lists of vinsns. */ 520 typedef vec<vinsn_t> vinsn_vec_t; 521 522 /* This vector has the exprs which may still present in av_sets, but actually 523 can't be moved up due to bookkeeping created during code motion to another 524 fence. See comment near the call to update_and_record_unavailable_insns 525 for the detailed explanations. */ 526 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t (); 527 528 /* This vector has vinsns which are scheduled with renaming on the first fence 529 and then seen on the second. For expressions with such vinsns, target 530 availability information may be wrong. */ 531 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t (); 532 533 /* Vector to store temporary nops inserted in move_op to prevent removal 534 of empty bbs. */ 535 static vec<insn_t> vec_temp_moveop_nops = vNULL; 536 537 /* These bitmaps record original instructions scheduled on the current 538 iteration and bookkeeping copies created by them. */ 539 static bitmap current_originators = NULL; 540 static bitmap current_copies = NULL; 541 542 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't 543 visit them afterwards. */ 544 static bitmap code_motion_visited_blocks = NULL; 545 546 /* Variables to accumulate different statistics. */ 547 548 /* The number of bookkeeping copies created. */ 549 static int stat_bookkeeping_copies; 550 551 /* The number of insns that required bookkeeiping for their scheduling. */ 552 static int stat_insns_needed_bookkeeping; 553 554 /* The number of insns that got renamed. */ 555 static int stat_renamed_scheduled; 556 557 /* The number of substitutions made during scheduling. */ 558 static int stat_substitutions_total; 559 560 561 /* Forward declarations of static functions. */ 562 static bool rtx_ok_for_substitution_p (rtx, rtx); 563 static int sel_rank_for_schedule (const void *, const void *); 564 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool); 565 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax); 566 567 static rtx get_dest_from_orig_ops (av_set_t); 568 static basic_block generate_bookkeeping_insn (expr_t, edge, edge); 569 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *, 570 def_list_t *); 571 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*); 572 static int code_motion_path_driver (insn_t, av_set_t, ilist_t, 573 cmpd_local_params_p, void *); 574 static void sel_sched_region_1 (void); 575 static void sel_sched_region_2 (int); 576 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool); 577 578 static void debug_state (state_t); 579 580 581 /* Functions that work with fences. */ 582 583 /* Advance one cycle on FENCE. */ 584 static void 585 advance_one_cycle (fence_t fence) 586 { 587 unsigned i; 588 int cycle; 589 rtx_insn *insn; 590 591 advance_state (FENCE_STATE (fence)); 592 cycle = ++FENCE_CYCLE (fence); 593 FENCE_ISSUED_INSNS (fence) = 0; 594 FENCE_STARTS_CYCLE_P (fence) = 1; 595 can_issue_more = issue_rate; 596 FENCE_ISSUE_MORE (fence) = can_issue_more; 597 598 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); ) 599 { 600 if (INSN_READY_CYCLE (insn) < cycle) 601 { 602 remove_from_deps (FENCE_DC (fence), insn); 603 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i); 604 continue; 605 } 606 i++; 607 } 608 if (sched_verbose >= 2) 609 { 610 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence)); 611 debug_state (FENCE_STATE (fence)); 612 } 613 } 614 615 /* Returns true when SUCC in a fallthru bb of INSN, possibly 616 skipping empty basic blocks. */ 617 static bool 618 in_fallthru_bb_p (rtx insn, rtx succ) 619 { 620 basic_block bb = BLOCK_FOR_INSN (insn); 621 edge e; 622 623 if (bb == BLOCK_FOR_INSN (succ)) 624 return true; 625 626 e = find_fallthru_edge_from (bb); 627 if (e) 628 bb = e->dest; 629 else 630 return false; 631 632 while (sel_bb_empty_p (bb)) 633 bb = bb->next_bb; 634 635 return bb == BLOCK_FOR_INSN (succ); 636 } 637 638 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES. 639 When a successor will continue a ebb, transfer all parameters of a fence 640 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round 641 of scheduling helping to distinguish between the old and the new code. */ 642 static void 643 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences, 644 int orig_max_seqno) 645 { 646 bool was_here_p = false; 647 insn_t insn = NULL; 648 insn_t succ; 649 succ_iterator si; 650 ilist_iterator ii; 651 fence_t fence = FLIST_FENCE (old_fences); 652 basic_block bb; 653 654 /* Get the only element of FENCE_BNDS (fence). */ 655 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence)) 656 { 657 gcc_assert (!was_here_p); 658 was_here_p = true; 659 } 660 gcc_assert (was_here_p && insn != NULL_RTX); 661 662 /* When in the "middle" of the block, just move this fence 663 to the new list. */ 664 bb = BLOCK_FOR_INSN (insn); 665 if (! sel_bb_end_p (insn) 666 || (single_succ_p (bb) 667 && single_pred_p (single_succ (bb)))) 668 { 669 insn_t succ; 670 671 succ = (sel_bb_end_p (insn) 672 ? sel_bb_head (single_succ (bb)) 673 : NEXT_INSN (insn)); 674 675 if (INSN_SEQNO (succ) > 0 676 && INSN_SEQNO (succ) <= orig_max_seqno 677 && INSN_SCHED_TIMES (succ) <= 0) 678 { 679 FENCE_INSN (fence) = succ; 680 move_fence_to_fences (old_fences, new_fences); 681 682 if (sched_verbose >= 1) 683 sel_print ("Fence %d continues as %d[%d] (state continue)\n", 684 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ)); 685 } 686 return; 687 } 688 689 /* Otherwise copy fence's structures to (possibly) multiple successors. */ 690 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 691 { 692 int seqno = INSN_SEQNO (succ); 693 694 if (0 < seqno && seqno <= orig_max_seqno 695 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0)) 696 { 697 bool b = (in_same_ebb_p (insn, succ) 698 || in_fallthru_bb_p (insn, succ)); 699 700 if (sched_verbose >= 1) 701 sel_print ("Fence %d continues as %d[%d] (state %s)\n", 702 INSN_UID (insn), INSN_UID (succ), 703 BLOCK_NUM (succ), b ? "continue" : "reset"); 704 705 if (b) 706 add_dirty_fence_to_fences (new_fences, succ, fence); 707 else 708 { 709 /* Mark block of the SUCC as head of the new ebb. */ 710 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ)); 711 add_clean_fence_to_fences (new_fences, succ, fence); 712 } 713 } 714 } 715 } 716 717 718 /* Functions to support substitution. */ 719 720 /* Returns whether INSN with dependence status DS is eligible for 721 substitution, i.e. it's a copy operation x := y, and RHS that is 722 moved up through this insn should be substituted. */ 723 static bool 724 can_substitute_through_p (insn_t insn, ds_t ds) 725 { 726 /* We can substitute only true dependencies. */ 727 if ((ds & DEP_OUTPUT) 728 || (ds & DEP_ANTI) 729 || ! INSN_RHS (insn) 730 || ! INSN_LHS (insn)) 731 return false; 732 733 /* Now we just need to make sure the INSN_RHS consists of only one 734 simple REG rtx. */ 735 if (REG_P (INSN_LHS (insn)) 736 && REG_P (INSN_RHS (insn))) 737 return true; 738 return false; 739 } 740 741 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's 742 source (if INSN is eligible for substitution). Returns TRUE if 743 substitution was actually performed, FALSE otherwise. Substitution might 744 be not performed because it's either EXPR' vinsn doesn't contain INSN's 745 destination or the resulting insn is invalid for the target machine. 746 When UNDO is true, perform unsubstitution instead (the difference is in 747 the part of rtx on which validate_replace_rtx is called). */ 748 static bool 749 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo) 750 { 751 rtx *where; 752 bool new_insn_valid; 753 vinsn_t *vi = &EXPR_VINSN (expr); 754 bool has_rhs = VINSN_RHS (*vi) != NULL; 755 rtx old, new_rtx; 756 757 /* Do not try to replace in SET_DEST. Although we'll choose new 758 register for the RHS, we don't want to change RHS' original reg. 759 If the insn is not SET, we may still be able to substitute something 760 in it, and if we're here (don't have deps), it doesn't write INSN's 761 dest. */ 762 where = (has_rhs 763 ? &VINSN_RHS (*vi) 764 : &PATTERN (VINSN_INSN_RTX (*vi))); 765 old = undo ? INSN_RHS (insn) : INSN_LHS (insn); 766 767 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */ 768 if (rtx_ok_for_substitution_p (old, *where)) 769 { 770 rtx_insn *new_insn; 771 rtx *where_replace; 772 773 /* We should copy these rtxes before substitution. */ 774 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn)); 775 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi)); 776 777 /* Where we'll replace. 778 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be 779 used instead of SET_SRC. */ 780 where_replace = (has_rhs 781 ? &SET_SRC (PATTERN (new_insn)) 782 : &PATTERN (new_insn)); 783 784 new_insn_valid 785 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace, 786 new_insn); 787 788 /* ??? Actually, constrain_operands result depends upon choice of 789 destination register. E.g. if we allow single register to be an rhs, 790 and if we try to move dx=ax(as rhs) through ax=dx, we'll result 791 in invalid insn dx=dx, so we'll loose this rhs here. 792 Just can't come up with significant testcase for this, so just 793 leaving it for now. */ 794 if (new_insn_valid) 795 { 796 change_vinsn_in_expr (expr, 797 create_vinsn_from_insn_rtx (new_insn, false)); 798 799 /* Do not allow clobbering the address register of speculative 800 insns. */ 801 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE) 802 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)), 803 expr_dest_reg (expr))) 804 EXPR_TARGET_AVAILABLE (expr) = false; 805 806 return true; 807 } 808 else 809 return false; 810 } 811 else 812 return false; 813 } 814 815 /* Return the number of places WHAT appears within WHERE. 816 Bail out when we found a reference occupying several hard registers. */ 817 static int 818 count_occurrences_equiv (const_rtx what, const_rtx where) 819 { 820 int count = 0; 821 subrtx_iterator::array_type array; 822 FOR_EACH_SUBRTX (iter, array, where, NONCONST) 823 { 824 const_rtx x = *iter; 825 if (REG_P (x) && REGNO (x) == REGNO (what)) 826 { 827 /* Bail out if mode is different or more than one register is 828 used. */ 829 if (GET_MODE (x) != GET_MODE (what) 830 || (HARD_REGISTER_P (x) 831 && hard_regno_nregs[REGNO (x)][GET_MODE (x)] > 1)) 832 return 0; 833 count += 1; 834 } 835 else if (GET_CODE (x) == SUBREG 836 && (!REG_P (SUBREG_REG (x)) 837 || REGNO (SUBREG_REG (x)) == REGNO (what))) 838 /* ??? Do not support substituting regs inside subregs. In that case, 839 simplify_subreg will be called by validate_replace_rtx, and 840 unsubstitution will fail later. */ 841 return 0; 842 } 843 return count; 844 } 845 846 /* Returns TRUE if WHAT is found in WHERE rtx tree. */ 847 static bool 848 rtx_ok_for_substitution_p (rtx what, rtx where) 849 { 850 return (count_occurrences_equiv (what, where) > 0); 851 } 852 853 854 /* Functions to support register renaming. */ 855 856 /* Substitute VI's set source with REGNO. Returns newly created pattern 857 that has REGNO as its source. */ 858 static rtx_insn * 859 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx) 860 { 861 rtx lhs_rtx; 862 rtx pattern; 863 rtx_insn *insn_rtx; 864 865 lhs_rtx = copy_rtx (VINSN_LHS (vi)); 866 867 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx); 868 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 869 870 return insn_rtx; 871 } 872 873 /* Returns whether INSN's src can be replaced with register number 874 NEW_SRC_REG. E.g. the following insn is valid for i386: 875 876 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337 877 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp) 878 (reg:SI 0 ax [orig:770 c1 ] [770])) 879 (const_int 288 [0x120])) [0 str S1 A8]) 880 (const_int 0 [0x0])) 43 {*movqi_1} (nil) 881 (nil)) 882 883 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid 884 because of operand constraints: 885 886 (define_insn "*movqi_1" 887 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m") 888 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn") 889 )] 890 891 So do constrain_operands here, before choosing NEW_SRC_REG as best 892 reg for rhs. */ 893 894 static bool 895 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg) 896 { 897 vinsn_t vi = INSN_VINSN (insn); 898 machine_mode mode; 899 rtx dst_loc; 900 bool res; 901 902 gcc_assert (VINSN_SEPARABLE_P (vi)); 903 904 get_dest_and_mode (insn, &dst_loc, &mode); 905 gcc_assert (mode == GET_MODE (new_src_reg)); 906 907 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc)) 908 return true; 909 910 /* See whether SET_SRC can be replaced with this register. */ 911 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1); 912 res = verify_changes (0); 913 cancel_changes (0); 914 915 return res; 916 } 917 918 /* Returns whether INSN still be valid after replacing it's DEST with 919 register NEW_REG. */ 920 static bool 921 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg) 922 { 923 vinsn_t vi = INSN_VINSN (insn); 924 bool res; 925 926 /* We should deal here only with separable insns. */ 927 gcc_assert (VINSN_SEPARABLE_P (vi)); 928 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg)); 929 930 /* See whether SET_DEST can be replaced with this register. */ 931 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1); 932 res = verify_changes (0); 933 cancel_changes (0); 934 935 return res; 936 } 937 938 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */ 939 static rtx_insn * 940 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx) 941 { 942 rtx rhs_rtx; 943 rtx pattern; 944 rtx_insn *insn_rtx; 945 946 rhs_rtx = copy_rtx (VINSN_RHS (vi)); 947 948 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx); 949 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 950 951 return insn_rtx; 952 } 953 954 /* Substitute lhs in the given expression EXPR for the register with number 955 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */ 956 static void 957 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg) 958 { 959 rtx_insn *insn_rtx; 960 vinsn_t vinsn; 961 962 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg); 963 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false); 964 965 change_vinsn_in_expr (expr, vinsn); 966 EXPR_WAS_RENAMED (expr) = 1; 967 EXPR_TARGET_AVAILABLE (expr) = 1; 968 } 969 970 /* Returns whether VI writes either one of the USED_REGS registers or, 971 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */ 972 static bool 973 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs, 974 HARD_REG_SET unavailable_hard_regs) 975 { 976 unsigned regno; 977 reg_set_iterator rsi; 978 979 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi) 980 { 981 if (REGNO_REG_SET_P (used_regs, regno)) 982 return true; 983 if (HARD_REGISTER_NUM_P (regno) 984 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno)) 985 return true; 986 } 987 988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi) 989 { 990 if (REGNO_REG_SET_P (used_regs, regno)) 991 return true; 992 if (HARD_REGISTER_NUM_P (regno) 993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno)) 994 return true; 995 } 996 997 return false; 998 } 999 1000 /* Returns register class of the output register in INSN. 1001 Returns NO_REGS for call insns because some targets have constraints on 1002 destination register of a call insn. 1003 1004 Code adopted from regrename.c::build_def_use. */ 1005 static enum reg_class 1006 get_reg_class (rtx_insn *insn) 1007 { 1008 int i, n_ops; 1009 1010 extract_constrain_insn (insn); 1011 preprocess_constraints (insn); 1012 n_ops = recog_data.n_operands; 1013 1014 const operand_alternative *op_alt = which_op_alt (); 1015 if (asm_noperands (PATTERN (insn)) > 0) 1016 { 1017 for (i = 0; i < n_ops; i++) 1018 if (recog_data.operand_type[i] == OP_OUT) 1019 { 1020 rtx *loc = recog_data.operand_loc[i]; 1021 rtx op = *loc; 1022 enum reg_class cl = alternative_class (op_alt, i); 1023 1024 if (REG_P (op) 1025 && REGNO (op) == ORIGINAL_REGNO (op)) 1026 continue; 1027 1028 return cl; 1029 } 1030 } 1031 else if (!CALL_P (insn)) 1032 { 1033 for (i = 0; i < n_ops + recog_data.n_dups; i++) 1034 { 1035 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; 1036 enum reg_class cl = alternative_class (op_alt, opn); 1037 1038 if (recog_data.operand_type[opn] == OP_OUT || 1039 recog_data.operand_type[opn] == OP_INOUT) 1040 return cl; 1041 } 1042 } 1043 1044 /* Insns like 1045 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...))) 1046 may result in returning NO_REGS, cause flags is written implicitly through 1047 CMP insn, which has no OP_OUT | OP_INOUT operands. */ 1048 return NO_REGS; 1049 } 1050 1051 #ifdef HARD_REGNO_RENAME_OK 1052 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */ 1053 static void 1054 init_hard_regno_rename (int regno) 1055 { 1056 int cur_reg; 1057 1058 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno); 1059 1060 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1061 { 1062 /* We are not interested in renaming in other regs. */ 1063 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg)) 1064 continue; 1065 1066 if (HARD_REGNO_RENAME_OK (regno, cur_reg)) 1067 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg); 1068 } 1069 } 1070 #endif 1071 1072 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs 1073 data first. */ 1074 static inline bool 1075 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED) 1076 { 1077 #ifdef HARD_REGNO_RENAME_OK 1078 /* Check whether this is all calculated. */ 1079 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from)) 1080 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to); 1081 1082 init_hard_regno_rename (from); 1083 1084 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to); 1085 #else 1086 return true; 1087 #endif 1088 } 1089 1090 /* Calculate set of registers that are capable of holding MODE. */ 1091 static void 1092 init_regs_for_mode (machine_mode mode) 1093 { 1094 int cur_reg; 1095 1096 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]); 1097 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]); 1098 1099 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1100 { 1101 int nregs; 1102 int i; 1103 1104 /* See whether it accepts all modes that occur in 1105 original insns. */ 1106 if (! HARD_REGNO_MODE_OK (cur_reg, mode)) 1107 continue; 1108 1109 nregs = hard_regno_nregs[cur_reg][mode]; 1110 1111 for (i = nregs - 1; i >= 0; --i) 1112 if (fixed_regs[cur_reg + i] 1113 || global_regs[cur_reg + i] 1114 /* Can't use regs which aren't saved by 1115 the prologue. */ 1116 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i) 1117 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting 1118 it affects aliasing globally and invalidates all AV sets. */ 1119 || get_reg_base_value (cur_reg + i) 1120 #ifdef LEAF_REGISTERS 1121 /* We can't use a non-leaf register if we're in a 1122 leaf function. */ 1123 || (crtl->is_leaf 1124 && !LEAF_REGISTERS[cur_reg + i]) 1125 #endif 1126 ) 1127 break; 1128 1129 if (i >= 0) 1130 continue; 1131 1132 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode)) 1133 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode], 1134 cur_reg); 1135 1136 /* If the CUR_REG passed all the checks above, 1137 then it's ok. */ 1138 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg); 1139 } 1140 1141 sel_hrd.regs_for_mode_ok[mode] = true; 1142 } 1143 1144 /* Init all register sets gathered in HRD. */ 1145 static void 1146 init_hard_regs_data (void) 1147 { 1148 int cur_reg = 0; 1149 int cur_mode = 0; 1150 1151 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used); 1152 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1153 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg]) 1154 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg); 1155 1156 /* Initialize registers that are valid based on mode when this is 1157 really needed. */ 1158 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++) 1159 sel_hrd.regs_for_mode_ok[cur_mode] = false; 1160 1161 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */ 1162 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1163 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]); 1164 1165 #ifdef STACK_REGS 1166 CLEAR_HARD_REG_SET (sel_hrd.stack_regs); 1167 1168 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++) 1169 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg); 1170 #endif 1171 } 1172 1173 /* Mark hardware regs in REG_RENAME_P that are not suitable 1174 for renaming rhs in INSN due to hardware restrictions (register class, 1175 modes compatibility etc). This doesn't affect original insn's dest reg, 1176 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the 1177 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM. 1178 Registers that are in used_regs are always marked in 1179 unavailable_hard_regs as well. */ 1180 1181 static void 1182 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p, 1183 regset used_regs ATTRIBUTE_UNUSED) 1184 { 1185 machine_mode mode; 1186 enum reg_class cl = NO_REGS; 1187 rtx orig_dest; 1188 unsigned cur_reg, regno; 1189 hard_reg_set_iterator hrsi; 1190 1191 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET); 1192 gcc_assert (reg_rename_p); 1193 1194 orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1195 1196 /* We have decided not to rename 'mem = something;' insns, as 'something' 1197 is usually a register. */ 1198 if (!REG_P (orig_dest)) 1199 return; 1200 1201 regno = REGNO (orig_dest); 1202 1203 /* If before reload, don't try to work with pseudos. */ 1204 if (!reload_completed && !HARD_REGISTER_NUM_P (regno)) 1205 return; 1206 1207 if (reload_completed) 1208 cl = get_reg_class (def->orig_insn); 1209 1210 /* Stop if the original register is one of the fixed_regs, global_regs or 1211 frame pointer, or we could not discover its class. */ 1212 if (fixed_regs[regno] 1213 || global_regs[regno] 1214 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER 1215 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM) 1216 #else 1217 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM) 1218 #endif 1219 || (reload_completed && cl == NO_REGS)) 1220 { 1221 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs); 1222 1223 /* Give a chance for original register, if it isn't in used_regs. */ 1224 if (!def->crosses_call) 1225 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno); 1226 1227 return; 1228 } 1229 1230 /* If something allocated on stack in this function, mark frame pointer 1231 register unavailable, considering also modes. 1232 FIXME: it is enough to do this once per all original defs. */ 1233 if (frame_pointer_needed) 1234 { 1235 add_to_hard_reg_set (®_rename_p->unavailable_hard_regs, 1236 Pmode, FRAME_POINTER_REGNUM); 1237 1238 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER) 1239 add_to_hard_reg_set (®_rename_p->unavailable_hard_regs, 1240 Pmode, HARD_FRAME_POINTER_REGNUM); 1241 } 1242 1243 #ifdef STACK_REGS 1244 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS 1245 is equivalent to as if all stack regs were in this set. 1246 I.e. no stack register can be renamed, and even if it's an original 1247 register here we make sure it won't be lifted over it's previous def 1248 (it's previous def will appear as if it's a FIRST_STACK_REG def. 1249 The HARD_REGNO_RENAME_OK covers other cases in condition below. */ 1250 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG) 1251 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG)) 1252 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1253 sel_hrd.stack_regs); 1254 #endif 1255 1256 /* If there's a call on this path, make regs from call_used_reg_set 1257 unavailable. */ 1258 if (def->crosses_call) 1259 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1260 call_used_reg_set); 1261 1262 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call, 1263 but not register classes. */ 1264 if (!reload_completed) 1265 return; 1266 1267 /* Leave regs as 'available' only from the current 1268 register class. */ 1269 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming, 1270 reg_class_contents[cl]); 1271 1272 mode = GET_MODE (orig_dest); 1273 1274 /* Leave only registers available for this mode. */ 1275 if (!sel_hrd.regs_for_mode_ok[mode]) 1276 init_regs_for_mode (mode); 1277 AND_HARD_REG_SET (reg_rename_p->available_for_renaming, 1278 sel_hrd.regs_for_mode[mode]); 1279 1280 /* Exclude registers that are partially call clobbered. */ 1281 if (def->crosses_call 1282 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) 1283 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1284 sel_hrd.regs_for_call_clobbered[mode]); 1285 1286 /* Leave only those that are ok to rename. */ 1287 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1288 0, cur_reg, hrsi) 1289 { 1290 int nregs; 1291 int i; 1292 1293 nregs = hard_regno_nregs[cur_reg][mode]; 1294 gcc_assert (nregs > 0); 1295 1296 for (i = nregs - 1; i >= 0; --i) 1297 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i)) 1298 break; 1299 1300 if (i >= 0) 1301 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming, 1302 cur_reg); 1303 } 1304 1305 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1306 reg_rename_p->unavailable_hard_regs); 1307 1308 /* Regno is always ok from the renaming part of view, but it really 1309 could be in *unavailable_hard_regs already, so set it here instead 1310 of there. */ 1311 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno); 1312 } 1313 1314 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the 1315 best register more recently than REG2. */ 1316 static int reg_rename_tick[FIRST_PSEUDO_REGISTER]; 1317 1318 /* Indicates the number of times renaming happened before the current one. */ 1319 static int reg_rename_this_tick; 1320 1321 /* Choose the register among free, that is suitable for storing 1322 the rhs value. 1323 1324 ORIGINAL_INSNS is the list of insns where the operation (rhs) 1325 originally appears. There could be multiple original operations 1326 for single rhs since we moving it up and merging along different 1327 paths. 1328 1329 Some code is adapted from regrename.c (regrename_optimize). 1330 If original register is available, function returns it. 1331 Otherwise it performs the checks, so the new register should 1332 comply with the following: 1333 - it should not violate any live ranges (such registers are in 1334 REG_RENAME_P->available_for_renaming set); 1335 - it should not be in the HARD_REGS_USED regset; 1336 - it should be in the class compatible with original uses; 1337 - it should not be clobbered through reference with different mode; 1338 - if we're in the leaf function, then the new register should 1339 not be in the LEAF_REGISTERS; 1340 - etc. 1341 1342 If several registers meet the conditions, the register with smallest 1343 tick is returned to achieve more even register allocation. 1344 1345 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true. 1346 1347 If no register satisfies the above conditions, NULL_RTX is returned. */ 1348 static rtx 1349 choose_best_reg_1 (HARD_REG_SET hard_regs_used, 1350 struct reg_rename *reg_rename_p, 1351 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1352 { 1353 int best_new_reg; 1354 unsigned cur_reg; 1355 machine_mode mode = VOIDmode; 1356 unsigned regno, i, n; 1357 hard_reg_set_iterator hrsi; 1358 def_list_iterator di; 1359 def_t def; 1360 1361 /* If original register is available, return it. */ 1362 *is_orig_reg_p_ptr = true; 1363 1364 FOR_EACH_DEF (def, di, original_insns) 1365 { 1366 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1367 1368 gcc_assert (REG_P (orig_dest)); 1369 1370 /* Check that all original operations have the same mode. 1371 This is done for the next loop; if we'd return from this 1372 loop, we'd check only part of them, but in this case 1373 it doesn't matter. */ 1374 if (mode == VOIDmode) 1375 mode = GET_MODE (orig_dest); 1376 gcc_assert (mode == GET_MODE (orig_dest)); 1377 1378 regno = REGNO (orig_dest); 1379 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++) 1380 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i)) 1381 break; 1382 1383 /* All hard registers are available. */ 1384 if (i == n) 1385 { 1386 gcc_assert (mode != VOIDmode); 1387 1388 /* Hard registers should not be shared. */ 1389 return gen_rtx_REG (mode, regno); 1390 } 1391 } 1392 1393 *is_orig_reg_p_ptr = false; 1394 best_new_reg = -1; 1395 1396 /* Among all available regs choose the register that was 1397 allocated earliest. */ 1398 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1399 0, cur_reg, hrsi) 1400 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg)) 1401 { 1402 /* Check that all hard regs for mode are available. */ 1403 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++) 1404 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i) 1405 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming, 1406 cur_reg + i)) 1407 break; 1408 1409 if (i < n) 1410 continue; 1411 1412 /* All hard registers are available. */ 1413 if (best_new_reg < 0 1414 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg]) 1415 { 1416 best_new_reg = cur_reg; 1417 1418 /* Return immediately when we know there's no better reg. */ 1419 if (! reg_rename_tick[best_new_reg]) 1420 break; 1421 } 1422 } 1423 1424 if (best_new_reg >= 0) 1425 { 1426 /* Use the check from the above loop. */ 1427 gcc_assert (mode != VOIDmode); 1428 return gen_rtx_REG (mode, best_new_reg); 1429 } 1430 1431 return NULL_RTX; 1432 } 1433 1434 /* A wrapper around choose_best_reg_1 () to verify that we make correct 1435 assumptions about available registers in the function. */ 1436 static rtx 1437 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p, 1438 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1439 { 1440 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p, 1441 original_insns, is_orig_reg_p_ptr); 1442 1443 /* FIXME loop over hard_regno_nregs here. */ 1444 gcc_assert (best_reg == NULL_RTX 1445 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg))); 1446 1447 return best_reg; 1448 } 1449 1450 /* Choose the pseudo register for storing rhs value. As this is supposed 1451 to work before reload, we return either the original register or make 1452 the new one. The parameters are the same that in choose_nest_reg_1 1453 functions, except that USED_REGS may contain pseudos. 1454 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS. 1455 1456 TODO: take into account register pressure while doing this. Up to this 1457 moment, this function would never return NULL for pseudos, but we should 1458 not rely on this. */ 1459 static rtx 1460 choose_best_pseudo_reg (regset used_regs, 1461 struct reg_rename *reg_rename_p, 1462 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1463 { 1464 def_list_iterator i; 1465 def_t def; 1466 machine_mode mode = VOIDmode; 1467 bool bad_hard_regs = false; 1468 1469 /* We should not use this after reload. */ 1470 gcc_assert (!reload_completed); 1471 1472 /* If original register is available, return it. */ 1473 *is_orig_reg_p_ptr = true; 1474 1475 FOR_EACH_DEF (def, i, original_insns) 1476 { 1477 rtx dest = SET_DEST (PATTERN (def->orig_insn)); 1478 int orig_regno; 1479 1480 gcc_assert (REG_P (dest)); 1481 1482 /* Check that all original operations have the same mode. */ 1483 if (mode == VOIDmode) 1484 mode = GET_MODE (dest); 1485 else 1486 gcc_assert (mode == GET_MODE (dest)); 1487 orig_regno = REGNO (dest); 1488 1489 /* Check that nothing in used_regs intersects with orig_regno. When 1490 we have a hard reg here, still loop over hard_regno_nregs. */ 1491 if (HARD_REGISTER_NUM_P (orig_regno)) 1492 { 1493 int j, n; 1494 for (j = 0, n = hard_regno_nregs[orig_regno][mode]; j < n; j++) 1495 if (REGNO_REG_SET_P (used_regs, orig_regno + j)) 1496 break; 1497 if (j < n) 1498 continue; 1499 } 1500 else 1501 { 1502 if (REGNO_REG_SET_P (used_regs, orig_regno)) 1503 continue; 1504 } 1505 if (HARD_REGISTER_NUM_P (orig_regno)) 1506 { 1507 gcc_assert (df_regs_ever_live_p (orig_regno)); 1508 1509 /* For hard registers, we have to check hardware imposed 1510 limitations (frame/stack registers, calls crossed). */ 1511 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1512 orig_regno)) 1513 { 1514 /* Don't let register cross a call if it doesn't already 1515 cross one. This condition is written in accordance with 1516 that in sched-deps.c sched_analyze_reg(). */ 1517 if (!reg_rename_p->crosses_call 1518 || REG_N_CALLS_CROSSED (orig_regno) > 0) 1519 return gen_rtx_REG (mode, orig_regno); 1520 } 1521 1522 bad_hard_regs = true; 1523 } 1524 else 1525 return dest; 1526 } 1527 1528 *is_orig_reg_p_ptr = false; 1529 1530 /* We had some original hard registers that couldn't be used. 1531 Those were likely special. Don't try to create a pseudo. */ 1532 if (bad_hard_regs) 1533 return NULL_RTX; 1534 1535 /* We haven't found a register from original operations. Get a new one. 1536 FIXME: control register pressure somehow. */ 1537 { 1538 rtx new_reg = gen_reg_rtx (mode); 1539 1540 gcc_assert (mode != VOIDmode); 1541 1542 max_regno = max_reg_num (); 1543 maybe_extend_reg_info_p (); 1544 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0; 1545 1546 return new_reg; 1547 } 1548 } 1549 1550 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE, 1551 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */ 1552 static void 1553 verify_target_availability (expr_t expr, regset used_regs, 1554 struct reg_rename *reg_rename_p) 1555 { 1556 unsigned n, i, regno; 1557 machine_mode mode; 1558 bool target_available, live_available, hard_available; 1559 1560 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0) 1561 return; 1562 1563 regno = expr_dest_regno (expr); 1564 mode = GET_MODE (EXPR_LHS (expr)); 1565 target_available = EXPR_TARGET_AVAILABLE (expr) == 1; 1566 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1; 1567 1568 live_available = hard_available = true; 1569 for (i = 0; i < n; i++) 1570 { 1571 if (bitmap_bit_p (used_regs, regno + i)) 1572 live_available = false; 1573 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i)) 1574 hard_available = false; 1575 } 1576 1577 /* When target is not available, it may be due to hard register 1578 restrictions, e.g. crosses calls, so we check hard_available too. */ 1579 if (target_available) 1580 gcc_assert (live_available); 1581 else 1582 /* Check only if we haven't scheduled something on the previous fence, 1583 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues 1584 and having more than one fence, we may end having targ_un in a block 1585 in which successors target register is actually available. 1586 1587 The last condition handles the case when a dependence from a call insn 1588 was created in sched-deps.c for insns with destination registers that 1589 never crossed a call before, but do cross one after our code motion. 1590 1591 FIXME: in the latter case, we just uselessly called find_used_regs, 1592 because we can't move this expression with any other register 1593 as well. */ 1594 gcc_assert (scheduled_something_on_previous_fence || !live_available 1595 || !hard_available 1596 || (!reload_completed && reg_rename_p->crosses_call 1597 && REG_N_CALLS_CROSSED (regno) == 0)); 1598 } 1599 1600 /* Collect unavailable registers due to liveness for EXPR from BNDS 1601 into USED_REGS. Save additional information about available 1602 registers and unavailable due to hardware restriction registers 1603 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS 1604 list. */ 1605 static void 1606 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs, 1607 struct reg_rename *reg_rename_p, 1608 def_list_t *original_insns) 1609 { 1610 for (; bnds; bnds = BLIST_NEXT (bnds)) 1611 { 1612 bool res; 1613 av_set_t orig_ops = NULL; 1614 bnd_t bnd = BLIST_BND (bnds); 1615 1616 /* If the chosen best expr doesn't belong to current boundary, 1617 skip it. */ 1618 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr))) 1619 continue; 1620 1621 /* Put in ORIG_OPS all exprs from this boundary that became 1622 RES on top. */ 1623 orig_ops = find_sequential_best_exprs (bnd, expr, false); 1624 1625 /* Compute used regs and OR it into the USED_REGS. */ 1626 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs, 1627 reg_rename_p, original_insns); 1628 1629 /* FIXME: the assert is true until we'd have several boundaries. */ 1630 gcc_assert (res); 1631 av_set_clear (&orig_ops); 1632 } 1633 } 1634 1635 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG. 1636 If BEST_REG is valid, replace LHS of EXPR with it. */ 1637 static bool 1638 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr) 1639 { 1640 /* Try whether we'll be able to generate the insn 1641 'dest := best_reg' at the place of the original operation. */ 1642 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns)) 1643 { 1644 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn; 1645 1646 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn))); 1647 1648 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn)) 1649 && (! replace_src_with_reg_ok_p (orig_insn, best_reg) 1650 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg))) 1651 return false; 1652 } 1653 1654 /* Make sure that EXPR has the right destination 1655 register. */ 1656 if (expr_dest_regno (expr) != REGNO (best_reg)) 1657 replace_dest_with_reg_in_expr (expr, best_reg); 1658 else 1659 EXPR_TARGET_AVAILABLE (expr) = 1; 1660 1661 return true; 1662 } 1663 1664 /* Select and assign best register to EXPR searching from BNDS. 1665 Set *IS_ORIG_REG_P to TRUE if original register was selected. 1666 Return FALSE if no register can be chosen, which could happen when: 1667 * EXPR_SEPARABLE_P is true but we were unable to find suitable register; 1668 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers 1669 that are used on the moving path. */ 1670 static bool 1671 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p) 1672 { 1673 static struct reg_rename reg_rename_data; 1674 1675 regset used_regs; 1676 def_list_t original_insns = NULL; 1677 bool reg_ok; 1678 1679 *is_orig_reg_p = false; 1680 1681 /* Don't bother to do anything if this insn doesn't set any registers. */ 1682 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr))) 1683 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)))) 1684 return true; 1685 1686 used_regs = get_clear_regset_from_pool (); 1687 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs); 1688 1689 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data, 1690 &original_insns); 1691 1692 #ifdef ENABLE_CHECKING 1693 /* If after reload, make sure we're working with hard regs here. */ 1694 if (reload_completed) 1695 { 1696 reg_set_iterator rsi; 1697 unsigned i; 1698 1699 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi) 1700 gcc_unreachable (); 1701 } 1702 #endif 1703 1704 if (EXPR_SEPARABLE_P (expr)) 1705 { 1706 rtx best_reg = NULL_RTX; 1707 /* Check that we have computed availability of a target register 1708 correctly. */ 1709 verify_target_availability (expr, used_regs, ®_rename_data); 1710 1711 /* Turn everything in hard regs after reload. */ 1712 if (reload_completed) 1713 { 1714 HARD_REG_SET hard_regs_used; 1715 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs); 1716 1717 /* Join hard registers unavailable due to register class 1718 restrictions and live range intersection. */ 1719 IOR_HARD_REG_SET (hard_regs_used, 1720 reg_rename_data.unavailable_hard_regs); 1721 1722 best_reg = choose_best_reg (hard_regs_used, ®_rename_data, 1723 original_insns, is_orig_reg_p); 1724 } 1725 else 1726 best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data, 1727 original_insns, is_orig_reg_p); 1728 1729 if (!best_reg) 1730 reg_ok = false; 1731 else if (*is_orig_reg_p) 1732 { 1733 /* In case of unification BEST_REG may be different from EXPR's LHS 1734 when EXPR's LHS is unavailable, and there is another LHS among 1735 ORIGINAL_INSNS. */ 1736 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr); 1737 } 1738 else 1739 { 1740 /* Forbid renaming of low-cost insns. */ 1741 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2) 1742 reg_ok = false; 1743 else 1744 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr); 1745 } 1746 } 1747 else 1748 { 1749 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set 1750 any of the HARD_REGS_USED set. */ 1751 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs, 1752 reg_rename_data.unavailable_hard_regs)) 1753 { 1754 reg_ok = false; 1755 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0); 1756 } 1757 else 1758 { 1759 reg_ok = true; 1760 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0); 1761 } 1762 } 1763 1764 ilist_clear (&original_insns); 1765 return_regset_to_pool (used_regs); 1766 1767 return reg_ok; 1768 } 1769 1770 1771 /* Return true if dependence described by DS can be overcomed. */ 1772 static bool 1773 can_speculate_dep_p (ds_t ds) 1774 { 1775 if (spec_info == NULL) 1776 return false; 1777 1778 /* Leave only speculative data. */ 1779 ds &= SPECULATIVE; 1780 1781 if (ds == 0) 1782 return false; 1783 1784 { 1785 /* FIXME: make sched-deps.c produce only those non-hard dependencies, 1786 that we can overcome. */ 1787 ds_t spec_mask = spec_info->mask; 1788 1789 if ((ds & spec_mask) != ds) 1790 return false; 1791 } 1792 1793 if (ds_weak (ds) < spec_info->data_weakness_cutoff) 1794 return false; 1795 1796 return true; 1797 } 1798 1799 /* Get a speculation check instruction. 1800 C_EXPR is a speculative expression, 1801 CHECK_DS describes speculations that should be checked, 1802 ORIG_INSN is the original non-speculative insn in the stream. */ 1803 static insn_t 1804 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn) 1805 { 1806 rtx check_pattern; 1807 rtx_insn *insn_rtx; 1808 insn_t insn; 1809 basic_block recovery_block; 1810 rtx_insn *label; 1811 1812 /* Create a recovery block if target is going to emit branchy check, or if 1813 ORIG_INSN was speculative already. */ 1814 if (targetm.sched.needs_block_p (check_ds) 1815 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0) 1816 { 1817 recovery_block = sel_create_recovery_block (orig_insn); 1818 label = BB_HEAD (recovery_block); 1819 } 1820 else 1821 { 1822 recovery_block = NULL; 1823 label = NULL; 1824 } 1825 1826 /* Get pattern of the check. */ 1827 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label, 1828 check_ds); 1829 1830 gcc_assert (check_pattern != NULL); 1831 1832 /* Emit check. */ 1833 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label); 1834 1835 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn), 1836 INSN_SEQNO (orig_insn), orig_insn); 1837 1838 /* Make check to be non-speculative. */ 1839 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0; 1840 INSN_SPEC_CHECKED_DS (insn) = check_ds; 1841 1842 /* Decrease priority of check by difference of load/check instruction 1843 latencies. */ 1844 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn)) 1845 - sel_vinsn_cost (INSN_VINSN (insn))); 1846 1847 /* Emit copy of original insn (though with replaced target register, 1848 if needed) to the recovery block. */ 1849 if (recovery_block != NULL) 1850 { 1851 rtx twin_rtx; 1852 1853 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr))); 1854 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX); 1855 sel_gen_recovery_insn_from_rtx_after (twin_rtx, 1856 INSN_EXPR (orig_insn), 1857 INSN_SEQNO (insn), 1858 bb_note (recovery_block)); 1859 } 1860 1861 /* If we've generated a data speculation check, make sure 1862 that all the bookkeeping instruction we'll create during 1863 this move_op () will allocate an ALAT entry so that the 1864 check won't fail. 1865 In case of control speculation we must convert C_EXPR to control 1866 speculative mode, because failing to do so will bring us an exception 1867 thrown by the non-control-speculative load. */ 1868 check_ds = ds_get_max_dep_weak (check_ds); 1869 speculate_expr (c_expr, check_ds); 1870 1871 return insn; 1872 } 1873 1874 /* True when INSN is a "regN = regN" copy. */ 1875 static bool 1876 identical_copy_p (rtx insn) 1877 { 1878 rtx lhs, rhs, pat; 1879 1880 pat = PATTERN (insn); 1881 1882 if (GET_CODE (pat) != SET) 1883 return false; 1884 1885 lhs = SET_DEST (pat); 1886 if (!REG_P (lhs)) 1887 return false; 1888 1889 rhs = SET_SRC (pat); 1890 if (!REG_P (rhs)) 1891 return false; 1892 1893 return REGNO (lhs) == REGNO (rhs); 1894 } 1895 1896 /* Undo all transformations on *AV_PTR that were done when 1897 moving through INSN. */ 1898 static void 1899 undo_transformations (av_set_t *av_ptr, rtx_insn *insn) 1900 { 1901 av_set_iterator av_iter; 1902 expr_t expr; 1903 av_set_t new_set = NULL; 1904 1905 /* First, kill any EXPR that uses registers set by an insn. This is 1906 required for correctness. */ 1907 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr) 1908 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr)) 1909 && bitmap_intersect_p (INSN_REG_SETS (insn), 1910 VINSN_REG_USES (EXPR_VINSN (expr))) 1911 /* When an insn looks like 'r1 = r1', we could substitute through 1912 it, but the above condition will still hold. This happened with 1913 gcc.c-torture/execute/961125-1.c. */ 1914 && !identical_copy_p (insn)) 1915 { 1916 if (sched_verbose >= 6) 1917 sel_print ("Expr %d removed due to use/set conflict\n", 1918 INSN_UID (EXPR_INSN_RTX (expr))); 1919 av_set_iter_remove (&av_iter); 1920 } 1921 1922 /* Undo transformations looking at the history vector. */ 1923 FOR_EACH_EXPR (expr, av_iter, *av_ptr) 1924 { 1925 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr), 1926 insn, EXPR_VINSN (expr), true); 1927 1928 if (index >= 0) 1929 { 1930 expr_history_def *phist; 1931 1932 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index]; 1933 1934 switch (phist->type) 1935 { 1936 case TRANS_SPECULATION: 1937 { 1938 ds_t old_ds, new_ds; 1939 1940 /* Compute the difference between old and new speculative 1941 statuses: that's what we need to check. 1942 Earlier we used to assert that the status will really 1943 change. This no longer works because only the probability 1944 bits in the status may have changed during compute_av_set, 1945 and in the case of merging different probabilities of the 1946 same speculative status along different paths we do not 1947 record this in the history vector. */ 1948 old_ds = phist->spec_ds; 1949 new_ds = EXPR_SPEC_DONE_DS (expr); 1950 1951 old_ds &= SPECULATIVE; 1952 new_ds &= SPECULATIVE; 1953 new_ds &= ~old_ds; 1954 1955 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds; 1956 break; 1957 } 1958 case TRANS_SUBSTITUTION: 1959 { 1960 expr_def _tmp_expr, *tmp_expr = &_tmp_expr; 1961 vinsn_t new_vi; 1962 bool add = true; 1963 1964 new_vi = phist->old_expr_vinsn; 1965 1966 gcc_assert (VINSN_SEPARABLE_P (new_vi) 1967 == EXPR_SEPARABLE_P (expr)); 1968 copy_expr (tmp_expr, expr); 1969 1970 if (vinsn_equal_p (phist->new_expr_vinsn, 1971 EXPR_VINSN (tmp_expr))) 1972 change_vinsn_in_expr (tmp_expr, new_vi); 1973 else 1974 /* This happens when we're unsubstituting on a bookkeeping 1975 copy, which was in turn substituted. The history is wrong 1976 in this case. Do it the hard way. */ 1977 add = substitute_reg_in_expr (tmp_expr, insn, true); 1978 if (add) 1979 av_set_add (&new_set, tmp_expr); 1980 clear_expr (tmp_expr); 1981 break; 1982 } 1983 default: 1984 gcc_unreachable (); 1985 } 1986 } 1987 1988 } 1989 1990 av_set_union_and_clear (av_ptr, &new_set, NULL); 1991 } 1992 1993 1994 /* Moveup_* helpers for code motion and computing av sets. */ 1995 1996 /* Propagates EXPR inside an insn group through THROUGH_INSN. 1997 The difference from the below function is that only substitution is 1998 performed. */ 1999 static enum MOVEUP_EXPR_CODE 2000 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn) 2001 { 2002 vinsn_t vi = EXPR_VINSN (expr); 2003 ds_t *has_dep_p; 2004 ds_t full_ds; 2005 2006 /* Do this only inside insn group. */ 2007 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0); 2008 2009 full_ds = has_dependence_p (expr, through_insn, &has_dep_p); 2010 if (full_ds == 0) 2011 return MOVEUP_EXPR_SAME; 2012 2013 /* Substitution is the possible choice in this case. */ 2014 if (has_dep_p[DEPS_IN_RHS]) 2015 { 2016 /* Can't substitute UNIQUE VINSNs. */ 2017 gcc_assert (!VINSN_UNIQUE_P (vi)); 2018 2019 if (can_substitute_through_p (through_insn, 2020 has_dep_p[DEPS_IN_RHS]) 2021 && substitute_reg_in_expr (expr, through_insn, false)) 2022 { 2023 EXPR_WAS_SUBSTITUTED (expr) = true; 2024 return MOVEUP_EXPR_CHANGED; 2025 } 2026 2027 /* Don't care about this, as even true dependencies may be allowed 2028 in an insn group. */ 2029 return MOVEUP_EXPR_SAME; 2030 } 2031 2032 /* This can catch output dependencies in COND_EXECs. */ 2033 if (has_dep_p[DEPS_IN_INSN]) 2034 return MOVEUP_EXPR_NULL; 2035 2036 /* This is either an output or an anti dependence, which usually have 2037 a zero latency. Allow this here, if we'd be wrong, tick_check_p 2038 will fix this. */ 2039 gcc_assert (has_dep_p[DEPS_IN_LHS]); 2040 return MOVEUP_EXPR_AS_RHS; 2041 } 2042 2043 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */ 2044 #define CANT_MOVE_TRAPPING(expr, through_insn) \ 2045 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \ 2046 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \ 2047 && !sel_insn_is_speculation_check (through_insn)) 2048 2049 /* True when a conflict on a target register was found during moveup_expr. */ 2050 static bool was_target_conflict = false; 2051 2052 /* Return true when moving a debug INSN across THROUGH_INSN will 2053 create a bookkeeping block. We don't want to create such blocks, 2054 for they would cause codegen differences between compilations with 2055 and without debug info. */ 2056 2057 static bool 2058 moving_insn_creates_bookkeeping_block_p (insn_t insn, 2059 insn_t through_insn) 2060 { 2061 basic_block bbi, bbt; 2062 edge e1, e2; 2063 edge_iterator ei1, ei2; 2064 2065 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn)) 2066 { 2067 if (sched_verbose >= 9) 2068 sel_print ("no bookkeeping required: "); 2069 return FALSE; 2070 } 2071 2072 bbi = BLOCK_FOR_INSN (insn); 2073 2074 if (EDGE_COUNT (bbi->preds) == 1) 2075 { 2076 if (sched_verbose >= 9) 2077 sel_print ("only one pred edge: "); 2078 return TRUE; 2079 } 2080 2081 bbt = BLOCK_FOR_INSN (through_insn); 2082 2083 FOR_EACH_EDGE (e1, ei1, bbt->succs) 2084 { 2085 FOR_EACH_EDGE (e2, ei2, bbi->preds) 2086 { 2087 if (find_block_for_bookkeeping (e1, e2, TRUE)) 2088 { 2089 if (sched_verbose >= 9) 2090 sel_print ("found existing block: "); 2091 return FALSE; 2092 } 2093 } 2094 } 2095 2096 if (sched_verbose >= 9) 2097 sel_print ("would create bookkeeping block: "); 2098 2099 return TRUE; 2100 } 2101 2102 /* Return true when the conflict with newly created implicit clobbers 2103 between EXPR and THROUGH_INSN is found because of renaming. */ 2104 static bool 2105 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr) 2106 { 2107 HARD_REG_SET temp; 2108 rtx_insn *insn; 2109 rtx reg, rhs, pat; 2110 hard_reg_set_iterator hrsi; 2111 unsigned regno; 2112 bool valid; 2113 2114 /* Make a new pseudo register. */ 2115 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr))); 2116 max_regno = max_reg_num (); 2117 maybe_extend_reg_info_p (); 2118 2119 /* Validate a change and bail out early. */ 2120 insn = EXPR_INSN_RTX (expr); 2121 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true); 2122 valid = verify_changes (0); 2123 cancel_changes (0); 2124 if (!valid) 2125 { 2126 if (sched_verbose >= 6) 2127 sel_print ("implicit clobbers failed validation, "); 2128 return true; 2129 } 2130 2131 /* Make a new insn with it. */ 2132 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr))); 2133 pat = gen_rtx_SET (VOIDmode, reg, rhs); 2134 start_sequence (); 2135 insn = emit_insn (pat); 2136 end_sequence (); 2137 2138 /* Calculate implicit clobbers. */ 2139 extract_insn (insn); 2140 preprocess_constraints (insn); 2141 alternative_mask prefrred = get_preferred_alternatives (insn); 2142 ira_implicitly_set_insn_hard_regs (&temp, prefrred); 2143 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs); 2144 2145 /* If any implicit clobber registers intersect with regular ones in 2146 through_insn, we have a dependency and thus bail out. */ 2147 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi) 2148 { 2149 vinsn_t vi = INSN_VINSN (through_insn); 2150 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno) 2151 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno) 2152 || bitmap_bit_p (VINSN_REG_USES (vi), regno)) 2153 return true; 2154 } 2155 2156 return false; 2157 } 2158 2159 /* Modifies EXPR so it can be moved through the THROUGH_INSN, 2160 performing necessary transformations. Record the type of transformation 2161 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP, 2162 permit all dependencies except true ones, and try to remove those 2163 too via forward substitution. All cases when a non-eliminable 2164 non-zero cost dependency exists inside an insn group will be fixed 2165 in tick_check_p instead. */ 2166 static enum MOVEUP_EXPR_CODE 2167 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group, 2168 enum local_trans_type *ptrans_type) 2169 { 2170 vinsn_t vi = EXPR_VINSN (expr); 2171 insn_t insn = VINSN_INSN_RTX (vi); 2172 bool was_changed = false; 2173 bool as_rhs = false; 2174 ds_t *has_dep_p; 2175 ds_t full_ds; 2176 2177 /* ??? We use dependencies of non-debug insns on debug insns to 2178 indicate that the debug insns need to be reset if the non-debug 2179 insn is pulled ahead of it. It's hard to figure out how to 2180 introduce such a notion in sel-sched, but it already fails to 2181 support debug insns in other ways, so we just go ahead and 2182 let the deug insns go corrupt for now. */ 2183 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn)) 2184 return MOVEUP_EXPR_SAME; 2185 2186 /* When inside_insn_group, delegate to the helper. */ 2187 if (inside_insn_group) 2188 return moveup_expr_inside_insn_group (expr, through_insn); 2189 2190 /* Deal with unique insns and control dependencies. */ 2191 if (VINSN_UNIQUE_P (vi)) 2192 { 2193 /* We can move jumps without side-effects or jumps that are 2194 mutually exclusive with instruction THROUGH_INSN (all in cases 2195 dependencies allow to do so and jump is not speculative). */ 2196 if (control_flow_insn_p (insn)) 2197 { 2198 basic_block fallthru_bb; 2199 2200 /* Do not move checks and do not move jumps through other 2201 jumps. */ 2202 if (control_flow_insn_p (through_insn) 2203 || sel_insn_is_speculation_check (insn)) 2204 return MOVEUP_EXPR_NULL; 2205 2206 /* Don't move jumps through CFG joins. */ 2207 if (bookkeeping_can_be_created_if_moved_through_p (through_insn)) 2208 return MOVEUP_EXPR_NULL; 2209 2210 /* The jump should have a clear fallthru block, and 2211 this block should be in the current region. */ 2212 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL 2213 || ! in_current_region_p (fallthru_bb)) 2214 return MOVEUP_EXPR_NULL; 2215 2216 /* And it should be mutually exclusive with through_insn. */ 2217 if (! sched_insns_conditions_mutex_p (insn, through_insn) 2218 && ! DEBUG_INSN_P (through_insn)) 2219 return MOVEUP_EXPR_NULL; 2220 } 2221 2222 /* Don't move what we can't move. */ 2223 if (EXPR_CANT_MOVE (expr) 2224 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)) 2225 return MOVEUP_EXPR_NULL; 2226 2227 /* Don't move SCHED_GROUP instruction through anything. 2228 If we don't force this, then it will be possible to start 2229 scheduling a sched_group before all its dependencies are 2230 resolved. 2231 ??? Haifa deals with this issue by delaying the SCHED_GROUP 2232 as late as possible through rank_for_schedule. */ 2233 if (SCHED_GROUP_P (insn)) 2234 return MOVEUP_EXPR_NULL; 2235 } 2236 else 2237 gcc_assert (!control_flow_insn_p (insn)); 2238 2239 /* Don't move debug insns if this would require bookkeeping. */ 2240 if (DEBUG_INSN_P (insn) 2241 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn) 2242 && moving_insn_creates_bookkeeping_block_p (insn, through_insn)) 2243 return MOVEUP_EXPR_NULL; 2244 2245 /* Deal with data dependencies. */ 2246 was_target_conflict = false; 2247 full_ds = has_dependence_p (expr, through_insn, &has_dep_p); 2248 if (full_ds == 0) 2249 { 2250 if (!CANT_MOVE_TRAPPING (expr, through_insn)) 2251 return MOVEUP_EXPR_SAME; 2252 } 2253 else 2254 { 2255 /* We can move UNIQUE insn up only as a whole and unchanged, 2256 so it shouldn't have any dependencies. */ 2257 if (VINSN_UNIQUE_P (vi)) 2258 return MOVEUP_EXPR_NULL; 2259 } 2260 2261 if (full_ds != 0 && can_speculate_dep_p (full_ds)) 2262 { 2263 int res; 2264 2265 res = speculate_expr (expr, full_ds); 2266 if (res >= 0) 2267 { 2268 /* Speculation was successful. */ 2269 full_ds = 0; 2270 was_changed = (res > 0); 2271 if (res == 2) 2272 was_target_conflict = true; 2273 if (ptrans_type) 2274 *ptrans_type = TRANS_SPECULATION; 2275 sel_clear_has_dependence (); 2276 } 2277 } 2278 2279 if (has_dep_p[DEPS_IN_INSN]) 2280 /* We have some dependency that cannot be discarded. */ 2281 return MOVEUP_EXPR_NULL; 2282 2283 if (has_dep_p[DEPS_IN_LHS]) 2284 { 2285 /* Only separable insns can be moved up with the new register. 2286 Anyways, we should mark that the original register is 2287 unavailable. */ 2288 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr)) 2289 return MOVEUP_EXPR_NULL; 2290 2291 /* When renaming a hard register to a pseudo before reload, extra 2292 dependencies can occur from the implicit clobbers of the insn. 2293 Filter out such cases here. */ 2294 if (!reload_completed && REG_P (EXPR_LHS (expr)) 2295 && HARD_REGISTER_P (EXPR_LHS (expr)) 2296 && implicit_clobber_conflict_p (through_insn, expr)) 2297 { 2298 if (sched_verbose >= 6) 2299 sel_print ("implicit clobbers conflict detected, "); 2300 return MOVEUP_EXPR_NULL; 2301 } 2302 EXPR_TARGET_AVAILABLE (expr) = false; 2303 was_target_conflict = true; 2304 as_rhs = true; 2305 } 2306 2307 /* At this point we have either separable insns, that will be lifted 2308 up only as RHSes, or non-separable insns with no dependency in lhs. 2309 If dependency is in RHS, then try to perform substitution and move up 2310 substituted RHS: 2311 2312 Ex. 1: Ex.2 2313 y = x; y = x; 2314 z = y*2; y = y*2; 2315 2316 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be 2317 moved above y=x assignment as z=x*2. 2318 2319 In Ex.2 y*2 also can be substituted for x*2, but only the right hand 2320 side can be moved because of the output dependency. The operation was 2321 cropped to its rhs above. */ 2322 if (has_dep_p[DEPS_IN_RHS]) 2323 { 2324 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS]; 2325 2326 /* Can't substitute UNIQUE VINSNs. */ 2327 gcc_assert (!VINSN_UNIQUE_P (vi)); 2328 2329 if (can_speculate_dep_p (*rhs_dsp)) 2330 { 2331 int res; 2332 2333 res = speculate_expr (expr, *rhs_dsp); 2334 if (res >= 0) 2335 { 2336 /* Speculation was successful. */ 2337 *rhs_dsp = 0; 2338 was_changed = (res > 0); 2339 if (res == 2) 2340 was_target_conflict = true; 2341 if (ptrans_type) 2342 *ptrans_type = TRANS_SPECULATION; 2343 } 2344 else 2345 return MOVEUP_EXPR_NULL; 2346 } 2347 else if (can_substitute_through_p (through_insn, 2348 *rhs_dsp) 2349 && substitute_reg_in_expr (expr, through_insn, false)) 2350 { 2351 /* ??? We cannot perform substitution AND speculation on the same 2352 insn. */ 2353 gcc_assert (!was_changed); 2354 was_changed = true; 2355 if (ptrans_type) 2356 *ptrans_type = TRANS_SUBSTITUTION; 2357 EXPR_WAS_SUBSTITUTED (expr) = true; 2358 } 2359 else 2360 return MOVEUP_EXPR_NULL; 2361 } 2362 2363 /* Don't move trapping insns through jumps. 2364 This check should be at the end to give a chance to control speculation 2365 to perform its duties. */ 2366 if (CANT_MOVE_TRAPPING (expr, through_insn)) 2367 return MOVEUP_EXPR_NULL; 2368 2369 return (was_changed 2370 ? MOVEUP_EXPR_CHANGED 2371 : (as_rhs 2372 ? MOVEUP_EXPR_AS_RHS 2373 : MOVEUP_EXPR_SAME)); 2374 } 2375 2376 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2377 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies 2378 that can exist within a parallel group. Write to RES the resulting 2379 code for moveup_expr. */ 2380 static bool 2381 try_bitmap_cache (expr_t expr, insn_t insn, 2382 bool inside_insn_group, 2383 enum MOVEUP_EXPR_CODE *res) 2384 { 2385 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2386 2387 /* First check whether we've analyzed this situation already. */ 2388 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid)) 2389 { 2390 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid)) 2391 { 2392 if (sched_verbose >= 6) 2393 sel_print ("removed (cached)\n"); 2394 *res = MOVEUP_EXPR_NULL; 2395 return true; 2396 } 2397 else 2398 { 2399 if (sched_verbose >= 6) 2400 sel_print ("unchanged (cached)\n"); 2401 *res = MOVEUP_EXPR_SAME; 2402 return true; 2403 } 2404 } 2405 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid)) 2406 { 2407 if (inside_insn_group) 2408 { 2409 if (sched_verbose >= 6) 2410 sel_print ("unchanged (as RHS, cached, inside insn group)\n"); 2411 *res = MOVEUP_EXPR_SAME; 2412 return true; 2413 2414 } 2415 else 2416 EXPR_TARGET_AVAILABLE (expr) = false; 2417 2418 /* This is the only case when propagation result can change over time, 2419 as we can dynamically switch off scheduling as RHS. In this case, 2420 just check the flag to reach the correct decision. */ 2421 if (enable_schedule_as_rhs_p) 2422 { 2423 if (sched_verbose >= 6) 2424 sel_print ("unchanged (as RHS, cached)\n"); 2425 *res = MOVEUP_EXPR_AS_RHS; 2426 return true; 2427 } 2428 else 2429 { 2430 if (sched_verbose >= 6) 2431 sel_print ("removed (cached as RHS, but renaming" 2432 " is now disabled)\n"); 2433 *res = MOVEUP_EXPR_NULL; 2434 return true; 2435 } 2436 } 2437 2438 return false; 2439 } 2440 2441 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2442 if successful. Write to RES the resulting code for moveup_expr. */ 2443 static bool 2444 try_transformation_cache (expr_t expr, insn_t insn, 2445 enum MOVEUP_EXPR_CODE *res) 2446 { 2447 struct transformed_insns *pti 2448 = (struct transformed_insns *) 2449 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn), 2450 &EXPR_VINSN (expr), 2451 VINSN_HASH_RTX (EXPR_VINSN (expr))); 2452 if (pti) 2453 { 2454 /* This EXPR was already moved through this insn and was 2455 changed as a result. Fetch the proper data from 2456 the hashtable. */ 2457 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2458 INSN_UID (insn), pti->type, 2459 pti->vinsn_old, pti->vinsn_new, 2460 EXPR_SPEC_DONE_DS (expr)); 2461 2462 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new))) 2463 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true); 2464 change_vinsn_in_expr (expr, pti->vinsn_new); 2465 if (pti->was_target_conflict) 2466 EXPR_TARGET_AVAILABLE (expr) = false; 2467 if (pti->type == TRANS_SPECULATION) 2468 { 2469 EXPR_SPEC_DONE_DS (expr) = pti->ds; 2470 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check; 2471 } 2472 2473 if (sched_verbose >= 6) 2474 { 2475 sel_print ("changed (cached): "); 2476 dump_expr (expr); 2477 sel_print ("\n"); 2478 } 2479 2480 *res = MOVEUP_EXPR_CHANGED; 2481 return true; 2482 } 2483 2484 return false; 2485 } 2486 2487 /* Update bitmap caches on INSN with result RES of propagating EXPR. */ 2488 static void 2489 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group, 2490 enum MOVEUP_EXPR_CODE res) 2491 { 2492 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2493 2494 /* Do not cache result of propagating jumps through an insn group, 2495 as it is always true, which is not useful outside the group. */ 2496 if (inside_insn_group) 2497 return; 2498 2499 if (res == MOVEUP_EXPR_NULL) 2500 { 2501 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2502 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid); 2503 } 2504 else if (res == MOVEUP_EXPR_SAME) 2505 { 2506 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2507 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid); 2508 } 2509 else if (res == MOVEUP_EXPR_AS_RHS) 2510 { 2511 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2512 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid); 2513 } 2514 else 2515 gcc_unreachable (); 2516 } 2517 2518 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN 2519 and transformation type TRANS_TYPE. */ 2520 static void 2521 update_transformation_cache (expr_t expr, insn_t insn, 2522 bool inside_insn_group, 2523 enum local_trans_type trans_type, 2524 vinsn_t expr_old_vinsn) 2525 { 2526 struct transformed_insns *pti; 2527 2528 if (inside_insn_group) 2529 return; 2530 2531 pti = XNEW (struct transformed_insns); 2532 pti->vinsn_old = expr_old_vinsn; 2533 pti->vinsn_new = EXPR_VINSN (expr); 2534 pti->type = trans_type; 2535 pti->was_target_conflict = was_target_conflict; 2536 pti->ds = EXPR_SPEC_DONE_DS (expr); 2537 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr); 2538 vinsn_attach (pti->vinsn_old); 2539 vinsn_attach (pti->vinsn_new); 2540 *((struct transformed_insns **) 2541 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn), 2542 pti, VINSN_HASH_RTX (expr_old_vinsn), 2543 INSERT)) = pti; 2544 } 2545 2546 /* Same as moveup_expr, but first looks up the result of 2547 transformation in caches. */ 2548 static enum MOVEUP_EXPR_CODE 2549 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group) 2550 { 2551 enum MOVEUP_EXPR_CODE res; 2552 bool got_answer = false; 2553 2554 if (sched_verbose >= 6) 2555 { 2556 sel_print ("Moving "); 2557 dump_expr (expr); 2558 sel_print (" through %d: ", INSN_UID (insn)); 2559 } 2560 2561 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr)) 2562 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)) 2563 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))) 2564 == EXPR_INSN_RTX (expr))) 2565 /* Don't use cached information for debug insns that are heads of 2566 basic blocks. */; 2567 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res)) 2568 /* When inside insn group, we do not want remove stores conflicting 2569 with previosly issued loads. */ 2570 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL; 2571 else if (try_transformation_cache (expr, insn, &res)) 2572 got_answer = true; 2573 2574 if (! got_answer) 2575 { 2576 /* Invoke moveup_expr and record the results. */ 2577 vinsn_t expr_old_vinsn = EXPR_VINSN (expr); 2578 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr); 2579 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn)); 2580 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn); 2581 enum local_trans_type trans_type = TRANS_SUBSTITUTION; 2582 2583 /* ??? Invent something better than this. We can't allow old_vinsn 2584 to go, we need it for the history vector. */ 2585 vinsn_attach (expr_old_vinsn); 2586 2587 res = moveup_expr (expr, insn, inside_insn_group, 2588 &trans_type); 2589 switch (res) 2590 { 2591 case MOVEUP_EXPR_NULL: 2592 update_bitmap_cache (expr, insn, inside_insn_group, res); 2593 if (sched_verbose >= 6) 2594 sel_print ("removed\n"); 2595 break; 2596 2597 case MOVEUP_EXPR_SAME: 2598 update_bitmap_cache (expr, insn, inside_insn_group, res); 2599 if (sched_verbose >= 6) 2600 sel_print ("unchanged\n"); 2601 break; 2602 2603 case MOVEUP_EXPR_AS_RHS: 2604 gcc_assert (!unique_p || inside_insn_group); 2605 update_bitmap_cache (expr, insn, inside_insn_group, res); 2606 if (sched_verbose >= 6) 2607 sel_print ("unchanged (as RHS)\n"); 2608 break; 2609 2610 case MOVEUP_EXPR_CHANGED: 2611 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid 2612 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds); 2613 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2614 INSN_UID (insn), trans_type, 2615 expr_old_vinsn, EXPR_VINSN (expr), 2616 expr_old_spec_ds); 2617 update_transformation_cache (expr, insn, inside_insn_group, 2618 trans_type, expr_old_vinsn); 2619 if (sched_verbose >= 6) 2620 { 2621 sel_print ("changed: "); 2622 dump_expr (expr); 2623 sel_print ("\n"); 2624 } 2625 break; 2626 default: 2627 gcc_unreachable (); 2628 } 2629 2630 vinsn_detach (expr_old_vinsn); 2631 } 2632 2633 return res; 2634 } 2635 2636 /* Moves an av set AVP up through INSN, performing necessary 2637 transformations. */ 2638 static void 2639 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group) 2640 { 2641 av_set_iterator i; 2642 expr_t expr; 2643 2644 FOR_EACH_EXPR_1 (expr, i, avp) 2645 { 2646 2647 switch (moveup_expr_cached (expr, insn, inside_insn_group)) 2648 { 2649 case MOVEUP_EXPR_SAME: 2650 case MOVEUP_EXPR_AS_RHS: 2651 break; 2652 2653 case MOVEUP_EXPR_NULL: 2654 av_set_iter_remove (&i); 2655 break; 2656 2657 case MOVEUP_EXPR_CHANGED: 2658 expr = merge_with_other_exprs (avp, &i, expr); 2659 break; 2660 2661 default: 2662 gcc_unreachable (); 2663 } 2664 } 2665 } 2666 2667 /* Moves AVP set along PATH. */ 2668 static void 2669 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path) 2670 { 2671 int last_cycle; 2672 2673 if (sched_verbose >= 6) 2674 sel_print ("Moving expressions up in the insn group...\n"); 2675 if (! path) 2676 return; 2677 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path)); 2678 while (path 2679 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2680 { 2681 moveup_set_expr (avp, ILIST_INSN (path), true); 2682 path = ILIST_NEXT (path); 2683 } 2684 } 2685 2686 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */ 2687 static bool 2688 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw) 2689 { 2690 expr_def _tmp, *tmp = &_tmp; 2691 int last_cycle; 2692 bool res = true; 2693 2694 copy_expr_onside (tmp, expr); 2695 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0; 2696 while (path 2697 && res 2698 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2699 { 2700 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true) 2701 != MOVEUP_EXPR_NULL); 2702 path = ILIST_NEXT (path); 2703 } 2704 2705 if (res) 2706 { 2707 vinsn_t tmp_vinsn = EXPR_VINSN (tmp); 2708 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw); 2709 2710 if (tmp_vinsn != expr_vliw_vinsn) 2711 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn); 2712 } 2713 2714 clear_expr (tmp); 2715 return res; 2716 } 2717 2718 2719 /* Functions that compute av and lv sets. */ 2720 2721 /* Returns true if INSN is not a downward continuation of the given path P in 2722 the current stage. */ 2723 static bool 2724 is_ineligible_successor (insn_t insn, ilist_t p) 2725 { 2726 insn_t prev_insn; 2727 2728 /* Check if insn is not deleted. */ 2729 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn) 2730 gcc_unreachable (); 2731 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn) 2732 gcc_unreachable (); 2733 2734 /* If it's the first insn visited, then the successor is ok. */ 2735 if (!p) 2736 return false; 2737 2738 prev_insn = ILIST_INSN (p); 2739 2740 if (/* a backward edge. */ 2741 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn) 2742 /* is already visited. */ 2743 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn) 2744 && (ilist_is_in_p (p, insn) 2745 /* We can reach another fence here and still seqno of insn 2746 would be equal to seqno of prev_insn. This is possible 2747 when prev_insn is a previously created bookkeeping copy. 2748 In that case it'd get a seqno of insn. Thus, check here 2749 whether insn is in current fence too. */ 2750 || IN_CURRENT_FENCE_P (insn))) 2751 /* Was already scheduled on this round. */ 2752 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn) 2753 && IN_CURRENT_FENCE_P (insn)) 2754 /* An insn from another fence could also be 2755 scheduled earlier even if this insn is not in 2756 a fence list right now. Check INSN_SCHED_CYCLE instead. */ 2757 || (!pipelining_p 2758 && INSN_SCHED_TIMES (insn) > 0)) 2759 return true; 2760 else 2761 return false; 2762 } 2763 2764 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work' 2765 of handling multiple successors and properly merging its av_sets. P is 2766 the current path traversed. WS is the size of lookahead window. 2767 Return the av set computed. */ 2768 static av_set_t 2769 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws) 2770 { 2771 struct succs_info *sinfo; 2772 av_set_t expr_in_all_succ_branches = NULL; 2773 int is; 2774 insn_t succ, zero_succ = NULL; 2775 av_set_t av1 = NULL; 2776 2777 gcc_assert (sel_bb_end_p (insn)); 2778 2779 /* Find different kind of successors needed for correct computing of 2780 SPEC and TARGET_AVAILABLE attributes. */ 2781 sinfo = compute_succs_info (insn, SUCCS_NORMAL); 2782 2783 /* Debug output. */ 2784 if (sched_verbose >= 6) 2785 { 2786 sel_print ("successors of bb end (%d): ", INSN_UID (insn)); 2787 dump_insn_vector (sinfo->succs_ok); 2788 sel_print ("\n"); 2789 if (sinfo->succs_ok_n != sinfo->all_succs_n) 2790 sel_print ("real successors num: %d\n", sinfo->all_succs_n); 2791 } 2792 2793 /* Add insn to the tail of current path. */ 2794 ilist_add (&p, insn); 2795 2796 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ) 2797 { 2798 av_set_t succ_set; 2799 2800 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */ 2801 succ_set = compute_av_set_inside_bb (succ, p, ws, true); 2802 2803 av_set_split_usefulness (succ_set, 2804 sinfo->probs_ok[is], 2805 sinfo->all_prob); 2806 2807 if (sinfo->all_succs_n > 1) 2808 { 2809 /* Find EXPR'es that came from *all* successors and save them 2810 into expr_in_all_succ_branches. This set will be used later 2811 for calculating speculation attributes of EXPR'es. */ 2812 if (is == 0) 2813 { 2814 expr_in_all_succ_branches = av_set_copy (succ_set); 2815 2816 /* Remember the first successor for later. */ 2817 zero_succ = succ; 2818 } 2819 else 2820 { 2821 av_set_iterator i; 2822 expr_t expr; 2823 2824 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches) 2825 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr))) 2826 av_set_iter_remove (&i); 2827 } 2828 } 2829 2830 /* Union the av_sets. Check liveness restrictions on target registers 2831 in special case of two successors. */ 2832 if (sinfo->succs_ok_n == 2 && is == 1) 2833 { 2834 basic_block bb0 = BLOCK_FOR_INSN (zero_succ); 2835 basic_block bb1 = BLOCK_FOR_INSN (succ); 2836 2837 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1)); 2838 av_set_union_and_live (&av1, &succ_set, 2839 BB_LV_SET (bb0), 2840 BB_LV_SET (bb1), 2841 insn); 2842 } 2843 else 2844 av_set_union_and_clear (&av1, &succ_set, insn); 2845 } 2846 2847 /* Check liveness restrictions via hard way when there are more than 2848 two successors. */ 2849 if (sinfo->succs_ok_n > 2) 2850 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ) 2851 { 2852 basic_block succ_bb = BLOCK_FOR_INSN (succ); 2853 2854 gcc_assert (BB_LV_SET_VALID_P (succ_bb)); 2855 mark_unavailable_targets (av1, BB_AV_SET (succ_bb), 2856 BB_LV_SET (succ_bb)); 2857 } 2858 2859 /* Finally, check liveness restrictions on paths leaving the region. */ 2860 if (sinfo->all_succs_n > sinfo->succs_ok_n) 2861 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ) 2862 mark_unavailable_targets 2863 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ))); 2864 2865 if (sinfo->all_succs_n > 1) 2866 { 2867 av_set_iterator i; 2868 expr_t expr; 2869 2870 /* Increase the spec attribute of all EXPR'es that didn't come 2871 from all successors. */ 2872 FOR_EACH_EXPR (expr, i, av1) 2873 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr))) 2874 EXPR_SPEC (expr)++; 2875 2876 av_set_clear (&expr_in_all_succ_branches); 2877 2878 /* Do not move conditional branches through other 2879 conditional branches. So, remove all conditional 2880 branches from av_set if current operator is a conditional 2881 branch. */ 2882 av_set_substract_cond_branches (&av1); 2883 } 2884 2885 ilist_remove (&p); 2886 free_succs_info (sinfo); 2887 2888 if (sched_verbose >= 6) 2889 { 2890 sel_print ("av_succs (%d): ", INSN_UID (insn)); 2891 dump_av_set (av1); 2892 sel_print ("\n"); 2893 } 2894 2895 return av1; 2896 } 2897 2898 /* This function computes av_set for the FIRST_INSN by dragging valid 2899 av_set through all basic block insns either from the end of basic block 2900 (computed using compute_av_set_at_bb_end) or from the insn on which 2901 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set 2902 below the basic block and handling conditional branches. 2903 FIRST_INSN - the basic block head, P - path consisting of the insns 2904 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads 2905 and bb ends are added to the path), WS - current window size, 2906 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */ 2907 static av_set_t 2908 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws, 2909 bool need_copy_p) 2910 { 2911 insn_t cur_insn; 2912 int end_ws = ws; 2913 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn)); 2914 insn_t after_bb_end = NEXT_INSN (bb_end); 2915 insn_t last_insn; 2916 av_set_t av = NULL; 2917 basic_block cur_bb = BLOCK_FOR_INSN (first_insn); 2918 2919 /* Return NULL if insn is not on the legitimate downward path. */ 2920 if (is_ineligible_successor (first_insn, p)) 2921 { 2922 if (sched_verbose >= 6) 2923 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn)); 2924 2925 return NULL; 2926 } 2927 2928 /* If insn already has valid av(insn) computed, just return it. */ 2929 if (AV_SET_VALID_P (first_insn)) 2930 { 2931 av_set_t av_set; 2932 2933 if (sel_bb_head_p (first_insn)) 2934 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn)); 2935 else 2936 av_set = NULL; 2937 2938 if (sched_verbose >= 6) 2939 { 2940 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn)); 2941 dump_av_set (av_set); 2942 sel_print ("\n"); 2943 } 2944 2945 return need_copy_p ? av_set_copy (av_set) : av_set; 2946 } 2947 2948 ilist_add (&p, first_insn); 2949 2950 /* As the result after this loop have completed, in LAST_INSN we'll 2951 have the insn which has valid av_set to start backward computation 2952 from: it either will be NULL because on it the window size was exceeded 2953 or other valid av_set as returned by compute_av_set for the last insn 2954 of the basic block. */ 2955 for (last_insn = first_insn; last_insn != after_bb_end; 2956 last_insn = NEXT_INSN (last_insn)) 2957 { 2958 /* We may encounter valid av_set not only on bb_head, but also on 2959 those insns on which previously MAX_WS was exceeded. */ 2960 if (AV_SET_VALID_P (last_insn)) 2961 { 2962 if (sched_verbose >= 6) 2963 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn)); 2964 break; 2965 } 2966 2967 /* The special case: the last insn of the BB may be an 2968 ineligible_successor due to its SEQ_NO that was set on 2969 it as a bookkeeping. */ 2970 if (last_insn != first_insn 2971 && is_ineligible_successor (last_insn, p)) 2972 { 2973 if (sched_verbose >= 6) 2974 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn)); 2975 break; 2976 } 2977 2978 if (DEBUG_INSN_P (last_insn)) 2979 continue; 2980 2981 if (end_ws > max_ws) 2982 { 2983 /* We can reach max lookahead size at bb_header, so clean av_set 2984 first. */ 2985 INSN_WS_LEVEL (last_insn) = global_level; 2986 2987 if (sched_verbose >= 6) 2988 sel_print ("Insn %d is beyond the software lookahead window size\n", 2989 INSN_UID (last_insn)); 2990 break; 2991 } 2992 2993 end_ws++; 2994 } 2995 2996 /* Get the valid av_set into AV above the LAST_INSN to start backward 2997 computation from. It either will be empty av_set or av_set computed from 2998 the successors on the last insn of the current bb. */ 2999 if (last_insn != after_bb_end) 3000 { 3001 av = NULL; 3002 3003 /* This is needed only to obtain av_sets that are identical to 3004 those computed by the old compute_av_set version. */ 3005 if (last_insn == first_insn && !INSN_NOP_P (last_insn)) 3006 av_set_add (&av, INSN_EXPR (last_insn)); 3007 } 3008 else 3009 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */ 3010 av = compute_av_set_at_bb_end (bb_end, p, end_ws); 3011 3012 /* Compute av_set in AV starting from below the LAST_INSN up to 3013 location above the FIRST_INSN. */ 3014 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn); 3015 cur_insn = PREV_INSN (cur_insn)) 3016 if (!INSN_NOP_P (cur_insn)) 3017 { 3018 expr_t expr; 3019 3020 moveup_set_expr (&av, cur_insn, false); 3021 3022 /* If the expression for CUR_INSN is already in the set, 3023 replace it by the new one. */ 3024 expr = av_set_lookup (av, INSN_VINSN (cur_insn)); 3025 if (expr != NULL) 3026 { 3027 clear_expr (expr); 3028 copy_expr (expr, INSN_EXPR (cur_insn)); 3029 } 3030 else 3031 av_set_add (&av, INSN_EXPR (cur_insn)); 3032 } 3033 3034 /* Clear stale bb_av_set. */ 3035 if (sel_bb_head_p (first_insn)) 3036 { 3037 av_set_clear (&BB_AV_SET (cur_bb)); 3038 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av; 3039 BB_AV_LEVEL (cur_bb) = global_level; 3040 } 3041 3042 if (sched_verbose >= 6) 3043 { 3044 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn)); 3045 dump_av_set (av); 3046 sel_print ("\n"); 3047 } 3048 3049 ilist_remove (&p); 3050 return av; 3051 } 3052 3053 /* Compute av set before INSN. 3054 INSN - the current operation (actual rtx INSN) 3055 P - the current path, which is list of insns visited so far 3056 WS - software lookahead window size. 3057 UNIQUE_P - TRUE, if returned av_set will be changed, hence 3058 if we want to save computed av_set in s_i_d, we should make a copy of it. 3059 3060 In the resulting set we will have only expressions that don't have delay 3061 stalls and nonsubstitutable dependences. */ 3062 static av_set_t 3063 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p) 3064 { 3065 return compute_av_set_inside_bb (insn, p, ws, unique_p); 3066 } 3067 3068 /* Propagate a liveness set LV through INSN. */ 3069 static void 3070 propagate_lv_set (regset lv, insn_t insn) 3071 { 3072 gcc_assert (INSN_P (insn)); 3073 3074 if (INSN_NOP_P (insn)) 3075 return; 3076 3077 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv); 3078 } 3079 3080 /* Return livness set at the end of BB. */ 3081 static regset 3082 compute_live_after_bb (basic_block bb) 3083 { 3084 edge e; 3085 edge_iterator ei; 3086 regset lv = get_clear_regset_from_pool (); 3087 3088 gcc_assert (!ignore_first); 3089 3090 FOR_EACH_EDGE (e, ei, bb->succs) 3091 if (sel_bb_empty_p (e->dest)) 3092 { 3093 if (! BB_LV_SET_VALID_P (e->dest)) 3094 { 3095 gcc_unreachable (); 3096 gcc_assert (BB_LV_SET (e->dest) == NULL); 3097 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest); 3098 BB_LV_SET_VALID_P (e->dest) = true; 3099 } 3100 IOR_REG_SET (lv, BB_LV_SET (e->dest)); 3101 } 3102 else 3103 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest))); 3104 3105 return lv; 3106 } 3107 3108 /* Compute the set of all live registers at the point before INSN and save 3109 it at INSN if INSN is bb header. */ 3110 regset 3111 compute_live (insn_t insn) 3112 { 3113 basic_block bb = BLOCK_FOR_INSN (insn); 3114 insn_t final, temp; 3115 regset lv; 3116 3117 /* Return the valid set if we're already on it. */ 3118 if (!ignore_first) 3119 { 3120 regset src = NULL; 3121 3122 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb)) 3123 src = BB_LV_SET (bb); 3124 else 3125 { 3126 gcc_assert (in_current_region_p (bb)); 3127 if (INSN_LIVE_VALID_P (insn)) 3128 src = INSN_LIVE (insn); 3129 } 3130 3131 if (src) 3132 { 3133 lv = get_regset_from_pool (); 3134 COPY_REG_SET (lv, src); 3135 3136 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb)) 3137 { 3138 COPY_REG_SET (BB_LV_SET (bb), lv); 3139 BB_LV_SET_VALID_P (bb) = true; 3140 } 3141 3142 return_regset_to_pool (lv); 3143 return lv; 3144 } 3145 } 3146 3147 /* We've skipped the wrong lv_set. Don't skip the right one. */ 3148 ignore_first = false; 3149 gcc_assert (in_current_region_p (bb)); 3150 3151 /* Find a valid LV set in this block or below, if needed. 3152 Start searching from the next insn: either ignore_first is true, or 3153 INSN doesn't have a correct live set. */ 3154 temp = NEXT_INSN (insn); 3155 final = NEXT_INSN (BB_END (bb)); 3156 while (temp != final && ! INSN_LIVE_VALID_P (temp)) 3157 temp = NEXT_INSN (temp); 3158 if (temp == final) 3159 { 3160 lv = compute_live_after_bb (bb); 3161 temp = PREV_INSN (temp); 3162 } 3163 else 3164 { 3165 lv = get_regset_from_pool (); 3166 COPY_REG_SET (lv, INSN_LIVE (temp)); 3167 } 3168 3169 /* Put correct lv sets on the insns which have bad sets. */ 3170 final = PREV_INSN (insn); 3171 while (temp != final) 3172 { 3173 propagate_lv_set (lv, temp); 3174 COPY_REG_SET (INSN_LIVE (temp), lv); 3175 INSN_LIVE_VALID_P (temp) = true; 3176 temp = PREV_INSN (temp); 3177 } 3178 3179 /* Also put it in a BB. */ 3180 if (sel_bb_head_p (insn)) 3181 { 3182 basic_block bb = BLOCK_FOR_INSN (insn); 3183 3184 COPY_REG_SET (BB_LV_SET (bb), lv); 3185 BB_LV_SET_VALID_P (bb) = true; 3186 } 3187 3188 /* We return LV to the pool, but will not clear it there. Thus we can 3189 legimatelly use LV till the next use of regset_pool_get (). */ 3190 return_regset_to_pool (lv); 3191 return lv; 3192 } 3193 3194 /* Update liveness sets for INSN. */ 3195 static inline void 3196 update_liveness_on_insn (rtx_insn *insn) 3197 { 3198 ignore_first = true; 3199 compute_live (insn); 3200 } 3201 3202 /* Compute liveness below INSN and write it into REGS. */ 3203 static inline void 3204 compute_live_below_insn (rtx_insn *insn, regset regs) 3205 { 3206 rtx_insn *succ; 3207 succ_iterator si; 3208 3209 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL) 3210 IOR_REG_SET (regs, compute_live (succ)); 3211 } 3212 3213 /* Update the data gathered in av and lv sets starting from INSN. */ 3214 static void 3215 update_data_sets (rtx_insn *insn) 3216 { 3217 update_liveness_on_insn (insn); 3218 if (sel_bb_head_p (insn)) 3219 { 3220 gcc_assert (AV_LEVEL (insn) != 0); 3221 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1; 3222 compute_av_set (insn, NULL, 0, 0); 3223 } 3224 } 3225 3226 3227 /* Helper for move_op () and find_used_regs (). 3228 Return speculation type for which a check should be created on the place 3229 of INSN. EXPR is one of the original ops we are searching for. */ 3230 static ds_t 3231 get_spec_check_type_for_insn (insn_t insn, expr_t expr) 3232 { 3233 ds_t to_check_ds; 3234 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn)); 3235 3236 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr); 3237 3238 if (targetm.sched.get_insn_checked_ds) 3239 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn); 3240 3241 if (spec_info != NULL 3242 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL)) 3243 already_checked_ds |= BEGIN_CONTROL; 3244 3245 already_checked_ds = ds_get_speculation_types (already_checked_ds); 3246 3247 to_check_ds &= ~already_checked_ds; 3248 3249 return to_check_ds; 3250 } 3251 3252 /* Find the set of registers that are unavailable for storing expres 3253 while moving ORIG_OPS up on the path starting from INSN due to 3254 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P). 3255 3256 All the original operations found during the traversal are saved in the 3257 ORIGINAL_INSNS list. 3258 3259 REG_RENAME_P denotes the set of hardware registers that 3260 can not be used with renaming due to the register class restrictions, 3261 mode restrictions and other (the register we'll choose should be 3262 compatible class with the original uses, shouldn't be in call_used_regs, 3263 should be HARD_REGNO_RENAME_OK etc). 3264 3265 Returns TRUE if we've found all original insns, FALSE otherwise. 3266 3267 This function utilizes code_motion_path_driver (formerly find_used_regs_1) 3268 to traverse the code motion paths. This helper function finds registers 3269 that are not available for storing expres while moving ORIG_OPS up on the 3270 path starting from INSN. A register considered as used on the moving path, 3271 if one of the following conditions is not satisfied: 3272 3273 (1) a register not set or read on any path from xi to an instance of 3274 the original operation, 3275 (2) not among the live registers of the point immediately following the 3276 first original operation on a given downward path, except for the 3277 original target register of the operation, 3278 (3) not live on the other path of any conditional branch that is passed 3279 by the operation, in case original operations are not present on 3280 both paths of the conditional branch. 3281 3282 All the original operations found during the traversal are saved in the 3283 ORIGINAL_INSNS list. 3284 3285 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path 3286 from INSN to original insn. In this case CALL_USED_REG_SET will be added 3287 to unavailable hard regs at the point original operation is found. */ 3288 3289 static bool 3290 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs, 3291 struct reg_rename *reg_rename_p, def_list_t *original_insns) 3292 { 3293 def_list_iterator i; 3294 def_t def; 3295 int res; 3296 bool needs_spec_check_p = false; 3297 expr_t expr; 3298 av_set_iterator expr_iter; 3299 struct fur_static_params sparams; 3300 struct cmpd_local_params lparams; 3301 3302 /* We haven't visited any blocks yet. */ 3303 bitmap_clear (code_motion_visited_blocks); 3304 3305 /* Init parameters for code_motion_path_driver. */ 3306 sparams.crosses_call = false; 3307 sparams.original_insns = original_insns; 3308 sparams.used_regs = used_regs; 3309 3310 /* Set the appropriate hooks and data. */ 3311 code_motion_path_driver_info = &fur_hooks; 3312 3313 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 3314 3315 reg_rename_p->crosses_call |= sparams.crosses_call; 3316 3317 gcc_assert (res == 1); 3318 gcc_assert (original_insns && *original_insns); 3319 3320 /* ??? We calculate whether an expression needs a check when computing 3321 av sets. This information is not as precise as it could be due to 3322 merging this bit in merge_expr. We can do better in find_used_regs, 3323 but we want to avoid multiple traversals of the same code motion 3324 paths. */ 3325 FOR_EACH_EXPR (expr, expr_iter, orig_ops) 3326 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr); 3327 3328 /* Mark hardware regs in REG_RENAME_P that are not suitable 3329 for renaming expr in INSN due to hardware restrictions (register class, 3330 modes compatibility etc). */ 3331 FOR_EACH_DEF (def, i, *original_insns) 3332 { 3333 vinsn_t vinsn = INSN_VINSN (def->orig_insn); 3334 3335 if (VINSN_SEPARABLE_P (vinsn)) 3336 mark_unavailable_hard_regs (def, reg_rename_p, used_regs); 3337 3338 /* Do not allow clobbering of ld.[sa] address in case some of the 3339 original operations need a check. */ 3340 if (needs_spec_check_p) 3341 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn)); 3342 } 3343 3344 return true; 3345 } 3346 3347 3348 /* Functions to choose the best insn from available ones. */ 3349 3350 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */ 3351 static int 3352 sel_target_adjust_priority (expr_t expr) 3353 { 3354 int priority = EXPR_PRIORITY (expr); 3355 int new_priority; 3356 3357 if (targetm.sched.adjust_priority) 3358 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority); 3359 else 3360 new_priority = priority; 3361 3362 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */ 3363 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr); 3364 3365 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0); 3366 3367 if (sched_verbose >= 4) 3368 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n", 3369 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr), 3370 EXPR_PRIORITY_ADJ (expr), new_priority); 3371 3372 return new_priority; 3373 } 3374 3375 /* Rank two available exprs for schedule. Never return 0 here. */ 3376 static int 3377 sel_rank_for_schedule (const void *x, const void *y) 3378 { 3379 expr_t tmp = *(const expr_t *) y; 3380 expr_t tmp2 = *(const expr_t *) x; 3381 insn_t tmp_insn, tmp2_insn; 3382 vinsn_t tmp_vinsn, tmp2_vinsn; 3383 int val; 3384 3385 tmp_vinsn = EXPR_VINSN (tmp); 3386 tmp2_vinsn = EXPR_VINSN (tmp2); 3387 tmp_insn = EXPR_INSN_RTX (tmp); 3388 tmp2_insn = EXPR_INSN_RTX (tmp2); 3389 3390 /* Schedule debug insns as early as possible. */ 3391 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn)) 3392 return -1; 3393 else if (DEBUG_INSN_P (tmp2_insn)) 3394 return 1; 3395 3396 /* Prefer SCHED_GROUP_P insns to any others. */ 3397 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn)) 3398 { 3399 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn)) 3400 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1; 3401 3402 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups 3403 cannot be cloned. */ 3404 if (VINSN_UNIQUE_P (tmp2_vinsn)) 3405 return 1; 3406 return -1; 3407 } 3408 3409 /* Discourage scheduling of speculative checks. */ 3410 val = (sel_insn_is_speculation_check (tmp_insn) 3411 - sel_insn_is_speculation_check (tmp2_insn)); 3412 if (val) 3413 return val; 3414 3415 /* Prefer not scheduled insn over scheduled one. */ 3416 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0) 3417 { 3418 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2); 3419 if (val) 3420 return val; 3421 } 3422 3423 /* Prefer jump over non-jump instruction. */ 3424 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn)) 3425 return -1; 3426 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn)) 3427 return 1; 3428 3429 /* Prefer an expr with greater priority. */ 3430 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0) 3431 { 3432 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2), 3433 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp); 3434 3435 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp); 3436 } 3437 else 3438 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp) 3439 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp); 3440 if (val) 3441 return val; 3442 3443 if (spec_info != NULL && spec_info->mask != 0) 3444 /* This code was taken from haifa-sched.c: rank_for_schedule (). */ 3445 { 3446 ds_t ds1, ds2; 3447 dw_t dw1, dw2; 3448 int dw; 3449 3450 ds1 = EXPR_SPEC_DONE_DS (tmp); 3451 if (ds1) 3452 dw1 = ds_weak (ds1); 3453 else 3454 dw1 = NO_DEP_WEAK; 3455 3456 ds2 = EXPR_SPEC_DONE_DS (tmp2); 3457 if (ds2) 3458 dw2 = ds_weak (ds2); 3459 else 3460 dw2 = NO_DEP_WEAK; 3461 3462 dw = dw2 - dw1; 3463 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8)) 3464 return dw; 3465 } 3466 3467 /* Prefer an old insn to a bookkeeping insn. */ 3468 if (INSN_UID (tmp_insn) < first_emitted_uid 3469 && INSN_UID (tmp2_insn) >= first_emitted_uid) 3470 return -1; 3471 if (INSN_UID (tmp_insn) >= first_emitted_uid 3472 && INSN_UID (tmp2_insn) < first_emitted_uid) 3473 return 1; 3474 3475 /* Prefer an insn with smaller UID, as a last resort. 3476 We can't safely use INSN_LUID as it is defined only for those insns 3477 that are in the stream. */ 3478 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn); 3479 } 3480 3481 /* Filter out expressions from av set pointed to by AV_PTR 3482 that are pipelined too many times. */ 3483 static void 3484 process_pipelined_exprs (av_set_t *av_ptr) 3485 { 3486 expr_t expr; 3487 av_set_iterator si; 3488 3489 /* Don't pipeline already pipelined code as that would increase 3490 number of unnecessary register moves. */ 3491 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3492 { 3493 if (EXPR_SCHED_TIMES (expr) 3494 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES)) 3495 av_set_iter_remove (&si); 3496 } 3497 } 3498 3499 /* Filter speculative insns from AV_PTR if we don't want them. */ 3500 static void 3501 process_spec_exprs (av_set_t *av_ptr) 3502 { 3503 expr_t expr; 3504 av_set_iterator si; 3505 3506 if (spec_info == NULL) 3507 return; 3508 3509 /* Scan *AV_PTR to find out if we want to consider speculative 3510 instructions for scheduling. */ 3511 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3512 { 3513 ds_t ds; 3514 3515 ds = EXPR_SPEC_DONE_DS (expr); 3516 3517 /* The probability of a success is too low - don't speculate. */ 3518 if ((ds & SPECULATIVE) 3519 && (ds_weak (ds) < spec_info->data_weakness_cutoff 3520 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff 3521 || (pipelining_p && false 3522 && (ds & DATA_SPEC) 3523 && (ds & CONTROL_SPEC)))) 3524 { 3525 av_set_iter_remove (&si); 3526 continue; 3527 } 3528 } 3529 } 3530 3531 /* Search for any use-like insns in AV_PTR and decide on scheduling 3532 them. Return one when found, and NULL otherwise. 3533 Note that we check here whether a USE could be scheduled to avoid 3534 an infinite loop later. */ 3535 static expr_t 3536 process_use_exprs (av_set_t *av_ptr) 3537 { 3538 expr_t expr; 3539 av_set_iterator si; 3540 bool uses_present_p = false; 3541 bool try_uses_p = true; 3542 3543 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3544 { 3545 /* This will also initialize INSN_CODE for later use. */ 3546 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0) 3547 { 3548 /* If we have a USE in *AV_PTR that was not scheduled yet, 3549 do so because it will do good only. */ 3550 if (EXPR_SCHED_TIMES (expr) <= 0) 3551 { 3552 if (EXPR_TARGET_AVAILABLE (expr) == 1) 3553 return expr; 3554 3555 av_set_iter_remove (&si); 3556 } 3557 else 3558 { 3559 gcc_assert (pipelining_p); 3560 3561 uses_present_p = true; 3562 } 3563 } 3564 else 3565 try_uses_p = false; 3566 } 3567 3568 if (uses_present_p) 3569 { 3570 /* If we don't want to schedule any USEs right now and we have some 3571 in *AV_PTR, remove them, else just return the first one found. */ 3572 if (!try_uses_p) 3573 { 3574 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3575 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0) 3576 av_set_iter_remove (&si); 3577 } 3578 else 3579 { 3580 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3581 { 3582 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0); 3583 3584 if (EXPR_TARGET_AVAILABLE (expr) == 1) 3585 return expr; 3586 3587 av_set_iter_remove (&si); 3588 } 3589 } 3590 } 3591 3592 return NULL; 3593 } 3594 3595 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from 3596 EXPR's history of changes. */ 3597 static bool 3598 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr) 3599 { 3600 vinsn_t vinsn, expr_vinsn; 3601 int n; 3602 unsigned i; 3603 3604 /* Start with checking expr itself and then proceed with all the old forms 3605 of expr taken from its history vector. */ 3606 for (i = 0, expr_vinsn = EXPR_VINSN (expr); 3607 expr_vinsn; 3608 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length () 3609 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn 3610 : NULL)) 3611 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn) 3612 if (VINSN_SEPARABLE_P (vinsn)) 3613 { 3614 if (vinsn_equal_p (vinsn, expr_vinsn)) 3615 return true; 3616 } 3617 else 3618 { 3619 /* For non-separable instructions, the blocking insn can have 3620 another pattern due to substitution, and we can't choose 3621 different register as in the above case. Check all registers 3622 being written instead. */ 3623 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn), 3624 VINSN_REG_SETS (expr_vinsn))) 3625 return true; 3626 } 3627 3628 return false; 3629 } 3630 3631 #ifdef ENABLE_CHECKING 3632 /* Return true if either of expressions from ORIG_OPS can be blocked 3633 by previously created bookkeeping code. STATIC_PARAMS points to static 3634 parameters of move_op. */ 3635 static bool 3636 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params) 3637 { 3638 expr_t expr; 3639 av_set_iterator iter; 3640 moveop_static_params_p sparams; 3641 3642 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping 3643 created while scheduling on another fence. */ 3644 FOR_EACH_EXPR (expr, iter, orig_ops) 3645 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr)) 3646 return true; 3647 3648 gcc_assert (code_motion_path_driver_info == &move_op_hooks); 3649 sparams = (moveop_static_params_p) static_params; 3650 3651 /* Expressions can be also blocked by bookkeeping created during current 3652 move_op. */ 3653 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn))) 3654 FOR_EACH_EXPR (expr, iter, orig_ops) 3655 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL) 3656 return true; 3657 3658 /* Expressions in ORIG_OPS may have wrong destination register due to 3659 renaming. Check with the right register instead. */ 3660 if (sparams->dest && REG_P (sparams->dest)) 3661 { 3662 rtx reg = sparams->dest; 3663 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn); 3664 3665 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg) 3666 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg) 3667 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg)) 3668 return true; 3669 } 3670 3671 return false; 3672 } 3673 #endif 3674 3675 /* Clear VINSN_VEC and detach vinsns. */ 3676 static void 3677 vinsn_vec_clear (vinsn_vec_t *vinsn_vec) 3678 { 3679 unsigned len = vinsn_vec->length (); 3680 if (len > 0) 3681 { 3682 vinsn_t vinsn; 3683 int n; 3684 3685 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn) 3686 vinsn_detach (vinsn); 3687 vinsn_vec->block_remove (0, len); 3688 } 3689 } 3690 3691 /* Add the vinsn of EXPR to the VINSN_VEC. */ 3692 static void 3693 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr) 3694 { 3695 vinsn_attach (EXPR_VINSN (expr)); 3696 vinsn_vec->safe_push (EXPR_VINSN (expr)); 3697 } 3698 3699 /* Free the vector representing blocked expressions. */ 3700 static void 3701 vinsn_vec_free (vinsn_vec_t &vinsn_vec) 3702 { 3703 vinsn_vec.release (); 3704 } 3705 3706 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */ 3707 3708 void sel_add_to_insn_priority (rtx insn, int amount) 3709 { 3710 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount; 3711 3712 if (sched_verbose >= 2) 3713 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n", 3714 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)), 3715 EXPR_PRIORITY_ADJ (INSN_EXPR (insn))); 3716 } 3717 3718 /* Turn AV into a vector, filter inappropriate insns and sort it. Return 3719 true if there is something to schedule. BNDS and FENCE are current 3720 boundaries and fence, respectively. If we need to stall for some cycles 3721 before an expr from AV would become available, write this number to 3722 *PNEED_STALL. */ 3723 static bool 3724 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence, 3725 int *pneed_stall) 3726 { 3727 av_set_iterator si; 3728 expr_t expr; 3729 int sched_next_worked = 0, stalled, n; 3730 static int av_max_prio, est_ticks_till_branch; 3731 int min_need_stall = -1; 3732 deps_t dc = BND_DC (BLIST_BND (bnds)); 3733 3734 /* Bail out early when the ready list contained only USEs/CLOBBERs that are 3735 already scheduled. */ 3736 if (av == NULL) 3737 return false; 3738 3739 /* Empty vector from the previous stuff. */ 3740 if (vec_av_set.length () > 0) 3741 vec_av_set.block_remove (0, vec_av_set.length ()); 3742 3743 /* Turn the set into a vector for sorting and call sel_target_adjust_priority 3744 for each insn. */ 3745 gcc_assert (vec_av_set.is_empty ()); 3746 FOR_EACH_EXPR (expr, si, av) 3747 { 3748 vec_av_set.safe_push (expr); 3749 3750 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall); 3751 3752 /* Adjust priority using target backend hook. */ 3753 sel_target_adjust_priority (expr); 3754 } 3755 3756 /* Sort the vector. */ 3757 vec_av_set.qsort (sel_rank_for_schedule); 3758 3759 /* We record maximal priority of insns in av set for current instruction 3760 group. */ 3761 if (FENCE_STARTS_CYCLE_P (fence)) 3762 av_max_prio = est_ticks_till_branch = INT_MIN; 3763 3764 /* Filter out inappropriate expressions. Loop's direction is reversed to 3765 visit "best" instructions first. We assume that vec::unordered_remove 3766 moves last element in place of one being deleted. */ 3767 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--) 3768 { 3769 expr_t expr = vec_av_set[n]; 3770 insn_t insn = EXPR_INSN_RTX (expr); 3771 signed char target_available; 3772 bool is_orig_reg_p = true; 3773 int need_cycles, new_prio; 3774 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence)); 3775 3776 /* Don't allow any insns other than from SCHED_GROUP if we have one. */ 3777 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence)) 3778 { 3779 vec_av_set.unordered_remove (n); 3780 continue; 3781 } 3782 3783 /* Set number of sched_next insns (just in case there 3784 could be several). */ 3785 if (FENCE_SCHED_NEXT (fence)) 3786 sched_next_worked++; 3787 3788 /* Check all liveness requirements and try renaming. 3789 FIXME: try to minimize calls to this. */ 3790 target_available = EXPR_TARGET_AVAILABLE (expr); 3791 3792 /* If insn was already scheduled on the current fence, 3793 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */ 3794 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr) 3795 && !fence_insn_p) 3796 target_available = -1; 3797 3798 /* If the availability of the EXPR is invalidated by the insertion of 3799 bookkeeping earlier, make sure that we won't choose this expr for 3800 scheduling if it's not separable, and if it is separable, then 3801 we have to recompute the set of available registers for it. */ 3802 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr)) 3803 { 3804 vec_av_set.unordered_remove (n); 3805 if (sched_verbose >= 4) 3806 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n", 3807 INSN_UID (insn)); 3808 continue; 3809 } 3810 3811 if (target_available == true) 3812 { 3813 /* Do nothing -- we can use an existing register. */ 3814 is_orig_reg_p = EXPR_SEPARABLE_P (expr); 3815 } 3816 else if (/* Non-separable instruction will never 3817 get another register. */ 3818 (target_available == false 3819 && !EXPR_SEPARABLE_P (expr)) 3820 /* Don't try to find a register for low-priority expression. */ 3821 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename 3822 /* ??? FIXME: Don't try to rename data speculation. */ 3823 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA) 3824 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p)) 3825 { 3826 vec_av_set.unordered_remove (n); 3827 if (sched_verbose >= 4) 3828 sel_print ("Expr %d has no suitable target register\n", 3829 INSN_UID (insn)); 3830 3831 /* A fence insn should not get here. */ 3832 gcc_assert (!fence_insn_p); 3833 continue; 3834 } 3835 3836 /* At this point a fence insn should always be available. */ 3837 gcc_assert (!fence_insn_p 3838 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr))); 3839 3840 /* Filter expressions that need to be renamed or speculated when 3841 pipelining, because compensating register copies or speculation 3842 checks are likely to be placed near the beginning of the loop, 3843 causing a stall. */ 3844 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0 3845 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0)) 3846 { 3847 /* Estimation of number of cycles until loop branch for 3848 renaming/speculation to be successful. */ 3849 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr)); 3850 3851 if ((int) current_loop_nest->ninsns < 9) 3852 { 3853 vec_av_set.unordered_remove (n); 3854 if (sched_verbose >= 4) 3855 sel_print ("Pipelining expr %d will likely cause stall\n", 3856 INSN_UID (insn)); 3857 continue; 3858 } 3859 3860 if ((int) current_loop_nest->ninsns - num_insns_scheduled 3861 < need_n_ticks_till_branch * issue_rate / 2 3862 && est_ticks_till_branch < need_n_ticks_till_branch) 3863 { 3864 vec_av_set.unordered_remove (n); 3865 if (sched_verbose >= 4) 3866 sel_print ("Pipelining expr %d will likely cause stall\n", 3867 INSN_UID (insn)); 3868 continue; 3869 } 3870 } 3871 3872 /* We want to schedule speculation checks as late as possible. Discard 3873 them from av set if there are instructions with higher priority. */ 3874 if (sel_insn_is_speculation_check (insn) 3875 && EXPR_PRIORITY (expr) < av_max_prio) 3876 { 3877 stalled++; 3878 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1); 3879 vec_av_set.unordered_remove (n); 3880 if (sched_verbose >= 4) 3881 sel_print ("Delaying speculation check %d until its first use\n", 3882 INSN_UID (insn)); 3883 continue; 3884 } 3885 3886 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */ 3887 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3888 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr)); 3889 3890 /* Don't allow any insns whose data is not yet ready. 3891 Check first whether we've already tried them and failed. */ 3892 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence)) 3893 { 3894 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)] 3895 - FENCE_CYCLE (fence)); 3896 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3897 est_ticks_till_branch = MAX (est_ticks_till_branch, 3898 EXPR_PRIORITY (expr) + need_cycles); 3899 3900 if (need_cycles > 0) 3901 { 3902 stalled++; 3903 min_need_stall = (min_need_stall < 0 3904 ? need_cycles 3905 : MIN (min_need_stall, need_cycles)); 3906 vec_av_set.unordered_remove (n); 3907 3908 if (sched_verbose >= 4) 3909 sel_print ("Expr %d is not ready until cycle %d (cached)\n", 3910 INSN_UID (insn), 3911 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3912 continue; 3913 } 3914 } 3915 3916 /* Now resort to dependence analysis to find whether EXPR might be 3917 stalled due to dependencies from FENCE's context. */ 3918 need_cycles = tick_check_p (expr, dc, fence); 3919 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles; 3920 3921 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3922 est_ticks_till_branch = MAX (est_ticks_till_branch, 3923 new_prio); 3924 3925 if (need_cycles > 0) 3926 { 3927 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence)) 3928 { 3929 int new_size = INSN_UID (insn) * 3 / 2; 3930 3931 FENCE_READY_TICKS (fence) 3932 = (int *) xrecalloc (FENCE_READY_TICKS (fence), 3933 new_size, FENCE_READY_TICKS_SIZE (fence), 3934 sizeof (int)); 3935 } 3936 FENCE_READY_TICKS (fence)[INSN_UID (insn)] 3937 = FENCE_CYCLE (fence) + need_cycles; 3938 3939 stalled++; 3940 min_need_stall = (min_need_stall < 0 3941 ? need_cycles 3942 : MIN (min_need_stall, need_cycles)); 3943 3944 vec_av_set.unordered_remove (n); 3945 3946 if (sched_verbose >= 4) 3947 sel_print ("Expr %d is not ready yet until cycle %d\n", 3948 INSN_UID (insn), 3949 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3950 continue; 3951 } 3952 3953 if (sched_verbose >= 4) 3954 sel_print ("Expr %d is ok\n", INSN_UID (insn)); 3955 min_need_stall = 0; 3956 } 3957 3958 /* Clear SCHED_NEXT. */ 3959 if (FENCE_SCHED_NEXT (fence)) 3960 { 3961 gcc_assert (sched_next_worked == 1); 3962 FENCE_SCHED_NEXT (fence) = NULL; 3963 } 3964 3965 /* No need to stall if this variable was not initialized. */ 3966 if (min_need_stall < 0) 3967 min_need_stall = 0; 3968 3969 if (vec_av_set.is_empty ()) 3970 { 3971 /* We need to set *pneed_stall here, because later we skip this code 3972 when ready list is empty. */ 3973 *pneed_stall = min_need_stall; 3974 return false; 3975 } 3976 else 3977 gcc_assert (min_need_stall == 0); 3978 3979 /* Sort the vector. */ 3980 vec_av_set.qsort (sel_rank_for_schedule); 3981 3982 if (sched_verbose >= 4) 3983 { 3984 sel_print ("Total ready exprs: %d, stalled: %d\n", 3985 vec_av_set.length (), stalled); 3986 sel_print ("Sorted av set (%d): ", vec_av_set.length ()); 3987 FOR_EACH_VEC_ELT (vec_av_set, n, expr) 3988 dump_expr (expr); 3989 sel_print ("\n"); 3990 } 3991 3992 *pneed_stall = 0; 3993 return true; 3994 } 3995 3996 /* Convert a vectored and sorted av set to the ready list that 3997 the rest of the backend wants to see. */ 3998 static void 3999 convert_vec_av_set_to_ready (void) 4000 { 4001 int n; 4002 expr_t expr; 4003 4004 /* Allocate and fill the ready list from the sorted vector. */ 4005 ready.n_ready = vec_av_set.length (); 4006 ready.first = ready.n_ready - 1; 4007 4008 gcc_assert (ready.n_ready > 0); 4009 4010 if (ready.n_ready > max_issue_size) 4011 { 4012 max_issue_size = ready.n_ready; 4013 sched_extend_ready_list (ready.n_ready); 4014 } 4015 4016 FOR_EACH_VEC_ELT (vec_av_set, n, expr) 4017 { 4018 vinsn_t vi = EXPR_VINSN (expr); 4019 insn_t insn = VINSN_INSN_RTX (vi); 4020 4021 ready_try[n] = 0; 4022 ready.vec[n] = insn; 4023 } 4024 } 4025 4026 /* Initialize ready list from *AV_PTR for the max_issue () call. 4027 If any unrecognizable insn found in *AV_PTR, return it (and skip 4028 max_issue). BND and FENCE are current boundary and fence, 4029 respectively. If we need to stall for some cycles before an expr 4030 from *AV_PTR would become available, write this number to *PNEED_STALL. */ 4031 static expr_t 4032 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence, 4033 int *pneed_stall) 4034 { 4035 expr_t expr; 4036 4037 /* We do not support multiple boundaries per fence. */ 4038 gcc_assert (BLIST_NEXT (bnds) == NULL); 4039 4040 /* Process expressions required special handling, i.e. pipelined, 4041 speculative and recog() < 0 expressions first. */ 4042 process_pipelined_exprs (av_ptr); 4043 process_spec_exprs (av_ptr); 4044 4045 /* A USE could be scheduled immediately. */ 4046 expr = process_use_exprs (av_ptr); 4047 if (expr) 4048 { 4049 *pneed_stall = 0; 4050 return expr; 4051 } 4052 4053 /* Turn the av set to a vector for sorting. */ 4054 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall)) 4055 { 4056 ready.n_ready = 0; 4057 return NULL; 4058 } 4059 4060 /* Build the final ready list. */ 4061 convert_vec_av_set_to_ready (); 4062 return NULL; 4063 } 4064 4065 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */ 4066 static bool 4067 sel_dfa_new_cycle (insn_t insn, fence_t fence) 4068 { 4069 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence) 4070 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence)) 4071 : FENCE_CYCLE (fence) - 1; 4072 bool res = false; 4073 int sort_p = 0; 4074 4075 if (!targetm.sched.dfa_new_cycle) 4076 return false; 4077 4078 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4079 4080 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, 4081 insn, last_scheduled_cycle, 4082 FENCE_CYCLE (fence), &sort_p)) 4083 { 4084 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size); 4085 advance_one_cycle (fence); 4086 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4087 res = true; 4088 } 4089 4090 return res; 4091 } 4092 4093 /* Invoke reorder* target hooks on the ready list. Return the number of insns 4094 we can issue. FENCE is the current fence. */ 4095 static int 4096 invoke_reorder_hooks (fence_t fence) 4097 { 4098 int issue_more; 4099 bool ran_hook = false; 4100 4101 /* Call the reorder hook at the beginning of the cycle, and call 4102 the reorder2 hook in the middle of the cycle. */ 4103 if (FENCE_ISSUED_INSNS (fence) == 0) 4104 { 4105 if (targetm.sched.reorder 4106 && !SCHED_GROUP_P (ready_element (&ready, 0)) 4107 && ready.n_ready > 1) 4108 { 4109 /* Don't give reorder the most prioritized insn as it can break 4110 pipelining. */ 4111 if (pipelining_p) 4112 --ready.n_ready; 4113 4114 issue_more 4115 = targetm.sched.reorder (sched_dump, sched_verbose, 4116 ready_lastpos (&ready), 4117 &ready.n_ready, FENCE_CYCLE (fence)); 4118 4119 if (pipelining_p) 4120 ++ready.n_ready; 4121 4122 ran_hook = true; 4123 } 4124 else 4125 /* Initialize can_issue_more for variable_issue. */ 4126 issue_more = issue_rate; 4127 } 4128 else if (targetm.sched.reorder2 4129 && !SCHED_GROUP_P (ready_element (&ready, 0))) 4130 { 4131 if (ready.n_ready == 1) 4132 issue_more = 4133 targetm.sched.reorder2 (sched_dump, sched_verbose, 4134 ready_lastpos (&ready), 4135 &ready.n_ready, FENCE_CYCLE (fence)); 4136 else 4137 { 4138 if (pipelining_p) 4139 --ready.n_ready; 4140 4141 issue_more = 4142 targetm.sched.reorder2 (sched_dump, sched_verbose, 4143 ready.n_ready 4144 ? ready_lastpos (&ready) : NULL, 4145 &ready.n_ready, FENCE_CYCLE (fence)); 4146 4147 if (pipelining_p) 4148 ++ready.n_ready; 4149 } 4150 4151 ran_hook = true; 4152 } 4153 else 4154 issue_more = FENCE_ISSUE_MORE (fence); 4155 4156 /* Ensure that ready list and vec_av_set are in line with each other, 4157 i.e. vec_av_set[i] == ready_element (&ready, i). */ 4158 if (issue_more && ran_hook) 4159 { 4160 int i, j, n; 4161 rtx_insn **arr = ready.vec; 4162 expr_t *vec = vec_av_set.address (); 4163 4164 for (i = 0, n = ready.n_ready; i < n; i++) 4165 if (EXPR_INSN_RTX (vec[i]) != arr[i]) 4166 { 4167 expr_t tmp; 4168 4169 for (j = i; j < n; j++) 4170 if (EXPR_INSN_RTX (vec[j]) == arr[i]) 4171 break; 4172 gcc_assert (j < n); 4173 4174 tmp = vec[i]; 4175 vec[i] = vec[j]; 4176 vec[j] = tmp; 4177 } 4178 } 4179 4180 return issue_more; 4181 } 4182 4183 /* Return an EXPR corresponding to INDEX element of ready list, if 4184 FOLLOW_READY_ELEMENT is true (i.e., an expr of 4185 ready_element (&ready, INDEX) will be returned), and to INDEX element of 4186 ready.vec otherwise. */ 4187 static inline expr_t 4188 find_expr_for_ready (int index, bool follow_ready_element) 4189 { 4190 expr_t expr; 4191 int real_index; 4192 4193 real_index = follow_ready_element ? ready.first - index : index; 4194 4195 expr = vec_av_set[real_index]; 4196 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr)); 4197 4198 return expr; 4199 } 4200 4201 /* Calculate insns worth trying via lookahead_guard hook. Return a number 4202 of such insns found. */ 4203 static int 4204 invoke_dfa_lookahead_guard (void) 4205 { 4206 int i, n; 4207 bool have_hook 4208 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL; 4209 4210 if (sched_verbose >= 2) 4211 sel_print ("ready after reorder: "); 4212 4213 for (i = 0, n = 0; i < ready.n_ready; i++) 4214 { 4215 expr_t expr; 4216 insn_t insn; 4217 int r; 4218 4219 /* In this loop insn is Ith element of the ready list given by 4220 ready_element, not Ith element of ready.vec. */ 4221 insn = ready_element (&ready, i); 4222 4223 if (! have_hook || i == 0) 4224 r = 0; 4225 else 4226 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i); 4227 4228 gcc_assert (INSN_CODE (insn) >= 0); 4229 4230 /* Only insns with ready_try = 0 can get here 4231 from fill_ready_list. */ 4232 gcc_assert (ready_try [i] == 0); 4233 ready_try[i] = r; 4234 if (!r) 4235 n++; 4236 4237 expr = find_expr_for_ready (i, true); 4238 4239 if (sched_verbose >= 2) 4240 { 4241 dump_vinsn (EXPR_VINSN (expr)); 4242 sel_print (":%d; ", ready_try[i]); 4243 } 4244 } 4245 4246 if (sched_verbose >= 2) 4247 sel_print ("\n"); 4248 return n; 4249 } 4250 4251 /* Calculate the number of privileged insns and return it. */ 4252 static int 4253 calculate_privileged_insns (void) 4254 { 4255 expr_t cur_expr, min_spec_expr = NULL; 4256 int privileged_n = 0, i; 4257 4258 for (i = 0; i < ready.n_ready; i++) 4259 { 4260 if (ready_try[i]) 4261 continue; 4262 4263 if (! min_spec_expr) 4264 min_spec_expr = find_expr_for_ready (i, true); 4265 4266 cur_expr = find_expr_for_ready (i, true); 4267 4268 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr)) 4269 break; 4270 4271 ++privileged_n; 4272 } 4273 4274 if (i == ready.n_ready) 4275 privileged_n = 0; 4276 4277 if (sched_verbose >= 2) 4278 sel_print ("privileged_n: %d insns with SPEC %d\n", 4279 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1); 4280 return privileged_n; 4281 } 4282 4283 /* Call the rest of the hooks after the choice was made. Return 4284 the number of insns that still can be issued given that the current 4285 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence 4286 and the insn chosen for scheduling, respectively. */ 4287 static int 4288 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more) 4289 { 4290 gcc_assert (INSN_P (best_insn)); 4291 4292 /* First, call dfa_new_cycle, and then variable_issue, if available. */ 4293 sel_dfa_new_cycle (best_insn, fence); 4294 4295 if (targetm.sched.variable_issue) 4296 { 4297 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4298 issue_more = 4299 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn, 4300 issue_more); 4301 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size); 4302 } 4303 else if (GET_CODE (PATTERN (best_insn)) != USE 4304 && GET_CODE (PATTERN (best_insn)) != CLOBBER) 4305 issue_more--; 4306 4307 return issue_more; 4308 } 4309 4310 /* Estimate the cost of issuing INSN on DFA state STATE. */ 4311 static int 4312 estimate_insn_cost (rtx_insn *insn, state_t state) 4313 { 4314 static state_t temp = NULL; 4315 int cost; 4316 4317 if (!temp) 4318 temp = xmalloc (dfa_state_size); 4319 4320 memcpy (temp, state, dfa_state_size); 4321 cost = state_transition (temp, insn); 4322 4323 if (cost < 0) 4324 return 0; 4325 else if (cost == 0) 4326 return 1; 4327 return cost; 4328 } 4329 4330 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA. 4331 This function properly handles ASMs, USEs etc. */ 4332 static int 4333 get_expr_cost (expr_t expr, fence_t fence) 4334 { 4335 rtx_insn *insn = EXPR_INSN_RTX (expr); 4336 4337 if (recog_memoized (insn) < 0) 4338 { 4339 if (!FENCE_STARTS_CYCLE_P (fence) 4340 && INSN_ASM_P (insn)) 4341 /* This is asm insn which is tryed to be issued on the 4342 cycle not first. Issue it on the next cycle. */ 4343 return 1; 4344 else 4345 /* A USE insn, or something else we don't need to 4346 understand. We can't pass these directly to 4347 state_transition because it will trigger a 4348 fatal error for unrecognizable insns. */ 4349 return 0; 4350 } 4351 else 4352 return estimate_insn_cost (insn, FENCE_STATE (fence)); 4353 } 4354 4355 /* Find the best insn for scheduling, either via max_issue or just take 4356 the most prioritized available. */ 4357 static int 4358 choose_best_insn (fence_t fence, int privileged_n, int *index) 4359 { 4360 int can_issue = 0; 4361 4362 if (dfa_lookahead > 0) 4363 { 4364 cycle_issued_insns = FENCE_ISSUED_INSNS (fence); 4365 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */ 4366 can_issue = max_issue (&ready, privileged_n, 4367 FENCE_STATE (fence), true, index); 4368 if (sched_verbose >= 2) 4369 sel_print ("max_issue: we can issue %d insns, already did %d insns\n", 4370 can_issue, FENCE_ISSUED_INSNS (fence)); 4371 } 4372 else 4373 { 4374 /* We can't use max_issue; just return the first available element. */ 4375 int i; 4376 4377 for (i = 0; i < ready.n_ready; i++) 4378 { 4379 expr_t expr = find_expr_for_ready (i, true); 4380 4381 if (get_expr_cost (expr, fence) < 1) 4382 { 4383 can_issue = can_issue_more; 4384 *index = i; 4385 4386 if (sched_verbose >= 2) 4387 sel_print ("using %dth insn from the ready list\n", i + 1); 4388 4389 break; 4390 } 4391 } 4392 4393 if (i == ready.n_ready) 4394 { 4395 can_issue = 0; 4396 *index = -1; 4397 } 4398 } 4399 4400 return can_issue; 4401 } 4402 4403 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it. 4404 BNDS and FENCE are current boundaries and scheduling fence respectively. 4405 Return the expr found and NULL if nothing can be issued atm. 4406 Write to PNEED_STALL the number of cycles to stall if no expr was found. */ 4407 static expr_t 4408 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence, 4409 int *pneed_stall) 4410 { 4411 expr_t best; 4412 4413 /* Choose the best insn for scheduling via: 4414 1) sorting the ready list based on priority; 4415 2) calling the reorder hook; 4416 3) calling max_issue. */ 4417 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall); 4418 if (best == NULL && ready.n_ready > 0) 4419 { 4420 int privileged_n, index; 4421 4422 can_issue_more = invoke_reorder_hooks (fence); 4423 if (can_issue_more > 0) 4424 { 4425 /* Try choosing the best insn until we find one that is could be 4426 scheduled due to liveness restrictions on its destination register. 4427 In the future, we'd like to choose once and then just probe insns 4428 in the order of their priority. */ 4429 invoke_dfa_lookahead_guard (); 4430 privileged_n = calculate_privileged_insns (); 4431 can_issue_more = choose_best_insn (fence, privileged_n, &index); 4432 if (can_issue_more) 4433 best = find_expr_for_ready (index, true); 4434 } 4435 /* We had some available insns, so if we can't issue them, 4436 we have a stall. */ 4437 if (can_issue_more == 0) 4438 { 4439 best = NULL; 4440 *pneed_stall = 1; 4441 } 4442 } 4443 4444 if (best != NULL) 4445 { 4446 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best), 4447 can_issue_more); 4448 if (targetm.sched.variable_issue 4449 && can_issue_more == 0) 4450 *pneed_stall = 1; 4451 } 4452 4453 if (sched_verbose >= 2) 4454 { 4455 if (best != NULL) 4456 { 4457 sel_print ("Best expression (vliw form): "); 4458 dump_expr (best); 4459 sel_print ("; cycle %d\n", FENCE_CYCLE (fence)); 4460 } 4461 else 4462 sel_print ("No best expr found!\n"); 4463 } 4464 4465 return best; 4466 } 4467 4468 4469 /* Functions that implement the core of the scheduler. */ 4470 4471 4472 /* Emit an instruction from EXPR with SEQNO and VINSN after 4473 PLACE_TO_INSERT. */ 4474 static insn_t 4475 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno, 4476 insn_t place_to_insert) 4477 { 4478 /* This assert fails when we have identical instructions 4479 one of which dominates the other. In this case move_op () 4480 finds the first instruction and doesn't search for second one. 4481 The solution would be to compute av_set after the first found 4482 insn and, if insn present in that set, continue searching. 4483 For now we workaround this issue in move_op. */ 4484 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr))); 4485 4486 if (EXPR_WAS_RENAMED (expr)) 4487 { 4488 unsigned regno = expr_dest_regno (expr); 4489 4490 if (HARD_REGISTER_NUM_P (regno)) 4491 { 4492 df_set_regs_ever_live (regno, true); 4493 reg_rename_tick[regno] = ++reg_rename_this_tick; 4494 } 4495 } 4496 4497 return sel_gen_insn_from_expr_after (expr, vinsn, seqno, 4498 place_to_insert); 4499 } 4500 4501 /* Return TRUE if BB can hold bookkeeping code. */ 4502 static bool 4503 block_valid_for_bookkeeping_p (basic_block bb) 4504 { 4505 insn_t bb_end = BB_END (bb); 4506 4507 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1) 4508 return false; 4509 4510 if (INSN_P (bb_end)) 4511 { 4512 if (INSN_SCHED_TIMES (bb_end) > 0) 4513 return false; 4514 } 4515 else 4516 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end)); 4517 4518 return true; 4519 } 4520 4521 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming 4522 into E2->dest, except from E1->src (there may be a sequence of empty basic 4523 blocks between E1->src and E2->dest). Return found block, or NULL if new 4524 one must be created. If LAX holds, don't assume there is a simple path 4525 from E1->src to E2->dest. */ 4526 static basic_block 4527 find_block_for_bookkeeping (edge e1, edge e2, bool lax) 4528 { 4529 basic_block candidate_block = NULL; 4530 edge e; 4531 4532 /* Loop over edges from E1 to E2, inclusive. */ 4533 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e = 4534 EDGE_SUCC (e->dest, 0)) 4535 { 4536 if (EDGE_COUNT (e->dest->preds) == 2) 4537 { 4538 if (candidate_block == NULL) 4539 candidate_block = (EDGE_PRED (e->dest, 0) == e 4540 ? EDGE_PRED (e->dest, 1)->src 4541 : EDGE_PRED (e->dest, 0)->src); 4542 else 4543 /* Found additional edge leading to path from e1 to e2 4544 from aside. */ 4545 return NULL; 4546 } 4547 else if (EDGE_COUNT (e->dest->preds) > 2) 4548 /* Several edges leading to path from e1 to e2 from aside. */ 4549 return NULL; 4550 4551 if (e == e2) 4552 return ((!lax || candidate_block) 4553 && block_valid_for_bookkeeping_p (candidate_block) 4554 ? candidate_block 4555 : NULL); 4556 4557 if (lax && EDGE_COUNT (e->dest->succs) != 1) 4558 return NULL; 4559 } 4560 4561 if (lax) 4562 return NULL; 4563 4564 gcc_unreachable (); 4565 } 4566 4567 /* Create new basic block for bookkeeping code for path(s) incoming into 4568 E2->dest, except from E1->src. Return created block. */ 4569 static basic_block 4570 create_block_for_bookkeeping (edge e1, edge e2) 4571 { 4572 basic_block new_bb, bb = e2->dest; 4573 4574 /* Check that we don't spoil the loop structure. */ 4575 if (current_loop_nest) 4576 { 4577 basic_block latch = current_loop_nest->latch; 4578 4579 /* We do not split header. */ 4580 gcc_assert (e2->dest != current_loop_nest->header); 4581 4582 /* We do not redirect the only edge to the latch block. */ 4583 gcc_assert (e1->dest != latch 4584 || !single_pred_p (latch) 4585 || e1 != single_pred_edge (latch)); 4586 } 4587 4588 /* Split BB to insert BOOK_INSN there. */ 4589 new_bb = sched_split_block (bb, NULL); 4590 4591 /* Move note_list from the upper bb. */ 4592 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX); 4593 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb); 4594 BB_NOTE_LIST (bb) = NULL; 4595 4596 gcc_assert (e2->dest == bb); 4597 4598 /* Skip block for bookkeeping copy when leaving E1->src. */ 4599 if (e1->flags & EDGE_FALLTHRU) 4600 sel_redirect_edge_and_branch_force (e1, new_bb); 4601 else 4602 sel_redirect_edge_and_branch (e1, new_bb); 4603 4604 gcc_assert (e1->dest == new_bb); 4605 gcc_assert (sel_bb_empty_p (bb)); 4606 4607 /* To keep basic block numbers in sync between debug and non-debug 4608 compilations, we have to rotate blocks here. Consider that we 4609 started from (a,b)->d, (c,d)->e, and d contained only debug 4610 insns. It would have been removed before if the debug insns 4611 weren't there, so we'd have split e rather than d. So what we do 4612 now is to swap the block numbers of new_bb and 4613 single_succ(new_bb) == e, so that the insns that were in e before 4614 get the new block number. */ 4615 4616 if (MAY_HAVE_DEBUG_INSNS) 4617 { 4618 basic_block succ; 4619 insn_t insn = sel_bb_head (new_bb); 4620 insn_t last; 4621 4622 if (DEBUG_INSN_P (insn) 4623 && single_succ_p (new_bb) 4624 && (succ = single_succ (new_bb)) 4625 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun) 4626 && DEBUG_INSN_P ((last = sel_bb_end (new_bb)))) 4627 { 4628 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn))) 4629 insn = NEXT_INSN (insn); 4630 4631 if (insn == last) 4632 { 4633 sel_global_bb_info_def gbi; 4634 sel_region_bb_info_def rbi; 4635 int i; 4636 4637 if (sched_verbose >= 2) 4638 sel_print ("Swapping block ids %i and %i\n", 4639 new_bb->index, succ->index); 4640 4641 i = new_bb->index; 4642 new_bb->index = succ->index; 4643 succ->index = i; 4644 4645 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb); 4646 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ); 4647 4648 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi)); 4649 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ), 4650 sizeof (gbi)); 4651 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi)); 4652 4653 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi)); 4654 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ), 4655 sizeof (rbi)); 4656 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi)); 4657 4658 i = BLOCK_TO_BB (new_bb->index); 4659 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index); 4660 BLOCK_TO_BB (succ->index) = i; 4661 4662 i = CONTAINING_RGN (new_bb->index); 4663 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index); 4664 CONTAINING_RGN (succ->index) = i; 4665 4666 for (i = 0; i < current_nr_blocks; i++) 4667 if (BB_TO_BLOCK (i) == succ->index) 4668 BB_TO_BLOCK (i) = new_bb->index; 4669 else if (BB_TO_BLOCK (i) == new_bb->index) 4670 BB_TO_BLOCK (i) = succ->index; 4671 4672 FOR_BB_INSNS (new_bb, insn) 4673 if (INSN_P (insn)) 4674 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index; 4675 4676 FOR_BB_INSNS (succ, insn) 4677 if (INSN_P (insn)) 4678 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index; 4679 4680 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index)) 4681 bitmap_set_bit (code_motion_visited_blocks, succ->index); 4682 4683 gcc_assert (LABEL_P (BB_HEAD (new_bb)) 4684 && LABEL_P (BB_HEAD (succ))); 4685 4686 if (sched_verbose >= 4) 4687 sel_print ("Swapping code labels %i and %i\n", 4688 CODE_LABEL_NUMBER (BB_HEAD (new_bb)), 4689 CODE_LABEL_NUMBER (BB_HEAD (succ))); 4690 4691 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb)); 4692 CODE_LABEL_NUMBER (BB_HEAD (new_bb)) 4693 = CODE_LABEL_NUMBER (BB_HEAD (succ)); 4694 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i; 4695 } 4696 } 4697 } 4698 4699 return bb; 4700 } 4701 4702 /* Return insn after which we must insert bookkeeping code for path(s) incoming 4703 into E2->dest, except from E1->src. If the returned insn immediately 4704 precedes a fence, assign that fence to *FENCE_TO_REWIND. */ 4705 static insn_t 4706 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind) 4707 { 4708 insn_t place_to_insert; 4709 /* Find a basic block that can hold bookkeeping. If it can be found, do not 4710 create new basic block, but insert bookkeeping there. */ 4711 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE); 4712 4713 if (book_block) 4714 { 4715 place_to_insert = BB_END (book_block); 4716 4717 /* Don't use a block containing only debug insns for 4718 bookkeeping, this causes scheduling differences between debug 4719 and non-debug compilations, for the block would have been 4720 removed already. */ 4721 if (DEBUG_INSN_P (place_to_insert)) 4722 { 4723 rtx_insn *insn = sel_bb_head (book_block); 4724 4725 while (insn != place_to_insert && 4726 (DEBUG_INSN_P (insn) || NOTE_P (insn))) 4727 insn = NEXT_INSN (insn); 4728 4729 if (insn == place_to_insert) 4730 book_block = NULL; 4731 } 4732 } 4733 4734 if (!book_block) 4735 { 4736 book_block = create_block_for_bookkeeping (e1, e2); 4737 place_to_insert = BB_END (book_block); 4738 if (sched_verbose >= 9) 4739 sel_print ("New block is %i, split from bookkeeping block %i\n", 4740 EDGE_SUCC (book_block, 0)->dest->index, book_block->index); 4741 } 4742 else 4743 { 4744 if (sched_verbose >= 9) 4745 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index); 4746 } 4747 4748 *fence_to_rewind = NULL; 4749 /* If basic block ends with a jump, insert bookkeeping code right before it. 4750 Notice if we are crossing a fence when taking PREV_INSN. */ 4751 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert)) 4752 { 4753 *fence_to_rewind = flist_lookup (fences, place_to_insert); 4754 place_to_insert = PREV_INSN (place_to_insert); 4755 } 4756 4757 return place_to_insert; 4758 } 4759 4760 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT 4761 for JOIN_POINT. */ 4762 static int 4763 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point) 4764 { 4765 int seqno; 4766 rtx next; 4767 4768 /* Check if we are about to insert bookkeeping copy before a jump, and use 4769 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */ 4770 next = NEXT_INSN (place_to_insert); 4771 if (INSN_P (next) 4772 && JUMP_P (next) 4773 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert)) 4774 { 4775 gcc_assert (INSN_SCHED_TIMES (next) == 0); 4776 seqno = INSN_SEQNO (next); 4777 } 4778 else if (INSN_SEQNO (join_point) > 0) 4779 seqno = INSN_SEQNO (join_point); 4780 else 4781 { 4782 seqno = get_seqno_by_preds (place_to_insert); 4783 4784 /* Sometimes the fences can move in such a way that there will be 4785 no instructions with positive seqno around this bookkeeping. 4786 This means that there will be no way to get to it by a regular 4787 fence movement. Never mind because we pick up such pieces for 4788 rescheduling anyways, so any positive value will do for now. */ 4789 if (seqno < 0) 4790 { 4791 gcc_assert (pipelining_p); 4792 seqno = 1; 4793 } 4794 } 4795 4796 gcc_assert (seqno > 0); 4797 return seqno; 4798 } 4799 4800 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning 4801 NEW_SEQNO to it. Return created insn. */ 4802 static insn_t 4803 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno) 4804 { 4805 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr)); 4806 4807 vinsn_t new_vinsn 4808 = create_vinsn_from_insn_rtx (new_insn_rtx, 4809 VINSN_UNIQUE_P (EXPR_VINSN (c_expr))); 4810 4811 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno, 4812 place_to_insert); 4813 4814 INSN_SCHED_TIMES (new_insn) = 0; 4815 bitmap_set_bit (current_copies, INSN_UID (new_insn)); 4816 4817 return new_insn; 4818 } 4819 4820 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to 4821 E2->dest, except from E1->src (there may be a sequence of empty blocks 4822 between E1->src and E2->dest). Return block containing the copy. 4823 All scheduler data is initialized for the newly created insn. */ 4824 static basic_block 4825 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2) 4826 { 4827 insn_t join_point, place_to_insert, new_insn; 4828 int new_seqno; 4829 bool need_to_exchange_data_sets; 4830 fence_t fence_to_rewind; 4831 4832 if (sched_verbose >= 4) 4833 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index, 4834 e2->dest->index); 4835 4836 join_point = sel_bb_head (e2->dest); 4837 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind); 4838 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point); 4839 need_to_exchange_data_sets 4840 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert)); 4841 4842 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno); 4843 4844 if (fence_to_rewind) 4845 FENCE_INSN (fence_to_rewind) = new_insn; 4846 4847 /* When inserting bookkeeping insn in new block, av sets should be 4848 following: old basic block (that now holds bookkeeping) data sets are 4849 the same as was before generation of bookkeeping, and new basic block 4850 (that now hold all other insns of old basic block) data sets are 4851 invalid. So exchange data sets for these basic blocks as sel_split_block 4852 mistakenly exchanges them in this case. Cannot do it earlier because 4853 when single instruction is added to new basic block it should hold NULL 4854 lv_set. */ 4855 if (need_to_exchange_data_sets) 4856 exchange_data_sets (BLOCK_FOR_INSN (new_insn), 4857 BLOCK_FOR_INSN (join_point)); 4858 4859 stat_bookkeeping_copies++; 4860 return BLOCK_FOR_INSN (new_insn); 4861 } 4862 4863 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling 4864 on FENCE, but we are unable to copy them. */ 4865 static void 4866 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr) 4867 { 4868 expr_t expr; 4869 av_set_iterator i; 4870 4871 /* An expression does not need bookkeeping if it is available on all paths 4872 from current block to original block and current block dominates 4873 original block. We check availability on all paths by examining 4874 EXPR_SPEC; this is not equivalent, because it may be positive even 4875 if expr is available on all paths (but if expr is not available on 4876 any path, EXPR_SPEC will be positive). */ 4877 4878 FOR_EACH_EXPR_1 (expr, i, av_ptr) 4879 { 4880 if (!control_flow_insn_p (EXPR_INSN_RTX (expr)) 4881 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr))) 4882 && (EXPR_SPEC (expr) 4883 || !EXPR_ORIG_BB_INDEX (expr) 4884 || !dominated_by_p (CDI_DOMINATORS, 4885 BASIC_BLOCK_FOR_FN (cfun, 4886 EXPR_ORIG_BB_INDEX (expr)), 4887 BLOCK_FOR_INSN (FENCE_INSN (fence))))) 4888 { 4889 if (sched_verbose >= 4) 4890 sel_print ("Expr %d removed because it would need bookkeeping, which " 4891 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr))); 4892 av_set_iter_remove (&i); 4893 } 4894 } 4895 } 4896 4897 /* Moving conditional jump through some instructions. 4898 4899 Consider example: 4900 4901 ... <- current scheduling point 4902 NOTE BASIC BLOCK: <- bb header 4903 (p8) add r14=r14+0x9;; 4904 (p8) mov [r14]=r23 4905 (!p8) jump L1;; 4906 NOTE BASIC BLOCK: 4907 ... 4908 4909 We can schedule jump one cycle earlier, than mov, because they cannot be 4910 executed together as their predicates are mutually exclusive. 4911 4912 This is done in this way: first, new fallthrough basic block is created 4913 after jump (it is always can be done, because there already should be a 4914 fallthrough block, where control flow goes in case of predicate being true - 4915 in our example; otherwise there should be a dependence between those 4916 instructions and jump and we cannot schedule jump right now); 4917 next, all instructions between jump and current scheduling point are moved 4918 to this new block. And the result is this: 4919 4920 NOTE BASIC BLOCK: 4921 (!p8) jump L1 <- current scheduling point 4922 NOTE BASIC BLOCK: <- bb header 4923 (p8) add r14=r14+0x9;; 4924 (p8) mov [r14]=r23 4925 NOTE BASIC BLOCK: 4926 ... 4927 */ 4928 static void 4929 move_cond_jump (rtx_insn *insn, bnd_t bnd) 4930 { 4931 edge ft_edge; 4932 basic_block block_from, block_next, block_new, block_bnd, bb; 4933 rtx_insn *next, *prev, *link, *head; 4934 4935 block_from = BLOCK_FOR_INSN (insn); 4936 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd)); 4937 prev = BND_TO (bnd); 4938 4939 #ifdef ENABLE_CHECKING 4940 /* Moving of jump should not cross any other jumps or beginnings of new 4941 basic blocks. The only exception is when we move a jump through 4942 mutually exclusive insns along fallthru edges. */ 4943 if (block_from != block_bnd) 4944 { 4945 bb = block_from; 4946 for (link = PREV_INSN (insn); link != PREV_INSN (prev); 4947 link = PREV_INSN (link)) 4948 { 4949 if (INSN_P (link)) 4950 gcc_assert (sched_insns_conditions_mutex_p (insn, link)); 4951 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb) 4952 { 4953 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link)); 4954 bb = BLOCK_FOR_INSN (link); 4955 } 4956 } 4957 } 4958 #endif 4959 4960 /* Jump is moved to the boundary. */ 4961 next = PREV_INSN (insn); 4962 BND_TO (bnd) = insn; 4963 4964 ft_edge = find_fallthru_edge_from (block_from); 4965 block_next = ft_edge->dest; 4966 /* There must be a fallthrough block (or where should go 4967 control flow in case of false jump predicate otherwise?). */ 4968 gcc_assert (block_next); 4969 4970 /* Create new empty basic block after source block. */ 4971 block_new = sel_split_edge (ft_edge); 4972 gcc_assert (block_new->next_bb == block_next 4973 && block_from->next_bb == block_new); 4974 4975 /* Move all instructions except INSN to BLOCK_NEW. */ 4976 bb = block_bnd; 4977 head = BB_HEAD (block_new); 4978 while (bb != block_from->next_bb) 4979 { 4980 rtx_insn *from, *to; 4981 from = bb == block_bnd ? prev : sel_bb_head (bb); 4982 to = bb == block_from ? next : sel_bb_end (bb); 4983 4984 /* The jump being moved can be the first insn in the block. 4985 In this case we don't have to move anything in this block. */ 4986 if (NEXT_INSN (to) != from) 4987 { 4988 reorder_insns (from, to, head); 4989 4990 for (link = to; link != head; link = PREV_INSN (link)) 4991 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index; 4992 head = to; 4993 } 4994 4995 /* Cleanup possibly empty blocks left. */ 4996 block_next = bb->next_bb; 4997 if (bb != block_from) 4998 tidy_control_flow (bb, false); 4999 bb = block_next; 5000 } 5001 5002 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */ 5003 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new))); 5004 5005 gcc_assert (!sel_bb_empty_p (block_from) 5006 && !sel_bb_empty_p (block_new)); 5007 5008 /* Update data sets for BLOCK_NEW to represent that INSN and 5009 instructions from the other branch of INSN is no longer 5010 available at BLOCK_NEW. */ 5011 BB_AV_LEVEL (block_new) = global_level; 5012 gcc_assert (BB_LV_SET (block_new) == NULL); 5013 BB_LV_SET (block_new) = get_clear_regset_from_pool (); 5014 update_data_sets (sel_bb_head (block_new)); 5015 5016 /* INSN is a new basic block header - so prepare its data 5017 structures and update availability and liveness sets. */ 5018 update_data_sets (insn); 5019 5020 if (sched_verbose >= 4) 5021 sel_print ("Moving jump %d\n", INSN_UID (insn)); 5022 } 5023 5024 /* Remove nops generated during move_op for preventing removal of empty 5025 basic blocks. */ 5026 static void 5027 remove_temp_moveop_nops (bool full_tidying) 5028 { 5029 int i; 5030 insn_t insn; 5031 5032 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn) 5033 { 5034 gcc_assert (INSN_NOP_P (insn)); 5035 return_nop_to_pool (insn, full_tidying); 5036 } 5037 5038 /* Empty the vector. */ 5039 if (vec_temp_moveop_nops.length () > 0) 5040 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ()); 5041 } 5042 5043 /* Records the maximal UID before moving up an instruction. Used for 5044 distinguishing between bookkeeping copies and original insns. */ 5045 static int max_uid_before_move_op = 0; 5046 5047 /* Remove from AV_VLIW_P all instructions but next when debug counter 5048 tells us so. Next instruction is fetched from BNDS. */ 5049 static void 5050 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p) 5051 { 5052 if (! dbg_cnt (sel_sched_insn_cnt)) 5053 /* Leave only the next insn in av_vliw. */ 5054 { 5055 av_set_iterator av_it; 5056 expr_t expr; 5057 bnd_t bnd = BLIST_BND (bnds); 5058 insn_t next = BND_TO (bnd); 5059 5060 gcc_assert (BLIST_NEXT (bnds) == NULL); 5061 5062 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p) 5063 if (EXPR_INSN_RTX (expr) != next) 5064 av_set_iter_remove (&av_it); 5065 } 5066 } 5067 5068 /* Compute available instructions on BNDS. FENCE is the current fence. Write 5069 the computed set to *AV_VLIW_P. */ 5070 static void 5071 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p) 5072 { 5073 if (sched_verbose >= 2) 5074 { 5075 sel_print ("Boundaries: "); 5076 dump_blist (bnds); 5077 sel_print ("\n"); 5078 } 5079 5080 for (; bnds; bnds = BLIST_NEXT (bnds)) 5081 { 5082 bnd_t bnd = BLIST_BND (bnds); 5083 av_set_t av1_copy; 5084 insn_t bnd_to = BND_TO (bnd); 5085 5086 /* Rewind BND->TO to the basic block header in case some bookkeeping 5087 instructions were inserted before BND->TO and it needs to be 5088 adjusted. */ 5089 if (sel_bb_head_p (bnd_to)) 5090 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0); 5091 else 5092 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0) 5093 { 5094 bnd_to = PREV_INSN (bnd_to); 5095 if (sel_bb_head_p (bnd_to)) 5096 break; 5097 } 5098 5099 if (BND_TO (bnd) != bnd_to) 5100 { 5101 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd)); 5102 FENCE_INSN (fence) = bnd_to; 5103 BND_TO (bnd) = bnd_to; 5104 } 5105 5106 av_set_clear (&BND_AV (bnd)); 5107 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true); 5108 5109 av_set_clear (&BND_AV1 (bnd)); 5110 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd)); 5111 5112 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL); 5113 5114 av1_copy = av_set_copy (BND_AV1 (bnd)); 5115 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL); 5116 } 5117 5118 if (sched_verbose >= 2) 5119 { 5120 sel_print ("Available exprs (vliw form): "); 5121 dump_av_set (*av_vliw_p); 5122 sel_print ("\n"); 5123 } 5124 } 5125 5126 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW 5127 expression. When FOR_MOVEOP is true, also replace the register of 5128 expressions found with the register from EXPR_VLIW. */ 5129 static av_set_t 5130 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop) 5131 { 5132 av_set_t expr_seq = NULL; 5133 expr_t expr; 5134 av_set_iterator i; 5135 5136 FOR_EACH_EXPR (expr, i, BND_AV (bnd)) 5137 { 5138 if (equal_after_moveup_path_p (expr, NULL, expr_vliw)) 5139 { 5140 if (for_moveop) 5141 { 5142 /* The sequential expression has the right form to pass 5143 to move_op except when renaming happened. Put the 5144 correct register in EXPR then. */ 5145 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr))) 5146 { 5147 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw)) 5148 { 5149 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw)); 5150 stat_renamed_scheduled++; 5151 } 5152 /* Also put the correct TARGET_AVAILABLE bit on the expr. 5153 This is needed when renaming came up with original 5154 register. */ 5155 else if (EXPR_TARGET_AVAILABLE (expr) 5156 != EXPR_TARGET_AVAILABLE (expr_vliw)) 5157 { 5158 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1); 5159 EXPR_TARGET_AVAILABLE (expr) = 1; 5160 } 5161 } 5162 if (EXPR_WAS_SUBSTITUTED (expr)) 5163 stat_substitutions_total++; 5164 } 5165 5166 av_set_add (&expr_seq, expr); 5167 5168 /* With substitution inside insn group, it is possible 5169 that more than one expression in expr_seq will correspond 5170 to expr_vliw. In this case, choose one as the attempt to 5171 move both leads to miscompiles. */ 5172 break; 5173 } 5174 } 5175 5176 if (for_moveop && sched_verbose >= 2) 5177 { 5178 sel_print ("Best expression(s) (sequential form): "); 5179 dump_av_set (expr_seq); 5180 sel_print ("\n"); 5181 } 5182 5183 return expr_seq; 5184 } 5185 5186 5187 /* Move nop to previous block. */ 5188 static void ATTRIBUTE_UNUSED 5189 move_nop_to_previous_block (insn_t nop, basic_block prev_bb) 5190 { 5191 insn_t prev_insn, next_insn, note; 5192 5193 gcc_assert (sel_bb_head_p (nop) 5194 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb); 5195 note = bb_note (BLOCK_FOR_INSN (nop)); 5196 prev_insn = sel_bb_end (prev_bb); 5197 next_insn = NEXT_INSN (nop); 5198 gcc_assert (prev_insn != NULL_RTX 5199 && PREV_INSN (note) == prev_insn); 5200 5201 SET_NEXT_INSN (prev_insn) = nop; 5202 SET_PREV_INSN (nop) = prev_insn; 5203 5204 SET_PREV_INSN (note) = nop; 5205 SET_NEXT_INSN (note) = next_insn; 5206 5207 SET_NEXT_INSN (nop) = note; 5208 SET_PREV_INSN (next_insn) = note; 5209 5210 BB_END (prev_bb) = nop; 5211 BLOCK_FOR_INSN (nop) = prev_bb; 5212 } 5213 5214 /* Prepare a place to insert the chosen expression on BND. */ 5215 static insn_t 5216 prepare_place_to_insert (bnd_t bnd) 5217 { 5218 insn_t place_to_insert; 5219 5220 /* Init place_to_insert before calling move_op, as the later 5221 can possibly remove BND_TO (bnd). */ 5222 if (/* If this is not the first insn scheduled. */ 5223 BND_PTR (bnd)) 5224 { 5225 /* Add it after last scheduled. */ 5226 place_to_insert = ILIST_INSN (BND_PTR (bnd)); 5227 if (DEBUG_INSN_P (place_to_insert)) 5228 { 5229 ilist_t l = BND_PTR (bnd); 5230 while ((l = ILIST_NEXT (l)) && 5231 DEBUG_INSN_P (ILIST_INSN (l))) 5232 ; 5233 if (!l) 5234 place_to_insert = NULL; 5235 } 5236 } 5237 else 5238 place_to_insert = NULL; 5239 5240 if (!place_to_insert) 5241 { 5242 /* Add it before BND_TO. The difference is in the 5243 basic block, where INSN will be added. */ 5244 place_to_insert = get_nop_from_pool (BND_TO (bnd)); 5245 gcc_assert (BLOCK_FOR_INSN (place_to_insert) 5246 == BLOCK_FOR_INSN (BND_TO (bnd))); 5247 } 5248 5249 return place_to_insert; 5250 } 5251 5252 /* Find original instructions for EXPR_SEQ and move it to BND boundary. 5253 Return the expression to emit in C_EXPR. */ 5254 static bool 5255 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw, 5256 av_set_t expr_seq, expr_t c_expr) 5257 { 5258 bool b, should_move; 5259 unsigned book_uid; 5260 bitmap_iterator bi; 5261 int n_bookkeeping_copies_before_moveop; 5262 5263 /* Make a move. This call will remove the original operation, 5264 insert all necessary bookkeeping instructions and update the 5265 data sets. After that all we have to do is add the operation 5266 at before BND_TO (BND). */ 5267 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies; 5268 max_uid_before_move_op = get_max_uid (); 5269 bitmap_clear (current_copies); 5270 bitmap_clear (current_originators); 5271 5272 b = move_op (BND_TO (bnd), expr_seq, expr_vliw, 5273 get_dest_from_orig_ops (expr_seq), c_expr, &should_move); 5274 5275 /* We should be able to find the expression we've chosen for 5276 scheduling. */ 5277 gcc_assert (b); 5278 5279 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop) 5280 stat_insns_needed_bookkeeping++; 5281 5282 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi) 5283 { 5284 unsigned uid; 5285 bitmap_iterator bi; 5286 5287 /* We allocate these bitmaps lazily. */ 5288 if (! INSN_ORIGINATORS_BY_UID (book_uid)) 5289 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL); 5290 5291 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid), 5292 current_originators); 5293 5294 /* Transitively add all originators' originators. */ 5295 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi) 5296 if (INSN_ORIGINATORS_BY_UID (uid)) 5297 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid), 5298 INSN_ORIGINATORS_BY_UID (uid)); 5299 } 5300 5301 return should_move; 5302 } 5303 5304 5305 /* Debug a DFA state as an array of bytes. */ 5306 static void 5307 debug_state (state_t state) 5308 { 5309 unsigned char *p; 5310 unsigned int i, size = dfa_state_size; 5311 5312 sel_print ("state (%u):", size); 5313 for (i = 0, p = (unsigned char *) state; i < size; i++) 5314 sel_print (" %d", p[i]); 5315 sel_print ("\n"); 5316 } 5317 5318 /* Advance state on FENCE with INSN. Return true if INSN is 5319 an ASM, and we should advance state once more. */ 5320 static bool 5321 advance_state_on_fence (fence_t fence, insn_t insn) 5322 { 5323 bool asm_p; 5324 5325 if (recog_memoized (insn) >= 0) 5326 { 5327 int res; 5328 state_t temp_state = alloca (dfa_state_size); 5329 5330 gcc_assert (!INSN_ASM_P (insn)); 5331 asm_p = false; 5332 5333 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size); 5334 res = state_transition (FENCE_STATE (fence), insn); 5335 gcc_assert (res < 0); 5336 5337 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size)) 5338 { 5339 FENCE_ISSUED_INSNS (fence)++; 5340 5341 /* We should never issue more than issue_rate insns. */ 5342 if (FENCE_ISSUED_INSNS (fence) > issue_rate) 5343 gcc_unreachable (); 5344 } 5345 } 5346 else 5347 { 5348 /* This could be an ASM insn which we'd like to schedule 5349 on the next cycle. */ 5350 asm_p = INSN_ASM_P (insn); 5351 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p) 5352 advance_one_cycle (fence); 5353 } 5354 5355 if (sched_verbose >= 2) 5356 debug_state (FENCE_STATE (fence)); 5357 if (!DEBUG_INSN_P (insn)) 5358 FENCE_STARTS_CYCLE_P (fence) = 0; 5359 FENCE_ISSUE_MORE (fence) = can_issue_more; 5360 return asm_p; 5361 } 5362 5363 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL 5364 is nonzero if we need to stall after issuing INSN. */ 5365 static void 5366 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall) 5367 { 5368 bool asm_p; 5369 5370 /* First, reflect that something is scheduled on this fence. */ 5371 asm_p = advance_state_on_fence (fence, insn); 5372 FENCE_LAST_SCHEDULED_INSN (fence) = insn; 5373 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn); 5374 if (SCHED_GROUP_P (insn)) 5375 { 5376 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn); 5377 SCHED_GROUP_P (insn) = 0; 5378 } 5379 else 5380 FENCE_SCHED_NEXT (fence) = NULL; 5381 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence)) 5382 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0; 5383 5384 /* Set instruction scheduling info. This will be used in bundling, 5385 pipelining, tick computations etc. */ 5386 ++INSN_SCHED_TIMES (insn); 5387 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true; 5388 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence); 5389 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence); 5390 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence); 5391 5392 /* This does not account for adjust_cost hooks, just add the biggest 5393 constant the hook may add to the latency. TODO: make this 5394 a target dependent constant. */ 5395 INSN_READY_CYCLE (insn) 5396 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0 5397 ? 1 5398 : maximal_insn_latency (insn) + 1); 5399 5400 /* Change these fields last, as they're used above. */ 5401 FENCE_AFTER_STALL_P (fence) = 0; 5402 if (asm_p || need_stall) 5403 advance_one_cycle (fence); 5404 5405 /* Indicate that we've scheduled something on this fence. */ 5406 FENCE_SCHEDULED_P (fence) = true; 5407 scheduled_something_on_previous_fence = true; 5408 5409 /* Print debug information when insn's fields are updated. */ 5410 if (sched_verbose >= 2) 5411 { 5412 sel_print ("Scheduling insn: "); 5413 dump_insn_1 (insn, 1); 5414 sel_print ("\n"); 5415 } 5416 } 5417 5418 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the 5419 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and 5420 return it. */ 5421 static blist_t * 5422 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp, 5423 blist_t *bnds_tailp) 5424 { 5425 succ_iterator si; 5426 insn_t succ; 5427 5428 advance_deps_context (BND_DC (bnd), insn); 5429 FOR_EACH_SUCC_1 (succ, si, insn, 5430 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 5431 { 5432 ilist_t ptr = ilist_copy (BND_PTR (bnd)); 5433 5434 ilist_add (&ptr, insn); 5435 5436 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn) 5437 && is_ineligible_successor (succ, ptr)) 5438 { 5439 ilist_clear (&ptr); 5440 continue; 5441 } 5442 5443 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn)) 5444 { 5445 if (sched_verbose >= 9) 5446 sel_print ("Updating fence insn from %i to %i\n", 5447 INSN_UID (insn), INSN_UID (succ)); 5448 FENCE_INSN (fence) = succ; 5449 } 5450 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd)); 5451 bnds_tailp = &BLIST_NEXT (*bnds_tailp); 5452 } 5453 5454 blist_remove (bndsp); 5455 return bnds_tailp; 5456 } 5457 5458 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */ 5459 static insn_t 5460 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno) 5461 { 5462 av_set_t expr_seq; 5463 expr_t c_expr = XALLOCA (expr_def); 5464 insn_t place_to_insert; 5465 insn_t insn; 5466 bool should_move; 5467 5468 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true); 5469 5470 /* In case of scheduling a jump skipping some other instructions, 5471 prepare CFG. After this, jump is at the boundary and can be 5472 scheduled as usual insn by MOVE_OP. */ 5473 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw))) 5474 { 5475 insn = EXPR_INSN_RTX (expr_vliw); 5476 5477 /* Speculative jumps are not handled. */ 5478 if (insn != BND_TO (bnd) 5479 && !sel_insn_is_speculation_check (insn)) 5480 move_cond_jump (insn, bnd); 5481 } 5482 5483 /* Find a place for C_EXPR to schedule. */ 5484 place_to_insert = prepare_place_to_insert (bnd); 5485 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr); 5486 clear_expr (c_expr); 5487 5488 /* Add the instruction. The corner case to care about is when 5489 the expr_seq set has more than one expr, and we chose the one that 5490 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and 5491 we can't use it. Generate the new vinsn. */ 5492 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw))) 5493 { 5494 vinsn_t vinsn_new; 5495 5496 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false); 5497 change_vinsn_in_expr (expr_vliw, vinsn_new); 5498 should_move = false; 5499 } 5500 if (should_move) 5501 insn = sel_move_insn (expr_vliw, seqno, place_to_insert); 5502 else 5503 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno, 5504 place_to_insert); 5505 5506 /* Return the nops generated for preserving of data sets back 5507 into pool. */ 5508 if (INSN_NOP_P (place_to_insert)) 5509 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn)); 5510 remove_temp_moveop_nops (!DEBUG_INSN_P (insn)); 5511 5512 av_set_clear (&expr_seq); 5513 5514 /* Save the expression scheduled so to reset target availability if we'll 5515 meet it later on the same fence. */ 5516 if (EXPR_WAS_RENAMED (expr_vliw)) 5517 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn)); 5518 5519 /* Check that the recent movement didn't destroyed loop 5520 structure. */ 5521 gcc_assert (!pipelining_p 5522 || current_loop_nest == NULL 5523 || loop_latch_edge (current_loop_nest)); 5524 return insn; 5525 } 5526 5527 /* Stall for N cycles on FENCE. */ 5528 static void 5529 stall_for_cycles (fence_t fence, int n) 5530 { 5531 int could_more; 5532 5533 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate; 5534 while (n--) 5535 advance_one_cycle (fence); 5536 if (could_more) 5537 FENCE_AFTER_STALL_P (fence) = 1; 5538 } 5539 5540 /* Gather a parallel group of insns at FENCE and assign their seqno 5541 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP 5542 list for later recalculation of seqnos. */ 5543 static void 5544 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp) 5545 { 5546 blist_t bnds = NULL, *bnds_tailp; 5547 av_set_t av_vliw = NULL; 5548 insn_t insn = FENCE_INSN (fence); 5549 5550 if (sched_verbose >= 2) 5551 sel_print ("Starting fill_insns for insn %d, cycle %d\n", 5552 INSN_UID (insn), FENCE_CYCLE (fence)); 5553 5554 blist_add (&bnds, insn, NULL, FENCE_DC (fence)); 5555 bnds_tailp = &BLIST_NEXT (bnds); 5556 set_target_context (FENCE_TC (fence)); 5557 can_issue_more = FENCE_ISSUE_MORE (fence); 5558 target_bb = INSN_BB (insn); 5559 5560 /* Do while we can add any operation to the current group. */ 5561 do 5562 { 5563 blist_t *bnds_tailp1, *bndsp; 5564 expr_t expr_vliw; 5565 int need_stall = false; 5566 int was_stall = 0, scheduled_insns = 0; 5567 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate; 5568 int max_stall = pipelining_p ? 1 : 3; 5569 bool last_insn_was_debug = false; 5570 bool was_debug_bb_end_p = false; 5571 5572 compute_av_set_on_boundaries (fence, bnds, &av_vliw); 5573 remove_insns_that_need_bookkeeping (fence, &av_vliw); 5574 remove_insns_for_debug (bnds, &av_vliw); 5575 5576 /* Return early if we have nothing to schedule. */ 5577 if (av_vliw == NULL) 5578 break; 5579 5580 /* Choose the best expression and, if needed, destination register 5581 for it. */ 5582 do 5583 { 5584 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall); 5585 if (! expr_vliw && need_stall) 5586 { 5587 /* All expressions required a stall. Do not recompute av sets 5588 as we'll get the same answer (modulo the insns between 5589 the fence and its boundary, which will not be available for 5590 pipelining). 5591 If we are going to stall for too long, break to recompute av 5592 sets and bring more insns for pipelining. */ 5593 was_stall++; 5594 if (need_stall <= 3) 5595 stall_for_cycles (fence, need_stall); 5596 else 5597 { 5598 stall_for_cycles (fence, 1); 5599 break; 5600 } 5601 } 5602 } 5603 while (! expr_vliw && need_stall); 5604 5605 /* Now either we've selected expr_vliw or we have nothing to schedule. */ 5606 if (!expr_vliw) 5607 { 5608 av_set_clear (&av_vliw); 5609 break; 5610 } 5611 5612 bndsp = &bnds; 5613 bnds_tailp1 = bnds_tailp; 5614 5615 do 5616 /* This code will be executed only once until we'd have several 5617 boundaries per fence. */ 5618 { 5619 bnd_t bnd = BLIST_BND (*bndsp); 5620 5621 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw))) 5622 { 5623 bndsp = &BLIST_NEXT (*bndsp); 5624 continue; 5625 } 5626 5627 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno); 5628 last_insn_was_debug = DEBUG_INSN_P (insn); 5629 if (last_insn_was_debug) 5630 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn)); 5631 update_fence_and_insn (fence, insn, need_stall); 5632 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp); 5633 5634 /* Add insn to the list of scheduled on this cycle instructions. */ 5635 ilist_add (*scheduled_insns_tailpp, insn); 5636 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp); 5637 } 5638 while (*bndsp != *bnds_tailp1); 5639 5640 av_set_clear (&av_vliw); 5641 if (!last_insn_was_debug) 5642 scheduled_insns++; 5643 5644 /* We currently support information about candidate blocks only for 5645 one 'target_bb' block. Hence we can't schedule after jump insn, 5646 as this will bring two boundaries and, hence, necessity to handle 5647 information for two or more blocks concurrently. */ 5648 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn)) 5649 || (was_stall 5650 && (was_stall >= max_stall 5651 || scheduled_insns >= max_insns))) 5652 break; 5653 } 5654 while (bnds); 5655 5656 gcc_assert (!FENCE_BNDS (fence)); 5657 5658 /* Update boundaries of the FENCE. */ 5659 while (bnds) 5660 { 5661 ilist_t ptr = BND_PTR (BLIST_BND (bnds)); 5662 5663 if (ptr) 5664 { 5665 insn = ILIST_INSN (ptr); 5666 5667 if (!ilist_is_in_p (FENCE_BNDS (fence), insn)) 5668 ilist_add (&FENCE_BNDS (fence), insn); 5669 } 5670 5671 blist_remove (&bnds); 5672 } 5673 5674 /* Update target context on the fence. */ 5675 reset_target_context (FENCE_TC (fence), false); 5676 } 5677 5678 /* All exprs in ORIG_OPS must have the same destination register or memory. 5679 Return that destination. */ 5680 static rtx 5681 get_dest_from_orig_ops (av_set_t orig_ops) 5682 { 5683 rtx dest = NULL_RTX; 5684 av_set_iterator av_it; 5685 expr_t expr; 5686 bool first_p = true; 5687 5688 FOR_EACH_EXPR (expr, av_it, orig_ops) 5689 { 5690 rtx x = EXPR_LHS (expr); 5691 5692 if (first_p) 5693 { 5694 first_p = false; 5695 dest = x; 5696 } 5697 else 5698 gcc_assert (dest == x 5699 || (dest != NULL_RTX && x != NULL_RTX 5700 && rtx_equal_p (dest, x))); 5701 } 5702 5703 return dest; 5704 } 5705 5706 /* Update data sets for the bookkeeping block and record those expressions 5707 which become no longer available after inserting this bookkeeping. */ 5708 static void 5709 update_and_record_unavailable_insns (basic_block book_block) 5710 { 5711 av_set_iterator i; 5712 av_set_t old_av_set = NULL; 5713 expr_t cur_expr; 5714 rtx_insn *bb_end = sel_bb_end (book_block); 5715 5716 /* First, get correct liveness in the bookkeeping block. The problem is 5717 the range between the bookeeping insn and the end of block. */ 5718 update_liveness_on_insn (bb_end); 5719 if (control_flow_insn_p (bb_end)) 5720 update_liveness_on_insn (PREV_INSN (bb_end)); 5721 5722 /* If there's valid av_set on BOOK_BLOCK, then there might exist another 5723 fence above, where we may choose to schedule an insn which is 5724 actually blocked from moving up with the bookkeeping we create here. */ 5725 if (AV_SET_VALID_P (sel_bb_head (book_block))) 5726 { 5727 old_av_set = av_set_copy (BB_AV_SET (book_block)); 5728 update_data_sets (sel_bb_head (book_block)); 5729 5730 /* Traverse all the expressions in the old av_set and check whether 5731 CUR_EXPR is in new AV_SET. */ 5732 FOR_EACH_EXPR (cur_expr, i, old_av_set) 5733 { 5734 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block), 5735 EXPR_VINSN (cur_expr)); 5736 5737 if (! new_expr 5738 /* In this case, we can just turn off the E_T_A bit, but we can't 5739 represent this information with the current vector. */ 5740 || EXPR_TARGET_AVAILABLE (new_expr) 5741 != EXPR_TARGET_AVAILABLE (cur_expr)) 5742 /* Unfortunately, the below code could be also fired up on 5743 separable insns, e.g. when moving insns through the new 5744 speculation check as in PR 53701. */ 5745 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr); 5746 } 5747 5748 av_set_clear (&old_av_set); 5749 } 5750 } 5751 5752 /* The main effect of this function is that sparams->c_expr is merged 5753 with (or copied to) lparams->c_expr_merged. If there's only one successor, 5754 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged. 5755 lparams->c_expr_merged is copied back to sparams->c_expr after all 5756 successors has been traversed. lparams->c_expr_local is an expr allocated 5757 on stack in the caller function, and is used if there is more than one 5758 successor. 5759 5760 SUCC is one of the SUCCS_NORMAL successors of INSN, 5761 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ, 5762 LPARAMS and STATIC_PARAMS contain the parameters described above. */ 5763 static void 5764 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED, 5765 insn_t succ ATTRIBUTE_UNUSED, 5766 int moveop_drv_call_res, 5767 cmpd_local_params_p lparams, void *static_params) 5768 { 5769 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 5770 5771 /* Nothing to do, if original expr wasn't found below. */ 5772 if (moveop_drv_call_res != 1) 5773 return; 5774 5775 /* If this is a first successor. */ 5776 if (!lparams->c_expr_merged) 5777 { 5778 lparams->c_expr_merged = sparams->c_expr; 5779 sparams->c_expr = lparams->c_expr_local; 5780 } 5781 else 5782 { 5783 /* We must merge all found expressions to get reasonable 5784 EXPR_SPEC_DONE_DS for the resulting insn. If we don't 5785 do so then we can first find the expr with epsilon 5786 speculation success probability and only then with the 5787 good probability. As a result the insn will get epsilon 5788 probability and will never be scheduled because of 5789 weakness_cutoff in find_best_expr. 5790 5791 We call merge_expr_data here instead of merge_expr 5792 because due to speculation C_EXPR and X may have the 5793 same insns with different speculation types. And as of 5794 now such insns are considered non-equal. 5795 5796 However, EXPR_SCHED_TIMES is different -- we must get 5797 SCHED_TIMES from a real insn, not a bookkeeping copy. 5798 We force this here. Instead, we may consider merging 5799 SCHED_TIMES to the maximum instead of minimum in the 5800 below function. */ 5801 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged); 5802 5803 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL); 5804 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0) 5805 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times; 5806 5807 clear_expr (sparams->c_expr); 5808 } 5809 } 5810 5811 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS. 5812 5813 SUCC is one of the SUCCS_NORMAL successors of INSN, 5814 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0, 5815 if SUCC is one of SUCCS_BACK or SUCCS_OUT. 5816 STATIC_PARAMS contain USED_REGS set. */ 5817 static void 5818 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ, 5819 int moveop_drv_call_res, 5820 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 5821 void *static_params) 5822 { 5823 regset succ_live; 5824 fur_static_params_p sparams = (fur_static_params_p) static_params; 5825 5826 /* Here we compute live regsets only for branches that do not lie 5827 on the code motion paths. These branches correspond to value 5828 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though 5829 for such branches code_motion_path_driver is not called. */ 5830 if (moveop_drv_call_res != 0) 5831 return; 5832 5833 /* Mark all registers that do not meet the following condition: 5834 (3) not live on the other path of any conditional branch 5835 that is passed by the operation, in case original 5836 operations are not present on both paths of the 5837 conditional branch. */ 5838 succ_live = compute_live (succ); 5839 IOR_REG_SET (sparams->used_regs, succ_live); 5840 } 5841 5842 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED 5843 into SP->CEXPR. */ 5844 static void 5845 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams) 5846 { 5847 moveop_static_params_p sp = (moveop_static_params_p) sparams; 5848 5849 sp->c_expr = lp->c_expr_merged; 5850 } 5851 5852 /* Track bookkeeping copies created, insns scheduled, and blocks for 5853 rescheduling when INSN is found by move_op. */ 5854 static void 5855 track_scheduled_insns_and_blocks (rtx insn) 5856 { 5857 /* Even if this insn can be a copy that will be removed during current move_op, 5858 we still need to count it as an originator. */ 5859 bitmap_set_bit (current_originators, INSN_UID (insn)); 5860 5861 if (!bitmap_clear_bit (current_copies, INSN_UID (insn))) 5862 { 5863 /* Note that original block needs to be rescheduled, as we pulled an 5864 instruction out of it. */ 5865 if (INSN_SCHED_TIMES (insn) > 0) 5866 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index); 5867 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn)) 5868 num_insns_scheduled++; 5869 } 5870 5871 /* For instructions we must immediately remove insn from the 5872 stream, so subsequent update_data_sets () won't include this 5873 insn into av_set. 5874 For expr we must make insn look like "INSN_REG (insn) := c_expr". */ 5875 if (INSN_UID (insn) > max_uid_before_move_op) 5876 stat_bookkeeping_copies--; 5877 } 5878 5879 /* Emit a register-register copy for INSN if needed. Return true if 5880 emitted one. PARAMS is the move_op static parameters. */ 5881 static bool 5882 maybe_emit_renaming_copy (rtx_insn *insn, 5883 moveop_static_params_p params) 5884 { 5885 bool insn_emitted = false; 5886 rtx cur_reg; 5887 5888 /* Bail out early when expression can not be renamed at all. */ 5889 if (!EXPR_SEPARABLE_P (params->c_expr)) 5890 return false; 5891 5892 cur_reg = expr_dest_reg (params->c_expr); 5893 gcc_assert (cur_reg && params->dest && REG_P (params->dest)); 5894 5895 /* If original operation has expr and the register chosen for 5896 that expr is not original operation's dest reg, substitute 5897 operation's right hand side with the register chosen. */ 5898 if (REGNO (params->dest) != REGNO (cur_reg)) 5899 { 5900 insn_t reg_move_insn, reg_move_insn_rtx; 5901 5902 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn), 5903 params->dest); 5904 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx, 5905 INSN_EXPR (insn), 5906 INSN_SEQNO (insn), 5907 insn); 5908 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0; 5909 replace_dest_with_reg_in_expr (params->c_expr, params->dest); 5910 5911 insn_emitted = true; 5912 params->was_renamed = true; 5913 } 5914 5915 return insn_emitted; 5916 } 5917 5918 /* Emit a speculative check for INSN speculated as EXPR if needed. 5919 Return true if we've emitted one. PARAMS is the move_op static 5920 parameters. */ 5921 static bool 5922 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr, 5923 moveop_static_params_p params) 5924 { 5925 bool insn_emitted = false; 5926 insn_t x; 5927 ds_t check_ds; 5928 5929 check_ds = get_spec_check_type_for_insn (insn, expr); 5930 if (check_ds != 0) 5931 { 5932 /* A speculation check should be inserted. */ 5933 x = create_speculation_check (params->c_expr, check_ds, insn); 5934 insn_emitted = true; 5935 } 5936 else 5937 { 5938 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0; 5939 x = insn; 5940 } 5941 5942 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0 5943 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0); 5944 return insn_emitted; 5945 } 5946 5947 /* Handle transformations that leave an insn in place of original 5948 insn such as renaming/speculation. Return true if one of such 5949 transformations actually happened, and we have emitted this insn. */ 5950 static bool 5951 handle_emitting_transformations (rtx_insn *insn, expr_t expr, 5952 moveop_static_params_p params) 5953 { 5954 bool insn_emitted = false; 5955 5956 insn_emitted = maybe_emit_renaming_copy (insn, params); 5957 insn_emitted |= maybe_emit_speculative_check (insn, expr, params); 5958 5959 return insn_emitted; 5960 } 5961 5962 /* If INSN is the only insn in the basic block (not counting JUMP, 5963 which may be a jump to next insn, and DEBUG_INSNs), we want to 5964 leave a NOP there till the return to fill_insns. */ 5965 5966 static bool 5967 need_nop_to_preserve_insn_bb (rtx_insn *insn) 5968 { 5969 insn_t bb_head, bb_end, bb_next, in_next; 5970 basic_block bb = BLOCK_FOR_INSN (insn); 5971 5972 bb_head = sel_bb_head (bb); 5973 bb_end = sel_bb_end (bb); 5974 5975 if (bb_head == bb_end) 5976 return true; 5977 5978 while (bb_head != bb_end && DEBUG_INSN_P (bb_head)) 5979 bb_head = NEXT_INSN (bb_head); 5980 5981 if (bb_head == bb_end) 5982 return true; 5983 5984 while (bb_head != bb_end && DEBUG_INSN_P (bb_end)) 5985 bb_end = PREV_INSN (bb_end); 5986 5987 if (bb_head == bb_end) 5988 return true; 5989 5990 bb_next = NEXT_INSN (bb_head); 5991 while (bb_next != bb_end && DEBUG_INSN_P (bb_next)) 5992 bb_next = NEXT_INSN (bb_next); 5993 5994 if (bb_next == bb_end && JUMP_P (bb_end)) 5995 return true; 5996 5997 in_next = NEXT_INSN (insn); 5998 while (DEBUG_INSN_P (in_next)) 5999 in_next = NEXT_INSN (in_next); 6000 6001 if (IN_CURRENT_FENCE_P (in_next)) 6002 return true; 6003 6004 return false; 6005 } 6006 6007 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data 6008 is not removed but reused when INSN is re-emitted. */ 6009 static void 6010 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect) 6011 { 6012 /* If there's only one insn in the BB, make sure that a nop is 6013 inserted into it, so the basic block won't disappear when we'll 6014 delete INSN below with sel_remove_insn. It should also survive 6015 till the return to fill_insns. */ 6016 if (need_nop_to_preserve_insn_bb (insn)) 6017 { 6018 insn_t nop = get_nop_from_pool (insn); 6019 gcc_assert (INSN_NOP_P (nop)); 6020 vec_temp_moveop_nops.safe_push (nop); 6021 } 6022 6023 sel_remove_insn (insn, only_disconnect, false); 6024 } 6025 6026 /* This function is called when original expr is found. 6027 INSN - current insn traversed, EXPR - the corresponding expr found. 6028 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS 6029 is static parameters of move_op. */ 6030 static void 6031 move_op_orig_expr_found (insn_t insn, expr_t expr, 6032 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6033 void *static_params) 6034 { 6035 bool only_disconnect; 6036 moveop_static_params_p params = (moveop_static_params_p) static_params; 6037 6038 copy_expr_onside (params->c_expr, INSN_EXPR (insn)); 6039 track_scheduled_insns_and_blocks (insn); 6040 handle_emitting_transformations (insn, expr, params); 6041 only_disconnect = params->uid == INSN_UID (insn); 6042 6043 /* Mark that we've disconnected an insn. */ 6044 if (only_disconnect) 6045 params->uid = -1; 6046 remove_insn_from_stream (insn, only_disconnect); 6047 } 6048 6049 /* The function is called when original expr is found. 6050 INSN - current insn traversed, EXPR - the corresponding expr found, 6051 crosses_call and original_insns in STATIC_PARAMS are updated. */ 6052 static void 6053 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED, 6054 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6055 void *static_params) 6056 { 6057 fur_static_params_p params = (fur_static_params_p) static_params; 6058 regset tmp; 6059 6060 if (CALL_P (insn)) 6061 params->crosses_call = true; 6062 6063 def_list_add (params->original_insns, insn, params->crosses_call); 6064 6065 /* Mark the registers that do not meet the following condition: 6066 (2) not among the live registers of the point 6067 immediately following the first original operation on 6068 a given downward path, except for the original target 6069 register of the operation. */ 6070 tmp = get_clear_regset_from_pool (); 6071 compute_live_below_insn (insn, tmp); 6072 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn)); 6073 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn)); 6074 IOR_REG_SET (params->used_regs, tmp); 6075 return_regset_to_pool (tmp); 6076 6077 /* (*1) We need to add to USED_REGS registers that are read by 6078 INSN's lhs. This may lead to choosing wrong src register. 6079 E.g. (scheduling const expr enabled): 6080 6081 429: ax=0x0 <- Can't use AX for this expr (0x0) 6082 433: dx=[bp-0x18] 6083 427: [ax+dx+0x1]=ax 6084 REG_DEAD: ax 6085 168: di=dx 6086 REG_DEAD: dx 6087 */ 6088 /* FIXME: see comment above and enable MEM_P 6089 in vinsn_separable_p. */ 6090 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn)) 6091 || !MEM_P (INSN_LHS (insn))); 6092 } 6093 6094 /* This function is called on the ascending pass, before returning from 6095 current basic block. */ 6096 static void 6097 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams, 6098 void *static_params) 6099 { 6100 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6101 basic_block book_block = NULL; 6102 6103 /* When we have removed the boundary insn for scheduling, which also 6104 happened to be the end insn in its bb, we don't need to update sets. */ 6105 if (!lparams->removed_last_insn 6106 && lparams->e1 6107 && sel_bb_head_p (insn)) 6108 { 6109 /* We should generate bookkeeping code only if we are not at the 6110 top level of the move_op. */ 6111 if (sel_num_cfg_preds_gt_1 (insn)) 6112 book_block = generate_bookkeeping_insn (sparams->c_expr, 6113 lparams->e1, lparams->e2); 6114 /* Update data sets for the current insn. */ 6115 update_data_sets (insn); 6116 } 6117 6118 /* If bookkeeping code was inserted, we need to update av sets of basic 6119 block that received bookkeeping. After generation of bookkeeping insn, 6120 bookkeeping block does not contain valid av set because we are not following 6121 the original algorithm in every detail with regards to e.g. renaming 6122 simple reg-reg copies. Consider example: 6123 6124 bookkeeping block scheduling fence 6125 \ / 6126 \ join / 6127 ---------- 6128 | | 6129 ---------- 6130 / \ 6131 / \ 6132 r1 := r2 r1 := r3 6133 6134 We try to schedule insn "r1 := r3" on the current 6135 scheduling fence. Also, note that av set of bookkeeping block 6136 contain both insns "r1 := r2" and "r1 := r3". When the insn has 6137 been scheduled, the CFG is as follows: 6138 6139 r1 := r3 r1 := r3 6140 bookkeeping block scheduling fence 6141 \ / 6142 \ join / 6143 ---------- 6144 | | 6145 ---------- 6146 / \ 6147 / \ 6148 r1 := r2 6149 6150 Here, insn "r1 := r3" was scheduled at the current scheduling point 6151 and bookkeeping code was generated at the bookeeping block. This 6152 way insn "r1 := r2" is no longer available as a whole instruction 6153 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block. 6154 This situation is handled by calling update_data_sets. 6155 6156 Since update_data_sets is called only on the bookkeeping block, and 6157 it also may have predecessors with av_sets, containing instructions that 6158 are no longer available, we save all such expressions that become 6159 unavailable during data sets update on the bookkeeping block in 6160 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such 6161 expressions for scheduling. This allows us to avoid recomputation of 6162 av_sets outside the code motion path. */ 6163 6164 if (book_block) 6165 update_and_record_unavailable_insns (book_block); 6166 6167 /* If INSN was previously marked for deletion, it's time to do it. */ 6168 if (lparams->removed_last_insn) 6169 insn = PREV_INSN (insn); 6170 6171 /* Do not tidy control flow at the topmost moveop, as we can erroneously 6172 kill a block with a single nop in which the insn should be emitted. */ 6173 if (lparams->e1) 6174 tidy_control_flow (BLOCK_FOR_INSN (insn), true); 6175 } 6176 6177 /* This function is called on the ascending pass, before returning from the 6178 current basic block. */ 6179 static void 6180 fur_at_first_insn (insn_t insn, 6181 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6182 void *static_params ATTRIBUTE_UNUSED) 6183 { 6184 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn) 6185 || AV_LEVEL (insn) == -1); 6186 } 6187 6188 /* Called on the backward stage of recursion to call moveup_expr for insn 6189 and sparams->c_expr. */ 6190 static void 6191 move_op_ascend (insn_t insn, void *static_params) 6192 { 6193 enum MOVEUP_EXPR_CODE res; 6194 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6195 6196 if (! INSN_NOP_P (insn)) 6197 { 6198 res = moveup_expr_cached (sparams->c_expr, insn, false); 6199 gcc_assert (res != MOVEUP_EXPR_NULL); 6200 } 6201 6202 /* Update liveness for this insn as it was invalidated. */ 6203 update_liveness_on_insn (insn); 6204 } 6205 6206 /* This function is called on enter to the basic block. 6207 Returns TRUE if this block already have been visited and 6208 code_motion_path_driver should return 1, FALSE otherwise. */ 6209 static int 6210 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params, 6211 void *static_params, bool visited_p) 6212 { 6213 fur_static_params_p sparams = (fur_static_params_p) static_params; 6214 6215 if (visited_p) 6216 { 6217 /* If we have found something below this block, there should be at 6218 least one insn in ORIGINAL_INSNS. */ 6219 gcc_assert (*sparams->original_insns); 6220 6221 /* Adjust CROSSES_CALL, since we may have come to this block along 6222 different path. */ 6223 DEF_LIST_DEF (*sparams->original_insns)->crosses_call 6224 |= sparams->crosses_call; 6225 } 6226 else 6227 local_params->old_original_insns = *sparams->original_insns; 6228 6229 return 1; 6230 } 6231 6232 /* Same as above but for move_op. */ 6233 static int 6234 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED, 6235 cmpd_local_params_p local_params ATTRIBUTE_UNUSED, 6236 void *static_params ATTRIBUTE_UNUSED, bool visited_p) 6237 { 6238 if (visited_p) 6239 return -1; 6240 return 1; 6241 } 6242 6243 /* This function is called while descending current basic block if current 6244 insn is not the original EXPR we're searching for. 6245 6246 Return value: FALSE, if code_motion_path_driver should perform a local 6247 cleanup and return 0 itself; 6248 TRUE, if code_motion_path_driver should continue. */ 6249 static bool 6250 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED, 6251 void *static_params) 6252 { 6253 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6254 6255 #ifdef ENABLE_CHECKING 6256 sparams->failed_insn = insn; 6257 #endif 6258 6259 /* If we're scheduling separate expr, in order to generate correct code 6260 we need to stop the search at bookkeeping code generated with the 6261 same destination register or memory. */ 6262 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest)) 6263 return false; 6264 return true; 6265 } 6266 6267 /* This function is called while descending current basic block if current 6268 insn is not the original EXPR we're searching for. 6269 6270 Return value: TRUE (code_motion_path_driver should continue). */ 6271 static bool 6272 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params) 6273 { 6274 bool mutexed; 6275 expr_t r; 6276 av_set_iterator avi; 6277 fur_static_params_p sparams = (fur_static_params_p) static_params; 6278 6279 if (CALL_P (insn)) 6280 sparams->crosses_call = true; 6281 else if (DEBUG_INSN_P (insn)) 6282 return true; 6283 6284 /* If current insn we are looking at cannot be executed together 6285 with original insn, then we can skip it safely. 6286 6287 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); } 6288 INSN = (!p6) r14 = r14 + 1; 6289 6290 Here we can schedule ORIG_OP with lhs = r14, though only 6291 looking at the set of used and set registers of INSN we must 6292 forbid it. So, add set/used in INSN registers to the 6293 untouchable set only if there is an insn in ORIG_OPS that can 6294 affect INSN. */ 6295 mutexed = true; 6296 FOR_EACH_EXPR (r, avi, orig_ops) 6297 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r))) 6298 { 6299 mutexed = false; 6300 break; 6301 } 6302 6303 /* Mark all registers that do not meet the following condition: 6304 (1) Not set or read on any path from xi to an instance of the 6305 original operation. */ 6306 if (!mutexed) 6307 { 6308 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn)); 6309 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn)); 6310 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn)); 6311 } 6312 6313 return true; 6314 } 6315 6316 /* Hooks and data to perform move_op operations with code_motion_path_driver. */ 6317 struct code_motion_path_driver_info_def move_op_hooks = { 6318 move_op_on_enter, 6319 move_op_orig_expr_found, 6320 move_op_orig_expr_not_found, 6321 move_op_merge_succs, 6322 move_op_after_merge_succs, 6323 move_op_ascend, 6324 move_op_at_first_insn, 6325 SUCCS_NORMAL, 6326 "move_op" 6327 }; 6328 6329 /* Hooks and data to perform find_used_regs operations 6330 with code_motion_path_driver. */ 6331 struct code_motion_path_driver_info_def fur_hooks = { 6332 fur_on_enter, 6333 fur_orig_expr_found, 6334 fur_orig_expr_not_found, 6335 fur_merge_succs, 6336 NULL, /* fur_after_merge_succs */ 6337 NULL, /* fur_ascend */ 6338 fur_at_first_insn, 6339 SUCCS_ALL, 6340 "find_used_regs" 6341 }; 6342 6343 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL 6344 code_motion_path_driver is called recursively. Original operation 6345 was found at least on one path that is starting with one of INSN's 6346 successors (this fact is asserted). ORIG_OPS is expressions we're looking 6347 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters 6348 of either move_op or find_used_regs depending on the caller. 6349 6350 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't 6351 know for sure at this point. */ 6352 static int 6353 code_motion_process_successors (insn_t insn, av_set_t orig_ops, 6354 ilist_t path, void *static_params) 6355 { 6356 int res = 0; 6357 succ_iterator succ_i; 6358 insn_t succ; 6359 basic_block bb; 6360 int old_index; 6361 unsigned old_succs; 6362 6363 struct cmpd_local_params lparams; 6364 expr_def _x; 6365 6366 lparams.c_expr_local = &_x; 6367 lparams.c_expr_merged = NULL; 6368 6369 /* We need to process only NORMAL succs for move_op, and collect live 6370 registers from ALL branches (including those leading out of the 6371 region) for find_used_regs. 6372 6373 In move_op, there can be a case when insn's bb number has changed 6374 due to created bookkeeping. This happens very rare, as we need to 6375 move expression from the beginning to the end of the same block. 6376 Rescan successors in this case. */ 6377 6378 rescan: 6379 bb = BLOCK_FOR_INSN (insn); 6380 old_index = bb->index; 6381 old_succs = EDGE_COUNT (bb->succs); 6382 6383 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags) 6384 { 6385 int b; 6386 6387 lparams.e1 = succ_i.e1; 6388 lparams.e2 = succ_i.e2; 6389 6390 /* Go deep into recursion only for NORMAL edges (non-backedges within the 6391 current region). */ 6392 if (succ_i.current_flags == SUCCS_NORMAL) 6393 b = code_motion_path_driver (succ, orig_ops, path, &lparams, 6394 static_params); 6395 else 6396 b = 0; 6397 6398 /* Merge c_expres found or unify live register sets from different 6399 successors. */ 6400 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams, 6401 static_params); 6402 if (b == 1) 6403 res = b; 6404 else if (b == -1 && res != 1) 6405 res = b; 6406 6407 /* We have simplified the control flow below this point. In this case, 6408 the iterator becomes invalid. We need to try again. 6409 If we have removed the insn itself, it could be only an 6410 unconditional jump. Thus, do not rescan but break immediately -- 6411 we have already visited the only successor block. */ 6412 if (!BLOCK_FOR_INSN (insn)) 6413 { 6414 if (sched_verbose >= 6) 6415 sel_print ("Not doing rescan: already visited the only successor" 6416 " of block %d\n", old_index); 6417 break; 6418 } 6419 if (BLOCK_FOR_INSN (insn)->index != old_index 6420 || EDGE_COUNT (bb->succs) != old_succs) 6421 { 6422 if (sched_verbose >= 6) 6423 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n", 6424 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index); 6425 insn = sel_bb_end (BLOCK_FOR_INSN (insn)); 6426 goto rescan; 6427 } 6428 } 6429 6430 #ifdef ENABLE_CHECKING 6431 /* Here, RES==1 if original expr was found at least for one of the 6432 successors. After the loop, RES may happen to have zero value 6433 only if at some point the expr searched is present in av_set, but is 6434 not found below. In most cases, this situation is an error. 6435 The exception is when the original operation is blocked by 6436 bookkeeping generated for another fence or for another path in current 6437 move_op. */ 6438 gcc_assert (res == 1 6439 || (res == 0 6440 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, 6441 static_params)) 6442 || res == -1); 6443 #endif 6444 6445 /* Merge data, clean up, etc. */ 6446 if (res != -1 && code_motion_path_driver_info->after_merge_succs) 6447 code_motion_path_driver_info->after_merge_succs (&lparams, static_params); 6448 6449 return res; 6450 } 6451 6452 6453 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P 6454 is the pointer to the av set with expressions we were looking for, 6455 PATH_P is the pointer to the traversed path. */ 6456 static inline void 6457 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p) 6458 { 6459 ilist_remove (path_p); 6460 av_set_clear (orig_ops_p); 6461 } 6462 6463 /* The driver function that implements move_op or find_used_regs 6464 functionality dependent whether code_motion_path_driver_INFO is set to 6465 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts 6466 of code (CFG traversal etc) that are shared among both functions. INSN 6467 is the insn we're starting the search from, ORIG_OPS are the expressions 6468 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local 6469 parameters of the driver, and STATIC_PARAMS are static parameters of 6470 the caller. 6471 6472 Returns whether original instructions were found. Note that top-level 6473 code_motion_path_driver always returns true. */ 6474 static int 6475 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path, 6476 cmpd_local_params_p local_params_in, 6477 void *static_params) 6478 { 6479 expr_t expr = NULL; 6480 basic_block bb = BLOCK_FOR_INSN (insn); 6481 insn_t first_insn, bb_tail, before_first; 6482 bool removed_last_insn = false; 6483 6484 if (sched_verbose >= 6) 6485 { 6486 sel_print ("%s (", code_motion_path_driver_info->routine_name); 6487 dump_insn (insn); 6488 sel_print (","); 6489 dump_av_set (orig_ops); 6490 sel_print (")\n"); 6491 } 6492 6493 gcc_assert (orig_ops); 6494 6495 /* If no original operations exist below this insn, return immediately. */ 6496 if (is_ineligible_successor (insn, path)) 6497 { 6498 if (sched_verbose >= 6) 6499 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn)); 6500 return false; 6501 } 6502 6503 /* The block can have invalid av set, in which case it was created earlier 6504 during move_op. Return immediately. */ 6505 if (sel_bb_head_p (insn)) 6506 { 6507 if (! AV_SET_VALID_P (insn)) 6508 { 6509 if (sched_verbose >= 6) 6510 sel_print ("Returned from block %d as it had invalid av set\n", 6511 bb->index); 6512 return false; 6513 } 6514 6515 if (bitmap_bit_p (code_motion_visited_blocks, bb->index)) 6516 { 6517 /* We have already found an original operation on this branch, do not 6518 go any further and just return TRUE here. If we don't stop here, 6519 function can have exponential behaviour even on the small code 6520 with many different paths (e.g. with data speculation and 6521 recovery blocks). */ 6522 if (sched_verbose >= 6) 6523 sel_print ("Block %d already visited in this traversal\n", bb->index); 6524 if (code_motion_path_driver_info->on_enter) 6525 return code_motion_path_driver_info->on_enter (insn, 6526 local_params_in, 6527 static_params, 6528 true); 6529 } 6530 } 6531 6532 if (code_motion_path_driver_info->on_enter) 6533 code_motion_path_driver_info->on_enter (insn, local_params_in, 6534 static_params, false); 6535 orig_ops = av_set_copy (orig_ops); 6536 6537 /* Filter the orig_ops set. */ 6538 if (AV_SET_VALID_P (insn)) 6539 av_set_code_motion_filter (&orig_ops, AV_SET (insn)); 6540 6541 /* If no more original ops, return immediately. */ 6542 if (!orig_ops) 6543 { 6544 if (sched_verbose >= 6) 6545 sel_print ("No intersection with av set of block %d\n", bb->index); 6546 return false; 6547 } 6548 6549 /* For non-speculative insns we have to leave only one form of the 6550 original operation, because if we don't, we may end up with 6551 different C_EXPRes and, consequently, with bookkeepings for different 6552 expression forms along the same code motion path. That may lead to 6553 generation of incorrect code. So for each code motion we stick to 6554 the single form of the instruction, except for speculative insns 6555 which we need to keep in different forms with all speculation 6556 types. */ 6557 av_set_leave_one_nonspec (&orig_ops); 6558 6559 /* It is not possible that all ORIG_OPS are filtered out. */ 6560 gcc_assert (orig_ops); 6561 6562 /* It is enough to place only heads and tails of visited basic blocks into 6563 the PATH. */ 6564 ilist_add (&path, insn); 6565 first_insn = insn; 6566 bb_tail = sel_bb_end (bb); 6567 6568 /* Descend the basic block in search of the original expr; this part 6569 corresponds to the part of the original move_op procedure executed 6570 before the recursive call. */ 6571 for (;;) 6572 { 6573 /* Look at the insn and decide if it could be an ancestor of currently 6574 scheduling operation. If it is so, then the insn "dest = op" could 6575 either be replaced with "dest = reg", because REG now holds the result 6576 of OP, or just removed, if we've scheduled the insn as a whole. 6577 6578 If this insn doesn't contain currently scheduling OP, then proceed 6579 with searching and look at its successors. Operations we're searching 6580 for could have changed when moving up through this insn via 6581 substituting. In this case, perform unsubstitution on them first. 6582 6583 When traversing the DAG below this insn is finished, insert 6584 bookkeeping code, if the insn is a joint point, and remove 6585 leftovers. */ 6586 6587 expr = av_set_lookup (orig_ops, INSN_VINSN (insn)); 6588 if (expr) 6589 { 6590 insn_t last_insn = PREV_INSN (insn); 6591 6592 /* We have found the original operation. */ 6593 if (sched_verbose >= 6) 6594 sel_print ("Found original operation at insn %d\n", INSN_UID (insn)); 6595 6596 code_motion_path_driver_info->orig_expr_found 6597 (insn, expr, local_params_in, static_params); 6598 6599 /* Step back, so on the way back we'll start traversing from the 6600 previous insn (or we'll see that it's bb_note and skip that 6601 loop). */ 6602 if (insn == first_insn) 6603 { 6604 first_insn = NEXT_INSN (last_insn); 6605 removed_last_insn = sel_bb_end_p (last_insn); 6606 } 6607 insn = last_insn; 6608 break; 6609 } 6610 else 6611 { 6612 /* We haven't found the original expr, continue descending the basic 6613 block. */ 6614 if (code_motion_path_driver_info->orig_expr_not_found 6615 (insn, orig_ops, static_params)) 6616 { 6617 /* Av set ops could have been changed when moving through this 6618 insn. To find them below it, we have to un-substitute them. */ 6619 undo_transformations (&orig_ops, insn); 6620 } 6621 else 6622 { 6623 /* Clean up and return, if the hook tells us to do so. It may 6624 happen if we've encountered the previously created 6625 bookkeeping. */ 6626 code_motion_path_driver_cleanup (&orig_ops, &path); 6627 return -1; 6628 } 6629 6630 gcc_assert (orig_ops); 6631 } 6632 6633 /* Stop at insn if we got to the end of BB. */ 6634 if (insn == bb_tail) 6635 break; 6636 6637 insn = NEXT_INSN (insn); 6638 } 6639 6640 /* Here INSN either points to the insn before the original insn (may be 6641 bb_note, if original insn was a bb_head) or to the bb_end. */ 6642 if (!expr) 6643 { 6644 int res; 6645 rtx_insn *last_insn = PREV_INSN (insn); 6646 bool added_to_path; 6647 6648 gcc_assert (insn == sel_bb_end (bb)); 6649 6650 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head - 6651 it's already in PATH then). */ 6652 if (insn != first_insn) 6653 { 6654 ilist_add (&path, insn); 6655 added_to_path = true; 6656 } 6657 else 6658 added_to_path = false; 6659 6660 /* Process_successors should be able to find at least one 6661 successor for which code_motion_path_driver returns TRUE. */ 6662 res = code_motion_process_successors (insn, orig_ops, 6663 path, static_params); 6664 6665 /* Jump in the end of basic block could have been removed or replaced 6666 during code_motion_process_successors, so recompute insn as the 6667 last insn in bb. */ 6668 if (NEXT_INSN (last_insn) != insn) 6669 { 6670 insn = sel_bb_end (bb); 6671 first_insn = sel_bb_head (bb); 6672 } 6673 6674 /* Remove bb tail from path. */ 6675 if (added_to_path) 6676 ilist_remove (&path); 6677 6678 if (res != 1) 6679 { 6680 /* This is the case when one of the original expr is no longer available 6681 due to bookkeeping created on this branch with the same register. 6682 In the original algorithm, which doesn't have update_data_sets call 6683 on a bookkeeping block, it would simply result in returning 6684 FALSE when we've encountered a previously generated bookkeeping 6685 insn in moveop_orig_expr_not_found. */ 6686 code_motion_path_driver_cleanup (&orig_ops, &path); 6687 return res; 6688 } 6689 } 6690 6691 /* Don't need it any more. */ 6692 av_set_clear (&orig_ops); 6693 6694 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to 6695 the beginning of the basic block. */ 6696 before_first = PREV_INSN (first_insn); 6697 while (insn != before_first) 6698 { 6699 if (code_motion_path_driver_info->ascend) 6700 code_motion_path_driver_info->ascend (insn, static_params); 6701 6702 insn = PREV_INSN (insn); 6703 } 6704 6705 /* Now we're at the bb head. */ 6706 insn = first_insn; 6707 ilist_remove (&path); 6708 local_params_in->removed_last_insn = removed_last_insn; 6709 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params); 6710 6711 /* This should be the very last operation as at bb head we could change 6712 the numbering by creating bookkeeping blocks. */ 6713 if (removed_last_insn) 6714 insn = PREV_INSN (insn); 6715 6716 /* If we have simplified the control flow and removed the first jump insn, 6717 there's no point in marking this block in the visited blocks bitmap. */ 6718 if (BLOCK_FOR_INSN (insn)) 6719 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index); 6720 return true; 6721 } 6722 6723 /* Move up the operations from ORIG_OPS set traversing the dag starting 6724 from INSN. PATH represents the edges traversed so far. 6725 DEST is the register chosen for scheduling the current expr. Insert 6726 bookkeeping code in the join points. EXPR_VLIW is the chosen expression, 6727 C_EXPR is how it looks like at the given cfg point. 6728 Set *SHOULD_MOVE to indicate whether we have only disconnected 6729 one of the insns found. 6730 6731 Returns whether original instructions were found, which is asserted 6732 to be true in the caller. */ 6733 static bool 6734 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw, 6735 rtx dest, expr_t c_expr, bool *should_move) 6736 { 6737 struct moveop_static_params sparams; 6738 struct cmpd_local_params lparams; 6739 int res; 6740 6741 /* Init params for code_motion_path_driver. */ 6742 sparams.dest = dest; 6743 sparams.c_expr = c_expr; 6744 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw)); 6745 #ifdef ENABLE_CHECKING 6746 sparams.failed_insn = NULL; 6747 #endif 6748 sparams.was_renamed = false; 6749 lparams.e1 = NULL; 6750 6751 /* We haven't visited any blocks yet. */ 6752 bitmap_clear (code_motion_visited_blocks); 6753 6754 /* Set appropriate hooks and data. */ 6755 code_motion_path_driver_info = &move_op_hooks; 6756 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 6757 6758 gcc_assert (res != -1); 6759 6760 if (sparams.was_renamed) 6761 EXPR_WAS_RENAMED (expr_vliw) = true; 6762 6763 *should_move = (sparams.uid == -1); 6764 6765 return res; 6766 } 6767 6768 6769 /* Functions that work with regions. */ 6770 6771 /* Current number of seqno used in init_seqno and init_seqno_1. */ 6772 static int cur_seqno; 6773 6774 /* A helper for init_seqno. Traverse the region starting from BB and 6775 compute seqnos for visited insns, marking visited bbs in VISITED_BBS. 6776 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */ 6777 static void 6778 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule) 6779 { 6780 int bbi = BLOCK_TO_BB (bb->index); 6781 insn_t insn, note = bb_note (bb); 6782 insn_t succ_insn; 6783 succ_iterator si; 6784 6785 bitmap_set_bit (visited_bbs, bbi); 6786 if (blocks_to_reschedule) 6787 bitmap_clear_bit (blocks_to_reschedule, bb->index); 6788 6789 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb), 6790 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 6791 { 6792 basic_block succ = BLOCK_FOR_INSN (succ_insn); 6793 int succ_bbi = BLOCK_TO_BB (succ->index); 6794 6795 gcc_assert (in_current_region_p (succ)); 6796 6797 if (!bitmap_bit_p (visited_bbs, succ_bbi)) 6798 { 6799 gcc_assert (succ_bbi > bbi); 6800 6801 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule); 6802 } 6803 else if (blocks_to_reschedule) 6804 bitmap_set_bit (forced_ebb_heads, succ->index); 6805 } 6806 6807 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn)) 6808 INSN_SEQNO (insn) = cur_seqno--; 6809 } 6810 6811 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains 6812 blocks on which we're rescheduling when pipelining, FROM is the block where 6813 traversing region begins (it may not be the head of the region when 6814 pipelining, but the head of the loop instead). 6815 6816 Returns the maximal seqno found. */ 6817 static int 6818 init_seqno (bitmap blocks_to_reschedule, basic_block from) 6819 { 6820 sbitmap visited_bbs; 6821 bitmap_iterator bi; 6822 unsigned bbi; 6823 6824 visited_bbs = sbitmap_alloc (current_nr_blocks); 6825 6826 if (blocks_to_reschedule) 6827 { 6828 bitmap_ones (visited_bbs); 6829 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi) 6830 { 6831 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks); 6832 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi)); 6833 } 6834 } 6835 else 6836 { 6837 bitmap_clear (visited_bbs); 6838 from = EBB_FIRST_BB (0); 6839 } 6840 6841 cur_seqno = sched_max_luid - 1; 6842 init_seqno_1 (from, visited_bbs, blocks_to_reschedule); 6843 6844 /* cur_seqno may be positive if the number of instructions is less than 6845 sched_max_luid - 1 (when rescheduling or if some instructions have been 6846 removed by the call to purge_empty_blocks in sel_sched_region_1). */ 6847 gcc_assert (cur_seqno >= 0); 6848 6849 sbitmap_free (visited_bbs); 6850 return sched_max_luid - 1; 6851 } 6852 6853 /* Initialize scheduling parameters for current region. */ 6854 static void 6855 sel_setup_region_sched_flags (void) 6856 { 6857 enable_schedule_as_rhs_p = 1; 6858 bookkeeping_p = 1; 6859 pipelining_p = (bookkeeping_p 6860 && (flag_sel_sched_pipelining != 0) 6861 && current_loop_nest != NULL 6862 && loop_has_exit_edges (current_loop_nest)); 6863 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME); 6864 max_ws = MAX_WS; 6865 } 6866 6867 /* Return true if all basic blocks of current region are empty. */ 6868 static bool 6869 current_region_empty_p (void) 6870 { 6871 int i; 6872 for (i = 0; i < current_nr_blocks; i++) 6873 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)))) 6874 return false; 6875 6876 return true; 6877 } 6878 6879 /* Prepare and verify loop nest for pipelining. */ 6880 static void 6881 setup_current_loop_nest (int rgn, bb_vec_t *bbs) 6882 { 6883 current_loop_nest = get_loop_nest_for_rgn (rgn); 6884 6885 if (!current_loop_nest) 6886 return; 6887 6888 /* If this loop has any saved loop preheaders from nested loops, 6889 add these basic blocks to the current region. */ 6890 sel_add_loop_preheaders (bbs); 6891 6892 /* Check that we're starting with a valid information. */ 6893 gcc_assert (loop_latch_edge (current_loop_nest)); 6894 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest)); 6895 } 6896 6897 /* Compute instruction priorities for current region. */ 6898 static void 6899 sel_compute_priorities (int rgn) 6900 { 6901 sched_rgn_compute_dependencies (rgn); 6902 6903 /* Compute insn priorities in haifa style. Then free haifa style 6904 dependencies that we've calculated for this. */ 6905 compute_priorities (); 6906 6907 if (sched_verbose >= 5) 6908 debug_rgn_dependencies (0); 6909 6910 free_rgn_deps (); 6911 } 6912 6913 /* Init scheduling data for RGN. Returns true when this region should not 6914 be scheduled. */ 6915 static bool 6916 sel_region_init (int rgn) 6917 { 6918 int i; 6919 bb_vec_t bbs; 6920 6921 rgn_setup_region (rgn); 6922 6923 /* Even if sched_is_disabled_for_current_region_p() is true, we still 6924 do region initialization here so the region can be bundled correctly, 6925 but we'll skip the scheduling in sel_sched_region (). */ 6926 if (current_region_empty_p ()) 6927 return true; 6928 6929 bbs.create (current_nr_blocks); 6930 6931 for (i = 0; i < current_nr_blocks; i++) 6932 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))); 6933 6934 sel_init_bbs (bbs); 6935 6936 if (flag_sel_sched_pipelining) 6937 setup_current_loop_nest (rgn, &bbs); 6938 6939 sel_setup_region_sched_flags (); 6940 6941 /* Initialize luids and dependence analysis which both sel-sched and haifa 6942 need. */ 6943 sched_init_luids (bbs); 6944 sched_deps_init (false); 6945 6946 /* Initialize haifa data. */ 6947 rgn_setup_sched_infos (); 6948 sel_set_sched_flags (); 6949 haifa_init_h_i_d (bbs); 6950 6951 sel_compute_priorities (rgn); 6952 init_deps_global (); 6953 6954 /* Main initialization. */ 6955 sel_setup_sched_infos (); 6956 sel_init_global_and_expr (bbs); 6957 6958 bbs.release (); 6959 6960 blocks_to_reschedule = BITMAP_ALLOC (NULL); 6961 6962 /* Init correct liveness sets on each instruction of a single-block loop. 6963 This is the only situation when we can't update liveness when calling 6964 compute_live for the first insn of the loop. */ 6965 if (current_loop_nest) 6966 { 6967 int header = 6968 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0))) 6969 ? 1 6970 : 0); 6971 6972 if (current_nr_blocks == header + 1) 6973 update_liveness_on_insn 6974 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header)))); 6975 } 6976 6977 /* Set hooks so that no newly generated insn will go out unnoticed. */ 6978 sel_register_cfg_hooks (); 6979 6980 /* !!! We call target.sched.init () for the whole region, but we invoke 6981 targetm.sched.finish () for every ebb. */ 6982 if (targetm.sched.init) 6983 /* None of the arguments are actually used in any target. */ 6984 targetm.sched.init (sched_dump, sched_verbose, -1); 6985 6986 first_emitted_uid = get_max_uid () + 1; 6987 preheader_removed = false; 6988 6989 /* Reset register allocation ticks array. */ 6990 memset (reg_rename_tick, 0, sizeof reg_rename_tick); 6991 reg_rename_this_tick = 0; 6992 6993 bitmap_initialize (forced_ebb_heads, 0); 6994 bitmap_clear (forced_ebb_heads); 6995 6996 setup_nop_vinsn (); 6997 current_copies = BITMAP_ALLOC (NULL); 6998 current_originators = BITMAP_ALLOC (NULL); 6999 code_motion_visited_blocks = BITMAP_ALLOC (NULL); 7000 7001 return false; 7002 } 7003 7004 /* Simplify insns after the scheduling. */ 7005 static void 7006 simplify_changed_insns (void) 7007 { 7008 int i; 7009 7010 for (i = 0; i < current_nr_blocks; i++) 7011 { 7012 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)); 7013 rtx_insn *insn; 7014 7015 FOR_BB_INSNS (bb, insn) 7016 if (INSN_P (insn)) 7017 { 7018 expr_t expr = INSN_EXPR (insn); 7019 7020 if (EXPR_WAS_SUBSTITUTED (expr)) 7021 validate_simplify_insn (insn); 7022 } 7023 } 7024 } 7025 7026 /* Find boundaries of the EBB starting from basic block BB, marking blocks of 7027 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL, 7028 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */ 7029 static void 7030 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks) 7031 { 7032 rtx_insn *head, *tail; 7033 basic_block bb1 = bb; 7034 if (sched_verbose >= 2) 7035 sel_print ("Finishing schedule in bbs: "); 7036 7037 do 7038 { 7039 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index)); 7040 7041 if (sched_verbose >= 2) 7042 sel_print ("%d; ", bb1->index); 7043 } 7044 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1))); 7045 7046 if (sched_verbose >= 2) 7047 sel_print ("\n"); 7048 7049 get_ebb_head_tail (bb, bb1, &head, &tail); 7050 7051 current_sched_info->head = head; 7052 current_sched_info->tail = tail; 7053 current_sched_info->prev_head = PREV_INSN (head); 7054 current_sched_info->next_tail = NEXT_INSN (tail); 7055 } 7056 7057 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */ 7058 static void 7059 reset_sched_cycles_in_current_ebb (void) 7060 { 7061 int last_clock = 0; 7062 int haifa_last_clock = -1; 7063 int haifa_clock = 0; 7064 int issued_insns = 0; 7065 insn_t insn; 7066 7067 if (targetm.sched.init) 7068 { 7069 /* None of the arguments are actually used in any target. 7070 NB: We should have md_reset () hook for cases like this. */ 7071 targetm.sched.init (sched_dump, sched_verbose, -1); 7072 } 7073 7074 state_reset (curr_state); 7075 advance_state (curr_state); 7076 7077 for (insn = current_sched_info->head; 7078 insn != current_sched_info->next_tail; 7079 insn = NEXT_INSN (insn)) 7080 { 7081 int cost, haifa_cost; 7082 int sort_p; 7083 bool asm_p, real_insn, after_stall, all_issued; 7084 int clock; 7085 7086 if (!INSN_P (insn)) 7087 continue; 7088 7089 asm_p = false; 7090 real_insn = recog_memoized (insn) >= 0; 7091 clock = INSN_SCHED_CYCLE (insn); 7092 7093 cost = clock - last_clock; 7094 7095 /* Initialize HAIFA_COST. */ 7096 if (! real_insn) 7097 { 7098 asm_p = INSN_ASM_P (insn); 7099 7100 if (asm_p) 7101 /* This is asm insn which *had* to be scheduled first 7102 on the cycle. */ 7103 haifa_cost = 1; 7104 else 7105 /* This is a use/clobber insn. It should not change 7106 cost. */ 7107 haifa_cost = 0; 7108 } 7109 else 7110 haifa_cost = estimate_insn_cost (insn, curr_state); 7111 7112 /* Stall for whatever cycles we've stalled before. */ 7113 after_stall = 0; 7114 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost) 7115 { 7116 haifa_cost = cost; 7117 after_stall = 1; 7118 } 7119 all_issued = issued_insns == issue_rate; 7120 if (haifa_cost == 0 && all_issued) 7121 haifa_cost = 1; 7122 if (haifa_cost > 0) 7123 { 7124 int i = 0; 7125 7126 while (haifa_cost--) 7127 { 7128 advance_state (curr_state); 7129 issued_insns = 0; 7130 i++; 7131 7132 if (sched_verbose >= 2) 7133 { 7134 sel_print ("advance_state (state_transition)\n"); 7135 debug_state (curr_state); 7136 } 7137 7138 /* The DFA may report that e.g. insn requires 2 cycles to be 7139 issued, but on the next cycle it says that insn is ready 7140 to go. Check this here. */ 7141 if (!after_stall 7142 && real_insn 7143 && haifa_cost > 0 7144 && estimate_insn_cost (insn, curr_state) == 0) 7145 break; 7146 7147 /* When the data dependency stall is longer than the DFA stall, 7148 and when we have issued exactly issue_rate insns and stalled, 7149 it could be that after this longer stall the insn will again 7150 become unavailable to the DFA restrictions. Looks strange 7151 but happens e.g. on x86-64. So recheck DFA on the last 7152 iteration. */ 7153 if ((after_stall || all_issued) 7154 && real_insn 7155 && haifa_cost == 0) 7156 haifa_cost = estimate_insn_cost (insn, curr_state); 7157 } 7158 7159 haifa_clock += i; 7160 if (sched_verbose >= 2) 7161 sel_print ("haifa clock: %d\n", haifa_clock); 7162 } 7163 else 7164 gcc_assert (haifa_cost == 0); 7165 7166 if (sched_verbose >= 2) 7167 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost); 7168 7169 if (targetm.sched.dfa_new_cycle) 7170 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn, 7171 haifa_last_clock, haifa_clock, 7172 &sort_p)) 7173 { 7174 advance_state (curr_state); 7175 issued_insns = 0; 7176 haifa_clock++; 7177 if (sched_verbose >= 2) 7178 { 7179 sel_print ("advance_state (dfa_new_cycle)\n"); 7180 debug_state (curr_state); 7181 sel_print ("haifa clock: %d\n", haifa_clock + 1); 7182 } 7183 } 7184 7185 if (real_insn) 7186 { 7187 static state_t temp = NULL; 7188 7189 if (!temp) 7190 temp = xmalloc (dfa_state_size); 7191 memcpy (temp, curr_state, dfa_state_size); 7192 7193 cost = state_transition (curr_state, insn); 7194 if (memcmp (temp, curr_state, dfa_state_size)) 7195 issued_insns++; 7196 7197 if (sched_verbose >= 2) 7198 { 7199 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn), 7200 haifa_clock + 1); 7201 debug_state (curr_state); 7202 } 7203 gcc_assert (cost < 0); 7204 } 7205 7206 if (targetm.sched.variable_issue) 7207 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0); 7208 7209 INSN_SCHED_CYCLE (insn) = haifa_clock; 7210 7211 last_clock = clock; 7212 haifa_last_clock = haifa_clock; 7213 } 7214 } 7215 7216 /* Put TImode markers on insns starting a new issue group. */ 7217 static void 7218 put_TImodes (void) 7219 { 7220 int last_clock = -1; 7221 insn_t insn; 7222 7223 for (insn = current_sched_info->head; insn != current_sched_info->next_tail; 7224 insn = NEXT_INSN (insn)) 7225 { 7226 int cost, clock; 7227 7228 if (!INSN_P (insn)) 7229 continue; 7230 7231 clock = INSN_SCHED_CYCLE (insn); 7232 cost = (last_clock == -1) ? 1 : clock - last_clock; 7233 7234 gcc_assert (cost >= 0); 7235 7236 if (issue_rate > 1 7237 && GET_CODE (PATTERN (insn)) != USE 7238 && GET_CODE (PATTERN (insn)) != CLOBBER) 7239 { 7240 if (reload_completed && cost > 0) 7241 PUT_MODE (insn, TImode); 7242 7243 last_clock = clock; 7244 } 7245 7246 if (sched_verbose >= 2) 7247 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost); 7248 } 7249 } 7250 7251 /* Perform MD_FINISH on EBBs comprising current region. When 7252 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler 7253 to produce correct sched cycles on insns. */ 7254 static void 7255 sel_region_target_finish (bool reset_sched_cycles_p) 7256 { 7257 int i; 7258 bitmap scheduled_blocks = BITMAP_ALLOC (NULL); 7259 7260 for (i = 0; i < current_nr_blocks; i++) 7261 { 7262 if (bitmap_bit_p (scheduled_blocks, i)) 7263 continue; 7264 7265 /* While pipelining outer loops, skip bundling for loop 7266 preheaders. Those will be rescheduled in the outer loop. */ 7267 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i))) 7268 continue; 7269 7270 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks); 7271 7272 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail)) 7273 continue; 7274 7275 if (reset_sched_cycles_p) 7276 reset_sched_cycles_in_current_ebb (); 7277 7278 if (targetm.sched.init) 7279 targetm.sched.init (sched_dump, sched_verbose, -1); 7280 7281 put_TImodes (); 7282 7283 if (targetm.sched.finish) 7284 { 7285 targetm.sched.finish (sched_dump, sched_verbose); 7286 7287 /* Extend luids so that insns generated by the target will 7288 get zero luid. */ 7289 sched_extend_luids (); 7290 } 7291 } 7292 7293 BITMAP_FREE (scheduled_blocks); 7294 } 7295 7296 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P 7297 is true, make an additional pass emulating scheduler to get correct insn 7298 cycles for md_finish calls. */ 7299 static void 7300 sel_region_finish (bool reset_sched_cycles_p) 7301 { 7302 simplify_changed_insns (); 7303 sched_finish_ready_list (); 7304 free_nop_pool (); 7305 7306 /* Free the vectors. */ 7307 vec_av_set.release (); 7308 BITMAP_FREE (current_copies); 7309 BITMAP_FREE (current_originators); 7310 BITMAP_FREE (code_motion_visited_blocks); 7311 vinsn_vec_free (vec_bookkeeping_blocked_vinsns); 7312 vinsn_vec_free (vec_target_unavailable_vinsns); 7313 7314 /* If LV_SET of the region head should be updated, do it now because 7315 there will be no other chance. */ 7316 { 7317 succ_iterator si; 7318 insn_t insn; 7319 7320 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)), 7321 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 7322 { 7323 basic_block bb = BLOCK_FOR_INSN (insn); 7324 7325 if (!BB_LV_SET_VALID_P (bb)) 7326 compute_live (insn); 7327 } 7328 } 7329 7330 /* Emulate the Haifa scheduler for bundling. */ 7331 if (reload_completed) 7332 sel_region_target_finish (reset_sched_cycles_p); 7333 7334 sel_finish_global_and_expr (); 7335 7336 bitmap_clear (forced_ebb_heads); 7337 7338 free_nop_vinsn (); 7339 7340 finish_deps_global (); 7341 sched_finish_luids (); 7342 h_d_i_d.release (); 7343 7344 sel_finish_bbs (); 7345 BITMAP_FREE (blocks_to_reschedule); 7346 7347 sel_unregister_cfg_hooks (); 7348 7349 max_issue_size = 0; 7350 } 7351 7352 7353 /* Functions that implement the scheduler driver. */ 7354 7355 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO 7356 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list 7357 of insns scheduled -- these would be postprocessed later. */ 7358 static void 7359 schedule_on_fences (flist_t fences, int max_seqno, 7360 ilist_t **scheduled_insns_tailpp) 7361 { 7362 flist_t old_fences = fences; 7363 7364 if (sched_verbose >= 1) 7365 { 7366 sel_print ("\nScheduling on fences: "); 7367 dump_flist (fences); 7368 sel_print ("\n"); 7369 } 7370 7371 scheduled_something_on_previous_fence = false; 7372 for (; fences; fences = FLIST_NEXT (fences)) 7373 { 7374 fence_t fence = NULL; 7375 int seqno = 0; 7376 flist_t fences2; 7377 bool first_p = true; 7378 7379 /* Choose the next fence group to schedule. 7380 The fact that insn can be scheduled only once 7381 on the cycle is guaranteed by two properties: 7382 1. seqnos of parallel groups decrease with each iteration. 7383 2. If is_ineligible_successor () sees the larger seqno, it 7384 checks if candidate insn is_in_current_fence_p (). */ 7385 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2)) 7386 { 7387 fence_t f = FLIST_FENCE (fences2); 7388 7389 if (!FENCE_PROCESSED_P (f)) 7390 { 7391 int i = INSN_SEQNO (FENCE_INSN (f)); 7392 7393 if (first_p || i > seqno) 7394 { 7395 seqno = i; 7396 fence = f; 7397 first_p = false; 7398 } 7399 else 7400 /* ??? Seqnos of different groups should be different. */ 7401 gcc_assert (1 || i != seqno); 7402 } 7403 } 7404 7405 gcc_assert (fence); 7406 7407 /* As FENCE is nonnull, SEQNO is initialized. */ 7408 seqno -= max_seqno + 1; 7409 fill_insns (fence, seqno, scheduled_insns_tailpp); 7410 FENCE_PROCESSED_P (fence) = true; 7411 } 7412 7413 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we 7414 don't need to keep bookkeeping-invalidated and target-unavailable 7415 vinsns any more. */ 7416 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns); 7417 vinsn_vec_clear (&vec_target_unavailable_vinsns); 7418 } 7419 7420 /* Calculate MIN_SEQNO and MAX_SEQNO. */ 7421 static void 7422 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno) 7423 { 7424 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences))); 7425 7426 /* The first element is already processed. */ 7427 while ((fences = FLIST_NEXT (fences))) 7428 { 7429 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences))); 7430 7431 if (*min_seqno > seqno) 7432 *min_seqno = seqno; 7433 else if (*max_seqno < seqno) 7434 *max_seqno = seqno; 7435 } 7436 } 7437 7438 /* Calculate new fences from FENCES. Write the current time to PTIME. */ 7439 static flist_t 7440 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime) 7441 { 7442 flist_t old_fences = fences; 7443 struct flist_tail_def _new_fences, *new_fences = &_new_fences; 7444 int max_time = 0; 7445 7446 flist_tail_init (new_fences); 7447 for (; fences; fences = FLIST_NEXT (fences)) 7448 { 7449 fence_t fence = FLIST_FENCE (fences); 7450 insn_t insn; 7451 7452 if (!FENCE_BNDS (fence)) 7453 { 7454 /* This fence doesn't have any successors. */ 7455 if (!FENCE_SCHEDULED_P (fence)) 7456 { 7457 /* Nothing was scheduled on this fence. */ 7458 int seqno; 7459 7460 insn = FENCE_INSN (fence); 7461 seqno = INSN_SEQNO (insn); 7462 gcc_assert (seqno > 0 && seqno <= orig_max_seqno); 7463 7464 if (sched_verbose >= 1) 7465 sel_print ("Fence %d[%d] has not changed\n", 7466 INSN_UID (insn), 7467 BLOCK_NUM (insn)); 7468 move_fence_to_fences (fences, new_fences); 7469 } 7470 } 7471 else 7472 extract_new_fences_from (fences, new_fences, orig_max_seqno); 7473 max_time = MAX (max_time, FENCE_CYCLE (fence)); 7474 } 7475 7476 flist_clear (&old_fences); 7477 *ptime = max_time; 7478 return FLIST_TAIL_HEAD (new_fences); 7479 } 7480 7481 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO 7482 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is 7483 the highest seqno used in a region. Return the updated highest seqno. */ 7484 static int 7485 update_seqnos_and_stage (int min_seqno, int max_seqno, 7486 int highest_seqno_in_use, 7487 ilist_t *pscheduled_insns) 7488 { 7489 int new_hs; 7490 ilist_iterator ii; 7491 insn_t insn; 7492 7493 /* Actually, new_hs is the seqno of the instruction, that was 7494 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */ 7495 if (*pscheduled_insns) 7496 { 7497 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns)) 7498 + highest_seqno_in_use + max_seqno - min_seqno + 2); 7499 gcc_assert (new_hs > highest_seqno_in_use); 7500 } 7501 else 7502 new_hs = highest_seqno_in_use; 7503 7504 FOR_EACH_INSN (insn, ii, *pscheduled_insns) 7505 { 7506 gcc_assert (INSN_SEQNO (insn) < 0); 7507 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2; 7508 gcc_assert (INSN_SEQNO (insn) <= new_hs); 7509 7510 /* When not pipelining, purge unneeded insn info on the scheduled insns. 7511 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may 7512 require > 1GB of memory e.g. on limit-fnargs.c. */ 7513 if (! pipelining_p) 7514 free_data_for_scheduled_insn (insn); 7515 } 7516 7517 ilist_clear (pscheduled_insns); 7518 global_level++; 7519 7520 return new_hs; 7521 } 7522 7523 /* The main driver for scheduling a region. This function is responsible 7524 for correct propagation of fences (i.e. scheduling points) and creating 7525 a group of parallel insns at each of them. It also supports 7526 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass 7527 of scheduling. */ 7528 static void 7529 sel_sched_region_2 (int orig_max_seqno) 7530 { 7531 int highest_seqno_in_use = orig_max_seqno; 7532 int max_time = 0; 7533 7534 stat_bookkeeping_copies = 0; 7535 stat_insns_needed_bookkeeping = 0; 7536 stat_renamed_scheduled = 0; 7537 stat_substitutions_total = 0; 7538 num_insns_scheduled = 0; 7539 7540 while (fences) 7541 { 7542 int min_seqno, max_seqno; 7543 ilist_t scheduled_insns = NULL; 7544 ilist_t *scheduled_insns_tailp = &scheduled_insns; 7545 7546 find_min_max_seqno (fences, &min_seqno, &max_seqno); 7547 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp); 7548 fences = calculate_new_fences (fences, orig_max_seqno, &max_time); 7549 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno, 7550 highest_seqno_in_use, 7551 &scheduled_insns); 7552 } 7553 7554 if (sched_verbose >= 1) 7555 { 7556 sel_print ("Total scheduling time: %d cycles\n", max_time); 7557 sel_print ("Scheduled %d bookkeeping copies, %d insns needed " 7558 "bookkeeping, %d insns renamed, %d insns substituted\n", 7559 stat_bookkeeping_copies, 7560 stat_insns_needed_bookkeeping, 7561 stat_renamed_scheduled, 7562 stat_substitutions_total); 7563 } 7564 } 7565 7566 /* Schedule a region. When pipelining, search for possibly never scheduled 7567 bookkeeping code and schedule it. Reschedule pipelined code without 7568 pipelining after. */ 7569 static void 7570 sel_sched_region_1 (void) 7571 { 7572 int orig_max_seqno; 7573 7574 /* Remove empty blocks that might be in the region from the beginning. */ 7575 purge_empty_blocks (); 7576 7577 orig_max_seqno = init_seqno (NULL, NULL); 7578 gcc_assert (orig_max_seqno >= 1); 7579 7580 /* When pipelining outer loops, create fences on the loop header, 7581 not preheader. */ 7582 fences = NULL; 7583 if (current_loop_nest) 7584 init_fences (BB_END (EBB_FIRST_BB (0))); 7585 else 7586 init_fences (bb_note (EBB_FIRST_BB (0))); 7587 global_level = 1; 7588 7589 sel_sched_region_2 (orig_max_seqno); 7590 7591 gcc_assert (fences == NULL); 7592 7593 if (pipelining_p) 7594 { 7595 int i; 7596 basic_block bb; 7597 struct flist_tail_def _new_fences; 7598 flist_tail_t new_fences = &_new_fences; 7599 bool do_p = true; 7600 7601 pipelining_p = false; 7602 max_ws = MIN (max_ws, issue_rate * 3 / 2); 7603 bookkeeping_p = false; 7604 enable_schedule_as_rhs_p = false; 7605 7606 /* Schedule newly created code, that has not been scheduled yet. */ 7607 do_p = true; 7608 7609 while (do_p) 7610 { 7611 do_p = false; 7612 7613 for (i = 0; i < current_nr_blocks; i++) 7614 { 7615 basic_block bb = EBB_FIRST_BB (i); 7616 7617 if (bitmap_bit_p (blocks_to_reschedule, bb->index)) 7618 { 7619 if (! bb_ends_ebb_p (bb)) 7620 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index); 7621 if (sel_bb_empty_p (bb)) 7622 { 7623 bitmap_clear_bit (blocks_to_reschedule, bb->index); 7624 continue; 7625 } 7626 clear_outdated_rtx_info (bb); 7627 if (sel_insn_is_speculation_check (BB_END (bb)) 7628 && JUMP_P (BB_END (bb))) 7629 bitmap_set_bit (blocks_to_reschedule, 7630 BRANCH_EDGE (bb)->dest->index); 7631 } 7632 else if (! sel_bb_empty_p (bb) 7633 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0) 7634 bitmap_set_bit (blocks_to_reschedule, bb->index); 7635 } 7636 7637 for (i = 0; i < current_nr_blocks; i++) 7638 { 7639 bb = EBB_FIRST_BB (i); 7640 7641 /* While pipelining outer loops, skip bundling for loop 7642 preheaders. Those will be rescheduled in the outer 7643 loop. */ 7644 if (sel_is_loop_preheader_p (bb)) 7645 { 7646 clear_outdated_rtx_info (bb); 7647 continue; 7648 } 7649 7650 if (bitmap_bit_p (blocks_to_reschedule, bb->index)) 7651 { 7652 flist_tail_init (new_fences); 7653 7654 orig_max_seqno = init_seqno (blocks_to_reschedule, bb); 7655 7656 /* Mark BB as head of the new ebb. */ 7657 bitmap_set_bit (forced_ebb_heads, bb->index); 7658 7659 gcc_assert (fences == NULL); 7660 7661 init_fences (bb_note (bb)); 7662 7663 sel_sched_region_2 (orig_max_seqno); 7664 7665 do_p = true; 7666 break; 7667 } 7668 } 7669 } 7670 } 7671 } 7672 7673 /* Schedule the RGN region. */ 7674 void 7675 sel_sched_region (int rgn) 7676 { 7677 bool schedule_p; 7678 bool reset_sched_cycles_p; 7679 7680 if (sel_region_init (rgn)) 7681 return; 7682 7683 if (sched_verbose >= 1) 7684 sel_print ("Scheduling region %d\n", rgn); 7685 7686 schedule_p = (!sched_is_disabled_for_current_region_p () 7687 && dbg_cnt (sel_sched_region_cnt)); 7688 reset_sched_cycles_p = pipelining_p; 7689 if (schedule_p) 7690 sel_sched_region_1 (); 7691 else 7692 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */ 7693 reset_sched_cycles_p = true; 7694 7695 sel_region_finish (reset_sched_cycles_p); 7696 } 7697 7698 /* Perform global init for the scheduler. */ 7699 static void 7700 sel_global_init (void) 7701 { 7702 calculate_dominance_info (CDI_DOMINATORS); 7703 alloc_sched_pools (); 7704 7705 /* Setup the infos for sched_init. */ 7706 sel_setup_sched_infos (); 7707 setup_sched_dump (); 7708 7709 sched_rgn_init (false); 7710 sched_init (); 7711 7712 sched_init_bbs (); 7713 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */ 7714 after_recovery = 0; 7715 can_issue_more = issue_rate; 7716 7717 sched_extend_target (); 7718 sched_deps_init (true); 7719 setup_nop_and_exit_insns (); 7720 sel_extend_global_bb_info (); 7721 init_lv_sets (); 7722 init_hard_regs_data (); 7723 } 7724 7725 /* Free the global data of the scheduler. */ 7726 static void 7727 sel_global_finish (void) 7728 { 7729 free_bb_note_pool (); 7730 free_lv_sets (); 7731 sel_finish_global_bb_info (); 7732 7733 free_regset_pool (); 7734 free_nop_and_exit_insns (); 7735 7736 sched_rgn_finish (); 7737 sched_deps_finish (); 7738 sched_finish (); 7739 7740 if (current_loops) 7741 sel_finish_pipelining (); 7742 7743 free_sched_pools (); 7744 free_dominance_info (CDI_DOMINATORS); 7745 } 7746 7747 /* Return true when we need to skip selective scheduling. Used for debugging. */ 7748 bool 7749 maybe_skip_selective_scheduling (void) 7750 { 7751 return ! dbg_cnt (sel_sched_cnt); 7752 } 7753 7754 /* The entry point. */ 7755 void 7756 run_selective_scheduling (void) 7757 { 7758 int rgn; 7759 7760 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS) 7761 return; 7762 7763 sel_global_init (); 7764 7765 for (rgn = 0; rgn < nr_regions; rgn++) 7766 sel_sched_region (rgn); 7767 7768 sel_global_finish (); 7769 } 7770 7771 #endif 7772