1 /* Instruction scheduling pass. Selective scheduler and pipeliner. 2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "toplev.h" 26 #include "rtl.h" 27 #include "tm_p.h" 28 #include "hard-reg-set.h" 29 #include "regs.h" 30 #include "function.h" 31 #include "flags.h" 32 #include "insn-config.h" 33 #include "insn-attr.h" 34 #include "except.h" 35 #include "toplev.h" 36 #include "recog.h" 37 #include "params.h" 38 #include "target.h" 39 #include "output.h" 40 #include "timevar.h" 41 #include "tree-pass.h" 42 #include "sched-int.h" 43 #include "ggc.h" 44 #include "tree.h" 45 #include "vec.h" 46 #include "langhooks.h" 47 #include "rtlhooks-def.h" 48 #include "output.h" 49 50 #ifdef INSN_SCHEDULING 51 #include "sel-sched-ir.h" 52 #include "sel-sched-dump.h" 53 #include "sel-sched.h" 54 #include "dbgcnt.h" 55 56 /* Implementation of selective scheduling approach. 57 The below implementation follows the original approach with the following 58 changes: 59 60 o the scheduler works after register allocation (but can be also tuned 61 to work before RA); 62 o some instructions are not copied or register renamed; 63 o conditional jumps are not moved with code duplication; 64 o several jumps in one parallel group are not supported; 65 o when pipelining outer loops, code motion through inner loops 66 is not supported; 67 o control and data speculation are supported; 68 o some improvements for better compile time/performance were made. 69 70 Terminology 71 =========== 72 73 A vinsn, or virtual insn, is an insn with additional data characterizing 74 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc. 75 Vinsns also act as smart pointers to save memory by reusing them in 76 different expressions. A vinsn is described by vinsn_t type. 77 78 An expression is a vinsn with additional data characterizing its properties 79 at some point in the control flow graph. The data may be its usefulness, 80 priority, speculative status, whether it was renamed/subsituted, etc. 81 An expression is described by expr_t type. 82 83 Availability set (av_set) is a set of expressions at a given control flow 84 point. It is represented as av_set_t. The expressions in av sets are kept 85 sorted in the terms of expr_greater_p function. It allows to truncate 86 the set while leaving the best expressions. 87 88 A fence is a point through which code motion is prohibited. On each step, 89 we gather a parallel group of insns at a fence. It is possible to have 90 multiple fences. A fence is represented via fence_t. 91 92 A boundary is the border between the fence group and the rest of the code. 93 Currently, we never have more than one boundary per fence, as we finalize 94 the fence group when a jump is scheduled. A boundary is represented 95 via bnd_t. 96 97 High-level overview 98 =================== 99 100 The scheduler finds regions to schedule, schedules each one, and finalizes. 101 The regions are formed starting from innermost loops, so that when the inner 102 loop is pipelined, its prologue can be scheduled together with yet unprocessed 103 outer loop. The rest of acyclic regions are found using extend_rgns: 104 the blocks that are not yet allocated to any regions are traversed in top-down 105 order, and a block is added to a region to which all its predecessors belong; 106 otherwise, the block starts its own region. 107 108 The main scheduling loop (sel_sched_region_2) consists of just 109 scheduling on each fence and updating fences. For each fence, 110 we fill a parallel group of insns (fill_insns) until some insns can be added. 111 First, we compute available exprs (av-set) at the boundary of the current 112 group. Second, we choose the best expression from it. If the stall is 113 required to schedule any of the expressions, we advance the current cycle 114 appropriately. So, the final group does not exactly correspond to a VLIW 115 word. Third, we move the chosen expression to the boundary (move_op) 116 and update the intermediate av sets and liveness sets. We quit fill_insns 117 when either no insns left for scheduling or we have scheduled enough insns 118 so we feel like advancing a scheduling point. 119 120 Computing available expressions 121 =============================== 122 123 The computation (compute_av_set) is a bottom-up traversal. At each insn, 124 we're moving the union of its successors' sets through it via 125 moveup_expr_set. The dependent expressions are removed. Local 126 transformations (substitution, speculation) are applied to move more 127 exprs. Then the expr corresponding to the current insn is added. 128 The result is saved on each basic block header. 129 130 When traversing the CFG, we're moving down for no more than max_ws insns. 131 Also, we do not move down to ineligible successors (is_ineligible_successor), 132 which include moving along a back-edge, moving to already scheduled code, 133 and moving to another fence. The first two restrictions are lifted during 134 pipelining, which allows us to move insns along a back-edge. We always have 135 an acyclic region for scheduling because we forbid motion through fences. 136 137 Choosing the best expression 138 ============================ 139 140 We sort the final availability set via sel_rank_for_schedule, then we remove 141 expressions which are not yet ready (tick_check_p) or which dest registers 142 cannot be used. For some of them, we choose another register via 143 find_best_reg. To do this, we run find_used_regs to calculate the set of 144 registers which cannot be used. The find_used_regs function performs 145 a traversal of code motion paths for an expr. We consider for renaming 146 only registers which are from the same regclass as the original one and 147 using which does not interfere with any live ranges. Finally, we convert 148 the resulting set to the ready list format and use max_issue and reorder* 149 hooks similarly to the Haifa scheduler. 150 151 Scheduling the best expression 152 ============================== 153 154 We run the move_op routine to perform the same type of code motion paths 155 traversal as in find_used_regs. (These are working via the same driver, 156 code_motion_path_driver.) When moving down the CFG, we look for original 157 instruction that gave birth to a chosen expression. We undo 158 the transformations performed on an expression via the history saved in it. 159 When found, we remove the instruction or leave a reg-reg copy/speculation 160 check if needed. On a way up, we insert bookkeeping copies at each join 161 point. If a copy is not needed, it will be removed later during this 162 traversal. We update the saved av sets and liveness sets on the way up, too. 163 164 Finalizing the schedule 165 ======================= 166 167 When pipelining, we reschedule the blocks from which insns were pipelined 168 to get a tighter schedule. On Itanium, we also perform bundling via 169 the same routine from ia64.c. 170 171 Dependence analysis changes 172 =========================== 173 174 We augmented the sched-deps.c with hooks that get called when a particular 175 dependence is found in a particular part of an insn. Using these hooks, we 176 can do several actions such as: determine whether an insn can be moved through 177 another (has_dependence_p, moveup_expr); find out whether an insn can be 178 scheduled on the current cycle (tick_check_p); find out registers that 179 are set/used/clobbered by an insn and find out all the strange stuff that 180 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in 181 init_global_and_expr_for_insn). 182 183 Initialization changes 184 ====================== 185 186 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are 187 reused in all of the schedulers. We have split up the initialization of data 188 of such parts into different functions prefixed with scheduler type and 189 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish}, 190 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc. 191 The same splitting is done with current_sched_info structure: 192 dependence-related parts are in sched_deps_info, common part is in 193 common_sched_info, and haifa/sel/etc part is in current_sched_info. 194 195 Target contexts 196 =============== 197 198 As we now have multiple-point scheduling, this would not work with backends 199 which save some of the scheduler state to use it in the target hooks. 200 For this purpose, we introduce a concept of target contexts, which 201 encapsulate such information. The backend should implement simple routines 202 of allocating/freeing/setting such a context. The scheduler calls these 203 as target hooks and handles the target context as an opaque pointer (similar 204 to the DFA state type, state_t). 205 206 Various speedups 207 ================ 208 209 As the correct data dependence graph is not supported during scheduling (which 210 is to be changed in mid-term), we cache as much of the dependence analysis 211 results as possible to avoid reanalyzing. This includes: bitmap caches on 212 each insn in stream of the region saying yes/no for a query with a pair of 213 UIDs; hashtables with the previously done transformations on each insn in 214 stream; a vector keeping a history of transformations on each expr. 215 216 Also, we try to minimize the dependence context used on each fence to check 217 whether the given expression is ready for scheduling by removing from it 218 insns that are definitely completed the execution. The results of 219 tick_check_p checks are also cached in a vector on each fence. 220 221 We keep a valid liveness set on each insn in a region to avoid the high 222 cost of recomputation on large basic blocks. 223 224 Finally, we try to minimize the number of needed updates to the availability 225 sets. The updates happen in two cases: when fill_insns terminates, 226 we advance all fences and increase the stage number to show that the region 227 has changed and the sets are to be recomputed; and when the next iteration 228 of a loop in fill_insns happens (but this one reuses the saved av sets 229 on bb headers.) Thus, we try to break the fill_insns loop only when 230 "significant" number of insns from the current scheduling window was 231 scheduled. This should be made a target param. 232 233 234 TODO: correctly support the data dependence graph at all stages and get rid 235 of all caches. This should speed up the scheduler. 236 TODO: implement moving cond jumps with bookkeeping copies on both targets. 237 TODO: tune the scheduler before RA so it does not create too much pseudos. 238 239 240 References: 241 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with 242 selective scheduling and software pipelining. 243 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997. 244 245 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik, 246 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler 247 for GCC. In Proceedings of GCC Developers' Summit 2006. 248 249 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction 250 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop. 251 http://rogue.colorado.edu/EPIC7/. 252 253 */ 254 255 /* True when pipelining is enabled. */ 256 bool pipelining_p; 257 258 /* True if bookkeeping is enabled. */ 259 bool bookkeeping_p; 260 261 /* Maximum number of insns that are eligible for renaming. */ 262 int max_insns_to_rename; 263 264 265 /* Definitions of local types and macros. */ 266 267 /* Represents possible outcomes of moving an expression through an insn. */ 268 enum MOVEUP_EXPR_CODE 269 { 270 /* The expression is not changed. */ 271 MOVEUP_EXPR_SAME, 272 273 /* Not changed, but requires a new destination register. */ 274 MOVEUP_EXPR_AS_RHS, 275 276 /* Cannot be moved. */ 277 MOVEUP_EXPR_NULL, 278 279 /* Changed (substituted or speculated). */ 280 MOVEUP_EXPR_CHANGED 281 }; 282 283 /* The container to be passed into rtx search & replace functions. */ 284 struct rtx_search_arg 285 { 286 /* What we are searching for. */ 287 rtx x; 288 289 /* The occurence counter. */ 290 int n; 291 }; 292 293 typedef struct rtx_search_arg *rtx_search_arg_p; 294 295 /* This struct contains precomputed hard reg sets that are needed when 296 computing registers available for renaming. */ 297 struct hard_regs_data 298 { 299 /* For every mode, this stores registers available for use with 300 that mode. */ 301 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES]; 302 303 /* True when regs_for_mode[mode] is initialized. */ 304 bool regs_for_mode_ok[NUM_MACHINE_MODES]; 305 306 /* For every register, it has regs that are ok to rename into it. 307 The register in question is always set. If not, this means 308 that the whole set is not computed yet. */ 309 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER]; 310 311 /* For every mode, this stores registers not available due to 312 call clobbering. */ 313 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES]; 314 315 /* All registers that are used or call used. */ 316 HARD_REG_SET regs_ever_used; 317 318 #ifdef STACK_REGS 319 /* Stack registers. */ 320 HARD_REG_SET stack_regs; 321 #endif 322 }; 323 324 /* Holds the results of computation of available for renaming and 325 unavailable hard registers. */ 326 struct reg_rename 327 { 328 /* These are unavailable due to calls crossing, globalness, etc. */ 329 HARD_REG_SET unavailable_hard_regs; 330 331 /* These are *available* for renaming. */ 332 HARD_REG_SET available_for_renaming; 333 334 /* Whether this code motion path crosses a call. */ 335 bool crosses_call; 336 }; 337 338 /* A global structure that contains the needed information about harg 339 regs. */ 340 static struct hard_regs_data sel_hrd; 341 342 343 /* This structure holds local data used in code_motion_path_driver hooks on 344 the same or adjacent levels of recursion. Here we keep those parameters 345 that are not used in code_motion_path_driver routine itself, but only in 346 its hooks. Moreover, all parameters that can be modified in hooks are 347 in this structure, so all other parameters passed explicitly to hooks are 348 read-only. */ 349 struct cmpd_local_params 350 { 351 /* Local params used in move_op_* functions. */ 352 353 /* Edges for bookkeeping generation. */ 354 edge e1, e2; 355 356 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */ 357 expr_t c_expr_merged, c_expr_local; 358 359 /* Local params used in fur_* functions. */ 360 /* Copy of the ORIGINAL_INSN list, stores the original insns already 361 found before entering the current level of code_motion_path_driver. */ 362 def_list_t old_original_insns; 363 364 /* Local params used in move_op_* functions. */ 365 /* True when we have removed last insn in the block which was 366 also a boundary. Do not update anything or create bookkeeping copies. */ 367 BOOL_BITFIELD removed_last_insn : 1; 368 }; 369 370 /* Stores the static parameters for move_op_* calls. */ 371 struct moveop_static_params 372 { 373 /* Destination register. */ 374 rtx dest; 375 376 /* Current C_EXPR. */ 377 expr_t c_expr; 378 379 /* An UID of expr_vliw which is to be moved up. If we find other exprs, 380 they are to be removed. */ 381 int uid; 382 383 #ifdef ENABLE_CHECKING 384 /* This is initialized to the insn on which the driver stopped its traversal. */ 385 insn_t failed_insn; 386 #endif 387 388 /* True if we scheduled an insn with different register. */ 389 bool was_renamed; 390 }; 391 392 /* Stores the static parameters for fur_* calls. */ 393 struct fur_static_params 394 { 395 /* Set of registers unavailable on the code motion path. */ 396 regset used_regs; 397 398 /* Pointer to the list of original insns definitions. */ 399 def_list_t *original_insns; 400 401 /* True if a code motion path contains a CALL insn. */ 402 bool crosses_call; 403 }; 404 405 typedef struct fur_static_params *fur_static_params_p; 406 typedef struct cmpd_local_params *cmpd_local_params_p; 407 typedef struct moveop_static_params *moveop_static_params_p; 408 409 /* Set of hooks and parameters that determine behaviour specific to 410 move_op or find_used_regs functions. */ 411 struct code_motion_path_driver_info_def 412 { 413 /* Called on enter to the basic block. */ 414 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool); 415 416 /* Called when original expr is found. */ 417 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *); 418 419 /* Called while descending current basic block if current insn is not 420 the original EXPR we're searching for. */ 421 bool (*orig_expr_not_found) (insn_t, av_set_t, void *); 422 423 /* Function to merge C_EXPRes from different successors. */ 424 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *); 425 426 /* Function to finalize merge from different successors and possibly 427 deallocate temporary data structures used for merging. */ 428 void (*after_merge_succs) (cmpd_local_params_p, void *); 429 430 /* Called on the backward stage of recursion to do moveup_expr. 431 Used only with move_op_*. */ 432 void (*ascend) (insn_t, void *); 433 434 /* Called on the ascending pass, before returning from the current basic 435 block or from the whole traversal. */ 436 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *); 437 438 /* When processing successors in move_op we need only descend into 439 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */ 440 int succ_flags; 441 442 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */ 443 const char *routine_name; 444 }; 445 446 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or 447 FUR_HOOKS. */ 448 struct code_motion_path_driver_info_def *code_motion_path_driver_info; 449 450 /* Set of hooks for performing move_op and find_used_regs routines with 451 code_motion_path_driver. */ 452 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks; 453 454 /* True if/when we want to emulate Haifa scheduler in the common code. 455 This is used in sched_rgn_local_init and in various places in 456 sched-deps.c. */ 457 int sched_emulate_haifa_p; 458 459 /* GLOBAL_LEVEL is used to discard information stored in basic block headers 460 av_sets. Av_set of bb header is valid if its (bb header's) level is equal 461 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance 462 scheduling window. */ 463 int global_level; 464 465 /* Current fences. */ 466 flist_t fences; 467 468 /* True when separable insns should be scheduled as RHSes. */ 469 static bool enable_schedule_as_rhs_p; 470 471 /* Used in verify_target_availability to assert that target reg is reported 472 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if 473 we haven't scheduled anything on the previous fence. 474 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can 475 have more conservative value than the one returned by the 476 find_used_regs, thus we shouldn't assert that these values are equal. */ 477 static bool scheduled_something_on_previous_fence; 478 479 /* All newly emitted insns will have their uids greater than this value. */ 480 static int first_emitted_uid; 481 482 /* Set of basic blocks that are forced to start new ebbs. This is a subset 483 of all the ebb heads. */ 484 static bitmap_head _forced_ebb_heads; 485 bitmap_head *forced_ebb_heads = &_forced_ebb_heads; 486 487 /* Blocks that need to be rescheduled after pipelining. */ 488 bitmap blocks_to_reschedule = NULL; 489 490 /* True when the first lv set should be ignored when updating liveness. */ 491 static bool ignore_first = false; 492 493 /* Number of insns max_issue has initialized data structures for. */ 494 static int max_issue_size = 0; 495 496 /* Whether we can issue more instructions. */ 497 static int can_issue_more; 498 499 /* Maximum software lookahead window size, reduced when rescheduling after 500 pipelining. */ 501 static int max_ws; 502 503 /* Number of insns scheduled in current region. */ 504 static int num_insns_scheduled; 505 506 /* A vector of expressions is used to be able to sort them. */ 507 DEF_VEC_P(expr_t); 508 DEF_VEC_ALLOC_P(expr_t,heap); 509 static VEC(expr_t, heap) *vec_av_set = NULL; 510 511 /* A vector of vinsns is used to hold temporary lists of vinsns. */ 512 DEF_VEC_P(vinsn_t); 513 DEF_VEC_ALLOC_P(vinsn_t,heap); 514 typedef VEC(vinsn_t, heap) *vinsn_vec_t; 515 516 /* This vector has the exprs which may still present in av_sets, but actually 517 can't be moved up due to bookkeeping created during code motion to another 518 fence. See comment near the call to update_and_record_unavailable_insns 519 for the detailed explanations. */ 520 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL; 521 522 /* This vector has vinsns which are scheduled with renaming on the first fence 523 and then seen on the second. For expressions with such vinsns, target 524 availability information may be wrong. */ 525 static vinsn_vec_t vec_target_unavailable_vinsns = NULL; 526 527 /* Vector to store temporary nops inserted in move_op to prevent removal 528 of empty bbs. */ 529 DEF_VEC_P(insn_t); 530 DEF_VEC_ALLOC_P(insn_t,heap); 531 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL; 532 533 /* These bitmaps record original instructions scheduled on the current 534 iteration and bookkeeping copies created by them. */ 535 static bitmap current_originators = NULL; 536 static bitmap current_copies = NULL; 537 538 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't 539 visit them afterwards. */ 540 static bitmap code_motion_visited_blocks = NULL; 541 542 /* Variables to accumulate different statistics. */ 543 544 /* The number of bookkeeping copies created. */ 545 static int stat_bookkeeping_copies; 546 547 /* The number of insns that required bookkeeiping for their scheduling. */ 548 static int stat_insns_needed_bookkeeping; 549 550 /* The number of insns that got renamed. */ 551 static int stat_renamed_scheduled; 552 553 /* The number of substitutions made during scheduling. */ 554 static int stat_substitutions_total; 555 556 557 /* Forward declarations of static functions. */ 558 static bool rtx_ok_for_substitution_p (rtx, rtx); 559 static int sel_rank_for_schedule (const void *, const void *); 560 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool); 561 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax); 562 563 static rtx get_dest_from_orig_ops (av_set_t); 564 static basic_block generate_bookkeeping_insn (expr_t, edge, edge); 565 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *, 566 def_list_t *); 567 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*); 568 static int code_motion_path_driver (insn_t, av_set_t, ilist_t, 569 cmpd_local_params_p, void *); 570 static void sel_sched_region_1 (void); 571 static void sel_sched_region_2 (int); 572 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool); 573 574 static void debug_state (state_t); 575 576 577 /* Functions that work with fences. */ 578 579 /* Advance one cycle on FENCE. */ 580 static void 581 advance_one_cycle (fence_t fence) 582 { 583 unsigned i; 584 int cycle; 585 rtx insn; 586 587 advance_state (FENCE_STATE (fence)); 588 cycle = ++FENCE_CYCLE (fence); 589 FENCE_ISSUED_INSNS (fence) = 0; 590 FENCE_STARTS_CYCLE_P (fence) = 1; 591 can_issue_more = issue_rate; 592 FENCE_ISSUE_MORE (fence) = can_issue_more; 593 594 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); ) 595 { 596 if (INSN_READY_CYCLE (insn) < cycle) 597 { 598 remove_from_deps (FENCE_DC (fence), insn); 599 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i); 600 continue; 601 } 602 i++; 603 } 604 if (sched_verbose >= 2) 605 { 606 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence)); 607 debug_state (FENCE_STATE (fence)); 608 } 609 } 610 611 /* Returns true when SUCC in a fallthru bb of INSN, possibly 612 skipping empty basic blocks. */ 613 static bool 614 in_fallthru_bb_p (rtx insn, rtx succ) 615 { 616 basic_block bb = BLOCK_FOR_INSN (insn); 617 618 if (bb == BLOCK_FOR_INSN (succ)) 619 return true; 620 621 if (find_fallthru_edge (bb)) 622 bb = find_fallthru_edge (bb)->dest; 623 else 624 return false; 625 626 while (sel_bb_empty_p (bb)) 627 bb = bb->next_bb; 628 629 return bb == BLOCK_FOR_INSN (succ); 630 } 631 632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES. 633 When a successor will continue a ebb, transfer all parameters of a fence 634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round 635 of scheduling helping to distinguish between the old and the new code. */ 636 static void 637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences, 638 int orig_max_seqno) 639 { 640 bool was_here_p = false; 641 insn_t insn = NULL_RTX; 642 insn_t succ; 643 succ_iterator si; 644 ilist_iterator ii; 645 fence_t fence = FLIST_FENCE (old_fences); 646 basic_block bb; 647 648 /* Get the only element of FENCE_BNDS (fence). */ 649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence)) 650 { 651 gcc_assert (!was_here_p); 652 was_here_p = true; 653 } 654 gcc_assert (was_here_p && insn != NULL_RTX); 655 656 /* When in the "middle" of the block, just move this fence 657 to the new list. */ 658 bb = BLOCK_FOR_INSN (insn); 659 if (! sel_bb_end_p (insn) 660 || (single_succ_p (bb) 661 && single_pred_p (single_succ (bb)))) 662 { 663 insn_t succ; 664 665 succ = (sel_bb_end_p (insn) 666 ? sel_bb_head (single_succ (bb)) 667 : NEXT_INSN (insn)); 668 669 if (INSN_SEQNO (succ) > 0 670 && INSN_SEQNO (succ) <= orig_max_seqno 671 && INSN_SCHED_TIMES (succ) <= 0) 672 { 673 FENCE_INSN (fence) = succ; 674 move_fence_to_fences (old_fences, new_fences); 675 676 if (sched_verbose >= 1) 677 sel_print ("Fence %d continues as %d[%d] (state continue)\n", 678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ)); 679 } 680 return; 681 } 682 683 /* Otherwise copy fence's structures to (possibly) multiple successors. */ 684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 685 { 686 int seqno = INSN_SEQNO (succ); 687 688 if (0 < seqno && seqno <= orig_max_seqno 689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0)) 690 { 691 bool b = (in_same_ebb_p (insn, succ) 692 || in_fallthru_bb_p (insn, succ)); 693 694 if (sched_verbose >= 1) 695 sel_print ("Fence %d continues as %d[%d] (state %s)\n", 696 INSN_UID (insn), INSN_UID (succ), 697 BLOCK_NUM (succ), b ? "continue" : "reset"); 698 699 if (b) 700 add_dirty_fence_to_fences (new_fences, succ, fence); 701 else 702 { 703 /* Mark block of the SUCC as head of the new ebb. */ 704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ)); 705 add_clean_fence_to_fences (new_fences, succ, fence); 706 } 707 } 708 } 709 } 710 711 712 /* Functions to support substitution. */ 713 714 /* Returns whether INSN with dependence status DS is eligible for 715 substitution, i.e. it's a copy operation x := y, and RHS that is 716 moved up through this insn should be substituted. */ 717 static bool 718 can_substitute_through_p (insn_t insn, ds_t ds) 719 { 720 /* We can substitute only true dependencies. */ 721 if ((ds & DEP_OUTPUT) 722 || (ds & DEP_ANTI) 723 || ! INSN_RHS (insn) 724 || ! INSN_LHS (insn)) 725 return false; 726 727 /* Now we just need to make sure the INSN_RHS consists of only one 728 simple REG rtx. */ 729 if (REG_P (INSN_LHS (insn)) 730 && REG_P (INSN_RHS (insn))) 731 return true; 732 return false; 733 } 734 735 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's 736 source (if INSN is eligible for substitution). Returns TRUE if 737 substitution was actually performed, FALSE otherwise. Substitution might 738 be not performed because it's either EXPR' vinsn doesn't contain INSN's 739 destination or the resulting insn is invalid for the target machine. 740 When UNDO is true, perform unsubstitution instead (the difference is in 741 the part of rtx on which validate_replace_rtx is called). */ 742 static bool 743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo) 744 { 745 rtx *where; 746 bool new_insn_valid; 747 vinsn_t *vi = &EXPR_VINSN (expr); 748 bool has_rhs = VINSN_RHS (*vi) != NULL; 749 rtx old, new_rtx; 750 751 /* Do not try to replace in SET_DEST. Although we'll choose new 752 register for the RHS, we don't want to change RHS' original reg. 753 If the insn is not SET, we may still be able to substitute something 754 in it, and if we're here (don't have deps), it doesn't write INSN's 755 dest. */ 756 where = (has_rhs 757 ? &VINSN_RHS (*vi) 758 : &PATTERN (VINSN_INSN_RTX (*vi))); 759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn); 760 761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */ 762 if (rtx_ok_for_substitution_p (old, *where)) 763 { 764 rtx new_insn; 765 rtx *where_replace; 766 767 /* We should copy these rtxes before substitution. */ 768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn)); 769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi)); 770 771 /* Where we'll replace. 772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be 773 used instead of SET_SRC. */ 774 where_replace = (has_rhs 775 ? &SET_SRC (PATTERN (new_insn)) 776 : &PATTERN (new_insn)); 777 778 new_insn_valid 779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace, 780 new_insn); 781 782 /* ??? Actually, constrain_operands result depends upon choice of 783 destination register. E.g. if we allow single register to be an rhs, 784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result 785 in invalid insn dx=dx, so we'll loose this rhs here. 786 Just can't come up with significant testcase for this, so just 787 leaving it for now. */ 788 if (new_insn_valid) 789 { 790 change_vinsn_in_expr (expr, 791 create_vinsn_from_insn_rtx (new_insn, false)); 792 793 /* Do not allow clobbering the address register of speculative 794 insns. */ 795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE) 796 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)), 797 expr_dest_regno (expr))) 798 EXPR_TARGET_AVAILABLE (expr) = false; 799 800 return true; 801 } 802 else 803 return false; 804 } 805 else 806 return false; 807 } 808 809 /* Helper function for count_occurences_equiv. */ 810 static int 811 count_occurrences_1 (rtx *cur_rtx, void *arg) 812 { 813 rtx_search_arg_p p = (rtx_search_arg_p) arg; 814 815 /* The last param FOR_GCSE is true, because otherwise it performs excessive 816 substitutions like 817 r8 = r33 818 r16 = r33 819 for the last insn it presumes r33 equivalent to r8, so it changes it to 820 r33. Actually, there's no change, but it spoils debugging. */ 821 if (exp_equiv_p (*cur_rtx, p->x, 0, true)) 822 { 823 /* Bail out if we occupy more than one register. */ 824 if (REG_P (*cur_rtx) 825 && HARD_REGISTER_P (*cur_rtx) 826 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1) 827 { 828 p->n = 0; 829 return 1; 830 } 831 832 p->n++; 833 834 /* Do not traverse subexprs. */ 835 return -1; 836 } 837 838 if (GET_CODE (*cur_rtx) == SUBREG 839 && REG_P (p->x) 840 && (!REG_P (SUBREG_REG (*cur_rtx)) 841 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))) 842 { 843 /* ??? Do not support substituting regs inside subregs. In that case, 844 simplify_subreg will be called by validate_replace_rtx, and 845 unsubstitution will fail later. */ 846 p->n = 0; 847 return 1; 848 } 849 850 /* Continue search. */ 851 return 0; 852 } 853 854 /* Return the number of places WHAT appears within WHERE. 855 Bail out when we found a reference occupying several hard registers. */ 856 static int 857 count_occurrences_equiv (rtx what, rtx where) 858 { 859 struct rtx_search_arg arg; 860 861 arg.x = what; 862 arg.n = 0; 863 864 for_each_rtx (&where, &count_occurrences_1, (void *) &arg); 865 866 return arg.n; 867 } 868 869 /* Returns TRUE if WHAT is found in WHERE rtx tree. */ 870 static bool 871 rtx_ok_for_substitution_p (rtx what, rtx where) 872 { 873 return (count_occurrences_equiv (what, where) > 0); 874 } 875 876 877 /* Functions to support register renaming. */ 878 879 /* Substitute VI's set source with REGNO. Returns newly created pattern 880 that has REGNO as its source. */ 881 static rtx 882 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx) 883 { 884 rtx lhs_rtx; 885 rtx pattern; 886 rtx insn_rtx; 887 888 lhs_rtx = copy_rtx (VINSN_LHS (vi)); 889 890 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx); 891 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 892 893 return insn_rtx; 894 } 895 896 /* Returns whether INSN's src can be replaced with register number 897 NEW_SRC_REG. E.g. the following insn is valid for i386: 898 899 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337 900 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp) 901 (reg:SI 0 ax [orig:770 c1 ] [770])) 902 (const_int 288 [0x120])) [0 str S1 A8]) 903 (const_int 0 [0x0])) 43 {*movqi_1} (nil) 904 (nil)) 905 906 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid 907 because of operand constraints: 908 909 (define_insn "*movqi_1" 910 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m") 911 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn") 912 )] 913 914 So do constrain_operands here, before choosing NEW_SRC_REG as best 915 reg for rhs. */ 916 917 static bool 918 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg) 919 { 920 vinsn_t vi = INSN_VINSN (insn); 921 enum machine_mode mode; 922 rtx dst_loc; 923 bool res; 924 925 gcc_assert (VINSN_SEPARABLE_P (vi)); 926 927 get_dest_and_mode (insn, &dst_loc, &mode); 928 gcc_assert (mode == GET_MODE (new_src_reg)); 929 930 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc)) 931 return true; 932 933 /* See whether SET_SRC can be replaced with this register. */ 934 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1); 935 res = verify_changes (0); 936 cancel_changes (0); 937 938 return res; 939 } 940 941 /* Returns whether INSN still be valid after replacing it's DEST with 942 register NEW_REG. */ 943 static bool 944 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg) 945 { 946 vinsn_t vi = INSN_VINSN (insn); 947 bool res; 948 949 /* We should deal here only with separable insns. */ 950 gcc_assert (VINSN_SEPARABLE_P (vi)); 951 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg)); 952 953 /* See whether SET_DEST can be replaced with this register. */ 954 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1); 955 res = verify_changes (0); 956 cancel_changes (0); 957 958 return res; 959 } 960 961 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */ 962 static rtx 963 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx) 964 { 965 rtx rhs_rtx; 966 rtx pattern; 967 rtx insn_rtx; 968 969 rhs_rtx = copy_rtx (VINSN_RHS (vi)); 970 971 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx); 972 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 973 974 return insn_rtx; 975 } 976 977 /* Substitute lhs in the given expression EXPR for the register with number 978 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */ 979 static void 980 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg) 981 { 982 rtx insn_rtx; 983 vinsn_t vinsn; 984 985 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg); 986 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false); 987 988 change_vinsn_in_expr (expr, vinsn); 989 EXPR_WAS_RENAMED (expr) = 1; 990 EXPR_TARGET_AVAILABLE (expr) = 1; 991 } 992 993 /* Returns whether VI writes either one of the USED_REGS registers or, 994 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */ 995 static bool 996 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs, 997 HARD_REG_SET unavailable_hard_regs) 998 { 999 unsigned regno; 1000 reg_set_iterator rsi; 1001 1002 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi) 1003 { 1004 if (REGNO_REG_SET_P (used_regs, regno)) 1005 return true; 1006 if (HARD_REGISTER_NUM_P (regno) 1007 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno)) 1008 return true; 1009 } 1010 1011 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi) 1012 { 1013 if (REGNO_REG_SET_P (used_regs, regno)) 1014 return true; 1015 if (HARD_REGISTER_NUM_P (regno) 1016 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno)) 1017 return true; 1018 } 1019 1020 return false; 1021 } 1022 1023 /* Returns register class of the output register in INSN. 1024 Returns NO_REGS for call insns because some targets have constraints on 1025 destination register of a call insn. 1026 1027 Code adopted from regrename.c::build_def_use. */ 1028 static enum reg_class 1029 get_reg_class (rtx insn) 1030 { 1031 int alt, i, n_ops; 1032 1033 extract_insn (insn); 1034 if (! constrain_operands (1)) 1035 fatal_insn_not_found (insn); 1036 preprocess_constraints (); 1037 alt = which_alternative; 1038 n_ops = recog_data.n_operands; 1039 1040 for (i = 0; i < n_ops; ++i) 1041 { 1042 int matches = recog_op_alt[i][alt].matches; 1043 if (matches >= 0) 1044 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl; 1045 } 1046 1047 if (asm_noperands (PATTERN (insn)) > 0) 1048 { 1049 for (i = 0; i < n_ops; i++) 1050 if (recog_data.operand_type[i] == OP_OUT) 1051 { 1052 rtx *loc = recog_data.operand_loc[i]; 1053 rtx op = *loc; 1054 enum reg_class cl = recog_op_alt[i][alt].cl; 1055 1056 if (REG_P (op) 1057 && REGNO (op) == ORIGINAL_REGNO (op)) 1058 continue; 1059 1060 return cl; 1061 } 1062 } 1063 else if (!CALL_P (insn)) 1064 { 1065 for (i = 0; i < n_ops + recog_data.n_dups; i++) 1066 { 1067 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; 1068 enum reg_class cl = recog_op_alt[opn][alt].cl; 1069 1070 if (recog_data.operand_type[opn] == OP_OUT || 1071 recog_data.operand_type[opn] == OP_INOUT) 1072 return cl; 1073 } 1074 } 1075 1076 /* Insns like 1077 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...))) 1078 may result in returning NO_REGS, cause flags is written implicitly through 1079 CMP insn, which has no OP_OUT | OP_INOUT operands. */ 1080 return NO_REGS; 1081 } 1082 1083 #ifdef HARD_REGNO_RENAME_OK 1084 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */ 1085 static void 1086 init_hard_regno_rename (int regno) 1087 { 1088 int cur_reg; 1089 1090 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno); 1091 1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1093 { 1094 /* We are not interested in renaming in other regs. */ 1095 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg)) 1096 continue; 1097 1098 if (HARD_REGNO_RENAME_OK (regno, cur_reg)) 1099 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg); 1100 } 1101 } 1102 #endif 1103 1104 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs 1105 data first. */ 1106 static inline bool 1107 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED) 1108 { 1109 #ifdef HARD_REGNO_RENAME_OK 1110 /* Check whether this is all calculated. */ 1111 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from)) 1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to); 1113 1114 init_hard_regno_rename (from); 1115 1116 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to); 1117 #else 1118 return true; 1119 #endif 1120 } 1121 1122 /* Calculate set of registers that are capable of holding MODE. */ 1123 static void 1124 init_regs_for_mode (enum machine_mode mode) 1125 { 1126 int cur_reg; 1127 1128 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]); 1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]); 1130 1131 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1132 { 1133 int nregs = hard_regno_nregs[cur_reg][mode]; 1134 int i; 1135 1136 for (i = nregs - 1; i >= 0; --i) 1137 if (fixed_regs[cur_reg + i] 1138 || global_regs[cur_reg + i] 1139 /* Can't use regs which aren't saved by 1140 the prologue. */ 1141 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i) 1142 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting 1143 it affects aliasing globally and invalidates all AV sets. */ 1144 || get_reg_base_value (cur_reg + i) 1145 #ifdef LEAF_REGISTERS 1146 /* We can't use a non-leaf register if we're in a 1147 leaf function. */ 1148 || (current_function_is_leaf 1149 && !LEAF_REGISTERS[cur_reg + i]) 1150 #endif 1151 ) 1152 break; 1153 1154 if (i >= 0) 1155 continue; 1156 1157 /* See whether it accepts all modes that occur in 1158 original insns. */ 1159 if (! HARD_REGNO_MODE_OK (cur_reg, mode)) 1160 continue; 1161 1162 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode)) 1163 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode], 1164 cur_reg); 1165 1166 /* If the CUR_REG passed all the checks above, 1167 then it's ok. */ 1168 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg); 1169 } 1170 1171 sel_hrd.regs_for_mode_ok[mode] = true; 1172 } 1173 1174 /* Init all register sets gathered in HRD. */ 1175 static void 1176 init_hard_regs_data (void) 1177 { 1178 int cur_reg = 0; 1179 int cur_mode = 0; 1180 1181 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used); 1182 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1183 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg]) 1184 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg); 1185 1186 /* Initialize registers that are valid based on mode when this is 1187 really needed. */ 1188 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++) 1189 sel_hrd.regs_for_mode_ok[cur_mode] = false; 1190 1191 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */ 1192 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1193 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]); 1194 1195 #ifdef STACK_REGS 1196 CLEAR_HARD_REG_SET (sel_hrd.stack_regs); 1197 1198 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++) 1199 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg); 1200 #endif 1201 } 1202 1203 /* Mark hardware regs in REG_RENAME_P that are not suitable 1204 for renaming rhs in INSN due to hardware restrictions (register class, 1205 modes compatibility etc). This doesn't affect original insn's dest reg, 1206 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the 1207 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM. 1208 Registers that are in used_regs are always marked in 1209 unavailable_hard_regs as well. */ 1210 1211 static void 1212 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p, 1213 regset used_regs ATTRIBUTE_UNUSED) 1214 { 1215 enum machine_mode mode; 1216 enum reg_class cl = NO_REGS; 1217 rtx orig_dest; 1218 unsigned cur_reg, regno; 1219 hard_reg_set_iterator hrsi; 1220 1221 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET); 1222 gcc_assert (reg_rename_p); 1223 1224 orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1225 1226 /* We have decided not to rename 'mem = something;' insns, as 'something' 1227 is usually a register. */ 1228 if (!REG_P (orig_dest)) 1229 return; 1230 1231 regno = REGNO (orig_dest); 1232 1233 /* If before reload, don't try to work with pseudos. */ 1234 if (!reload_completed && !HARD_REGISTER_NUM_P (regno)) 1235 return; 1236 1237 if (reload_completed) 1238 cl = get_reg_class (def->orig_insn); 1239 1240 /* Stop if the original register is one of the fixed_regs, global_regs or 1241 frame pointer, or we could not discover its class. */ 1242 if (fixed_regs[regno] 1243 || global_regs[regno] 1244 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM 1245 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM) 1246 #else 1247 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM) 1248 #endif 1249 || (reload_completed && cl == NO_REGS)) 1250 { 1251 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs); 1252 1253 /* Give a chance for original register, if it isn't in used_regs. */ 1254 if (!def->crosses_call) 1255 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno); 1256 1257 return; 1258 } 1259 1260 /* If something allocated on stack in this function, mark frame pointer 1261 register unavailable, considering also modes. 1262 FIXME: it is enough to do this once per all original defs. */ 1263 if (frame_pointer_needed) 1264 { 1265 int i; 1266 1267 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;) 1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1269 FRAME_POINTER_REGNUM + i); 1270 1271 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM 1272 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;) 1273 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1274 HARD_FRAME_POINTER_REGNUM + i); 1275 #endif 1276 } 1277 1278 #ifdef STACK_REGS 1279 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS 1280 is equivalent to as if all stack regs were in this set. 1281 I.e. no stack register can be renamed, and even if it's an original 1282 register here we make sure it won't be lifted over it's previous def 1283 (it's previous def will appear as if it's a FIRST_STACK_REG def. 1284 The HARD_REGNO_RENAME_OK covers other cases in condition below. */ 1285 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG) 1286 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG)) 1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1288 sel_hrd.stack_regs); 1289 #endif 1290 1291 /* If there's a call on this path, make regs from call_used_reg_set 1292 unavailable. */ 1293 if (def->crosses_call) 1294 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1295 call_used_reg_set); 1296 1297 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call, 1298 but not register classes. */ 1299 if (!reload_completed) 1300 return; 1301 1302 /* Leave regs as 'available' only from the current 1303 register class. */ 1304 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming, 1305 reg_class_contents[cl]); 1306 1307 mode = GET_MODE (orig_dest); 1308 1309 /* Leave only registers available for this mode. */ 1310 if (!sel_hrd.regs_for_mode_ok[mode]) 1311 init_regs_for_mode (mode); 1312 AND_HARD_REG_SET (reg_rename_p->available_for_renaming, 1313 sel_hrd.regs_for_mode[mode]); 1314 1315 /* Exclude registers that are partially call clobbered. */ 1316 if (def->crosses_call 1317 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) 1318 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1319 sel_hrd.regs_for_call_clobbered[mode]); 1320 1321 /* Leave only those that are ok to rename. */ 1322 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1323 0, cur_reg, hrsi) 1324 { 1325 int nregs; 1326 int i; 1327 1328 nregs = hard_regno_nregs[cur_reg][mode]; 1329 gcc_assert (nregs > 0); 1330 1331 for (i = nregs - 1; i >= 0; --i) 1332 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i)) 1333 break; 1334 1335 if (i >= 0) 1336 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming, 1337 cur_reg); 1338 } 1339 1340 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1341 reg_rename_p->unavailable_hard_regs); 1342 1343 /* Regno is always ok from the renaming part of view, but it really 1344 could be in *unavailable_hard_regs already, so set it here instead 1345 of there. */ 1346 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno); 1347 } 1348 1349 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the 1350 best register more recently than REG2. */ 1351 static int reg_rename_tick[FIRST_PSEUDO_REGISTER]; 1352 1353 /* Indicates the number of times renaming happened before the current one. */ 1354 static int reg_rename_this_tick; 1355 1356 /* Choose the register among free, that is suitable for storing 1357 the rhs value. 1358 1359 ORIGINAL_INSNS is the list of insns where the operation (rhs) 1360 originally appears. There could be multiple original operations 1361 for single rhs since we moving it up and merging along different 1362 paths. 1363 1364 Some code is adapted from regrename.c (regrename_optimize). 1365 If original register is available, function returns it. 1366 Otherwise it performs the checks, so the new register should 1367 comply with the following: 1368 - it should not violate any live ranges (such registers are in 1369 REG_RENAME_P->available_for_renaming set); 1370 - it should not be in the HARD_REGS_USED regset; 1371 - it should be in the class compatible with original uses; 1372 - it should not be clobbered through reference with different mode; 1373 - if we're in the leaf function, then the new register should 1374 not be in the LEAF_REGISTERS; 1375 - etc. 1376 1377 If several registers meet the conditions, the register with smallest 1378 tick is returned to achieve more even register allocation. 1379 1380 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true. 1381 1382 If no register satisfies the above conditions, NULL_RTX is returned. */ 1383 static rtx 1384 choose_best_reg_1 (HARD_REG_SET hard_regs_used, 1385 struct reg_rename *reg_rename_p, 1386 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1387 { 1388 int best_new_reg; 1389 unsigned cur_reg; 1390 enum machine_mode mode = VOIDmode; 1391 unsigned regno, i, n; 1392 hard_reg_set_iterator hrsi; 1393 def_list_iterator di; 1394 def_t def; 1395 1396 /* If original register is available, return it. */ 1397 *is_orig_reg_p_ptr = true; 1398 1399 FOR_EACH_DEF (def, di, original_insns) 1400 { 1401 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1402 1403 gcc_assert (REG_P (orig_dest)); 1404 1405 /* Check that all original operations have the same mode. 1406 This is done for the next loop; if we'd return from this 1407 loop, we'd check only part of them, but in this case 1408 it doesn't matter. */ 1409 if (mode == VOIDmode) 1410 mode = GET_MODE (orig_dest); 1411 gcc_assert (mode == GET_MODE (orig_dest)); 1412 1413 regno = REGNO (orig_dest); 1414 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++) 1415 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i)) 1416 break; 1417 1418 /* All hard registers are available. */ 1419 if (i == n) 1420 { 1421 gcc_assert (mode != VOIDmode); 1422 1423 /* Hard registers should not be shared. */ 1424 return gen_rtx_REG (mode, regno); 1425 } 1426 } 1427 1428 *is_orig_reg_p_ptr = false; 1429 best_new_reg = -1; 1430 1431 /* Among all available regs choose the register that was 1432 allocated earliest. */ 1433 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1434 0, cur_reg, hrsi) 1435 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg)) 1436 { 1437 /* Check that all hard regs for mode are available. */ 1438 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++) 1439 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i) 1440 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming, 1441 cur_reg + i)) 1442 break; 1443 1444 if (i < n) 1445 continue; 1446 1447 /* All hard registers are available. */ 1448 if (best_new_reg < 0 1449 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg]) 1450 { 1451 best_new_reg = cur_reg; 1452 1453 /* Return immediately when we know there's no better reg. */ 1454 if (! reg_rename_tick[best_new_reg]) 1455 break; 1456 } 1457 } 1458 1459 if (best_new_reg >= 0) 1460 { 1461 /* Use the check from the above loop. */ 1462 gcc_assert (mode != VOIDmode); 1463 return gen_rtx_REG (mode, best_new_reg); 1464 } 1465 1466 return NULL_RTX; 1467 } 1468 1469 /* A wrapper around choose_best_reg_1 () to verify that we make correct 1470 assumptions about available registers in the function. */ 1471 static rtx 1472 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p, 1473 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1474 { 1475 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p, 1476 original_insns, is_orig_reg_p_ptr); 1477 1478 /* FIXME loop over hard_regno_nregs here. */ 1479 gcc_assert (best_reg == NULL_RTX 1480 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg))); 1481 1482 return best_reg; 1483 } 1484 1485 /* Choose the pseudo register for storing rhs value. As this is supposed 1486 to work before reload, we return either the original register or make 1487 the new one. The parameters are the same that in choose_nest_reg_1 1488 functions, except that USED_REGS may contain pseudos. 1489 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS. 1490 1491 TODO: take into account register pressure while doing this. Up to this 1492 moment, this function would never return NULL for pseudos, but we should 1493 not rely on this. */ 1494 static rtx 1495 choose_best_pseudo_reg (regset used_regs, 1496 struct reg_rename *reg_rename_p, 1497 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1498 { 1499 def_list_iterator i; 1500 def_t def; 1501 enum machine_mode mode = VOIDmode; 1502 bool bad_hard_regs = false; 1503 1504 /* We should not use this after reload. */ 1505 gcc_assert (!reload_completed); 1506 1507 /* If original register is available, return it. */ 1508 *is_orig_reg_p_ptr = true; 1509 1510 FOR_EACH_DEF (def, i, original_insns) 1511 { 1512 rtx dest = SET_DEST (PATTERN (def->orig_insn)); 1513 int orig_regno; 1514 1515 gcc_assert (REG_P (dest)); 1516 1517 /* Check that all original operations have the same mode. */ 1518 if (mode == VOIDmode) 1519 mode = GET_MODE (dest); 1520 else 1521 gcc_assert (mode == GET_MODE (dest)); 1522 orig_regno = REGNO (dest); 1523 1524 if (!REGNO_REG_SET_P (used_regs, orig_regno)) 1525 { 1526 if (orig_regno < FIRST_PSEUDO_REGISTER) 1527 { 1528 gcc_assert (df_regs_ever_live_p (orig_regno)); 1529 1530 /* For hard registers, we have to check hardware imposed 1531 limitations (frame/stack registers, calls crossed). */ 1532 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1533 orig_regno)) 1534 { 1535 /* Don't let register cross a call if it doesn't already 1536 cross one. This condition is written in accordance with 1537 that in sched-deps.c sched_analyze_reg(). */ 1538 if (!reg_rename_p->crosses_call 1539 || REG_N_CALLS_CROSSED (orig_regno) > 0) 1540 return gen_rtx_REG (mode, orig_regno); 1541 } 1542 1543 bad_hard_regs = true; 1544 } 1545 else 1546 return dest; 1547 } 1548 } 1549 1550 *is_orig_reg_p_ptr = false; 1551 1552 /* We had some original hard registers that couldn't be used. 1553 Those were likely special. Don't try to create a pseudo. */ 1554 if (bad_hard_regs) 1555 return NULL_RTX; 1556 1557 /* We haven't found a register from original operations. Get a new one. 1558 FIXME: control register pressure somehow. */ 1559 { 1560 rtx new_reg = gen_reg_rtx (mode); 1561 1562 gcc_assert (mode != VOIDmode); 1563 1564 max_regno = max_reg_num (); 1565 maybe_extend_reg_info_p (); 1566 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0; 1567 1568 return new_reg; 1569 } 1570 } 1571 1572 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE, 1573 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */ 1574 static void 1575 verify_target_availability (expr_t expr, regset used_regs, 1576 struct reg_rename *reg_rename_p) 1577 { 1578 unsigned n, i, regno; 1579 enum machine_mode mode; 1580 bool target_available, live_available, hard_available; 1581 1582 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0) 1583 return; 1584 1585 regno = expr_dest_regno (expr); 1586 mode = GET_MODE (EXPR_LHS (expr)); 1587 target_available = EXPR_TARGET_AVAILABLE (expr) == 1; 1588 n = reload_completed ? hard_regno_nregs[regno][mode] : 1; 1589 1590 live_available = hard_available = true; 1591 for (i = 0; i < n; i++) 1592 { 1593 if (bitmap_bit_p (used_regs, regno + i)) 1594 live_available = false; 1595 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i)) 1596 hard_available = false; 1597 } 1598 1599 /* When target is not available, it may be due to hard register 1600 restrictions, e.g. crosses calls, so we check hard_available too. */ 1601 if (target_available) 1602 gcc_assert (live_available); 1603 else 1604 /* Check only if we haven't scheduled something on the previous fence, 1605 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues 1606 and having more than one fence, we may end having targ_un in a block 1607 in which successors target register is actually available. 1608 1609 The last condition handles the case when a dependence from a call insn 1610 was created in sched-deps.c for insns with destination registers that 1611 never crossed a call before, but do cross one after our code motion. 1612 1613 FIXME: in the latter case, we just uselessly called find_used_regs, 1614 because we can't move this expression with any other register 1615 as well. */ 1616 gcc_assert (scheduled_something_on_previous_fence || !live_available 1617 || !hard_available 1618 || (!reload_completed && reg_rename_p->crosses_call 1619 && REG_N_CALLS_CROSSED (regno) == 0)); 1620 } 1621 1622 /* Collect unavailable registers due to liveness for EXPR from BNDS 1623 into USED_REGS. Save additional information about available 1624 registers and unavailable due to hardware restriction registers 1625 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS 1626 list. */ 1627 static void 1628 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs, 1629 struct reg_rename *reg_rename_p, 1630 def_list_t *original_insns) 1631 { 1632 for (; bnds; bnds = BLIST_NEXT (bnds)) 1633 { 1634 bool res; 1635 av_set_t orig_ops = NULL; 1636 bnd_t bnd = BLIST_BND (bnds); 1637 1638 /* If the chosen best expr doesn't belong to current boundary, 1639 skip it. */ 1640 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr))) 1641 continue; 1642 1643 /* Put in ORIG_OPS all exprs from this boundary that became 1644 RES on top. */ 1645 orig_ops = find_sequential_best_exprs (bnd, expr, false); 1646 1647 /* Compute used regs and OR it into the USED_REGS. */ 1648 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs, 1649 reg_rename_p, original_insns); 1650 1651 /* FIXME: the assert is true until we'd have several boundaries. */ 1652 gcc_assert (res); 1653 av_set_clear (&orig_ops); 1654 } 1655 } 1656 1657 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG. 1658 If BEST_REG is valid, replace LHS of EXPR with it. */ 1659 static bool 1660 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr) 1661 { 1662 /* Try whether we'll be able to generate the insn 1663 'dest := best_reg' at the place of the original operation. */ 1664 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns)) 1665 { 1666 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn; 1667 1668 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn))); 1669 1670 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn)) 1671 && (! replace_src_with_reg_ok_p (orig_insn, best_reg) 1672 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg))) 1673 return false; 1674 } 1675 1676 /* Make sure that EXPR has the right destination 1677 register. */ 1678 if (expr_dest_regno (expr) != REGNO (best_reg)) 1679 replace_dest_with_reg_in_expr (expr, best_reg); 1680 else 1681 EXPR_TARGET_AVAILABLE (expr) = 1; 1682 1683 return true; 1684 } 1685 1686 /* Select and assign best register to EXPR searching from BNDS. 1687 Set *IS_ORIG_REG_P to TRUE if original register was selected. 1688 Return FALSE if no register can be chosen, which could happen when: 1689 * EXPR_SEPARABLE_P is true but we were unable to find suitable register; 1690 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers 1691 that are used on the moving path. */ 1692 static bool 1693 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p) 1694 { 1695 static struct reg_rename reg_rename_data; 1696 1697 regset used_regs; 1698 def_list_t original_insns = NULL; 1699 bool reg_ok; 1700 1701 *is_orig_reg_p = false; 1702 1703 /* Don't bother to do anything if this insn doesn't set any registers. */ 1704 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr))) 1705 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)))) 1706 return true; 1707 1708 used_regs = get_clear_regset_from_pool (); 1709 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs); 1710 1711 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, ®_rename_data, 1712 &original_insns); 1713 1714 #ifdef ENABLE_CHECKING 1715 /* If after reload, make sure we're working with hard regs here. */ 1716 if (reload_completed) 1717 { 1718 reg_set_iterator rsi; 1719 unsigned i; 1720 1721 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi) 1722 gcc_unreachable (); 1723 } 1724 #endif 1725 1726 if (EXPR_SEPARABLE_P (expr)) 1727 { 1728 rtx best_reg = NULL_RTX; 1729 /* Check that we have computed availability of a target register 1730 correctly. */ 1731 verify_target_availability (expr, used_regs, ®_rename_data); 1732 1733 /* Turn everything in hard regs after reload. */ 1734 if (reload_completed) 1735 { 1736 HARD_REG_SET hard_regs_used; 1737 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs); 1738 1739 /* Join hard registers unavailable due to register class 1740 restrictions and live range intersection. */ 1741 IOR_HARD_REG_SET (hard_regs_used, 1742 reg_rename_data.unavailable_hard_regs); 1743 1744 best_reg = choose_best_reg (hard_regs_used, ®_rename_data, 1745 original_insns, is_orig_reg_p); 1746 } 1747 else 1748 best_reg = choose_best_pseudo_reg (used_regs, ®_rename_data, 1749 original_insns, is_orig_reg_p); 1750 1751 if (!best_reg) 1752 reg_ok = false; 1753 else if (*is_orig_reg_p) 1754 { 1755 /* In case of unification BEST_REG may be different from EXPR's LHS 1756 when EXPR's LHS is unavailable, and there is another LHS among 1757 ORIGINAL_INSNS. */ 1758 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr); 1759 } 1760 else 1761 { 1762 /* Forbid renaming of low-cost insns. */ 1763 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2) 1764 reg_ok = false; 1765 else 1766 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr); 1767 } 1768 } 1769 else 1770 { 1771 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set 1772 any of the HARD_REGS_USED set. */ 1773 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs, 1774 reg_rename_data.unavailable_hard_regs)) 1775 { 1776 reg_ok = false; 1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0); 1778 } 1779 else 1780 { 1781 reg_ok = true; 1782 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0); 1783 } 1784 } 1785 1786 ilist_clear (&original_insns); 1787 return_regset_to_pool (used_regs); 1788 1789 return reg_ok; 1790 } 1791 1792 1793 /* Return true if dependence described by DS can be overcomed. */ 1794 static bool 1795 can_speculate_dep_p (ds_t ds) 1796 { 1797 if (spec_info == NULL) 1798 return false; 1799 1800 /* Leave only speculative data. */ 1801 ds &= SPECULATIVE; 1802 1803 if (ds == 0) 1804 return false; 1805 1806 { 1807 /* FIXME: make sched-deps.c produce only those non-hard dependencies, 1808 that we can overcome. */ 1809 ds_t spec_mask = spec_info->mask; 1810 1811 if ((ds & spec_mask) != ds) 1812 return false; 1813 } 1814 1815 if (ds_weak (ds) < spec_info->data_weakness_cutoff) 1816 return false; 1817 1818 return true; 1819 } 1820 1821 /* Get a speculation check instruction. 1822 C_EXPR is a speculative expression, 1823 CHECK_DS describes speculations that should be checked, 1824 ORIG_INSN is the original non-speculative insn in the stream. */ 1825 static insn_t 1826 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn) 1827 { 1828 rtx check_pattern; 1829 rtx insn_rtx; 1830 insn_t insn; 1831 basic_block recovery_block; 1832 rtx label; 1833 1834 /* Create a recovery block if target is going to emit branchy check, or if 1835 ORIG_INSN was speculative already. */ 1836 if (targetm.sched.needs_block_p (check_ds) 1837 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0) 1838 { 1839 recovery_block = sel_create_recovery_block (orig_insn); 1840 label = BB_HEAD (recovery_block); 1841 } 1842 else 1843 { 1844 recovery_block = NULL; 1845 label = NULL_RTX; 1846 } 1847 1848 /* Get pattern of the check. */ 1849 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label, 1850 check_ds); 1851 1852 gcc_assert (check_pattern != NULL); 1853 1854 /* Emit check. */ 1855 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label); 1856 1857 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn), 1858 INSN_SEQNO (orig_insn), orig_insn); 1859 1860 /* Make check to be non-speculative. */ 1861 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0; 1862 INSN_SPEC_CHECKED_DS (insn) = check_ds; 1863 1864 /* Decrease priority of check by difference of load/check instruction 1865 latencies. */ 1866 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn)) 1867 - sel_vinsn_cost (INSN_VINSN (insn))); 1868 1869 /* Emit copy of original insn (though with replaced target register, 1870 if needed) to the recovery block. */ 1871 if (recovery_block != NULL) 1872 { 1873 rtx twin_rtx; 1874 1875 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr))); 1876 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX); 1877 sel_gen_recovery_insn_from_rtx_after (twin_rtx, 1878 INSN_EXPR (orig_insn), 1879 INSN_SEQNO (insn), 1880 bb_note (recovery_block)); 1881 } 1882 1883 /* If we've generated a data speculation check, make sure 1884 that all the bookkeeping instruction we'll create during 1885 this move_op () will allocate an ALAT entry so that the 1886 check won't fail. 1887 In case of control speculation we must convert C_EXPR to control 1888 speculative mode, because failing to do so will bring us an exception 1889 thrown by the non-control-speculative load. */ 1890 check_ds = ds_get_max_dep_weak (check_ds); 1891 speculate_expr (c_expr, check_ds); 1892 1893 return insn; 1894 } 1895 1896 /* True when INSN is a "regN = regN" copy. */ 1897 static bool 1898 identical_copy_p (rtx insn) 1899 { 1900 rtx lhs, rhs, pat; 1901 1902 pat = PATTERN (insn); 1903 1904 if (GET_CODE (pat) != SET) 1905 return false; 1906 1907 lhs = SET_DEST (pat); 1908 if (!REG_P (lhs)) 1909 return false; 1910 1911 rhs = SET_SRC (pat); 1912 if (!REG_P (rhs)) 1913 return false; 1914 1915 return REGNO (lhs) == REGNO (rhs); 1916 } 1917 1918 /* Undo all transformations on *AV_PTR that were done when 1919 moving through INSN. */ 1920 static void 1921 undo_transformations (av_set_t *av_ptr, rtx insn) 1922 { 1923 av_set_iterator av_iter; 1924 expr_t expr; 1925 av_set_t new_set = NULL; 1926 1927 /* First, kill any EXPR that uses registers set by an insn. This is 1928 required for correctness. */ 1929 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr) 1930 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr)) 1931 && bitmap_intersect_p (INSN_REG_SETS (insn), 1932 VINSN_REG_USES (EXPR_VINSN (expr))) 1933 /* When an insn looks like 'r1 = r1', we could substitute through 1934 it, but the above condition will still hold. This happened with 1935 gcc.c-torture/execute/961125-1.c. */ 1936 && !identical_copy_p (insn)) 1937 { 1938 if (sched_verbose >= 6) 1939 sel_print ("Expr %d removed due to use/set conflict\n", 1940 INSN_UID (EXPR_INSN_RTX (expr))); 1941 av_set_iter_remove (&av_iter); 1942 } 1943 1944 /* Undo transformations looking at the history vector. */ 1945 FOR_EACH_EXPR (expr, av_iter, *av_ptr) 1946 { 1947 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr), 1948 insn, EXPR_VINSN (expr), true); 1949 1950 if (index >= 0) 1951 { 1952 expr_history_def *phist; 1953 1954 phist = VEC_index (expr_history_def, 1955 EXPR_HISTORY_OF_CHANGES (expr), 1956 index); 1957 1958 switch (phist->type) 1959 { 1960 case TRANS_SPECULATION: 1961 { 1962 ds_t old_ds, new_ds; 1963 1964 /* Compute the difference between old and new speculative 1965 statuses: that's what we need to check. 1966 Earlier we used to assert that the status will really 1967 change. This no longer works because only the probability 1968 bits in the status may have changed during compute_av_set, 1969 and in the case of merging different probabilities of the 1970 same speculative status along different paths we do not 1971 record this in the history vector. */ 1972 old_ds = phist->spec_ds; 1973 new_ds = EXPR_SPEC_DONE_DS (expr); 1974 1975 old_ds &= SPECULATIVE; 1976 new_ds &= SPECULATIVE; 1977 new_ds &= ~old_ds; 1978 1979 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds; 1980 break; 1981 } 1982 case TRANS_SUBSTITUTION: 1983 { 1984 expr_def _tmp_expr, *tmp_expr = &_tmp_expr; 1985 vinsn_t new_vi; 1986 bool add = true; 1987 1988 new_vi = phist->old_expr_vinsn; 1989 1990 gcc_assert (VINSN_SEPARABLE_P (new_vi) 1991 == EXPR_SEPARABLE_P (expr)); 1992 copy_expr (tmp_expr, expr); 1993 1994 if (vinsn_equal_p (phist->new_expr_vinsn, 1995 EXPR_VINSN (tmp_expr))) 1996 change_vinsn_in_expr (tmp_expr, new_vi); 1997 else 1998 /* This happens when we're unsubstituting on a bookkeeping 1999 copy, which was in turn substituted. The history is wrong 2000 in this case. Do it the hard way. */ 2001 add = substitute_reg_in_expr (tmp_expr, insn, true); 2002 if (add) 2003 av_set_add (&new_set, tmp_expr); 2004 clear_expr (tmp_expr); 2005 break; 2006 } 2007 default: 2008 gcc_unreachable (); 2009 } 2010 } 2011 2012 } 2013 2014 av_set_union_and_clear (av_ptr, &new_set, NULL); 2015 } 2016 2017 2018 /* Moveup_* helpers for code motion and computing av sets. */ 2019 2020 /* Propagates EXPR inside an insn group through THROUGH_INSN. 2021 The difference from the below function is that only substitution is 2022 performed. */ 2023 static enum MOVEUP_EXPR_CODE 2024 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn) 2025 { 2026 vinsn_t vi = EXPR_VINSN (expr); 2027 ds_t *has_dep_p; 2028 ds_t full_ds; 2029 2030 /* Do this only inside insn group. */ 2031 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0); 2032 2033 full_ds = has_dependence_p (expr, through_insn, &has_dep_p); 2034 if (full_ds == 0) 2035 return MOVEUP_EXPR_SAME; 2036 2037 /* Substitution is the possible choice in this case. */ 2038 if (has_dep_p[DEPS_IN_RHS]) 2039 { 2040 /* Can't substitute UNIQUE VINSNs. */ 2041 gcc_assert (!VINSN_UNIQUE_P (vi)); 2042 2043 if (can_substitute_through_p (through_insn, 2044 has_dep_p[DEPS_IN_RHS]) 2045 && substitute_reg_in_expr (expr, through_insn, false)) 2046 { 2047 EXPR_WAS_SUBSTITUTED (expr) = true; 2048 return MOVEUP_EXPR_CHANGED; 2049 } 2050 2051 /* Don't care about this, as even true dependencies may be allowed 2052 in an insn group. */ 2053 return MOVEUP_EXPR_SAME; 2054 } 2055 2056 /* This can catch output dependencies in COND_EXECs. */ 2057 if (has_dep_p[DEPS_IN_INSN]) 2058 return MOVEUP_EXPR_NULL; 2059 2060 /* This is either an output or an anti dependence, which usually have 2061 a zero latency. Allow this here, if we'd be wrong, tick_check_p 2062 will fix this. */ 2063 gcc_assert (has_dep_p[DEPS_IN_LHS]); 2064 return MOVEUP_EXPR_AS_RHS; 2065 } 2066 2067 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */ 2068 #define CANT_MOVE_TRAPPING(expr, through_insn) \ 2069 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \ 2070 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \ 2071 && !sel_insn_is_speculation_check (through_insn)) 2072 2073 /* True when a conflict on a target register was found during moveup_expr. */ 2074 static bool was_target_conflict = false; 2075 2076 /* Return true when moving a debug INSN across THROUGH_INSN will 2077 create a bookkeeping block. We don't want to create such blocks, 2078 for they would cause codegen differences between compilations with 2079 and without debug info. */ 2080 2081 static bool 2082 moving_insn_creates_bookkeeping_block_p (insn_t insn, 2083 insn_t through_insn) 2084 { 2085 basic_block bbi, bbt; 2086 edge e1, e2; 2087 edge_iterator ei1, ei2; 2088 2089 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn)) 2090 { 2091 if (sched_verbose >= 9) 2092 sel_print ("no bookkeeping required: "); 2093 return FALSE; 2094 } 2095 2096 bbi = BLOCK_FOR_INSN (insn); 2097 2098 if (EDGE_COUNT (bbi->preds) == 1) 2099 { 2100 if (sched_verbose >= 9) 2101 sel_print ("only one pred edge: "); 2102 return TRUE; 2103 } 2104 2105 bbt = BLOCK_FOR_INSN (through_insn); 2106 2107 FOR_EACH_EDGE (e1, ei1, bbt->succs) 2108 { 2109 FOR_EACH_EDGE (e2, ei2, bbi->preds) 2110 { 2111 if (find_block_for_bookkeeping (e1, e2, TRUE)) 2112 { 2113 if (sched_verbose >= 9) 2114 sel_print ("found existing block: "); 2115 return FALSE; 2116 } 2117 } 2118 } 2119 2120 if (sched_verbose >= 9) 2121 sel_print ("would create bookkeeping block: "); 2122 2123 return TRUE; 2124 } 2125 2126 /* Modifies EXPR so it can be moved through the THROUGH_INSN, 2127 performing necessary transformations. Record the type of transformation 2128 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP, 2129 permit all dependencies except true ones, and try to remove those 2130 too via forward substitution. All cases when a non-eliminable 2131 non-zero cost dependency exists inside an insn group will be fixed 2132 in tick_check_p instead. */ 2133 static enum MOVEUP_EXPR_CODE 2134 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group, 2135 enum local_trans_type *ptrans_type) 2136 { 2137 vinsn_t vi = EXPR_VINSN (expr); 2138 insn_t insn = VINSN_INSN_RTX (vi); 2139 bool was_changed = false; 2140 bool as_rhs = false; 2141 ds_t *has_dep_p; 2142 ds_t full_ds; 2143 2144 /* When inside_insn_group, delegate to the helper. */ 2145 if (inside_insn_group) 2146 return moveup_expr_inside_insn_group (expr, through_insn); 2147 2148 /* Deal with unique insns and control dependencies. */ 2149 if (VINSN_UNIQUE_P (vi)) 2150 { 2151 /* We can move jumps without side-effects or jumps that are 2152 mutually exclusive with instruction THROUGH_INSN (all in cases 2153 dependencies allow to do so and jump is not speculative). */ 2154 if (control_flow_insn_p (insn)) 2155 { 2156 basic_block fallthru_bb; 2157 2158 /* Do not move checks and do not move jumps through other 2159 jumps. */ 2160 if (control_flow_insn_p (through_insn) 2161 || sel_insn_is_speculation_check (insn)) 2162 return MOVEUP_EXPR_NULL; 2163 2164 /* Don't move jumps through CFG joins. */ 2165 if (bookkeeping_can_be_created_if_moved_through_p (through_insn)) 2166 return MOVEUP_EXPR_NULL; 2167 2168 /* The jump should have a clear fallthru block, and 2169 this block should be in the current region. */ 2170 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL 2171 || ! in_current_region_p (fallthru_bb)) 2172 return MOVEUP_EXPR_NULL; 2173 2174 /* And it should be mutually exclusive with through_insn. */ 2175 if (! sched_insns_conditions_mutex_p (insn, through_insn) 2176 && ! DEBUG_INSN_P (through_insn)) 2177 return MOVEUP_EXPR_NULL; 2178 } 2179 2180 /* Don't move what we can't move. */ 2181 if (EXPR_CANT_MOVE (expr) 2182 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)) 2183 return MOVEUP_EXPR_NULL; 2184 2185 /* Don't move SCHED_GROUP instruction through anything. 2186 If we don't force this, then it will be possible to start 2187 scheduling a sched_group before all its dependencies are 2188 resolved. 2189 ??? Haifa deals with this issue by delaying the SCHED_GROUP 2190 as late as possible through rank_for_schedule. */ 2191 if (SCHED_GROUP_P (insn)) 2192 return MOVEUP_EXPR_NULL; 2193 } 2194 else 2195 gcc_assert (!control_flow_insn_p (insn)); 2196 2197 /* Don't move debug insns if this would require bookkeeping. */ 2198 if (DEBUG_INSN_P (insn) 2199 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn) 2200 && moving_insn_creates_bookkeeping_block_p (insn, through_insn)) 2201 return MOVEUP_EXPR_NULL; 2202 2203 /* Deal with data dependencies. */ 2204 was_target_conflict = false; 2205 full_ds = has_dependence_p (expr, through_insn, &has_dep_p); 2206 if (full_ds == 0) 2207 { 2208 if (!CANT_MOVE_TRAPPING (expr, through_insn)) 2209 return MOVEUP_EXPR_SAME; 2210 } 2211 else 2212 { 2213 /* We can move UNIQUE insn up only as a whole and unchanged, 2214 so it shouldn't have any dependencies. */ 2215 if (VINSN_UNIQUE_P (vi)) 2216 return MOVEUP_EXPR_NULL; 2217 } 2218 2219 if (full_ds != 0 && can_speculate_dep_p (full_ds)) 2220 { 2221 int res; 2222 2223 res = speculate_expr (expr, full_ds); 2224 if (res >= 0) 2225 { 2226 /* Speculation was successful. */ 2227 full_ds = 0; 2228 was_changed = (res > 0); 2229 if (res == 2) 2230 was_target_conflict = true; 2231 if (ptrans_type) 2232 *ptrans_type = TRANS_SPECULATION; 2233 sel_clear_has_dependence (); 2234 } 2235 } 2236 2237 if (has_dep_p[DEPS_IN_INSN]) 2238 /* We have some dependency that cannot be discarded. */ 2239 return MOVEUP_EXPR_NULL; 2240 2241 if (has_dep_p[DEPS_IN_LHS]) 2242 { 2243 /* Only separable insns can be moved up with the new register. 2244 Anyways, we should mark that the original register is 2245 unavailable. */ 2246 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr)) 2247 return MOVEUP_EXPR_NULL; 2248 2249 EXPR_TARGET_AVAILABLE (expr) = false; 2250 was_target_conflict = true; 2251 as_rhs = true; 2252 } 2253 2254 /* At this point we have either separable insns, that will be lifted 2255 up only as RHSes, or non-separable insns with no dependency in lhs. 2256 If dependency is in RHS, then try to perform substitution and move up 2257 substituted RHS: 2258 2259 Ex. 1: Ex.2 2260 y = x; y = x; 2261 z = y*2; y = y*2; 2262 2263 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be 2264 moved above y=x assignment as z=x*2. 2265 2266 In Ex.2 y*2 also can be substituted for x*2, but only the right hand 2267 side can be moved because of the output dependency. The operation was 2268 cropped to its rhs above. */ 2269 if (has_dep_p[DEPS_IN_RHS]) 2270 { 2271 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS]; 2272 2273 /* Can't substitute UNIQUE VINSNs. */ 2274 gcc_assert (!VINSN_UNIQUE_P (vi)); 2275 2276 if (can_speculate_dep_p (*rhs_dsp)) 2277 { 2278 int res; 2279 2280 res = speculate_expr (expr, *rhs_dsp); 2281 if (res >= 0) 2282 { 2283 /* Speculation was successful. */ 2284 *rhs_dsp = 0; 2285 was_changed = (res > 0); 2286 if (res == 2) 2287 was_target_conflict = true; 2288 if (ptrans_type) 2289 *ptrans_type = TRANS_SPECULATION; 2290 } 2291 else 2292 return MOVEUP_EXPR_NULL; 2293 } 2294 else if (can_substitute_through_p (through_insn, 2295 *rhs_dsp) 2296 && substitute_reg_in_expr (expr, through_insn, false)) 2297 { 2298 /* ??? We cannot perform substitution AND speculation on the same 2299 insn. */ 2300 gcc_assert (!was_changed); 2301 was_changed = true; 2302 if (ptrans_type) 2303 *ptrans_type = TRANS_SUBSTITUTION; 2304 EXPR_WAS_SUBSTITUTED (expr) = true; 2305 } 2306 else 2307 return MOVEUP_EXPR_NULL; 2308 } 2309 2310 /* Don't move trapping insns through jumps. 2311 This check should be at the end to give a chance to control speculation 2312 to perform its duties. */ 2313 if (CANT_MOVE_TRAPPING (expr, through_insn)) 2314 return MOVEUP_EXPR_NULL; 2315 2316 return (was_changed 2317 ? MOVEUP_EXPR_CHANGED 2318 : (as_rhs 2319 ? MOVEUP_EXPR_AS_RHS 2320 : MOVEUP_EXPR_SAME)); 2321 } 2322 2323 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2324 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies 2325 that can exist within a parallel group. Write to RES the resulting 2326 code for moveup_expr. */ 2327 static bool 2328 try_bitmap_cache (expr_t expr, insn_t insn, 2329 bool inside_insn_group, 2330 enum MOVEUP_EXPR_CODE *res) 2331 { 2332 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2333 2334 /* First check whether we've analyzed this situation already. */ 2335 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid)) 2336 { 2337 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid)) 2338 { 2339 if (sched_verbose >= 6) 2340 sel_print ("removed (cached)\n"); 2341 *res = MOVEUP_EXPR_NULL; 2342 return true; 2343 } 2344 else 2345 { 2346 if (sched_verbose >= 6) 2347 sel_print ("unchanged (cached)\n"); 2348 *res = MOVEUP_EXPR_SAME; 2349 return true; 2350 } 2351 } 2352 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid)) 2353 { 2354 if (inside_insn_group) 2355 { 2356 if (sched_verbose >= 6) 2357 sel_print ("unchanged (as RHS, cached, inside insn group)\n"); 2358 *res = MOVEUP_EXPR_SAME; 2359 return true; 2360 2361 } 2362 else 2363 EXPR_TARGET_AVAILABLE (expr) = false; 2364 2365 /* This is the only case when propagation result can change over time, 2366 as we can dynamically switch off scheduling as RHS. In this case, 2367 just check the flag to reach the correct decision. */ 2368 if (enable_schedule_as_rhs_p) 2369 { 2370 if (sched_verbose >= 6) 2371 sel_print ("unchanged (as RHS, cached)\n"); 2372 *res = MOVEUP_EXPR_AS_RHS; 2373 return true; 2374 } 2375 else 2376 { 2377 if (sched_verbose >= 6) 2378 sel_print ("removed (cached as RHS, but renaming" 2379 " is now disabled)\n"); 2380 *res = MOVEUP_EXPR_NULL; 2381 return true; 2382 } 2383 } 2384 2385 return false; 2386 } 2387 2388 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2389 if successful. Write to RES the resulting code for moveup_expr. */ 2390 static bool 2391 try_transformation_cache (expr_t expr, insn_t insn, 2392 enum MOVEUP_EXPR_CODE *res) 2393 { 2394 struct transformed_insns *pti 2395 = (struct transformed_insns *) 2396 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn), 2397 &EXPR_VINSN (expr), 2398 VINSN_HASH_RTX (EXPR_VINSN (expr))); 2399 if (pti) 2400 { 2401 /* This EXPR was already moved through this insn and was 2402 changed as a result. Fetch the proper data from 2403 the hashtable. */ 2404 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2405 INSN_UID (insn), pti->type, 2406 pti->vinsn_old, pti->vinsn_new, 2407 EXPR_SPEC_DONE_DS (expr)); 2408 2409 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new))) 2410 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true); 2411 change_vinsn_in_expr (expr, pti->vinsn_new); 2412 if (pti->was_target_conflict) 2413 EXPR_TARGET_AVAILABLE (expr) = false; 2414 if (pti->type == TRANS_SPECULATION) 2415 { 2416 EXPR_SPEC_DONE_DS (expr) = pti->ds; 2417 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check; 2418 } 2419 2420 if (sched_verbose >= 6) 2421 { 2422 sel_print ("changed (cached): "); 2423 dump_expr (expr); 2424 sel_print ("\n"); 2425 } 2426 2427 *res = MOVEUP_EXPR_CHANGED; 2428 return true; 2429 } 2430 2431 return false; 2432 } 2433 2434 /* Update bitmap caches on INSN with result RES of propagating EXPR. */ 2435 static void 2436 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group, 2437 enum MOVEUP_EXPR_CODE res) 2438 { 2439 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2440 2441 /* Do not cache result of propagating jumps through an insn group, 2442 as it is always true, which is not useful outside the group. */ 2443 if (inside_insn_group) 2444 return; 2445 2446 if (res == MOVEUP_EXPR_NULL) 2447 { 2448 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2449 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid); 2450 } 2451 else if (res == MOVEUP_EXPR_SAME) 2452 { 2453 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2454 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid); 2455 } 2456 else if (res == MOVEUP_EXPR_AS_RHS) 2457 { 2458 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2459 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid); 2460 } 2461 else 2462 gcc_unreachable (); 2463 } 2464 2465 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN 2466 and transformation type TRANS_TYPE. */ 2467 static void 2468 update_transformation_cache (expr_t expr, insn_t insn, 2469 bool inside_insn_group, 2470 enum local_trans_type trans_type, 2471 vinsn_t expr_old_vinsn) 2472 { 2473 struct transformed_insns *pti; 2474 2475 if (inside_insn_group) 2476 return; 2477 2478 pti = XNEW (struct transformed_insns); 2479 pti->vinsn_old = expr_old_vinsn; 2480 pti->vinsn_new = EXPR_VINSN (expr); 2481 pti->type = trans_type; 2482 pti->was_target_conflict = was_target_conflict; 2483 pti->ds = EXPR_SPEC_DONE_DS (expr); 2484 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr); 2485 vinsn_attach (pti->vinsn_old); 2486 vinsn_attach (pti->vinsn_new); 2487 *((struct transformed_insns **) 2488 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn), 2489 pti, VINSN_HASH_RTX (expr_old_vinsn), 2490 INSERT)) = pti; 2491 } 2492 2493 /* Same as moveup_expr, but first looks up the result of 2494 transformation in caches. */ 2495 static enum MOVEUP_EXPR_CODE 2496 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group) 2497 { 2498 enum MOVEUP_EXPR_CODE res; 2499 bool got_answer = false; 2500 2501 if (sched_verbose >= 6) 2502 { 2503 sel_print ("Moving "); 2504 dump_expr (expr); 2505 sel_print (" through %d: ", INSN_UID (insn)); 2506 } 2507 2508 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr)) 2509 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))) 2510 == EXPR_INSN_RTX (expr))) 2511 /* Don't use cached information for debug insns that are heads of 2512 basic blocks. */; 2513 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res)) 2514 /* When inside insn group, we do not want remove stores conflicting 2515 with previosly issued loads. */ 2516 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL; 2517 else if (try_transformation_cache (expr, insn, &res)) 2518 got_answer = true; 2519 2520 if (! got_answer) 2521 { 2522 /* Invoke moveup_expr and record the results. */ 2523 vinsn_t expr_old_vinsn = EXPR_VINSN (expr); 2524 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr); 2525 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn)); 2526 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn); 2527 enum local_trans_type trans_type = TRANS_SUBSTITUTION; 2528 2529 /* ??? Invent something better than this. We can't allow old_vinsn 2530 to go, we need it for the history vector. */ 2531 vinsn_attach (expr_old_vinsn); 2532 2533 res = moveup_expr (expr, insn, inside_insn_group, 2534 &trans_type); 2535 switch (res) 2536 { 2537 case MOVEUP_EXPR_NULL: 2538 update_bitmap_cache (expr, insn, inside_insn_group, res); 2539 if (sched_verbose >= 6) 2540 sel_print ("removed\n"); 2541 break; 2542 2543 case MOVEUP_EXPR_SAME: 2544 update_bitmap_cache (expr, insn, inside_insn_group, res); 2545 if (sched_verbose >= 6) 2546 sel_print ("unchanged\n"); 2547 break; 2548 2549 case MOVEUP_EXPR_AS_RHS: 2550 gcc_assert (!unique_p || inside_insn_group); 2551 update_bitmap_cache (expr, insn, inside_insn_group, res); 2552 if (sched_verbose >= 6) 2553 sel_print ("unchanged (as RHS)\n"); 2554 break; 2555 2556 case MOVEUP_EXPR_CHANGED: 2557 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid 2558 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds); 2559 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2560 INSN_UID (insn), trans_type, 2561 expr_old_vinsn, EXPR_VINSN (expr), 2562 expr_old_spec_ds); 2563 update_transformation_cache (expr, insn, inside_insn_group, 2564 trans_type, expr_old_vinsn); 2565 if (sched_verbose >= 6) 2566 { 2567 sel_print ("changed: "); 2568 dump_expr (expr); 2569 sel_print ("\n"); 2570 } 2571 break; 2572 default: 2573 gcc_unreachable (); 2574 } 2575 2576 vinsn_detach (expr_old_vinsn); 2577 } 2578 2579 return res; 2580 } 2581 2582 /* Moves an av set AVP up through INSN, performing necessary 2583 transformations. */ 2584 static void 2585 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group) 2586 { 2587 av_set_iterator i; 2588 expr_t expr; 2589 2590 FOR_EACH_EXPR_1 (expr, i, avp) 2591 { 2592 2593 switch (moveup_expr_cached (expr, insn, inside_insn_group)) 2594 { 2595 case MOVEUP_EXPR_SAME: 2596 case MOVEUP_EXPR_AS_RHS: 2597 break; 2598 2599 case MOVEUP_EXPR_NULL: 2600 av_set_iter_remove (&i); 2601 break; 2602 2603 case MOVEUP_EXPR_CHANGED: 2604 expr = merge_with_other_exprs (avp, &i, expr); 2605 break; 2606 2607 default: 2608 gcc_unreachable (); 2609 } 2610 } 2611 } 2612 2613 /* Moves AVP set along PATH. */ 2614 static void 2615 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path) 2616 { 2617 int last_cycle; 2618 2619 if (sched_verbose >= 6) 2620 sel_print ("Moving expressions up in the insn group...\n"); 2621 if (! path) 2622 return; 2623 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path)); 2624 while (path 2625 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2626 { 2627 moveup_set_expr (avp, ILIST_INSN (path), true); 2628 path = ILIST_NEXT (path); 2629 } 2630 } 2631 2632 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */ 2633 static bool 2634 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw) 2635 { 2636 expr_def _tmp, *tmp = &_tmp; 2637 int last_cycle; 2638 bool res = true; 2639 2640 copy_expr_onside (tmp, expr); 2641 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0; 2642 while (path 2643 && res 2644 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2645 { 2646 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true) 2647 != MOVEUP_EXPR_NULL); 2648 path = ILIST_NEXT (path); 2649 } 2650 2651 if (res) 2652 { 2653 vinsn_t tmp_vinsn = EXPR_VINSN (tmp); 2654 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw); 2655 2656 if (tmp_vinsn != expr_vliw_vinsn) 2657 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn); 2658 } 2659 2660 clear_expr (tmp); 2661 return res; 2662 } 2663 2664 2665 /* Functions that compute av and lv sets. */ 2666 2667 /* Returns true if INSN is not a downward continuation of the given path P in 2668 the current stage. */ 2669 static bool 2670 is_ineligible_successor (insn_t insn, ilist_t p) 2671 { 2672 insn_t prev_insn; 2673 2674 /* Check if insn is not deleted. */ 2675 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn) 2676 gcc_unreachable (); 2677 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn) 2678 gcc_unreachable (); 2679 2680 /* If it's the first insn visited, then the successor is ok. */ 2681 if (!p) 2682 return false; 2683 2684 prev_insn = ILIST_INSN (p); 2685 2686 if (/* a backward edge. */ 2687 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn) 2688 /* is already visited. */ 2689 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn) 2690 && (ilist_is_in_p (p, insn) 2691 /* We can reach another fence here and still seqno of insn 2692 would be equal to seqno of prev_insn. This is possible 2693 when prev_insn is a previously created bookkeeping copy. 2694 In that case it'd get a seqno of insn. Thus, check here 2695 whether insn is in current fence too. */ 2696 || IN_CURRENT_FENCE_P (insn))) 2697 /* Was already scheduled on this round. */ 2698 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn) 2699 && IN_CURRENT_FENCE_P (insn)) 2700 /* An insn from another fence could also be 2701 scheduled earlier even if this insn is not in 2702 a fence list right now. Check INSN_SCHED_CYCLE instead. */ 2703 || (!pipelining_p 2704 && INSN_SCHED_TIMES (insn) > 0)) 2705 return true; 2706 else 2707 return false; 2708 } 2709 2710 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work' 2711 of handling multiple successors and properly merging its av_sets. P is 2712 the current path traversed. WS is the size of lookahead window. 2713 Return the av set computed. */ 2714 static av_set_t 2715 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws) 2716 { 2717 struct succs_info *sinfo; 2718 av_set_t expr_in_all_succ_branches = NULL; 2719 int is; 2720 insn_t succ, zero_succ = NULL; 2721 av_set_t av1 = NULL; 2722 2723 gcc_assert (sel_bb_end_p (insn)); 2724 2725 /* Find different kind of successors needed for correct computing of 2726 SPEC and TARGET_AVAILABLE attributes. */ 2727 sinfo = compute_succs_info (insn, SUCCS_NORMAL); 2728 2729 /* Debug output. */ 2730 if (sched_verbose >= 6) 2731 { 2732 sel_print ("successors of bb end (%d): ", INSN_UID (insn)); 2733 dump_insn_vector (sinfo->succs_ok); 2734 sel_print ("\n"); 2735 if (sinfo->succs_ok_n != sinfo->all_succs_n) 2736 sel_print ("real successors num: %d\n", sinfo->all_succs_n); 2737 } 2738 2739 /* Add insn to to the tail of current path. */ 2740 ilist_add (&p, insn); 2741 2742 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++) 2743 { 2744 av_set_t succ_set; 2745 2746 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */ 2747 succ_set = compute_av_set_inside_bb (succ, p, ws, true); 2748 2749 av_set_split_usefulness (succ_set, 2750 VEC_index (int, sinfo->probs_ok, is), 2751 sinfo->all_prob); 2752 2753 if (sinfo->all_succs_n > 1) 2754 { 2755 /* Find EXPR'es that came from *all* successors and save them 2756 into expr_in_all_succ_branches. This set will be used later 2757 for calculating speculation attributes of EXPR'es. */ 2758 if (is == 0) 2759 { 2760 expr_in_all_succ_branches = av_set_copy (succ_set); 2761 2762 /* Remember the first successor for later. */ 2763 zero_succ = succ; 2764 } 2765 else 2766 { 2767 av_set_iterator i; 2768 expr_t expr; 2769 2770 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches) 2771 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr))) 2772 av_set_iter_remove (&i); 2773 } 2774 } 2775 2776 /* Union the av_sets. Check liveness restrictions on target registers 2777 in special case of two successors. */ 2778 if (sinfo->succs_ok_n == 2 && is == 1) 2779 { 2780 basic_block bb0 = BLOCK_FOR_INSN (zero_succ); 2781 basic_block bb1 = BLOCK_FOR_INSN (succ); 2782 2783 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1)); 2784 av_set_union_and_live (&av1, &succ_set, 2785 BB_LV_SET (bb0), 2786 BB_LV_SET (bb1), 2787 insn); 2788 } 2789 else 2790 av_set_union_and_clear (&av1, &succ_set, insn); 2791 } 2792 2793 /* Check liveness restrictions via hard way when there are more than 2794 two successors. */ 2795 if (sinfo->succs_ok_n > 2) 2796 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++) 2797 { 2798 basic_block succ_bb = BLOCK_FOR_INSN (succ); 2799 2800 gcc_assert (BB_LV_SET_VALID_P (succ_bb)); 2801 mark_unavailable_targets (av1, BB_AV_SET (succ_bb), 2802 BB_LV_SET (succ_bb)); 2803 } 2804 2805 /* Finally, check liveness restrictions on paths leaving the region. */ 2806 if (sinfo->all_succs_n > sinfo->succs_ok_n) 2807 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++) 2808 mark_unavailable_targets 2809 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ))); 2810 2811 if (sinfo->all_succs_n > 1) 2812 { 2813 av_set_iterator i; 2814 expr_t expr; 2815 2816 /* Increase the spec attribute of all EXPR'es that didn't come 2817 from all successors. */ 2818 FOR_EACH_EXPR (expr, i, av1) 2819 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr))) 2820 EXPR_SPEC (expr)++; 2821 2822 av_set_clear (&expr_in_all_succ_branches); 2823 2824 /* Do not move conditional branches through other 2825 conditional branches. So, remove all conditional 2826 branches from av_set if current operator is a conditional 2827 branch. */ 2828 av_set_substract_cond_branches (&av1); 2829 } 2830 2831 ilist_remove (&p); 2832 free_succs_info (sinfo); 2833 2834 if (sched_verbose >= 6) 2835 { 2836 sel_print ("av_succs (%d): ", INSN_UID (insn)); 2837 dump_av_set (av1); 2838 sel_print ("\n"); 2839 } 2840 2841 return av1; 2842 } 2843 2844 /* This function computes av_set for the FIRST_INSN by dragging valid 2845 av_set through all basic block insns either from the end of basic block 2846 (computed using compute_av_set_at_bb_end) or from the insn on which 2847 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set 2848 below the basic block and handling conditional branches. 2849 FIRST_INSN - the basic block head, P - path consisting of the insns 2850 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads 2851 and bb ends are added to the path), WS - current window size, 2852 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */ 2853 static av_set_t 2854 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws, 2855 bool need_copy_p) 2856 { 2857 insn_t cur_insn; 2858 int end_ws = ws; 2859 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn)); 2860 insn_t after_bb_end = NEXT_INSN (bb_end); 2861 insn_t last_insn; 2862 av_set_t av = NULL; 2863 basic_block cur_bb = BLOCK_FOR_INSN (first_insn); 2864 2865 /* Return NULL if insn is not on the legitimate downward path. */ 2866 if (is_ineligible_successor (first_insn, p)) 2867 { 2868 if (sched_verbose >= 6) 2869 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn)); 2870 2871 return NULL; 2872 } 2873 2874 /* If insn already has valid av(insn) computed, just return it. */ 2875 if (AV_SET_VALID_P (first_insn)) 2876 { 2877 av_set_t av_set; 2878 2879 if (sel_bb_head_p (first_insn)) 2880 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn)); 2881 else 2882 av_set = NULL; 2883 2884 if (sched_verbose >= 6) 2885 { 2886 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn)); 2887 dump_av_set (av_set); 2888 sel_print ("\n"); 2889 } 2890 2891 return need_copy_p ? av_set_copy (av_set) : av_set; 2892 } 2893 2894 ilist_add (&p, first_insn); 2895 2896 /* As the result after this loop have completed, in LAST_INSN we'll 2897 have the insn which has valid av_set to start backward computation 2898 from: it either will be NULL because on it the window size was exceeded 2899 or other valid av_set as returned by compute_av_set for the last insn 2900 of the basic block. */ 2901 for (last_insn = first_insn; last_insn != after_bb_end; 2902 last_insn = NEXT_INSN (last_insn)) 2903 { 2904 /* We may encounter valid av_set not only on bb_head, but also on 2905 those insns on which previously MAX_WS was exceeded. */ 2906 if (AV_SET_VALID_P (last_insn)) 2907 { 2908 if (sched_verbose >= 6) 2909 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn)); 2910 break; 2911 } 2912 2913 /* The special case: the last insn of the BB may be an 2914 ineligible_successor due to its SEQ_NO that was set on 2915 it as a bookkeeping. */ 2916 if (last_insn != first_insn 2917 && is_ineligible_successor (last_insn, p)) 2918 { 2919 if (sched_verbose >= 6) 2920 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn)); 2921 break; 2922 } 2923 2924 if (DEBUG_INSN_P (last_insn)) 2925 continue; 2926 2927 if (end_ws > max_ws) 2928 { 2929 /* We can reach max lookahead size at bb_header, so clean av_set 2930 first. */ 2931 INSN_WS_LEVEL (last_insn) = global_level; 2932 2933 if (sched_verbose >= 6) 2934 sel_print ("Insn %d is beyond the software lookahead window size\n", 2935 INSN_UID (last_insn)); 2936 break; 2937 } 2938 2939 end_ws++; 2940 } 2941 2942 /* Get the valid av_set into AV above the LAST_INSN to start backward 2943 computation from. It either will be empty av_set or av_set computed from 2944 the successors on the last insn of the current bb. */ 2945 if (last_insn != after_bb_end) 2946 { 2947 av = NULL; 2948 2949 /* This is needed only to obtain av_sets that are identical to 2950 those computed by the old compute_av_set version. */ 2951 if (last_insn == first_insn && !INSN_NOP_P (last_insn)) 2952 av_set_add (&av, INSN_EXPR (last_insn)); 2953 } 2954 else 2955 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */ 2956 av = compute_av_set_at_bb_end (bb_end, p, end_ws); 2957 2958 /* Compute av_set in AV starting from below the LAST_INSN up to 2959 location above the FIRST_INSN. */ 2960 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn); 2961 cur_insn = PREV_INSN (cur_insn)) 2962 if (!INSN_NOP_P (cur_insn)) 2963 { 2964 expr_t expr; 2965 2966 moveup_set_expr (&av, cur_insn, false); 2967 2968 /* If the expression for CUR_INSN is already in the set, 2969 replace it by the new one. */ 2970 expr = av_set_lookup (av, INSN_VINSN (cur_insn)); 2971 if (expr != NULL) 2972 { 2973 clear_expr (expr); 2974 copy_expr (expr, INSN_EXPR (cur_insn)); 2975 } 2976 else 2977 av_set_add (&av, INSN_EXPR (cur_insn)); 2978 } 2979 2980 /* Clear stale bb_av_set. */ 2981 if (sel_bb_head_p (first_insn)) 2982 { 2983 av_set_clear (&BB_AV_SET (cur_bb)); 2984 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av; 2985 BB_AV_LEVEL (cur_bb) = global_level; 2986 } 2987 2988 if (sched_verbose >= 6) 2989 { 2990 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn)); 2991 dump_av_set (av); 2992 sel_print ("\n"); 2993 } 2994 2995 ilist_remove (&p); 2996 return av; 2997 } 2998 2999 /* Compute av set before INSN. 3000 INSN - the current operation (actual rtx INSN) 3001 P - the current path, which is list of insns visited so far 3002 WS - software lookahead window size. 3003 UNIQUE_P - TRUE, if returned av_set will be changed, hence 3004 if we want to save computed av_set in s_i_d, we should make a copy of it. 3005 3006 In the resulting set we will have only expressions that don't have delay 3007 stalls and nonsubstitutable dependences. */ 3008 static av_set_t 3009 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p) 3010 { 3011 return compute_av_set_inside_bb (insn, p, ws, unique_p); 3012 } 3013 3014 /* Propagate a liveness set LV through INSN. */ 3015 static void 3016 propagate_lv_set (regset lv, insn_t insn) 3017 { 3018 gcc_assert (INSN_P (insn)); 3019 3020 if (INSN_NOP_P (insn)) 3021 return; 3022 3023 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv); 3024 } 3025 3026 /* Return livness set at the end of BB. */ 3027 static regset 3028 compute_live_after_bb (basic_block bb) 3029 { 3030 edge e; 3031 edge_iterator ei; 3032 regset lv = get_clear_regset_from_pool (); 3033 3034 gcc_assert (!ignore_first); 3035 3036 FOR_EACH_EDGE (e, ei, bb->succs) 3037 if (sel_bb_empty_p (e->dest)) 3038 { 3039 if (! BB_LV_SET_VALID_P (e->dest)) 3040 { 3041 gcc_unreachable (); 3042 gcc_assert (BB_LV_SET (e->dest) == NULL); 3043 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest); 3044 BB_LV_SET_VALID_P (e->dest) = true; 3045 } 3046 IOR_REG_SET (lv, BB_LV_SET (e->dest)); 3047 } 3048 else 3049 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest))); 3050 3051 return lv; 3052 } 3053 3054 /* Compute the set of all live registers at the point before INSN and save 3055 it at INSN if INSN is bb header. */ 3056 regset 3057 compute_live (insn_t insn) 3058 { 3059 basic_block bb = BLOCK_FOR_INSN (insn); 3060 insn_t final, temp; 3061 regset lv; 3062 3063 /* Return the valid set if we're already on it. */ 3064 if (!ignore_first) 3065 { 3066 regset src = NULL; 3067 3068 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb)) 3069 src = BB_LV_SET (bb); 3070 else 3071 { 3072 gcc_assert (in_current_region_p (bb)); 3073 if (INSN_LIVE_VALID_P (insn)) 3074 src = INSN_LIVE (insn); 3075 } 3076 3077 if (src) 3078 { 3079 lv = get_regset_from_pool (); 3080 COPY_REG_SET (lv, src); 3081 3082 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb)) 3083 { 3084 COPY_REG_SET (BB_LV_SET (bb), lv); 3085 BB_LV_SET_VALID_P (bb) = true; 3086 } 3087 3088 return_regset_to_pool (lv); 3089 return lv; 3090 } 3091 } 3092 3093 /* We've skipped the wrong lv_set. Don't skip the right one. */ 3094 ignore_first = false; 3095 gcc_assert (in_current_region_p (bb)); 3096 3097 /* Find a valid LV set in this block or below, if needed. 3098 Start searching from the next insn: either ignore_first is true, or 3099 INSN doesn't have a correct live set. */ 3100 temp = NEXT_INSN (insn); 3101 final = NEXT_INSN (BB_END (bb)); 3102 while (temp != final && ! INSN_LIVE_VALID_P (temp)) 3103 temp = NEXT_INSN (temp); 3104 if (temp == final) 3105 { 3106 lv = compute_live_after_bb (bb); 3107 temp = PREV_INSN (temp); 3108 } 3109 else 3110 { 3111 lv = get_regset_from_pool (); 3112 COPY_REG_SET (lv, INSN_LIVE (temp)); 3113 } 3114 3115 /* Put correct lv sets on the insns which have bad sets. */ 3116 final = PREV_INSN (insn); 3117 while (temp != final) 3118 { 3119 propagate_lv_set (lv, temp); 3120 COPY_REG_SET (INSN_LIVE (temp), lv); 3121 INSN_LIVE_VALID_P (temp) = true; 3122 temp = PREV_INSN (temp); 3123 } 3124 3125 /* Also put it in a BB. */ 3126 if (sel_bb_head_p (insn)) 3127 { 3128 basic_block bb = BLOCK_FOR_INSN (insn); 3129 3130 COPY_REG_SET (BB_LV_SET (bb), lv); 3131 BB_LV_SET_VALID_P (bb) = true; 3132 } 3133 3134 /* We return LV to the pool, but will not clear it there. Thus we can 3135 legimatelly use LV till the next use of regset_pool_get (). */ 3136 return_regset_to_pool (lv); 3137 return lv; 3138 } 3139 3140 /* Update liveness sets for INSN. */ 3141 static inline void 3142 update_liveness_on_insn (rtx insn) 3143 { 3144 ignore_first = true; 3145 compute_live (insn); 3146 } 3147 3148 /* Compute liveness below INSN and write it into REGS. */ 3149 static inline void 3150 compute_live_below_insn (rtx insn, regset regs) 3151 { 3152 rtx succ; 3153 succ_iterator si; 3154 3155 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL) 3156 IOR_REG_SET (regs, compute_live (succ)); 3157 } 3158 3159 /* Update the data gathered in av and lv sets starting from INSN. */ 3160 static void 3161 update_data_sets (rtx insn) 3162 { 3163 update_liveness_on_insn (insn); 3164 if (sel_bb_head_p (insn)) 3165 { 3166 gcc_assert (AV_LEVEL (insn) != 0); 3167 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1; 3168 compute_av_set (insn, NULL, 0, 0); 3169 } 3170 } 3171 3172 3173 /* Helper for move_op () and find_used_regs (). 3174 Return speculation type for which a check should be created on the place 3175 of INSN. EXPR is one of the original ops we are searching for. */ 3176 static ds_t 3177 get_spec_check_type_for_insn (insn_t insn, expr_t expr) 3178 { 3179 ds_t to_check_ds; 3180 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn)); 3181 3182 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr); 3183 3184 if (targetm.sched.get_insn_checked_ds) 3185 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn); 3186 3187 if (spec_info != NULL 3188 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL)) 3189 already_checked_ds |= BEGIN_CONTROL; 3190 3191 already_checked_ds = ds_get_speculation_types (already_checked_ds); 3192 3193 to_check_ds &= ~already_checked_ds; 3194 3195 return to_check_ds; 3196 } 3197 3198 /* Find the set of registers that are unavailable for storing expres 3199 while moving ORIG_OPS up on the path starting from INSN due to 3200 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P). 3201 3202 All the original operations found during the traversal are saved in the 3203 ORIGINAL_INSNS list. 3204 3205 REG_RENAME_P denotes the set of hardware registers that 3206 can not be used with renaming due to the register class restrictions, 3207 mode restrictions and other (the register we'll choose should be 3208 compatible class with the original uses, shouldn't be in call_used_regs, 3209 should be HARD_REGNO_RENAME_OK etc). 3210 3211 Returns TRUE if we've found all original insns, FALSE otherwise. 3212 3213 This function utilizes code_motion_path_driver (formerly find_used_regs_1) 3214 to traverse the code motion paths. This helper function finds registers 3215 that are not available for storing expres while moving ORIG_OPS up on the 3216 path starting from INSN. A register considered as used on the moving path, 3217 if one of the following conditions is not satisfied: 3218 3219 (1) a register not set or read on any path from xi to an instance of 3220 the original operation, 3221 (2) not among the live registers of the point immediately following the 3222 first original operation on a given downward path, except for the 3223 original target register of the operation, 3224 (3) not live on the other path of any conditional branch that is passed 3225 by the operation, in case original operations are not present on 3226 both paths of the conditional branch. 3227 3228 All the original operations found during the traversal are saved in the 3229 ORIGINAL_INSNS list. 3230 3231 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path 3232 from INSN to original insn. In this case CALL_USED_REG_SET will be added 3233 to unavailable hard regs at the point original operation is found. */ 3234 3235 static bool 3236 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs, 3237 struct reg_rename *reg_rename_p, def_list_t *original_insns) 3238 { 3239 def_list_iterator i; 3240 def_t def; 3241 int res; 3242 bool needs_spec_check_p = false; 3243 expr_t expr; 3244 av_set_iterator expr_iter; 3245 struct fur_static_params sparams; 3246 struct cmpd_local_params lparams; 3247 3248 /* We haven't visited any blocks yet. */ 3249 bitmap_clear (code_motion_visited_blocks); 3250 3251 /* Init parameters for code_motion_path_driver. */ 3252 sparams.crosses_call = false; 3253 sparams.original_insns = original_insns; 3254 sparams.used_regs = used_regs; 3255 3256 /* Set the appropriate hooks and data. */ 3257 code_motion_path_driver_info = &fur_hooks; 3258 3259 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 3260 3261 reg_rename_p->crosses_call |= sparams.crosses_call; 3262 3263 gcc_assert (res == 1); 3264 gcc_assert (original_insns && *original_insns); 3265 3266 /* ??? We calculate whether an expression needs a check when computing 3267 av sets. This information is not as precise as it could be due to 3268 merging this bit in merge_expr. We can do better in find_used_regs, 3269 but we want to avoid multiple traversals of the same code motion 3270 paths. */ 3271 FOR_EACH_EXPR (expr, expr_iter, orig_ops) 3272 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr); 3273 3274 /* Mark hardware regs in REG_RENAME_P that are not suitable 3275 for renaming expr in INSN due to hardware restrictions (register class, 3276 modes compatibility etc). */ 3277 FOR_EACH_DEF (def, i, *original_insns) 3278 { 3279 vinsn_t vinsn = INSN_VINSN (def->orig_insn); 3280 3281 if (VINSN_SEPARABLE_P (vinsn)) 3282 mark_unavailable_hard_regs (def, reg_rename_p, used_regs); 3283 3284 /* Do not allow clobbering of ld.[sa] address in case some of the 3285 original operations need a check. */ 3286 if (needs_spec_check_p) 3287 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn)); 3288 } 3289 3290 return true; 3291 } 3292 3293 3294 /* Functions to choose the best insn from available ones. */ 3295 3296 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */ 3297 static int 3298 sel_target_adjust_priority (expr_t expr) 3299 { 3300 int priority = EXPR_PRIORITY (expr); 3301 int new_priority; 3302 3303 if (targetm.sched.adjust_priority) 3304 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority); 3305 else 3306 new_priority = priority; 3307 3308 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */ 3309 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr); 3310 3311 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0); 3312 3313 if (sched_verbose >= 4) 3314 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n", 3315 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr), 3316 EXPR_PRIORITY_ADJ (expr), new_priority); 3317 3318 return new_priority; 3319 } 3320 3321 /* Rank two available exprs for schedule. Never return 0 here. */ 3322 static int 3323 sel_rank_for_schedule (const void *x, const void *y) 3324 { 3325 expr_t tmp = *(const expr_t *) y; 3326 expr_t tmp2 = *(const expr_t *) x; 3327 insn_t tmp_insn, tmp2_insn; 3328 vinsn_t tmp_vinsn, tmp2_vinsn; 3329 int val; 3330 3331 tmp_vinsn = EXPR_VINSN (tmp); 3332 tmp2_vinsn = EXPR_VINSN (tmp2); 3333 tmp_insn = EXPR_INSN_RTX (tmp); 3334 tmp2_insn = EXPR_INSN_RTX (tmp2); 3335 3336 /* Schedule debug insns as early as possible. */ 3337 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn)) 3338 return -1; 3339 else if (DEBUG_INSN_P (tmp2_insn)) 3340 return 1; 3341 3342 /* Prefer SCHED_GROUP_P insns to any others. */ 3343 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn)) 3344 { 3345 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn)) 3346 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1; 3347 3348 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups 3349 cannot be cloned. */ 3350 if (VINSN_UNIQUE_P (tmp2_vinsn)) 3351 return 1; 3352 return -1; 3353 } 3354 3355 /* Discourage scheduling of speculative checks. */ 3356 val = (sel_insn_is_speculation_check (tmp_insn) 3357 - sel_insn_is_speculation_check (tmp2_insn)); 3358 if (val) 3359 return val; 3360 3361 /* Prefer not scheduled insn over scheduled one. */ 3362 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0) 3363 { 3364 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2); 3365 if (val) 3366 return val; 3367 } 3368 3369 /* Prefer jump over non-jump instruction. */ 3370 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn)) 3371 return -1; 3372 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn)) 3373 return 1; 3374 3375 /* Prefer an expr with greater priority. */ 3376 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0) 3377 { 3378 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2), 3379 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp); 3380 3381 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp); 3382 } 3383 else 3384 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp) 3385 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp); 3386 if (val) 3387 return val; 3388 3389 if (spec_info != NULL && spec_info->mask != 0) 3390 /* This code was taken from haifa-sched.c: rank_for_schedule (). */ 3391 { 3392 ds_t ds1, ds2; 3393 dw_t dw1, dw2; 3394 int dw; 3395 3396 ds1 = EXPR_SPEC_DONE_DS (tmp); 3397 if (ds1) 3398 dw1 = ds_weak (ds1); 3399 else 3400 dw1 = NO_DEP_WEAK; 3401 3402 ds2 = EXPR_SPEC_DONE_DS (tmp2); 3403 if (ds2) 3404 dw2 = ds_weak (ds2); 3405 else 3406 dw2 = NO_DEP_WEAK; 3407 3408 dw = dw2 - dw1; 3409 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8)) 3410 return dw; 3411 } 3412 3413 /* Prefer an old insn to a bookkeeping insn. */ 3414 if (INSN_UID (tmp_insn) < first_emitted_uid 3415 && INSN_UID (tmp2_insn) >= first_emitted_uid) 3416 return -1; 3417 if (INSN_UID (tmp_insn) >= first_emitted_uid 3418 && INSN_UID (tmp2_insn) < first_emitted_uid) 3419 return 1; 3420 3421 /* Prefer an insn with smaller UID, as a last resort. 3422 We can't safely use INSN_LUID as it is defined only for those insns 3423 that are in the stream. */ 3424 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn); 3425 } 3426 3427 /* Filter out expressions from av set pointed to by AV_PTR 3428 that are pipelined too many times. */ 3429 static void 3430 process_pipelined_exprs (av_set_t *av_ptr) 3431 { 3432 expr_t expr; 3433 av_set_iterator si; 3434 3435 /* Don't pipeline already pipelined code as that would increase 3436 number of unnecessary register moves. */ 3437 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3438 { 3439 if (EXPR_SCHED_TIMES (expr) 3440 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES)) 3441 av_set_iter_remove (&si); 3442 } 3443 } 3444 3445 /* Filter speculative insns from AV_PTR if we don't want them. */ 3446 static void 3447 process_spec_exprs (av_set_t *av_ptr) 3448 { 3449 bool try_data_p = true; 3450 bool try_control_p = true; 3451 expr_t expr; 3452 av_set_iterator si; 3453 3454 if (spec_info == NULL) 3455 return; 3456 3457 /* Scan *AV_PTR to find out if we want to consider speculative 3458 instructions for scheduling. */ 3459 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3460 { 3461 ds_t ds; 3462 3463 ds = EXPR_SPEC_DONE_DS (expr); 3464 3465 /* The probability of a success is too low - don't speculate. */ 3466 if ((ds & SPECULATIVE) 3467 && (ds_weak (ds) < spec_info->data_weakness_cutoff 3468 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff 3469 || (pipelining_p && false 3470 && (ds & DATA_SPEC) 3471 && (ds & CONTROL_SPEC)))) 3472 { 3473 av_set_iter_remove (&si); 3474 continue; 3475 } 3476 3477 if ((spec_info->flags & PREFER_NON_DATA_SPEC) 3478 && !(ds & BEGIN_DATA)) 3479 try_data_p = false; 3480 3481 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC) 3482 && !(ds & BEGIN_CONTROL)) 3483 try_control_p = false; 3484 } 3485 3486 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3487 { 3488 ds_t ds; 3489 3490 ds = EXPR_SPEC_DONE_DS (expr); 3491 3492 if (ds & SPECULATIVE) 3493 { 3494 if ((ds & BEGIN_DATA) && !try_data_p) 3495 /* We don't want any data speculative instructions right 3496 now. */ 3497 av_set_iter_remove (&si); 3498 3499 if ((ds & BEGIN_CONTROL) && !try_control_p) 3500 /* We don't want any control speculative instructions right 3501 now. */ 3502 av_set_iter_remove (&si); 3503 } 3504 } 3505 } 3506 3507 /* Search for any use-like insns in AV_PTR and decide on scheduling 3508 them. Return one when found, and NULL otherwise. 3509 Note that we check here whether a USE could be scheduled to avoid 3510 an infinite loop later. */ 3511 static expr_t 3512 process_use_exprs (av_set_t *av_ptr) 3513 { 3514 expr_t expr; 3515 av_set_iterator si; 3516 bool uses_present_p = false; 3517 bool try_uses_p = true; 3518 3519 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3520 { 3521 /* This will also initialize INSN_CODE for later use. */ 3522 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0) 3523 { 3524 /* If we have a USE in *AV_PTR that was not scheduled yet, 3525 do so because it will do good only. */ 3526 if (EXPR_SCHED_TIMES (expr) <= 0) 3527 { 3528 if (EXPR_TARGET_AVAILABLE (expr) == 1) 3529 return expr; 3530 3531 av_set_iter_remove (&si); 3532 } 3533 else 3534 { 3535 gcc_assert (pipelining_p); 3536 3537 uses_present_p = true; 3538 } 3539 } 3540 else 3541 try_uses_p = false; 3542 } 3543 3544 if (uses_present_p) 3545 { 3546 /* If we don't want to schedule any USEs right now and we have some 3547 in *AV_PTR, remove them, else just return the first one found. */ 3548 if (!try_uses_p) 3549 { 3550 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3551 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0) 3552 av_set_iter_remove (&si); 3553 } 3554 else 3555 { 3556 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3557 { 3558 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0); 3559 3560 if (EXPR_TARGET_AVAILABLE (expr) == 1) 3561 return expr; 3562 3563 av_set_iter_remove (&si); 3564 } 3565 } 3566 } 3567 3568 return NULL; 3569 } 3570 3571 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */ 3572 static bool 3573 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr) 3574 { 3575 vinsn_t vinsn; 3576 int n; 3577 3578 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++) 3579 if (VINSN_SEPARABLE_P (vinsn)) 3580 { 3581 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr))) 3582 return true; 3583 } 3584 else 3585 { 3586 /* For non-separable instructions, the blocking insn can have 3587 another pattern due to substitution, and we can't choose 3588 different register as in the above case. Check all registers 3589 being written instead. */ 3590 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn), 3591 VINSN_REG_SETS (EXPR_VINSN (expr)))) 3592 return true; 3593 } 3594 3595 return false; 3596 } 3597 3598 #ifdef ENABLE_CHECKING 3599 /* Return true if either of expressions from ORIG_OPS can be blocked 3600 by previously created bookkeeping code. STATIC_PARAMS points to static 3601 parameters of move_op. */ 3602 static bool 3603 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params) 3604 { 3605 expr_t expr; 3606 av_set_iterator iter; 3607 moveop_static_params_p sparams; 3608 3609 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping 3610 created while scheduling on another fence. */ 3611 FOR_EACH_EXPR (expr, iter, orig_ops) 3612 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr)) 3613 return true; 3614 3615 gcc_assert (code_motion_path_driver_info == &move_op_hooks); 3616 sparams = (moveop_static_params_p) static_params; 3617 3618 /* Expressions can be also blocked by bookkeeping created during current 3619 move_op. */ 3620 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn))) 3621 FOR_EACH_EXPR (expr, iter, orig_ops) 3622 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL) 3623 return true; 3624 3625 /* Expressions in ORIG_OPS may have wrong destination register due to 3626 renaming. Check with the right register instead. */ 3627 if (sparams->dest && REG_P (sparams->dest)) 3628 { 3629 unsigned regno = REGNO (sparams->dest); 3630 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn); 3631 3632 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno) 3633 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno) 3634 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno)) 3635 return true; 3636 } 3637 3638 return false; 3639 } 3640 #endif 3641 3642 /* Clear VINSN_VEC and detach vinsns. */ 3643 static void 3644 vinsn_vec_clear (vinsn_vec_t *vinsn_vec) 3645 { 3646 unsigned len = VEC_length (vinsn_t, *vinsn_vec); 3647 if (len > 0) 3648 { 3649 vinsn_t vinsn; 3650 int n; 3651 3652 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++) 3653 vinsn_detach (vinsn); 3654 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len); 3655 } 3656 } 3657 3658 /* Add the vinsn of EXPR to the VINSN_VEC. */ 3659 static void 3660 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr) 3661 { 3662 vinsn_attach (EXPR_VINSN (expr)); 3663 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr)); 3664 } 3665 3666 /* Free the vector representing blocked expressions. */ 3667 static void 3668 vinsn_vec_free (vinsn_vec_t *vinsn_vec) 3669 { 3670 if (*vinsn_vec) 3671 VEC_free (vinsn_t, heap, *vinsn_vec); 3672 } 3673 3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */ 3675 3676 void sel_add_to_insn_priority (rtx insn, int amount) 3677 { 3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount; 3679 3680 if (sched_verbose >= 2) 3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n", 3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)), 3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn))); 3684 } 3685 3686 /* Turn AV into a vector, filter inappropriate insns and sort it. Return 3687 true if there is something to schedule. BNDS and FENCE are current 3688 boundaries and fence, respectively. If we need to stall for some cycles 3689 before an expr from AV would become available, write this number to 3690 *PNEED_STALL. */ 3691 static bool 3692 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence, 3693 int *pneed_stall) 3694 { 3695 av_set_iterator si; 3696 expr_t expr; 3697 int sched_next_worked = 0, stalled, n; 3698 static int av_max_prio, est_ticks_till_branch; 3699 int min_need_stall = -1; 3700 deps_t dc = BND_DC (BLIST_BND (bnds)); 3701 3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are 3703 already scheduled. */ 3704 if (av == NULL) 3705 return false; 3706 3707 /* Empty vector from the previous stuff. */ 3708 if (VEC_length (expr_t, vec_av_set) > 0) 3709 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set)); 3710 3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority 3712 for each insn. */ 3713 gcc_assert (VEC_empty (expr_t, vec_av_set)); 3714 FOR_EACH_EXPR (expr, si, av) 3715 { 3716 VEC_safe_push (expr_t, heap, vec_av_set, expr); 3717 3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall); 3719 3720 /* Adjust priority using target backend hook. */ 3721 sel_target_adjust_priority (expr); 3722 } 3723 3724 /* Sort the vector. */ 3725 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set), 3726 sizeof (expr_t), sel_rank_for_schedule); 3727 3728 /* We record maximal priority of insns in av set for current instruction 3729 group. */ 3730 if (FENCE_STARTS_CYCLE_P (fence)) 3731 av_max_prio = est_ticks_till_branch = INT_MIN; 3732 3733 /* Filter out inappropriate expressions. Loop's direction is reversed to 3734 visit "best" instructions first. We assume that VEC_unordered_remove 3735 moves last element in place of one being deleted. */ 3736 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--) 3737 { 3738 expr_t expr = VEC_index (expr_t, vec_av_set, n); 3739 insn_t insn = EXPR_INSN_RTX (expr); 3740 signed char target_available; 3741 bool is_orig_reg_p = true; 3742 int need_cycles, new_prio; 3743 3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */ 3745 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence)) 3746 { 3747 VEC_unordered_remove (expr_t, vec_av_set, n); 3748 continue; 3749 } 3750 3751 /* Set number of sched_next insns (just in case there 3752 could be several). */ 3753 if (FENCE_SCHED_NEXT (fence)) 3754 sched_next_worked++; 3755 3756 /* Check all liveness requirements and try renaming. 3757 FIXME: try to minimize calls to this. */ 3758 target_available = EXPR_TARGET_AVAILABLE (expr); 3759 3760 /* If insn was already scheduled on the current fence, 3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */ 3762 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)) 3763 target_available = -1; 3764 3765 /* If the availability of the EXPR is invalidated by the insertion of 3766 bookkeeping earlier, make sure that we won't choose this expr for 3767 scheduling if it's not separable, and if it is separable, then 3768 we have to recompute the set of available registers for it. */ 3769 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr)) 3770 { 3771 VEC_unordered_remove (expr_t, vec_av_set, n); 3772 if (sched_verbose >= 4) 3773 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n", 3774 INSN_UID (insn)); 3775 continue; 3776 } 3777 3778 if (target_available == true) 3779 { 3780 /* Do nothing -- we can use an existing register. */ 3781 is_orig_reg_p = EXPR_SEPARABLE_P (expr); 3782 } 3783 else if (/* Non-separable instruction will never 3784 get another register. */ 3785 (target_available == false 3786 && !EXPR_SEPARABLE_P (expr)) 3787 /* Don't try to find a register for low-priority expression. */ 3788 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename 3789 /* ??? FIXME: Don't try to rename data speculation. */ 3790 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA) 3791 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p)) 3792 { 3793 VEC_unordered_remove (expr_t, vec_av_set, n); 3794 if (sched_verbose >= 4) 3795 sel_print ("Expr %d has no suitable target register\n", 3796 INSN_UID (insn)); 3797 continue; 3798 } 3799 3800 /* Filter expressions that need to be renamed or speculated when 3801 pipelining, because compensating register copies or speculation 3802 checks are likely to be placed near the beginning of the loop, 3803 causing a stall. */ 3804 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0 3805 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0)) 3806 { 3807 /* Estimation of number of cycles until loop branch for 3808 renaming/speculation to be successful. */ 3809 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr)); 3810 3811 if ((int) current_loop_nest->ninsns < 9) 3812 { 3813 VEC_unordered_remove (expr_t, vec_av_set, n); 3814 if (sched_verbose >= 4) 3815 sel_print ("Pipelining expr %d will likely cause stall\n", 3816 INSN_UID (insn)); 3817 continue; 3818 } 3819 3820 if ((int) current_loop_nest->ninsns - num_insns_scheduled 3821 < need_n_ticks_till_branch * issue_rate / 2 3822 && est_ticks_till_branch < need_n_ticks_till_branch) 3823 { 3824 VEC_unordered_remove (expr_t, vec_av_set, n); 3825 if (sched_verbose >= 4) 3826 sel_print ("Pipelining expr %d will likely cause stall\n", 3827 INSN_UID (insn)); 3828 continue; 3829 } 3830 } 3831 3832 /* We want to schedule speculation checks as late as possible. Discard 3833 them from av set if there are instructions with higher priority. */ 3834 if (sel_insn_is_speculation_check (insn) 3835 && EXPR_PRIORITY (expr) < av_max_prio) 3836 { 3837 stalled++; 3838 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1); 3839 VEC_unordered_remove (expr_t, vec_av_set, n); 3840 if (sched_verbose >= 4) 3841 sel_print ("Delaying speculation check %d until its first use\n", 3842 INSN_UID (insn)); 3843 continue; 3844 } 3845 3846 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */ 3847 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3848 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr)); 3849 3850 /* Don't allow any insns whose data is not yet ready. 3851 Check first whether we've already tried them and failed. */ 3852 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence)) 3853 { 3854 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)] 3855 - FENCE_CYCLE (fence)); 3856 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3857 est_ticks_till_branch = MAX (est_ticks_till_branch, 3858 EXPR_PRIORITY (expr) + need_cycles); 3859 3860 if (need_cycles > 0) 3861 { 3862 stalled++; 3863 min_need_stall = (min_need_stall < 0 3864 ? need_cycles 3865 : MIN (min_need_stall, need_cycles)); 3866 VEC_unordered_remove (expr_t, vec_av_set, n); 3867 3868 if (sched_verbose >= 4) 3869 sel_print ("Expr %d is not ready until cycle %d (cached)\n", 3870 INSN_UID (insn), 3871 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3872 continue; 3873 } 3874 } 3875 3876 /* Now resort to dependence analysis to find whether EXPR might be 3877 stalled due to dependencies from FENCE's context. */ 3878 need_cycles = tick_check_p (expr, dc, fence); 3879 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles; 3880 3881 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3882 est_ticks_till_branch = MAX (est_ticks_till_branch, 3883 new_prio); 3884 3885 if (need_cycles > 0) 3886 { 3887 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence)) 3888 { 3889 int new_size = INSN_UID (insn) * 3 / 2; 3890 3891 FENCE_READY_TICKS (fence) 3892 = (int *) xrecalloc (FENCE_READY_TICKS (fence), 3893 new_size, FENCE_READY_TICKS_SIZE (fence), 3894 sizeof (int)); 3895 } 3896 FENCE_READY_TICKS (fence)[INSN_UID (insn)] 3897 = FENCE_CYCLE (fence) + need_cycles; 3898 3899 stalled++; 3900 min_need_stall = (min_need_stall < 0 3901 ? need_cycles 3902 : MIN (min_need_stall, need_cycles)); 3903 3904 VEC_unordered_remove (expr_t, vec_av_set, n); 3905 3906 if (sched_verbose >= 4) 3907 sel_print ("Expr %d is not ready yet until cycle %d\n", 3908 INSN_UID (insn), 3909 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3910 continue; 3911 } 3912 3913 if (sched_verbose >= 4) 3914 sel_print ("Expr %d is ok\n", INSN_UID (insn)); 3915 min_need_stall = 0; 3916 } 3917 3918 /* Clear SCHED_NEXT. */ 3919 if (FENCE_SCHED_NEXT (fence)) 3920 { 3921 gcc_assert (sched_next_worked == 1); 3922 FENCE_SCHED_NEXT (fence) = NULL_RTX; 3923 } 3924 3925 /* No need to stall if this variable was not initialized. */ 3926 if (min_need_stall < 0) 3927 min_need_stall = 0; 3928 3929 if (VEC_empty (expr_t, vec_av_set)) 3930 { 3931 /* We need to set *pneed_stall here, because later we skip this code 3932 when ready list is empty. */ 3933 *pneed_stall = min_need_stall; 3934 return false; 3935 } 3936 else 3937 gcc_assert (min_need_stall == 0); 3938 3939 /* Sort the vector. */ 3940 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set), 3941 sizeof (expr_t), sel_rank_for_schedule); 3942 3943 if (sched_verbose >= 4) 3944 { 3945 sel_print ("Total ready exprs: %d, stalled: %d\n", 3946 VEC_length (expr_t, vec_av_set), stalled); 3947 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set)); 3948 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++) 3949 dump_expr (expr); 3950 sel_print ("\n"); 3951 } 3952 3953 *pneed_stall = 0; 3954 return true; 3955 } 3956 3957 /* Convert a vectored and sorted av set to the ready list that 3958 the rest of the backend wants to see. */ 3959 static void 3960 convert_vec_av_set_to_ready (void) 3961 { 3962 int n; 3963 expr_t expr; 3964 3965 /* Allocate and fill the ready list from the sorted vector. */ 3966 ready.n_ready = VEC_length (expr_t, vec_av_set); 3967 ready.first = ready.n_ready - 1; 3968 3969 gcc_assert (ready.n_ready > 0); 3970 3971 if (ready.n_ready > max_issue_size) 3972 { 3973 max_issue_size = ready.n_ready; 3974 sched_extend_ready_list (ready.n_ready); 3975 } 3976 3977 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++) 3978 { 3979 vinsn_t vi = EXPR_VINSN (expr); 3980 insn_t insn = VINSN_INSN_RTX (vi); 3981 3982 ready_try[n] = 0; 3983 ready.vec[n] = insn; 3984 } 3985 } 3986 3987 /* Initialize ready list from *AV_PTR for the max_issue () call. 3988 If any unrecognizable insn found in *AV_PTR, return it (and skip 3989 max_issue). BND and FENCE are current boundary and fence, 3990 respectively. If we need to stall for some cycles before an expr 3991 from *AV_PTR would become available, write this number to *PNEED_STALL. */ 3992 static expr_t 3993 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence, 3994 int *pneed_stall) 3995 { 3996 expr_t expr; 3997 3998 /* We do not support multiple boundaries per fence. */ 3999 gcc_assert (BLIST_NEXT (bnds) == NULL); 4000 4001 /* Process expressions required special handling, i.e. pipelined, 4002 speculative and recog() < 0 expressions first. */ 4003 process_pipelined_exprs (av_ptr); 4004 process_spec_exprs (av_ptr); 4005 4006 /* A USE could be scheduled immediately. */ 4007 expr = process_use_exprs (av_ptr); 4008 if (expr) 4009 { 4010 *pneed_stall = 0; 4011 return expr; 4012 } 4013 4014 /* Turn the av set to a vector for sorting. */ 4015 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall)) 4016 { 4017 ready.n_ready = 0; 4018 return NULL; 4019 } 4020 4021 /* Build the final ready list. */ 4022 convert_vec_av_set_to_ready (); 4023 return NULL; 4024 } 4025 4026 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */ 4027 static bool 4028 sel_dfa_new_cycle (insn_t insn, fence_t fence) 4029 { 4030 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence) 4031 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence)) 4032 : FENCE_CYCLE (fence) - 1; 4033 bool res = false; 4034 int sort_p = 0; 4035 4036 if (!targetm.sched.dfa_new_cycle) 4037 return false; 4038 4039 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4040 4041 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, 4042 insn, last_scheduled_cycle, 4043 FENCE_CYCLE (fence), &sort_p)) 4044 { 4045 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size); 4046 advance_one_cycle (fence); 4047 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4048 res = true; 4049 } 4050 4051 return res; 4052 } 4053 4054 /* Invoke reorder* target hooks on the ready list. Return the number of insns 4055 we can issue. FENCE is the current fence. */ 4056 static int 4057 invoke_reorder_hooks (fence_t fence) 4058 { 4059 int issue_more; 4060 bool ran_hook = false; 4061 4062 /* Call the reorder hook at the beginning of the cycle, and call 4063 the reorder2 hook in the middle of the cycle. */ 4064 if (FENCE_ISSUED_INSNS (fence) == 0) 4065 { 4066 if (targetm.sched.reorder 4067 && !SCHED_GROUP_P (ready_element (&ready, 0)) 4068 && ready.n_ready > 1) 4069 { 4070 /* Don't give reorder the most prioritized insn as it can break 4071 pipelining. */ 4072 if (pipelining_p) 4073 --ready.n_ready; 4074 4075 issue_more 4076 = targetm.sched.reorder (sched_dump, sched_verbose, 4077 ready_lastpos (&ready), 4078 &ready.n_ready, FENCE_CYCLE (fence)); 4079 4080 if (pipelining_p) 4081 ++ready.n_ready; 4082 4083 ran_hook = true; 4084 } 4085 else 4086 /* Initialize can_issue_more for variable_issue. */ 4087 issue_more = issue_rate; 4088 } 4089 else if (targetm.sched.reorder2 4090 && !SCHED_GROUP_P (ready_element (&ready, 0))) 4091 { 4092 if (ready.n_ready == 1) 4093 issue_more = 4094 targetm.sched.reorder2 (sched_dump, sched_verbose, 4095 ready_lastpos (&ready), 4096 &ready.n_ready, FENCE_CYCLE (fence)); 4097 else 4098 { 4099 if (pipelining_p) 4100 --ready.n_ready; 4101 4102 issue_more = 4103 targetm.sched.reorder2 (sched_dump, sched_verbose, 4104 ready.n_ready 4105 ? ready_lastpos (&ready) : NULL, 4106 &ready.n_ready, FENCE_CYCLE (fence)); 4107 4108 if (pipelining_p) 4109 ++ready.n_ready; 4110 } 4111 4112 ran_hook = true; 4113 } 4114 else 4115 issue_more = FENCE_ISSUE_MORE (fence); 4116 4117 /* Ensure that ready list and vec_av_set are in line with each other, 4118 i.e. vec_av_set[i] == ready_element (&ready, i). */ 4119 if (issue_more && ran_hook) 4120 { 4121 int i, j, n; 4122 rtx *arr = ready.vec; 4123 expr_t *vec = VEC_address (expr_t, vec_av_set); 4124 4125 for (i = 0, n = ready.n_ready; i < n; i++) 4126 if (EXPR_INSN_RTX (vec[i]) != arr[i]) 4127 { 4128 expr_t tmp; 4129 4130 for (j = i; j < n; j++) 4131 if (EXPR_INSN_RTX (vec[j]) == arr[i]) 4132 break; 4133 gcc_assert (j < n); 4134 4135 tmp = vec[i]; 4136 vec[i] = vec[j]; 4137 vec[j] = tmp; 4138 } 4139 } 4140 4141 return issue_more; 4142 } 4143 4144 /* Return an EXPR correponding to INDEX element of ready list, if 4145 FOLLOW_READY_ELEMENT is true (i.e., an expr of 4146 ready_element (&ready, INDEX) will be returned), and to INDEX element of 4147 ready.vec otherwise. */ 4148 static inline expr_t 4149 find_expr_for_ready (int index, bool follow_ready_element) 4150 { 4151 expr_t expr; 4152 int real_index; 4153 4154 real_index = follow_ready_element ? ready.first - index : index; 4155 4156 expr = VEC_index (expr_t, vec_av_set, real_index); 4157 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr)); 4158 4159 return expr; 4160 } 4161 4162 /* Calculate insns worth trying via lookahead_guard hook. Return a number 4163 of such insns found. */ 4164 static int 4165 invoke_dfa_lookahead_guard (void) 4166 { 4167 int i, n; 4168 bool have_hook 4169 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL; 4170 4171 if (sched_verbose >= 2) 4172 sel_print ("ready after reorder: "); 4173 4174 for (i = 0, n = 0; i < ready.n_ready; i++) 4175 { 4176 expr_t expr; 4177 insn_t insn; 4178 int r; 4179 4180 /* In this loop insn is Ith element of the ready list given by 4181 ready_element, not Ith element of ready.vec. */ 4182 insn = ready_element (&ready, i); 4183 4184 if (! have_hook || i == 0) 4185 r = 0; 4186 else 4187 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn); 4188 4189 gcc_assert (INSN_CODE (insn) >= 0); 4190 4191 /* Only insns with ready_try = 0 can get here 4192 from fill_ready_list. */ 4193 gcc_assert (ready_try [i] == 0); 4194 ready_try[i] = r; 4195 if (!r) 4196 n++; 4197 4198 expr = find_expr_for_ready (i, true); 4199 4200 if (sched_verbose >= 2) 4201 { 4202 dump_vinsn (EXPR_VINSN (expr)); 4203 sel_print (":%d; ", ready_try[i]); 4204 } 4205 } 4206 4207 if (sched_verbose >= 2) 4208 sel_print ("\n"); 4209 return n; 4210 } 4211 4212 /* Calculate the number of privileged insns and return it. */ 4213 static int 4214 calculate_privileged_insns (void) 4215 { 4216 expr_t cur_expr, min_spec_expr = NULL; 4217 int privileged_n = 0, i; 4218 4219 for (i = 0; i < ready.n_ready; i++) 4220 { 4221 if (ready_try[i]) 4222 continue; 4223 4224 if (! min_spec_expr) 4225 min_spec_expr = find_expr_for_ready (i, true); 4226 4227 cur_expr = find_expr_for_ready (i, true); 4228 4229 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr)) 4230 break; 4231 4232 ++privileged_n; 4233 } 4234 4235 if (i == ready.n_ready) 4236 privileged_n = 0; 4237 4238 if (sched_verbose >= 2) 4239 sel_print ("privileged_n: %d insns with SPEC %d\n", 4240 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1); 4241 return privileged_n; 4242 } 4243 4244 /* Call the rest of the hooks after the choice was made. Return 4245 the number of insns that still can be issued given that the current 4246 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence 4247 and the insn chosen for scheduling, respectively. */ 4248 static int 4249 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more) 4250 { 4251 gcc_assert (INSN_P (best_insn)); 4252 4253 /* First, call dfa_new_cycle, and then variable_issue, if available. */ 4254 sel_dfa_new_cycle (best_insn, fence); 4255 4256 if (targetm.sched.variable_issue) 4257 { 4258 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4259 issue_more = 4260 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn, 4261 issue_more); 4262 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size); 4263 } 4264 else if (GET_CODE (PATTERN (best_insn)) != USE 4265 && GET_CODE (PATTERN (best_insn)) != CLOBBER) 4266 issue_more--; 4267 4268 return issue_more; 4269 } 4270 4271 /* Estimate the cost of issuing INSN on DFA state STATE. */ 4272 static int 4273 estimate_insn_cost (rtx insn, state_t state) 4274 { 4275 static state_t temp = NULL; 4276 int cost; 4277 4278 if (!temp) 4279 temp = xmalloc (dfa_state_size); 4280 4281 memcpy (temp, state, dfa_state_size); 4282 cost = state_transition (temp, insn); 4283 4284 if (cost < 0) 4285 return 0; 4286 else if (cost == 0) 4287 return 1; 4288 return cost; 4289 } 4290 4291 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA. 4292 This function properly handles ASMs, USEs etc. */ 4293 static int 4294 get_expr_cost (expr_t expr, fence_t fence) 4295 { 4296 rtx insn = EXPR_INSN_RTX (expr); 4297 4298 if (recog_memoized (insn) < 0) 4299 { 4300 if (!FENCE_STARTS_CYCLE_P (fence) 4301 && INSN_ASM_P (insn)) 4302 /* This is asm insn which is tryed to be issued on the 4303 cycle not first. Issue it on the next cycle. */ 4304 return 1; 4305 else 4306 /* A USE insn, or something else we don't need to 4307 understand. We can't pass these directly to 4308 state_transition because it will trigger a 4309 fatal error for unrecognizable insns. */ 4310 return 0; 4311 } 4312 else 4313 return estimate_insn_cost (insn, FENCE_STATE (fence)); 4314 } 4315 4316 /* Find the best insn for scheduling, either via max_issue or just take 4317 the most prioritized available. */ 4318 static int 4319 choose_best_insn (fence_t fence, int privileged_n, int *index) 4320 { 4321 int can_issue = 0; 4322 4323 if (dfa_lookahead > 0) 4324 { 4325 cycle_issued_insns = FENCE_ISSUED_INSNS (fence); 4326 can_issue = max_issue (&ready, privileged_n, 4327 FENCE_STATE (fence), index); 4328 if (sched_verbose >= 2) 4329 sel_print ("max_issue: we can issue %d insns, already did %d insns\n", 4330 can_issue, FENCE_ISSUED_INSNS (fence)); 4331 } 4332 else 4333 { 4334 /* We can't use max_issue; just return the first available element. */ 4335 int i; 4336 4337 for (i = 0; i < ready.n_ready; i++) 4338 { 4339 expr_t expr = find_expr_for_ready (i, true); 4340 4341 if (get_expr_cost (expr, fence) < 1) 4342 { 4343 can_issue = can_issue_more; 4344 *index = i; 4345 4346 if (sched_verbose >= 2) 4347 sel_print ("using %dth insn from the ready list\n", i + 1); 4348 4349 break; 4350 } 4351 } 4352 4353 if (i == ready.n_ready) 4354 { 4355 can_issue = 0; 4356 *index = -1; 4357 } 4358 } 4359 4360 return can_issue; 4361 } 4362 4363 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it. 4364 BNDS and FENCE are current boundaries and scheduling fence respectively. 4365 Return the expr found and NULL if nothing can be issued atm. 4366 Write to PNEED_STALL the number of cycles to stall if no expr was found. */ 4367 static expr_t 4368 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence, 4369 int *pneed_stall) 4370 { 4371 expr_t best; 4372 4373 /* Choose the best insn for scheduling via: 4374 1) sorting the ready list based on priority; 4375 2) calling the reorder hook; 4376 3) calling max_issue. */ 4377 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall); 4378 if (best == NULL && ready.n_ready > 0) 4379 { 4380 int privileged_n, index; 4381 4382 can_issue_more = invoke_reorder_hooks (fence); 4383 if (can_issue_more > 0) 4384 { 4385 /* Try choosing the best insn until we find one that is could be 4386 scheduled due to liveness restrictions on its destination register. 4387 In the future, we'd like to choose once and then just probe insns 4388 in the order of their priority. */ 4389 invoke_dfa_lookahead_guard (); 4390 privileged_n = calculate_privileged_insns (); 4391 can_issue_more = choose_best_insn (fence, privileged_n, &index); 4392 if (can_issue_more) 4393 best = find_expr_for_ready (index, true); 4394 } 4395 /* We had some available insns, so if we can't issue them, 4396 we have a stall. */ 4397 if (can_issue_more == 0) 4398 { 4399 best = NULL; 4400 *pneed_stall = 1; 4401 } 4402 } 4403 4404 if (best != NULL) 4405 { 4406 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best), 4407 can_issue_more); 4408 if (targetm.sched.variable_issue 4409 && can_issue_more == 0) 4410 *pneed_stall = 1; 4411 } 4412 4413 if (sched_verbose >= 2) 4414 { 4415 if (best != NULL) 4416 { 4417 sel_print ("Best expression (vliw form): "); 4418 dump_expr (best); 4419 sel_print ("; cycle %d\n", FENCE_CYCLE (fence)); 4420 } 4421 else 4422 sel_print ("No best expr found!\n"); 4423 } 4424 4425 return best; 4426 } 4427 4428 4429 /* Functions that implement the core of the scheduler. */ 4430 4431 4432 /* Emit an instruction from EXPR with SEQNO and VINSN after 4433 PLACE_TO_INSERT. */ 4434 static insn_t 4435 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno, 4436 insn_t place_to_insert) 4437 { 4438 /* This assert fails when we have identical instructions 4439 one of which dominates the other. In this case move_op () 4440 finds the first instruction and doesn't search for second one. 4441 The solution would be to compute av_set after the first found 4442 insn and, if insn present in that set, continue searching. 4443 For now we workaround this issue in move_op. */ 4444 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr))); 4445 4446 if (EXPR_WAS_RENAMED (expr)) 4447 { 4448 unsigned regno = expr_dest_regno (expr); 4449 4450 if (HARD_REGISTER_NUM_P (regno)) 4451 { 4452 df_set_regs_ever_live (regno, true); 4453 reg_rename_tick[regno] = ++reg_rename_this_tick; 4454 } 4455 } 4456 4457 return sel_gen_insn_from_expr_after (expr, vinsn, seqno, 4458 place_to_insert); 4459 } 4460 4461 /* Return TRUE if BB can hold bookkeeping code. */ 4462 static bool 4463 block_valid_for_bookkeeping_p (basic_block bb) 4464 { 4465 insn_t bb_end = BB_END (bb); 4466 4467 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1) 4468 return false; 4469 4470 if (INSN_P (bb_end)) 4471 { 4472 if (INSN_SCHED_TIMES (bb_end) > 0) 4473 return false; 4474 } 4475 else 4476 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end)); 4477 4478 return true; 4479 } 4480 4481 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming 4482 into E2->dest, except from E1->src (there may be a sequence of empty basic 4483 blocks between E1->src and E2->dest). Return found block, or NULL if new 4484 one must be created. If LAX holds, don't assume there is a simple path 4485 from E1->src to E2->dest. */ 4486 static basic_block 4487 find_block_for_bookkeeping (edge e1, edge e2, bool lax) 4488 { 4489 basic_block candidate_block = NULL; 4490 edge e; 4491 4492 /* Loop over edges from E1 to E2, inclusive. */ 4493 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0)) 4494 { 4495 if (EDGE_COUNT (e->dest->preds) == 2) 4496 { 4497 if (candidate_block == NULL) 4498 candidate_block = (EDGE_PRED (e->dest, 0) == e 4499 ? EDGE_PRED (e->dest, 1)->src 4500 : EDGE_PRED (e->dest, 0)->src); 4501 else 4502 /* Found additional edge leading to path from e1 to e2 4503 from aside. */ 4504 return NULL; 4505 } 4506 else if (EDGE_COUNT (e->dest->preds) > 2) 4507 /* Several edges leading to path from e1 to e2 from aside. */ 4508 return NULL; 4509 4510 if (e == e2) 4511 return ((!lax || candidate_block) 4512 && block_valid_for_bookkeeping_p (candidate_block) 4513 ? candidate_block 4514 : NULL); 4515 4516 if (lax && EDGE_COUNT (e->dest->succs) != 1) 4517 return NULL; 4518 } 4519 4520 if (lax) 4521 return NULL; 4522 4523 gcc_unreachable (); 4524 } 4525 4526 /* Create new basic block for bookkeeping code for path(s) incoming into 4527 E2->dest, except from E1->src. Return created block. */ 4528 static basic_block 4529 create_block_for_bookkeeping (edge e1, edge e2) 4530 { 4531 basic_block new_bb, bb = e2->dest; 4532 4533 /* Check that we don't spoil the loop structure. */ 4534 if (current_loop_nest) 4535 { 4536 basic_block latch = current_loop_nest->latch; 4537 4538 /* We do not split header. */ 4539 gcc_assert (e2->dest != current_loop_nest->header); 4540 4541 /* We do not redirect the only edge to the latch block. */ 4542 gcc_assert (e1->dest != latch 4543 || !single_pred_p (latch) 4544 || e1 != single_pred_edge (latch)); 4545 } 4546 4547 /* Split BB to insert BOOK_INSN there. */ 4548 new_bb = sched_split_block (bb, NULL); 4549 4550 /* Move note_list from the upper bb. */ 4551 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX); 4552 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb); 4553 BB_NOTE_LIST (bb) = NULL_RTX; 4554 4555 gcc_assert (e2->dest == bb); 4556 4557 /* Skip block for bookkeeping copy when leaving E1->src. */ 4558 if (e1->flags & EDGE_FALLTHRU) 4559 sel_redirect_edge_and_branch_force (e1, new_bb); 4560 else 4561 sel_redirect_edge_and_branch (e1, new_bb); 4562 4563 gcc_assert (e1->dest == new_bb); 4564 gcc_assert (sel_bb_empty_p (bb)); 4565 4566 /* To keep basic block numbers in sync between debug and non-debug 4567 compilations, we have to rotate blocks here. Consider that we 4568 started from (a,b)->d, (c,d)->e, and d contained only debug 4569 insns. It would have been removed before if the debug insns 4570 weren't there, so we'd have split e rather than d. So what we do 4571 now is to swap the block numbers of new_bb and 4572 single_succ(new_bb) == e, so that the insns that were in e before 4573 get the new block number. */ 4574 4575 if (MAY_HAVE_DEBUG_INSNS) 4576 { 4577 basic_block succ; 4578 insn_t insn = sel_bb_head (new_bb); 4579 insn_t last; 4580 4581 if (DEBUG_INSN_P (insn) 4582 && single_succ_p (new_bb) 4583 && (succ = single_succ (new_bb)) 4584 && succ != EXIT_BLOCK_PTR 4585 && DEBUG_INSN_P ((last = sel_bb_end (new_bb)))) 4586 { 4587 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn))) 4588 insn = NEXT_INSN (insn); 4589 4590 if (insn == last) 4591 { 4592 sel_global_bb_info_def gbi; 4593 sel_region_bb_info_def rbi; 4594 int i; 4595 4596 if (sched_verbose >= 2) 4597 sel_print ("Swapping block ids %i and %i\n", 4598 new_bb->index, succ->index); 4599 4600 i = new_bb->index; 4601 new_bb->index = succ->index; 4602 succ->index = i; 4603 4604 SET_BASIC_BLOCK (new_bb->index, new_bb); 4605 SET_BASIC_BLOCK (succ->index, succ); 4606 4607 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi)); 4608 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ), 4609 sizeof (gbi)); 4610 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi)); 4611 4612 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi)); 4613 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ), 4614 sizeof (rbi)); 4615 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi)); 4616 4617 i = BLOCK_TO_BB (new_bb->index); 4618 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index); 4619 BLOCK_TO_BB (succ->index) = i; 4620 4621 i = CONTAINING_RGN (new_bb->index); 4622 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index); 4623 CONTAINING_RGN (succ->index) = i; 4624 4625 for (i = 0; i < current_nr_blocks; i++) 4626 if (BB_TO_BLOCK (i) == succ->index) 4627 BB_TO_BLOCK (i) = new_bb->index; 4628 else if (BB_TO_BLOCK (i) == new_bb->index) 4629 BB_TO_BLOCK (i) = succ->index; 4630 4631 FOR_BB_INSNS (new_bb, insn) 4632 if (INSN_P (insn)) 4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index; 4634 4635 FOR_BB_INSNS (succ, insn) 4636 if (INSN_P (insn)) 4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index; 4638 4639 if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index)) 4640 { 4641 bitmap_set_bit (code_motion_visited_blocks, succ->index); 4642 bitmap_clear_bit (code_motion_visited_blocks, new_bb->index); 4643 } 4644 4645 gcc_assert (LABEL_P (BB_HEAD (new_bb)) 4646 && LABEL_P (BB_HEAD (succ))); 4647 4648 if (sched_verbose >= 4) 4649 sel_print ("Swapping code labels %i and %i\n", 4650 CODE_LABEL_NUMBER (BB_HEAD (new_bb)), 4651 CODE_LABEL_NUMBER (BB_HEAD (succ))); 4652 4653 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb)); 4654 CODE_LABEL_NUMBER (BB_HEAD (new_bb)) 4655 = CODE_LABEL_NUMBER (BB_HEAD (succ)); 4656 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i; 4657 } 4658 } 4659 } 4660 4661 return bb; 4662 } 4663 4664 /* Return insn after which we must insert bookkeeping code for path(s) incoming 4665 into E2->dest, except from E1->src. */ 4666 static insn_t 4667 find_place_for_bookkeeping (edge e1, edge e2) 4668 { 4669 insn_t place_to_insert; 4670 /* Find a basic block that can hold bookkeeping. If it can be found, do not 4671 create new basic block, but insert bookkeeping there. */ 4672 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE); 4673 4674 if (book_block) 4675 { 4676 place_to_insert = BB_END (book_block); 4677 4678 /* Don't use a block containing only debug insns for 4679 bookkeeping, this causes scheduling differences between debug 4680 and non-debug compilations, for the block would have been 4681 removed already. */ 4682 if (DEBUG_INSN_P (place_to_insert)) 4683 { 4684 rtx insn = sel_bb_head (book_block); 4685 4686 while (insn != place_to_insert && 4687 (DEBUG_INSN_P (insn) || NOTE_P (insn))) 4688 insn = NEXT_INSN (insn); 4689 4690 if (insn == place_to_insert) 4691 book_block = NULL; 4692 } 4693 } 4694 4695 if (!book_block) 4696 { 4697 book_block = create_block_for_bookkeeping (e1, e2); 4698 place_to_insert = BB_END (book_block); 4699 if (sched_verbose >= 9) 4700 sel_print ("New block is %i, split from bookkeeping block %i\n", 4701 EDGE_SUCC (book_block, 0)->dest->index, book_block->index); 4702 } 4703 else 4704 { 4705 if (sched_verbose >= 9) 4706 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index); 4707 } 4708 4709 /* If basic block ends with a jump, insert bookkeeping code right before it. */ 4710 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert)) 4711 place_to_insert = PREV_INSN (place_to_insert); 4712 4713 return place_to_insert; 4714 } 4715 4716 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT 4717 for JOIN_POINT. */ 4718 static int 4719 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point) 4720 { 4721 int seqno; 4722 rtx next; 4723 4724 /* Check if we are about to insert bookkeeping copy before a jump, and use 4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */ 4726 next = NEXT_INSN (place_to_insert); 4727 if (INSN_P (next) 4728 && JUMP_P (next) 4729 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert)) 4730 { 4731 gcc_assert (INSN_SCHED_TIMES (next) == 0); 4732 seqno = INSN_SEQNO (next); 4733 } 4734 else if (INSN_SEQNO (join_point) > 0) 4735 seqno = INSN_SEQNO (join_point); 4736 else 4737 { 4738 seqno = get_seqno_by_preds (place_to_insert); 4739 4740 /* Sometimes the fences can move in such a way that there will be 4741 no instructions with positive seqno around this bookkeeping. 4742 This means that there will be no way to get to it by a regular 4743 fence movement. Never mind because we pick up such pieces for 4744 rescheduling anyways, so any positive value will do for now. */ 4745 if (seqno < 0) 4746 { 4747 gcc_assert (pipelining_p); 4748 seqno = 1; 4749 } 4750 } 4751 4752 gcc_assert (seqno > 0); 4753 return seqno; 4754 } 4755 4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning 4757 NEW_SEQNO to it. Return created insn. */ 4758 static insn_t 4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno) 4760 { 4761 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr)); 4762 4763 vinsn_t new_vinsn 4764 = create_vinsn_from_insn_rtx (new_insn_rtx, 4765 VINSN_UNIQUE_P (EXPR_VINSN (c_expr))); 4766 4767 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno, 4768 place_to_insert); 4769 4770 INSN_SCHED_TIMES (new_insn) = 0; 4771 bitmap_set_bit (current_copies, INSN_UID (new_insn)); 4772 4773 return new_insn; 4774 } 4775 4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to 4777 E2->dest, except from E1->src (there may be a sequence of empty blocks 4778 between E1->src and E2->dest). Return block containing the copy. 4779 All scheduler data is initialized for the newly created insn. */ 4780 static basic_block 4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2) 4782 { 4783 insn_t join_point, place_to_insert, new_insn; 4784 int new_seqno; 4785 bool need_to_exchange_data_sets; 4786 4787 if (sched_verbose >= 4) 4788 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index, 4789 e2->dest->index); 4790 4791 join_point = sel_bb_head (e2->dest); 4792 place_to_insert = find_place_for_bookkeeping (e1, e2); 4793 if (!place_to_insert) 4794 return NULL; 4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point); 4796 need_to_exchange_data_sets 4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert)); 4798 4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno); 4800 4801 /* When inserting bookkeeping insn in new block, av sets should be 4802 following: old basic block (that now holds bookkeeping) data sets are 4803 the same as was before generation of bookkeeping, and new basic block 4804 (that now hold all other insns of old basic block) data sets are 4805 invalid. So exchange data sets for these basic blocks as sel_split_block 4806 mistakenly exchanges them in this case. Cannot do it earlier because 4807 when single instruction is added to new basic block it should hold NULL 4808 lv_set. */ 4809 if (need_to_exchange_data_sets) 4810 exchange_data_sets (BLOCK_FOR_INSN (new_insn), 4811 BLOCK_FOR_INSN (join_point)); 4812 4813 stat_bookkeeping_copies++; 4814 return BLOCK_FOR_INSN (new_insn); 4815 } 4816 4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling 4818 on FENCE, but we are unable to copy them. */ 4819 static void 4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr) 4821 { 4822 expr_t expr; 4823 av_set_iterator i; 4824 4825 /* An expression does not need bookkeeping if it is available on all paths 4826 from current block to original block and current block dominates 4827 original block. We check availability on all paths by examining 4828 EXPR_SPEC; this is not equivalent, because it may be positive even 4829 if expr is available on all paths (but if expr is not available on 4830 any path, EXPR_SPEC will be positive). */ 4831 4832 FOR_EACH_EXPR_1 (expr, i, av_ptr) 4833 { 4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr)) 4835 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr))) 4836 && (EXPR_SPEC (expr) 4837 || !EXPR_ORIG_BB_INDEX (expr) 4838 || !dominated_by_p (CDI_DOMINATORS, 4839 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)), 4840 BLOCK_FOR_INSN (FENCE_INSN (fence))))) 4841 { 4842 if (sched_verbose >= 4) 4843 sel_print ("Expr %d removed because it would need bookkeeping, which " 4844 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr))); 4845 av_set_iter_remove (&i); 4846 } 4847 } 4848 } 4849 4850 /* Moving conditional jump through some instructions. 4851 4852 Consider example: 4853 4854 ... <- current scheduling point 4855 NOTE BASIC BLOCK: <- bb header 4856 (p8) add r14=r14+0x9;; 4857 (p8) mov [r14]=r23 4858 (!p8) jump L1;; 4859 NOTE BASIC BLOCK: 4860 ... 4861 4862 We can schedule jump one cycle earlier, than mov, because they cannot be 4863 executed together as their predicates are mutually exclusive. 4864 4865 This is done in this way: first, new fallthrough basic block is created 4866 after jump (it is always can be done, because there already should be a 4867 fallthrough block, where control flow goes in case of predicate being true - 4868 in our example; otherwise there should be a dependence between those 4869 instructions and jump and we cannot schedule jump right now); 4870 next, all instructions between jump and current scheduling point are moved 4871 to this new block. And the result is this: 4872 4873 NOTE BASIC BLOCK: 4874 (!p8) jump L1 <- current scheduling point 4875 NOTE BASIC BLOCK: <- bb header 4876 (p8) add r14=r14+0x9;; 4877 (p8) mov [r14]=r23 4878 NOTE BASIC BLOCK: 4879 ... 4880 */ 4881 static void 4882 move_cond_jump (rtx insn, bnd_t bnd) 4883 { 4884 edge ft_edge; 4885 basic_block block_from, block_next, block_new, block_bnd, bb; 4886 rtx next, prev, link, head; 4887 4888 block_from = BLOCK_FOR_INSN (insn); 4889 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd)); 4890 prev = BND_TO (bnd); 4891 4892 #ifdef ENABLE_CHECKING 4893 /* Moving of jump should not cross any other jumps or beginnings of new 4894 basic blocks. The only exception is when we move a jump through 4895 mutually exclusive insns along fallthru edges. */ 4896 if (block_from != block_bnd) 4897 { 4898 bb = block_from; 4899 for (link = PREV_INSN (insn); link != PREV_INSN (prev); 4900 link = PREV_INSN (link)) 4901 { 4902 if (INSN_P (link)) 4903 gcc_assert (sched_insns_conditions_mutex_p (insn, link)); 4904 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb) 4905 { 4906 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link)); 4907 bb = BLOCK_FOR_INSN (link); 4908 } 4909 } 4910 } 4911 #endif 4912 4913 /* Jump is moved to the boundary. */ 4914 next = PREV_INSN (insn); 4915 BND_TO (bnd) = insn; 4916 4917 ft_edge = find_fallthru_edge (block_from); 4918 block_next = ft_edge->dest; 4919 /* There must be a fallthrough block (or where should go 4920 control flow in case of false jump predicate otherwise?). */ 4921 gcc_assert (block_next); 4922 4923 /* Create new empty basic block after source block. */ 4924 block_new = sel_split_edge (ft_edge); 4925 gcc_assert (block_new->next_bb == block_next 4926 && block_from->next_bb == block_new); 4927 4928 /* Move all instructions except INSN to BLOCK_NEW. */ 4929 bb = block_bnd; 4930 head = BB_HEAD (block_new); 4931 while (bb != block_from->next_bb) 4932 { 4933 rtx from, to; 4934 from = bb == block_bnd ? prev : sel_bb_head (bb); 4935 to = bb == block_from ? next : sel_bb_end (bb); 4936 4937 /* The jump being moved can be the first insn in the block. 4938 In this case we don't have to move anything in this block. */ 4939 if (NEXT_INSN (to) != from) 4940 { 4941 reorder_insns (from, to, head); 4942 4943 for (link = to; link != head; link = PREV_INSN (link)) 4944 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index; 4945 head = to; 4946 } 4947 4948 /* Cleanup possibly empty blocks left. */ 4949 block_next = bb->next_bb; 4950 if (bb != block_from) 4951 tidy_control_flow (bb, false); 4952 bb = block_next; 4953 } 4954 4955 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */ 4956 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new))); 4957 4958 gcc_assert (!sel_bb_empty_p (block_from) 4959 && !sel_bb_empty_p (block_new)); 4960 4961 /* Update data sets for BLOCK_NEW to represent that INSN and 4962 instructions from the other branch of INSN is no longer 4963 available at BLOCK_NEW. */ 4964 BB_AV_LEVEL (block_new) = global_level; 4965 gcc_assert (BB_LV_SET (block_new) == NULL); 4966 BB_LV_SET (block_new) = get_clear_regset_from_pool (); 4967 update_data_sets (sel_bb_head (block_new)); 4968 4969 /* INSN is a new basic block header - so prepare its data 4970 structures and update availability and liveness sets. */ 4971 update_data_sets (insn); 4972 4973 if (sched_verbose >= 4) 4974 sel_print ("Moving jump %d\n", INSN_UID (insn)); 4975 } 4976 4977 /* Remove nops generated during move_op for preventing removal of empty 4978 basic blocks. */ 4979 static void 4980 remove_temp_moveop_nops (bool full_tidying) 4981 { 4982 int i; 4983 insn_t insn; 4984 4985 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++) 4986 { 4987 gcc_assert (INSN_NOP_P (insn)); 4988 return_nop_to_pool (insn, full_tidying); 4989 } 4990 4991 /* Empty the vector. */ 4992 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0) 4993 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0, 4994 VEC_length (insn_t, vec_temp_moveop_nops)); 4995 } 4996 4997 /* Records the maximal UID before moving up an instruction. Used for 4998 distinguishing between bookkeeping copies and original insns. */ 4999 static int max_uid_before_move_op = 0; 5000 5001 /* Remove from AV_VLIW_P all instructions but next when debug counter 5002 tells us so. Next instruction is fetched from BNDS. */ 5003 static void 5004 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p) 5005 { 5006 if (! dbg_cnt (sel_sched_insn_cnt)) 5007 /* Leave only the next insn in av_vliw. */ 5008 { 5009 av_set_iterator av_it; 5010 expr_t expr; 5011 bnd_t bnd = BLIST_BND (bnds); 5012 insn_t next = BND_TO (bnd); 5013 5014 gcc_assert (BLIST_NEXT (bnds) == NULL); 5015 5016 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p) 5017 if (EXPR_INSN_RTX (expr) != next) 5018 av_set_iter_remove (&av_it); 5019 } 5020 } 5021 5022 /* Compute available instructions on BNDS. FENCE is the current fence. Write 5023 the computed set to *AV_VLIW_P. */ 5024 static void 5025 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p) 5026 { 5027 if (sched_verbose >= 2) 5028 { 5029 sel_print ("Boundaries: "); 5030 dump_blist (bnds); 5031 sel_print ("\n"); 5032 } 5033 5034 for (; bnds; bnds = BLIST_NEXT (bnds)) 5035 { 5036 bnd_t bnd = BLIST_BND (bnds); 5037 av_set_t av1_copy; 5038 insn_t bnd_to = BND_TO (bnd); 5039 5040 /* Rewind BND->TO to the basic block header in case some bookkeeping 5041 instructions were inserted before BND->TO and it needs to be 5042 adjusted. */ 5043 if (sel_bb_head_p (bnd_to)) 5044 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0); 5045 else 5046 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0) 5047 { 5048 bnd_to = PREV_INSN (bnd_to); 5049 if (sel_bb_head_p (bnd_to)) 5050 break; 5051 } 5052 5053 if (BND_TO (bnd) != bnd_to) 5054 { 5055 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd)); 5056 FENCE_INSN (fence) = bnd_to; 5057 BND_TO (bnd) = bnd_to; 5058 } 5059 5060 av_set_clear (&BND_AV (bnd)); 5061 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true); 5062 5063 av_set_clear (&BND_AV1 (bnd)); 5064 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd)); 5065 5066 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL); 5067 5068 av1_copy = av_set_copy (BND_AV1 (bnd)); 5069 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL); 5070 } 5071 5072 if (sched_verbose >= 2) 5073 { 5074 sel_print ("Available exprs (vliw form): "); 5075 dump_av_set (*av_vliw_p); 5076 sel_print ("\n"); 5077 } 5078 } 5079 5080 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW 5081 expression. When FOR_MOVEOP is true, also replace the register of 5082 expressions found with the register from EXPR_VLIW. */ 5083 static av_set_t 5084 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop) 5085 { 5086 av_set_t expr_seq = NULL; 5087 expr_t expr; 5088 av_set_iterator i; 5089 5090 FOR_EACH_EXPR (expr, i, BND_AV (bnd)) 5091 { 5092 if (equal_after_moveup_path_p (expr, NULL, expr_vliw)) 5093 { 5094 if (for_moveop) 5095 { 5096 /* The sequential expression has the right form to pass 5097 to move_op except when renaming happened. Put the 5098 correct register in EXPR then. */ 5099 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr))) 5100 { 5101 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw)) 5102 { 5103 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw)); 5104 stat_renamed_scheduled++; 5105 } 5106 /* Also put the correct TARGET_AVAILABLE bit on the expr. 5107 This is needed when renaming came up with original 5108 register. */ 5109 else if (EXPR_TARGET_AVAILABLE (expr) 5110 != EXPR_TARGET_AVAILABLE (expr_vliw)) 5111 { 5112 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1); 5113 EXPR_TARGET_AVAILABLE (expr) = 1; 5114 } 5115 } 5116 if (EXPR_WAS_SUBSTITUTED (expr)) 5117 stat_substitutions_total++; 5118 } 5119 5120 av_set_add (&expr_seq, expr); 5121 5122 /* With substitution inside insn group, it is possible 5123 that more than one expression in expr_seq will correspond 5124 to expr_vliw. In this case, choose one as the attempt to 5125 move both leads to miscompiles. */ 5126 break; 5127 } 5128 } 5129 5130 if (for_moveop && sched_verbose >= 2) 5131 { 5132 sel_print ("Best expression(s) (sequential form): "); 5133 dump_av_set (expr_seq); 5134 sel_print ("\n"); 5135 } 5136 5137 return expr_seq; 5138 } 5139 5140 5141 /* Move nop to previous block. */ 5142 static void ATTRIBUTE_UNUSED 5143 move_nop_to_previous_block (insn_t nop, basic_block prev_bb) 5144 { 5145 insn_t prev_insn, next_insn, note; 5146 5147 gcc_assert (sel_bb_head_p (nop) 5148 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb); 5149 note = bb_note (BLOCK_FOR_INSN (nop)); 5150 prev_insn = sel_bb_end (prev_bb); 5151 next_insn = NEXT_INSN (nop); 5152 gcc_assert (prev_insn != NULL_RTX 5153 && PREV_INSN (note) == prev_insn); 5154 5155 NEXT_INSN (prev_insn) = nop; 5156 PREV_INSN (nop) = prev_insn; 5157 5158 PREV_INSN (note) = nop; 5159 NEXT_INSN (note) = next_insn; 5160 5161 NEXT_INSN (nop) = note; 5162 PREV_INSN (next_insn) = note; 5163 5164 BB_END (prev_bb) = nop; 5165 BLOCK_FOR_INSN (nop) = prev_bb; 5166 } 5167 5168 /* Prepare a place to insert the chosen expression on BND. */ 5169 static insn_t 5170 prepare_place_to_insert (bnd_t bnd) 5171 { 5172 insn_t place_to_insert; 5173 5174 /* Init place_to_insert before calling move_op, as the later 5175 can possibly remove BND_TO (bnd). */ 5176 if (/* If this is not the first insn scheduled. */ 5177 BND_PTR (bnd)) 5178 { 5179 /* Add it after last scheduled. */ 5180 place_to_insert = ILIST_INSN (BND_PTR (bnd)); 5181 if (DEBUG_INSN_P (place_to_insert)) 5182 { 5183 ilist_t l = BND_PTR (bnd); 5184 while ((l = ILIST_NEXT (l)) && 5185 DEBUG_INSN_P (ILIST_INSN (l))) 5186 ; 5187 if (!l) 5188 place_to_insert = NULL; 5189 } 5190 } 5191 else 5192 place_to_insert = NULL; 5193 5194 if (!place_to_insert) 5195 { 5196 /* Add it before BND_TO. The difference is in the 5197 basic block, where INSN will be added. */ 5198 place_to_insert = get_nop_from_pool (BND_TO (bnd)); 5199 gcc_assert (BLOCK_FOR_INSN (place_to_insert) 5200 == BLOCK_FOR_INSN (BND_TO (bnd))); 5201 } 5202 5203 return place_to_insert; 5204 } 5205 5206 /* Find original instructions for EXPR_SEQ and move it to BND boundary. 5207 Return the expression to emit in C_EXPR. */ 5208 static bool 5209 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw, 5210 av_set_t expr_seq, expr_t c_expr) 5211 { 5212 bool b, should_move; 5213 unsigned book_uid; 5214 bitmap_iterator bi; 5215 int n_bookkeeping_copies_before_moveop; 5216 5217 /* Make a move. This call will remove the original operation, 5218 insert all necessary bookkeeping instructions and update the 5219 data sets. After that all we have to do is add the operation 5220 at before BND_TO (BND). */ 5221 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies; 5222 max_uid_before_move_op = get_max_uid (); 5223 bitmap_clear (current_copies); 5224 bitmap_clear (current_originators); 5225 5226 b = move_op (BND_TO (bnd), expr_seq, expr_vliw, 5227 get_dest_from_orig_ops (expr_seq), c_expr, &should_move); 5228 5229 /* We should be able to find the expression we've chosen for 5230 scheduling. */ 5231 gcc_assert (b); 5232 5233 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop) 5234 stat_insns_needed_bookkeeping++; 5235 5236 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi) 5237 { 5238 unsigned uid; 5239 bitmap_iterator bi; 5240 5241 /* We allocate these bitmaps lazily. */ 5242 if (! INSN_ORIGINATORS_BY_UID (book_uid)) 5243 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL); 5244 5245 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid), 5246 current_originators); 5247 5248 /* Transitively add all originators' originators. */ 5249 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi) 5250 if (INSN_ORIGINATORS_BY_UID (uid)) 5251 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid), 5252 INSN_ORIGINATORS_BY_UID (uid)); 5253 } 5254 5255 return should_move; 5256 } 5257 5258 5259 /* Debug a DFA state as an array of bytes. */ 5260 static void 5261 debug_state (state_t state) 5262 { 5263 unsigned char *p; 5264 unsigned int i, size = dfa_state_size; 5265 5266 sel_print ("state (%u):", size); 5267 for (i = 0, p = (unsigned char *) state; i < size; i++) 5268 sel_print (" %d", p[i]); 5269 sel_print ("\n"); 5270 } 5271 5272 /* Advance state on FENCE with INSN. Return true if INSN is 5273 an ASM, and we should advance state once more. */ 5274 static bool 5275 advance_state_on_fence (fence_t fence, insn_t insn) 5276 { 5277 bool asm_p; 5278 5279 if (recog_memoized (insn) >= 0) 5280 { 5281 int res; 5282 state_t temp_state = alloca (dfa_state_size); 5283 5284 gcc_assert (!INSN_ASM_P (insn)); 5285 asm_p = false; 5286 5287 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size); 5288 res = state_transition (FENCE_STATE (fence), insn); 5289 gcc_assert (res < 0); 5290 5291 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size)) 5292 { 5293 FENCE_ISSUED_INSNS (fence)++; 5294 5295 /* We should never issue more than issue_rate insns. */ 5296 if (FENCE_ISSUED_INSNS (fence) > issue_rate) 5297 gcc_unreachable (); 5298 } 5299 } 5300 else 5301 { 5302 /* This could be an ASM insn which we'd like to schedule 5303 on the next cycle. */ 5304 asm_p = INSN_ASM_P (insn); 5305 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p) 5306 advance_one_cycle (fence); 5307 } 5308 5309 if (sched_verbose >= 2) 5310 debug_state (FENCE_STATE (fence)); 5311 if (!DEBUG_INSN_P (insn)) 5312 FENCE_STARTS_CYCLE_P (fence) = 0; 5313 FENCE_ISSUE_MORE (fence) = can_issue_more; 5314 return asm_p; 5315 } 5316 5317 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL 5318 is nonzero if we need to stall after issuing INSN. */ 5319 static void 5320 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall) 5321 { 5322 bool asm_p; 5323 5324 /* First, reflect that something is scheduled on this fence. */ 5325 asm_p = advance_state_on_fence (fence, insn); 5326 FENCE_LAST_SCHEDULED_INSN (fence) = insn; 5327 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn); 5328 if (SCHED_GROUP_P (insn)) 5329 { 5330 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn); 5331 SCHED_GROUP_P (insn) = 0; 5332 } 5333 else 5334 FENCE_SCHED_NEXT (fence) = NULL_RTX; 5335 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence)) 5336 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0; 5337 5338 /* Set instruction scheduling info. This will be used in bundling, 5339 pipelining, tick computations etc. */ 5340 ++INSN_SCHED_TIMES (insn); 5341 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true; 5342 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence); 5343 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence); 5344 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence); 5345 5346 /* This does not account for adjust_cost hooks, just add the biggest 5347 constant the hook may add to the latency. TODO: make this 5348 a target dependent constant. */ 5349 INSN_READY_CYCLE (insn) 5350 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0 5351 ? 1 5352 : maximal_insn_latency (insn) + 1); 5353 5354 /* Change these fields last, as they're used above. */ 5355 FENCE_AFTER_STALL_P (fence) = 0; 5356 if (asm_p || need_stall) 5357 advance_one_cycle (fence); 5358 5359 /* Indicate that we've scheduled something on this fence. */ 5360 FENCE_SCHEDULED_P (fence) = true; 5361 scheduled_something_on_previous_fence = true; 5362 5363 /* Print debug information when insn's fields are updated. */ 5364 if (sched_verbose >= 2) 5365 { 5366 sel_print ("Scheduling insn: "); 5367 dump_insn_1 (insn, 1); 5368 sel_print ("\n"); 5369 } 5370 } 5371 5372 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the 5373 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and 5374 return it. */ 5375 static blist_t * 5376 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp, 5377 blist_t *bnds_tailp) 5378 { 5379 succ_iterator si; 5380 insn_t succ; 5381 5382 advance_deps_context (BND_DC (bnd), insn); 5383 FOR_EACH_SUCC_1 (succ, si, insn, 5384 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 5385 { 5386 ilist_t ptr = ilist_copy (BND_PTR (bnd)); 5387 5388 ilist_add (&ptr, insn); 5389 5390 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn) 5391 && is_ineligible_successor (succ, ptr)) 5392 { 5393 ilist_clear (&ptr); 5394 continue; 5395 } 5396 5397 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn)) 5398 { 5399 if (sched_verbose >= 9) 5400 sel_print ("Updating fence insn from %i to %i\n", 5401 INSN_UID (insn), INSN_UID (succ)); 5402 FENCE_INSN (fence) = succ; 5403 } 5404 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd)); 5405 bnds_tailp = &BLIST_NEXT (*bnds_tailp); 5406 } 5407 5408 blist_remove (bndsp); 5409 return bnds_tailp; 5410 } 5411 5412 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */ 5413 static insn_t 5414 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno) 5415 { 5416 av_set_t expr_seq; 5417 expr_t c_expr = XALLOCA (expr_def); 5418 insn_t place_to_insert; 5419 insn_t insn; 5420 bool should_move; 5421 5422 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true); 5423 5424 /* In case of scheduling a jump skipping some other instructions, 5425 prepare CFG. After this, jump is at the boundary and can be 5426 scheduled as usual insn by MOVE_OP. */ 5427 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw))) 5428 { 5429 insn = EXPR_INSN_RTX (expr_vliw); 5430 5431 /* Speculative jumps are not handled. */ 5432 if (insn != BND_TO (bnd) 5433 && !sel_insn_is_speculation_check (insn)) 5434 move_cond_jump (insn, bnd); 5435 } 5436 5437 /* Find a place for C_EXPR to schedule. */ 5438 place_to_insert = prepare_place_to_insert (bnd); 5439 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr); 5440 clear_expr (c_expr); 5441 5442 /* Add the instruction. The corner case to care about is when 5443 the expr_seq set has more than one expr, and we chose the one that 5444 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and 5445 we can't use it. Generate the new vinsn. */ 5446 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw))) 5447 { 5448 vinsn_t vinsn_new; 5449 5450 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false); 5451 change_vinsn_in_expr (expr_vliw, vinsn_new); 5452 should_move = false; 5453 } 5454 if (should_move) 5455 insn = sel_move_insn (expr_vliw, seqno, place_to_insert); 5456 else 5457 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno, 5458 place_to_insert); 5459 5460 /* Return the nops generated for preserving of data sets back 5461 into pool. */ 5462 if (INSN_NOP_P (place_to_insert)) 5463 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn)); 5464 remove_temp_moveop_nops (!DEBUG_INSN_P (insn)); 5465 5466 av_set_clear (&expr_seq); 5467 5468 /* Save the expression scheduled so to reset target availability if we'll 5469 meet it later on the same fence. */ 5470 if (EXPR_WAS_RENAMED (expr_vliw)) 5471 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn)); 5472 5473 /* Check that the recent movement didn't destroyed loop 5474 structure. */ 5475 gcc_assert (!pipelining_p 5476 || current_loop_nest == NULL 5477 || loop_latch_edge (current_loop_nest)); 5478 return insn; 5479 } 5480 5481 /* Stall for N cycles on FENCE. */ 5482 static void 5483 stall_for_cycles (fence_t fence, int n) 5484 { 5485 int could_more; 5486 5487 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate; 5488 while (n--) 5489 advance_one_cycle (fence); 5490 if (could_more) 5491 FENCE_AFTER_STALL_P (fence) = 1; 5492 } 5493 5494 /* Gather a parallel group of insns at FENCE and assign their seqno 5495 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP 5496 list for later recalculation of seqnos. */ 5497 static void 5498 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp) 5499 { 5500 blist_t bnds = NULL, *bnds_tailp; 5501 av_set_t av_vliw = NULL; 5502 insn_t insn = FENCE_INSN (fence); 5503 5504 if (sched_verbose >= 2) 5505 sel_print ("Starting fill_insns for insn %d, cycle %d\n", 5506 INSN_UID (insn), FENCE_CYCLE (fence)); 5507 5508 blist_add (&bnds, insn, NULL, FENCE_DC (fence)); 5509 bnds_tailp = &BLIST_NEXT (bnds); 5510 set_target_context (FENCE_TC (fence)); 5511 can_issue_more = FENCE_ISSUE_MORE (fence); 5512 target_bb = INSN_BB (insn); 5513 5514 /* Do while we can add any operation to the current group. */ 5515 do 5516 { 5517 blist_t *bnds_tailp1, *bndsp; 5518 expr_t expr_vliw; 5519 int need_stall; 5520 int was_stall = 0, scheduled_insns = 0; 5521 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate; 5522 int max_stall = pipelining_p ? 1 : 3; 5523 bool last_insn_was_debug = false; 5524 bool was_debug_bb_end_p = false; 5525 5526 compute_av_set_on_boundaries (fence, bnds, &av_vliw); 5527 remove_insns_that_need_bookkeeping (fence, &av_vliw); 5528 remove_insns_for_debug (bnds, &av_vliw); 5529 5530 /* Return early if we have nothing to schedule. */ 5531 if (av_vliw == NULL) 5532 break; 5533 5534 /* Choose the best expression and, if needed, destination register 5535 for it. */ 5536 do 5537 { 5538 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall); 5539 if (! expr_vliw && need_stall) 5540 { 5541 /* All expressions required a stall. Do not recompute av sets 5542 as we'll get the same answer (modulo the insns between 5543 the fence and its boundary, which will not be available for 5544 pipelining). 5545 If we are going to stall for too long, break to recompute av 5546 sets and bring more insns for pipelining. */ 5547 was_stall++; 5548 if (need_stall <= 3) 5549 stall_for_cycles (fence, need_stall); 5550 else 5551 { 5552 stall_for_cycles (fence, 1); 5553 break; 5554 } 5555 } 5556 } 5557 while (! expr_vliw && need_stall); 5558 5559 /* Now either we've selected expr_vliw or we have nothing to schedule. */ 5560 if (!expr_vliw) 5561 { 5562 av_set_clear (&av_vliw); 5563 break; 5564 } 5565 5566 bndsp = &bnds; 5567 bnds_tailp1 = bnds_tailp; 5568 5569 do 5570 /* This code will be executed only once until we'd have several 5571 boundaries per fence. */ 5572 { 5573 bnd_t bnd = BLIST_BND (*bndsp); 5574 5575 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw))) 5576 { 5577 bndsp = &BLIST_NEXT (*bndsp); 5578 continue; 5579 } 5580 5581 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno); 5582 last_insn_was_debug = DEBUG_INSN_P (insn); 5583 if (last_insn_was_debug) 5584 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn)); 5585 update_fence_and_insn (fence, insn, need_stall); 5586 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp); 5587 5588 /* Add insn to the list of scheduled on this cycle instructions. */ 5589 ilist_add (*scheduled_insns_tailpp, insn); 5590 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp); 5591 } 5592 while (*bndsp != *bnds_tailp1); 5593 5594 av_set_clear (&av_vliw); 5595 if (!last_insn_was_debug) 5596 scheduled_insns++; 5597 5598 /* We currently support information about candidate blocks only for 5599 one 'target_bb' block. Hence we can't schedule after jump insn, 5600 as this will bring two boundaries and, hence, necessity to handle 5601 information for two or more blocks concurrently. */ 5602 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn)) 5603 || (was_stall 5604 && (was_stall >= max_stall 5605 || scheduled_insns >= max_insns))) 5606 break; 5607 } 5608 while (bnds); 5609 5610 gcc_assert (!FENCE_BNDS (fence)); 5611 5612 /* Update boundaries of the FENCE. */ 5613 while (bnds) 5614 { 5615 ilist_t ptr = BND_PTR (BLIST_BND (bnds)); 5616 5617 if (ptr) 5618 { 5619 insn = ILIST_INSN (ptr); 5620 5621 if (!ilist_is_in_p (FENCE_BNDS (fence), insn)) 5622 ilist_add (&FENCE_BNDS (fence), insn); 5623 } 5624 5625 blist_remove (&bnds); 5626 } 5627 5628 /* Update target context on the fence. */ 5629 reset_target_context (FENCE_TC (fence), false); 5630 } 5631 5632 /* All exprs in ORIG_OPS must have the same destination register or memory. 5633 Return that destination. */ 5634 static rtx 5635 get_dest_from_orig_ops (av_set_t orig_ops) 5636 { 5637 rtx dest = NULL_RTX; 5638 av_set_iterator av_it; 5639 expr_t expr; 5640 bool first_p = true; 5641 5642 FOR_EACH_EXPR (expr, av_it, orig_ops) 5643 { 5644 rtx x = EXPR_LHS (expr); 5645 5646 if (first_p) 5647 { 5648 first_p = false; 5649 dest = x; 5650 } 5651 else 5652 gcc_assert (dest == x 5653 || (dest != NULL_RTX && x != NULL_RTX 5654 && rtx_equal_p (dest, x))); 5655 } 5656 5657 return dest; 5658 } 5659 5660 /* Update data sets for the bookkeeping block and record those expressions 5661 which become no longer available after inserting this bookkeeping. */ 5662 static void 5663 update_and_record_unavailable_insns (basic_block book_block) 5664 { 5665 av_set_iterator i; 5666 av_set_t old_av_set = NULL; 5667 expr_t cur_expr; 5668 rtx bb_end = sel_bb_end (book_block); 5669 5670 /* First, get correct liveness in the bookkeeping block. The problem is 5671 the range between the bookeeping insn and the end of block. */ 5672 update_liveness_on_insn (bb_end); 5673 if (control_flow_insn_p (bb_end)) 5674 update_liveness_on_insn (PREV_INSN (bb_end)); 5675 5676 /* If there's valid av_set on BOOK_BLOCK, then there might exist another 5677 fence above, where we may choose to schedule an insn which is 5678 actually blocked from moving up with the bookkeeping we create here. */ 5679 if (AV_SET_VALID_P (sel_bb_head (book_block))) 5680 { 5681 old_av_set = av_set_copy (BB_AV_SET (book_block)); 5682 update_data_sets (sel_bb_head (book_block)); 5683 5684 /* Traverse all the expressions in the old av_set and check whether 5685 CUR_EXPR is in new AV_SET. */ 5686 FOR_EACH_EXPR (cur_expr, i, old_av_set) 5687 { 5688 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block), 5689 EXPR_VINSN (cur_expr)); 5690 5691 if (! new_expr 5692 /* In this case, we can just turn off the E_T_A bit, but we can't 5693 represent this information with the current vector. */ 5694 || EXPR_TARGET_AVAILABLE (new_expr) 5695 != EXPR_TARGET_AVAILABLE (cur_expr)) 5696 /* Unfortunately, the below code could be also fired up on 5697 separable insns. 5698 FIXME: add an example of how this could happen. */ 5699 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr); 5700 } 5701 5702 av_set_clear (&old_av_set); 5703 } 5704 } 5705 5706 /* The main effect of this function is that sparams->c_expr is merged 5707 with (or copied to) lparams->c_expr_merged. If there's only one successor, 5708 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged. 5709 lparams->c_expr_merged is copied back to sparams->c_expr after all 5710 successors has been traversed. lparams->c_expr_local is an expr allocated 5711 on stack in the caller function, and is used if there is more than one 5712 successor. 5713 5714 SUCC is one of the SUCCS_NORMAL successors of INSN, 5715 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ, 5716 LPARAMS and STATIC_PARAMS contain the parameters described above. */ 5717 static void 5718 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED, 5719 insn_t succ ATTRIBUTE_UNUSED, 5720 int moveop_drv_call_res, 5721 cmpd_local_params_p lparams, void *static_params) 5722 { 5723 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 5724 5725 /* Nothing to do, if original expr wasn't found below. */ 5726 if (moveop_drv_call_res != 1) 5727 return; 5728 5729 /* If this is a first successor. */ 5730 if (!lparams->c_expr_merged) 5731 { 5732 lparams->c_expr_merged = sparams->c_expr; 5733 sparams->c_expr = lparams->c_expr_local; 5734 } 5735 else 5736 { 5737 /* We must merge all found expressions to get reasonable 5738 EXPR_SPEC_DONE_DS for the resulting insn. If we don't 5739 do so then we can first find the expr with epsilon 5740 speculation success probability and only then with the 5741 good probability. As a result the insn will get epsilon 5742 probability and will never be scheduled because of 5743 weakness_cutoff in find_best_expr. 5744 5745 We call merge_expr_data here instead of merge_expr 5746 because due to speculation C_EXPR and X may have the 5747 same insns with different speculation types. And as of 5748 now such insns are considered non-equal. 5749 5750 However, EXPR_SCHED_TIMES is different -- we must get 5751 SCHED_TIMES from a real insn, not a bookkeeping copy. 5752 We force this here. Instead, we may consider merging 5753 SCHED_TIMES to the maximum instead of minimum in the 5754 below function. */ 5755 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged); 5756 5757 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL); 5758 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0) 5759 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times; 5760 5761 clear_expr (sparams->c_expr); 5762 } 5763 } 5764 5765 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS. 5766 5767 SUCC is one of the SUCCS_NORMAL successors of INSN, 5768 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0, 5769 if SUCC is one of SUCCS_BACK or SUCCS_OUT. 5770 STATIC_PARAMS contain USED_REGS set. */ 5771 static void 5772 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ, 5773 int moveop_drv_call_res, 5774 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 5775 void *static_params) 5776 { 5777 regset succ_live; 5778 fur_static_params_p sparams = (fur_static_params_p) static_params; 5779 5780 /* Here we compute live regsets only for branches that do not lie 5781 on the code motion paths. These branches correspond to value 5782 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though 5783 for such branches code_motion_path_driver is not called. */ 5784 if (moveop_drv_call_res != 0) 5785 return; 5786 5787 /* Mark all registers that do not meet the following condition: 5788 (3) not live on the other path of any conditional branch 5789 that is passed by the operation, in case original 5790 operations are not present on both paths of the 5791 conditional branch. */ 5792 succ_live = compute_live (succ); 5793 IOR_REG_SET (sparams->used_regs, succ_live); 5794 } 5795 5796 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED 5797 into SP->CEXPR. */ 5798 static void 5799 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams) 5800 { 5801 moveop_static_params_p sp = (moveop_static_params_p) sparams; 5802 5803 sp->c_expr = lp->c_expr_merged; 5804 } 5805 5806 /* Track bookkeeping copies created, insns scheduled, and blocks for 5807 rescheduling when INSN is found by move_op. */ 5808 static void 5809 track_scheduled_insns_and_blocks (rtx insn) 5810 { 5811 /* Even if this insn can be a copy that will be removed during current move_op, 5812 we still need to count it as an originator. */ 5813 bitmap_set_bit (current_originators, INSN_UID (insn)); 5814 5815 if (!bitmap_bit_p (current_copies, INSN_UID (insn))) 5816 { 5817 /* Note that original block needs to be rescheduled, as we pulled an 5818 instruction out of it. */ 5819 if (INSN_SCHED_TIMES (insn) > 0) 5820 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index); 5821 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn)) 5822 num_insns_scheduled++; 5823 } 5824 else 5825 bitmap_clear_bit (current_copies, INSN_UID (insn)); 5826 5827 /* For instructions we must immediately remove insn from the 5828 stream, so subsequent update_data_sets () won't include this 5829 insn into av_set. 5830 For expr we must make insn look like "INSN_REG (insn) := c_expr". */ 5831 if (INSN_UID (insn) > max_uid_before_move_op) 5832 stat_bookkeeping_copies--; 5833 } 5834 5835 /* Emit a register-register copy for INSN if needed. Return true if 5836 emitted one. PARAMS is the move_op static parameters. */ 5837 static bool 5838 maybe_emit_renaming_copy (rtx insn, 5839 moveop_static_params_p params) 5840 { 5841 bool insn_emitted = false; 5842 rtx cur_reg; 5843 5844 /* Bail out early when expression can not be renamed at all. */ 5845 if (!EXPR_SEPARABLE_P (params->c_expr)) 5846 return false; 5847 5848 cur_reg = expr_dest_reg (params->c_expr); 5849 gcc_assert (cur_reg && params->dest && REG_P (params->dest)); 5850 5851 /* If original operation has expr and the register chosen for 5852 that expr is not original operation's dest reg, substitute 5853 operation's right hand side with the register chosen. */ 5854 if (REGNO (params->dest) != REGNO (cur_reg)) 5855 { 5856 insn_t reg_move_insn, reg_move_insn_rtx; 5857 5858 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn), 5859 params->dest); 5860 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx, 5861 INSN_EXPR (insn), 5862 INSN_SEQNO (insn), 5863 insn); 5864 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0; 5865 replace_dest_with_reg_in_expr (params->c_expr, params->dest); 5866 5867 insn_emitted = true; 5868 params->was_renamed = true; 5869 } 5870 5871 return insn_emitted; 5872 } 5873 5874 /* Emit a speculative check for INSN speculated as EXPR if needed. 5875 Return true if we've emitted one. PARAMS is the move_op static 5876 parameters. */ 5877 static bool 5878 maybe_emit_speculative_check (rtx insn, expr_t expr, 5879 moveop_static_params_p params) 5880 { 5881 bool insn_emitted = false; 5882 insn_t x; 5883 ds_t check_ds; 5884 5885 check_ds = get_spec_check_type_for_insn (insn, expr); 5886 if (check_ds != 0) 5887 { 5888 /* A speculation check should be inserted. */ 5889 x = create_speculation_check (params->c_expr, check_ds, insn); 5890 insn_emitted = true; 5891 } 5892 else 5893 { 5894 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0; 5895 x = insn; 5896 } 5897 5898 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0 5899 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0); 5900 return insn_emitted; 5901 } 5902 5903 /* Handle transformations that leave an insn in place of original 5904 insn such as renaming/speculation. Return true if one of such 5905 transformations actually happened, and we have emitted this insn. */ 5906 static bool 5907 handle_emitting_transformations (rtx insn, expr_t expr, 5908 moveop_static_params_p params) 5909 { 5910 bool insn_emitted = false; 5911 5912 insn_emitted = maybe_emit_renaming_copy (insn, params); 5913 insn_emitted |= maybe_emit_speculative_check (insn, expr, params); 5914 5915 return insn_emitted; 5916 } 5917 5918 /* If INSN is the only insn in the basic block (not counting JUMP, 5919 which may be a jump to next insn, and DEBUG_INSNs), we want to 5920 leave a NOP there till the return to fill_insns. */ 5921 5922 static bool 5923 need_nop_to_preserve_insn_bb (rtx insn) 5924 { 5925 insn_t bb_head, bb_end, bb_next, in_next; 5926 basic_block bb = BLOCK_FOR_INSN (insn); 5927 5928 bb_head = sel_bb_head (bb); 5929 bb_end = sel_bb_end (bb); 5930 5931 if (bb_head == bb_end) 5932 return true; 5933 5934 while (bb_head != bb_end && DEBUG_INSN_P (bb_head)) 5935 bb_head = NEXT_INSN (bb_head); 5936 5937 if (bb_head == bb_end) 5938 return true; 5939 5940 while (bb_head != bb_end && DEBUG_INSN_P (bb_end)) 5941 bb_end = PREV_INSN (bb_end); 5942 5943 if (bb_head == bb_end) 5944 return true; 5945 5946 bb_next = NEXT_INSN (bb_head); 5947 while (bb_next != bb_end && DEBUG_INSN_P (bb_next)) 5948 bb_next = NEXT_INSN (bb_next); 5949 5950 if (bb_next == bb_end && JUMP_P (bb_end)) 5951 return true; 5952 5953 in_next = NEXT_INSN (insn); 5954 while (DEBUG_INSN_P (in_next)) 5955 in_next = NEXT_INSN (in_next); 5956 5957 if (IN_CURRENT_FENCE_P (in_next)) 5958 return true; 5959 5960 return false; 5961 } 5962 5963 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data 5964 is not removed but reused when INSN is re-emitted. */ 5965 static void 5966 remove_insn_from_stream (rtx insn, bool only_disconnect) 5967 { 5968 /* If there's only one insn in the BB, make sure that a nop is 5969 inserted into it, so the basic block won't disappear when we'll 5970 delete INSN below with sel_remove_insn. It should also survive 5971 till the return to fill_insns. */ 5972 if (need_nop_to_preserve_insn_bb (insn)) 5973 { 5974 insn_t nop = get_nop_from_pool (insn); 5975 gcc_assert (INSN_NOP_P (nop)); 5976 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop); 5977 } 5978 5979 sel_remove_insn (insn, only_disconnect, false); 5980 } 5981 5982 /* This function is called when original expr is found. 5983 INSN - current insn traversed, EXPR - the corresponding expr found. 5984 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS 5985 is static parameters of move_op. */ 5986 static void 5987 move_op_orig_expr_found (insn_t insn, expr_t expr, 5988 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 5989 void *static_params) 5990 { 5991 bool only_disconnect, insn_emitted; 5992 moveop_static_params_p params = (moveop_static_params_p) static_params; 5993 5994 copy_expr_onside (params->c_expr, INSN_EXPR (insn)); 5995 track_scheduled_insns_and_blocks (insn); 5996 insn_emitted = handle_emitting_transformations (insn, expr, params); 5997 only_disconnect = (params->uid == INSN_UID (insn) 5998 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr)); 5999 6000 /* Mark that we've disconnected an insn. */ 6001 if (only_disconnect) 6002 params->uid = -1; 6003 remove_insn_from_stream (insn, only_disconnect); 6004 } 6005 6006 /* The function is called when original expr is found. 6007 INSN - current insn traversed, EXPR - the corresponding expr found, 6008 crosses_call and original_insns in STATIC_PARAMS are updated. */ 6009 static void 6010 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED, 6011 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6012 void *static_params) 6013 { 6014 fur_static_params_p params = (fur_static_params_p) static_params; 6015 regset tmp; 6016 6017 if (CALL_P (insn)) 6018 params->crosses_call = true; 6019 6020 def_list_add (params->original_insns, insn, params->crosses_call); 6021 6022 /* Mark the registers that do not meet the following condition: 6023 (2) not among the live registers of the point 6024 immediately following the first original operation on 6025 a given downward path, except for the original target 6026 register of the operation. */ 6027 tmp = get_clear_regset_from_pool (); 6028 compute_live_below_insn (insn, tmp); 6029 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn)); 6030 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn)); 6031 IOR_REG_SET (params->used_regs, tmp); 6032 return_regset_to_pool (tmp); 6033 6034 /* (*1) We need to add to USED_REGS registers that are read by 6035 INSN's lhs. This may lead to choosing wrong src register. 6036 E.g. (scheduling const expr enabled): 6037 6038 429: ax=0x0 <- Can't use AX for this expr (0x0) 6039 433: dx=[bp-0x18] 6040 427: [ax+dx+0x1]=ax 6041 REG_DEAD: ax 6042 168: di=dx 6043 REG_DEAD: dx 6044 */ 6045 /* FIXME: see comment above and enable MEM_P 6046 in vinsn_separable_p. */ 6047 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn)) 6048 || !MEM_P (INSN_LHS (insn))); 6049 } 6050 6051 /* This function is called on the ascending pass, before returning from 6052 current basic block. */ 6053 static void 6054 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams, 6055 void *static_params) 6056 { 6057 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6058 basic_block book_block = NULL; 6059 6060 /* When we have removed the boundary insn for scheduling, which also 6061 happened to be the end insn in its bb, we don't need to update sets. */ 6062 if (!lparams->removed_last_insn 6063 && lparams->e1 6064 && sel_bb_head_p (insn)) 6065 { 6066 /* We should generate bookkeeping code only if we are not at the 6067 top level of the move_op. */ 6068 if (sel_num_cfg_preds_gt_1 (insn)) 6069 book_block = generate_bookkeeping_insn (sparams->c_expr, 6070 lparams->e1, lparams->e2); 6071 /* Update data sets for the current insn. */ 6072 update_data_sets (insn); 6073 } 6074 6075 /* If bookkeeping code was inserted, we need to update av sets of basic 6076 block that received bookkeeping. After generation of bookkeeping insn, 6077 bookkeeping block does not contain valid av set because we are not following 6078 the original algorithm in every detail with regards to e.g. renaming 6079 simple reg-reg copies. Consider example: 6080 6081 bookkeeping block scheduling fence 6082 \ / 6083 \ join / 6084 ---------- 6085 | | 6086 ---------- 6087 / \ 6088 / \ 6089 r1 := r2 r1 := r3 6090 6091 We try to schedule insn "r1 := r3" on the current 6092 scheduling fence. Also, note that av set of bookkeeping block 6093 contain both insns "r1 := r2" and "r1 := r3". When the insn has 6094 been scheduled, the CFG is as follows: 6095 6096 r1 := r3 r1 := r3 6097 bookkeeping block scheduling fence 6098 \ / 6099 \ join / 6100 ---------- 6101 | | 6102 ---------- 6103 / \ 6104 / \ 6105 r1 := r2 6106 6107 Here, insn "r1 := r3" was scheduled at the current scheduling point 6108 and bookkeeping code was generated at the bookeeping block. This 6109 way insn "r1 := r2" is no longer available as a whole instruction 6110 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block. 6111 This situation is handled by calling update_data_sets. 6112 6113 Since update_data_sets is called only on the bookkeeping block, and 6114 it also may have predecessors with av_sets, containing instructions that 6115 are no longer available, we save all such expressions that become 6116 unavailable during data sets update on the bookkeeping block in 6117 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such 6118 expressions for scheduling. This allows us to avoid recomputation of 6119 av_sets outside the code motion path. */ 6120 6121 if (book_block) 6122 update_and_record_unavailable_insns (book_block); 6123 6124 /* If INSN was previously marked for deletion, it's time to do it. */ 6125 if (lparams->removed_last_insn) 6126 insn = PREV_INSN (insn); 6127 6128 /* Do not tidy control flow at the topmost moveop, as we can erroneously 6129 kill a block with a single nop in which the insn should be emitted. */ 6130 if (lparams->e1) 6131 tidy_control_flow (BLOCK_FOR_INSN (insn), true); 6132 } 6133 6134 /* This function is called on the ascending pass, before returning from the 6135 current basic block. */ 6136 static void 6137 fur_at_first_insn (insn_t insn, 6138 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6139 void *static_params ATTRIBUTE_UNUSED) 6140 { 6141 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn) 6142 || AV_LEVEL (insn) == -1); 6143 } 6144 6145 /* Called on the backward stage of recursion to call moveup_expr for insn 6146 and sparams->c_expr. */ 6147 static void 6148 move_op_ascend (insn_t insn, void *static_params) 6149 { 6150 enum MOVEUP_EXPR_CODE res; 6151 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6152 6153 if (! INSN_NOP_P (insn)) 6154 { 6155 res = moveup_expr_cached (sparams->c_expr, insn, false); 6156 gcc_assert (res != MOVEUP_EXPR_NULL); 6157 } 6158 6159 /* Update liveness for this insn as it was invalidated. */ 6160 update_liveness_on_insn (insn); 6161 } 6162 6163 /* This function is called on enter to the basic block. 6164 Returns TRUE if this block already have been visited and 6165 code_motion_path_driver should return 1, FALSE otherwise. */ 6166 static int 6167 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params, 6168 void *static_params, bool visited_p) 6169 { 6170 fur_static_params_p sparams = (fur_static_params_p) static_params; 6171 6172 if (visited_p) 6173 { 6174 /* If we have found something below this block, there should be at 6175 least one insn in ORIGINAL_INSNS. */ 6176 gcc_assert (*sparams->original_insns); 6177 6178 /* Adjust CROSSES_CALL, since we may have come to this block along 6179 different path. */ 6180 DEF_LIST_DEF (*sparams->original_insns)->crosses_call 6181 |= sparams->crosses_call; 6182 } 6183 else 6184 local_params->old_original_insns = *sparams->original_insns; 6185 6186 return 1; 6187 } 6188 6189 /* Same as above but for move_op. */ 6190 static int 6191 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED, 6192 cmpd_local_params_p local_params ATTRIBUTE_UNUSED, 6193 void *static_params ATTRIBUTE_UNUSED, bool visited_p) 6194 { 6195 if (visited_p) 6196 return -1; 6197 return 1; 6198 } 6199 6200 /* This function is called while descending current basic block if current 6201 insn is not the original EXPR we're searching for. 6202 6203 Return value: FALSE, if code_motion_path_driver should perform a local 6204 cleanup and return 0 itself; 6205 TRUE, if code_motion_path_driver should continue. */ 6206 static bool 6207 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED, 6208 void *static_params) 6209 { 6210 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6211 6212 #ifdef ENABLE_CHECKING 6213 sparams->failed_insn = insn; 6214 #endif 6215 6216 /* If we're scheduling separate expr, in order to generate correct code 6217 we need to stop the search at bookkeeping code generated with the 6218 same destination register or memory. */ 6219 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest)) 6220 return false; 6221 return true; 6222 } 6223 6224 /* This function is called while descending current basic block if current 6225 insn is not the original EXPR we're searching for. 6226 6227 Return value: TRUE (code_motion_path_driver should continue). */ 6228 static bool 6229 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params) 6230 { 6231 bool mutexed; 6232 expr_t r; 6233 av_set_iterator avi; 6234 fur_static_params_p sparams = (fur_static_params_p) static_params; 6235 6236 if (CALL_P (insn)) 6237 sparams->crosses_call = true; 6238 else if (DEBUG_INSN_P (insn)) 6239 return true; 6240 6241 /* If current insn we are looking at cannot be executed together 6242 with original insn, then we can skip it safely. 6243 6244 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); } 6245 INSN = (!p6) r14 = r14 + 1; 6246 6247 Here we can schedule ORIG_OP with lhs = r14, though only 6248 looking at the set of used and set registers of INSN we must 6249 forbid it. So, add set/used in INSN registers to the 6250 untouchable set only if there is an insn in ORIG_OPS that can 6251 affect INSN. */ 6252 mutexed = true; 6253 FOR_EACH_EXPR (r, avi, orig_ops) 6254 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r))) 6255 { 6256 mutexed = false; 6257 break; 6258 } 6259 6260 /* Mark all registers that do not meet the following condition: 6261 (1) Not set or read on any path from xi to an instance of the 6262 original operation. */ 6263 if (!mutexed) 6264 { 6265 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn)); 6266 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn)); 6267 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn)); 6268 } 6269 6270 return true; 6271 } 6272 6273 /* Hooks and data to perform move_op operations with code_motion_path_driver. */ 6274 struct code_motion_path_driver_info_def move_op_hooks = { 6275 move_op_on_enter, 6276 move_op_orig_expr_found, 6277 move_op_orig_expr_not_found, 6278 move_op_merge_succs, 6279 move_op_after_merge_succs, 6280 move_op_ascend, 6281 move_op_at_first_insn, 6282 SUCCS_NORMAL, 6283 "move_op" 6284 }; 6285 6286 /* Hooks and data to perform find_used_regs operations 6287 with code_motion_path_driver. */ 6288 struct code_motion_path_driver_info_def fur_hooks = { 6289 fur_on_enter, 6290 fur_orig_expr_found, 6291 fur_orig_expr_not_found, 6292 fur_merge_succs, 6293 NULL, /* fur_after_merge_succs */ 6294 NULL, /* fur_ascend */ 6295 fur_at_first_insn, 6296 SUCCS_ALL, 6297 "find_used_regs" 6298 }; 6299 6300 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL 6301 code_motion_path_driver is called recursively. Original operation 6302 was found at least on one path that is starting with one of INSN's 6303 successors (this fact is asserted). ORIG_OPS is expressions we're looking 6304 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters 6305 of either move_op or find_used_regs depending on the caller. 6306 6307 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't 6308 know for sure at this point. */ 6309 static int 6310 code_motion_process_successors (insn_t insn, av_set_t orig_ops, 6311 ilist_t path, void *static_params) 6312 { 6313 int res = 0; 6314 succ_iterator succ_i; 6315 rtx succ; 6316 basic_block bb; 6317 int old_index; 6318 unsigned old_succs; 6319 6320 struct cmpd_local_params lparams; 6321 expr_def _x; 6322 6323 lparams.c_expr_local = &_x; 6324 lparams.c_expr_merged = NULL; 6325 6326 /* We need to process only NORMAL succs for move_op, and collect live 6327 registers from ALL branches (including those leading out of the 6328 region) for find_used_regs. 6329 6330 In move_op, there can be a case when insn's bb number has changed 6331 due to created bookkeeping. This happens very rare, as we need to 6332 move expression from the beginning to the end of the same block. 6333 Rescan successors in this case. */ 6334 6335 rescan: 6336 bb = BLOCK_FOR_INSN (insn); 6337 old_index = bb->index; 6338 old_succs = EDGE_COUNT (bb->succs); 6339 6340 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags) 6341 { 6342 int b; 6343 6344 lparams.e1 = succ_i.e1; 6345 lparams.e2 = succ_i.e2; 6346 6347 /* Go deep into recursion only for NORMAL edges (non-backedges within the 6348 current region). */ 6349 if (succ_i.current_flags == SUCCS_NORMAL) 6350 b = code_motion_path_driver (succ, orig_ops, path, &lparams, 6351 static_params); 6352 else 6353 b = 0; 6354 6355 /* Merge c_expres found or unify live register sets from different 6356 successors. */ 6357 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams, 6358 static_params); 6359 if (b == 1) 6360 res = b; 6361 else if (b == -1 && res != 1) 6362 res = b; 6363 6364 /* We have simplified the control flow below this point. In this case, 6365 the iterator becomes invalid. We need to try again. */ 6366 if (BLOCK_FOR_INSN (insn)->index != old_index 6367 || EDGE_COUNT (bb->succs) != old_succs) 6368 goto rescan; 6369 } 6370 6371 #ifdef ENABLE_CHECKING 6372 /* Here, RES==1 if original expr was found at least for one of the 6373 successors. After the loop, RES may happen to have zero value 6374 only if at some point the expr searched is present in av_set, but is 6375 not found below. In most cases, this situation is an error. 6376 The exception is when the original operation is blocked by 6377 bookkeeping generated for another fence or for another path in current 6378 move_op. */ 6379 gcc_assert (res == 1 6380 || (res == 0 6381 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, 6382 static_params)) 6383 || res == -1); 6384 #endif 6385 6386 /* Merge data, clean up, etc. */ 6387 if (res != -1 && code_motion_path_driver_info->after_merge_succs) 6388 code_motion_path_driver_info->after_merge_succs (&lparams, static_params); 6389 6390 return res; 6391 } 6392 6393 6394 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P 6395 is the pointer to the av set with expressions we were looking for, 6396 PATH_P is the pointer to the traversed path. */ 6397 static inline void 6398 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p) 6399 { 6400 ilist_remove (path_p); 6401 av_set_clear (orig_ops_p); 6402 } 6403 6404 /* The driver function that implements move_op or find_used_regs 6405 functionality dependent whether code_motion_path_driver_INFO is set to 6406 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts 6407 of code (CFG traversal etc) that are shared among both functions. INSN 6408 is the insn we're starting the search from, ORIG_OPS are the expressions 6409 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local 6410 parameters of the driver, and STATIC_PARAMS are static parameters of 6411 the caller. 6412 6413 Returns whether original instructions were found. Note that top-level 6414 code_motion_path_driver always returns true. */ 6415 static int 6416 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path, 6417 cmpd_local_params_p local_params_in, 6418 void *static_params) 6419 { 6420 expr_t expr = NULL; 6421 basic_block bb = BLOCK_FOR_INSN (insn); 6422 insn_t first_insn, bb_tail, before_first; 6423 bool removed_last_insn = false; 6424 6425 if (sched_verbose >= 6) 6426 { 6427 sel_print ("%s (", code_motion_path_driver_info->routine_name); 6428 dump_insn (insn); 6429 sel_print (","); 6430 dump_av_set (orig_ops); 6431 sel_print (")\n"); 6432 } 6433 6434 gcc_assert (orig_ops); 6435 6436 /* If no original operations exist below this insn, return immediately. */ 6437 if (is_ineligible_successor (insn, path)) 6438 { 6439 if (sched_verbose >= 6) 6440 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn)); 6441 return false; 6442 } 6443 6444 /* The block can have invalid av set, in which case it was created earlier 6445 during move_op. Return immediately. */ 6446 if (sel_bb_head_p (insn)) 6447 { 6448 if (! AV_SET_VALID_P (insn)) 6449 { 6450 if (sched_verbose >= 6) 6451 sel_print ("Returned from block %d as it had invalid av set\n", 6452 bb->index); 6453 return false; 6454 } 6455 6456 if (bitmap_bit_p (code_motion_visited_blocks, bb->index)) 6457 { 6458 /* We have already found an original operation on this branch, do not 6459 go any further and just return TRUE here. If we don't stop here, 6460 function can have exponential behaviour even on the small code 6461 with many different paths (e.g. with data speculation and 6462 recovery blocks). */ 6463 if (sched_verbose >= 6) 6464 sel_print ("Block %d already visited in this traversal\n", bb->index); 6465 if (code_motion_path_driver_info->on_enter) 6466 return code_motion_path_driver_info->on_enter (insn, 6467 local_params_in, 6468 static_params, 6469 true); 6470 } 6471 } 6472 6473 if (code_motion_path_driver_info->on_enter) 6474 code_motion_path_driver_info->on_enter (insn, local_params_in, 6475 static_params, false); 6476 orig_ops = av_set_copy (orig_ops); 6477 6478 /* Filter the orig_ops set. */ 6479 if (AV_SET_VALID_P (insn)) 6480 av_set_code_motion_filter (&orig_ops, AV_SET (insn)); 6481 6482 /* If no more original ops, return immediately. */ 6483 if (!orig_ops) 6484 { 6485 if (sched_verbose >= 6) 6486 sel_print ("No intersection with av set of block %d\n", bb->index); 6487 return false; 6488 } 6489 6490 /* For non-speculative insns we have to leave only one form of the 6491 original operation, because if we don't, we may end up with 6492 different C_EXPRes and, consequently, with bookkeepings for different 6493 expression forms along the same code motion path. That may lead to 6494 generation of incorrect code. So for each code motion we stick to 6495 the single form of the instruction, except for speculative insns 6496 which we need to keep in different forms with all speculation 6497 types. */ 6498 av_set_leave_one_nonspec (&orig_ops); 6499 6500 /* It is not possible that all ORIG_OPS are filtered out. */ 6501 gcc_assert (orig_ops); 6502 6503 /* It is enough to place only heads and tails of visited basic blocks into 6504 the PATH. */ 6505 ilist_add (&path, insn); 6506 first_insn = insn; 6507 bb_tail = sel_bb_end (bb); 6508 6509 /* Descend the basic block in search of the original expr; this part 6510 corresponds to the part of the original move_op procedure executed 6511 before the recursive call. */ 6512 for (;;) 6513 { 6514 /* Look at the insn and decide if it could be an ancestor of currently 6515 scheduling operation. If it is so, then the insn "dest = op" could 6516 either be replaced with "dest = reg", because REG now holds the result 6517 of OP, or just removed, if we've scheduled the insn as a whole. 6518 6519 If this insn doesn't contain currently scheduling OP, then proceed 6520 with searching and look at its successors. Operations we're searching 6521 for could have changed when moving up through this insn via 6522 substituting. In this case, perform unsubstitution on them first. 6523 6524 When traversing the DAG below this insn is finished, insert 6525 bookkeeping code, if the insn is a joint point, and remove 6526 leftovers. */ 6527 6528 expr = av_set_lookup (orig_ops, INSN_VINSN (insn)); 6529 if (expr) 6530 { 6531 insn_t last_insn = PREV_INSN (insn); 6532 6533 /* We have found the original operation. */ 6534 if (sched_verbose >= 6) 6535 sel_print ("Found original operation at insn %d\n", INSN_UID (insn)); 6536 6537 code_motion_path_driver_info->orig_expr_found 6538 (insn, expr, local_params_in, static_params); 6539 6540 /* Step back, so on the way back we'll start traversing from the 6541 previous insn (or we'll see that it's bb_note and skip that 6542 loop). */ 6543 if (insn == first_insn) 6544 { 6545 first_insn = NEXT_INSN (last_insn); 6546 removed_last_insn = sel_bb_end_p (last_insn); 6547 } 6548 insn = last_insn; 6549 break; 6550 } 6551 else 6552 { 6553 /* We haven't found the original expr, continue descending the basic 6554 block. */ 6555 if (code_motion_path_driver_info->orig_expr_not_found 6556 (insn, orig_ops, static_params)) 6557 { 6558 /* Av set ops could have been changed when moving through this 6559 insn. To find them below it, we have to un-substitute them. */ 6560 undo_transformations (&orig_ops, insn); 6561 } 6562 else 6563 { 6564 /* Clean up and return, if the hook tells us to do so. It may 6565 happen if we've encountered the previously created 6566 bookkeeping. */ 6567 code_motion_path_driver_cleanup (&orig_ops, &path); 6568 return -1; 6569 } 6570 6571 gcc_assert (orig_ops); 6572 } 6573 6574 /* Stop at insn if we got to the end of BB. */ 6575 if (insn == bb_tail) 6576 break; 6577 6578 insn = NEXT_INSN (insn); 6579 } 6580 6581 /* Here INSN either points to the insn before the original insn (may be 6582 bb_note, if original insn was a bb_head) or to the bb_end. */ 6583 if (!expr) 6584 { 6585 int res; 6586 6587 gcc_assert (insn == sel_bb_end (bb)); 6588 6589 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head - 6590 it's already in PATH then). */ 6591 if (insn != first_insn) 6592 ilist_add (&path, insn); 6593 6594 /* Process_successors should be able to find at least one 6595 successor for which code_motion_path_driver returns TRUE. */ 6596 res = code_motion_process_successors (insn, orig_ops, 6597 path, static_params); 6598 6599 /* Remove bb tail from path. */ 6600 if (insn != first_insn) 6601 ilist_remove (&path); 6602 6603 if (res != 1) 6604 { 6605 /* This is the case when one of the original expr is no longer available 6606 due to bookkeeping created on this branch with the same register. 6607 In the original algorithm, which doesn't have update_data_sets call 6608 on a bookkeeping block, it would simply result in returning 6609 FALSE when we've encountered a previously generated bookkeeping 6610 insn in moveop_orig_expr_not_found. */ 6611 code_motion_path_driver_cleanup (&orig_ops, &path); 6612 return res; 6613 } 6614 } 6615 6616 /* Don't need it any more. */ 6617 av_set_clear (&orig_ops); 6618 6619 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to 6620 the beginning of the basic block. */ 6621 before_first = PREV_INSN (first_insn); 6622 while (insn != before_first) 6623 { 6624 if (code_motion_path_driver_info->ascend) 6625 code_motion_path_driver_info->ascend (insn, static_params); 6626 6627 insn = PREV_INSN (insn); 6628 } 6629 6630 /* Now we're at the bb head. */ 6631 insn = first_insn; 6632 ilist_remove (&path); 6633 local_params_in->removed_last_insn = removed_last_insn; 6634 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params); 6635 6636 /* This should be the very last operation as at bb head we could change 6637 the numbering by creating bookkeeping blocks. */ 6638 if (removed_last_insn) 6639 insn = PREV_INSN (insn); 6640 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index); 6641 return true; 6642 } 6643 6644 /* Move up the operations from ORIG_OPS set traversing the dag starting 6645 from INSN. PATH represents the edges traversed so far. 6646 DEST is the register chosen for scheduling the current expr. Insert 6647 bookkeeping code in the join points. EXPR_VLIW is the chosen expression, 6648 C_EXPR is how it looks like at the given cfg point. 6649 Set *SHOULD_MOVE to indicate whether we have only disconnected 6650 one of the insns found. 6651 6652 Returns whether original instructions were found, which is asserted 6653 to be true in the caller. */ 6654 static bool 6655 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw, 6656 rtx dest, expr_t c_expr, bool *should_move) 6657 { 6658 struct moveop_static_params sparams; 6659 struct cmpd_local_params lparams; 6660 bool res; 6661 6662 /* Init params for code_motion_path_driver. */ 6663 sparams.dest = dest; 6664 sparams.c_expr = c_expr; 6665 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw)); 6666 #ifdef ENABLE_CHECKING 6667 sparams.failed_insn = NULL; 6668 #endif 6669 sparams.was_renamed = false; 6670 lparams.e1 = NULL; 6671 6672 /* We haven't visited any blocks yet. */ 6673 bitmap_clear (code_motion_visited_blocks); 6674 6675 /* Set appropriate hooks and data. */ 6676 code_motion_path_driver_info = &move_op_hooks; 6677 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 6678 6679 if (sparams.was_renamed) 6680 EXPR_WAS_RENAMED (expr_vliw) = true; 6681 6682 *should_move = (sparams.uid == -1); 6683 6684 return res; 6685 } 6686 6687 6688 /* Functions that work with regions. */ 6689 6690 /* Current number of seqno used in init_seqno and init_seqno_1. */ 6691 static int cur_seqno; 6692 6693 /* A helper for init_seqno. Traverse the region starting from BB and 6694 compute seqnos for visited insns, marking visited bbs in VISITED_BBS. 6695 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */ 6696 static void 6697 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule) 6698 { 6699 int bbi = BLOCK_TO_BB (bb->index); 6700 insn_t insn, note = bb_note (bb); 6701 insn_t succ_insn; 6702 succ_iterator si; 6703 6704 SET_BIT (visited_bbs, bbi); 6705 if (blocks_to_reschedule) 6706 bitmap_clear_bit (blocks_to_reschedule, bb->index); 6707 6708 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb), 6709 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 6710 { 6711 basic_block succ = BLOCK_FOR_INSN (succ_insn); 6712 int succ_bbi = BLOCK_TO_BB (succ->index); 6713 6714 gcc_assert (in_current_region_p (succ)); 6715 6716 if (!TEST_BIT (visited_bbs, succ_bbi)) 6717 { 6718 gcc_assert (succ_bbi > bbi); 6719 6720 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule); 6721 } 6722 else if (blocks_to_reschedule) 6723 bitmap_set_bit (forced_ebb_heads, succ->index); 6724 } 6725 6726 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn)) 6727 INSN_SEQNO (insn) = cur_seqno--; 6728 } 6729 6730 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number 6731 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on 6732 which we're rescheduling when pipelining, FROM is the block where 6733 traversing region begins (it may not be the head of the region when 6734 pipelining, but the head of the loop instead). 6735 6736 Returns the maximal seqno found. */ 6737 static int 6738 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from) 6739 { 6740 sbitmap visited_bbs; 6741 bitmap_iterator bi; 6742 unsigned bbi; 6743 6744 visited_bbs = sbitmap_alloc (current_nr_blocks); 6745 6746 if (blocks_to_reschedule) 6747 { 6748 sbitmap_ones (visited_bbs); 6749 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi) 6750 { 6751 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks); 6752 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi)); 6753 } 6754 } 6755 else 6756 { 6757 sbitmap_zero (visited_bbs); 6758 from = EBB_FIRST_BB (0); 6759 } 6760 6761 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1; 6762 init_seqno_1 (from, visited_bbs, blocks_to_reschedule); 6763 gcc_assert (cur_seqno == 0 || number_of_insns == 0); 6764 6765 sbitmap_free (visited_bbs); 6766 return sched_max_luid - 1; 6767 } 6768 6769 /* Initialize scheduling parameters for current region. */ 6770 static void 6771 sel_setup_region_sched_flags (void) 6772 { 6773 enable_schedule_as_rhs_p = 1; 6774 bookkeeping_p = 1; 6775 pipelining_p = (bookkeeping_p 6776 && (flag_sel_sched_pipelining != 0) 6777 && current_loop_nest != NULL); 6778 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME); 6779 max_ws = MAX_WS; 6780 } 6781 6782 /* Return true if all basic blocks of current region are empty. */ 6783 static bool 6784 current_region_empty_p (void) 6785 { 6786 int i; 6787 for (i = 0; i < current_nr_blocks; i++) 6788 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i)))) 6789 return false; 6790 6791 return true; 6792 } 6793 6794 /* Prepare and verify loop nest for pipelining. */ 6795 static void 6796 setup_current_loop_nest (int rgn) 6797 { 6798 current_loop_nest = get_loop_nest_for_rgn (rgn); 6799 6800 if (!current_loop_nest) 6801 return; 6802 6803 /* If this loop has any saved loop preheaders from nested loops, 6804 add these basic blocks to the current region. */ 6805 sel_add_loop_preheaders (); 6806 6807 /* Check that we're starting with a valid information. */ 6808 gcc_assert (loop_latch_edge (current_loop_nest)); 6809 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest)); 6810 } 6811 6812 /* Compute instruction priorities for current region. */ 6813 static void 6814 sel_compute_priorities (int rgn) 6815 { 6816 sched_rgn_compute_dependencies (rgn); 6817 6818 /* Compute insn priorities in haifa style. Then free haifa style 6819 dependencies that we've calculated for this. */ 6820 compute_priorities (); 6821 6822 if (sched_verbose >= 5) 6823 debug_rgn_dependencies (0); 6824 6825 free_rgn_deps (); 6826 } 6827 6828 /* Init scheduling data for RGN. Returns true when this region should not 6829 be scheduled. */ 6830 static bool 6831 sel_region_init (int rgn) 6832 { 6833 int i; 6834 bb_vec_t bbs; 6835 6836 rgn_setup_region (rgn); 6837 6838 /* Even if sched_is_disabled_for_current_region_p() is true, we still 6839 do region initialization here so the region can be bundled correctly, 6840 but we'll skip the scheduling in sel_sched_region (). */ 6841 if (current_region_empty_p ()) 6842 return true; 6843 6844 if (flag_sel_sched_pipelining) 6845 setup_current_loop_nest (rgn); 6846 6847 sel_setup_region_sched_flags (); 6848 6849 bbs = VEC_alloc (basic_block, heap, current_nr_blocks); 6850 6851 for (i = 0; i < current_nr_blocks; i++) 6852 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i))); 6853 6854 sel_init_bbs (bbs, NULL); 6855 6856 /* Initialize luids and dependence analysis which both sel-sched and haifa 6857 need. */ 6858 sched_init_luids (bbs, NULL, NULL, NULL); 6859 sched_deps_init (false); 6860 6861 /* Initialize haifa data. */ 6862 rgn_setup_sched_infos (); 6863 sel_set_sched_flags (); 6864 haifa_init_h_i_d (bbs, NULL, NULL, NULL); 6865 6866 sel_compute_priorities (rgn); 6867 init_deps_global (); 6868 6869 /* Main initialization. */ 6870 sel_setup_sched_infos (); 6871 sel_init_global_and_expr (bbs); 6872 6873 VEC_free (basic_block, heap, bbs); 6874 6875 blocks_to_reschedule = BITMAP_ALLOC (NULL); 6876 6877 /* Init correct liveness sets on each instruction of a single-block loop. 6878 This is the only situation when we can't update liveness when calling 6879 compute_live for the first insn of the loop. */ 6880 if (current_loop_nest) 6881 { 6882 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) 6883 ? 1 6884 : 0); 6885 6886 if (current_nr_blocks == header + 1) 6887 update_liveness_on_insn 6888 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header)))); 6889 } 6890 6891 /* Set hooks so that no newly generated insn will go out unnoticed. */ 6892 sel_register_cfg_hooks (); 6893 6894 /* !!! We call target.sched.md_init () for the whole region, but we invoke 6895 targetm.sched.md_finish () for every ebb. */ 6896 if (targetm.sched.md_init) 6897 /* None of the arguments are actually used in any target. */ 6898 targetm.sched.md_init (sched_dump, sched_verbose, -1); 6899 6900 first_emitted_uid = get_max_uid () + 1; 6901 preheader_removed = false; 6902 6903 /* Reset register allocation ticks array. */ 6904 memset (reg_rename_tick, 0, sizeof reg_rename_tick); 6905 reg_rename_this_tick = 0; 6906 6907 bitmap_initialize (forced_ebb_heads, 0); 6908 bitmap_clear (forced_ebb_heads); 6909 6910 setup_nop_vinsn (); 6911 current_copies = BITMAP_ALLOC (NULL); 6912 current_originators = BITMAP_ALLOC (NULL); 6913 code_motion_visited_blocks = BITMAP_ALLOC (NULL); 6914 6915 return false; 6916 } 6917 6918 /* Simplify insns after the scheduling. */ 6919 static void 6920 simplify_changed_insns (void) 6921 { 6922 int i; 6923 6924 for (i = 0; i < current_nr_blocks; i++) 6925 { 6926 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i)); 6927 rtx insn; 6928 6929 FOR_BB_INSNS (bb, insn) 6930 if (INSN_P (insn)) 6931 { 6932 expr_t expr = INSN_EXPR (insn); 6933 6934 if (EXPR_WAS_SUBSTITUTED (expr)) 6935 validate_simplify_insn (insn); 6936 } 6937 } 6938 } 6939 6940 /* Find boundaries of the EBB starting from basic block BB, marking blocks of 6941 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL, 6942 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */ 6943 static void 6944 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks) 6945 { 6946 insn_t head, tail; 6947 basic_block bb1 = bb; 6948 if (sched_verbose >= 2) 6949 sel_print ("Finishing schedule in bbs: "); 6950 6951 do 6952 { 6953 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index)); 6954 6955 if (sched_verbose >= 2) 6956 sel_print ("%d; ", bb1->index); 6957 } 6958 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1))); 6959 6960 if (sched_verbose >= 2) 6961 sel_print ("\n"); 6962 6963 get_ebb_head_tail (bb, bb1, &head, &tail); 6964 6965 current_sched_info->head = head; 6966 current_sched_info->tail = tail; 6967 current_sched_info->prev_head = PREV_INSN (head); 6968 current_sched_info->next_tail = NEXT_INSN (tail); 6969 } 6970 6971 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */ 6972 static void 6973 reset_sched_cycles_in_current_ebb (void) 6974 { 6975 int last_clock = 0; 6976 int haifa_last_clock = -1; 6977 int haifa_clock = 0; 6978 int issued_insns = 0; 6979 insn_t insn; 6980 6981 if (targetm.sched.md_init) 6982 { 6983 /* None of the arguments are actually used in any target. 6984 NB: We should have md_reset () hook for cases like this. */ 6985 targetm.sched.md_init (sched_dump, sched_verbose, -1); 6986 } 6987 6988 state_reset (curr_state); 6989 advance_state (curr_state); 6990 6991 for (insn = current_sched_info->head; 6992 insn != current_sched_info->next_tail; 6993 insn = NEXT_INSN (insn)) 6994 { 6995 int cost, haifa_cost; 6996 int sort_p; 6997 bool asm_p, real_insn, after_stall, all_issued; 6998 int clock; 6999 7000 if (!INSN_P (insn)) 7001 continue; 7002 7003 asm_p = false; 7004 real_insn = recog_memoized (insn) >= 0; 7005 clock = INSN_SCHED_CYCLE (insn); 7006 7007 cost = clock - last_clock; 7008 7009 /* Initialize HAIFA_COST. */ 7010 if (! real_insn) 7011 { 7012 asm_p = INSN_ASM_P (insn); 7013 7014 if (asm_p) 7015 /* This is asm insn which *had* to be scheduled first 7016 on the cycle. */ 7017 haifa_cost = 1; 7018 else 7019 /* This is a use/clobber insn. It should not change 7020 cost. */ 7021 haifa_cost = 0; 7022 } 7023 else 7024 haifa_cost = estimate_insn_cost (insn, curr_state); 7025 7026 /* Stall for whatever cycles we've stalled before. */ 7027 after_stall = 0; 7028 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost) 7029 { 7030 haifa_cost = cost; 7031 after_stall = 1; 7032 } 7033 all_issued = issued_insns == issue_rate; 7034 if (haifa_cost == 0 && all_issued) 7035 haifa_cost = 1; 7036 if (haifa_cost > 0) 7037 { 7038 int i = 0; 7039 7040 while (haifa_cost--) 7041 { 7042 advance_state (curr_state); 7043 issued_insns = 0; 7044 i++; 7045 7046 if (sched_verbose >= 2) 7047 { 7048 sel_print ("advance_state (state_transition)\n"); 7049 debug_state (curr_state); 7050 } 7051 7052 /* The DFA may report that e.g. insn requires 2 cycles to be 7053 issued, but on the next cycle it says that insn is ready 7054 to go. Check this here. */ 7055 if (!after_stall 7056 && real_insn 7057 && haifa_cost > 0 7058 && estimate_insn_cost (insn, curr_state) == 0) 7059 break; 7060 7061 /* When the data dependency stall is longer than the DFA stall, 7062 and when we have issued exactly issue_rate insns and stalled, 7063 it could be that after this longer stall the insn will again 7064 become unavailable to the DFA restrictions. Looks strange 7065 but happens e.g. on x86-64. So recheck DFA on the last 7066 iteration. */ 7067 if ((after_stall || all_issued) 7068 && real_insn 7069 && haifa_cost == 0) 7070 haifa_cost = estimate_insn_cost (insn, curr_state); 7071 } 7072 7073 haifa_clock += i; 7074 if (sched_verbose >= 2) 7075 sel_print ("haifa clock: %d\n", haifa_clock); 7076 } 7077 else 7078 gcc_assert (haifa_cost == 0); 7079 7080 if (sched_verbose >= 2) 7081 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost); 7082 7083 if (targetm.sched.dfa_new_cycle) 7084 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn, 7085 haifa_last_clock, haifa_clock, 7086 &sort_p)) 7087 { 7088 advance_state (curr_state); 7089 issued_insns = 0; 7090 haifa_clock++; 7091 if (sched_verbose >= 2) 7092 { 7093 sel_print ("advance_state (dfa_new_cycle)\n"); 7094 debug_state (curr_state); 7095 sel_print ("haifa clock: %d\n", haifa_clock + 1); 7096 } 7097 } 7098 7099 if (real_insn) 7100 { 7101 cost = state_transition (curr_state, insn); 7102 issued_insns++; 7103 7104 if (sched_verbose >= 2) 7105 { 7106 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn), 7107 haifa_clock + 1); 7108 debug_state (curr_state); 7109 } 7110 gcc_assert (cost < 0); 7111 } 7112 7113 if (targetm.sched.variable_issue) 7114 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0); 7115 7116 INSN_SCHED_CYCLE (insn) = haifa_clock; 7117 7118 last_clock = clock; 7119 haifa_last_clock = haifa_clock; 7120 } 7121 } 7122 7123 /* Put TImode markers on insns starting a new issue group. */ 7124 static void 7125 put_TImodes (void) 7126 { 7127 int last_clock = -1; 7128 insn_t insn; 7129 7130 for (insn = current_sched_info->head; insn != current_sched_info->next_tail; 7131 insn = NEXT_INSN (insn)) 7132 { 7133 int cost, clock; 7134 7135 if (!INSN_P (insn)) 7136 continue; 7137 7138 clock = INSN_SCHED_CYCLE (insn); 7139 cost = (last_clock == -1) ? 1 : clock - last_clock; 7140 7141 gcc_assert (cost >= 0); 7142 7143 if (issue_rate > 1 7144 && GET_CODE (PATTERN (insn)) != USE 7145 && GET_CODE (PATTERN (insn)) != CLOBBER) 7146 { 7147 if (reload_completed && cost > 0) 7148 PUT_MODE (insn, TImode); 7149 7150 last_clock = clock; 7151 } 7152 7153 if (sched_verbose >= 2) 7154 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost); 7155 } 7156 } 7157 7158 /* Perform MD_FINISH on EBBs comprising current region. When 7159 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler 7160 to produce correct sched cycles on insns. */ 7161 static void 7162 sel_region_target_finish (bool reset_sched_cycles_p) 7163 { 7164 int i; 7165 bitmap scheduled_blocks = BITMAP_ALLOC (NULL); 7166 7167 for (i = 0; i < current_nr_blocks; i++) 7168 { 7169 if (bitmap_bit_p (scheduled_blocks, i)) 7170 continue; 7171 7172 /* While pipelining outer loops, skip bundling for loop 7173 preheaders. Those will be rescheduled in the outer loop. */ 7174 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i))) 7175 continue; 7176 7177 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks); 7178 7179 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail)) 7180 continue; 7181 7182 if (reset_sched_cycles_p) 7183 reset_sched_cycles_in_current_ebb (); 7184 7185 if (targetm.sched.md_init) 7186 targetm.sched.md_init (sched_dump, sched_verbose, -1); 7187 7188 put_TImodes (); 7189 7190 if (targetm.sched.md_finish) 7191 { 7192 targetm.sched.md_finish (sched_dump, sched_verbose); 7193 7194 /* Extend luids so that insns generated by the target will 7195 get zero luid. */ 7196 sched_init_luids (NULL, NULL, NULL, NULL); 7197 } 7198 } 7199 7200 BITMAP_FREE (scheduled_blocks); 7201 } 7202 7203 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P 7204 is true, make an additional pass emulating scheduler to get correct insn 7205 cycles for md_finish calls. */ 7206 static void 7207 sel_region_finish (bool reset_sched_cycles_p) 7208 { 7209 simplify_changed_insns (); 7210 sched_finish_ready_list (); 7211 free_nop_pool (); 7212 7213 /* Free the vectors. */ 7214 if (vec_av_set) 7215 VEC_free (expr_t, heap, vec_av_set); 7216 BITMAP_FREE (current_copies); 7217 BITMAP_FREE (current_originators); 7218 BITMAP_FREE (code_motion_visited_blocks); 7219 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns); 7220 vinsn_vec_free (&vec_target_unavailable_vinsns); 7221 7222 /* If LV_SET of the region head should be updated, do it now because 7223 there will be no other chance. */ 7224 { 7225 succ_iterator si; 7226 insn_t insn; 7227 7228 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)), 7229 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 7230 { 7231 basic_block bb = BLOCK_FOR_INSN (insn); 7232 7233 if (!BB_LV_SET_VALID_P (bb)) 7234 compute_live (insn); 7235 } 7236 } 7237 7238 /* Emulate the Haifa scheduler for bundling. */ 7239 if (reload_completed) 7240 sel_region_target_finish (reset_sched_cycles_p); 7241 7242 sel_finish_global_and_expr (); 7243 7244 bitmap_clear (forced_ebb_heads); 7245 7246 free_nop_vinsn (); 7247 7248 finish_deps_global (); 7249 sched_finish_luids (); 7250 7251 sel_finish_bbs (); 7252 BITMAP_FREE (blocks_to_reschedule); 7253 7254 sel_unregister_cfg_hooks (); 7255 7256 max_issue_size = 0; 7257 } 7258 7259 7260 /* Functions that implement the scheduler driver. */ 7261 7262 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO 7263 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list 7264 of insns scheduled -- these would be postprocessed later. */ 7265 static void 7266 schedule_on_fences (flist_t fences, int max_seqno, 7267 ilist_t **scheduled_insns_tailpp) 7268 { 7269 flist_t old_fences = fences; 7270 7271 if (sched_verbose >= 1) 7272 { 7273 sel_print ("\nScheduling on fences: "); 7274 dump_flist (fences); 7275 sel_print ("\n"); 7276 } 7277 7278 scheduled_something_on_previous_fence = false; 7279 for (; fences; fences = FLIST_NEXT (fences)) 7280 { 7281 fence_t fence = NULL; 7282 int seqno = 0; 7283 flist_t fences2; 7284 bool first_p = true; 7285 7286 /* Choose the next fence group to schedule. 7287 The fact that insn can be scheduled only once 7288 on the cycle is guaranteed by two properties: 7289 1. seqnos of parallel groups decrease with each iteration. 7290 2. If is_ineligible_successor () sees the larger seqno, it 7291 checks if candidate insn is_in_current_fence_p (). */ 7292 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2)) 7293 { 7294 fence_t f = FLIST_FENCE (fences2); 7295 7296 if (!FENCE_PROCESSED_P (f)) 7297 { 7298 int i = INSN_SEQNO (FENCE_INSN (f)); 7299 7300 if (first_p || i > seqno) 7301 { 7302 seqno = i; 7303 fence = f; 7304 first_p = false; 7305 } 7306 else 7307 /* ??? Seqnos of different groups should be different. */ 7308 gcc_assert (1 || i != seqno); 7309 } 7310 } 7311 7312 gcc_assert (fence); 7313 7314 /* As FENCE is nonnull, SEQNO is initialized. */ 7315 seqno -= max_seqno + 1; 7316 fill_insns (fence, seqno, scheduled_insns_tailpp); 7317 FENCE_PROCESSED_P (fence) = true; 7318 } 7319 7320 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we 7321 don't need to keep bookkeeping-invalidated and target-unavailable 7322 vinsns any more. */ 7323 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns); 7324 vinsn_vec_clear (&vec_target_unavailable_vinsns); 7325 } 7326 7327 /* Calculate MIN_SEQNO and MAX_SEQNO. */ 7328 static void 7329 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno) 7330 { 7331 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences))); 7332 7333 /* The first element is already processed. */ 7334 while ((fences = FLIST_NEXT (fences))) 7335 { 7336 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences))); 7337 7338 if (*min_seqno > seqno) 7339 *min_seqno = seqno; 7340 else if (*max_seqno < seqno) 7341 *max_seqno = seqno; 7342 } 7343 } 7344 7345 /* Calculate new fences from FENCES. */ 7346 static flist_t 7347 calculate_new_fences (flist_t fences, int orig_max_seqno) 7348 { 7349 flist_t old_fences = fences; 7350 struct flist_tail_def _new_fences, *new_fences = &_new_fences; 7351 7352 flist_tail_init (new_fences); 7353 for (; fences; fences = FLIST_NEXT (fences)) 7354 { 7355 fence_t fence = FLIST_FENCE (fences); 7356 insn_t insn; 7357 7358 if (!FENCE_BNDS (fence)) 7359 { 7360 /* This fence doesn't have any successors. */ 7361 if (!FENCE_SCHEDULED_P (fence)) 7362 { 7363 /* Nothing was scheduled on this fence. */ 7364 int seqno; 7365 7366 insn = FENCE_INSN (fence); 7367 seqno = INSN_SEQNO (insn); 7368 gcc_assert (seqno > 0 && seqno <= orig_max_seqno); 7369 7370 if (sched_verbose >= 1) 7371 sel_print ("Fence %d[%d] has not changed\n", 7372 INSN_UID (insn), 7373 BLOCK_NUM (insn)); 7374 move_fence_to_fences (fences, new_fences); 7375 } 7376 } 7377 else 7378 extract_new_fences_from (fences, new_fences, orig_max_seqno); 7379 } 7380 7381 flist_clear (&old_fences); 7382 return FLIST_TAIL_HEAD (new_fences); 7383 } 7384 7385 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO 7386 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is 7387 the highest seqno used in a region. Return the updated highest seqno. */ 7388 static int 7389 update_seqnos_and_stage (int min_seqno, int max_seqno, 7390 int highest_seqno_in_use, 7391 ilist_t *pscheduled_insns) 7392 { 7393 int new_hs; 7394 ilist_iterator ii; 7395 insn_t insn; 7396 7397 /* Actually, new_hs is the seqno of the instruction, that was 7398 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */ 7399 if (*pscheduled_insns) 7400 { 7401 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns)) 7402 + highest_seqno_in_use + max_seqno - min_seqno + 2); 7403 gcc_assert (new_hs > highest_seqno_in_use); 7404 } 7405 else 7406 new_hs = highest_seqno_in_use; 7407 7408 FOR_EACH_INSN (insn, ii, *pscheduled_insns) 7409 { 7410 gcc_assert (INSN_SEQNO (insn) < 0); 7411 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2; 7412 gcc_assert (INSN_SEQNO (insn) <= new_hs); 7413 7414 /* When not pipelining, purge unneeded insn info on the scheduled insns. 7415 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may 7416 require > 1GB of memory e.g. on limit-fnargs.c. */ 7417 if (! pipelining_p) 7418 free_data_for_scheduled_insn (insn); 7419 } 7420 7421 ilist_clear (pscheduled_insns); 7422 global_level++; 7423 7424 return new_hs; 7425 } 7426 7427 /* The main driver for scheduling a region. This function is responsible 7428 for correct propagation of fences (i.e. scheduling points) and creating 7429 a group of parallel insns at each of them. It also supports 7430 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass 7431 of scheduling. */ 7432 static void 7433 sel_sched_region_2 (int orig_max_seqno) 7434 { 7435 int highest_seqno_in_use = orig_max_seqno; 7436 7437 stat_bookkeeping_copies = 0; 7438 stat_insns_needed_bookkeeping = 0; 7439 stat_renamed_scheduled = 0; 7440 stat_substitutions_total = 0; 7441 num_insns_scheduled = 0; 7442 7443 while (fences) 7444 { 7445 int min_seqno, max_seqno; 7446 ilist_t scheduled_insns = NULL; 7447 ilist_t *scheduled_insns_tailp = &scheduled_insns; 7448 7449 find_min_max_seqno (fences, &min_seqno, &max_seqno); 7450 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp); 7451 fences = calculate_new_fences (fences, orig_max_seqno); 7452 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno, 7453 highest_seqno_in_use, 7454 &scheduled_insns); 7455 } 7456 7457 if (sched_verbose >= 1) 7458 sel_print ("Scheduled %d bookkeeping copies, %d insns needed " 7459 "bookkeeping, %d insns renamed, %d insns substituted\n", 7460 stat_bookkeeping_copies, 7461 stat_insns_needed_bookkeeping, 7462 stat_renamed_scheduled, 7463 stat_substitutions_total); 7464 } 7465 7466 /* Schedule a region. When pipelining, search for possibly never scheduled 7467 bookkeeping code and schedule it. Reschedule pipelined code without 7468 pipelining after. */ 7469 static void 7470 sel_sched_region_1 (void) 7471 { 7472 int number_of_insns; 7473 int orig_max_seqno; 7474 7475 /* Remove empty blocks that might be in the region from the beginning. 7476 We need to do save sched_max_luid before that, as it actually shows 7477 the number of insns in the region, and purge_empty_blocks can 7478 alter it. */ 7479 number_of_insns = sched_max_luid - 1; 7480 purge_empty_blocks (); 7481 7482 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL); 7483 gcc_assert (orig_max_seqno >= 1); 7484 7485 /* When pipelining outer loops, create fences on the loop header, 7486 not preheader. */ 7487 fences = NULL; 7488 if (current_loop_nest) 7489 init_fences (BB_END (EBB_FIRST_BB (0))); 7490 else 7491 init_fences (bb_note (EBB_FIRST_BB (0))); 7492 global_level = 1; 7493 7494 sel_sched_region_2 (orig_max_seqno); 7495 7496 gcc_assert (fences == NULL); 7497 7498 if (pipelining_p) 7499 { 7500 int i; 7501 basic_block bb; 7502 struct flist_tail_def _new_fences; 7503 flist_tail_t new_fences = &_new_fences; 7504 bool do_p = true; 7505 7506 pipelining_p = false; 7507 max_ws = MIN (max_ws, issue_rate * 3 / 2); 7508 bookkeeping_p = false; 7509 enable_schedule_as_rhs_p = false; 7510 7511 /* Schedule newly created code, that has not been scheduled yet. */ 7512 do_p = true; 7513 7514 while (do_p) 7515 { 7516 do_p = false; 7517 7518 for (i = 0; i < current_nr_blocks; i++) 7519 { 7520 basic_block bb = EBB_FIRST_BB (i); 7521 7522 if (bitmap_bit_p (blocks_to_reschedule, bb->index)) 7523 { 7524 if (! bb_ends_ebb_p (bb)) 7525 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index); 7526 if (sel_bb_empty_p (bb)) 7527 { 7528 bitmap_clear_bit (blocks_to_reschedule, bb->index); 7529 continue; 7530 } 7531 clear_outdated_rtx_info (bb); 7532 if (sel_insn_is_speculation_check (BB_END (bb)) 7533 && JUMP_P (BB_END (bb))) 7534 bitmap_set_bit (blocks_to_reschedule, 7535 BRANCH_EDGE (bb)->dest->index); 7536 } 7537 else if (! sel_bb_empty_p (bb) 7538 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0) 7539 bitmap_set_bit (blocks_to_reschedule, bb->index); 7540 } 7541 7542 for (i = 0; i < current_nr_blocks; i++) 7543 { 7544 bb = EBB_FIRST_BB (i); 7545 7546 /* While pipelining outer loops, skip bundling for loop 7547 preheaders. Those will be rescheduled in the outer 7548 loop. */ 7549 if (sel_is_loop_preheader_p (bb)) 7550 { 7551 clear_outdated_rtx_info (bb); 7552 continue; 7553 } 7554 7555 if (bitmap_bit_p (blocks_to_reschedule, bb->index)) 7556 { 7557 flist_tail_init (new_fences); 7558 7559 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb); 7560 7561 /* Mark BB as head of the new ebb. */ 7562 bitmap_set_bit (forced_ebb_heads, bb->index); 7563 7564 bitmap_clear_bit (blocks_to_reschedule, bb->index); 7565 7566 gcc_assert (fences == NULL); 7567 7568 init_fences (bb_note (bb)); 7569 7570 sel_sched_region_2 (orig_max_seqno); 7571 7572 do_p = true; 7573 break; 7574 } 7575 } 7576 } 7577 } 7578 } 7579 7580 /* Schedule the RGN region. */ 7581 void 7582 sel_sched_region (int rgn) 7583 { 7584 bool schedule_p; 7585 bool reset_sched_cycles_p; 7586 7587 if (sel_region_init (rgn)) 7588 return; 7589 7590 if (sched_verbose >= 1) 7591 sel_print ("Scheduling region %d\n", rgn); 7592 7593 schedule_p = (!sched_is_disabled_for_current_region_p () 7594 && dbg_cnt (sel_sched_region_cnt)); 7595 reset_sched_cycles_p = pipelining_p; 7596 if (schedule_p) 7597 sel_sched_region_1 (); 7598 else 7599 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */ 7600 reset_sched_cycles_p = true; 7601 7602 sel_region_finish (reset_sched_cycles_p); 7603 } 7604 7605 /* Perform global init for the scheduler. */ 7606 static void 7607 sel_global_init (void) 7608 { 7609 calculate_dominance_info (CDI_DOMINATORS); 7610 alloc_sched_pools (); 7611 7612 /* Setup the infos for sched_init. */ 7613 sel_setup_sched_infos (); 7614 setup_sched_dump (); 7615 7616 sched_rgn_init (false); 7617 sched_init (); 7618 7619 sched_init_bbs (); 7620 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */ 7621 after_recovery = 0; 7622 can_issue_more = issue_rate; 7623 7624 sched_extend_target (); 7625 sched_deps_init (true); 7626 setup_nop_and_exit_insns (); 7627 sel_extend_global_bb_info (); 7628 init_lv_sets (); 7629 init_hard_regs_data (); 7630 } 7631 7632 /* Free the global data of the scheduler. */ 7633 static void 7634 sel_global_finish (void) 7635 { 7636 free_bb_note_pool (); 7637 free_lv_sets (); 7638 sel_finish_global_bb_info (); 7639 7640 free_regset_pool (); 7641 free_nop_and_exit_insns (); 7642 7643 sched_rgn_finish (); 7644 sched_deps_finish (); 7645 sched_finish (); 7646 7647 if (current_loops) 7648 sel_finish_pipelining (); 7649 7650 free_sched_pools (); 7651 free_dominance_info (CDI_DOMINATORS); 7652 } 7653 7654 /* Return true when we need to skip selective scheduling. Used for debugging. */ 7655 bool 7656 maybe_skip_selective_scheduling (void) 7657 { 7658 return ! dbg_cnt (sel_sched_cnt); 7659 } 7660 7661 /* The entry point. */ 7662 void 7663 run_selective_scheduling (void) 7664 { 7665 int rgn; 7666 7667 if (n_basic_blocks == NUM_FIXED_BLOCKS) 7668 return; 7669 7670 sel_global_init (); 7671 7672 for (rgn = 0; rgn < nr_regions; rgn++) 7673 sel_sched_region (rgn); 7674 7675 sel_global_finish (); 7676 } 7677 7678 #endif 7679