xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/sel-sched.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "toplev.h"
36 #include "recog.h"
37 #include "params.h"
38 #include "target.h"
39 #include "output.h"
40 #include "timevar.h"
41 #include "tree-pass.h"
42 #include "sched-int.h"
43 #include "ggc.h"
44 #include "tree.h"
45 #include "vec.h"
46 #include "langhooks.h"
47 #include "rtlhooks-def.h"
48 #include "output.h"
49 
50 #ifdef INSN_SCHEDULING
51 #include "sel-sched-ir.h"
52 #include "sel-sched-dump.h"
53 #include "sel-sched.h"
54 #include "dbgcnt.h"
55 
56 /* Implementation of selective scheduling approach.
57    The below implementation follows the original approach with the following
58    changes:
59 
60    o the scheduler works after register allocation (but can be also tuned
61    to work before RA);
62    o some instructions are not copied or register renamed;
63    o conditional jumps are not moved with code duplication;
64    o several jumps in one parallel group are not supported;
65    o when pipelining outer loops, code motion through inner loops
66    is not supported;
67    o control and data speculation are supported;
68    o some improvements for better compile time/performance were made.
69 
70    Terminology
71    ===========
72 
73    A vinsn, or virtual insn, is an insn with additional data characterizing
74    insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
75    Vinsns also act as smart pointers to save memory by reusing them in
76    different expressions.  A vinsn is described by vinsn_t type.
77 
78    An expression is a vinsn with additional data characterizing its properties
79    at some point in the control flow graph.  The data may be its usefulness,
80    priority, speculative status, whether it was renamed/subsituted, etc.
81    An expression is described by expr_t type.
82 
83    Availability set (av_set) is a set of expressions at a given control flow
84    point. It is represented as av_set_t.  The expressions in av sets are kept
85    sorted in the terms of expr_greater_p function.  It allows to truncate
86    the set while leaving the best expressions.
87 
88    A fence is a point through which code motion is prohibited.  On each step,
89    we gather a parallel group of insns at a fence.  It is possible to have
90    multiple fences. A fence is represented via fence_t.
91 
92    A boundary is the border between the fence group and the rest of the code.
93    Currently, we never have more than one boundary per fence, as we finalize
94    the fence group when a jump is scheduled. A boundary is represented
95    via bnd_t.
96 
97    High-level overview
98    ===================
99 
100    The scheduler finds regions to schedule, schedules each one, and finalizes.
101    The regions are formed starting from innermost loops, so that when the inner
102    loop is pipelined, its prologue can be scheduled together with yet unprocessed
103    outer loop. The rest of acyclic regions are found using extend_rgns:
104    the blocks that are not yet allocated to any regions are traversed in top-down
105    order, and a block is added to a region to which all its predecessors belong;
106    otherwise, the block starts its own region.
107 
108    The main scheduling loop (sel_sched_region_2) consists of just
109    scheduling on each fence and updating fences.  For each fence,
110    we fill a parallel group of insns (fill_insns) until some insns can be added.
111    First, we compute available exprs (av-set) at the boundary of the current
112    group.  Second, we choose the best expression from it.  If the stall is
113    required to schedule any of the expressions, we advance the current cycle
114    appropriately.  So, the final group does not exactly correspond to a VLIW
115    word.  Third, we move the chosen expression to the boundary (move_op)
116    and update the intermediate av sets and liveness sets.  We quit fill_insns
117    when either no insns left for scheduling or we have scheduled enough insns
118    so we feel like advancing a scheduling point.
119 
120    Computing available expressions
121    ===============================
122 
123    The computation (compute_av_set) is a bottom-up traversal.  At each insn,
124    we're moving the union of its successors' sets through it via
125    moveup_expr_set.  The dependent expressions are removed.  Local
126    transformations (substitution, speculation) are applied to move more
127    exprs.  Then the expr corresponding to the current insn is added.
128    The result is saved on each basic block header.
129 
130    When traversing the CFG, we're moving down for no more than max_ws insns.
131    Also, we do not move down to ineligible successors (is_ineligible_successor),
132    which include moving along a back-edge, moving to already scheduled code,
133    and moving to another fence.  The first two restrictions are lifted during
134    pipelining, which allows us to move insns along a back-edge.  We always have
135    an acyclic region for scheduling because we forbid motion through fences.
136 
137    Choosing the best expression
138    ============================
139 
140    We sort the final availability set via sel_rank_for_schedule, then we remove
141    expressions which are not yet ready (tick_check_p) or which dest registers
142    cannot be used.  For some of them, we choose another register via
143    find_best_reg.  To do this, we run find_used_regs to calculate the set of
144    registers which cannot be used.  The find_used_regs function performs
145    a traversal of code motion paths for an expr.  We consider for renaming
146    only registers which are from the same regclass as the original one and
147    using which does not interfere with any live ranges.  Finally, we convert
148    the resulting set to the ready list format and use max_issue and reorder*
149    hooks similarly to the Haifa scheduler.
150 
151    Scheduling the best expression
152    ==============================
153 
154    We run the move_op routine to perform the same type of code motion paths
155    traversal as in find_used_regs.  (These are working via the same driver,
156    code_motion_path_driver.)  When moving down the CFG, we look for original
157    instruction that gave birth to a chosen expression.  We undo
158    the transformations performed on an expression via the history saved in it.
159    When found, we remove the instruction or leave a reg-reg copy/speculation
160    check if needed.  On a way up, we insert bookkeeping copies at each join
161    point.  If a copy is not needed, it will be removed later during this
162    traversal.  We update the saved av sets and liveness sets on the way up, too.
163 
164    Finalizing the schedule
165    =======================
166 
167    When pipelining, we reschedule the blocks from which insns were pipelined
168    to get a tighter schedule.  On Itanium, we also perform bundling via
169    the same routine from ia64.c.
170 
171    Dependence analysis changes
172    ===========================
173 
174    We augmented the sched-deps.c with hooks that get called when a particular
175    dependence is found in a particular part of an insn.  Using these hooks, we
176    can do several actions such as: determine whether an insn can be moved through
177    another (has_dependence_p, moveup_expr); find out whether an insn can be
178    scheduled on the current cycle (tick_check_p); find out registers that
179    are set/used/clobbered by an insn and find out all the strange stuff that
180    restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
181    init_global_and_expr_for_insn).
182 
183    Initialization changes
184    ======================
185 
186    There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
187    reused in all of the schedulers.  We have split up the initialization of data
188    of such parts into different functions prefixed with scheduler type and
189    postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
190    sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
191    The same splitting is done with current_sched_info structure:
192    dependence-related parts are in sched_deps_info, common part is in
193    common_sched_info, and haifa/sel/etc part is in current_sched_info.
194 
195    Target contexts
196    ===============
197 
198    As we now have multiple-point scheduling, this would not work with backends
199    which save some of the scheduler state to use it in the target hooks.
200    For this purpose, we introduce a concept of target contexts, which
201    encapsulate such information.  The backend should implement simple routines
202    of allocating/freeing/setting such a context.  The scheduler calls these
203    as target hooks and handles the target context as an opaque pointer (similar
204    to the DFA state type, state_t).
205 
206    Various speedups
207    ================
208 
209    As the correct data dependence graph is not supported during scheduling (which
210    is to be changed in mid-term), we cache as much of the dependence analysis
211    results as possible to avoid reanalyzing.  This includes: bitmap caches on
212    each insn in stream of the region saying yes/no for a query with a pair of
213    UIDs; hashtables with the previously done transformations on each insn in
214    stream; a vector keeping a history of transformations on each expr.
215 
216    Also, we try to minimize the dependence context used on each fence to check
217    whether the given expression is ready for scheduling by removing from it
218    insns that are definitely completed the execution.  The results of
219    tick_check_p checks are also cached in a vector on each fence.
220 
221    We keep a valid liveness set on each insn in a region to avoid the high
222    cost of recomputation on large basic blocks.
223 
224    Finally, we try to minimize the number of needed updates to the availability
225    sets.  The updates happen in two cases: when fill_insns terminates,
226    we advance all fences and increase the stage number to show that the region
227    has changed and the sets are to be recomputed; and when the next iteration
228    of a loop in fill_insns happens (but this one reuses the saved av sets
229    on bb headers.)  Thus, we try to break the fill_insns loop only when
230    "significant" number of insns from the current scheduling window was
231    scheduled.  This should be made a target param.
232 
233 
234    TODO: correctly support the data dependence graph at all stages and get rid
235    of all caches.  This should speed up the scheduler.
236    TODO: implement moving cond jumps with bookkeeping copies on both targets.
237    TODO: tune the scheduler before RA so it does not create too much pseudos.
238 
239 
240    References:
241    S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
242    selective scheduling and software pipelining.
243    ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
244 
245    Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
246    and Dmitry Zhurikhin.  An interblock VLIW-targeted instruction scheduler
247    for GCC. In Proceedings of GCC Developers' Summit 2006.
248 
249    Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik.  GCC Instruction
250    Scheduler and Software Pipeliner on the Itanium Platform.   EPIC-7 Workshop.
251    http://rogue.colorado.edu/EPIC7/.
252 
253 */
254 
255 /* True when pipelining is enabled.  */
256 bool pipelining_p;
257 
258 /* True if bookkeeping is enabled.  */
259 bool bookkeeping_p;
260 
261 /* Maximum number of insns that are eligible for renaming.  */
262 int max_insns_to_rename;
263 
264 
265 /* Definitions of local types and macros.  */
266 
267 /* Represents possible outcomes of moving an expression through an insn.  */
268 enum MOVEUP_EXPR_CODE
269   {
270     /* The expression is not changed.  */
271     MOVEUP_EXPR_SAME,
272 
273     /* Not changed, but requires a new destination register.  */
274     MOVEUP_EXPR_AS_RHS,
275 
276     /* Cannot be moved.  */
277     MOVEUP_EXPR_NULL,
278 
279     /* Changed (substituted or speculated).  */
280     MOVEUP_EXPR_CHANGED
281   };
282 
283 /* The container to be passed into rtx search & replace functions.  */
284 struct rtx_search_arg
285 {
286   /* What we are searching for.  */
287   rtx x;
288 
289   /* The occurence counter.  */
290   int n;
291 };
292 
293 typedef struct rtx_search_arg *rtx_search_arg_p;
294 
295 /* This struct contains precomputed hard reg sets that are needed when
296    computing registers available for renaming.  */
297 struct hard_regs_data
298 {
299   /* For every mode, this stores registers available for use with
300      that mode.  */
301   HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
302 
303   /* True when regs_for_mode[mode] is initialized.  */
304   bool regs_for_mode_ok[NUM_MACHINE_MODES];
305 
306   /* For every register, it has regs that are ok to rename into it.
307      The register in question is always set.  If not, this means
308      that the whole set is not computed yet.  */
309   HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
310 
311   /* For every mode, this stores registers not available due to
312      call clobbering.  */
313   HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
314 
315   /* All registers that are used or call used.  */
316   HARD_REG_SET regs_ever_used;
317 
318 #ifdef STACK_REGS
319   /* Stack registers.  */
320   HARD_REG_SET stack_regs;
321 #endif
322 };
323 
324 /* Holds the results of computation of available for renaming and
325    unavailable hard registers.  */
326 struct reg_rename
327 {
328   /* These are unavailable due to calls crossing, globalness, etc.  */
329   HARD_REG_SET unavailable_hard_regs;
330 
331   /* These are *available* for renaming.  */
332   HARD_REG_SET available_for_renaming;
333 
334   /* Whether this code motion path crosses a call.  */
335   bool crosses_call;
336 };
337 
338 /* A global structure that contains the needed information about harg
339    regs.  */
340 static struct hard_regs_data sel_hrd;
341 
342 
343 /* This structure holds local data used in code_motion_path_driver hooks on
344    the same or adjacent levels of recursion.  Here we keep those parameters
345    that are not used in code_motion_path_driver routine itself, but only in
346    its hooks.  Moreover, all parameters that can be modified in hooks are
347    in this structure, so all other parameters passed explicitly to hooks are
348    read-only.  */
349 struct cmpd_local_params
350 {
351   /* Local params used in move_op_* functions.  */
352 
353   /* Edges for bookkeeping generation.  */
354   edge e1, e2;
355 
356   /* C_EXPR merged from all successors and locally allocated temporary C_EXPR.  */
357   expr_t c_expr_merged, c_expr_local;
358 
359   /* Local params used in fur_* functions.  */
360   /* Copy of the ORIGINAL_INSN list, stores the original insns already
361      found before entering the current level of code_motion_path_driver.  */
362   def_list_t old_original_insns;
363 
364   /* Local params used in move_op_* functions.  */
365   /* True when we have removed last insn in the block which was
366      also a boundary.  Do not update anything or create bookkeeping copies.  */
367   BOOL_BITFIELD removed_last_insn : 1;
368 };
369 
370 /* Stores the static parameters for move_op_* calls.  */
371 struct moveop_static_params
372 {
373   /* Destination register.  */
374   rtx dest;
375 
376   /* Current C_EXPR.  */
377   expr_t c_expr;
378 
379   /* An UID of expr_vliw which is to be moved up.  If we find other exprs,
380      they are to be removed.  */
381   int uid;
382 
383 #ifdef ENABLE_CHECKING
384   /* This is initialized to the insn on which the driver stopped its traversal.  */
385   insn_t failed_insn;
386 #endif
387 
388   /* True if we scheduled an insn with different register.  */
389   bool was_renamed;
390 };
391 
392 /* Stores the static parameters for fur_* calls.  */
393 struct fur_static_params
394 {
395   /* Set of registers unavailable on the code motion path.  */
396   regset used_regs;
397 
398   /* Pointer to the list of original insns definitions.  */
399   def_list_t *original_insns;
400 
401   /* True if a code motion path contains a CALL insn.  */
402   bool crosses_call;
403 };
404 
405 typedef struct fur_static_params *fur_static_params_p;
406 typedef struct cmpd_local_params *cmpd_local_params_p;
407 typedef struct moveop_static_params *moveop_static_params_p;
408 
409 /* Set of hooks and parameters that determine behaviour specific to
410    move_op or find_used_regs functions.  */
411 struct code_motion_path_driver_info_def
412 {
413   /* Called on enter to the basic block.  */
414   int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
415 
416   /* Called when original expr is found.  */
417   void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
418 
419   /* Called while descending current basic block if current insn is not
420      the original EXPR we're searching for.  */
421   bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
422 
423   /* Function to merge C_EXPRes from different successors.  */
424   void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
425 
426   /* Function to finalize merge from different successors and possibly
427      deallocate temporary data structures used for merging.  */
428   void (*after_merge_succs) (cmpd_local_params_p, void *);
429 
430   /* Called on the backward stage of recursion to do moveup_expr.
431      Used only with move_op_*.  */
432   void (*ascend) (insn_t, void *);
433 
434   /* Called on the ascending pass, before returning from the current basic
435      block or from the whole traversal.  */
436   void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
437 
438   /* When processing successors in move_op we need only descend into
439      SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL.  */
440   int succ_flags;
441 
442   /* The routine name to print in dumps ("move_op" of "find_used_regs").  */
443   const char *routine_name;
444 };
445 
446 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
447    FUR_HOOKS.  */
448 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
449 
450 /* Set of hooks for performing move_op and find_used_regs routines with
451    code_motion_path_driver.  */
452 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
453 
454 /* True if/when we want to emulate Haifa scheduler in the common code.
455    This is used in sched_rgn_local_init and in various places in
456    sched-deps.c.  */
457 int sched_emulate_haifa_p;
458 
459 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
460    av_sets.  Av_set of bb header is valid if its (bb header's) level is equal
461    to GLOBAL_LEVEL.  And invalid if lesser.  This is primarily used to advance
462    scheduling window.  */
463 int global_level;
464 
465 /* Current fences.  */
466 flist_t fences;
467 
468 /* True when separable insns should be scheduled as RHSes.  */
469 static bool enable_schedule_as_rhs_p;
470 
471 /* Used in verify_target_availability to assert that target reg is reported
472    unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
473    we haven't scheduled anything on the previous fence.
474    if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
475    have more conservative value than the one returned by the
476    find_used_regs, thus we shouldn't assert that these values are equal.  */
477 static bool scheduled_something_on_previous_fence;
478 
479 /* All newly emitted insns will have their uids greater than this value.  */
480 static int first_emitted_uid;
481 
482 /* Set of basic blocks that are forced to start new ebbs.  This is a subset
483    of all the ebb heads.  */
484 static bitmap_head _forced_ebb_heads;
485 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
486 
487 /* Blocks that need to be rescheduled after pipelining.  */
488 bitmap blocks_to_reschedule = NULL;
489 
490 /* True when the first lv set should be ignored when updating liveness.  */
491 static bool ignore_first = false;
492 
493 /* Number of insns max_issue has initialized data structures for.  */
494 static int max_issue_size = 0;
495 
496 /* Whether we can issue more instructions.  */
497 static int can_issue_more;
498 
499 /* Maximum software lookahead window size, reduced when rescheduling after
500    pipelining.  */
501 static int max_ws;
502 
503 /* Number of insns scheduled in current region.  */
504 static int num_insns_scheduled;
505 
506 /* A vector of expressions is used to be able to sort them.  */
507 DEF_VEC_P(expr_t);
508 DEF_VEC_ALLOC_P(expr_t,heap);
509 static VEC(expr_t, heap) *vec_av_set = NULL;
510 
511 /* A vector of vinsns is used to hold temporary lists of vinsns.  */
512 DEF_VEC_P(vinsn_t);
513 DEF_VEC_ALLOC_P(vinsn_t,heap);
514 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
515 
516 /* This vector has the exprs which may still present in av_sets, but actually
517    can't be moved up due to bookkeeping created during code motion to another
518    fence.  See comment near the call to update_and_record_unavailable_insns
519    for the detailed explanations.  */
520 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
521 
522 /* This vector has vinsns which are scheduled with renaming on the first fence
523    and then seen on the second.  For expressions with such vinsns, target
524    availability information may be wrong.  */
525 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
526 
527 /* Vector to store temporary nops inserted in move_op to prevent removal
528    of empty bbs.  */
529 DEF_VEC_P(insn_t);
530 DEF_VEC_ALLOC_P(insn_t,heap);
531 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
532 
533 /* These bitmaps record original instructions scheduled on the current
534    iteration and bookkeeping copies created by them.  */
535 static bitmap current_originators = NULL;
536 static bitmap current_copies = NULL;
537 
538 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
539    visit them afterwards.  */
540 static bitmap code_motion_visited_blocks = NULL;
541 
542 /* Variables to accumulate different statistics.  */
543 
544 /* The number of bookkeeping copies created.  */
545 static int stat_bookkeeping_copies;
546 
547 /* The number of insns that required bookkeeiping for their scheduling.  */
548 static int stat_insns_needed_bookkeeping;
549 
550 /* The number of insns that got renamed.  */
551 static int stat_renamed_scheduled;
552 
553 /* The number of substitutions made during scheduling.  */
554 static int stat_substitutions_total;
555 
556 
557 /* Forward declarations of static functions.  */
558 static bool rtx_ok_for_substitution_p (rtx, rtx);
559 static int sel_rank_for_schedule (const void *, const void *);
560 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
561 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
562 
563 static rtx get_dest_from_orig_ops (av_set_t);
564 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
565 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
566                             def_list_t *);
567 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
568 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
569                                     cmpd_local_params_p, void *);
570 static void sel_sched_region_1 (void);
571 static void sel_sched_region_2 (int);
572 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
573 
574 static void debug_state (state_t);
575 
576 
577 /* Functions that work with fences.  */
578 
579 /* Advance one cycle on FENCE.  */
580 static void
581 advance_one_cycle (fence_t fence)
582 {
583   unsigned i;
584   int cycle;
585   rtx insn;
586 
587   advance_state (FENCE_STATE (fence));
588   cycle = ++FENCE_CYCLE (fence);
589   FENCE_ISSUED_INSNS (fence) = 0;
590   FENCE_STARTS_CYCLE_P (fence) = 1;
591   can_issue_more = issue_rate;
592   FENCE_ISSUE_MORE (fence) = can_issue_more;
593 
594   for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
595     {
596       if (INSN_READY_CYCLE (insn) < cycle)
597         {
598           remove_from_deps (FENCE_DC (fence), insn);
599           VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
600           continue;
601         }
602       i++;
603     }
604   if (sched_verbose >= 2)
605     {
606       sel_print ("Finished a cycle.  Current cycle = %d\n", FENCE_CYCLE (fence));
607       debug_state (FENCE_STATE (fence));
608     }
609 }
610 
611 /* Returns true when SUCC in a fallthru bb of INSN, possibly
612    skipping empty basic blocks.  */
613 static bool
614 in_fallthru_bb_p (rtx insn, rtx succ)
615 {
616   basic_block bb = BLOCK_FOR_INSN (insn);
617 
618   if (bb == BLOCK_FOR_INSN (succ))
619     return true;
620 
621   if (find_fallthru_edge (bb))
622     bb = find_fallthru_edge (bb)->dest;
623   else
624     return false;
625 
626   while (sel_bb_empty_p (bb))
627     bb = bb->next_bb;
628 
629   return bb == BLOCK_FOR_INSN (succ);
630 }
631 
632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
633    When a successor will continue a ebb, transfer all parameters of a fence
634    to the new fence.  ORIG_MAX_SEQNO is the maximal seqno before this round
635    of scheduling helping to distinguish between the old and the new code.  */
636 static void
637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 			 int orig_max_seqno)
639 {
640   bool was_here_p = false;
641   insn_t insn = NULL_RTX;
642   insn_t succ;
643   succ_iterator si;
644   ilist_iterator ii;
645   fence_t fence = FLIST_FENCE (old_fences);
646   basic_block bb;
647 
648   /* Get the only element of FENCE_BNDS (fence).  */
649   FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650     {
651       gcc_assert (!was_here_p);
652       was_here_p = true;
653     }
654   gcc_assert (was_here_p && insn != NULL_RTX);
655 
656   /* When in the "middle" of the block, just move this fence
657      to the new list.  */
658   bb = BLOCK_FOR_INSN (insn);
659   if (! sel_bb_end_p (insn)
660       || (single_succ_p (bb)
661           && single_pred_p (single_succ (bb))))
662     {
663       insn_t succ;
664 
665       succ = (sel_bb_end_p (insn)
666               ? sel_bb_head (single_succ (bb))
667               : NEXT_INSN (insn));
668 
669       if (INSN_SEQNO (succ) > 0
670           && INSN_SEQNO (succ) <= orig_max_seqno
671           && INSN_SCHED_TIMES (succ) <= 0)
672         {
673           FENCE_INSN (fence) = succ;
674           move_fence_to_fences (old_fences, new_fences);
675 
676           if (sched_verbose >= 1)
677             sel_print ("Fence %d continues as %d[%d] (state continue)\n",
678                        INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679         }
680       return;
681     }
682 
683   /* Otherwise copy fence's structures to (possibly) multiple successors.  */
684   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685     {
686       int seqno = INSN_SEQNO (succ);
687 
688       if (0 < seqno && seqno <= orig_max_seqno
689           && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690         {
691           bool b = (in_same_ebb_p (insn, succ)
692                     || in_fallthru_bb_p (insn, succ));
693 
694           if (sched_verbose >= 1)
695             sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696                        INSN_UID (insn), INSN_UID (succ),
697                        BLOCK_NUM (succ), b ? "continue" : "reset");
698 
699           if (b)
700             add_dirty_fence_to_fences (new_fences, succ, fence);
701           else
702             {
703               /* Mark block of the SUCC as head of the new ebb.  */
704               bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705               add_clean_fence_to_fences (new_fences, succ, fence);
706             }
707         }
708     }
709 }
710 
711 
712 /* Functions to support substitution.  */
713 
714 /* Returns whether INSN with dependence status DS is eligible for
715    substitution, i.e. it's a copy operation x := y, and RHS that is
716    moved up through this insn should be substituted.  */
717 static bool
718 can_substitute_through_p (insn_t insn, ds_t ds)
719 {
720   /* We can substitute only true dependencies.  */
721   if ((ds & DEP_OUTPUT)
722       || (ds & DEP_ANTI)
723       || ! INSN_RHS (insn)
724       || ! INSN_LHS (insn))
725     return false;
726 
727   /* Now we just need to make sure the INSN_RHS consists of only one
728      simple REG rtx.  */
729   if (REG_P (INSN_LHS (insn))
730       && REG_P (INSN_RHS (insn)))
731     return true;
732   return false;
733 }
734 
735 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
736    source (if INSN is eligible for substitution).  Returns TRUE if
737    substitution was actually performed, FALSE otherwise.  Substitution might
738    be not performed because it's either EXPR' vinsn doesn't contain INSN's
739    destination or the resulting insn is invalid for the target machine.
740    When UNDO is true, perform unsubstitution instead (the difference is in
741    the part of rtx on which validate_replace_rtx is called).  */
742 static bool
743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744 {
745   rtx *where;
746   bool new_insn_valid;
747   vinsn_t *vi = &EXPR_VINSN (expr);
748   bool has_rhs = VINSN_RHS (*vi) != NULL;
749   rtx old, new_rtx;
750 
751   /* Do not try to replace in SET_DEST.  Although we'll choose new
752      register for the RHS, we don't want to change RHS' original reg.
753      If the insn is not SET, we may still be able to substitute something
754      in it, and if we're here (don't have deps), it doesn't write INSN's
755      dest.  */
756   where = (has_rhs
757 	   ? &VINSN_RHS (*vi)
758 	   : &PATTERN (VINSN_INSN_RTX (*vi)));
759   old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760 
761   /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI.  */
762   if (rtx_ok_for_substitution_p (old, *where))
763     {
764       rtx new_insn;
765       rtx *where_replace;
766 
767       /* We should copy these rtxes before substitution.  */
768       new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769       new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770 
771       /* Where we'll replace.
772          WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 	 used instead of SET_SRC.  */
774       where_replace = (has_rhs
775 		       ? &SET_SRC (PATTERN (new_insn))
776 		       : &PATTERN (new_insn));
777 
778       new_insn_valid
779         = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
780                                                 new_insn);
781 
782       /* ??? Actually, constrain_operands result depends upon choice of
783          destination register.  E.g. if we allow single register to be an rhs,
784 	 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
785 	 in invalid insn dx=dx, so we'll loose this rhs here.
786 	 Just can't come up with significant testcase for this, so just
787 	 leaving it for now.  */
788       if (new_insn_valid)
789 	{
790 	  change_vinsn_in_expr (expr,
791 				create_vinsn_from_insn_rtx (new_insn, false));
792 
793 	  /* Do not allow clobbering the address register of speculative
794              insns.  */
795 	  if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
796               && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
797 			       expr_dest_regno (expr)))
798 	    EXPR_TARGET_AVAILABLE (expr) = false;
799 
800 	  return true;
801 	}
802       else
803         return false;
804     }
805   else
806     return false;
807 }
808 
809 /* Helper function for count_occurences_equiv.  */
810 static int
811 count_occurrences_1 (rtx *cur_rtx, void *arg)
812 {
813   rtx_search_arg_p p = (rtx_search_arg_p) arg;
814 
815   /* The last param FOR_GCSE is true, because otherwise it performs excessive
816     substitutions like
817 	r8 = r33
818 	r16 = r33
819     for the last insn it presumes r33 equivalent to r8, so it changes it to
820     r33.  Actually, there's no change, but it spoils debugging.  */
821   if (exp_equiv_p (*cur_rtx, p->x, 0, true))
822     {
823       /* Bail out if we occupy more than one register.  */
824       if (REG_P (*cur_rtx)
825           && HARD_REGISTER_P (*cur_rtx)
826           && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
827         {
828           p->n = 0;
829           return 1;
830         }
831 
832       p->n++;
833 
834       /* Do not traverse subexprs.  */
835       return -1;
836     }
837 
838   if (GET_CODE (*cur_rtx) == SUBREG
839       && REG_P (p->x)
840       && (!REG_P (SUBREG_REG (*cur_rtx))
841 	  || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
842     {
843       /* ??? Do not support substituting regs inside subregs.  In that case,
844          simplify_subreg will be called by validate_replace_rtx, and
845          unsubstitution will fail later.  */
846       p->n = 0;
847       return 1;
848     }
849 
850   /* Continue search.  */
851   return 0;
852 }
853 
854 /* Return the number of places WHAT appears within WHERE.
855    Bail out when we found a reference occupying several hard registers.  */
856 static int
857 count_occurrences_equiv (rtx what, rtx where)
858 {
859   struct rtx_search_arg arg;
860 
861   arg.x = what;
862   arg.n = 0;
863 
864   for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
865 
866   return arg.n;
867 }
868 
869 /* Returns TRUE if WHAT is found in WHERE rtx tree.  */
870 static bool
871 rtx_ok_for_substitution_p (rtx what, rtx where)
872 {
873   return (count_occurrences_equiv (what, where) > 0);
874 }
875 
876 
877 /* Functions to support register renaming.  */
878 
879 /* Substitute VI's set source with REGNO.  Returns newly created pattern
880    that has REGNO as its source.  */
881 static rtx
882 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
883 {
884   rtx lhs_rtx;
885   rtx pattern;
886   rtx insn_rtx;
887 
888   lhs_rtx = copy_rtx (VINSN_LHS (vi));
889 
890   pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
891   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
892 
893   return insn_rtx;
894 }
895 
896 /* Returns whether INSN's src can be replaced with register number
897    NEW_SRC_REG. E.g. the following insn is valid for i386:
898 
899     (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
900       (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
901 			(reg:SI 0 ax [orig:770 c1 ] [770]))
902 		    (const_int 288 [0x120])) [0 str S1 A8])
903 	    (const_int 0 [0x0])) 43 {*movqi_1} (nil)
904 	(nil))
905 
906   But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
907   because of operand constraints:
908 
909     (define_insn "*movqi_1"
910       [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
911 	    (match_operand:QI 1 "general_operand"      " q,qn,qm,q,rn,qm,qn")
912 	    )]
913 
914   So do constrain_operands here, before choosing NEW_SRC_REG as best
915   reg for rhs.  */
916 
917 static bool
918 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
919 {
920   vinsn_t vi = INSN_VINSN (insn);
921   enum machine_mode mode;
922   rtx dst_loc;
923   bool res;
924 
925   gcc_assert (VINSN_SEPARABLE_P (vi));
926 
927   get_dest_and_mode (insn, &dst_loc, &mode);
928   gcc_assert (mode == GET_MODE (new_src_reg));
929 
930   if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
931     return true;
932 
933   /* See whether SET_SRC can be replaced with this register.  */
934   validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
935   res = verify_changes (0);
936   cancel_changes (0);
937 
938   return res;
939 }
940 
941 /* Returns whether INSN still be valid after replacing it's DEST with
942    register NEW_REG.  */
943 static bool
944 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
945 {
946   vinsn_t vi = INSN_VINSN (insn);
947   bool res;
948 
949   /* We should deal here only with separable insns.  */
950   gcc_assert (VINSN_SEPARABLE_P (vi));
951   gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
952 
953   /* See whether SET_DEST can be replaced with this register.  */
954   validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
955   res = verify_changes (0);
956   cancel_changes (0);
957 
958   return res;
959 }
960 
961 /* Create a pattern with rhs of VI and lhs of LHS_RTX.  */
962 static rtx
963 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
964 {
965   rtx rhs_rtx;
966   rtx pattern;
967   rtx insn_rtx;
968 
969   rhs_rtx = copy_rtx (VINSN_RHS (vi));
970 
971   pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
972   insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
973 
974   return insn_rtx;
975 }
976 
977 /* Substitute lhs in the given expression EXPR for the register with number
978    NEW_REGNO.  SET_DEST may be arbitrary rtx, not only register.  */
979 static void
980 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
981 {
982   rtx insn_rtx;
983   vinsn_t vinsn;
984 
985   insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
986   vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
987 
988   change_vinsn_in_expr (expr, vinsn);
989   EXPR_WAS_RENAMED (expr) = 1;
990   EXPR_TARGET_AVAILABLE (expr) = 1;
991 }
992 
993 /* Returns whether VI writes either one of the USED_REGS registers or,
994    if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers.  */
995 static bool
996 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
997                             HARD_REG_SET unavailable_hard_regs)
998 {
999   unsigned regno;
1000   reg_set_iterator rsi;
1001 
1002   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1003     {
1004       if (REGNO_REG_SET_P (used_regs, regno))
1005         return true;
1006       if (HARD_REGISTER_NUM_P (regno)
1007           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1008 	return true;
1009     }
1010 
1011   EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1012     {
1013       if (REGNO_REG_SET_P (used_regs, regno))
1014         return true;
1015       if (HARD_REGISTER_NUM_P (regno)
1016           && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1017 	return true;
1018     }
1019 
1020   return false;
1021 }
1022 
1023 /* Returns register class of the output register in INSN.
1024    Returns NO_REGS for call insns because some targets have constraints on
1025    destination register of a call insn.
1026 
1027    Code adopted from regrename.c::build_def_use.  */
1028 static enum reg_class
1029 get_reg_class (rtx insn)
1030 {
1031   int alt, i, n_ops;
1032 
1033   extract_insn (insn);
1034   if (! constrain_operands (1))
1035     fatal_insn_not_found (insn);
1036   preprocess_constraints ();
1037   alt = which_alternative;
1038   n_ops = recog_data.n_operands;
1039 
1040   for (i = 0; i < n_ops; ++i)
1041     {
1042       int matches = recog_op_alt[i][alt].matches;
1043       if (matches >= 0)
1044 	recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045     }
1046 
1047   if (asm_noperands (PATTERN (insn)) > 0)
1048     {
1049       for (i = 0; i < n_ops; i++)
1050 	if (recog_data.operand_type[i] == OP_OUT)
1051 	  {
1052 	    rtx *loc = recog_data.operand_loc[i];
1053 	    rtx op = *loc;
1054 	    enum reg_class cl = recog_op_alt[i][alt].cl;
1055 
1056 	    if (REG_P (op)
1057 		&& REGNO (op) == ORIGINAL_REGNO (op))
1058 	      continue;
1059 
1060 	    return cl;
1061 	  }
1062     }
1063   else if (!CALL_P (insn))
1064     {
1065       for (i = 0; i < n_ops + recog_data.n_dups; i++)
1066        {
1067 	 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1068 	 enum reg_class cl = recog_op_alt[opn][alt].cl;
1069 
1070 	 if (recog_data.operand_type[opn] == OP_OUT ||
1071 	     recog_data.operand_type[opn] == OP_INOUT)
1072 	   return cl;
1073        }
1074     }
1075 
1076 /*  Insns like
1077     (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1078     may result in returning NO_REGS, cause flags is written implicitly through
1079     CMP insn, which has no OP_OUT | OP_INOUT operands.  */
1080   return NO_REGS;
1081 }
1082 
1083 #ifdef HARD_REGNO_RENAME_OK
1084 /* Calculate HARD_REGNO_RENAME_OK data for REGNO.  */
1085 static void
1086 init_hard_regno_rename (int regno)
1087 {
1088   int cur_reg;
1089 
1090   SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1091 
1092   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1093     {
1094       /* We are not interested in renaming in other regs.  */
1095       if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1096         continue;
1097 
1098       if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1099         SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100     }
1101 }
1102 #endif
1103 
1104 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1105    data first.  */
1106 static inline bool
1107 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1108 {
1109 #ifdef HARD_REGNO_RENAME_OK
1110   /* Check whether this is all calculated.  */
1111   if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1112     return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113 
1114   init_hard_regno_rename (from);
1115 
1116   return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1117 #else
1118   return true;
1119 #endif
1120 }
1121 
1122 /* Calculate set of registers that are capable of holding MODE.  */
1123 static void
1124 init_regs_for_mode (enum machine_mode mode)
1125 {
1126   int cur_reg;
1127 
1128   CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1129   CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1130 
1131   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1132     {
1133       int nregs = hard_regno_nregs[cur_reg][mode];
1134       int i;
1135 
1136       for (i = nregs - 1; i >= 0; --i)
1137         if (fixed_regs[cur_reg + i]
1138                 || global_regs[cur_reg + i]
1139             /* Can't use regs which aren't saved by
1140                the prologue.  */
1141             || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1142 	    /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1143 	       it affects aliasing globally and invalidates all AV sets.  */
1144 	    || get_reg_base_value (cur_reg + i)
1145 #ifdef LEAF_REGISTERS
1146             /* We can't use a non-leaf register if we're in a
1147                leaf function.  */
1148             || (current_function_is_leaf
1149                 && !LEAF_REGISTERS[cur_reg + i])
1150 #endif
1151             )
1152           break;
1153 
1154       if (i >= 0)
1155         continue;
1156 
1157       /* See whether it accepts all modes that occur in
1158          original insns.  */
1159       if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1160         continue;
1161 
1162       if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1163         SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1164                           cur_reg);
1165 
1166       /* If the CUR_REG passed all the checks above,
1167          then it's ok.  */
1168       SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1169     }
1170 
1171   sel_hrd.regs_for_mode_ok[mode] = true;
1172 }
1173 
1174 /* Init all register sets gathered in HRD.  */
1175 static void
1176 init_hard_regs_data (void)
1177 {
1178   int cur_reg = 0;
1179   int cur_mode = 0;
1180 
1181   CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1182   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1183     if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1184       SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1185 
1186   /* Initialize registers that are valid based on mode when this is
1187      really needed.  */
1188   for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1189     sel_hrd.regs_for_mode_ok[cur_mode] = false;
1190 
1191   /* Mark that all HARD_REGNO_RENAME_OK is not calculated.  */
1192   for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1193     CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1194 
1195 #ifdef STACK_REGS
1196   CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1197 
1198   for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1199     SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1200 #endif
1201 }
1202 
1203 /* Mark hardware regs in REG_RENAME_P that are not suitable
1204    for renaming rhs in INSN due to hardware restrictions (register class,
1205    modes compatibility etc).  This doesn't affect original insn's dest reg,
1206    if it isn't in USED_REGS.  DEF is a definition insn of rhs for which the
1207    destination register is sought.  LHS (DEF->ORIG_INSN) may be REG or MEM.
1208    Registers that are in used_regs are always marked in
1209    unavailable_hard_regs as well.  */
1210 
1211 static void
1212 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1213                             regset used_regs ATTRIBUTE_UNUSED)
1214 {
1215   enum machine_mode mode;
1216   enum reg_class cl = NO_REGS;
1217   rtx orig_dest;
1218   unsigned cur_reg, regno;
1219   hard_reg_set_iterator hrsi;
1220 
1221   gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1222   gcc_assert (reg_rename_p);
1223 
1224   orig_dest = SET_DEST (PATTERN (def->orig_insn));
1225 
1226   /* We have decided not to rename 'mem = something;' insns, as 'something'
1227      is usually a register.  */
1228   if (!REG_P (orig_dest))
1229     return;
1230 
1231   regno = REGNO (orig_dest);
1232 
1233   /* If before reload, don't try to work with pseudos.  */
1234   if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1235     return;
1236 
1237   if (reload_completed)
1238     cl = get_reg_class (def->orig_insn);
1239 
1240   /* Stop if the original register is one of the fixed_regs, global_regs or
1241      frame pointer, or we could not discover its class.  */
1242   if (fixed_regs[regno]
1243       || global_regs[regno]
1244 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1245       || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1246 #else
1247       || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1248 #endif
1249       || (reload_completed && cl == NO_REGS))
1250     {
1251       SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1252 
1253       /* Give a chance for original register, if it isn't in used_regs.  */
1254       if (!def->crosses_call)
1255         CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1256 
1257       return;
1258     }
1259 
1260   /* If something allocated on stack in this function, mark frame pointer
1261      register unavailable, considering also modes.
1262      FIXME: it is enough to do this once per all original defs.  */
1263   if (frame_pointer_needed)
1264     {
1265       int i;
1266 
1267       for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 	SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269                           FRAME_POINTER_REGNUM + i);
1270 
1271 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1272       for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1273 	SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1274                           HARD_FRAME_POINTER_REGNUM + i);
1275 #endif
1276     }
1277 
1278 #ifdef STACK_REGS
1279   /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1280      is equivalent to as if all stack regs were in this set.
1281      I.e. no stack register can be renamed, and even if it's an original
1282      register here we make sure it won't be lifted over it's previous def
1283      (it's previous def will appear as if it's a FIRST_STACK_REG def.
1284      The HARD_REGNO_RENAME_OK covers other cases in condition below.  */
1285   if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1286       && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1287     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288                       sel_hrd.stack_regs);
1289 #endif
1290 
1291   /* If there's a call on this path, make regs from call_used_reg_set
1292      unavailable.  */
1293   if (def->crosses_call)
1294     IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1295                       call_used_reg_set);
1296 
1297   /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1298      but not register classes.  */
1299   if (!reload_completed)
1300     return;
1301 
1302   /* Leave regs as 'available' only from the current
1303      register class.  */
1304   COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1305                      reg_class_contents[cl]);
1306 
1307   mode = GET_MODE (orig_dest);
1308 
1309   /* Leave only registers available for this mode.  */
1310   if (!sel_hrd.regs_for_mode_ok[mode])
1311     init_regs_for_mode (mode);
1312   AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313                     sel_hrd.regs_for_mode[mode]);
1314 
1315   /* Exclude registers that are partially call clobbered.  */
1316   if (def->crosses_call
1317       && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1318     AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1319                             sel_hrd.regs_for_call_clobbered[mode]);
1320 
1321   /* Leave only those that are ok to rename.  */
1322   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1323                                   0, cur_reg, hrsi)
1324     {
1325       int nregs;
1326       int i;
1327 
1328       nregs = hard_regno_nregs[cur_reg][mode];
1329       gcc_assert (nregs > 0);
1330 
1331       for (i = nregs - 1; i >= 0; --i)
1332         if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1333           break;
1334 
1335       if (i >= 0)
1336         CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1337                             cur_reg);
1338     }
1339 
1340   AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1341                           reg_rename_p->unavailable_hard_regs);
1342 
1343   /* Regno is always ok from the renaming part of view, but it really
1344      could be in *unavailable_hard_regs already, so set it here instead
1345      of there.  */
1346   SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1347 }
1348 
1349 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1350    best register more recently than REG2.  */
1351 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1352 
1353 /* Indicates the number of times renaming happened before the current one.  */
1354 static int reg_rename_this_tick;
1355 
1356 /* Choose the register among free, that is suitable for storing
1357    the rhs value.
1358 
1359    ORIGINAL_INSNS is the list of insns where the operation (rhs)
1360    originally appears.  There could be multiple original operations
1361    for single rhs since we moving it up and merging along different
1362    paths.
1363 
1364    Some code is adapted from regrename.c (regrename_optimize).
1365    If original register is available, function returns it.
1366    Otherwise it performs the checks, so the new register should
1367    comply with the following:
1368     - it should not violate any live ranges (such registers are in
1369       REG_RENAME_P->available_for_renaming set);
1370     - it should not be in the HARD_REGS_USED regset;
1371     - it should be in the class compatible with original uses;
1372     - it should not be clobbered through reference with different mode;
1373     - if we're in the leaf function, then the new register should
1374       not be in the LEAF_REGISTERS;
1375     - etc.
1376 
1377    If several registers meet the conditions, the register with smallest
1378    tick is returned to achieve more even register allocation.
1379 
1380    If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1381 
1382    If no register satisfies the above conditions, NULL_RTX is returned.  */
1383 static rtx
1384 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1385                    struct reg_rename *reg_rename_p,
1386                    def_list_t original_insns, bool *is_orig_reg_p_ptr)
1387 {
1388   int best_new_reg;
1389   unsigned cur_reg;
1390   enum machine_mode mode = VOIDmode;
1391   unsigned regno, i, n;
1392   hard_reg_set_iterator hrsi;
1393   def_list_iterator di;
1394   def_t def;
1395 
1396   /* If original register is available, return it.  */
1397   *is_orig_reg_p_ptr = true;
1398 
1399   FOR_EACH_DEF (def, di, original_insns)
1400     {
1401       rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1402 
1403       gcc_assert (REG_P (orig_dest));
1404 
1405       /* Check that all original operations have the same mode.
1406          This is done for the next loop; if we'd return from this
1407          loop, we'd check only part of them, but in this case
1408          it doesn't matter.  */
1409       if (mode == VOIDmode)
1410         mode = GET_MODE (orig_dest);
1411       gcc_assert (mode == GET_MODE (orig_dest));
1412 
1413       regno = REGNO (orig_dest);
1414       for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1415         if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1416           break;
1417 
1418       /* All hard registers are available.  */
1419       if (i == n)
1420         {
1421           gcc_assert (mode != VOIDmode);
1422 
1423           /* Hard registers should not be shared.  */
1424           return gen_rtx_REG (mode, regno);
1425         }
1426     }
1427 
1428   *is_orig_reg_p_ptr = false;
1429   best_new_reg = -1;
1430 
1431   /* Among all available regs choose the register that was
1432      allocated earliest.  */
1433   EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1434                                   0, cur_reg, hrsi)
1435     if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1436       {
1437 	/* Check that all hard regs for mode are available.  */
1438 	for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1439 	  if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1440 	      || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1441 				     cur_reg + i))
1442 	    break;
1443 
1444 	if (i < n)
1445 	  continue;
1446 
1447         /* All hard registers are available.  */
1448         if (best_new_reg < 0
1449             || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1450           {
1451             best_new_reg = cur_reg;
1452 
1453             /* Return immediately when we know there's no better reg.  */
1454             if (! reg_rename_tick[best_new_reg])
1455               break;
1456           }
1457       }
1458 
1459   if (best_new_reg >= 0)
1460     {
1461       /* Use the check from the above loop.  */
1462       gcc_assert (mode != VOIDmode);
1463       return gen_rtx_REG (mode, best_new_reg);
1464     }
1465 
1466   return NULL_RTX;
1467 }
1468 
1469 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1470    assumptions about available registers in the function.  */
1471 static rtx
1472 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1473                  def_list_t original_insns, bool *is_orig_reg_p_ptr)
1474 {
1475   rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1476                                     original_insns, is_orig_reg_p_ptr);
1477 
1478   /* FIXME loop over hard_regno_nregs here.  */
1479   gcc_assert (best_reg == NULL_RTX
1480 	      || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1481 
1482   return best_reg;
1483 }
1484 
1485 /* Choose the pseudo register for storing rhs value.  As this is supposed
1486    to work before reload, we return either the original register or make
1487    the new one.  The parameters are the same that in choose_nest_reg_1
1488    functions, except that USED_REGS may contain pseudos.
1489    If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1490 
1491    TODO: take into account register pressure while doing this.  Up to this
1492    moment, this function would never return NULL for pseudos, but we should
1493    not rely on this.  */
1494 static rtx
1495 choose_best_pseudo_reg (regset used_regs,
1496                         struct reg_rename *reg_rename_p,
1497                         def_list_t original_insns, bool *is_orig_reg_p_ptr)
1498 {
1499   def_list_iterator i;
1500   def_t def;
1501   enum machine_mode mode = VOIDmode;
1502   bool bad_hard_regs = false;
1503 
1504   /* We should not use this after reload.  */
1505   gcc_assert (!reload_completed);
1506 
1507   /* If original register is available, return it.  */
1508   *is_orig_reg_p_ptr = true;
1509 
1510   FOR_EACH_DEF (def, i, original_insns)
1511     {
1512       rtx dest = SET_DEST (PATTERN (def->orig_insn));
1513       int orig_regno;
1514 
1515       gcc_assert (REG_P (dest));
1516 
1517       /* Check that all original operations have the same mode.  */
1518       if (mode == VOIDmode)
1519         mode = GET_MODE (dest);
1520       else
1521         gcc_assert (mode == GET_MODE (dest));
1522       orig_regno = REGNO (dest);
1523 
1524       if (!REGNO_REG_SET_P (used_regs, orig_regno))
1525         {
1526           if (orig_regno < FIRST_PSEUDO_REGISTER)
1527             {
1528               gcc_assert (df_regs_ever_live_p (orig_regno));
1529 
1530               /* For hard registers, we have to check hardware imposed
1531                  limitations (frame/stack registers, calls crossed).  */
1532               if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1533                                       orig_regno))
1534 		{
1535 		  /* Don't let register cross a call if it doesn't already
1536 		     cross one.  This condition is written in accordance with
1537 		     that in sched-deps.c sched_analyze_reg().  */
1538 		  if (!reg_rename_p->crosses_call
1539 		      || REG_N_CALLS_CROSSED (orig_regno) > 0)
1540 		    return gen_rtx_REG (mode, orig_regno);
1541 		}
1542 
1543               bad_hard_regs = true;
1544             }
1545           else
1546             return dest;
1547         }
1548      }
1549 
1550   *is_orig_reg_p_ptr = false;
1551 
1552   /* We had some original hard registers that couldn't be used.
1553      Those were likely special.  Don't try to create a pseudo.  */
1554   if (bad_hard_regs)
1555     return NULL_RTX;
1556 
1557   /* We haven't found a register from original operations.  Get a new one.
1558      FIXME: control register pressure somehow.  */
1559   {
1560     rtx new_reg = gen_reg_rtx (mode);
1561 
1562     gcc_assert (mode != VOIDmode);
1563 
1564     max_regno = max_reg_num ();
1565     maybe_extend_reg_info_p ();
1566     REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1567 
1568     return new_reg;
1569   }
1570 }
1571 
1572 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1573    USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS.  */
1574 static void
1575 verify_target_availability (expr_t expr, regset used_regs,
1576 			    struct reg_rename *reg_rename_p)
1577 {
1578   unsigned n, i, regno;
1579   enum machine_mode mode;
1580   bool target_available, live_available, hard_available;
1581 
1582   if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1583     return;
1584 
1585   regno = expr_dest_regno (expr);
1586   mode = GET_MODE (EXPR_LHS (expr));
1587   target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1588   n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1589 
1590   live_available = hard_available = true;
1591   for (i = 0; i < n; i++)
1592     {
1593       if (bitmap_bit_p (used_regs, regno + i))
1594         live_available = false;
1595       if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1596         hard_available = false;
1597     }
1598 
1599   /* When target is not available, it may be due to hard register
1600      restrictions, e.g. crosses calls, so we check hard_available too.  */
1601   if (target_available)
1602     gcc_assert (live_available);
1603   else
1604     /* Check only if we haven't scheduled something on the previous fence,
1605        cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1606        and having more than one fence, we may end having targ_un in a block
1607        in which successors target register is actually available.
1608 
1609        The last condition handles the case when a dependence from a call insn
1610        was created in sched-deps.c for insns with destination registers that
1611        never crossed a call before, but do cross one after our code motion.
1612 
1613        FIXME: in the latter case, we just uselessly called find_used_regs,
1614        because we can't move this expression with any other register
1615        as well.  */
1616     gcc_assert (scheduled_something_on_previous_fence || !live_available
1617 		|| !hard_available
1618 		|| (!reload_completed && reg_rename_p->crosses_call
1619 		    && REG_N_CALLS_CROSSED (regno) == 0));
1620 }
1621 
1622 /* Collect unavailable registers due to liveness for EXPR from BNDS
1623    into USED_REGS.  Save additional information about available
1624    registers and unavailable due to hardware restriction registers
1625    into REG_RENAME_P structure.  Save original insns into ORIGINAL_INSNS
1626    list.  */
1627 static void
1628 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1629 				    struct reg_rename *reg_rename_p,
1630 				    def_list_t *original_insns)
1631 {
1632   for (; bnds; bnds = BLIST_NEXT (bnds))
1633     {
1634       bool res;
1635       av_set_t orig_ops = NULL;
1636       bnd_t bnd = BLIST_BND (bnds);
1637 
1638       /* If the chosen best expr doesn't belong to current boundary,
1639 	 skip it.  */
1640       if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1641 	continue;
1642 
1643       /* Put in ORIG_OPS all exprs from this boundary that became
1644 	 RES on top.  */
1645       orig_ops = find_sequential_best_exprs (bnd, expr, false);
1646 
1647       /* Compute used regs and OR it into the USED_REGS.  */
1648       res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1649 			    reg_rename_p, original_insns);
1650 
1651       /* FIXME: the assert is true until we'd have several boundaries.  */
1652       gcc_assert (res);
1653       av_set_clear (&orig_ops);
1654     }
1655 }
1656 
1657 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1658    If BEST_REG is valid, replace LHS of EXPR with it.  */
1659 static bool
1660 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1661 {
1662   /* Try whether we'll be able to generate the insn
1663      'dest := best_reg' at the place of the original operation.  */
1664   for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1665     {
1666       insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1667 
1668       gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1669 
1670       if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1671 	  && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1672 	      || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1673 	return false;
1674     }
1675 
1676   /* Make sure that EXPR has the right destination
1677      register.  */
1678   if (expr_dest_regno (expr) != REGNO (best_reg))
1679     replace_dest_with_reg_in_expr (expr, best_reg);
1680   else
1681     EXPR_TARGET_AVAILABLE (expr) = 1;
1682 
1683   return true;
1684 }
1685 
1686 /* Select and assign best register to EXPR searching from BNDS.
1687    Set *IS_ORIG_REG_P to TRUE if original register was selected.
1688    Return FALSE if no register can be chosen, which could happen when:
1689    * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1690    * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1691      that are used on the moving path.  */
1692 static bool
1693 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1694 {
1695   static struct reg_rename reg_rename_data;
1696 
1697   regset used_regs;
1698   def_list_t original_insns = NULL;
1699   bool reg_ok;
1700 
1701   *is_orig_reg_p = false;
1702 
1703   /* Don't bother to do anything if this insn doesn't set any registers.  */
1704   if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1705       && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1706     return true;
1707 
1708   used_regs = get_clear_regset_from_pool ();
1709   CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1710 
1711   collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1712 				      &original_insns);
1713 
1714 #ifdef ENABLE_CHECKING
1715   /* If after reload, make sure we're working with hard regs here.  */
1716   if (reload_completed)
1717     {
1718       reg_set_iterator rsi;
1719       unsigned i;
1720 
1721       EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1722         gcc_unreachable ();
1723     }
1724 #endif
1725 
1726   if (EXPR_SEPARABLE_P (expr))
1727     {
1728       rtx best_reg = NULL_RTX;
1729       /* Check that we have computed availability of a target register
1730 	 correctly.  */
1731       verify_target_availability (expr, used_regs, &reg_rename_data);
1732 
1733       /* Turn everything in hard regs after reload.  */
1734       if (reload_completed)
1735 	{
1736 	  HARD_REG_SET hard_regs_used;
1737 	  REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1738 
1739 	  /* Join hard registers unavailable due to register class
1740 	     restrictions and live range intersection.  */
1741 	  IOR_HARD_REG_SET (hard_regs_used,
1742 			    reg_rename_data.unavailable_hard_regs);
1743 
1744 	  best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1745 				      original_insns, is_orig_reg_p);
1746 	}
1747       else
1748 	best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1749 					   original_insns, is_orig_reg_p);
1750 
1751       if (!best_reg)
1752 	reg_ok = false;
1753       else if (*is_orig_reg_p)
1754 	{
1755 	  /* In case of unification BEST_REG may be different from EXPR's LHS
1756 	     when EXPR's LHS is unavailable, and there is another LHS among
1757 	     ORIGINAL_INSNS.  */
1758 	  reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1759 	}
1760       else
1761 	{
1762 	  /* Forbid renaming of low-cost insns.  */
1763 	  if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1764 	    reg_ok = false;
1765 	  else
1766 	    reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1767 	}
1768     }
1769   else
1770     {
1771       /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1772 	 any of the HARD_REGS_USED set.  */
1773       if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1774 				      reg_rename_data.unavailable_hard_regs))
1775 	{
1776 	  reg_ok = false;
1777 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1778 	}
1779       else
1780 	{
1781 	  reg_ok = true;
1782 	  gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1783 	}
1784     }
1785 
1786   ilist_clear (&original_insns);
1787   return_regset_to_pool (used_regs);
1788 
1789   return reg_ok;
1790 }
1791 
1792 
1793 /* Return true if dependence described by DS can be overcomed.  */
1794 static bool
1795 can_speculate_dep_p (ds_t ds)
1796 {
1797   if (spec_info == NULL)
1798     return false;
1799 
1800   /* Leave only speculative data.  */
1801   ds &= SPECULATIVE;
1802 
1803   if (ds == 0)
1804     return false;
1805 
1806   {
1807     /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1808        that we can overcome.  */
1809     ds_t spec_mask = spec_info->mask;
1810 
1811     if ((ds & spec_mask) != ds)
1812       return false;
1813   }
1814 
1815   if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1816     return false;
1817 
1818   return true;
1819 }
1820 
1821 /* Get a speculation check instruction.
1822    C_EXPR is a speculative expression,
1823    CHECK_DS describes speculations that should be checked,
1824    ORIG_INSN is the original non-speculative insn in the stream.  */
1825 static insn_t
1826 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1827 {
1828   rtx check_pattern;
1829   rtx insn_rtx;
1830   insn_t insn;
1831   basic_block recovery_block;
1832   rtx label;
1833 
1834   /* Create a recovery block if target is going to emit branchy check, or if
1835      ORIG_INSN was speculative already.  */
1836   if (targetm.sched.needs_block_p (check_ds)
1837       || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1838     {
1839       recovery_block = sel_create_recovery_block (orig_insn);
1840       label = BB_HEAD (recovery_block);
1841     }
1842   else
1843     {
1844       recovery_block = NULL;
1845       label = NULL_RTX;
1846     }
1847 
1848   /* Get pattern of the check.  */
1849   check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1850 						check_ds);
1851 
1852   gcc_assert (check_pattern != NULL);
1853 
1854   /* Emit check.  */
1855   insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1856 
1857   insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1858 				      INSN_SEQNO (orig_insn), orig_insn);
1859 
1860   /* Make check to be non-speculative.  */
1861   EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1862   INSN_SPEC_CHECKED_DS (insn) = check_ds;
1863 
1864   /* Decrease priority of check by difference of load/check instruction
1865      latencies.  */
1866   EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1867 				       - sel_vinsn_cost (INSN_VINSN (insn)));
1868 
1869   /* Emit copy of original insn (though with replaced target register,
1870      if needed) to the recovery block.  */
1871   if (recovery_block != NULL)
1872     {
1873       rtx twin_rtx;
1874 
1875       twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1876       twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1877       sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1878 					    INSN_EXPR (orig_insn),
1879 					    INSN_SEQNO (insn),
1880 					    bb_note (recovery_block));
1881     }
1882 
1883   /* If we've generated a data speculation check, make sure
1884      that all the bookkeeping instruction we'll create during
1885      this move_op () will allocate an ALAT entry so that the
1886      check won't fail.
1887      In case of control speculation we must convert C_EXPR to control
1888      speculative mode, because failing to do so will bring us an exception
1889      thrown by the non-control-speculative load.  */
1890   check_ds = ds_get_max_dep_weak (check_ds);
1891   speculate_expr (c_expr, check_ds);
1892 
1893   return insn;
1894 }
1895 
1896 /* True when INSN is a "regN = regN" copy.  */
1897 static bool
1898 identical_copy_p (rtx insn)
1899 {
1900   rtx lhs, rhs, pat;
1901 
1902   pat = PATTERN (insn);
1903 
1904   if (GET_CODE (pat) != SET)
1905     return false;
1906 
1907   lhs = SET_DEST (pat);
1908   if (!REG_P (lhs))
1909     return false;
1910 
1911   rhs = SET_SRC (pat);
1912   if (!REG_P (rhs))
1913     return false;
1914 
1915   return REGNO (lhs) == REGNO (rhs);
1916 }
1917 
1918 /* Undo all transformations on *AV_PTR that were done when
1919    moving through INSN.  */
1920 static void
1921 undo_transformations (av_set_t *av_ptr, rtx insn)
1922 {
1923   av_set_iterator av_iter;
1924   expr_t expr;
1925   av_set_t new_set = NULL;
1926 
1927   /* First, kill any EXPR that uses registers set by an insn.  This is
1928      required for correctness.  */
1929   FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1930     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1931         && bitmap_intersect_p (INSN_REG_SETS (insn),
1932                                VINSN_REG_USES (EXPR_VINSN (expr)))
1933         /* When an insn looks like 'r1 = r1', we could substitute through
1934            it, but the above condition will still hold.  This happened with
1935            gcc.c-torture/execute/961125-1.c.  */
1936         && !identical_copy_p (insn))
1937       {
1938         if (sched_verbose >= 6)
1939           sel_print ("Expr %d removed due to use/set conflict\n",
1940                      INSN_UID (EXPR_INSN_RTX (expr)));
1941         av_set_iter_remove (&av_iter);
1942       }
1943 
1944   /* Undo transformations looking at the history vector.  */
1945   FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1946     {
1947       int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1948                                         insn, EXPR_VINSN (expr), true);
1949 
1950       if (index >= 0)
1951         {
1952           expr_history_def *phist;
1953 
1954           phist = VEC_index (expr_history_def,
1955                              EXPR_HISTORY_OF_CHANGES (expr),
1956                              index);
1957 
1958           switch (phist->type)
1959             {
1960             case TRANS_SPECULATION:
1961               {
1962                 ds_t old_ds, new_ds;
1963 
1964                 /* Compute the difference between old and new speculative
1965                    statuses: that's what we need to check.
1966                    Earlier we used to assert that the status will really
1967                    change.  This no longer works because only the probability
1968                    bits in the status may have changed during compute_av_set,
1969                    and in the case of merging different probabilities of the
1970                    same speculative status along different paths we do not
1971                    record this in the history vector.  */
1972                 old_ds = phist->spec_ds;
1973                 new_ds = EXPR_SPEC_DONE_DS (expr);
1974 
1975                 old_ds &= SPECULATIVE;
1976                 new_ds &= SPECULATIVE;
1977                 new_ds &= ~old_ds;
1978 
1979                 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1980                 break;
1981               }
1982             case TRANS_SUBSTITUTION:
1983               {
1984                 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1985                 vinsn_t new_vi;
1986                 bool add = true;
1987 
1988                 new_vi = phist->old_expr_vinsn;
1989 
1990                 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1991                             == EXPR_SEPARABLE_P (expr));
1992                 copy_expr (tmp_expr, expr);
1993 
1994                 if (vinsn_equal_p (phist->new_expr_vinsn,
1995                                    EXPR_VINSN (tmp_expr)))
1996                   change_vinsn_in_expr (tmp_expr, new_vi);
1997                 else
1998                   /* This happens when we're unsubstituting on a bookkeeping
1999                      copy, which was in turn substituted.  The history is wrong
2000                      in this case.  Do it the hard way.  */
2001                   add = substitute_reg_in_expr (tmp_expr, insn, true);
2002                 if (add)
2003                   av_set_add (&new_set, tmp_expr);
2004                 clear_expr (tmp_expr);
2005                 break;
2006               }
2007             default:
2008               gcc_unreachable ();
2009             }
2010         }
2011 
2012     }
2013 
2014   av_set_union_and_clear (av_ptr, &new_set, NULL);
2015 }
2016 
2017 
2018 /* Moveup_* helpers for code motion and computing av sets.  */
2019 
2020 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2021    The difference from the below function is that only substitution is
2022    performed.  */
2023 static enum MOVEUP_EXPR_CODE
2024 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2025 {
2026   vinsn_t vi = EXPR_VINSN (expr);
2027   ds_t *has_dep_p;
2028   ds_t full_ds;
2029 
2030   /* Do this only inside insn group.  */
2031   gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2032 
2033   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2034   if (full_ds == 0)
2035     return MOVEUP_EXPR_SAME;
2036 
2037   /* Substitution is the possible choice in this case.  */
2038   if (has_dep_p[DEPS_IN_RHS])
2039     {
2040       /* Can't substitute UNIQUE VINSNs.  */
2041       gcc_assert (!VINSN_UNIQUE_P (vi));
2042 
2043       if (can_substitute_through_p (through_insn,
2044                                     has_dep_p[DEPS_IN_RHS])
2045           && substitute_reg_in_expr (expr, through_insn, false))
2046         {
2047           EXPR_WAS_SUBSTITUTED (expr) = true;
2048           return MOVEUP_EXPR_CHANGED;
2049         }
2050 
2051       /* Don't care about this, as even true dependencies may be allowed
2052          in an insn group.  */
2053       return MOVEUP_EXPR_SAME;
2054     }
2055 
2056   /* This can catch output dependencies in COND_EXECs.  */
2057   if (has_dep_p[DEPS_IN_INSN])
2058     return MOVEUP_EXPR_NULL;
2059 
2060   /* This is either an output or an anti dependence, which usually have
2061      a zero latency.  Allow this here, if we'd be wrong, tick_check_p
2062      will fix this.  */
2063   gcc_assert (has_dep_p[DEPS_IN_LHS]);
2064   return MOVEUP_EXPR_AS_RHS;
2065 }
2066 
2067 /* True when a trapping EXPR cannot be moved through THROUGH_INSN.  */
2068 #define CANT_MOVE_TRAPPING(expr, through_insn)                \
2069   (VINSN_MAY_TRAP_P (EXPR_VINSN (expr))                       \
2070    && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2071    && !sel_insn_is_speculation_check (through_insn))
2072 
2073 /* True when a conflict on a target register was found during moveup_expr.  */
2074 static bool was_target_conflict = false;
2075 
2076 /* Return true when moving a debug INSN across THROUGH_INSN will
2077    create a bookkeeping block.  We don't want to create such blocks,
2078    for they would cause codegen differences between compilations with
2079    and without debug info.  */
2080 
2081 static bool
2082 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2083 					 insn_t through_insn)
2084 {
2085   basic_block bbi, bbt;
2086   edge e1, e2;
2087   edge_iterator ei1, ei2;
2088 
2089   if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2090     {
2091       if (sched_verbose >= 9)
2092 	sel_print ("no bookkeeping required: ");
2093       return FALSE;
2094     }
2095 
2096   bbi = BLOCK_FOR_INSN (insn);
2097 
2098   if (EDGE_COUNT (bbi->preds) == 1)
2099     {
2100       if (sched_verbose >= 9)
2101 	sel_print ("only one pred edge: ");
2102       return TRUE;
2103     }
2104 
2105   bbt = BLOCK_FOR_INSN (through_insn);
2106 
2107   FOR_EACH_EDGE (e1, ei1, bbt->succs)
2108     {
2109       FOR_EACH_EDGE (e2, ei2, bbi->preds)
2110 	{
2111 	  if (find_block_for_bookkeeping (e1, e2, TRUE))
2112 	    {
2113 	      if (sched_verbose >= 9)
2114 		sel_print ("found existing block: ");
2115 	      return FALSE;
2116 	    }
2117 	}
2118     }
2119 
2120   if (sched_verbose >= 9)
2121     sel_print ("would create bookkeeping block: ");
2122 
2123   return TRUE;
2124 }
2125 
2126 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2127    performing necessary transformations.  Record the type of transformation
2128    made in PTRANS_TYPE, when it is not NULL.  When INSIDE_INSN_GROUP,
2129    permit all dependencies except true ones, and try to remove those
2130    too via forward substitution.  All cases when a non-eliminable
2131    non-zero cost dependency exists inside an insn group will be fixed
2132    in tick_check_p instead.  */
2133 static enum MOVEUP_EXPR_CODE
2134 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2135             enum local_trans_type *ptrans_type)
2136 {
2137   vinsn_t vi = EXPR_VINSN (expr);
2138   insn_t insn = VINSN_INSN_RTX (vi);
2139   bool was_changed = false;
2140   bool as_rhs = false;
2141   ds_t *has_dep_p;
2142   ds_t full_ds;
2143 
2144   /* When inside_insn_group, delegate to the helper.  */
2145   if (inside_insn_group)
2146     return moveup_expr_inside_insn_group (expr, through_insn);
2147 
2148   /* Deal with unique insns and control dependencies.  */
2149   if (VINSN_UNIQUE_P (vi))
2150     {
2151       /* We can move jumps without side-effects or jumps that are
2152 	 mutually exclusive with instruction THROUGH_INSN (all in cases
2153 	 dependencies allow to do so and jump is not speculative).  */
2154       if (control_flow_insn_p (insn))
2155         {
2156           basic_block fallthru_bb;
2157 
2158           /* Do not move checks and do not move jumps through other
2159              jumps.  */
2160           if (control_flow_insn_p (through_insn)
2161               || sel_insn_is_speculation_check (insn))
2162             return MOVEUP_EXPR_NULL;
2163 
2164           /* Don't move jumps through CFG joins.  */
2165           if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2166             return MOVEUP_EXPR_NULL;
2167 
2168           /* The jump should have a clear fallthru block, and
2169              this block should be in the current region.  */
2170           if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2171               || ! in_current_region_p (fallthru_bb))
2172             return MOVEUP_EXPR_NULL;
2173 
2174           /* And it should be mutually exclusive with through_insn.  */
2175           if (! sched_insns_conditions_mutex_p (insn, through_insn)
2176 	      && ! DEBUG_INSN_P (through_insn))
2177             return MOVEUP_EXPR_NULL;
2178         }
2179 
2180       /* Don't move what we can't move.  */
2181       if (EXPR_CANT_MOVE (expr)
2182 	  && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2183 	return MOVEUP_EXPR_NULL;
2184 
2185       /* Don't move SCHED_GROUP instruction through anything.
2186          If we don't force this, then it will be possible to start
2187          scheduling a sched_group before all its dependencies are
2188          resolved.
2189          ??? Haifa deals with this issue by delaying the SCHED_GROUP
2190          as late as possible through rank_for_schedule.  */
2191       if (SCHED_GROUP_P (insn))
2192 	return MOVEUP_EXPR_NULL;
2193     }
2194   else
2195     gcc_assert (!control_flow_insn_p (insn));
2196 
2197   /* Don't move debug insns if this would require bookkeeping.  */
2198   if (DEBUG_INSN_P (insn)
2199       && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2200       && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2201     return MOVEUP_EXPR_NULL;
2202 
2203   /* Deal with data dependencies.  */
2204   was_target_conflict = false;
2205   full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2206   if (full_ds == 0)
2207     {
2208       if (!CANT_MOVE_TRAPPING (expr, through_insn))
2209 	return MOVEUP_EXPR_SAME;
2210     }
2211   else
2212     {
2213       /* We can move UNIQUE insn up only as a whole and unchanged,
2214          so it shouldn't have any dependencies.  */
2215       if (VINSN_UNIQUE_P (vi))
2216 	return MOVEUP_EXPR_NULL;
2217     }
2218 
2219   if (full_ds != 0 && can_speculate_dep_p (full_ds))
2220     {
2221       int res;
2222 
2223       res = speculate_expr (expr, full_ds);
2224       if (res >= 0)
2225 	{
2226           /* Speculation was successful.  */
2227           full_ds = 0;
2228           was_changed = (res > 0);
2229           if (res == 2)
2230             was_target_conflict = true;
2231           if (ptrans_type)
2232             *ptrans_type = TRANS_SPECULATION;
2233 	  sel_clear_has_dependence ();
2234 	}
2235     }
2236 
2237   if (has_dep_p[DEPS_IN_INSN])
2238     /* We have some dependency that cannot be discarded.  */
2239     return MOVEUP_EXPR_NULL;
2240 
2241   if (has_dep_p[DEPS_IN_LHS])
2242     {
2243       /* Only separable insns can be moved up with the new register.
2244          Anyways, we should mark that the original register is
2245          unavailable.  */
2246       if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2247         return MOVEUP_EXPR_NULL;
2248 
2249       EXPR_TARGET_AVAILABLE (expr) = false;
2250       was_target_conflict = true;
2251       as_rhs = true;
2252     }
2253 
2254   /* At this point we have either separable insns, that will be lifted
2255      up only as RHSes, or non-separable insns with no dependency in lhs.
2256      If dependency is in RHS, then try to perform substitution and move up
2257      substituted RHS:
2258 
2259       Ex. 1:				  Ex.2
2260 	y = x;				    y = x;
2261 	z = y*2;			    y = y*2;
2262 
2263     In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2264     moved above y=x assignment as z=x*2.
2265 
2266     In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2267     side can be moved because of the output dependency.  The operation was
2268     cropped to its rhs above.  */
2269   if (has_dep_p[DEPS_IN_RHS])
2270     {
2271       ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2272 
2273       /* Can't substitute UNIQUE VINSNs.  */
2274       gcc_assert (!VINSN_UNIQUE_P (vi));
2275 
2276       if (can_speculate_dep_p (*rhs_dsp))
2277 	{
2278           int res;
2279 
2280           res = speculate_expr (expr, *rhs_dsp);
2281           if (res >= 0)
2282             {
2283               /* Speculation was successful.  */
2284               *rhs_dsp = 0;
2285               was_changed = (res > 0);
2286               if (res == 2)
2287                 was_target_conflict = true;
2288               if (ptrans_type)
2289                 *ptrans_type = TRANS_SPECULATION;
2290             }
2291 	  else
2292 	    return MOVEUP_EXPR_NULL;
2293 	}
2294       else if (can_substitute_through_p (through_insn,
2295                                          *rhs_dsp)
2296                && substitute_reg_in_expr (expr, through_insn, false))
2297 	{
2298           /* ??? We cannot perform substitution AND speculation on the same
2299              insn.  */
2300           gcc_assert (!was_changed);
2301           was_changed = true;
2302           if (ptrans_type)
2303             *ptrans_type = TRANS_SUBSTITUTION;
2304           EXPR_WAS_SUBSTITUTED (expr) = true;
2305 	}
2306       else
2307 	return MOVEUP_EXPR_NULL;
2308     }
2309 
2310   /* Don't move trapping insns through jumps.
2311      This check should be at the end to give a chance to control speculation
2312      to perform its duties.  */
2313   if (CANT_MOVE_TRAPPING (expr, through_insn))
2314     return MOVEUP_EXPR_NULL;
2315 
2316   return (was_changed
2317           ? MOVEUP_EXPR_CHANGED
2318           : (as_rhs
2319              ? MOVEUP_EXPR_AS_RHS
2320              : MOVEUP_EXPR_SAME));
2321 }
2322 
2323 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2324    if successful.  When INSIDE_INSN_GROUP, also try ignore dependencies
2325    that can exist within a parallel group.  Write to RES the resulting
2326    code for moveup_expr.  */
2327 static bool
2328 try_bitmap_cache (expr_t expr, insn_t insn,
2329                   bool inside_insn_group,
2330                   enum MOVEUP_EXPR_CODE *res)
2331 {
2332   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2333 
2334   /* First check whether we've analyzed this situation already.  */
2335   if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2336     {
2337       if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2338         {
2339           if (sched_verbose >= 6)
2340             sel_print ("removed (cached)\n");
2341           *res = MOVEUP_EXPR_NULL;
2342           return true;
2343         }
2344       else
2345         {
2346           if (sched_verbose >= 6)
2347             sel_print ("unchanged (cached)\n");
2348           *res = MOVEUP_EXPR_SAME;
2349           return true;
2350         }
2351     }
2352   else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2353     {
2354       if (inside_insn_group)
2355         {
2356           if (sched_verbose >= 6)
2357             sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2358           *res = MOVEUP_EXPR_SAME;
2359           return true;
2360 
2361         }
2362       else
2363         EXPR_TARGET_AVAILABLE (expr) = false;
2364 
2365       /* This is the only case when propagation result can change over time,
2366          as we can dynamically switch off scheduling as RHS.  In this case,
2367          just check the flag to reach the correct decision.  */
2368       if (enable_schedule_as_rhs_p)
2369         {
2370           if (sched_verbose >= 6)
2371             sel_print ("unchanged (as RHS, cached)\n");
2372           *res = MOVEUP_EXPR_AS_RHS;
2373           return true;
2374         }
2375       else
2376         {
2377           if (sched_verbose >= 6)
2378             sel_print ("removed (cached as RHS, but renaming"
2379                        " is now disabled)\n");
2380           *res = MOVEUP_EXPR_NULL;
2381           return true;
2382         }
2383     }
2384 
2385   return false;
2386 }
2387 
2388 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2389    if successful.  Write to RES the resulting code for moveup_expr.  */
2390 static bool
2391 try_transformation_cache (expr_t expr, insn_t insn,
2392                           enum MOVEUP_EXPR_CODE *res)
2393 {
2394   struct transformed_insns *pti
2395     = (struct transformed_insns *)
2396     htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2397                          &EXPR_VINSN (expr),
2398                          VINSN_HASH_RTX (EXPR_VINSN (expr)));
2399   if (pti)
2400     {
2401       /* This EXPR was already moved through this insn and was
2402          changed as a result.  Fetch the proper data from
2403          the hashtable.  */
2404       insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2405                               INSN_UID (insn), pti->type,
2406                               pti->vinsn_old, pti->vinsn_new,
2407                               EXPR_SPEC_DONE_DS (expr));
2408 
2409       if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2410         pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2411       change_vinsn_in_expr (expr, pti->vinsn_new);
2412       if (pti->was_target_conflict)
2413         EXPR_TARGET_AVAILABLE (expr) = false;
2414       if (pti->type == TRANS_SPECULATION)
2415         {
2416           EXPR_SPEC_DONE_DS (expr) = pti->ds;
2417           EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2418         }
2419 
2420       if (sched_verbose >= 6)
2421         {
2422           sel_print ("changed (cached): ");
2423           dump_expr (expr);
2424           sel_print ("\n");
2425         }
2426 
2427       *res = MOVEUP_EXPR_CHANGED;
2428       return true;
2429     }
2430 
2431   return false;
2432 }
2433 
2434 /* Update bitmap caches on INSN with result RES of propagating EXPR.  */
2435 static void
2436 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2437                      enum MOVEUP_EXPR_CODE res)
2438 {
2439   int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2440 
2441   /* Do not cache result of propagating jumps through an insn group,
2442      as it is always true, which is not useful outside the group.  */
2443   if (inside_insn_group)
2444     return;
2445 
2446   if (res == MOVEUP_EXPR_NULL)
2447     {
2448       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2449       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2450     }
2451   else if (res == MOVEUP_EXPR_SAME)
2452     {
2453       bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2454       bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2455     }
2456   else if (res == MOVEUP_EXPR_AS_RHS)
2457     {
2458       bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459       bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460     }
2461   else
2462     gcc_unreachable ();
2463 }
2464 
2465 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2466    and transformation type TRANS_TYPE.  */
2467 static void
2468 update_transformation_cache (expr_t expr, insn_t insn,
2469                              bool inside_insn_group,
2470                              enum local_trans_type trans_type,
2471                              vinsn_t expr_old_vinsn)
2472 {
2473   struct transformed_insns *pti;
2474 
2475   if (inside_insn_group)
2476     return;
2477 
2478   pti = XNEW (struct transformed_insns);
2479   pti->vinsn_old = expr_old_vinsn;
2480   pti->vinsn_new = EXPR_VINSN (expr);
2481   pti->type = trans_type;
2482   pti->was_target_conflict = was_target_conflict;
2483   pti->ds = EXPR_SPEC_DONE_DS (expr);
2484   pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2485   vinsn_attach (pti->vinsn_old);
2486   vinsn_attach (pti->vinsn_new);
2487   *((struct transformed_insns **)
2488     htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2489                               pti, VINSN_HASH_RTX (expr_old_vinsn),
2490                               INSERT)) = pti;
2491 }
2492 
2493 /* Same as moveup_expr, but first looks up the result of
2494    transformation in caches.  */
2495 static enum MOVEUP_EXPR_CODE
2496 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2497 {
2498   enum MOVEUP_EXPR_CODE res;
2499   bool got_answer = false;
2500 
2501   if (sched_verbose >= 6)
2502     {
2503       sel_print ("Moving ");
2504       dump_expr (expr);
2505       sel_print (" through %d: ", INSN_UID (insn));
2506     }
2507 
2508   if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2509       && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2510 	  == EXPR_INSN_RTX (expr)))
2511     /* Don't use cached information for debug insns that are heads of
2512        basic blocks.  */;
2513   else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2514     /* When inside insn group, we do not want remove stores conflicting
2515        with previosly issued loads.  */
2516     got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2517   else if (try_transformation_cache (expr, insn, &res))
2518     got_answer = true;
2519 
2520   if (! got_answer)
2521     {
2522       /* Invoke moveup_expr and record the results.  */
2523       vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2524       ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2525       int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2526       bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2527       enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2528 
2529       /* ??? Invent something better than this.  We can't allow old_vinsn
2530          to go, we need it for the history vector.  */
2531       vinsn_attach (expr_old_vinsn);
2532 
2533       res = moveup_expr (expr, insn, inside_insn_group,
2534                          &trans_type);
2535       switch (res)
2536         {
2537         case MOVEUP_EXPR_NULL:
2538           update_bitmap_cache (expr, insn, inside_insn_group, res);
2539 	  if (sched_verbose >= 6)
2540             sel_print ("removed\n");
2541 	  break;
2542 
2543 	case MOVEUP_EXPR_SAME:
2544           update_bitmap_cache (expr, insn, inside_insn_group, res);
2545           if (sched_verbose >= 6)
2546             sel_print ("unchanged\n");
2547 	  break;
2548 
2549         case MOVEUP_EXPR_AS_RHS:
2550           gcc_assert (!unique_p || inside_insn_group);
2551           update_bitmap_cache (expr, insn, inside_insn_group, res);
2552 	  if (sched_verbose >= 6)
2553             sel_print ("unchanged (as RHS)\n");
2554 	  break;
2555 
2556 	case MOVEUP_EXPR_CHANGED:
2557           gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2558                       || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2559           insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2560                                   INSN_UID (insn), trans_type,
2561                                   expr_old_vinsn, EXPR_VINSN (expr),
2562                                   expr_old_spec_ds);
2563           update_transformation_cache (expr, insn, inside_insn_group,
2564                                        trans_type, expr_old_vinsn);
2565           if (sched_verbose >= 6)
2566             {
2567               sel_print ("changed: ");
2568               dump_expr (expr);
2569               sel_print ("\n");
2570             }
2571 	  break;
2572 	default:
2573 	  gcc_unreachable ();
2574         }
2575 
2576       vinsn_detach (expr_old_vinsn);
2577     }
2578 
2579   return res;
2580 }
2581 
2582 /* Moves an av set AVP up through INSN, performing necessary
2583    transformations.  */
2584 static void
2585 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2586 {
2587   av_set_iterator i;
2588   expr_t expr;
2589 
2590   FOR_EACH_EXPR_1 (expr, i, avp)
2591     {
2592 
2593       switch (moveup_expr_cached (expr, insn, inside_insn_group))
2594 	{
2595 	case MOVEUP_EXPR_SAME:
2596         case MOVEUP_EXPR_AS_RHS:
2597 	  break;
2598 
2599 	case MOVEUP_EXPR_NULL:
2600 	  av_set_iter_remove (&i);
2601 	  break;
2602 
2603 	case MOVEUP_EXPR_CHANGED:
2604           expr = merge_with_other_exprs (avp, &i, expr);
2605 	  break;
2606 
2607 	default:
2608 	  gcc_unreachable ();
2609 	}
2610     }
2611 }
2612 
2613 /* Moves AVP set along PATH.  */
2614 static void
2615 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2616 {
2617   int last_cycle;
2618 
2619   if (sched_verbose >= 6)
2620     sel_print ("Moving expressions up in the insn group...\n");
2621   if (! path)
2622     return;
2623   last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2624   while (path
2625          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2626     {
2627       moveup_set_expr (avp, ILIST_INSN (path), true);
2628       path = ILIST_NEXT (path);
2629     }
2630 }
2631 
2632 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW.  */
2633 static bool
2634 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2635 {
2636   expr_def _tmp, *tmp = &_tmp;
2637   int last_cycle;
2638   bool res = true;
2639 
2640   copy_expr_onside (tmp, expr);
2641   last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2642   while (path
2643          && res
2644          && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2645     {
2646       res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2647              != MOVEUP_EXPR_NULL);
2648       path = ILIST_NEXT (path);
2649     }
2650 
2651   if (res)
2652     {
2653       vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2654       vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2655 
2656       if (tmp_vinsn != expr_vliw_vinsn)
2657 	res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2658     }
2659 
2660   clear_expr (tmp);
2661   return res;
2662 }
2663 
2664 
2665 /* Functions that compute av and lv sets.  */
2666 
2667 /* Returns true if INSN is not a downward continuation of the given path P in
2668    the current stage.  */
2669 static bool
2670 is_ineligible_successor (insn_t insn, ilist_t p)
2671 {
2672   insn_t prev_insn;
2673 
2674   /* Check if insn is not deleted.  */
2675   if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2676     gcc_unreachable ();
2677   else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2678     gcc_unreachable ();
2679 
2680   /* If it's the first insn visited, then the successor is ok.  */
2681   if (!p)
2682     return false;
2683 
2684   prev_insn = ILIST_INSN (p);
2685 
2686   if (/* a backward edge.  */
2687       INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2688       /* is already visited.  */
2689       || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2690 	  && (ilist_is_in_p (p, insn)
2691               /* We can reach another fence here and still seqno of insn
2692                  would be equal to seqno of prev_insn.  This is possible
2693                  when prev_insn is a previously created bookkeeping copy.
2694                  In that case it'd get a seqno of insn.  Thus, check here
2695                  whether insn is in current fence too.  */
2696               || IN_CURRENT_FENCE_P (insn)))
2697       /* Was already scheduled on this round.  */
2698       || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2699 	  && IN_CURRENT_FENCE_P (insn))
2700       /* An insn from another fence could also be
2701 	 scheduled earlier even if this insn is not in
2702 	 a fence list right now.  Check INSN_SCHED_CYCLE instead.  */
2703       || (!pipelining_p
2704           && INSN_SCHED_TIMES (insn) > 0))
2705     return true;
2706   else
2707     return false;
2708 }
2709 
2710 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2711    of handling multiple successors and properly merging its av_sets.  P is
2712    the current path traversed.  WS is the size of lookahead window.
2713    Return the av set computed.  */
2714 static av_set_t
2715 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2716 {
2717   struct succs_info *sinfo;
2718   av_set_t expr_in_all_succ_branches = NULL;
2719   int is;
2720   insn_t succ, zero_succ = NULL;
2721   av_set_t av1 = NULL;
2722 
2723   gcc_assert (sel_bb_end_p (insn));
2724 
2725   /* Find different kind of successors needed for correct computing of
2726      SPEC and TARGET_AVAILABLE attributes.  */
2727   sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2728 
2729   /* Debug output.  */
2730   if (sched_verbose >= 6)
2731     {
2732       sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2733       dump_insn_vector (sinfo->succs_ok);
2734       sel_print ("\n");
2735       if (sinfo->succs_ok_n != sinfo->all_succs_n)
2736         sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2737     }
2738 
2739   /* Add insn to to the tail of current path.  */
2740   ilist_add (&p, insn);
2741 
2742   for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2743     {
2744       av_set_t succ_set;
2745 
2746       /* We will edit SUCC_SET and EXPR_SPEC field of its elements.  */
2747       succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2748 
2749       av_set_split_usefulness (succ_set,
2750                                VEC_index (int, sinfo->probs_ok, is),
2751                                sinfo->all_prob);
2752 
2753       if (sinfo->all_succs_n > 1)
2754 	{
2755           /* Find EXPR'es that came from *all* successors and save them
2756              into expr_in_all_succ_branches.  This set will be used later
2757              for calculating speculation attributes of EXPR'es.  */
2758           if (is == 0)
2759             {
2760               expr_in_all_succ_branches = av_set_copy (succ_set);
2761 
2762               /* Remember the first successor for later. */
2763               zero_succ = succ;
2764             }
2765           else
2766             {
2767               av_set_iterator i;
2768               expr_t expr;
2769 
2770               FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2771                 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2772                   av_set_iter_remove (&i);
2773             }
2774 	}
2775 
2776       /* Union the av_sets.  Check liveness restrictions on target registers
2777          in special case of two successors.  */
2778       if (sinfo->succs_ok_n == 2 && is == 1)
2779         {
2780           basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2781           basic_block bb1 = BLOCK_FOR_INSN (succ);
2782 
2783           gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2784           av_set_union_and_live (&av1, &succ_set,
2785                                  BB_LV_SET (bb0),
2786                                  BB_LV_SET (bb1),
2787                                  insn);
2788         }
2789       else
2790         av_set_union_and_clear (&av1, &succ_set, insn);
2791     }
2792 
2793   /* Check liveness restrictions via hard way when there are more than
2794      two successors.  */
2795   if (sinfo->succs_ok_n > 2)
2796     for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2797       {
2798         basic_block succ_bb = BLOCK_FOR_INSN (succ);
2799 
2800         gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2801         mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2802                                   BB_LV_SET (succ_bb));
2803       }
2804 
2805   /* Finally, check liveness restrictions on paths leaving the region.  */
2806   if (sinfo->all_succs_n > sinfo->succs_ok_n)
2807     for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2808       mark_unavailable_targets
2809         (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2810 
2811   if (sinfo->all_succs_n > 1)
2812     {
2813       av_set_iterator i;
2814       expr_t expr;
2815 
2816       /* Increase the spec attribute of all EXPR'es that didn't come
2817 	 from all successors.  */
2818       FOR_EACH_EXPR (expr, i, av1)
2819 	if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2820 	  EXPR_SPEC (expr)++;
2821 
2822       av_set_clear (&expr_in_all_succ_branches);
2823 
2824       /* Do not move conditional branches through other
2825 	 conditional branches.  So, remove all conditional
2826 	 branches from av_set if current operator is a conditional
2827 	 branch.  */
2828       av_set_substract_cond_branches (&av1);
2829     }
2830 
2831   ilist_remove (&p);
2832   free_succs_info (sinfo);
2833 
2834   if (sched_verbose >= 6)
2835     {
2836       sel_print ("av_succs (%d): ", INSN_UID (insn));
2837       dump_av_set (av1);
2838       sel_print ("\n");
2839     }
2840 
2841   return av1;
2842 }
2843 
2844 /* This function computes av_set for the FIRST_INSN by dragging valid
2845    av_set through all basic block insns either from the end of basic block
2846    (computed using compute_av_set_at_bb_end) or from the insn on which
2847    MAX_WS was exceeded.  It uses compute_av_set_at_bb_end to compute av_set
2848    below the basic block and handling conditional branches.
2849    FIRST_INSN - the basic block head, P - path consisting of the insns
2850    traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2851    and bb ends are added to the path), WS - current window size,
2852    NEED_COPY_P - true if we'll make a copy of av_set before returning it.  */
2853 static av_set_t
2854 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2855 			  bool need_copy_p)
2856 {
2857   insn_t cur_insn;
2858   int end_ws = ws;
2859   insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2860   insn_t after_bb_end = NEXT_INSN (bb_end);
2861   insn_t last_insn;
2862   av_set_t av = NULL;
2863   basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2864 
2865   /* Return NULL if insn is not on the legitimate downward path.  */
2866   if (is_ineligible_successor (first_insn, p))
2867     {
2868       if (sched_verbose >= 6)
2869         sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2870 
2871       return NULL;
2872     }
2873 
2874   /* If insn already has valid av(insn) computed, just return it.  */
2875   if (AV_SET_VALID_P (first_insn))
2876     {
2877       av_set_t av_set;
2878 
2879       if (sel_bb_head_p (first_insn))
2880 	av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2881       else
2882 	av_set = NULL;
2883 
2884       if (sched_verbose >= 6)
2885         {
2886           sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2887           dump_av_set (av_set);
2888           sel_print ("\n");
2889         }
2890 
2891       return need_copy_p ? av_set_copy (av_set) : av_set;
2892     }
2893 
2894   ilist_add (&p, first_insn);
2895 
2896   /* As the result after this loop have completed, in LAST_INSN we'll
2897      have the insn which has valid av_set to start backward computation
2898      from: it either will be NULL because on it the window size was exceeded
2899      or other valid av_set as returned by compute_av_set for the last insn
2900      of the basic block.  */
2901   for (last_insn = first_insn; last_insn != after_bb_end;
2902        last_insn = NEXT_INSN (last_insn))
2903     {
2904       /* We may encounter valid av_set not only on bb_head, but also on
2905 	 those insns on which previously MAX_WS was exceeded.  */
2906       if (AV_SET_VALID_P (last_insn))
2907 	{
2908           if (sched_verbose >= 6)
2909             sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2910 	  break;
2911 	}
2912 
2913       /* The special case: the last insn of the BB may be an
2914          ineligible_successor due to its SEQ_NO that was set on
2915 	 it as a bookkeeping.  */
2916       if (last_insn != first_insn
2917           && is_ineligible_successor (last_insn, p))
2918 	{
2919           if (sched_verbose >= 6)
2920             sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2921 	  break;
2922 	}
2923 
2924       if (DEBUG_INSN_P (last_insn))
2925 	continue;
2926 
2927       if (end_ws > max_ws)
2928 	{
2929 	  /* We can reach max lookahead size at bb_header, so clean av_set
2930 	     first.  */
2931 	  INSN_WS_LEVEL (last_insn) = global_level;
2932 
2933 	  if (sched_verbose >= 6)
2934             sel_print ("Insn %d is beyond the software lookahead window size\n",
2935                        INSN_UID (last_insn));
2936 	  break;
2937 	}
2938 
2939       end_ws++;
2940     }
2941 
2942   /* Get the valid av_set into AV above the LAST_INSN to start backward
2943      computation from.  It either will be empty av_set or av_set computed from
2944      the successors on the last insn of the current bb.  */
2945   if (last_insn != after_bb_end)
2946     {
2947       av = NULL;
2948 
2949       /* This is needed only to obtain av_sets that are identical to
2950          those computed by the old compute_av_set version.  */
2951       if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2952         av_set_add (&av, INSN_EXPR (last_insn));
2953     }
2954   else
2955     /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END.  */
2956     av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2957 
2958   /* Compute av_set in AV starting from below the LAST_INSN up to
2959      location above the FIRST_INSN.  */
2960   for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2961        cur_insn = PREV_INSN (cur_insn))
2962     if (!INSN_NOP_P (cur_insn))
2963       {
2964         expr_t expr;
2965 
2966         moveup_set_expr (&av, cur_insn, false);
2967 
2968         /* If the expression for CUR_INSN is already in the set,
2969            replace it by the new one.  */
2970         expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2971         if (expr != NULL)
2972           {
2973             clear_expr (expr);
2974             copy_expr (expr, INSN_EXPR (cur_insn));
2975           }
2976         else
2977           av_set_add (&av, INSN_EXPR (cur_insn));
2978       }
2979 
2980   /* Clear stale bb_av_set.  */
2981   if (sel_bb_head_p (first_insn))
2982     {
2983       av_set_clear (&BB_AV_SET (cur_bb));
2984       BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2985       BB_AV_LEVEL (cur_bb) = global_level;
2986     }
2987 
2988   if (sched_verbose >= 6)
2989     {
2990       sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2991       dump_av_set (av);
2992       sel_print ("\n");
2993     }
2994 
2995   ilist_remove (&p);
2996   return av;
2997 }
2998 
2999 /* Compute av set before INSN.
3000    INSN - the current operation (actual rtx INSN)
3001    P - the current path, which is list of insns visited so far
3002    WS - software lookahead window size.
3003    UNIQUE_P - TRUE, if returned av_set will be changed, hence
3004    if we want to save computed av_set in s_i_d, we should make a copy of it.
3005 
3006    In the resulting set we will have only expressions that don't have delay
3007    stalls and nonsubstitutable dependences.  */
3008 static av_set_t
3009 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3010 {
3011   return compute_av_set_inside_bb (insn, p, ws, unique_p);
3012 }
3013 
3014 /* Propagate a liveness set LV through INSN.  */
3015 static void
3016 propagate_lv_set (regset lv, insn_t insn)
3017 {
3018   gcc_assert (INSN_P (insn));
3019 
3020   if (INSN_NOP_P (insn))
3021     return;
3022 
3023   df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3024 }
3025 
3026 /* Return livness set at the end of BB.  */
3027 static regset
3028 compute_live_after_bb (basic_block bb)
3029 {
3030   edge e;
3031   edge_iterator ei;
3032   regset lv = get_clear_regset_from_pool ();
3033 
3034   gcc_assert (!ignore_first);
3035 
3036   FOR_EACH_EDGE (e, ei, bb->succs)
3037     if (sel_bb_empty_p (e->dest))
3038       {
3039         if (! BB_LV_SET_VALID_P (e->dest))
3040           {
3041             gcc_unreachable ();
3042             gcc_assert (BB_LV_SET (e->dest) == NULL);
3043             BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3044             BB_LV_SET_VALID_P (e->dest) = true;
3045           }
3046         IOR_REG_SET (lv, BB_LV_SET (e->dest));
3047       }
3048     else
3049       IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3050 
3051   return lv;
3052 }
3053 
3054 /* Compute the set of all live registers at the point before INSN and save
3055    it at INSN if INSN is bb header.  */
3056 regset
3057 compute_live (insn_t insn)
3058 {
3059   basic_block bb = BLOCK_FOR_INSN (insn);
3060   insn_t final, temp;
3061   regset lv;
3062 
3063   /* Return the valid set if we're already on it.  */
3064   if (!ignore_first)
3065     {
3066       regset src = NULL;
3067 
3068       if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3069         src = BB_LV_SET (bb);
3070       else
3071         {
3072           gcc_assert (in_current_region_p (bb));
3073           if (INSN_LIVE_VALID_P (insn))
3074             src = INSN_LIVE (insn);
3075         }
3076 
3077       if (src)
3078 	{
3079 	  lv = get_regset_from_pool ();
3080 	  COPY_REG_SET (lv, src);
3081 
3082           if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3083             {
3084               COPY_REG_SET (BB_LV_SET (bb), lv);
3085               BB_LV_SET_VALID_P (bb) = true;
3086             }
3087 
3088 	  return_regset_to_pool (lv);
3089 	  return lv;
3090 	}
3091     }
3092 
3093   /* We've skipped the wrong lv_set.  Don't skip the right one.  */
3094   ignore_first = false;
3095   gcc_assert (in_current_region_p (bb));
3096 
3097   /* Find a valid LV set in this block or below, if needed.
3098      Start searching from the next insn: either ignore_first is true, or
3099      INSN doesn't have a correct live set.  */
3100   temp = NEXT_INSN (insn);
3101   final = NEXT_INSN (BB_END (bb));
3102   while (temp != final && ! INSN_LIVE_VALID_P (temp))
3103     temp = NEXT_INSN (temp);
3104   if (temp == final)
3105     {
3106       lv = compute_live_after_bb (bb);
3107       temp = PREV_INSN (temp);
3108     }
3109   else
3110     {
3111       lv = get_regset_from_pool ();
3112       COPY_REG_SET (lv, INSN_LIVE (temp));
3113     }
3114 
3115   /* Put correct lv sets on the insns which have bad sets.  */
3116   final = PREV_INSN (insn);
3117   while (temp != final)
3118     {
3119       propagate_lv_set (lv, temp);
3120       COPY_REG_SET (INSN_LIVE (temp), lv);
3121       INSN_LIVE_VALID_P (temp) = true;
3122       temp = PREV_INSN (temp);
3123     }
3124 
3125   /* Also put it in a BB.  */
3126   if (sel_bb_head_p (insn))
3127     {
3128       basic_block bb = BLOCK_FOR_INSN (insn);
3129 
3130       COPY_REG_SET (BB_LV_SET (bb), lv);
3131       BB_LV_SET_VALID_P (bb) = true;
3132     }
3133 
3134   /* We return LV to the pool, but will not clear it there.  Thus we can
3135      legimatelly use LV till the next use of regset_pool_get ().  */
3136   return_regset_to_pool (lv);
3137   return lv;
3138 }
3139 
3140 /* Update liveness sets for INSN.  */
3141 static inline void
3142 update_liveness_on_insn (rtx insn)
3143 {
3144   ignore_first = true;
3145   compute_live (insn);
3146 }
3147 
3148 /* Compute liveness below INSN and write it into REGS.  */
3149 static inline void
3150 compute_live_below_insn (rtx insn, regset regs)
3151 {
3152   rtx succ;
3153   succ_iterator si;
3154 
3155   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3156     IOR_REG_SET (regs, compute_live (succ));
3157 }
3158 
3159 /* Update the data gathered in av and lv sets starting from INSN.  */
3160 static void
3161 update_data_sets (rtx insn)
3162 {
3163   update_liveness_on_insn (insn);
3164   if (sel_bb_head_p (insn))
3165     {
3166       gcc_assert (AV_LEVEL (insn) != 0);
3167       BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3168       compute_av_set (insn, NULL, 0, 0);
3169     }
3170 }
3171 
3172 
3173 /* Helper for move_op () and find_used_regs ().
3174    Return speculation type for which a check should be created on the place
3175    of INSN.  EXPR is one of the original ops we are searching for.  */
3176 static ds_t
3177 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3178 {
3179   ds_t to_check_ds;
3180   ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3181 
3182   to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3183 
3184   if (targetm.sched.get_insn_checked_ds)
3185     already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3186 
3187   if (spec_info != NULL
3188       && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3189     already_checked_ds |= BEGIN_CONTROL;
3190 
3191   already_checked_ds = ds_get_speculation_types (already_checked_ds);
3192 
3193   to_check_ds &= ~already_checked_ds;
3194 
3195   return to_check_ds;
3196 }
3197 
3198 /* Find the set of registers that are unavailable for storing expres
3199    while moving ORIG_OPS up on the path starting from INSN due to
3200    liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3201 
3202    All the original operations found during the traversal are saved in the
3203    ORIGINAL_INSNS list.
3204 
3205    REG_RENAME_P denotes the set of hardware registers that
3206    can not be used with renaming due to the register class restrictions,
3207    mode restrictions and other (the register we'll choose should be
3208    compatible class with the original uses, shouldn't be in call_used_regs,
3209    should be HARD_REGNO_RENAME_OK etc).
3210 
3211    Returns TRUE if we've found all original insns, FALSE otherwise.
3212 
3213    This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3214    to traverse the code motion paths.  This helper function finds registers
3215    that are not available for storing expres while moving ORIG_OPS up on the
3216    path starting from INSN.  A register considered as used on the moving path,
3217    if one of the following conditions is not satisfied:
3218 
3219       (1) a register not set or read on any path from xi to an instance of
3220 	  the original operation,
3221       (2) not among the live registers of the point immediately following the
3222           first original operation on a given downward path, except for the
3223 	  original target register of the operation,
3224       (3) not live on the other path of any conditional branch that is passed
3225 	  by the operation, in case original operations are not present on
3226 	  both paths of the conditional branch.
3227 
3228    All the original operations found during the traversal are saved in the
3229    ORIGINAL_INSNS list.
3230 
3231    REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3232    from INSN to original insn. In this case CALL_USED_REG_SET will be added
3233    to unavailable hard regs at the point original operation is found.  */
3234 
3235 static bool
3236 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3237 		struct reg_rename  *reg_rename_p, def_list_t *original_insns)
3238 {
3239   def_list_iterator i;
3240   def_t def;
3241   int res;
3242   bool needs_spec_check_p = false;
3243   expr_t expr;
3244   av_set_iterator expr_iter;
3245   struct fur_static_params sparams;
3246   struct cmpd_local_params lparams;
3247 
3248   /* We haven't visited any blocks yet.  */
3249   bitmap_clear (code_motion_visited_blocks);
3250 
3251   /* Init parameters for code_motion_path_driver.  */
3252   sparams.crosses_call = false;
3253   sparams.original_insns = original_insns;
3254   sparams.used_regs = used_regs;
3255 
3256   /* Set the appropriate hooks and data.  */
3257   code_motion_path_driver_info = &fur_hooks;
3258 
3259   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3260 
3261   reg_rename_p->crosses_call |= sparams.crosses_call;
3262 
3263   gcc_assert (res == 1);
3264   gcc_assert (original_insns && *original_insns);
3265 
3266   /* ??? We calculate whether an expression needs a check when computing
3267      av sets.  This information is not as precise as it could be due to
3268      merging this bit in merge_expr.  We can do better in find_used_regs,
3269      but we want to avoid multiple traversals of the same code motion
3270      paths.  */
3271   FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3272     needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3273 
3274   /* Mark hardware regs in REG_RENAME_P that are not suitable
3275      for renaming expr in INSN due to hardware restrictions (register class,
3276      modes compatibility etc).  */
3277   FOR_EACH_DEF (def, i, *original_insns)
3278     {
3279       vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3280 
3281       if (VINSN_SEPARABLE_P (vinsn))
3282 	mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3283 
3284       /* Do not allow clobbering of ld.[sa] address in case some of the
3285          original operations need a check.  */
3286       if (needs_spec_check_p)
3287 	IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3288     }
3289 
3290   return true;
3291 }
3292 
3293 
3294 /* Functions to choose the best insn from available ones.  */
3295 
3296 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook.  */
3297 static int
3298 sel_target_adjust_priority (expr_t expr)
3299 {
3300   int priority = EXPR_PRIORITY (expr);
3301   int new_priority;
3302 
3303   if (targetm.sched.adjust_priority)
3304     new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3305   else
3306     new_priority = priority;
3307 
3308   /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly.  */
3309   EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3310 
3311   gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3312 
3313   if (sched_verbose >= 4)
3314     sel_print ("sel_target_adjust_priority: insn %d,  %d+%d = %d.\n",
3315 	       INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3316 	       EXPR_PRIORITY_ADJ (expr), new_priority);
3317 
3318   return new_priority;
3319 }
3320 
3321 /* Rank two available exprs for schedule.  Never return 0 here.  */
3322 static int
3323 sel_rank_for_schedule (const void *x, const void *y)
3324 {
3325   expr_t tmp = *(const expr_t *) y;
3326   expr_t tmp2 = *(const expr_t *) x;
3327   insn_t tmp_insn, tmp2_insn;
3328   vinsn_t tmp_vinsn, tmp2_vinsn;
3329   int val;
3330 
3331   tmp_vinsn = EXPR_VINSN (tmp);
3332   tmp2_vinsn = EXPR_VINSN (tmp2);
3333   tmp_insn = EXPR_INSN_RTX (tmp);
3334   tmp2_insn = EXPR_INSN_RTX (tmp2);
3335 
3336   /* Schedule debug insns as early as possible.  */
3337   if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3338     return -1;
3339   else if (DEBUG_INSN_P (tmp2_insn))
3340     return 1;
3341 
3342   /* Prefer SCHED_GROUP_P insns to any others.  */
3343   if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3344     {
3345       if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3346         return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3347 
3348       /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3349          cannot be cloned.  */
3350       if (VINSN_UNIQUE_P (tmp2_vinsn))
3351         return 1;
3352       return -1;
3353     }
3354 
3355   /* Discourage scheduling of speculative checks.  */
3356   val = (sel_insn_is_speculation_check (tmp_insn)
3357 	 - sel_insn_is_speculation_check (tmp2_insn));
3358   if (val)
3359     return val;
3360 
3361   /* Prefer not scheduled insn over scheduled one.  */
3362   if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3363     {
3364       val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3365       if (val)
3366 	return val;
3367     }
3368 
3369   /* Prefer jump over non-jump instruction.  */
3370   if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3371     return -1;
3372   else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3373     return 1;
3374 
3375   /* Prefer an expr with greater priority.  */
3376   if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3377     {
3378       int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3379           p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3380 
3381       val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3382     }
3383   else
3384     val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3385 	  + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3386   if (val)
3387     return val;
3388 
3389   if (spec_info != NULL && spec_info->mask != 0)
3390     /* This code was taken from haifa-sched.c: rank_for_schedule ().  */
3391     {
3392       ds_t ds1, ds2;
3393       dw_t dw1, dw2;
3394       int dw;
3395 
3396       ds1 = EXPR_SPEC_DONE_DS (tmp);
3397       if (ds1)
3398 	dw1 = ds_weak (ds1);
3399       else
3400 	dw1 = NO_DEP_WEAK;
3401 
3402       ds2 = EXPR_SPEC_DONE_DS (tmp2);
3403       if (ds2)
3404 	dw2 = ds_weak (ds2);
3405       else
3406 	dw2 = NO_DEP_WEAK;
3407 
3408       dw = dw2 - dw1;
3409       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3410 	return dw;
3411     }
3412 
3413   /* Prefer an old insn to a bookkeeping insn.  */
3414   if (INSN_UID (tmp_insn) < first_emitted_uid
3415       && INSN_UID (tmp2_insn) >= first_emitted_uid)
3416     return -1;
3417   if (INSN_UID (tmp_insn) >= first_emitted_uid
3418       && INSN_UID (tmp2_insn) < first_emitted_uid)
3419     return 1;
3420 
3421   /* Prefer an insn with smaller UID, as a last resort.
3422      We can't safely use INSN_LUID as it is defined only for those insns
3423      that are in the stream.  */
3424   return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3425 }
3426 
3427 /* Filter out expressions from av set pointed to by AV_PTR
3428    that are pipelined too many times.  */
3429 static void
3430 process_pipelined_exprs (av_set_t *av_ptr)
3431 {
3432   expr_t expr;
3433   av_set_iterator si;
3434 
3435   /* Don't pipeline already pipelined code as that would increase
3436      number of unnecessary register moves.  */
3437   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3438     {
3439       if (EXPR_SCHED_TIMES (expr)
3440 	  >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3441 	av_set_iter_remove (&si);
3442     }
3443 }
3444 
3445 /* Filter speculative insns from AV_PTR if we don't want them.  */
3446 static void
3447 process_spec_exprs (av_set_t *av_ptr)
3448 {
3449   bool try_data_p = true;
3450   bool try_control_p = true;
3451   expr_t expr;
3452   av_set_iterator si;
3453 
3454   if (spec_info == NULL)
3455     return;
3456 
3457   /* Scan *AV_PTR to find out if we want to consider speculative
3458      instructions for scheduling.  */
3459   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3460     {
3461       ds_t ds;
3462 
3463       ds = EXPR_SPEC_DONE_DS (expr);
3464 
3465       /* The probability of a success is too low - don't speculate.  */
3466       if ((ds & SPECULATIVE)
3467           && (ds_weak (ds) < spec_info->data_weakness_cutoff
3468               || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3469 	      || (pipelining_p && false
3470 		  && (ds & DATA_SPEC)
3471 		  && (ds & CONTROL_SPEC))))
3472         {
3473           av_set_iter_remove (&si);
3474           continue;
3475         }
3476 
3477       if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3478           && !(ds & BEGIN_DATA))
3479         try_data_p = false;
3480 
3481       if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3482           && !(ds & BEGIN_CONTROL))
3483         try_control_p = false;
3484     }
3485 
3486   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487     {
3488       ds_t ds;
3489 
3490       ds = EXPR_SPEC_DONE_DS (expr);
3491 
3492       if (ds & SPECULATIVE)
3493         {
3494           if ((ds & BEGIN_DATA) && !try_data_p)
3495             /* We don't want any data speculative instructions right
3496                now.  */
3497             av_set_iter_remove (&si);
3498 
3499           if ((ds & BEGIN_CONTROL) && !try_control_p)
3500             /* We don't want any control speculative instructions right
3501                now.  */
3502             av_set_iter_remove (&si);
3503         }
3504     }
3505 }
3506 
3507 /* Search for any use-like insns in AV_PTR and decide on scheduling
3508    them.  Return one when found, and NULL otherwise.
3509    Note that we check here whether a USE could be scheduled to avoid
3510    an infinite loop later.  */
3511 static expr_t
3512 process_use_exprs (av_set_t *av_ptr)
3513 {
3514   expr_t expr;
3515   av_set_iterator si;
3516   bool uses_present_p = false;
3517   bool try_uses_p = true;
3518 
3519   FOR_EACH_EXPR_1 (expr, si, av_ptr)
3520     {
3521       /* This will also initialize INSN_CODE for later use.  */
3522       if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3523         {
3524           /* If we have a USE in *AV_PTR that was not scheduled yet,
3525              do so because it will do good only.  */
3526           if (EXPR_SCHED_TIMES (expr) <= 0)
3527             {
3528               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3529                 return expr;
3530 
3531               av_set_iter_remove (&si);
3532             }
3533           else
3534             {
3535               gcc_assert (pipelining_p);
3536 
3537               uses_present_p = true;
3538             }
3539         }
3540       else
3541         try_uses_p = false;
3542     }
3543 
3544   if (uses_present_p)
3545     {
3546       /* If we don't want to schedule any USEs right now and we have some
3547            in *AV_PTR, remove them, else just return the first one found.  */
3548       if (!try_uses_p)
3549         {
3550           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551             if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3552               av_set_iter_remove (&si);
3553         }
3554       else
3555         {
3556           FOR_EACH_EXPR_1 (expr, si, av_ptr)
3557             {
3558               gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3559 
3560               if (EXPR_TARGET_AVAILABLE (expr) == 1)
3561                 return expr;
3562 
3563               av_set_iter_remove (&si);
3564             }
3565         }
3566     }
3567 
3568   return NULL;
3569 }
3570 
3571 /* Lookup EXPR in VINSN_VEC and return TRUE if found.  */
3572 static bool
3573 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574 {
3575   vinsn_t vinsn;
3576   int n;
3577 
3578   for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3579     if (VINSN_SEPARABLE_P (vinsn))
3580       {
3581         if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3582           return true;
3583       }
3584     else
3585       {
3586         /* For non-separable instructions, the blocking insn can have
3587            another pattern due to substitution, and we can't choose
3588            different register as in the above case.  Check all registers
3589            being written instead.  */
3590         if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3591                                 VINSN_REG_SETS (EXPR_VINSN (expr))))
3592           return true;
3593       }
3594 
3595   return false;
3596 }
3597 
3598 #ifdef ENABLE_CHECKING
3599 /* Return true if either of expressions from ORIG_OPS can be blocked
3600    by previously created bookkeeping code.  STATIC_PARAMS points to static
3601    parameters of move_op.  */
3602 static bool
3603 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3604 {
3605   expr_t expr;
3606   av_set_iterator iter;
3607   moveop_static_params_p sparams;
3608 
3609   /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3610      created while scheduling on another fence.  */
3611   FOR_EACH_EXPR (expr, iter, orig_ops)
3612     if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3613       return true;
3614 
3615   gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3616   sparams = (moveop_static_params_p) static_params;
3617 
3618   /* Expressions can be also blocked by bookkeeping created during current
3619      move_op.  */
3620   if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3621     FOR_EACH_EXPR (expr, iter, orig_ops)
3622       if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3623         return true;
3624 
3625   /* Expressions in ORIG_OPS may have wrong destination register due to
3626      renaming.  Check with the right register instead.  */
3627   if (sparams->dest && REG_P (sparams->dest))
3628     {
3629       unsigned regno = REGNO (sparams->dest);
3630       vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3631 
3632       if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3633 	  || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3634 	  || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3635 	return true;
3636     }
3637 
3638   return false;
3639 }
3640 #endif
3641 
3642 /* Clear VINSN_VEC and detach vinsns.  */
3643 static void
3644 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3645 {
3646   unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3647   if (len > 0)
3648     {
3649       vinsn_t vinsn;
3650       int n;
3651 
3652       for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3653         vinsn_detach (vinsn);
3654       VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3655     }
3656 }
3657 
3658 /* Add the vinsn of EXPR to the VINSN_VEC.  */
3659 static void
3660 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3661 {
3662   vinsn_attach (EXPR_VINSN (expr));
3663   VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3664 }
3665 
3666 /* Free the vector representing blocked expressions.  */
3667 static void
3668 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3669 {
3670   if (*vinsn_vec)
3671     VEC_free (vinsn_t, heap, *vinsn_vec);
3672 }
3673 
3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT.  */
3675 
3676 void sel_add_to_insn_priority (rtx insn, int amount)
3677 {
3678   EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679 
3680   if (sched_verbose >= 2)
3681     sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 	       INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 	       EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684 }
3685 
3686 /* Turn AV into a vector, filter inappropriate insns and sort it.  Return
3687    true if there is something to schedule.  BNDS and FENCE are current
3688    boundaries and fence, respectively.  If we need to stall for some cycles
3689    before an expr from AV would become available, write this number to
3690    *PNEED_STALL.  */
3691 static bool
3692 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693                  int *pneed_stall)
3694 {
3695   av_set_iterator si;
3696   expr_t expr;
3697   int sched_next_worked = 0, stalled, n;
3698   static int av_max_prio, est_ticks_till_branch;
3699   int min_need_stall = -1;
3700   deps_t dc = BND_DC (BLIST_BND (bnds));
3701 
3702   /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703      already scheduled.  */
3704   if (av == NULL)
3705     return false;
3706 
3707   /* Empty vector from the previous stuff.  */
3708   if (VEC_length (expr_t, vec_av_set) > 0)
3709     VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3710 
3711   /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712      for each insn.  */
3713   gcc_assert (VEC_empty (expr_t, vec_av_set));
3714   FOR_EACH_EXPR (expr, si, av)
3715     {
3716       VEC_safe_push (expr_t, heap, vec_av_set, expr);
3717 
3718       gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719 
3720       /* Adjust priority using target backend hook.  */
3721       sel_target_adjust_priority (expr);
3722     }
3723 
3724   /* Sort the vector.  */
3725   qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3726          sizeof (expr_t), sel_rank_for_schedule);
3727 
3728   /* We record maximal priority of insns in av set for current instruction
3729      group.  */
3730   if (FENCE_STARTS_CYCLE_P (fence))
3731     av_max_prio = est_ticks_till_branch = INT_MIN;
3732 
3733   /* Filter out inappropriate expressions.  Loop's direction is reversed to
3734      visit "best" instructions first.  We assume that VEC_unordered_remove
3735      moves last element in place of one being deleted.  */
3736   for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3737     {
3738       expr_t expr = VEC_index (expr_t, vec_av_set, n);
3739       insn_t insn = EXPR_INSN_RTX (expr);
3740       signed char target_available;
3741       bool is_orig_reg_p = true;
3742       int need_cycles, new_prio;
3743 
3744       /* Don't allow any insns other than from SCHED_GROUP if we have one.  */
3745       if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3746         {
3747           VEC_unordered_remove (expr_t, vec_av_set, n);
3748           continue;
3749         }
3750 
3751       /* Set number of sched_next insns (just in case there
3752          could be several).  */
3753       if (FENCE_SCHED_NEXT (fence))
3754         sched_next_worked++;
3755 
3756       /* Check all liveness requirements and try renaming.
3757          FIXME: try to minimize calls to this.  */
3758       target_available = EXPR_TARGET_AVAILABLE (expr);
3759 
3760       /* If insn was already scheduled on the current fence,
3761 	 set TARGET_AVAILABLE to -1 no matter what expr's attribute says.  */
3762       if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3763 	target_available = -1;
3764 
3765       /* If the availability of the EXPR is invalidated by the insertion of
3766 	 bookkeeping earlier, make sure that we won't choose this expr for
3767 	 scheduling if it's not separable, and if it is separable, then
3768 	 we have to recompute the set of available registers for it.  */
3769       if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3770 	{
3771           VEC_unordered_remove (expr_t, vec_av_set, n);
3772           if (sched_verbose >= 4)
3773             sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3774                        INSN_UID (insn));
3775           continue;
3776         }
3777 
3778       if (target_available == true)
3779 	{
3780           /* Do nothing -- we can use an existing register.  */
3781 	  is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3782         }
3783       else if (/* Non-separable instruction will never
3784                   get another register. */
3785                (target_available == false
3786                 && !EXPR_SEPARABLE_P (expr))
3787                /* Don't try to find a register for low-priority expression.  */
3788                || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3789                /* ??? FIXME: Don't try to rename data speculation.  */
3790                || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3791                || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3792         {
3793           VEC_unordered_remove (expr_t, vec_av_set, n);
3794           if (sched_verbose >= 4)
3795             sel_print ("Expr %d has no suitable target register\n",
3796                        INSN_UID (insn));
3797           continue;
3798         }
3799 
3800       /* Filter expressions that need to be renamed or speculated when
3801 	 pipelining, because compensating register copies or speculation
3802 	 checks are likely to be placed near the beginning of the loop,
3803 	 causing a stall.  */
3804       if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3805 	  && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3806 	{
3807 	  /* Estimation of number of cycles until loop branch for
3808 	     renaming/speculation to be successful.  */
3809 	  int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3810 
3811 	  if ((int) current_loop_nest->ninsns < 9)
3812 	    {
3813 	      VEC_unordered_remove (expr_t, vec_av_set, n);
3814 	      if (sched_verbose >= 4)
3815 		sel_print ("Pipelining expr %d will likely cause stall\n",
3816 			   INSN_UID (insn));
3817 	      continue;
3818 	    }
3819 
3820 	  if ((int) current_loop_nest->ninsns - num_insns_scheduled
3821 	      < need_n_ticks_till_branch * issue_rate / 2
3822 	      && est_ticks_till_branch < need_n_ticks_till_branch)
3823 	     {
3824 	       VEC_unordered_remove (expr_t, vec_av_set, n);
3825 	       if (sched_verbose >= 4)
3826 		 sel_print ("Pipelining expr %d will likely cause stall\n",
3827 			    INSN_UID (insn));
3828 	       continue;
3829 	     }
3830 	}
3831 
3832       /* We want to schedule speculation checks as late as possible.  Discard
3833 	 them from av set if there are instructions with higher priority.  */
3834       if (sel_insn_is_speculation_check (insn)
3835 	  && EXPR_PRIORITY (expr) < av_max_prio)
3836 	{
3837           stalled++;
3838           min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3839           VEC_unordered_remove (expr_t, vec_av_set, n);
3840 	  if (sched_verbose >= 4)
3841 	    sel_print ("Delaying speculation check %d until its first use\n",
3842 		       INSN_UID (insn));
3843 	  continue;
3844 	}
3845 
3846       /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO.  */
3847       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3848 	av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3849 
3850       /* Don't allow any insns whose data is not yet ready.
3851          Check first whether we've already tried them and failed.  */
3852       if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3853 	{
3854           need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3855 			 - FENCE_CYCLE (fence));
3856 	  if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3857 	    est_ticks_till_branch = MAX (est_ticks_till_branch,
3858 					 EXPR_PRIORITY (expr) + need_cycles);
3859 
3860 	  if (need_cycles > 0)
3861 	    {
3862 	      stalled++;
3863 	      min_need_stall = (min_need_stall < 0
3864 				? need_cycles
3865 				: MIN (min_need_stall, need_cycles));
3866 	      VEC_unordered_remove (expr_t, vec_av_set, n);
3867 
3868 	      if (sched_verbose >= 4)
3869 		sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3870 			   INSN_UID (insn),
3871 			   FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3872 	      continue;
3873 	    }
3874 	}
3875 
3876       /* Now resort to dependence analysis to find whether EXPR might be
3877          stalled due to dependencies from FENCE's context.  */
3878       need_cycles = tick_check_p (expr, dc, fence);
3879       new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3880 
3881       if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3882 	est_ticks_till_branch = MAX (est_ticks_till_branch,
3883 				     new_prio);
3884 
3885       if (need_cycles > 0)
3886         {
3887           if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3888             {
3889               int new_size = INSN_UID (insn) * 3 / 2;
3890 
3891               FENCE_READY_TICKS (fence)
3892                 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3893                                      new_size, FENCE_READY_TICKS_SIZE (fence),
3894                                      sizeof (int));
3895             }
3896           FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3897             = FENCE_CYCLE (fence) + need_cycles;
3898 
3899           stalled++;
3900           min_need_stall = (min_need_stall < 0
3901                             ? need_cycles
3902                             : MIN (min_need_stall, need_cycles));
3903 
3904           VEC_unordered_remove (expr_t, vec_av_set, n);
3905 
3906           if (sched_verbose >= 4)
3907             sel_print ("Expr %d is not ready yet until cycle %d\n",
3908                        INSN_UID (insn),
3909                        FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3910           continue;
3911         }
3912 
3913       if (sched_verbose >= 4)
3914         sel_print ("Expr %d is ok\n", INSN_UID (insn));
3915       min_need_stall = 0;
3916     }
3917 
3918   /* Clear SCHED_NEXT.  */
3919   if (FENCE_SCHED_NEXT (fence))
3920     {
3921       gcc_assert (sched_next_worked == 1);
3922       FENCE_SCHED_NEXT (fence) = NULL_RTX;
3923     }
3924 
3925   /* No need to stall if this variable was not initialized.  */
3926   if (min_need_stall < 0)
3927     min_need_stall = 0;
3928 
3929   if (VEC_empty (expr_t, vec_av_set))
3930     {
3931       /* We need to set *pneed_stall here, because later we skip this code
3932          when ready list is empty.  */
3933       *pneed_stall = min_need_stall;
3934       return false;
3935     }
3936   else
3937     gcc_assert (min_need_stall == 0);
3938 
3939   /* Sort the vector.  */
3940   qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3941          sizeof (expr_t), sel_rank_for_schedule);
3942 
3943   if (sched_verbose >= 4)
3944     {
3945       sel_print ("Total ready exprs: %d, stalled: %d\n",
3946                  VEC_length (expr_t, vec_av_set), stalled);
3947       sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3948       for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3949         dump_expr (expr);
3950       sel_print ("\n");
3951     }
3952 
3953   *pneed_stall = 0;
3954   return true;
3955 }
3956 
3957 /* Convert a vectored and sorted av set to the ready list that
3958    the rest of the backend wants to see.  */
3959 static void
3960 convert_vec_av_set_to_ready (void)
3961 {
3962   int n;
3963   expr_t expr;
3964 
3965   /* Allocate and fill the ready list from the sorted vector.  */
3966   ready.n_ready = VEC_length (expr_t, vec_av_set);
3967   ready.first = ready.n_ready - 1;
3968 
3969   gcc_assert (ready.n_ready > 0);
3970 
3971   if (ready.n_ready > max_issue_size)
3972     {
3973       max_issue_size = ready.n_ready;
3974       sched_extend_ready_list (ready.n_ready);
3975     }
3976 
3977   for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3978     {
3979       vinsn_t vi = EXPR_VINSN (expr);
3980       insn_t insn = VINSN_INSN_RTX (vi);
3981 
3982       ready_try[n] = 0;
3983       ready.vec[n] = insn;
3984     }
3985 }
3986 
3987 /* Initialize ready list from *AV_PTR for the max_issue () call.
3988    If any unrecognizable insn found in *AV_PTR, return it (and skip
3989    max_issue).  BND and FENCE are current boundary and fence,
3990    respectively.  If we need to stall for some cycles before an expr
3991    from *AV_PTR would become available, write this number to *PNEED_STALL.  */
3992 static expr_t
3993 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3994                  int *pneed_stall)
3995 {
3996   expr_t expr;
3997 
3998   /* We do not support multiple boundaries per fence.  */
3999   gcc_assert (BLIST_NEXT (bnds) == NULL);
4000 
4001   /* Process expressions required special handling, i.e.  pipelined,
4002      speculative and recog() < 0 expressions first.  */
4003   process_pipelined_exprs (av_ptr);
4004   process_spec_exprs (av_ptr);
4005 
4006   /* A USE could be scheduled immediately.  */
4007   expr = process_use_exprs (av_ptr);
4008   if (expr)
4009     {
4010       *pneed_stall = 0;
4011       return expr;
4012     }
4013 
4014   /* Turn the av set to a vector for sorting.  */
4015   if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4016     {
4017       ready.n_ready = 0;
4018       return NULL;
4019     }
4020 
4021   /* Build the final ready list.  */
4022   convert_vec_av_set_to_ready ();
4023   return NULL;
4024 }
4025 
4026 /* Wrapper for dfa_new_cycle ().  Returns TRUE if cycle was advanced.  */
4027 static bool
4028 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4029 {
4030   int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4031                              ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4032                              : FENCE_CYCLE (fence) - 1;
4033   bool res = false;
4034   int sort_p = 0;
4035 
4036   if (!targetm.sched.dfa_new_cycle)
4037     return false;
4038 
4039   memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4040 
4041   while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4042                                                  insn, last_scheduled_cycle,
4043                                                  FENCE_CYCLE (fence), &sort_p))
4044     {
4045       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4046       advance_one_cycle (fence);
4047       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4048       res = true;
4049     }
4050 
4051   return res;
4052 }
4053 
4054 /* Invoke reorder* target hooks on the ready list.  Return the number of insns
4055    we can issue.  FENCE is the current fence.  */
4056 static int
4057 invoke_reorder_hooks (fence_t fence)
4058 {
4059   int issue_more;
4060   bool ran_hook = false;
4061 
4062   /* Call the reorder hook at the beginning of the cycle, and call
4063      the reorder2 hook in the middle of the cycle.  */
4064   if (FENCE_ISSUED_INSNS (fence) == 0)
4065     {
4066       if (targetm.sched.reorder
4067           && !SCHED_GROUP_P (ready_element (&ready, 0))
4068           && ready.n_ready > 1)
4069         {
4070           /* Don't give reorder the most prioritized insn as it can break
4071              pipelining.  */
4072           if (pipelining_p)
4073             --ready.n_ready;
4074 
4075           issue_more
4076             = targetm.sched.reorder (sched_dump, sched_verbose,
4077                                      ready_lastpos (&ready),
4078                                      &ready.n_ready, FENCE_CYCLE (fence));
4079 
4080           if (pipelining_p)
4081             ++ready.n_ready;
4082 
4083           ran_hook = true;
4084         }
4085       else
4086         /* Initialize can_issue_more for variable_issue.  */
4087         issue_more = issue_rate;
4088     }
4089   else if (targetm.sched.reorder2
4090            && !SCHED_GROUP_P (ready_element (&ready, 0)))
4091     {
4092       if (ready.n_ready == 1)
4093         issue_more =
4094           targetm.sched.reorder2 (sched_dump, sched_verbose,
4095                                   ready_lastpos (&ready),
4096                                   &ready.n_ready, FENCE_CYCLE (fence));
4097       else
4098         {
4099           if (pipelining_p)
4100             --ready.n_ready;
4101 
4102           issue_more =
4103             targetm.sched.reorder2 (sched_dump, sched_verbose,
4104                                     ready.n_ready
4105                                     ? ready_lastpos (&ready) : NULL,
4106                                     &ready.n_ready, FENCE_CYCLE (fence));
4107 
4108           if (pipelining_p)
4109             ++ready.n_ready;
4110         }
4111 
4112       ran_hook = true;
4113     }
4114   else
4115     issue_more = FENCE_ISSUE_MORE (fence);
4116 
4117   /* Ensure that ready list and vec_av_set are in line with each other,
4118      i.e. vec_av_set[i] == ready_element (&ready, i).  */
4119   if (issue_more && ran_hook)
4120     {
4121       int i, j, n;
4122       rtx *arr = ready.vec;
4123       expr_t *vec = VEC_address (expr_t, vec_av_set);
4124 
4125       for (i = 0, n = ready.n_ready; i < n; i++)
4126         if (EXPR_INSN_RTX (vec[i]) != arr[i])
4127           {
4128             expr_t tmp;
4129 
4130             for (j = i; j < n; j++)
4131               if (EXPR_INSN_RTX (vec[j]) == arr[i])
4132                 break;
4133             gcc_assert (j < n);
4134 
4135             tmp = vec[i];
4136             vec[i] = vec[j];
4137             vec[j] = tmp;
4138           }
4139     }
4140 
4141   return issue_more;
4142 }
4143 
4144 /* Return an EXPR correponding to INDEX element of ready list, if
4145    FOLLOW_READY_ELEMENT is true (i.e., an expr of
4146    ready_element (&ready, INDEX) will be returned), and to INDEX element of
4147    ready.vec otherwise.  */
4148 static inline expr_t
4149 find_expr_for_ready (int index, bool follow_ready_element)
4150 {
4151   expr_t expr;
4152   int real_index;
4153 
4154   real_index = follow_ready_element ? ready.first - index : index;
4155 
4156   expr = VEC_index (expr_t, vec_av_set, real_index);
4157   gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4158 
4159   return expr;
4160 }
4161 
4162 /* Calculate insns worth trying via lookahead_guard hook.  Return a number
4163    of such insns found.  */
4164 static int
4165 invoke_dfa_lookahead_guard (void)
4166 {
4167   int i, n;
4168   bool have_hook
4169     = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4170 
4171   if (sched_verbose >= 2)
4172     sel_print ("ready after reorder: ");
4173 
4174   for (i = 0, n = 0; i < ready.n_ready; i++)
4175     {
4176       expr_t expr;
4177       insn_t insn;
4178       int r;
4179 
4180       /* In this loop insn is Ith element of the ready list given by
4181          ready_element, not Ith element of ready.vec.  */
4182       insn = ready_element (&ready, i);
4183 
4184       if (! have_hook || i == 0)
4185         r = 0;
4186       else
4187         r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4188 
4189       gcc_assert (INSN_CODE (insn) >= 0);
4190 
4191       /* Only insns with ready_try = 0 can get here
4192          from fill_ready_list.  */
4193       gcc_assert (ready_try [i] == 0);
4194       ready_try[i] = r;
4195       if (!r)
4196         n++;
4197 
4198       expr = find_expr_for_ready (i, true);
4199 
4200       if (sched_verbose >= 2)
4201         {
4202           dump_vinsn (EXPR_VINSN (expr));
4203           sel_print (":%d; ", ready_try[i]);
4204         }
4205     }
4206 
4207   if (sched_verbose >= 2)
4208     sel_print ("\n");
4209   return n;
4210 }
4211 
4212 /* Calculate the number of privileged insns and return it.  */
4213 static int
4214 calculate_privileged_insns (void)
4215 {
4216   expr_t cur_expr, min_spec_expr = NULL;
4217   int privileged_n = 0, i;
4218 
4219   for (i = 0; i < ready.n_ready; i++)
4220     {
4221       if (ready_try[i])
4222         continue;
4223 
4224       if (! min_spec_expr)
4225 	min_spec_expr = find_expr_for_ready (i, true);
4226 
4227       cur_expr = find_expr_for_ready (i, true);
4228 
4229       if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4230         break;
4231 
4232       ++privileged_n;
4233     }
4234 
4235   if (i == ready.n_ready)
4236     privileged_n = 0;
4237 
4238   if (sched_verbose >= 2)
4239     sel_print ("privileged_n: %d insns with SPEC %d\n",
4240                privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4241   return privileged_n;
4242 }
4243 
4244 /* Call the rest of the hooks after the choice was made.  Return
4245    the number of insns that still can be issued given that the current
4246    number is ISSUE_MORE.  FENCE and BEST_INSN are the current fence
4247    and the insn chosen for scheduling, respectively.  */
4248 static int
4249 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4250 {
4251   gcc_assert (INSN_P (best_insn));
4252 
4253   /* First, call dfa_new_cycle, and then variable_issue, if available.  */
4254   sel_dfa_new_cycle (best_insn, fence);
4255 
4256   if (targetm.sched.variable_issue)
4257     {
4258       memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4259       issue_more =
4260         targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4261                                       issue_more);
4262       memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4263     }
4264   else if (GET_CODE (PATTERN (best_insn)) != USE
4265            && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4266     issue_more--;
4267 
4268   return issue_more;
4269 }
4270 
4271 /* Estimate the cost of issuing INSN on DFA state STATE.  */
4272 static int
4273 estimate_insn_cost (rtx insn, state_t state)
4274 {
4275   static state_t temp = NULL;
4276   int cost;
4277 
4278   if (!temp)
4279     temp = xmalloc (dfa_state_size);
4280 
4281   memcpy (temp, state, dfa_state_size);
4282   cost = state_transition (temp, insn);
4283 
4284   if (cost < 0)
4285     return 0;
4286   else if (cost == 0)
4287     return 1;
4288   return cost;
4289 }
4290 
4291 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4292    This function properly handles ASMs, USEs etc.  */
4293 static int
4294 get_expr_cost (expr_t expr, fence_t fence)
4295 {
4296   rtx insn = EXPR_INSN_RTX (expr);
4297 
4298   if (recog_memoized (insn) < 0)
4299     {
4300       if (!FENCE_STARTS_CYCLE_P (fence)
4301 	  && INSN_ASM_P (insn))
4302 	/* This is asm insn which is tryed to be issued on the
4303 	   cycle not first.  Issue it on the next cycle.  */
4304 	return 1;
4305       else
4306 	/* A USE insn, or something else we don't need to
4307 	   understand.  We can't pass these directly to
4308 	   state_transition because it will trigger a
4309 	   fatal error for unrecognizable insns.  */
4310 	return 0;
4311     }
4312   else
4313     return estimate_insn_cost (insn, FENCE_STATE (fence));
4314 }
4315 
4316 /* Find the best insn for scheduling, either via max_issue or just take
4317    the most prioritized available.  */
4318 static int
4319 choose_best_insn (fence_t fence, int privileged_n, int *index)
4320 {
4321   int can_issue = 0;
4322 
4323   if (dfa_lookahead > 0)
4324     {
4325       cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4326       can_issue = max_issue (&ready, privileged_n,
4327                              FENCE_STATE (fence), index);
4328       if (sched_verbose >= 2)
4329         sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4330                    can_issue, FENCE_ISSUED_INSNS (fence));
4331     }
4332   else
4333     {
4334       /* We can't use max_issue; just return the first available element.  */
4335       int i;
4336 
4337       for (i = 0; i < ready.n_ready; i++)
4338 	{
4339 	  expr_t expr = find_expr_for_ready (i, true);
4340 
4341 	  if (get_expr_cost (expr, fence) < 1)
4342 	    {
4343 	      can_issue = can_issue_more;
4344 	      *index = i;
4345 
4346 	      if (sched_verbose >= 2)
4347 		sel_print ("using %dth insn from the ready list\n", i + 1);
4348 
4349 	      break;
4350 	    }
4351 	}
4352 
4353       if (i == ready.n_ready)
4354 	{
4355 	  can_issue = 0;
4356 	  *index = -1;
4357 	}
4358     }
4359 
4360   return can_issue;
4361 }
4362 
4363 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4364    BNDS and FENCE are current boundaries and scheduling fence respectively.
4365    Return the expr found and NULL if nothing can be issued atm.
4366    Write to PNEED_STALL the number of cycles to stall if no expr was found.  */
4367 static expr_t
4368 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4369                 int *pneed_stall)
4370 {
4371   expr_t best;
4372 
4373   /* Choose the best insn for scheduling via:
4374      1) sorting the ready list based on priority;
4375      2) calling the reorder hook;
4376      3) calling max_issue.  */
4377   best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4378   if (best == NULL && ready.n_ready > 0)
4379     {
4380       int privileged_n, index;
4381 
4382       can_issue_more = invoke_reorder_hooks (fence);
4383       if (can_issue_more > 0)
4384         {
4385           /* Try choosing the best insn until we find one that is could be
4386              scheduled due to liveness restrictions on its destination register.
4387              In the future, we'd like to choose once and then just probe insns
4388              in the order of their priority.  */
4389           invoke_dfa_lookahead_guard ();
4390           privileged_n = calculate_privileged_insns ();
4391           can_issue_more = choose_best_insn (fence, privileged_n, &index);
4392           if (can_issue_more)
4393             best = find_expr_for_ready (index, true);
4394         }
4395       /* We had some available insns, so if we can't issue them,
4396          we have a stall.  */
4397       if (can_issue_more == 0)
4398         {
4399           best = NULL;
4400           *pneed_stall = 1;
4401         }
4402     }
4403 
4404   if (best != NULL)
4405     {
4406       can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4407                                                can_issue_more);
4408       if (targetm.sched.variable_issue
4409 	  && can_issue_more == 0)
4410         *pneed_stall = 1;
4411     }
4412 
4413   if (sched_verbose >= 2)
4414     {
4415       if (best != NULL)
4416         {
4417           sel_print ("Best expression (vliw form): ");
4418           dump_expr (best);
4419           sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4420         }
4421       else
4422         sel_print ("No best expr found!\n");
4423     }
4424 
4425   return best;
4426 }
4427 
4428 
4429 /* Functions that implement the core of the scheduler.  */
4430 
4431 
4432 /* Emit an instruction from EXPR with SEQNO and VINSN after
4433    PLACE_TO_INSERT.  */
4434 static insn_t
4435 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4436                            insn_t place_to_insert)
4437 {
4438   /* This assert fails when we have identical instructions
4439      one of which dominates the other.  In this case move_op ()
4440      finds the first instruction and doesn't search for second one.
4441      The solution would be to compute av_set after the first found
4442      insn and, if insn present in that set, continue searching.
4443      For now we workaround this issue in move_op.  */
4444   gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4445 
4446   if (EXPR_WAS_RENAMED (expr))
4447     {
4448       unsigned regno = expr_dest_regno (expr);
4449 
4450       if (HARD_REGISTER_NUM_P (regno))
4451 	{
4452 	  df_set_regs_ever_live (regno, true);
4453 	  reg_rename_tick[regno] = ++reg_rename_this_tick;
4454 	}
4455     }
4456 
4457   return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4458                                        place_to_insert);
4459 }
4460 
4461 /* Return TRUE if BB can hold bookkeeping code.  */
4462 static bool
4463 block_valid_for_bookkeeping_p (basic_block bb)
4464 {
4465   insn_t bb_end = BB_END (bb);
4466 
4467   if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4468     return false;
4469 
4470   if (INSN_P (bb_end))
4471     {
4472       if (INSN_SCHED_TIMES (bb_end) > 0)
4473 	return false;
4474     }
4475   else
4476     gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4477 
4478   return true;
4479 }
4480 
4481 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4482    into E2->dest, except from E1->src (there may be a sequence of empty basic
4483    blocks between E1->src and E2->dest).  Return found block, or NULL if new
4484    one must be created.  If LAX holds, don't assume there is a simple path
4485    from E1->src to E2->dest.  */
4486 static basic_block
4487 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4488 {
4489   basic_block candidate_block = NULL;
4490   edge e;
4491 
4492   /* Loop over edges from E1 to E2, inclusive.  */
4493   for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4494     {
4495       if (EDGE_COUNT (e->dest->preds) == 2)
4496 	{
4497 	  if (candidate_block == NULL)
4498 	    candidate_block = (EDGE_PRED (e->dest, 0) == e
4499 			       ? EDGE_PRED (e->dest, 1)->src
4500 			       : EDGE_PRED (e->dest, 0)->src);
4501 	  else
4502 	    /* Found additional edge leading to path from e1 to e2
4503 	       from aside.  */
4504 	    return NULL;
4505 	}
4506       else if (EDGE_COUNT (e->dest->preds) > 2)
4507 	/* Several edges leading to path from e1 to e2 from aside.  */
4508 	return NULL;
4509 
4510       if (e == e2)
4511 	return ((!lax || candidate_block)
4512 		&& block_valid_for_bookkeeping_p (candidate_block)
4513 		? candidate_block
4514 		: NULL);
4515 
4516       if (lax && EDGE_COUNT (e->dest->succs) != 1)
4517 	return NULL;
4518     }
4519 
4520   if (lax)
4521     return NULL;
4522 
4523   gcc_unreachable ();
4524 }
4525 
4526 /* Create new basic block for bookkeeping code for path(s) incoming into
4527    E2->dest, except from E1->src.  Return created block.  */
4528 static basic_block
4529 create_block_for_bookkeeping (edge e1, edge e2)
4530 {
4531   basic_block new_bb, bb = e2->dest;
4532 
4533   /* Check that we don't spoil the loop structure.  */
4534   if (current_loop_nest)
4535     {
4536       basic_block latch = current_loop_nest->latch;
4537 
4538       /* We do not split header.  */
4539       gcc_assert (e2->dest != current_loop_nest->header);
4540 
4541       /* We do not redirect the only edge to the latch block.  */
4542       gcc_assert (e1->dest != latch
4543 		  || !single_pred_p (latch)
4544 		  || e1 != single_pred_edge (latch));
4545     }
4546 
4547   /* Split BB to insert BOOK_INSN there.  */
4548   new_bb = sched_split_block (bb, NULL);
4549 
4550   /* Move note_list from the upper bb.  */
4551   gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4552   BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4553   BB_NOTE_LIST (bb) = NULL_RTX;
4554 
4555   gcc_assert (e2->dest == bb);
4556 
4557   /* Skip block for bookkeeping copy when leaving E1->src.  */
4558   if (e1->flags & EDGE_FALLTHRU)
4559     sel_redirect_edge_and_branch_force (e1, new_bb);
4560   else
4561     sel_redirect_edge_and_branch (e1, new_bb);
4562 
4563   gcc_assert (e1->dest == new_bb);
4564   gcc_assert (sel_bb_empty_p (bb));
4565 
4566   /* To keep basic block numbers in sync between debug and non-debug
4567      compilations, we have to rotate blocks here.  Consider that we
4568      started from (a,b)->d, (c,d)->e, and d contained only debug
4569      insns.  It would have been removed before if the debug insns
4570      weren't there, so we'd have split e rather than d.  So what we do
4571      now is to swap the block numbers of new_bb and
4572      single_succ(new_bb) == e, so that the insns that were in e before
4573      get the new block number.  */
4574 
4575   if (MAY_HAVE_DEBUG_INSNS)
4576     {
4577       basic_block succ;
4578       insn_t insn = sel_bb_head (new_bb);
4579       insn_t last;
4580 
4581       if (DEBUG_INSN_P (insn)
4582 	  && single_succ_p (new_bb)
4583 	  && (succ = single_succ (new_bb))
4584 	  && succ != EXIT_BLOCK_PTR
4585 	  && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4586 	{
4587 	  while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4588 	    insn = NEXT_INSN (insn);
4589 
4590 	  if (insn == last)
4591 	    {
4592 	      sel_global_bb_info_def gbi;
4593 	      sel_region_bb_info_def rbi;
4594 	      int i;
4595 
4596 	      if (sched_verbose >= 2)
4597 		sel_print ("Swapping block ids %i and %i\n",
4598 			   new_bb->index, succ->index);
4599 
4600 	      i = new_bb->index;
4601 	      new_bb->index = succ->index;
4602 	      succ->index = i;
4603 
4604 	      SET_BASIC_BLOCK (new_bb->index, new_bb);
4605 	      SET_BASIC_BLOCK (succ->index, succ);
4606 
4607 	      memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4608 	      memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4609 		      sizeof (gbi));
4610 	      memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4611 
4612 	      memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4613 	      memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4614 		      sizeof (rbi));
4615 	      memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4616 
4617 	      i = BLOCK_TO_BB (new_bb->index);
4618 	      BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4619 	      BLOCK_TO_BB (succ->index) = i;
4620 
4621 	      i = CONTAINING_RGN (new_bb->index);
4622 	      CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4623 	      CONTAINING_RGN (succ->index) = i;
4624 
4625 	      for (i = 0; i < current_nr_blocks; i++)
4626 		if (BB_TO_BLOCK (i) == succ->index)
4627 		  BB_TO_BLOCK (i) = new_bb->index;
4628 		else if (BB_TO_BLOCK (i) == new_bb->index)
4629 		  BB_TO_BLOCK (i) = succ->index;
4630 
4631 	      FOR_BB_INSNS (new_bb, insn)
4632 		if (INSN_P (insn))
4633 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4634 
4635 	      FOR_BB_INSNS (succ, insn)
4636 		if (INSN_P (insn))
4637 		  EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4638 
4639 	      if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index))
4640 		{
4641 		  bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642 		  bitmap_clear_bit (code_motion_visited_blocks, new_bb->index);
4643 		}
4644 
4645 	      gcc_assert (LABEL_P (BB_HEAD (new_bb))
4646 			  && LABEL_P (BB_HEAD (succ)));
4647 
4648 	      if (sched_verbose >= 4)
4649 		sel_print ("Swapping code labels %i and %i\n",
4650 			   CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4651 			   CODE_LABEL_NUMBER (BB_HEAD (succ)));
4652 
4653 	      i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4654 	      CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4655 		= CODE_LABEL_NUMBER (BB_HEAD (succ));
4656 	      CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4657 	    }
4658 	}
4659     }
4660 
4661   return bb;
4662 }
4663 
4664 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4665    into E2->dest, except from E1->src.  */
4666 static insn_t
4667 find_place_for_bookkeeping (edge e1, edge e2)
4668 {
4669   insn_t place_to_insert;
4670   /* Find a basic block that can hold bookkeeping.  If it can be found, do not
4671      create new basic block, but insert bookkeeping there.  */
4672   basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4673 
4674   if (book_block)
4675     {
4676       place_to_insert = BB_END (book_block);
4677 
4678       /* Don't use a block containing only debug insns for
4679 	 bookkeeping, this causes scheduling differences between debug
4680 	 and non-debug compilations, for the block would have been
4681 	 removed already.  */
4682       if (DEBUG_INSN_P (place_to_insert))
4683 	{
4684 	  rtx insn = sel_bb_head (book_block);
4685 
4686 	  while (insn != place_to_insert &&
4687 		 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4688 	    insn = NEXT_INSN (insn);
4689 
4690 	  if (insn == place_to_insert)
4691 	    book_block = NULL;
4692 	}
4693     }
4694 
4695   if (!book_block)
4696     {
4697       book_block = create_block_for_bookkeeping (e1, e2);
4698       place_to_insert = BB_END (book_block);
4699       if (sched_verbose >= 9)
4700 	sel_print ("New block is %i, split from bookkeeping block %i\n",
4701 		   EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4702     }
4703   else
4704     {
4705       if (sched_verbose >= 9)
4706 	sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4707     }
4708 
4709   /* If basic block ends with a jump, insert bookkeeping code right before it.  */
4710   if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4711     place_to_insert = PREV_INSN (place_to_insert);
4712 
4713   return place_to_insert;
4714 }
4715 
4716 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4717    for JOIN_POINT.   */
4718 static int
4719 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4720 {
4721   int seqno;
4722   rtx next;
4723 
4724   /* Check if we are about to insert bookkeeping copy before a jump, and use
4725      jump's seqno for the copy; otherwise, use JOIN_POINT's seqno.  */
4726   next = NEXT_INSN (place_to_insert);
4727   if (INSN_P (next)
4728       && JUMP_P (next)
4729       && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4730     {
4731       gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732       seqno = INSN_SEQNO (next);
4733     }
4734   else if (INSN_SEQNO (join_point) > 0)
4735     seqno = INSN_SEQNO (join_point);
4736   else
4737     {
4738       seqno = get_seqno_by_preds (place_to_insert);
4739 
4740       /* Sometimes the fences can move in such a way that there will be
4741          no instructions with positive seqno around this bookkeeping.
4742          This means that there will be no way to get to it by a regular
4743          fence movement.  Never mind because we pick up such pieces for
4744          rescheduling anyways, so any positive value will do for now.  */
4745       if (seqno < 0)
4746         {
4747           gcc_assert (pipelining_p);
4748           seqno = 1;
4749         }
4750     }
4751 
4752   gcc_assert (seqno > 0);
4753   return seqno;
4754 }
4755 
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757    NEW_SEQNO to it.  Return created insn.  */
4758 static insn_t
4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4760 {
4761   rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4762 
4763   vinsn_t new_vinsn
4764     = create_vinsn_from_insn_rtx (new_insn_rtx,
4765 				  VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4766 
4767   insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4768 					       place_to_insert);
4769 
4770   INSN_SCHED_TIMES (new_insn) = 0;
4771   bitmap_set_bit (current_copies, INSN_UID (new_insn));
4772 
4773   return new_insn;
4774 }
4775 
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777    E2->dest, except from E1->src (there may be a sequence of empty blocks
4778    between E1->src and E2->dest).  Return block containing the copy.
4779    All scheduler data is initialized for the newly created insn.  */
4780 static basic_block
4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4782 {
4783   insn_t join_point, place_to_insert, new_insn;
4784   int new_seqno;
4785   bool need_to_exchange_data_sets;
4786 
4787   if (sched_verbose >= 4)
4788     sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4789 	       e2->dest->index);
4790 
4791   join_point = sel_bb_head (e2->dest);
4792   place_to_insert = find_place_for_bookkeeping (e1, e2);
4793   if (!place_to_insert)
4794     return NULL;
4795   new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796   need_to_exchange_data_sets
4797     = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4798 
4799   new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800 
4801   /* When inserting bookkeeping insn in new block, av sets should be
4802      following: old basic block (that now holds bookkeeping) data sets are
4803      the same as was before generation of bookkeeping, and new basic block
4804      (that now hold all other insns of old basic block) data sets are
4805      invalid.  So exchange data sets for these basic blocks as sel_split_block
4806      mistakenly exchanges them in this case.  Cannot do it earlier because
4807      when single instruction is added to new basic block it should hold NULL
4808      lv_set.  */
4809   if (need_to_exchange_data_sets)
4810     exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4811 			BLOCK_FOR_INSN (join_point));
4812 
4813   stat_bookkeeping_copies++;
4814   return BLOCK_FOR_INSN (new_insn);
4815 }
4816 
4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4818    on FENCE, but we are unable to copy them.  */
4819 static void
4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4821 {
4822   expr_t expr;
4823   av_set_iterator i;
4824 
4825   /*  An expression does not need bookkeeping if it is available on all paths
4826       from current block to original block and current block dominates
4827       original block.  We check availability on all paths by examining
4828       EXPR_SPEC; this is not equivalent, because it may be positive even
4829       if expr is available on all paths (but if expr is not available on
4830       any path, EXPR_SPEC will be positive).  */
4831 
4832   FOR_EACH_EXPR_1 (expr, i, av_ptr)
4833     {
4834       if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4835 	  && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4836 	  && (EXPR_SPEC (expr)
4837 	      || !EXPR_ORIG_BB_INDEX (expr)
4838 	      || !dominated_by_p (CDI_DOMINATORS,
4839 				  BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4840 				  BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4841 	{
4842           if (sched_verbose >= 4)
4843             sel_print ("Expr %d removed because it would need bookkeeping, which "
4844                        "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4845 	  av_set_iter_remove (&i);
4846 	}
4847     }
4848 }
4849 
4850 /* Moving conditional jump through some instructions.
4851 
4852    Consider example:
4853 
4854        ...                     <- current scheduling point
4855        NOTE BASIC BLOCK:       <- bb header
4856        (p8)  add r14=r14+0x9;;
4857        (p8)  mov [r14]=r23
4858        (!p8) jump L1;;
4859        NOTE BASIC BLOCK:
4860        ...
4861 
4862    We can schedule jump one cycle earlier, than mov, because they cannot be
4863    executed together as their predicates are mutually exclusive.
4864 
4865    This is done in this way: first, new fallthrough basic block is created
4866    after jump (it is always can be done, because there already should be a
4867    fallthrough block, where control flow goes in case of predicate being true -
4868    in our example; otherwise there should be a dependence between those
4869    instructions and jump and we cannot schedule jump right now);
4870    next, all instructions between jump and current scheduling point are moved
4871    to this new block.  And the result is this:
4872 
4873       NOTE BASIC BLOCK:
4874       (!p8) jump L1           <- current scheduling point
4875       NOTE BASIC BLOCK:       <- bb header
4876       (p8)  add r14=r14+0x9;;
4877       (p8)  mov [r14]=r23
4878       NOTE BASIC BLOCK:
4879       ...
4880 */
4881 static void
4882 move_cond_jump (rtx insn, bnd_t bnd)
4883 {
4884   edge ft_edge;
4885   basic_block block_from, block_next, block_new, block_bnd, bb;
4886   rtx next, prev, link, head;
4887 
4888   block_from = BLOCK_FOR_INSN (insn);
4889   block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4890   prev = BND_TO (bnd);
4891 
4892 #ifdef ENABLE_CHECKING
4893   /* Moving of jump should not cross any other jumps or beginnings of new
4894      basic blocks.  The only exception is when we move a jump through
4895      mutually exclusive insns along fallthru edges.  */
4896   if (block_from != block_bnd)
4897     {
4898       bb = block_from;
4899       for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4900            link = PREV_INSN (link))
4901         {
4902           if (INSN_P (link))
4903             gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4904           if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4905             {
4906               gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4907               bb = BLOCK_FOR_INSN (link);
4908             }
4909         }
4910     }
4911 #endif
4912 
4913   /* Jump is moved to the boundary.  */
4914   next = PREV_INSN (insn);
4915   BND_TO (bnd) = insn;
4916 
4917   ft_edge = find_fallthru_edge (block_from);
4918   block_next = ft_edge->dest;
4919   /* There must be a fallthrough block (or where should go
4920   control flow in case of false jump predicate otherwise?).  */
4921   gcc_assert (block_next);
4922 
4923   /* Create new empty basic block after source block.  */
4924   block_new = sel_split_edge (ft_edge);
4925   gcc_assert (block_new->next_bb == block_next
4926               && block_from->next_bb == block_new);
4927 
4928   /* Move all instructions except INSN to BLOCK_NEW.  */
4929   bb = block_bnd;
4930   head = BB_HEAD (block_new);
4931   while (bb != block_from->next_bb)
4932     {
4933       rtx from, to;
4934       from = bb == block_bnd ? prev : sel_bb_head (bb);
4935       to = bb == block_from ? next : sel_bb_end (bb);
4936 
4937       /* The jump being moved can be the first insn in the block.
4938          In this case we don't have to move anything in this block.  */
4939       if (NEXT_INSN (to) != from)
4940         {
4941           reorder_insns (from, to, head);
4942 
4943           for (link = to; link != head; link = PREV_INSN (link))
4944             EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4945           head = to;
4946         }
4947 
4948       /* Cleanup possibly empty blocks left.  */
4949       block_next = bb->next_bb;
4950       if (bb != block_from)
4951 	tidy_control_flow (bb, false);
4952       bb = block_next;
4953     }
4954 
4955   /* Assert there is no jump to BLOCK_NEW, only fallthrough edge.  */
4956   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4957 
4958   gcc_assert (!sel_bb_empty_p (block_from)
4959               && !sel_bb_empty_p (block_new));
4960 
4961   /* Update data sets for BLOCK_NEW to represent that INSN and
4962      instructions from the other branch of INSN is no longer
4963      available at BLOCK_NEW.  */
4964   BB_AV_LEVEL (block_new) = global_level;
4965   gcc_assert (BB_LV_SET (block_new) == NULL);
4966   BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4967   update_data_sets (sel_bb_head (block_new));
4968 
4969   /* INSN is a new basic block header - so prepare its data
4970      structures and update availability and liveness sets.  */
4971   update_data_sets (insn);
4972 
4973   if (sched_verbose >= 4)
4974     sel_print ("Moving jump %d\n", INSN_UID (insn));
4975 }
4976 
4977 /* Remove nops generated during move_op for preventing removal of empty
4978    basic blocks.  */
4979 static void
4980 remove_temp_moveop_nops (bool full_tidying)
4981 {
4982   int i;
4983   insn_t insn;
4984 
4985   for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4986     {
4987       gcc_assert (INSN_NOP_P (insn));
4988       return_nop_to_pool (insn, full_tidying);
4989     }
4990 
4991   /* Empty the vector.  */
4992   if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4993     VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4994 		      VEC_length (insn_t, vec_temp_moveop_nops));
4995 }
4996 
4997 /* Records the maximal UID before moving up an instruction.  Used for
4998    distinguishing between bookkeeping copies and original insns.  */
4999 static int max_uid_before_move_op = 0;
5000 
5001 /* Remove from AV_VLIW_P all instructions but next when debug counter
5002    tells us so.  Next instruction is fetched from BNDS.  */
5003 static void
5004 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5005 {
5006   if (! dbg_cnt (sel_sched_insn_cnt))
5007     /* Leave only the next insn in av_vliw.  */
5008     {
5009       av_set_iterator av_it;
5010       expr_t expr;
5011       bnd_t bnd = BLIST_BND (bnds);
5012       insn_t next = BND_TO (bnd);
5013 
5014       gcc_assert (BLIST_NEXT (bnds) == NULL);
5015 
5016       FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5017         if (EXPR_INSN_RTX (expr) != next)
5018           av_set_iter_remove (&av_it);
5019     }
5020 }
5021 
5022 /* Compute available instructions on BNDS.  FENCE is the current fence.  Write
5023    the computed set to *AV_VLIW_P.  */
5024 static void
5025 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5026 {
5027   if (sched_verbose >= 2)
5028     {
5029       sel_print ("Boundaries: ");
5030       dump_blist (bnds);
5031       sel_print ("\n");
5032     }
5033 
5034   for (; bnds; bnds = BLIST_NEXT (bnds))
5035     {
5036       bnd_t bnd = BLIST_BND (bnds);
5037       av_set_t av1_copy;
5038       insn_t bnd_to = BND_TO (bnd);
5039 
5040       /* Rewind BND->TO to the basic block header in case some bookkeeping
5041          instructions were inserted before BND->TO and it needs to be
5042          adjusted.  */
5043       if (sel_bb_head_p (bnd_to))
5044         gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5045       else
5046         while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5047           {
5048             bnd_to = PREV_INSN (bnd_to);
5049             if (sel_bb_head_p (bnd_to))
5050               break;
5051           }
5052 
5053       if (BND_TO (bnd) != bnd_to)
5054 	{
5055   	  gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5056 	  FENCE_INSN (fence) = bnd_to;
5057 	  BND_TO (bnd) = bnd_to;
5058 	}
5059 
5060       av_set_clear (&BND_AV (bnd));
5061       BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5062 
5063       av_set_clear (&BND_AV1 (bnd));
5064       BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5065 
5066       moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5067 
5068       av1_copy = av_set_copy (BND_AV1 (bnd));
5069       av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5070     }
5071 
5072   if (sched_verbose >= 2)
5073     {
5074       sel_print ("Available exprs (vliw form): ");
5075       dump_av_set (*av_vliw_p);
5076       sel_print ("\n");
5077     }
5078 }
5079 
5080 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5081    expression.  When FOR_MOVEOP is true, also replace the register of
5082    expressions found with the register from EXPR_VLIW.  */
5083 static av_set_t
5084 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5085 {
5086   av_set_t expr_seq = NULL;
5087   expr_t expr;
5088   av_set_iterator i;
5089 
5090   FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5091     {
5092       if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5093         {
5094           if (for_moveop)
5095             {
5096               /* The sequential expression has the right form to pass
5097                  to move_op except when renaming happened.  Put the
5098                  correct register in EXPR then.  */
5099               if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5100 		{
5101                   if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5102 		    {
5103 		      replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5104 		      stat_renamed_scheduled++;
5105 		    }
5106 		  /* Also put the correct TARGET_AVAILABLE bit on the expr.
5107                      This is needed when renaming came up with original
5108                      register.  */
5109                   else if (EXPR_TARGET_AVAILABLE (expr)
5110                            != EXPR_TARGET_AVAILABLE (expr_vliw))
5111 		    {
5112 		      gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5113 		      EXPR_TARGET_AVAILABLE (expr) = 1;
5114 		    }
5115 		}
5116               if (EXPR_WAS_SUBSTITUTED (expr))
5117                 stat_substitutions_total++;
5118             }
5119 
5120           av_set_add (&expr_seq, expr);
5121 
5122           /* With substitution inside insn group, it is possible
5123              that more than one expression in expr_seq will correspond
5124              to expr_vliw.  In this case, choose one as the attempt to
5125              move both leads to miscompiles.  */
5126           break;
5127         }
5128     }
5129 
5130   if (for_moveop && sched_verbose >= 2)
5131     {
5132       sel_print ("Best expression(s) (sequential form): ");
5133       dump_av_set (expr_seq);
5134       sel_print ("\n");
5135     }
5136 
5137   return expr_seq;
5138 }
5139 
5140 
5141 /* Move nop to previous block.  */
5142 static void ATTRIBUTE_UNUSED
5143 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5144 {
5145   insn_t prev_insn, next_insn, note;
5146 
5147   gcc_assert (sel_bb_head_p (nop)
5148               && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5149   note = bb_note (BLOCK_FOR_INSN (nop));
5150   prev_insn = sel_bb_end (prev_bb);
5151   next_insn = NEXT_INSN (nop);
5152   gcc_assert (prev_insn != NULL_RTX
5153               && PREV_INSN (note) == prev_insn);
5154 
5155   NEXT_INSN (prev_insn) = nop;
5156   PREV_INSN (nop) = prev_insn;
5157 
5158   PREV_INSN (note) = nop;
5159   NEXT_INSN (note) = next_insn;
5160 
5161   NEXT_INSN (nop) = note;
5162   PREV_INSN (next_insn) = note;
5163 
5164   BB_END (prev_bb) = nop;
5165   BLOCK_FOR_INSN (nop) = prev_bb;
5166 }
5167 
5168 /* Prepare a place to insert the chosen expression on BND.  */
5169 static insn_t
5170 prepare_place_to_insert (bnd_t bnd)
5171 {
5172   insn_t place_to_insert;
5173 
5174   /* Init place_to_insert before calling move_op, as the later
5175      can possibly remove BND_TO (bnd).  */
5176   if (/* If this is not the first insn scheduled.  */
5177       BND_PTR (bnd))
5178     {
5179       /* Add it after last scheduled.  */
5180       place_to_insert = ILIST_INSN (BND_PTR (bnd));
5181       if (DEBUG_INSN_P (place_to_insert))
5182 	{
5183 	  ilist_t l = BND_PTR (bnd);
5184 	  while ((l = ILIST_NEXT (l)) &&
5185 		 DEBUG_INSN_P (ILIST_INSN (l)))
5186 	    ;
5187 	  if (!l)
5188 	    place_to_insert = NULL;
5189 	}
5190     }
5191   else
5192     place_to_insert = NULL;
5193 
5194   if (!place_to_insert)
5195     {
5196       /* Add it before BND_TO.  The difference is in the
5197          basic block, where INSN will be added.  */
5198       place_to_insert = get_nop_from_pool (BND_TO (bnd));
5199       gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5200                   == BLOCK_FOR_INSN (BND_TO (bnd)));
5201     }
5202 
5203   return place_to_insert;
5204 }
5205 
5206 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5207    Return the expression to emit in C_EXPR.  */
5208 static bool
5209 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5210                         av_set_t expr_seq, expr_t c_expr)
5211 {
5212   bool b, should_move;
5213   unsigned book_uid;
5214   bitmap_iterator bi;
5215   int n_bookkeeping_copies_before_moveop;
5216 
5217   /* Make a move.  This call will remove the original operation,
5218      insert all necessary bookkeeping instructions and update the
5219      data sets.  After that all we have to do is add the operation
5220      at before BND_TO (BND).  */
5221   n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5222   max_uid_before_move_op = get_max_uid ();
5223   bitmap_clear (current_copies);
5224   bitmap_clear (current_originators);
5225 
5226   b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5227                get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5228 
5229   /* We should be able to find the expression we've chosen for
5230      scheduling.  */
5231   gcc_assert (b);
5232 
5233   if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5234     stat_insns_needed_bookkeeping++;
5235 
5236   EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5237     {
5238       unsigned uid;
5239       bitmap_iterator bi;
5240 
5241       /* We allocate these bitmaps lazily.  */
5242       if (! INSN_ORIGINATORS_BY_UID (book_uid))
5243         INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5244 
5245       bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5246                    current_originators);
5247 
5248       /* Transitively add all originators' originators.  */
5249       EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5250        if (INSN_ORIGINATORS_BY_UID (uid))
5251 	 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5252 			  INSN_ORIGINATORS_BY_UID (uid));
5253     }
5254 
5255   return should_move;
5256 }
5257 
5258 
5259 /* Debug a DFA state as an array of bytes.  */
5260 static void
5261 debug_state (state_t state)
5262 {
5263   unsigned char *p;
5264   unsigned int i, size = dfa_state_size;
5265 
5266   sel_print ("state (%u):", size);
5267   for (i = 0, p = (unsigned char *) state; i < size; i++)
5268     sel_print (" %d", p[i]);
5269   sel_print ("\n");
5270 }
5271 
5272 /* Advance state on FENCE with INSN.  Return true if INSN is
5273    an ASM, and we should advance state once more.  */
5274 static bool
5275 advance_state_on_fence (fence_t fence, insn_t insn)
5276 {
5277   bool asm_p;
5278 
5279   if (recog_memoized (insn) >= 0)
5280     {
5281       int res;
5282       state_t temp_state = alloca (dfa_state_size);
5283 
5284       gcc_assert (!INSN_ASM_P (insn));
5285       asm_p = false;
5286 
5287       memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5288       res = state_transition (FENCE_STATE (fence), insn);
5289       gcc_assert (res < 0);
5290 
5291       if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5292         {
5293           FENCE_ISSUED_INSNS (fence)++;
5294 
5295           /* We should never issue more than issue_rate insns.  */
5296           if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5297             gcc_unreachable ();
5298         }
5299     }
5300   else
5301     {
5302       /* This could be an ASM insn which we'd like to schedule
5303          on the next cycle.  */
5304       asm_p = INSN_ASM_P (insn);
5305       if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5306         advance_one_cycle (fence);
5307     }
5308 
5309   if (sched_verbose >= 2)
5310     debug_state (FENCE_STATE (fence));
5311   if (!DEBUG_INSN_P (insn))
5312     FENCE_STARTS_CYCLE_P (fence) = 0;
5313   FENCE_ISSUE_MORE (fence) = can_issue_more;
5314   return asm_p;
5315 }
5316 
5317 /* Update FENCE on which INSN was scheduled and this INSN, too.  NEED_STALL
5318    is nonzero if we need to stall after issuing INSN.  */
5319 static void
5320 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5321 {
5322   bool asm_p;
5323 
5324   /* First, reflect that something is scheduled on this fence.  */
5325   asm_p = advance_state_on_fence (fence, insn);
5326   FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5327   VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5328   if (SCHED_GROUP_P (insn))
5329     {
5330       FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5331       SCHED_GROUP_P (insn) = 0;
5332     }
5333   else
5334     FENCE_SCHED_NEXT (fence) = NULL_RTX;
5335   if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5336     FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5337 
5338   /* Set instruction scheduling info.  This will be used in bundling,
5339      pipelining, tick computations etc.  */
5340   ++INSN_SCHED_TIMES (insn);
5341   EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5342   EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5343   INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5344   INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5345 
5346   /* This does not account for adjust_cost hooks, just add the biggest
5347      constant the hook may add to the latency.  TODO: make this
5348      a target dependent constant.  */
5349   INSN_READY_CYCLE (insn)
5350     = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5351                                  ? 1
5352                                  : maximal_insn_latency (insn) + 1);
5353 
5354   /* Change these fields last, as they're used above.  */
5355   FENCE_AFTER_STALL_P (fence) = 0;
5356   if (asm_p || need_stall)
5357     advance_one_cycle (fence);
5358 
5359   /* Indicate that we've scheduled something on this fence.  */
5360   FENCE_SCHEDULED_P (fence) = true;
5361   scheduled_something_on_previous_fence = true;
5362 
5363   /* Print debug information when insn's fields are updated.  */
5364   if (sched_verbose >= 2)
5365     {
5366       sel_print ("Scheduling insn: ");
5367       dump_insn_1 (insn, 1);
5368       sel_print ("\n");
5369     }
5370 }
5371 
5372 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5373    old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5374    return it.  */
5375 static blist_t *
5376 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5377                    blist_t *bnds_tailp)
5378 {
5379   succ_iterator si;
5380   insn_t succ;
5381 
5382   advance_deps_context (BND_DC (bnd), insn);
5383   FOR_EACH_SUCC_1 (succ, si, insn,
5384                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5385     {
5386       ilist_t ptr = ilist_copy (BND_PTR (bnd));
5387 
5388       ilist_add (&ptr, insn);
5389 
5390       if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5391 	  && is_ineligible_successor (succ, ptr))
5392 	{
5393 	  ilist_clear (&ptr);
5394 	  continue;
5395 	}
5396 
5397       if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5398 	{
5399 	  if (sched_verbose >= 9)
5400 	    sel_print ("Updating fence insn from %i to %i\n",
5401 		       INSN_UID (insn), INSN_UID (succ));
5402 	  FENCE_INSN (fence) = succ;
5403 	}
5404       blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5405       bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5406     }
5407 
5408   blist_remove (bndsp);
5409   return bnds_tailp;
5410 }
5411 
5412 /* Schedule EXPR_VLIW on BND.  Return the insn emitted.  */
5413 static insn_t
5414 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5415 {
5416   av_set_t expr_seq;
5417   expr_t c_expr = XALLOCA (expr_def);
5418   insn_t place_to_insert;
5419   insn_t insn;
5420   bool should_move;
5421 
5422   expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5423 
5424   /* In case of scheduling a jump skipping some other instructions,
5425      prepare CFG.  After this, jump is at the boundary and can be
5426      scheduled as usual insn by MOVE_OP.  */
5427   if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5428     {
5429       insn = EXPR_INSN_RTX (expr_vliw);
5430 
5431       /* Speculative jumps are not handled.  */
5432       if (insn != BND_TO (bnd)
5433           && !sel_insn_is_speculation_check (insn))
5434         move_cond_jump (insn, bnd);
5435     }
5436 
5437   /* Find a place for C_EXPR to schedule.  */
5438   place_to_insert = prepare_place_to_insert (bnd);
5439   should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5440   clear_expr (c_expr);
5441 
5442   /* Add the instruction.  The corner case to care about is when
5443      the expr_seq set has more than one expr, and we chose the one that
5444      is not equal to expr_vliw.  Then expr_vliw may be insn in stream, and
5445      we can't use it.  Generate the new vinsn.  */
5446   if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5447     {
5448       vinsn_t vinsn_new;
5449 
5450       vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5451       change_vinsn_in_expr (expr_vliw, vinsn_new);
5452       should_move = false;
5453     }
5454   if (should_move)
5455     insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5456   else
5457     insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5458                                       place_to_insert);
5459 
5460   /* Return the nops generated for preserving of data sets back
5461      into pool.  */
5462   if (INSN_NOP_P (place_to_insert))
5463     return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5464   remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5465 
5466   av_set_clear (&expr_seq);
5467 
5468   /* Save the expression scheduled so to reset target availability if we'll
5469      meet it later on the same fence.  */
5470   if (EXPR_WAS_RENAMED (expr_vliw))
5471     vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5472 
5473   /* Check that the recent movement didn't destroyed loop
5474      structure.  */
5475   gcc_assert (!pipelining_p
5476               || current_loop_nest == NULL
5477               || loop_latch_edge (current_loop_nest));
5478   return insn;
5479 }
5480 
5481 /* Stall for N cycles on FENCE.  */
5482 static void
5483 stall_for_cycles (fence_t fence, int n)
5484 {
5485   int could_more;
5486 
5487   could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5488   while (n--)
5489     advance_one_cycle (fence);
5490   if (could_more)
5491     FENCE_AFTER_STALL_P (fence) = 1;
5492 }
5493 
5494 /* Gather a parallel group of insns at FENCE and assign their seqno
5495    to SEQNO.  All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5496    list for later recalculation of seqnos.  */
5497 static void
5498 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5499 {
5500   blist_t bnds = NULL, *bnds_tailp;
5501   av_set_t av_vliw = NULL;
5502   insn_t insn = FENCE_INSN (fence);
5503 
5504   if (sched_verbose >= 2)
5505     sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5506                INSN_UID (insn), FENCE_CYCLE (fence));
5507 
5508   blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5509   bnds_tailp = &BLIST_NEXT (bnds);
5510   set_target_context (FENCE_TC (fence));
5511   can_issue_more = FENCE_ISSUE_MORE (fence);
5512   target_bb = INSN_BB (insn);
5513 
5514   /* Do while we can add any operation to the current group.  */
5515   do
5516     {
5517       blist_t *bnds_tailp1, *bndsp;
5518       expr_t expr_vliw;
5519       int need_stall;
5520       int was_stall = 0, scheduled_insns = 0;
5521       int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5522       int max_stall = pipelining_p ? 1 : 3;
5523       bool last_insn_was_debug = false;
5524       bool was_debug_bb_end_p = false;
5525 
5526       compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5527       remove_insns_that_need_bookkeeping (fence, &av_vliw);
5528       remove_insns_for_debug (bnds, &av_vliw);
5529 
5530       /* Return early if we have nothing to schedule.  */
5531       if (av_vliw == NULL)
5532         break;
5533 
5534       /* Choose the best expression and, if needed, destination register
5535 	 for it.  */
5536       do
5537         {
5538           expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5539           if (! expr_vliw && need_stall)
5540             {
5541               /* All expressions required a stall.  Do not recompute av sets
5542                  as we'll get the same answer (modulo the insns between
5543                  the fence and its boundary, which will not be available for
5544                  pipelining).
5545 		 If we are going to stall for too long, break to recompute av
5546 		 sets and bring more insns for pipelining.  */
5547               was_stall++;
5548 	      if (need_stall <= 3)
5549 		stall_for_cycles (fence, need_stall);
5550 	      else
5551 		{
5552 		  stall_for_cycles (fence, 1);
5553 		  break;
5554 		}
5555             }
5556         }
5557       while (! expr_vliw && need_stall);
5558 
5559       /* Now either we've selected expr_vliw or we have nothing to schedule.  */
5560       if (!expr_vliw)
5561         {
5562 	  av_set_clear (&av_vliw);
5563           break;
5564         }
5565 
5566       bndsp = &bnds;
5567       bnds_tailp1 = bnds_tailp;
5568 
5569       do
5570 	/* This code will be executed only once until we'd have several
5571            boundaries per fence.  */
5572         {
5573 	  bnd_t bnd = BLIST_BND (*bndsp);
5574 
5575 	  if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5576 	    {
5577 	      bndsp = &BLIST_NEXT (*bndsp);
5578 	      continue;
5579 	    }
5580 
5581           insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5582 	  last_insn_was_debug = DEBUG_INSN_P (insn);
5583 	  if (last_insn_was_debug)
5584 	    was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5585           update_fence_and_insn (fence, insn, need_stall);
5586           bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5587 
5588 	  /* Add insn to the list of scheduled on this cycle instructions.  */
5589 	  ilist_add (*scheduled_insns_tailpp, insn);
5590 	  *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5591         }
5592       while (*bndsp != *bnds_tailp1);
5593 
5594       av_set_clear (&av_vliw);
5595       if (!last_insn_was_debug)
5596 	scheduled_insns++;
5597 
5598       /* We currently support information about candidate blocks only for
5599 	 one 'target_bb' block.  Hence we can't schedule after jump insn,
5600 	 as this will bring two boundaries and, hence, necessity to handle
5601 	 information for two or more blocks concurrently.  */
5602       if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5603           || (was_stall
5604               && (was_stall >= max_stall
5605                   || scheduled_insns >= max_insns)))
5606         break;
5607     }
5608   while (bnds);
5609 
5610   gcc_assert (!FENCE_BNDS (fence));
5611 
5612   /* Update boundaries of the FENCE.  */
5613   while (bnds)
5614     {
5615       ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5616 
5617       if (ptr)
5618 	{
5619 	  insn = ILIST_INSN (ptr);
5620 
5621 	  if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5622 	    ilist_add (&FENCE_BNDS (fence), insn);
5623 	}
5624 
5625       blist_remove (&bnds);
5626     }
5627 
5628   /* Update target context on the fence.  */
5629   reset_target_context (FENCE_TC (fence), false);
5630 }
5631 
5632 /* All exprs in ORIG_OPS must have the same destination register or memory.
5633    Return that destination.  */
5634 static rtx
5635 get_dest_from_orig_ops (av_set_t orig_ops)
5636 {
5637   rtx dest = NULL_RTX;
5638   av_set_iterator av_it;
5639   expr_t expr;
5640   bool first_p = true;
5641 
5642   FOR_EACH_EXPR (expr, av_it, orig_ops)
5643     {
5644       rtx x = EXPR_LHS (expr);
5645 
5646       if (first_p)
5647 	{
5648 	  first_p = false;
5649 	  dest = x;
5650 	}
5651       else
5652 	gcc_assert (dest == x
5653 		    || (dest != NULL_RTX && x != NULL_RTX
5654 			&& rtx_equal_p (dest, x)));
5655     }
5656 
5657   return dest;
5658 }
5659 
5660 /* Update data sets for the bookkeeping block and record those expressions
5661    which become no longer available after inserting this bookkeeping.  */
5662 static void
5663 update_and_record_unavailable_insns (basic_block book_block)
5664 {
5665   av_set_iterator i;
5666   av_set_t old_av_set = NULL;
5667   expr_t cur_expr;
5668   rtx bb_end = sel_bb_end (book_block);
5669 
5670   /* First, get correct liveness in the bookkeeping block.  The problem is
5671      the range between the bookeeping insn and the end of block.  */
5672   update_liveness_on_insn (bb_end);
5673   if (control_flow_insn_p (bb_end))
5674     update_liveness_on_insn (PREV_INSN (bb_end));
5675 
5676   /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5677      fence above, where we may choose to schedule an insn which is
5678      actually blocked from moving up with the bookkeeping we create here.  */
5679   if (AV_SET_VALID_P (sel_bb_head (book_block)))
5680     {
5681       old_av_set = av_set_copy (BB_AV_SET (book_block));
5682       update_data_sets (sel_bb_head (book_block));
5683 
5684       /* Traverse all the expressions in the old av_set and check whether
5685 	 CUR_EXPR is in new AV_SET.  */
5686       FOR_EACH_EXPR (cur_expr, i, old_av_set)
5687         {
5688           expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5689 					   EXPR_VINSN (cur_expr));
5690 
5691           if (! new_expr
5692               /* In this case, we can just turn off the E_T_A bit, but we can't
5693                  represent this information with the current vector.  */
5694               || EXPR_TARGET_AVAILABLE (new_expr)
5695 		 != EXPR_TARGET_AVAILABLE (cur_expr))
5696 	    /* Unfortunately, the below code could be also fired up on
5697 	       separable insns.
5698 	       FIXME: add an example of how this could happen.  */
5699             vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5700         }
5701 
5702       av_set_clear (&old_av_set);
5703     }
5704 }
5705 
5706 /* The main effect of this function is that sparams->c_expr is merged
5707    with (or copied to) lparams->c_expr_merged.  If there's only one successor,
5708    we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5709    lparams->c_expr_merged is copied back to sparams->c_expr after all
5710    successors has been traversed.  lparams->c_expr_local is an expr allocated
5711    on stack in the caller function, and is used if there is more than one
5712    successor.
5713 
5714    SUCC is one of the SUCCS_NORMAL successors of INSN,
5715    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5716    LPARAMS and STATIC_PARAMS contain the parameters described above.  */
5717 static void
5718 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5719                      insn_t succ ATTRIBUTE_UNUSED,
5720 		     int moveop_drv_call_res,
5721 		     cmpd_local_params_p lparams, void *static_params)
5722 {
5723   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5724 
5725   /* Nothing to do, if original expr wasn't found below.  */
5726   if (moveop_drv_call_res != 1)
5727     return;
5728 
5729   /* If this is a first successor.  */
5730   if (!lparams->c_expr_merged)
5731     {
5732       lparams->c_expr_merged = sparams->c_expr;
5733       sparams->c_expr = lparams->c_expr_local;
5734     }
5735   else
5736     {
5737       /* We must merge all found expressions to get reasonable
5738 	 EXPR_SPEC_DONE_DS for the resulting insn.  If we don't
5739 	 do so then we can first find the expr with epsilon
5740 	 speculation success probability and only then with the
5741 	 good probability.  As a result the insn will get epsilon
5742 	 probability and will never be scheduled because of
5743 	 weakness_cutoff in find_best_expr.
5744 
5745 	 We call merge_expr_data here instead of merge_expr
5746 	 because due to speculation C_EXPR and X may have the
5747 	 same insns with different speculation types.  And as of
5748 	 now such insns are considered non-equal.
5749 
5750 	 However, EXPR_SCHED_TIMES is different -- we must get
5751 	 SCHED_TIMES from a real insn, not a bookkeeping copy.
5752 	 We force this here.  Instead, we may consider merging
5753 	 SCHED_TIMES to the maximum instead of minimum in the
5754 	 below function.  */
5755       int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5756 
5757       merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5758       if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5759 	EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5760 
5761       clear_expr (sparams->c_expr);
5762     }
5763 }
5764 
5765 /*  Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5766 
5767    SUCC is one of the SUCCS_NORMAL successors of INSN,
5768    MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5769      if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5770    STATIC_PARAMS contain USED_REGS set.  */
5771 static void
5772 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5773 		 int moveop_drv_call_res,
5774 		 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5775 		 void *static_params)
5776 {
5777   regset succ_live;
5778   fur_static_params_p sparams = (fur_static_params_p) static_params;
5779 
5780   /* Here we compute live regsets only for branches that do not lie
5781      on the code motion paths.  These branches correspond to value
5782      MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5783      for such branches code_motion_path_driver is not called.  */
5784   if (moveop_drv_call_res != 0)
5785     return;
5786 
5787   /* Mark all registers that do not meet the following condition:
5788      (3) not live on the other path of any conditional branch
5789      that is passed by the operation, in case original
5790      operations are not present on both paths of the
5791      conditional branch.  */
5792   succ_live = compute_live (succ);
5793   IOR_REG_SET (sparams->used_regs, succ_live);
5794 }
5795 
5796 /* This function is called after the last successor.  Copies LP->C_EXPR_MERGED
5797    into SP->CEXPR.  */
5798 static void
5799 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5800 {
5801   moveop_static_params_p sp = (moveop_static_params_p) sparams;
5802 
5803   sp->c_expr = lp->c_expr_merged;
5804 }
5805 
5806 /* Track bookkeeping copies created, insns scheduled, and blocks for
5807    rescheduling when INSN is found by move_op.  */
5808 static void
5809 track_scheduled_insns_and_blocks (rtx insn)
5810 {
5811   /* Even if this insn can be a copy that will be removed during current move_op,
5812      we still need to count it as an originator.  */
5813   bitmap_set_bit (current_originators, INSN_UID (insn));
5814 
5815   if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5816     {
5817       /* Note that original block needs to be rescheduled, as we pulled an
5818 	 instruction out of it.  */
5819       if (INSN_SCHED_TIMES (insn) > 0)
5820 	bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5821       else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5822 	num_insns_scheduled++;
5823     }
5824   else
5825     bitmap_clear_bit (current_copies, INSN_UID (insn));
5826 
5827   /* For instructions we must immediately remove insn from the
5828      stream, so subsequent update_data_sets () won't include this
5829      insn into av_set.
5830      For expr we must make insn look like "INSN_REG (insn) := c_expr".  */
5831   if (INSN_UID (insn) > max_uid_before_move_op)
5832     stat_bookkeeping_copies--;
5833 }
5834 
5835 /* Emit a register-register copy for INSN if needed.  Return true if
5836    emitted one.  PARAMS is the move_op static parameters.  */
5837 static bool
5838 maybe_emit_renaming_copy (rtx insn,
5839                           moveop_static_params_p params)
5840 {
5841   bool insn_emitted  = false;
5842   rtx cur_reg;
5843 
5844   /* Bail out early when expression can not be renamed at all.  */
5845   if (!EXPR_SEPARABLE_P (params->c_expr))
5846     return false;
5847 
5848   cur_reg = expr_dest_reg (params->c_expr);
5849   gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5850 
5851   /* If original operation has expr and the register chosen for
5852      that expr is not original operation's dest reg, substitute
5853      operation's right hand side with the register chosen.  */
5854   if (REGNO (params->dest) != REGNO (cur_reg))
5855     {
5856       insn_t reg_move_insn, reg_move_insn_rtx;
5857 
5858       reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5859                                                     params->dest);
5860       reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5861                                                    INSN_EXPR (insn),
5862                                                    INSN_SEQNO (insn),
5863                                                    insn);
5864       EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5865       replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5866 
5867       insn_emitted = true;
5868       params->was_renamed = true;
5869     }
5870 
5871   return insn_emitted;
5872 }
5873 
5874 /* Emit a speculative check for INSN speculated as EXPR if needed.
5875    Return true if we've  emitted one.  PARAMS is the move_op static
5876    parameters.  */
5877 static bool
5878 maybe_emit_speculative_check (rtx insn, expr_t expr,
5879                               moveop_static_params_p params)
5880 {
5881   bool insn_emitted = false;
5882   insn_t x;
5883   ds_t check_ds;
5884 
5885   check_ds = get_spec_check_type_for_insn (insn, expr);
5886   if (check_ds != 0)
5887     {
5888       /* A speculation check should be inserted.  */
5889       x = create_speculation_check (params->c_expr, check_ds, insn);
5890       insn_emitted = true;
5891     }
5892   else
5893     {
5894       EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5895       x = insn;
5896     }
5897 
5898   gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5899               && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5900   return insn_emitted;
5901 }
5902 
5903 /* Handle transformations that leave an insn in place of original
5904    insn such as renaming/speculation.  Return true if one of such
5905    transformations actually happened, and we have emitted this insn.  */
5906 static bool
5907 handle_emitting_transformations (rtx insn, expr_t expr,
5908                                  moveop_static_params_p params)
5909 {
5910   bool insn_emitted = false;
5911 
5912   insn_emitted = maybe_emit_renaming_copy (insn, params);
5913   insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5914 
5915   return insn_emitted;
5916 }
5917 
5918 /* If INSN is the only insn in the basic block (not counting JUMP,
5919    which may be a jump to next insn, and DEBUG_INSNs), we want to
5920    leave a NOP there till the return to fill_insns.  */
5921 
5922 static bool
5923 need_nop_to_preserve_insn_bb (rtx insn)
5924 {
5925   insn_t bb_head, bb_end, bb_next, in_next;
5926   basic_block bb = BLOCK_FOR_INSN (insn);
5927 
5928   bb_head = sel_bb_head (bb);
5929   bb_end = sel_bb_end (bb);
5930 
5931   if (bb_head == bb_end)
5932     return true;
5933 
5934   while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5935     bb_head = NEXT_INSN (bb_head);
5936 
5937   if (bb_head == bb_end)
5938     return true;
5939 
5940   while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5941     bb_end = PREV_INSN (bb_end);
5942 
5943   if (bb_head == bb_end)
5944     return true;
5945 
5946   bb_next = NEXT_INSN (bb_head);
5947   while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5948     bb_next = NEXT_INSN (bb_next);
5949 
5950   if (bb_next == bb_end && JUMP_P (bb_end))
5951     return true;
5952 
5953   in_next = NEXT_INSN (insn);
5954   while (DEBUG_INSN_P (in_next))
5955     in_next = NEXT_INSN (in_next);
5956 
5957   if (IN_CURRENT_FENCE_P (in_next))
5958     return true;
5959 
5960   return false;
5961 }
5962 
5963 /* Remove INSN from stream.  When ONLY_DISCONNECT is true, its data
5964    is not removed but reused when INSN is re-emitted.  */
5965 static void
5966 remove_insn_from_stream (rtx insn, bool only_disconnect)
5967 {
5968   /* If there's only one insn in the BB, make sure that a nop is
5969      inserted into it, so the basic block won't disappear when we'll
5970      delete INSN below with sel_remove_insn. It should also survive
5971      till the return to fill_insns.  */
5972   if (need_nop_to_preserve_insn_bb (insn))
5973     {
5974       insn_t nop = get_nop_from_pool (insn);
5975       gcc_assert (INSN_NOP_P (nop));
5976       VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5977     }
5978 
5979   sel_remove_insn (insn, only_disconnect, false);
5980 }
5981 
5982 /* This function is called when original expr is found.
5983    INSN - current insn traversed, EXPR - the corresponding expr found.
5984    LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5985    is static parameters of move_op.  */
5986 static void
5987 move_op_orig_expr_found (insn_t insn, expr_t expr,
5988                          cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5989                          void *static_params)
5990 {
5991   bool only_disconnect, insn_emitted;
5992   moveop_static_params_p params = (moveop_static_params_p) static_params;
5993 
5994   copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5995   track_scheduled_insns_and_blocks (insn);
5996   insn_emitted = handle_emitting_transformations (insn, expr, params);
5997   only_disconnect = (params->uid == INSN_UID (insn)
5998                      && ! insn_emitted  && ! EXPR_WAS_CHANGED (expr));
5999 
6000   /* Mark that we've disconnected an insn.  */
6001   if (only_disconnect)
6002     params->uid = -1;
6003   remove_insn_from_stream (insn, only_disconnect);
6004 }
6005 
6006 /* The function is called when original expr is found.
6007    INSN - current insn traversed, EXPR - the corresponding expr found,
6008    crosses_call and original_insns in STATIC_PARAMS are updated.  */
6009 static void
6010 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6011                      cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6012                      void *static_params)
6013 {
6014   fur_static_params_p params = (fur_static_params_p) static_params;
6015   regset tmp;
6016 
6017   if (CALL_P (insn))
6018     params->crosses_call = true;
6019 
6020   def_list_add (params->original_insns, insn, params->crosses_call);
6021 
6022   /* Mark the registers that do not meet the following condition:
6023     (2) not among the live registers of the point
6024 	immediately following the first original operation on
6025 	a given downward path, except for the original target
6026 	register of the operation.  */
6027   tmp = get_clear_regset_from_pool ();
6028   compute_live_below_insn (insn, tmp);
6029   AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6030   AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6031   IOR_REG_SET (params->used_regs, tmp);
6032   return_regset_to_pool (tmp);
6033 
6034   /* (*1) We need to add to USED_REGS registers that are read by
6035      INSN's lhs. This may lead to choosing wrong src register.
6036      E.g. (scheduling const expr enabled):
6037 
6038 	429: ax=0x0	<- Can't use AX for this expr (0x0)
6039 	433: dx=[bp-0x18]
6040 	427: [ax+dx+0x1]=ax
6041 	  REG_DEAD: ax
6042 	168: di=dx
6043 	  REG_DEAD: dx
6044      */
6045   /* FIXME: see comment above and enable MEM_P
6046      in vinsn_separable_p.  */
6047   gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6048 	      || !MEM_P (INSN_LHS (insn)));
6049 }
6050 
6051 /* This function is called on the ascending pass, before returning from
6052    current basic block.  */
6053 static void
6054 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6055                        void *static_params)
6056 {
6057   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6058   basic_block book_block = NULL;
6059 
6060   /* When we have removed the boundary insn for scheduling, which also
6061      happened to be the end insn in its bb, we don't need to update sets.  */
6062   if (!lparams->removed_last_insn
6063       && lparams->e1
6064       && sel_bb_head_p (insn))
6065     {
6066       /* We should generate bookkeeping code only if we are not at the
6067          top level of the move_op.  */
6068       if (sel_num_cfg_preds_gt_1 (insn))
6069         book_block = generate_bookkeeping_insn (sparams->c_expr,
6070                                                 lparams->e1, lparams->e2);
6071       /* Update data sets for the current insn.  */
6072       update_data_sets (insn);
6073     }
6074 
6075   /* If bookkeeping code was inserted, we need to update av sets of basic
6076      block that received bookkeeping.  After generation of bookkeeping insn,
6077      bookkeeping block does not contain valid av set because we are not following
6078      the original algorithm in every detail with regards to e.g. renaming
6079      simple reg-reg copies.  Consider example:
6080 
6081      bookkeeping block           scheduling fence
6082      \            /
6083       \    join  /
6084        ----------
6085        |        |
6086        ----------
6087       /           \
6088      /             \
6089      r1 := r2          r1 := r3
6090 
6091      We try to schedule insn "r1 := r3" on the current
6092      scheduling fence.  Also, note that av set of bookkeeping block
6093      contain both insns "r1 := r2" and "r1 := r3".  When the insn has
6094      been scheduled, the CFG is as follows:
6095 
6096      r1 := r3               r1 := r3
6097      bookkeeping block           scheduling fence
6098      \            /
6099       \    join  /
6100        ----------
6101        |        |
6102        ----------
6103       /          \
6104      /            \
6105      r1 := r2
6106 
6107      Here, insn "r1 := r3" was scheduled at the current scheduling point
6108      and bookkeeping code was generated at the bookeeping block.  This
6109      way insn "r1 := r2" is no longer available as a whole instruction
6110      (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6111      This situation is handled by calling update_data_sets.
6112 
6113      Since update_data_sets is called only on the bookkeeping block, and
6114      it also may have predecessors with av_sets, containing instructions that
6115      are no longer available, we save all such expressions that become
6116      unavailable during data sets update on the bookkeeping block in
6117      VEC_BOOKKEEPING_BLOCKED_VINSNS.  Later we avoid selecting such
6118      expressions for scheduling.  This allows us to avoid recomputation of
6119      av_sets outside the code motion path.  */
6120 
6121   if (book_block)
6122     update_and_record_unavailable_insns (book_block);
6123 
6124   /* If INSN was previously marked for deletion, it's time to do it.  */
6125   if (lparams->removed_last_insn)
6126     insn = PREV_INSN (insn);
6127 
6128   /* Do not tidy control flow at the topmost moveop, as we can erroneously
6129      kill a block with a single nop in which the insn should be emitted.  */
6130   if (lparams->e1)
6131     tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6132 }
6133 
6134 /* This function is called on the ascending pass, before returning from the
6135    current basic block.  */
6136 static void
6137 fur_at_first_insn (insn_t insn,
6138                    cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6139                    void *static_params ATTRIBUTE_UNUSED)
6140 {
6141   gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6142 	      || AV_LEVEL (insn) == -1);
6143 }
6144 
6145 /* Called on the backward stage of recursion to call moveup_expr for insn
6146    and sparams->c_expr.  */
6147 static void
6148 move_op_ascend (insn_t insn, void *static_params)
6149 {
6150   enum MOVEUP_EXPR_CODE res;
6151   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6152 
6153   if (! INSN_NOP_P (insn))
6154     {
6155       res = moveup_expr_cached (sparams->c_expr, insn, false);
6156       gcc_assert (res != MOVEUP_EXPR_NULL);
6157     }
6158 
6159   /* Update liveness for this insn as it was invalidated.  */
6160   update_liveness_on_insn (insn);
6161 }
6162 
6163 /* This function is called on enter to the basic block.
6164    Returns TRUE if this block already have been visited and
6165    code_motion_path_driver should return 1, FALSE otherwise.  */
6166 static int
6167 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6168 	      void *static_params, bool visited_p)
6169 {
6170   fur_static_params_p sparams = (fur_static_params_p) static_params;
6171 
6172   if (visited_p)
6173     {
6174       /* If we have found something below this block, there should be at
6175 	 least one insn in ORIGINAL_INSNS.  */
6176       gcc_assert (*sparams->original_insns);
6177 
6178       /* Adjust CROSSES_CALL, since we may have come to this block along
6179 	 different path.  */
6180       DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6181 	  |= sparams->crosses_call;
6182     }
6183   else
6184     local_params->old_original_insns = *sparams->original_insns;
6185 
6186   return 1;
6187 }
6188 
6189 /* Same as above but for move_op.   */
6190 static int
6191 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6192                   cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6193                   void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6194 {
6195   if (visited_p)
6196     return -1;
6197   return 1;
6198 }
6199 
6200 /* This function is called while descending current basic block if current
6201    insn is not the original EXPR we're searching for.
6202 
6203    Return value: FALSE, if code_motion_path_driver should perform a local
6204 			cleanup and return 0 itself;
6205 		 TRUE, if code_motion_path_driver should continue.  */
6206 static bool
6207 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6208 			    void *static_params)
6209 {
6210   moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6211 
6212 #ifdef ENABLE_CHECKING
6213   sparams->failed_insn = insn;
6214 #endif
6215 
6216   /* If we're scheduling separate expr, in order to generate correct code
6217      we need to stop the search at bookkeeping code generated with the
6218      same destination register or memory.  */
6219   if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6220     return false;
6221   return true;
6222 }
6223 
6224 /* This function is called while descending current basic block if current
6225    insn is not the original EXPR we're searching for.
6226 
6227    Return value: TRUE (code_motion_path_driver should continue).  */
6228 static bool
6229 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6230 {
6231   bool mutexed;
6232   expr_t r;
6233   av_set_iterator avi;
6234   fur_static_params_p sparams = (fur_static_params_p) static_params;
6235 
6236   if (CALL_P (insn))
6237     sparams->crosses_call = true;
6238   else if (DEBUG_INSN_P (insn))
6239     return true;
6240 
6241   /* If current insn we are looking at cannot be executed together
6242      with original insn, then we can skip it safely.
6243 
6244      Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6245 	      INSN = (!p6) r14 = r14 + 1;
6246 
6247      Here we can schedule ORIG_OP with lhs = r14, though only
6248      looking at the set of used and set registers of INSN we must
6249      forbid it.  So, add set/used in INSN registers to the
6250      untouchable set only if there is an insn in ORIG_OPS that can
6251      affect INSN.  */
6252   mutexed = true;
6253   FOR_EACH_EXPR (r, avi, orig_ops)
6254     if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6255       {
6256 	mutexed = false;
6257 	break;
6258       }
6259 
6260   /* Mark all registers that do not meet the following condition:
6261      (1) Not set or read on any path from xi to an instance of the
6262 	 original operation.  */
6263   if (!mutexed)
6264     {
6265       IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6266       IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6267       IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6268     }
6269 
6270   return true;
6271 }
6272 
6273 /* Hooks and data to perform move_op operations with code_motion_path_driver.  */
6274 struct code_motion_path_driver_info_def move_op_hooks = {
6275   move_op_on_enter,
6276   move_op_orig_expr_found,
6277   move_op_orig_expr_not_found,
6278   move_op_merge_succs,
6279   move_op_after_merge_succs,
6280   move_op_ascend,
6281   move_op_at_first_insn,
6282   SUCCS_NORMAL,
6283   "move_op"
6284 };
6285 
6286 /* Hooks and data to perform find_used_regs operations
6287    with code_motion_path_driver.  */
6288 struct code_motion_path_driver_info_def fur_hooks = {
6289   fur_on_enter,
6290   fur_orig_expr_found,
6291   fur_orig_expr_not_found,
6292   fur_merge_succs,
6293   NULL, /* fur_after_merge_succs */
6294   NULL, /* fur_ascend */
6295   fur_at_first_insn,
6296   SUCCS_ALL,
6297   "find_used_regs"
6298 };
6299 
6300 /* Traverse all successors of INSN.  For each successor that is SUCCS_NORMAL
6301    code_motion_path_driver is called recursively.  Original operation
6302    was found at least on one path that is starting with one of INSN's
6303    successors (this fact is asserted).  ORIG_OPS is expressions we're looking
6304    for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6305    of either move_op or find_used_regs depending on the caller.
6306 
6307    Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6308    know for sure at this point.  */
6309 static int
6310 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6311                                 ilist_t path, void *static_params)
6312 {
6313   int res = 0;
6314   succ_iterator succ_i;
6315   rtx succ;
6316   basic_block bb;
6317   int old_index;
6318   unsigned old_succs;
6319 
6320   struct cmpd_local_params lparams;
6321   expr_def _x;
6322 
6323   lparams.c_expr_local = &_x;
6324   lparams.c_expr_merged = NULL;
6325 
6326   /* We need to process only NORMAL succs for move_op, and collect live
6327      registers from ALL branches (including those leading out of the
6328      region) for find_used_regs.
6329 
6330      In move_op, there can be a case when insn's bb number has changed
6331      due to created bookkeeping.  This happens very rare, as we need to
6332      move expression from the beginning to the end of the same block.
6333      Rescan successors in this case.  */
6334 
6335  rescan:
6336   bb = BLOCK_FOR_INSN (insn);
6337   old_index = bb->index;
6338   old_succs = EDGE_COUNT (bb->succs);
6339 
6340   FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6341     {
6342       int b;
6343 
6344       lparams.e1 = succ_i.e1;
6345       lparams.e2 = succ_i.e2;
6346 
6347       /* Go deep into recursion only for NORMAL edges (non-backedges within the
6348 	 current region).  */
6349       if (succ_i.current_flags == SUCCS_NORMAL)
6350 	b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6351 				     static_params);
6352       else
6353 	b = 0;
6354 
6355       /* Merge c_expres found or unify live register sets from different
6356 	 successors.  */
6357       code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6358 						 static_params);
6359       if (b == 1)
6360         res = b;
6361       else if (b == -1 && res != 1)
6362         res = b;
6363 
6364       /* We have simplified the control flow below this point.  In this case,
6365          the iterator becomes invalid.  We need to try again.  */
6366       if (BLOCK_FOR_INSN (insn)->index != old_index
6367           || EDGE_COUNT (bb->succs) != old_succs)
6368         goto rescan;
6369     }
6370 
6371 #ifdef ENABLE_CHECKING
6372   /* Here, RES==1 if original expr was found at least for one of the
6373      successors.  After the loop, RES may happen to have zero value
6374      only if at some point the expr searched is present in av_set, but is
6375      not found below.  In most cases, this situation is an error.
6376      The exception is when the original operation is blocked by
6377      bookkeeping generated for another fence or for another path in current
6378      move_op.  */
6379   gcc_assert (res == 1
6380               || (res == 0
6381                   && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6382 							       static_params))
6383               || res == -1);
6384 #endif
6385 
6386   /* Merge data, clean up, etc.  */
6387   if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6388     code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6389 
6390   return res;
6391 }
6392 
6393 
6394 /* Perform a cleanup when the driver is about to terminate.  ORIG_OPS_P
6395    is the pointer to the av set with expressions we were looking for,
6396    PATH_P is the pointer to the traversed path.  */
6397 static inline void
6398 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6399 {
6400   ilist_remove (path_p);
6401   av_set_clear (orig_ops_p);
6402 }
6403 
6404 /* The driver function that implements move_op or find_used_regs
6405    functionality dependent whether code_motion_path_driver_INFO is set to
6406    &MOVE_OP_HOOKS or &FUR_HOOKS.  This function implements the common parts
6407    of code (CFG traversal etc) that are shared among both functions.  INSN
6408    is the insn we're starting the search from, ORIG_OPS are the expressions
6409    we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6410    parameters of the driver, and STATIC_PARAMS are static parameters of
6411    the caller.
6412 
6413    Returns whether original instructions were found.  Note that top-level
6414    code_motion_path_driver always returns true.  */
6415 static int
6416 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6417 			 cmpd_local_params_p local_params_in,
6418 			 void *static_params)
6419 {
6420   expr_t expr = NULL;
6421   basic_block bb = BLOCK_FOR_INSN (insn);
6422   insn_t first_insn, bb_tail, before_first;
6423   bool removed_last_insn = false;
6424 
6425   if (sched_verbose >= 6)
6426     {
6427       sel_print ("%s (", code_motion_path_driver_info->routine_name);
6428       dump_insn (insn);
6429       sel_print (",");
6430       dump_av_set (orig_ops);
6431       sel_print (")\n");
6432     }
6433 
6434   gcc_assert (orig_ops);
6435 
6436   /* If no original operations exist below this insn, return immediately.  */
6437   if (is_ineligible_successor (insn, path))
6438     {
6439       if (sched_verbose >= 6)
6440         sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6441       return false;
6442     }
6443 
6444   /* The block can have invalid av set, in which case it was created earlier
6445      during move_op.  Return immediately.  */
6446   if (sel_bb_head_p (insn))
6447     {
6448       if (! AV_SET_VALID_P (insn))
6449         {
6450           if (sched_verbose >= 6)
6451             sel_print ("Returned from block %d as it had invalid av set\n",
6452                        bb->index);
6453           return false;
6454         }
6455 
6456       if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6457         {
6458           /* We have already found an original operation on this branch, do not
6459              go any further and just return TRUE here.  If we don't stop here,
6460              function can have exponential behaviour even on the small code
6461              with many different paths (e.g. with data speculation and
6462              recovery blocks).  */
6463           if (sched_verbose >= 6)
6464             sel_print ("Block %d already visited in this traversal\n", bb->index);
6465           if (code_motion_path_driver_info->on_enter)
6466             return code_motion_path_driver_info->on_enter (insn,
6467                                                            local_params_in,
6468                                                            static_params,
6469                                                            true);
6470         }
6471     }
6472 
6473   if (code_motion_path_driver_info->on_enter)
6474     code_motion_path_driver_info->on_enter (insn, local_params_in,
6475                                             static_params, false);
6476   orig_ops = av_set_copy (orig_ops);
6477 
6478   /* Filter the orig_ops set.  */
6479   if (AV_SET_VALID_P (insn))
6480     av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6481 
6482   /* If no more original ops, return immediately.  */
6483   if (!orig_ops)
6484     {
6485       if (sched_verbose >= 6)
6486         sel_print ("No intersection with av set of block %d\n", bb->index);
6487       return false;
6488     }
6489 
6490   /* For non-speculative insns we have to leave only one form of the
6491      original operation, because if we don't, we may end up with
6492      different C_EXPRes and, consequently, with bookkeepings for different
6493      expression forms along the same code motion path.  That may lead to
6494      generation of incorrect code.  So for each code motion we stick to
6495      the single form of the instruction,  except for speculative insns
6496      which we need to keep in different forms with all speculation
6497      types.  */
6498   av_set_leave_one_nonspec (&orig_ops);
6499 
6500   /* It is not possible that all ORIG_OPS are filtered out.  */
6501   gcc_assert (orig_ops);
6502 
6503   /* It is enough to place only heads and tails of visited basic blocks into
6504      the PATH.  */
6505   ilist_add (&path, insn);
6506   first_insn = insn;
6507   bb_tail = sel_bb_end (bb);
6508 
6509   /* Descend the basic block in search of the original expr; this part
6510      corresponds to the part of the original move_op procedure executed
6511      before the recursive call.  */
6512   for (;;)
6513     {
6514       /* Look at the insn and decide if it could be an ancestor of currently
6515 	 scheduling operation.  If it is so, then the insn "dest = op" could
6516 	 either be replaced with "dest = reg", because REG now holds the result
6517 	 of OP, or just removed, if we've scheduled the insn as a whole.
6518 
6519 	 If this insn doesn't contain currently scheduling OP, then proceed
6520 	 with searching and look at its successors.  Operations we're searching
6521 	 for could have changed when moving up through this insn via
6522 	 substituting.  In this case, perform unsubstitution on them first.
6523 
6524 	 When traversing the DAG below this insn is finished, insert
6525 	 bookkeeping code, if the insn is a joint point, and remove
6526 	 leftovers.  */
6527 
6528       expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6529       if (expr)
6530 	{
6531 	  insn_t last_insn = PREV_INSN (insn);
6532 
6533 	  /* We have found the original operation.   */
6534           if (sched_verbose >= 6)
6535             sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6536 
6537 	  code_motion_path_driver_info->orig_expr_found
6538             (insn, expr, local_params_in, static_params);
6539 
6540 	  /* Step back, so on the way back we'll start traversing from the
6541 	     previous insn (or we'll see that it's bb_note and skip that
6542 	     loop).  */
6543           if (insn == first_insn)
6544             {
6545               first_insn = NEXT_INSN (last_insn);
6546               removed_last_insn = sel_bb_end_p (last_insn);
6547             }
6548 	  insn = last_insn;
6549 	  break;
6550 	}
6551       else
6552 	{
6553 	  /* We haven't found the original expr, continue descending the basic
6554 	     block.  */
6555 	  if (code_motion_path_driver_info->orig_expr_not_found
6556               (insn, orig_ops, static_params))
6557 	    {
6558 	      /* Av set ops could have been changed when moving through this
6559 	         insn.  To find them below it, we have to un-substitute them.  */
6560 	      undo_transformations (&orig_ops, insn);
6561 	    }
6562 	  else
6563 	    {
6564 	      /* Clean up and return, if the hook tells us to do so.  It may
6565 		 happen if we've encountered the previously created
6566 		 bookkeeping.  */
6567 	      code_motion_path_driver_cleanup (&orig_ops, &path);
6568 	      return -1;
6569 	    }
6570 
6571 	  gcc_assert (orig_ops);
6572         }
6573 
6574       /* Stop at insn if we got to the end of BB.  */
6575       if (insn == bb_tail)
6576 	break;
6577 
6578       insn = NEXT_INSN (insn);
6579     }
6580 
6581   /* Here INSN either points to the insn before the original insn (may be
6582      bb_note, if original insn was a bb_head) or to the bb_end.  */
6583   if (!expr)
6584     {
6585       int res;
6586 
6587       gcc_assert (insn == sel_bb_end (bb));
6588 
6589       /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6590 	 it's already in PATH then).  */
6591       if (insn != first_insn)
6592 	ilist_add (&path, insn);
6593 
6594       /* Process_successors should be able to find at least one
6595 	 successor for which code_motion_path_driver returns TRUE.  */
6596       res = code_motion_process_successors (insn, orig_ops,
6597                                             path, static_params);
6598 
6599       /* Remove bb tail from path.  */
6600       if (insn != first_insn)
6601 	ilist_remove (&path);
6602 
6603       if (res != 1)
6604 	{
6605 	  /* This is the case when one of the original expr is no longer available
6606 	     due to bookkeeping created on this branch with the same register.
6607 	     In the original algorithm, which doesn't have update_data_sets call
6608 	     on a bookkeeping block, it would simply result in returning
6609 	     FALSE when we've encountered a previously generated bookkeeping
6610 	     insn in moveop_orig_expr_not_found.  */
6611 	  code_motion_path_driver_cleanup (&orig_ops, &path);
6612 	  return res;
6613 	}
6614     }
6615 
6616   /* Don't need it any more.  */
6617   av_set_clear (&orig_ops);
6618 
6619   /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6620      the beginning of the basic block.  */
6621   before_first = PREV_INSN (first_insn);
6622   while (insn != before_first)
6623     {
6624       if (code_motion_path_driver_info->ascend)
6625 	code_motion_path_driver_info->ascend (insn, static_params);
6626 
6627       insn = PREV_INSN (insn);
6628     }
6629 
6630   /* Now we're at the bb head.  */
6631   insn = first_insn;
6632   ilist_remove (&path);
6633   local_params_in->removed_last_insn = removed_last_insn;
6634   code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6635 
6636   /* This should be the very last operation as at bb head we could change
6637      the numbering by creating bookkeeping blocks.  */
6638   if (removed_last_insn)
6639     insn = PREV_INSN (insn);
6640   bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6641   return true;
6642 }
6643 
6644 /* Move up the operations from ORIG_OPS set traversing the dag starting
6645    from INSN.  PATH represents the edges traversed so far.
6646    DEST is the register chosen for scheduling the current expr.  Insert
6647    bookkeeping code in the join points.  EXPR_VLIW is the chosen expression,
6648    C_EXPR is how it looks like at the given cfg point.
6649    Set *SHOULD_MOVE to indicate whether we have only disconnected
6650    one of the insns found.
6651 
6652    Returns whether original instructions were found, which is asserted
6653    to be true in the caller.  */
6654 static bool
6655 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6656          rtx dest, expr_t c_expr, bool *should_move)
6657 {
6658   struct moveop_static_params sparams;
6659   struct cmpd_local_params lparams;
6660   bool res;
6661 
6662   /* Init params for code_motion_path_driver.  */
6663   sparams.dest = dest;
6664   sparams.c_expr = c_expr;
6665   sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6666 #ifdef ENABLE_CHECKING
6667   sparams.failed_insn = NULL;
6668 #endif
6669   sparams.was_renamed = false;
6670   lparams.e1 = NULL;
6671 
6672   /* We haven't visited any blocks yet.  */
6673   bitmap_clear (code_motion_visited_blocks);
6674 
6675   /* Set appropriate hooks and data.  */
6676   code_motion_path_driver_info = &move_op_hooks;
6677   res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6678 
6679   if (sparams.was_renamed)
6680     EXPR_WAS_RENAMED (expr_vliw) = true;
6681 
6682   *should_move = (sparams.uid == -1);
6683 
6684   return res;
6685 }
6686 
6687 
6688 /* Functions that work with regions.  */
6689 
6690 /* Current number of seqno used in init_seqno and init_seqno_1.  */
6691 static int cur_seqno;
6692 
6693 /* A helper for init_seqno.  Traverse the region starting from BB and
6694    compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6695    Clear visited blocks from BLOCKS_TO_RESCHEDULE.  */
6696 static void
6697 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6698 {
6699   int bbi = BLOCK_TO_BB (bb->index);
6700   insn_t insn, note = bb_note (bb);
6701   insn_t succ_insn;
6702   succ_iterator si;
6703 
6704   SET_BIT (visited_bbs, bbi);
6705   if (blocks_to_reschedule)
6706     bitmap_clear_bit (blocks_to_reschedule, bb->index);
6707 
6708   FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6709 		   SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6710     {
6711       basic_block succ = BLOCK_FOR_INSN (succ_insn);
6712       int succ_bbi = BLOCK_TO_BB (succ->index);
6713 
6714       gcc_assert (in_current_region_p (succ));
6715 
6716       if (!TEST_BIT (visited_bbs, succ_bbi))
6717 	{
6718 	  gcc_assert (succ_bbi > bbi);
6719 
6720 	  init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6721 	}
6722       else if (blocks_to_reschedule)
6723         bitmap_set_bit (forced_ebb_heads, succ->index);
6724     }
6725 
6726   for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6727     INSN_SEQNO (insn) = cur_seqno--;
6728 }
6729 
6730 /* Initialize seqnos for the current region.  NUMBER_OF_INSNS is the number
6731    of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6732    which we're rescheduling when pipelining, FROM is the block where
6733    traversing region begins (it may not be the head of the region when
6734    pipelining, but the head of the loop instead).
6735 
6736    Returns the maximal seqno found.  */
6737 static int
6738 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6739 {
6740   sbitmap visited_bbs;
6741   bitmap_iterator bi;
6742   unsigned bbi;
6743 
6744   visited_bbs = sbitmap_alloc (current_nr_blocks);
6745 
6746   if (blocks_to_reschedule)
6747     {
6748       sbitmap_ones (visited_bbs);
6749       EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6750         {
6751 	  gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6752           RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6753 	}
6754     }
6755   else
6756     {
6757       sbitmap_zero (visited_bbs);
6758       from = EBB_FIRST_BB (0);
6759     }
6760 
6761   cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6762   init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6763   gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6764 
6765   sbitmap_free (visited_bbs);
6766   return sched_max_luid - 1;
6767 }
6768 
6769 /* Initialize scheduling parameters for current region.  */
6770 static void
6771 sel_setup_region_sched_flags (void)
6772 {
6773   enable_schedule_as_rhs_p = 1;
6774   bookkeeping_p = 1;
6775   pipelining_p = (bookkeeping_p
6776                   && (flag_sel_sched_pipelining != 0)
6777 		  && current_loop_nest != NULL);
6778   max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6779   max_ws = MAX_WS;
6780 }
6781 
6782 /* Return true if all basic blocks of current region are empty.  */
6783 static bool
6784 current_region_empty_p (void)
6785 {
6786   int i;
6787   for (i = 0; i < current_nr_blocks; i++)
6788     if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6789       return false;
6790 
6791   return true;
6792 }
6793 
6794 /* Prepare and verify loop nest for pipelining.  */
6795 static void
6796 setup_current_loop_nest (int rgn)
6797 {
6798   current_loop_nest = get_loop_nest_for_rgn (rgn);
6799 
6800   if (!current_loop_nest)
6801     return;
6802 
6803   /* If this loop has any saved loop preheaders from nested loops,
6804      add these basic blocks to the current region.  */
6805   sel_add_loop_preheaders ();
6806 
6807   /* Check that we're starting with a valid information.  */
6808   gcc_assert (loop_latch_edge (current_loop_nest));
6809   gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6810 }
6811 
6812 /* Compute instruction priorities for current region.  */
6813 static void
6814 sel_compute_priorities (int rgn)
6815 {
6816   sched_rgn_compute_dependencies (rgn);
6817 
6818   /* Compute insn priorities in haifa style.  Then free haifa style
6819      dependencies that we've calculated for this.  */
6820   compute_priorities ();
6821 
6822   if (sched_verbose >= 5)
6823     debug_rgn_dependencies (0);
6824 
6825   free_rgn_deps ();
6826 }
6827 
6828 /* Init scheduling data for RGN.  Returns true when this region should not
6829    be scheduled.  */
6830 static bool
6831 sel_region_init (int rgn)
6832 {
6833   int i;
6834   bb_vec_t bbs;
6835 
6836   rgn_setup_region (rgn);
6837 
6838   /* Even if sched_is_disabled_for_current_region_p() is true, we still
6839      do region initialization here so the region can be bundled correctly,
6840      but we'll skip the scheduling in sel_sched_region ().  */
6841   if (current_region_empty_p ())
6842     return true;
6843 
6844   if (flag_sel_sched_pipelining)
6845     setup_current_loop_nest (rgn);
6846 
6847   sel_setup_region_sched_flags ();
6848 
6849   bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6850 
6851   for (i = 0; i < current_nr_blocks; i++)
6852     VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6853 
6854   sel_init_bbs (bbs, NULL);
6855 
6856   /* Initialize luids and dependence analysis which both sel-sched and haifa
6857      need.  */
6858   sched_init_luids (bbs, NULL, NULL, NULL);
6859   sched_deps_init (false);
6860 
6861   /* Initialize haifa data.  */
6862   rgn_setup_sched_infos ();
6863   sel_set_sched_flags ();
6864   haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6865 
6866   sel_compute_priorities (rgn);
6867   init_deps_global ();
6868 
6869   /* Main initialization.  */
6870   sel_setup_sched_infos ();
6871   sel_init_global_and_expr (bbs);
6872 
6873   VEC_free (basic_block, heap, bbs);
6874 
6875   blocks_to_reschedule = BITMAP_ALLOC (NULL);
6876 
6877   /* Init correct liveness sets on each instruction of a single-block loop.
6878      This is the only situation when we can't update liveness when calling
6879      compute_live for the first insn of the loop.  */
6880   if (current_loop_nest)
6881     {
6882       int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6883                     ? 1
6884                     : 0);
6885 
6886       if (current_nr_blocks == header + 1)
6887         update_liveness_on_insn
6888           (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6889     }
6890 
6891   /* Set hooks so that no newly generated insn will go out unnoticed.  */
6892   sel_register_cfg_hooks ();
6893 
6894   /* !!! We call target.sched.md_init () for the whole region, but we invoke
6895      targetm.sched.md_finish () for every ebb.  */
6896   if (targetm.sched.md_init)
6897     /* None of the arguments are actually used in any target.  */
6898     targetm.sched.md_init (sched_dump, sched_verbose, -1);
6899 
6900   first_emitted_uid = get_max_uid () + 1;
6901   preheader_removed = false;
6902 
6903   /* Reset register allocation ticks array.  */
6904   memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6905   reg_rename_this_tick = 0;
6906 
6907   bitmap_initialize (forced_ebb_heads, 0);
6908   bitmap_clear (forced_ebb_heads);
6909 
6910   setup_nop_vinsn ();
6911   current_copies = BITMAP_ALLOC (NULL);
6912   current_originators = BITMAP_ALLOC (NULL);
6913   code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6914 
6915   return false;
6916 }
6917 
6918 /* Simplify insns after the scheduling.  */
6919 static void
6920 simplify_changed_insns (void)
6921 {
6922   int i;
6923 
6924   for (i = 0; i < current_nr_blocks; i++)
6925     {
6926       basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6927       rtx insn;
6928 
6929       FOR_BB_INSNS (bb, insn)
6930 	if (INSN_P (insn))
6931 	  {
6932 	    expr_t expr = INSN_EXPR (insn);
6933 
6934 	    if (EXPR_WAS_SUBSTITUTED (expr))
6935 	      validate_simplify_insn (insn);
6936 	  }
6937     }
6938 }
6939 
6940 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6941    this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6942    PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure.  */
6943 static void
6944 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6945 {
6946   insn_t head, tail;
6947   basic_block bb1 = bb;
6948   if (sched_verbose >= 2)
6949     sel_print ("Finishing schedule in bbs: ");
6950 
6951   do
6952     {
6953       bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6954 
6955       if (sched_verbose >= 2)
6956 	sel_print ("%d; ", bb1->index);
6957     }
6958   while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6959 
6960   if (sched_verbose >= 2)
6961     sel_print ("\n");
6962 
6963   get_ebb_head_tail (bb, bb1, &head, &tail);
6964 
6965   current_sched_info->head = head;
6966   current_sched_info->tail = tail;
6967   current_sched_info->prev_head = PREV_INSN (head);
6968   current_sched_info->next_tail = NEXT_INSN (tail);
6969 }
6970 
6971 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB.  */
6972 static void
6973 reset_sched_cycles_in_current_ebb (void)
6974 {
6975   int last_clock = 0;
6976   int haifa_last_clock = -1;
6977   int haifa_clock = 0;
6978   int issued_insns = 0;
6979   insn_t insn;
6980 
6981   if (targetm.sched.md_init)
6982     {
6983       /* None of the arguments are actually used in any target.
6984 	 NB: We should have md_reset () hook for cases like this.  */
6985       targetm.sched.md_init (sched_dump, sched_verbose, -1);
6986     }
6987 
6988   state_reset (curr_state);
6989   advance_state (curr_state);
6990 
6991   for (insn = current_sched_info->head;
6992        insn != current_sched_info->next_tail;
6993        insn = NEXT_INSN (insn))
6994     {
6995       int cost, haifa_cost;
6996       int sort_p;
6997       bool asm_p, real_insn, after_stall, all_issued;
6998       int clock;
6999 
7000       if (!INSN_P (insn))
7001 	continue;
7002 
7003       asm_p = false;
7004       real_insn = recog_memoized (insn) >= 0;
7005       clock = INSN_SCHED_CYCLE (insn);
7006 
7007       cost = clock - last_clock;
7008 
7009       /* Initialize HAIFA_COST.  */
7010       if (! real_insn)
7011 	{
7012 	  asm_p = INSN_ASM_P (insn);
7013 
7014 	  if (asm_p)
7015 	    /* This is asm insn which *had* to be scheduled first
7016 	       on the cycle.  */
7017 	    haifa_cost = 1;
7018 	  else
7019 	    /* This is a use/clobber insn.  It should not change
7020 	       cost.  */
7021 	    haifa_cost = 0;
7022 	}
7023       else
7024         haifa_cost = estimate_insn_cost (insn, curr_state);
7025 
7026       /* Stall for whatever cycles we've stalled before.  */
7027       after_stall = 0;
7028       if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7029         {
7030           haifa_cost = cost;
7031           after_stall = 1;
7032         }
7033       all_issued = issued_insns == issue_rate;
7034       if (haifa_cost == 0 && all_issued)
7035 	haifa_cost = 1;
7036       if (haifa_cost > 0)
7037 	{
7038 	  int i = 0;
7039 
7040 	  while (haifa_cost--)
7041 	    {
7042 	      advance_state (curr_state);
7043 	      issued_insns = 0;
7044               i++;
7045 
7046 	      if (sched_verbose >= 2)
7047                 {
7048                   sel_print ("advance_state (state_transition)\n");
7049                   debug_state (curr_state);
7050                 }
7051 
7052               /* The DFA may report that e.g. insn requires 2 cycles to be
7053                  issued, but on the next cycle it says that insn is ready
7054                  to go.  Check this here.  */
7055               if (!after_stall
7056                   && real_insn
7057                   && haifa_cost > 0
7058                   && estimate_insn_cost (insn, curr_state) == 0)
7059                 break;
7060 
7061               /* When the data dependency stall is longer than the DFA stall,
7062                  and when we have issued exactly issue_rate insns and stalled,
7063                  it could be that after this longer stall the insn will again
7064                  become unavailable  to the DFA restrictions.  Looks strange
7065                  but happens e.g. on x86-64.  So recheck DFA on the last
7066                  iteration.  */
7067               if ((after_stall || all_issued)
7068                   && real_insn
7069                   && haifa_cost == 0)
7070                 haifa_cost = estimate_insn_cost (insn, curr_state);
7071             }
7072 
7073 	  haifa_clock += i;
7074           if (sched_verbose >= 2)
7075             sel_print ("haifa clock: %d\n", haifa_clock);
7076 	}
7077       else
7078 	gcc_assert (haifa_cost == 0);
7079 
7080       if (sched_verbose >= 2)
7081 	sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7082 
7083       if (targetm.sched.dfa_new_cycle)
7084 	while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7085 					    haifa_last_clock, haifa_clock,
7086 					    &sort_p))
7087 	  {
7088 	    advance_state (curr_state);
7089 	    issued_insns = 0;
7090 	    haifa_clock++;
7091 	    if (sched_verbose >= 2)
7092               {
7093                 sel_print ("advance_state (dfa_new_cycle)\n");
7094                 debug_state (curr_state);
7095 		sel_print ("haifa clock: %d\n", haifa_clock + 1);
7096               }
7097           }
7098 
7099       if (real_insn)
7100 	{
7101 	  cost = state_transition (curr_state, insn);
7102 	  issued_insns++;
7103 
7104           if (sched_verbose >= 2)
7105 	    {
7106 	      sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7107 			 haifa_clock + 1);
7108               debug_state (curr_state);
7109 	    }
7110 	  gcc_assert (cost < 0);
7111 	}
7112 
7113       if (targetm.sched.variable_issue)
7114 	targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7115 
7116       INSN_SCHED_CYCLE (insn) = haifa_clock;
7117 
7118       last_clock = clock;
7119       haifa_last_clock = haifa_clock;
7120     }
7121 }
7122 
7123 /* Put TImode markers on insns starting a new issue group.  */
7124 static void
7125 put_TImodes (void)
7126 {
7127   int last_clock = -1;
7128   insn_t insn;
7129 
7130   for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7131        insn = NEXT_INSN (insn))
7132     {
7133       int cost, clock;
7134 
7135       if (!INSN_P (insn))
7136 	continue;
7137 
7138       clock = INSN_SCHED_CYCLE (insn);
7139       cost = (last_clock == -1) ? 1 : clock - last_clock;
7140 
7141       gcc_assert (cost >= 0);
7142 
7143       if (issue_rate > 1
7144 	  && GET_CODE (PATTERN (insn)) != USE
7145 	  && GET_CODE (PATTERN (insn)) != CLOBBER)
7146 	{
7147 	  if (reload_completed && cost > 0)
7148 	    PUT_MODE (insn, TImode);
7149 
7150 	  last_clock = clock;
7151 	}
7152 
7153       if (sched_verbose >= 2)
7154 	sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7155     }
7156 }
7157 
7158 /* Perform MD_FINISH on EBBs comprising current region.  When
7159    RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7160    to produce correct sched cycles on insns.  */
7161 static void
7162 sel_region_target_finish (bool reset_sched_cycles_p)
7163 {
7164   int i;
7165   bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7166 
7167   for (i = 0; i < current_nr_blocks; i++)
7168     {
7169       if (bitmap_bit_p (scheduled_blocks, i))
7170 	continue;
7171 
7172       /* While pipelining outer loops, skip bundling for loop
7173 	 preheaders.  Those will be rescheduled in the outer loop.  */
7174       if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7175 	continue;
7176 
7177       find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7178 
7179       if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7180 	continue;
7181 
7182       if (reset_sched_cycles_p)
7183 	reset_sched_cycles_in_current_ebb ();
7184 
7185       if (targetm.sched.md_init)
7186 	targetm.sched.md_init (sched_dump, sched_verbose, -1);
7187 
7188       put_TImodes ();
7189 
7190       if (targetm.sched.md_finish)
7191 	{
7192 	  targetm.sched.md_finish (sched_dump, sched_verbose);
7193 
7194 	  /* Extend luids so that insns generated by the target will
7195 	     get zero luid.  */
7196 	  sched_init_luids (NULL, NULL, NULL, NULL);
7197 	}
7198     }
7199 
7200   BITMAP_FREE (scheduled_blocks);
7201 }
7202 
7203 /* Free the scheduling data for the current region.  When RESET_SCHED_CYCLES_P
7204    is true, make an additional pass emulating scheduler to get correct insn
7205    cycles for md_finish calls.  */
7206 static void
7207 sel_region_finish (bool reset_sched_cycles_p)
7208 {
7209   simplify_changed_insns ();
7210   sched_finish_ready_list ();
7211   free_nop_pool ();
7212 
7213   /* Free the vectors.  */
7214   if (vec_av_set)
7215     VEC_free (expr_t, heap, vec_av_set);
7216   BITMAP_FREE (current_copies);
7217   BITMAP_FREE (current_originators);
7218   BITMAP_FREE (code_motion_visited_blocks);
7219   vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7220   vinsn_vec_free (&vec_target_unavailable_vinsns);
7221 
7222   /* If LV_SET of the region head should be updated, do it now because
7223      there will be no other chance.  */
7224   {
7225     succ_iterator si;
7226     insn_t insn;
7227 
7228     FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7229                      SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7230       {
7231 	basic_block bb = BLOCK_FOR_INSN (insn);
7232 
7233 	if (!BB_LV_SET_VALID_P (bb))
7234 	  compute_live (insn);
7235       }
7236   }
7237 
7238   /* Emulate the Haifa scheduler for bundling.  */
7239   if (reload_completed)
7240     sel_region_target_finish (reset_sched_cycles_p);
7241 
7242   sel_finish_global_and_expr ();
7243 
7244   bitmap_clear (forced_ebb_heads);
7245 
7246   free_nop_vinsn ();
7247 
7248   finish_deps_global ();
7249   sched_finish_luids ();
7250 
7251   sel_finish_bbs ();
7252   BITMAP_FREE (blocks_to_reschedule);
7253 
7254   sel_unregister_cfg_hooks ();
7255 
7256   max_issue_size = 0;
7257 }
7258 
7259 
7260 /* Functions that implement the scheduler driver.  */
7261 
7262 /* Schedule a parallel instruction group on each of FENCES.  MAX_SEQNO
7263    is the current maximum seqno.  SCHEDULED_INSNS_TAILPP is the list
7264    of insns scheduled -- these would be postprocessed later.  */
7265 static void
7266 schedule_on_fences (flist_t fences, int max_seqno,
7267                     ilist_t **scheduled_insns_tailpp)
7268 {
7269   flist_t old_fences = fences;
7270 
7271   if (sched_verbose >= 1)
7272     {
7273       sel_print ("\nScheduling on fences: ");
7274       dump_flist (fences);
7275       sel_print ("\n");
7276     }
7277 
7278   scheduled_something_on_previous_fence = false;
7279   for (; fences; fences = FLIST_NEXT (fences))
7280     {
7281       fence_t fence = NULL;
7282       int seqno = 0;
7283       flist_t fences2;
7284       bool first_p = true;
7285 
7286       /* Choose the next fence group to schedule.
7287          The fact that insn can be scheduled only once
7288          on the cycle is guaranteed by two properties:
7289          1. seqnos of parallel groups decrease with each iteration.
7290          2. If is_ineligible_successor () sees the larger seqno, it
7291          checks if candidate insn is_in_current_fence_p ().  */
7292       for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7293         {
7294           fence_t f = FLIST_FENCE (fences2);
7295 
7296           if (!FENCE_PROCESSED_P (f))
7297             {
7298               int i = INSN_SEQNO (FENCE_INSN (f));
7299 
7300               if (first_p || i > seqno)
7301                 {
7302                   seqno = i;
7303                   fence = f;
7304                   first_p = false;
7305                 }
7306               else
7307                 /* ??? Seqnos of different groups should be different.  */
7308                 gcc_assert (1 || i != seqno);
7309             }
7310         }
7311 
7312       gcc_assert (fence);
7313 
7314       /* As FENCE is nonnull, SEQNO is initialized.  */
7315       seqno -= max_seqno + 1;
7316       fill_insns (fence, seqno, scheduled_insns_tailpp);
7317       FENCE_PROCESSED_P (fence) = true;
7318     }
7319 
7320   /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7321      don't need to keep bookkeeping-invalidated and target-unavailable
7322      vinsns any more.  */
7323   vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7324   vinsn_vec_clear (&vec_target_unavailable_vinsns);
7325 }
7326 
7327 /* Calculate MIN_SEQNO and MAX_SEQNO.  */
7328 static void
7329 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7330 {
7331   *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7332 
7333   /* The first element is already processed.  */
7334   while ((fences = FLIST_NEXT (fences)))
7335     {
7336       int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7337 
7338       if (*min_seqno > seqno)
7339         *min_seqno = seqno;
7340       else if (*max_seqno < seqno)
7341         *max_seqno = seqno;
7342     }
7343 }
7344 
7345 /* Calculate new fences from FENCES.  */
7346 static flist_t
7347 calculate_new_fences (flist_t fences, int orig_max_seqno)
7348 {
7349   flist_t old_fences = fences;
7350   struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7351 
7352   flist_tail_init (new_fences);
7353   for (; fences; fences = FLIST_NEXT (fences))
7354     {
7355       fence_t fence = FLIST_FENCE (fences);
7356       insn_t insn;
7357 
7358       if (!FENCE_BNDS (fence))
7359         {
7360           /* This fence doesn't have any successors.  */
7361           if (!FENCE_SCHEDULED_P (fence))
7362             {
7363               /* Nothing was scheduled on this fence.  */
7364               int seqno;
7365 
7366               insn = FENCE_INSN (fence);
7367               seqno = INSN_SEQNO (insn);
7368               gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7369 
7370               if (sched_verbose >= 1)
7371                 sel_print ("Fence %d[%d] has not changed\n",
7372                            INSN_UID (insn),
7373                            BLOCK_NUM (insn));
7374               move_fence_to_fences (fences, new_fences);
7375             }
7376         }
7377       else
7378         extract_new_fences_from (fences, new_fences, orig_max_seqno);
7379     }
7380 
7381   flist_clear (&old_fences);
7382   return FLIST_TAIL_HEAD (new_fences);
7383 }
7384 
7385 /* Update seqnos of insns given by PSCHEDULED_INSNS.  MIN_SEQNO and MAX_SEQNO
7386    are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7387    the highest seqno used in a region.  Return the updated highest seqno.  */
7388 static int
7389 update_seqnos_and_stage (int min_seqno, int max_seqno,
7390                          int highest_seqno_in_use,
7391                          ilist_t *pscheduled_insns)
7392 {
7393   int new_hs;
7394   ilist_iterator ii;
7395   insn_t insn;
7396 
7397   /* Actually, new_hs is the seqno of the instruction, that was
7398      scheduled first (i.e. it is the first one in SCHEDULED_INSNS).  */
7399   if (*pscheduled_insns)
7400     {
7401       new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7402                 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7403       gcc_assert (new_hs > highest_seqno_in_use);
7404     }
7405   else
7406     new_hs = highest_seqno_in_use;
7407 
7408   FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7409     {
7410       gcc_assert (INSN_SEQNO (insn) < 0);
7411       INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7412       gcc_assert (INSN_SEQNO (insn) <= new_hs);
7413 
7414       /* When not pipelining, purge unneeded insn info on the scheduled insns.
7415          For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7416          require > 1GB of memory e.g. on limit-fnargs.c.  */
7417       if (! pipelining_p)
7418         free_data_for_scheduled_insn (insn);
7419     }
7420 
7421   ilist_clear (pscheduled_insns);
7422   global_level++;
7423 
7424   return new_hs;
7425 }
7426 
7427 /* The main driver for scheduling a region.  This function is responsible
7428    for correct propagation of fences (i.e. scheduling points) and creating
7429    a group of parallel insns at each of them.  It also supports
7430    pipelining.  ORIG_MAX_SEQNO is the maximal seqno before this pass
7431    of scheduling.  */
7432 static void
7433 sel_sched_region_2 (int orig_max_seqno)
7434 {
7435   int highest_seqno_in_use = orig_max_seqno;
7436 
7437   stat_bookkeeping_copies = 0;
7438   stat_insns_needed_bookkeeping = 0;
7439   stat_renamed_scheduled = 0;
7440   stat_substitutions_total = 0;
7441   num_insns_scheduled = 0;
7442 
7443   while (fences)
7444     {
7445       int min_seqno, max_seqno;
7446       ilist_t scheduled_insns = NULL;
7447       ilist_t *scheduled_insns_tailp = &scheduled_insns;
7448 
7449       find_min_max_seqno (fences, &min_seqno, &max_seqno);
7450       schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7451       fences = calculate_new_fences (fences, orig_max_seqno);
7452       highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7453                                                       highest_seqno_in_use,
7454                                                       &scheduled_insns);
7455     }
7456 
7457   if (sched_verbose >= 1)
7458     sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7459                "bookkeeping, %d insns renamed, %d insns substituted\n",
7460                stat_bookkeeping_copies,
7461                stat_insns_needed_bookkeeping,
7462                stat_renamed_scheduled,
7463                stat_substitutions_total);
7464 }
7465 
7466 /* Schedule a region.  When pipelining, search for possibly never scheduled
7467    bookkeeping code and schedule it.  Reschedule pipelined code without
7468    pipelining after.  */
7469 static void
7470 sel_sched_region_1 (void)
7471 {
7472   int number_of_insns;
7473   int orig_max_seqno;
7474 
7475   /* Remove empty blocks that might be in the region from the beginning.
7476      We need to do save sched_max_luid before that, as it actually shows
7477      the number of insns in the region, and purge_empty_blocks can
7478      alter it.  */
7479   number_of_insns = sched_max_luid - 1;
7480   purge_empty_blocks ();
7481 
7482   orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7483   gcc_assert (orig_max_seqno >= 1);
7484 
7485   /* When pipelining outer loops, create fences on the loop header,
7486      not preheader.  */
7487   fences = NULL;
7488   if (current_loop_nest)
7489     init_fences (BB_END (EBB_FIRST_BB (0)));
7490   else
7491     init_fences (bb_note (EBB_FIRST_BB (0)));
7492   global_level = 1;
7493 
7494   sel_sched_region_2 (orig_max_seqno);
7495 
7496   gcc_assert (fences == NULL);
7497 
7498   if (pipelining_p)
7499     {
7500       int i;
7501       basic_block bb;
7502       struct flist_tail_def _new_fences;
7503       flist_tail_t new_fences = &_new_fences;
7504       bool do_p = true;
7505 
7506       pipelining_p = false;
7507       max_ws = MIN (max_ws, issue_rate * 3 / 2);
7508       bookkeeping_p = false;
7509       enable_schedule_as_rhs_p = false;
7510 
7511       /* Schedule newly created code, that has not been scheduled yet.  */
7512       do_p = true;
7513 
7514       while (do_p)
7515         {
7516           do_p = false;
7517 
7518           for (i = 0; i < current_nr_blocks; i++)
7519             {
7520               basic_block bb = EBB_FIRST_BB (i);
7521 
7522               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7523                 {
7524                   if (! bb_ends_ebb_p (bb))
7525                     bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7526                   if (sel_bb_empty_p (bb))
7527                     {
7528                       bitmap_clear_bit (blocks_to_reschedule, bb->index);
7529                       continue;
7530                     }
7531                   clear_outdated_rtx_info (bb);
7532                   if (sel_insn_is_speculation_check (BB_END (bb))
7533                       && JUMP_P (BB_END (bb)))
7534                     bitmap_set_bit (blocks_to_reschedule,
7535                                     BRANCH_EDGE (bb)->dest->index);
7536                 }
7537               else if (! sel_bb_empty_p (bb)
7538                        && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7539                 bitmap_set_bit (blocks_to_reschedule, bb->index);
7540             }
7541 
7542           for (i = 0; i < current_nr_blocks; i++)
7543             {
7544               bb = EBB_FIRST_BB (i);
7545 
7546               /* While pipelining outer loops, skip bundling for loop
7547                  preheaders.  Those will be rescheduled in the outer
7548                  loop.  */
7549               if (sel_is_loop_preheader_p (bb))
7550                 {
7551                   clear_outdated_rtx_info (bb);
7552                   continue;
7553                 }
7554 
7555               if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7556                 {
7557                   flist_tail_init (new_fences);
7558 
7559                   orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7560 
7561                   /* Mark BB as head of the new ebb.  */
7562                   bitmap_set_bit (forced_ebb_heads, bb->index);
7563 
7564                   bitmap_clear_bit (blocks_to_reschedule, bb->index);
7565 
7566                   gcc_assert (fences == NULL);
7567 
7568                   init_fences (bb_note (bb));
7569 
7570                   sel_sched_region_2 (orig_max_seqno);
7571 
7572                   do_p = true;
7573                   break;
7574                 }
7575             }
7576         }
7577     }
7578 }
7579 
7580 /* Schedule the RGN region.  */
7581 void
7582 sel_sched_region (int rgn)
7583 {
7584   bool schedule_p;
7585   bool reset_sched_cycles_p;
7586 
7587   if (sel_region_init (rgn))
7588     return;
7589 
7590   if (sched_verbose >= 1)
7591     sel_print ("Scheduling region %d\n", rgn);
7592 
7593   schedule_p = (!sched_is_disabled_for_current_region_p ()
7594                 && dbg_cnt (sel_sched_region_cnt));
7595   reset_sched_cycles_p = pipelining_p;
7596   if (schedule_p)
7597     sel_sched_region_1 ();
7598   else
7599     /* Force initialization of INSN_SCHED_CYCLEs for correct bundling.  */
7600     reset_sched_cycles_p = true;
7601 
7602   sel_region_finish (reset_sched_cycles_p);
7603 }
7604 
7605 /* Perform global init for the scheduler.  */
7606 static void
7607 sel_global_init (void)
7608 {
7609   calculate_dominance_info (CDI_DOMINATORS);
7610   alloc_sched_pools ();
7611 
7612   /* Setup the infos for sched_init.  */
7613   sel_setup_sched_infos ();
7614   setup_sched_dump ();
7615 
7616   sched_rgn_init (false);
7617   sched_init ();
7618 
7619   sched_init_bbs ();
7620   /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass.  */
7621   after_recovery = 0;
7622   can_issue_more = issue_rate;
7623 
7624   sched_extend_target ();
7625   sched_deps_init (true);
7626   setup_nop_and_exit_insns ();
7627   sel_extend_global_bb_info ();
7628   init_lv_sets ();
7629   init_hard_regs_data ();
7630 }
7631 
7632 /* Free the global data of the scheduler.  */
7633 static void
7634 sel_global_finish (void)
7635 {
7636   free_bb_note_pool ();
7637   free_lv_sets ();
7638   sel_finish_global_bb_info ();
7639 
7640   free_regset_pool ();
7641   free_nop_and_exit_insns ();
7642 
7643   sched_rgn_finish ();
7644   sched_deps_finish ();
7645   sched_finish ();
7646 
7647   if (current_loops)
7648     sel_finish_pipelining ();
7649 
7650   free_sched_pools ();
7651   free_dominance_info (CDI_DOMINATORS);
7652 }
7653 
7654 /* Return true when we need to skip selective scheduling.  Used for debugging.  */
7655 bool
7656 maybe_skip_selective_scheduling (void)
7657 {
7658   return ! dbg_cnt (sel_sched_cnt);
7659 }
7660 
7661 /* The entry point.  */
7662 void
7663 run_selective_scheduling (void)
7664 {
7665   int rgn;
7666 
7667   if (n_basic_blocks == NUM_FIXED_BLOCKS)
7668     return;
7669 
7670   sel_global_init ();
7671 
7672   for (rgn = 0; rgn < nr_regions; rgn++)
7673     sel_sched_region (rgn);
7674 
7675   sel_global_finish ();
7676 }
7677 
7678 #endif
7679