xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/sel-sched-ir.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Instruction scheduling pass.  Selective scheduler and pipeliner.
2    Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn.  */
50 #include "sel-sched-dump.h"
51 
52 /* A vector holding bb info for whole scheduling pass.  */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54 
55 /* A vector holding bb info.  */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57 
58 /* A pool for allocating all lists.  */
59 alloc_pool sched_lists_pool;
60 
61 /* This contains information about successors for compute_av_set.  */
62 struct succs_info current_succs;
63 
64 /* Data structure to describe interaction with the generic scheduler utils.  */
65 static struct common_sched_info_def sel_common_sched_info;
66 
67 /* The loop nest being pipelined.  */
68 struct loop *current_loop_nest;
69 
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71    each region.  */
72 static VEC(loop_p, heap) *loop_nests = NULL;
73 
74 /* Saves blocks already in loop regions, indexed by bb->index.  */
75 static sbitmap bbs_in_loop_rgns = NULL;
76 
77 /* CFG hooks that are saved before changing create_basic_block hook.  */
78 static struct cfg_hooks orig_cfg_hooks;
79 
80 
81 /* Array containing reverse topological index of function basic blocks,
82    indexed by BB->INDEX.  */
83 static int *rev_top_order_index = NULL;
84 
85 /* Length of the above array.  */
86 static int rev_top_order_index_len = -1;
87 
88 /* A regset pool structure.  */
89 static struct
90 {
91   /* The stack to which regsets are returned.  */
92   regset *v;
93 
94   /* Its pointer.  */
95   int n;
96 
97   /* Its size.  */
98   int s;
99 
100   /* In VV we save all generated regsets so that, when destructing the
101      pool, we can compare it with V and check that every regset was returned
102      back to pool.  */
103   regset *vv;
104 
105   /* The pointer of VV stack.  */
106   int nn;
107 
108   /* Its size.  */
109   int ss;
110 
111   /* The difference between allocated and returned regsets.  */
112   int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114 
115 /* This represents the nop pool.  */
116 static struct
117 {
118   /* The vector which holds previously emitted nops.  */
119   insn_t *v;
120 
121   /* Its pointer.  */
122   int n;
123 
124   /* Its size.  */
125   int s;
126 } nop_pool = { NULL, 0, 0 };
127 
128 /* The pool for basic block notes.  */
129 static rtx_vec_t bb_note_pool;
130 
131 /* A NOP pattern used to emit placeholder insns.  */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134    EXIT_INSN is successor of the insns that lead to EXIT_BLOCK.  */
135 rtx exit_insn = NULL_RTX;
136 
137 /* TRUE if while scheduling current region, which is loop, its preheader
138    was removed.  */
139 bool preheader_removed = false;
140 
141 
142 /* Forward static declarations.  */
143 static void fence_clear (fence_t);
144 
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
148 
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
152 
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
158 
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
161 
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
167 
168 /* Various list functions.  */
169 
170 /* Copy an instruction list L.  */
171 ilist_t
172 ilist_copy (ilist_t l)
173 {
174   ilist_t head = NULL, *tailp = &head;
175 
176   while (l)
177     {
178       ilist_add (tailp, ILIST_INSN (l));
179       tailp = &ILIST_NEXT (*tailp);
180       l = ILIST_NEXT (l);
181     }
182 
183   return head;
184 }
185 
186 /* Invert an instruction list L.  */
187 ilist_t
188 ilist_invert (ilist_t l)
189 {
190   ilist_t res = NULL;
191 
192   while (l)
193     {
194       ilist_add (&res, ILIST_INSN (l));
195       l = ILIST_NEXT (l);
196     }
197 
198   return res;
199 }
200 
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC.  */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204 {
205   bnd_t bnd;
206 
207   _list_add (lp);
208   bnd = BLIST_BND (*lp);
209 
210   BND_TO (bnd) = to;
211   BND_PTR (bnd) = ptr;
212   BND_AV (bnd) = NULL;
213   BND_AV1 (bnd) = NULL;
214   BND_DC (bnd) = dc;
215 }
216 
217 /* Remove the list note pointed to by LP.  */
218 void
219 blist_remove (blist_t *lp)
220 {
221   bnd_t b = BLIST_BND (*lp);
222 
223   av_set_clear (&BND_AV (b));
224   av_set_clear (&BND_AV1 (b));
225   ilist_clear (&BND_PTR (b));
226 
227   _list_remove (lp);
228 }
229 
230 /* Init a fence tail L.  */
231 void
232 flist_tail_init (flist_tail_t l)
233 {
234   FLIST_TAIL_HEAD (l) = NULL;
235   FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
236 }
237 
238 /* Try to find fence corresponding to INSN in L.  */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
241 {
242   while (l)
243     {
244       if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 	return FLIST_FENCE (l);
246 
247       l = FLIST_NEXT (l);
248     }
249 
250   return NULL;
251 }
252 
253 /* Init the fields of F before running fill_insns.  */
254 static void
255 init_fence_for_scheduling (fence_t f)
256 {
257   FENCE_BNDS (f) = NULL;
258   FENCE_PROCESSED_P (f) = false;
259   FENCE_SCHEDULED_P (f) = false;
260 }
261 
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP.  */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265            insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266            int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267            int cycle, int cycle_issued_insns, int issue_more,
268            bool starts_cycle_p, bool after_stall_p)
269 {
270   fence_t f;
271 
272   _list_add (lp);
273   f = FLIST_FENCE (*lp);
274 
275   FENCE_INSN (f) = insn;
276 
277   gcc_assert (state != NULL);
278   FENCE_STATE (f) = state;
279 
280   FENCE_CYCLE (f) = cycle;
281   FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282   FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283   FENCE_AFTER_STALL_P (f) = after_stall_p;
284 
285   gcc_assert (dc != NULL);
286   FENCE_DC (f) = dc;
287 
288   gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289   FENCE_TC (f) = tc;
290 
291   FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292   FENCE_ISSUE_MORE (f) = issue_more;
293   FENCE_EXECUTING_INSNS (f) = executing_insns;
294   FENCE_READY_TICKS (f) = ready_ticks;
295   FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296   FENCE_SCHED_NEXT (f) = sched_next;
297 
298   init_fence_for_scheduling (f);
299 }
300 
301 /* Remove the head node of the list pointed to by LP.  */
302 static void
303 flist_remove (flist_t *lp)
304 {
305   if (FENCE_INSN (FLIST_FENCE (*lp)))
306     fence_clear (FLIST_FENCE (*lp));
307   _list_remove (lp);
308 }
309 
310 /* Clear the fence list pointed to by LP.  */
311 void
312 flist_clear (flist_t *lp)
313 {
314   while (*lp)
315     flist_remove (lp);
316 }
317 
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL.  */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321 {
322   def_t d;
323 
324   _list_add (dl);
325   d = DEF_LIST_DEF (*dl);
326 
327   d->orig_insn = original_insn;
328   d->crosses_call = crosses_call;
329 }
330 
331 
332 /* Functions to work with target contexts.  */
333 
334 /* Bulk target context.  It is convenient for debugging purposes to ensure
335    that there are no uninitialized (null) target contexts.  */
336 static tc_t bulk_tc = (tc_t) 1;
337 
338 /* Target hooks wrappers.  In the future we can provide some default
339    implementations for them.  */
340 
341 /* Allocate a store for the target context.  */
342 static tc_t
343 alloc_target_context (void)
344 {
345   return (targetm.sched.alloc_sched_context
346 	  ? targetm.sched.alloc_sched_context () : bulk_tc);
347 }
348 
349 /* Init target context TC.
350    If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351    Overwise, copy current backend context to TC.  */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
354 {
355   if (targetm.sched.init_sched_context)
356     targetm.sched.init_sched_context (tc, clean_p);
357 }
358 
359 /* Allocate and initialize a target context.  Meaning of CLEAN_P is the same as
360    int init_target_context ().  */
361 tc_t
362 create_target_context (bool clean_p)
363 {
364   tc_t tc = alloc_target_context ();
365 
366   init_target_context (tc, clean_p);
367   return tc;
368 }
369 
370 /* Copy TC to the current backend context.  */
371 void
372 set_target_context (tc_t tc)
373 {
374   if (targetm.sched.set_sched_context)
375     targetm.sched.set_sched_context (tc);
376 }
377 
378 /* TC is about to be destroyed.  Free any internal data.  */
379 static void
380 clear_target_context (tc_t tc)
381 {
382   if (targetm.sched.clear_sched_context)
383     targetm.sched.clear_sched_context (tc);
384 }
385 
386 /*  Clear and free it.  */
387 static void
388 delete_target_context (tc_t tc)
389 {
390   clear_target_context (tc);
391 
392   if (targetm.sched.free_sched_context)
393     targetm.sched.free_sched_context (tc);
394 }
395 
396 /* Make a copy of FROM in TO.
397    NB: May be this should be a hook.  */
398 static void
399 copy_target_context (tc_t to, tc_t from)
400 {
401   tc_t tmp = create_target_context (false);
402 
403   set_target_context (from);
404   init_target_context (to, false);
405 
406   set_target_context (tmp);
407   delete_target_context (tmp);
408 }
409 
410 /* Create a copy of TC.  */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
413 {
414   tc_t copy = alloc_target_context ();
415 
416   copy_target_context (copy, tc);
417 
418   return copy;
419 }
420 
421 /* Clear TC and initialize it according to CLEAN_P.  The meaning of CLEAN_P
422    is the same as in init_target_context ().  */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
425 {
426   clear_target_context (tc);
427   init_target_context (tc, clean_p);
428 }
429 
430 /* Functions to work with dependence contexts.
431    Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432    context.  It accumulates information about processed insns to decide if
433    current insn is dependent on the processed ones.  */
434 
435 /* Make a copy of FROM in TO.  */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
438 {
439   init_deps (to, false);
440   deps_join (to, from);
441 }
442 
443 /* Allocate store for dep context.  */
444 static deps_t
445 alloc_deps_context (void)
446 {
447   return XNEW (struct deps_desc);
448 }
449 
450 /* Allocate and initialize dep context.  */
451 static deps_t
452 create_deps_context (void)
453 {
454   deps_t dc = alloc_deps_context ();
455 
456   init_deps (dc, false);
457   return dc;
458 }
459 
460 /* Create a copy of FROM.  */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
463 {
464   deps_t to = alloc_deps_context ();
465 
466   copy_deps_context (to, from);
467   return to;
468 }
469 
470 /* Clean up internal data of DC.  */
471 static void
472 clear_deps_context (deps_t dc)
473 {
474   free_deps (dc);
475 }
476 
477 /* Clear and free DC.  */
478 static void
479 delete_deps_context (deps_t dc)
480 {
481   clear_deps_context (dc);
482   free (dc);
483 }
484 
485 /* Clear and init DC.  */
486 static void
487 reset_deps_context (deps_t dc)
488 {
489   clear_deps_context (dc);
490   init_deps (dc, false);
491 }
492 
493 /* This structure describes the dependence analysis hooks for advancing
494    dependence context.  */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496   {
497     NULL,
498 
499     NULL, /* start_insn */
500     NULL, /* finish_insn */
501     NULL, /* start_lhs */
502     NULL, /* finish_lhs */
503     NULL, /* start_rhs */
504     NULL, /* finish_rhs */
505     haifa_note_reg_set,
506     haifa_note_reg_clobber,
507     haifa_note_reg_use,
508     NULL, /* note_mem_dep */
509     NULL, /* note_dep */
510 
511     0, 0, 0
512   };
513 
514 /* Process INSN and add its impact on DC.  */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
517 {
518   sched_deps_info = &advance_deps_context_sched_deps_info;
519   deps_analyze_insn (dc, insn);
520 }
521 
522 
523 /* Functions to work with DFA states.  */
524 
525 /* Allocate store for a DFA state.  */
526 static state_t
527 state_alloc (void)
528 {
529   return xmalloc (dfa_state_size);
530 }
531 
532 /* Allocate and initialize DFA state.  */
533 static state_t
534 state_create (void)
535 {
536   state_t state = state_alloc ();
537 
538   state_reset (state);
539   advance_state (state);
540   return state;
541 }
542 
543 /* Free DFA state.  */
544 static void
545 state_free (state_t state)
546 {
547   free (state);
548 }
549 
550 /* Make a copy of FROM in TO.  */
551 static void
552 state_copy (state_t to, state_t from)
553 {
554   memcpy (to, from, dfa_state_size);
555 }
556 
557 /* Create a copy of FROM.  */
558 static state_t
559 state_create_copy (state_t from)
560 {
561   state_t to = state_alloc ();
562 
563   state_copy (to, from);
564   return to;
565 }
566 
567 
568 /* Functions to work with fences.  */
569 
570 /* Clear the fence.  */
571 static void
572 fence_clear (fence_t f)
573 {
574   state_t s = FENCE_STATE (f);
575   deps_t dc = FENCE_DC (f);
576   void *tc = FENCE_TC (f);
577 
578   ilist_clear (&FENCE_BNDS (f));
579 
580   gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 	      || (s == NULL && dc == NULL && tc == NULL));
582 
583   if (s != NULL)
584     free (s);
585 
586   if (dc != NULL)
587     delete_deps_context (dc);
588 
589   if (tc != NULL)
590     delete_target_context (tc);
591   VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592   free (FENCE_READY_TICKS (f));
593   FENCE_READY_TICKS (f) = NULL;
594 }
595 
596 /* Init a list of fences with successors of OLD_FENCE.  */
597 void
598 init_fences (insn_t old_fence)
599 {
600   insn_t succ;
601   succ_iterator si;
602   bool first = true;
603   int ready_ticks_size = get_max_uid () + 1;
604 
605   FOR_EACH_SUCC_1 (succ, si, old_fence,
606                    SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607     {
608 
609       if (first)
610         first = false;
611       else
612         gcc_assert (flag_sel_sched_pipelining_outer_loops);
613 
614       flist_add (&fences, succ,
615 		 state_create (),
616 		 create_deps_context () /* dc */,
617 		 create_target_context (true) /* tc */,
618 		 NULL_RTX /* last_scheduled_insn */,
619                  NULL, /* executing_insns */
620                  XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621                  ready_ticks_size,
622                  NULL_RTX /* sched_next */,
623 		 1 /* cycle */, 0 /* cycle_issued_insns */,
624 		 issue_rate, /* issue_more */
625 		 1 /* starts_cycle_p */, 0 /* after_stall_p */);
626     }
627 }
628 
629 /* Merges two fences (filling fields of fence F with resulting values) by
630    following rules: 1) state, target context and last scheduled insn are
631    propagated from fallthrough edge if it is available;
632    2) deps context and cycle is propagated from more probable edge;
633    3) all other fields are set to corresponding constant values.
634 
635    INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636    READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637    and AFTER_STALL_P are the corresponding fields of the second fence.  */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 	      state_t state, deps_t dc, void *tc,
641               rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642               int *ready_ticks, int ready_ticks_size,
643 	      rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 {
645   insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646 
647   gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648               && !sched_next && !FENCE_SCHED_NEXT (f));
649 
650   /* Check if we can decide which path fences came.
651      If we can't (or don't want to) - reset all.  */
652   if (last_scheduled_insn == NULL
653       || last_scheduled_insn_old == NULL
654       /* This is a case when INSN is reachable on several paths from
655          one insn (this can happen when pipelining of outer loops is on and
656          there are two edges: one going around of inner loop and the other -
657          right through it; in such case just reset everything).  */
658       || last_scheduled_insn == last_scheduled_insn_old)
659     {
660       state_reset (FENCE_STATE (f));
661       state_free (state);
662 
663       reset_deps_context (FENCE_DC (f));
664       delete_deps_context (dc);
665 
666       reset_target_context (FENCE_TC (f), true);
667       delete_target_context (tc);
668 
669       if (cycle > FENCE_CYCLE (f))
670         FENCE_CYCLE (f) = cycle;
671 
672       FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673       FENCE_ISSUE_MORE (f) = issue_rate;
674       VEC_free (rtx, gc, executing_insns);
675       free (ready_ticks);
676       if (FENCE_EXECUTING_INSNS (f))
677         VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678                           VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679       if (FENCE_READY_TICKS (f))
680         memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681     }
682   else
683     {
684       edge edge_old = NULL, edge_new = NULL;
685       edge candidate;
686       succ_iterator si;
687       insn_t succ;
688 
689       /* Find fallthrough edge.  */
690       gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691       candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
692 
693       if (!candidate
694           || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695               && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696         {
697           /* No fallthrough edge leading to basic block of INSN.  */
698           state_reset (FENCE_STATE (f));
699           state_free (state);
700 
701           reset_target_context (FENCE_TC (f), true);
702           delete_target_context (tc);
703 
704           FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 	  FENCE_ISSUE_MORE (f) = issue_rate;
706         }
707       else
708         if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709           {
710             /* Would be weird if same insn is successor of several fallthrough
711                edges.  */
712             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713                         != BLOCK_FOR_INSN (last_scheduled_insn_old));
714 
715             state_free (FENCE_STATE (f));
716             FENCE_STATE (f) = state;
717 
718             delete_target_context (FENCE_TC (f));
719             FENCE_TC (f) = tc;
720 
721             FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 	    FENCE_ISSUE_MORE (f) = issue_more;
723           }
724         else
725           {
726             /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched.  */
727             state_free (state);
728             delete_target_context (tc);
729 
730             gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731                         != BLOCK_FOR_INSN (last_scheduled_insn));
732           }
733 
734         /* Find edge of first predecessor (last_scheduled_insn_old->insn).  */
735         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737           {
738             if (succ == insn)
739               {
740                 /* No same successor allowed from several edges.  */
741                 gcc_assert (!edge_old);
742                 edge_old = si.e1;
743               }
744           }
745         /* Find edge of second predecessor (last_scheduled_insn->insn).  */
746         FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747                          SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748           {
749             if (succ == insn)
750               {
751                 /* No same successor allowed from several edges.  */
752                 gcc_assert (!edge_new);
753                 edge_new = si.e1;
754               }
755           }
756 
757         /* Check if we can choose most probable predecessor.  */
758         if (edge_old == NULL || edge_new == NULL)
759           {
760             reset_deps_context (FENCE_DC (f));
761             delete_deps_context (dc);
762             VEC_free (rtx, gc, executing_insns);
763             free (ready_ticks);
764 
765             FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766             if (FENCE_EXECUTING_INSNS (f))
767               VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768                                 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769             if (FENCE_READY_TICKS (f))
770               memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771           }
772         else
773           if (edge_new->probability > edge_old->probability)
774             {
775               delete_deps_context (FENCE_DC (f));
776               FENCE_DC (f) = dc;
777               VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778               FENCE_EXECUTING_INSNS (f) = executing_insns;
779               free (FENCE_READY_TICKS (f));
780               FENCE_READY_TICKS (f) = ready_ticks;
781               FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782               FENCE_CYCLE (f) = cycle;
783             }
784           else
785             {
786               /* Leave DC and CYCLE untouched.  */
787               delete_deps_context (dc);
788               VEC_free (rtx, gc, executing_insns);
789               free (ready_ticks);
790             }
791     }
792 
793   /* Fill remaining invariant fields.  */
794   if (after_stall_p)
795     FENCE_AFTER_STALL_P (f) = 1;
796 
797   FENCE_ISSUED_INSNS (f) = 0;
798   FENCE_STARTS_CYCLE_P (f) = 1;
799   FENCE_SCHED_NEXT (f) = NULL;
800 }
801 
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803    other parameters.  */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806                state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807                VEC(rtx, gc) *executing_insns, int *ready_ticks,
808                int ready_ticks_size, rtx sched_next, int cycle,
809                int cycle_issued_insns, int issue_rate,
810 	       bool starts_cycle_p, bool after_stall_p)
811 {
812   fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813 
814   if (! f)
815     {
816       flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 		 last_scheduled_insn, executing_insns, ready_ticks,
818                  ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 		 issue_rate, starts_cycle_p, after_stall_p);
820 
821       FLIST_TAIL_TAILP (new_fences)
822 	= &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823     }
824   else
825     {
826       merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827                     executing_insns, ready_ticks, ready_ticks_size,
828                     sched_next, cycle, issue_rate, after_stall_p);
829     }
830 }
831 
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES.  */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 {
836   fence_t f, old;
837   flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838 
839   old = FLIST_FENCE (old_fences);
840   f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841                     FENCE_INSN (FLIST_FENCE (old_fences)));
842   if (f)
843     {
844       merge_fences (f, old->insn, old->state, old->dc, old->tc,
845                     old->last_scheduled_insn, old->executing_insns,
846                     old->ready_ticks, old->ready_ticks_size,
847                     old->sched_next, old->cycle, old->issue_more,
848                     old->after_stall_p);
849     }
850   else
851     {
852       _list_add (tailp);
853       FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854       *FLIST_FENCE (*tailp) = *old;
855       init_fence_for_scheduling (FLIST_FENCE (*tailp));
856     }
857   FENCE_INSN (old) = NULL;
858 }
859 
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861    as a clean one.  */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 {
865   int ready_ticks_size = get_max_uid () + 1;
866 
867   add_to_fences (new_fences,
868                  succ, state_create (), create_deps_context (),
869                  create_target_context (true),
870                  NULL_RTX, NULL,
871                  XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872                  NULL_RTX, FENCE_CYCLE (fence) + 1,
873                  0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
874 }
875 
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877    from FENCE and SUCC.  */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 {
881   int * new_ready_ticks
882     = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883 
884   memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885           FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886   add_to_fences (new_fences,
887                  succ, state_create_copy (FENCE_STATE (fence)),
888                  create_copy_of_deps_context (FENCE_DC (fence)),
889                  create_copy_of_target_context (FENCE_TC (fence)),
890                  FENCE_LAST_SCHEDULED_INSN (fence),
891                  VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892                  new_ready_ticks,
893                  FENCE_READY_TICKS_SIZE (fence),
894                  FENCE_SCHED_NEXT (fence),
895                  FENCE_CYCLE (fence),
896                  FENCE_ISSUED_INSNS (fence),
897 		 FENCE_ISSUE_MORE (fence),
898                  FENCE_STARTS_CYCLE_P (fence),
899                  FENCE_AFTER_STALL_P (fence));
900 }
901 
902 
903 /* Functions to work with regset and nop pools.  */
904 
905 /* Returns the new regset from pool.  It might have some of the bits set
906    from the previous usage.  */
907 regset
908 get_regset_from_pool (void)
909 {
910   regset rs;
911 
912   if (regset_pool.n != 0)
913     rs = regset_pool.v[--regset_pool.n];
914   else
915     /* We need to create the regset.  */
916     {
917       rs = ALLOC_REG_SET (&reg_obstack);
918 
919       if (regset_pool.nn == regset_pool.ss)
920 	regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921                                      (regset_pool.ss = 2 * regset_pool.ss + 1));
922       regset_pool.vv[regset_pool.nn++] = rs;
923     }
924 
925   regset_pool.diff++;
926 
927   return rs;
928 }
929 
930 /* Same as above, but returns the empty regset.  */
931 regset
932 get_clear_regset_from_pool (void)
933 {
934   regset rs = get_regset_from_pool ();
935 
936   CLEAR_REG_SET (rs);
937   return rs;
938 }
939 
940 /* Return regset RS to the pool for future use.  */
941 void
942 return_regset_to_pool (regset rs)
943 {
944   gcc_assert (rs);
945   regset_pool.diff--;
946 
947   if (regset_pool.n == regset_pool.s)
948     regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949                                 (regset_pool.s = 2 * regset_pool.s + 1));
950   regset_pool.v[regset_pool.n++] = rs;
951 }
952 
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955    X and XX are addresses of two regsets.  They are never equal.  */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
958 {
959   return *((const regset *) x) - *((const regset *) xx);
960 }
961 #endif
962 
963 /*  Free the regset pool possibly checking for memory leaks.  */
964 void
965 free_regset_pool (void)
966 {
967 #ifdef ENABLE_CHECKING
968   {
969     regset *v = regset_pool.v;
970     int i = 0;
971     int n = regset_pool.n;
972 
973     regset *vv = regset_pool.vv;
974     int ii = 0;
975     int nn = regset_pool.nn;
976 
977     int diff = 0;
978 
979     gcc_assert (n <= nn);
980 
981     /* Sort both vectors so it will be possible to compare them.  */
982     qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983     qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
984 
985     while (ii < nn)
986       {
987         if (v[i] == vv[ii])
988           i++;
989         else
990           /* VV[II] was lost.  */
991           diff++;
992 
993         ii++;
994       }
995 
996     gcc_assert (diff == regset_pool.diff);
997   }
998 #endif
999 
1000   /* If not true - we have a memory leak.  */
1001   gcc_assert (regset_pool.diff == 0);
1002 
1003   while (regset_pool.n)
1004     {
1005       --regset_pool.n;
1006       FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007     }
1008 
1009   free (regset_pool.v);
1010   regset_pool.v = NULL;
1011   regset_pool.s = 0;
1012 
1013   free (regset_pool.vv);
1014   regset_pool.vv = NULL;
1015   regset_pool.nn = 0;
1016   regset_pool.ss = 0;
1017 
1018   regset_pool.diff = 0;
1019 }
1020 
1021 
1022 /* Functions to work with nop pools.  NOP insns are used as temporary
1023    placeholders of the insns being scheduled to allow correct update of
1024    the data sets.  When update is finished, NOPs are deleted.  */
1025 
1026 /* A vinsn that is used to represent a nop.  This vinsn is shared among all
1027    nops sel-sched generates.  */
1028 static vinsn_t nop_vinsn = NULL;
1029 
1030 /* Emit a nop before INSN, taking it from pool.  */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1033 {
1034   insn_t nop;
1035   bool old_p = nop_pool.n != 0;
1036   int flags;
1037 
1038   if (old_p)
1039     nop = nop_pool.v[--nop_pool.n];
1040   else
1041     nop = nop_pattern;
1042 
1043   nop = emit_insn_before (nop, insn);
1044 
1045   if (old_p)
1046     flags = INSN_INIT_TODO_SSID;
1047   else
1048     flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1049 
1050   set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051   sel_init_new_insn (nop, flags);
1052 
1053   return nop;
1054 }
1055 
1056 /* Remove NOP from the instruction stream and return it to the pool.  */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1059 {
1060   gcc_assert (INSN_IN_STREAM_P (nop));
1061   sel_remove_insn (nop, false, full_tidying);
1062 
1063   if (nop_pool.n == nop_pool.s)
1064     nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065                              (nop_pool.s = 2 * nop_pool.s + 1));
1066   nop_pool.v[nop_pool.n++] = nop;
1067 }
1068 
1069 /* Free the nop pool.  */
1070 void
1071 free_nop_pool (void)
1072 {
1073   nop_pool.n = 0;
1074   nop_pool.s = 0;
1075   free (nop_pool.v);
1076   nop_pool.v = NULL;
1077 }
1078 
1079 
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081    The callback is given two rtxes XX and YY and writes the new rtxes
1082    to NX and NY in case some needs to be skipped.  */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1085 {
1086   const_rtx x = *xx;
1087   const_rtx y = *yy;
1088 
1089   if (GET_CODE (x) == UNSPEC
1090       && (targetm.sched.skip_rtx_p == NULL
1091           || targetm.sched.skip_rtx_p (x)))
1092     {
1093       *nx = XVECEXP (x, 0, 0);
1094       *ny = CONST_CAST_RTX (y);
1095       return 1;
1096     }
1097 
1098   if (GET_CODE (y) == UNSPEC
1099       && (targetm.sched.skip_rtx_p == NULL
1100           || targetm.sched.skip_rtx_p (y)))
1101     {
1102       *nx = CONST_CAST_RTX (x);
1103       *ny = XVECEXP (y, 0, 0);
1104       return 1;
1105     }
1106 
1107   return 0;
1108 }
1109 
1110 /* Callback, called from hash_rtx_cb.  Helps to hash UNSPEC rtx X in a correct way
1111    to support ia64 speculation.  When changes are needed, new rtx X and new mode
1112    NMODE are written, and the callback returns true.  */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115                            rtx *nx, enum machine_mode* nmode)
1116 {
1117   if (GET_CODE (x) == UNSPEC
1118       && targetm.sched.skip_rtx_p
1119       && targetm.sched.skip_rtx_p (x))
1120     {
1121       *nx = XVECEXP (x, 0 ,0);
1122       *nmode = VOIDmode;
1123       return 1;
1124     }
1125 
1126   return 0;
1127 }
1128 
1129 /* Returns LHS and RHS are ok to be scheduled separately.  */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1132 {
1133   if (lhs == NULL || rhs == NULL)
1134     return false;
1135 
1136   /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137      to use reg, if const can be used.  Moreover, scheduling const as rhs may
1138      lead to mode mismatch cause consts don't have modes but they could be
1139      merged from branches where the same const used in different modes.  */
1140   if (CONSTANT_P (rhs))
1141     return false;
1142 
1143   /* ??? Do not rename predicate registers to avoid ICEs in bundling.  */
1144   if (COMPARISON_P (rhs))
1145       return false;
1146 
1147   /* Do not allow single REG to be an rhs.  */
1148   if (REG_P (rhs))
1149     return false;
1150 
1151   /* See comment at find_used_regs_1 (*1) for explanation of this
1152      restriction.  */
1153   /* FIXME: remove this later.  */
1154   if (MEM_P (lhs))
1155     return false;
1156 
1157   /* This will filter all tricky things like ZERO_EXTRACT etc.
1158      For now we don't handle it.  */
1159   if (!REG_P (lhs) && !MEM_P (lhs))
1160     return false;
1161 
1162   return true;
1163 }
1164 
1165 /* Initialize vinsn VI for INSN.  Only for use from vinsn_create ().  When
1166    FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable.  This is
1167    used e.g. for insns from recovery blocks.  */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1170 {
1171   hash_rtx_callback_function hrcf;
1172   int insn_class;
1173 
1174   VINSN_INSN_RTX (vi) = insn;
1175   VINSN_COUNT (vi) = 0;
1176   vi->cost = -1;
1177 
1178   if (INSN_NOP_P (insn))
1179     return;
1180 
1181   if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182     init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183   else
1184     deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1185 
1186   /* Hash vinsn depending on whether it is separable or not.  */
1187   hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188   if (VINSN_SEPARABLE_P (vi))
1189     {
1190       rtx rhs = VINSN_RHS (vi);
1191 
1192       VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193                                      NULL, NULL, false, hrcf);
1194       VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195                                          VOIDmode, NULL, NULL,
1196                                          false, hrcf);
1197     }
1198   else
1199     {
1200       VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201                                      NULL, NULL, false, hrcf);
1202       VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1203     }
1204 
1205   insn_class = haifa_classify_insn (insn);
1206   if (insn_class >= 2
1207       && (!targetm.sched.get_insn_spec_ds
1208           || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209               == 0)))
1210     VINSN_MAY_TRAP_P (vi) = true;
1211   else
1212     VINSN_MAY_TRAP_P (vi) = false;
1213 }
1214 
1215 /* Indicate that VI has become the part of an rtx object.  */
1216 void
1217 vinsn_attach (vinsn_t vi)
1218 {
1219   /* Assert that VI is not pending for deletion.  */
1220   gcc_assert (VINSN_INSN_RTX (vi));
1221 
1222   VINSN_COUNT (vi)++;
1223 }
1224 
1225 /* Create and init VI from the INSN.  Use UNIQUE_P for determining the correct
1226    VINSN_TYPE (VI).  */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1229 {
1230   vinsn_t vi = XCNEW (struct vinsn_def);
1231 
1232   vinsn_init (vi, insn, force_unique_p);
1233   return vi;
1234 }
1235 
1236 /* Return a copy of VI.  When REATTACH_P is true, detach VI and attach
1237    the copy.  */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1240 {
1241   rtx copy;
1242   bool unique = VINSN_UNIQUE_P (vi);
1243   vinsn_t new_vi;
1244 
1245   copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246   new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247   if (reattach_p)
1248     {
1249       vinsn_detach (vi);
1250       vinsn_attach (new_vi);
1251     }
1252 
1253   return new_vi;
1254 }
1255 
1256 /* Delete the VI vinsn and free its data.  */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1259 {
1260   gcc_assert (VINSN_COUNT (vi) == 0);
1261 
1262   if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1263     {
1264       return_regset_to_pool (VINSN_REG_SETS (vi));
1265       return_regset_to_pool (VINSN_REG_USES (vi));
1266       return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1267     }
1268 
1269   free (vi);
1270 }
1271 
1272 /* Indicate that VI is no longer a part of some rtx object.
1273    Remove VI if it is no longer needed.  */
1274 void
1275 vinsn_detach (vinsn_t vi)
1276 {
1277   gcc_assert (VINSN_COUNT (vi) > 0);
1278 
1279   if (--VINSN_COUNT (vi) == 0)
1280     vinsn_delete (vi);
1281 }
1282 
1283 /* Returns TRUE if VI is a branch.  */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1286 {
1287   insn_t insn;
1288 
1289   if (!VINSN_UNIQUE_P (vi))
1290     return false;
1291 
1292   insn = VINSN_INSN_RTX (vi);
1293   if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294     return false;
1295 
1296   return control_flow_insn_p (insn);
1297 }
1298 
1299 /* Return latency of INSN.  */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1302 {
1303   int cost;
1304 
1305   /* A USE insn, or something else we don't need to
1306      understand.  We can't pass these directly to
1307      result_ready_cost or insn_default_latency because it will
1308      trigger a fatal error for unrecognizable insns.  */
1309   if (recog_memoized (insn) < 0)
1310     cost = 0;
1311   else
1312     {
1313       cost = insn_default_latency (insn);
1314 
1315       if (cost < 0)
1316 	cost = 0;
1317     }
1318 
1319   return cost;
1320 }
1321 
1322 /* Return the cost of the VI.
1323    !!! FIXME: Unify with haifa-sched.c: insn_cost ().  */
1324 int
1325 sel_vinsn_cost (vinsn_t vi)
1326 {
1327   int cost = vi->cost;
1328 
1329   if (cost < 0)
1330     {
1331       cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332       vi->cost = cost;
1333     }
1334 
1335   return cost;
1336 }
1337 
1338 
1339 /* Functions for insn emitting.  */
1340 
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342    EXPR and SEQNO.  */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1345 {
1346   insn_t new_insn;
1347 
1348   gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1349 
1350   new_insn = emit_insn_after (pattern, after);
1351   set_insn_init (expr, NULL, seqno);
1352   sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1353 
1354   return new_insn;
1355 }
1356 
1357 /* Force newly generated vinsns to be unique.  */
1358 static bool init_insn_force_unique_p = false;
1359 
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361    initialize its data from EXPR and SEQNO.  */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 				      insn_t after)
1365 {
1366   insn_t insn;
1367 
1368   gcc_assert (!init_insn_force_unique_p);
1369 
1370   init_insn_force_unique_p = true;
1371   insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372   CANT_MOVE (insn) = 1;
1373   init_insn_force_unique_p = false;
1374 
1375   return insn;
1376 }
1377 
1378 /* Emit new insn after AFTER based on EXPR and SEQNO.  If VINSN is not NULL,
1379    take it as a new vinsn instead of EXPR's vinsn.
1380    We simplify insns later, after scheduling region in
1381    simplify_changed_insns.  */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384                               insn_t after)
1385 {
1386   expr_t emit_expr;
1387   insn_t insn;
1388   int flags;
1389 
1390   emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391                              seqno);
1392   insn = EXPR_INSN_RTX (emit_expr);
1393   add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1394 
1395   flags = INSN_INIT_TODO_SSID;
1396   if (INSN_LUID (insn) == 0)
1397     flags |= INSN_INIT_TODO_LUID;
1398   sel_init_new_insn (insn, flags);
1399 
1400   return insn;
1401 }
1402 
1403 /* Move insn from EXPR after AFTER.  */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1406 {
1407   insn_t insn = EXPR_INSN_RTX (expr);
1408   basic_block bb = BLOCK_FOR_INSN (after);
1409   insn_t next = NEXT_INSN (after);
1410 
1411   /* Assert that in move_op we disconnected this insn properly.  */
1412   gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413   PREV_INSN (insn) = after;
1414   NEXT_INSN (insn) = next;
1415 
1416   NEXT_INSN (after) = insn;
1417   PREV_INSN (next) = insn;
1418 
1419   /* Update links from insn to bb and vice versa.  */
1420   df_insn_change_bb (insn, bb);
1421   if (BB_END (bb) == after)
1422     BB_END (bb) = insn;
1423 
1424   prepare_insn_expr (insn, seqno);
1425   return insn;
1426 }
1427 
1428 
1429 /* Functions to work with right-hand sides.  */
1430 
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432    VECT and return true when found.  Use NEW_VINSN for comparison only when
1433    COMPARE_VINSNS is true.  Write to INDP the index on which
1434    the search has stopped, such that inserting the new element at INDP will
1435    retain VECT's sort order.  */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438                         unsigned uid, vinsn_t new_vinsn,
1439                         bool compare_vinsns, int *indp)
1440 {
1441   expr_history_def *arr;
1442   int i, j, len = VEC_length (expr_history_def, vect);
1443 
1444   if (len == 0)
1445     {
1446       *indp = 0;
1447       return false;
1448     }
1449 
1450   arr = VEC_address (expr_history_def, vect);
1451   i = 0, j = len - 1;
1452 
1453   while (i <= j)
1454     {
1455       unsigned auid = arr[i].uid;
1456       vinsn_t avinsn = arr[i].new_expr_vinsn;
1457 
1458       if (auid == uid
1459           /* When undoing transformation on a bookkeeping copy, the new vinsn
1460              may not be exactly equal to the one that is saved in the vector.
1461              This is because the insn whose copy we're checking was possibly
1462              substituted itself.  */
1463           && (! compare_vinsns
1464               || vinsn_equal_p (avinsn, new_vinsn)))
1465         {
1466           *indp = i;
1467           return true;
1468         }
1469       else if (auid > uid)
1470         break;
1471       i++;
1472     }
1473 
1474   *indp = i;
1475   return false;
1476 }
1477 
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT.  Return
1479    the position found or -1, if no such value is in vector.
1480    Search also for UIDs of insn's originators, if ORIGINATORS_P is true.  */
1481 int
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483                       vinsn_t new_vinsn, bool originators_p)
1484 {
1485   int ind;
1486 
1487   if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488                               false, &ind))
1489     return ind;
1490 
1491   if (INSN_ORIGINATORS (insn) && originators_p)
1492     {
1493       unsigned uid;
1494       bitmap_iterator bi;
1495 
1496       EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497         if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498           return ind;
1499     }
1500 
1501   return -1;
1502 }
1503 
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505    if it is not there already.  The element is searched using
1506    UID/NEW_EXPR_VINSN pair.  TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507    the history of a transformation.  */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510                         unsigned uid, enum local_trans_type type,
1511                         vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512                         ds_t spec_ds)
1513 {
1514   VEC(expr_history_def, heap) *vect = *pvect;
1515   expr_history_def temp;
1516   bool res;
1517   int ind;
1518 
1519   res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1520 
1521   if (res)
1522     {
1523       expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1524 
1525       /* It is possible that speculation types of expressions that were
1526          propagated through different paths will be different here.  In this
1527          case, merge the status to get the correct check later.  */
1528       if (phist->spec_ds != spec_ds)
1529         phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530       return;
1531     }
1532 
1533   temp.uid = uid;
1534   temp.old_expr_vinsn = old_expr_vinsn;
1535   temp.new_expr_vinsn = new_expr_vinsn;
1536   temp.spec_ds = spec_ds;
1537   temp.type = type;
1538 
1539   vinsn_attach (old_expr_vinsn);
1540   vinsn_attach (new_expr_vinsn);
1541   VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542   *pvect = vect;
1543 }
1544 
1545 /* Free history vector PVECT.  */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1548 {
1549   unsigned i;
1550   expr_history_def *phist;
1551 
1552   if (! *pvect)
1553     return;
1554 
1555   for (i = 0;
1556        VEC_iterate (expr_history_def, *pvect, i, phist);
1557        i++)
1558     {
1559       vinsn_detach (phist->old_expr_vinsn);
1560       vinsn_detach (phist->new_expr_vinsn);
1561     }
1562 
1563   VEC_free (expr_history_def, heap, *pvect);
1564   *pvect = NULL;
1565 }
1566 
1567 /* Merge vector FROM to PVECT.  */
1568 static void
1569 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1570 		    VEC (expr_history_def, heap) *from)
1571 {
1572   expr_history_def *phist;
1573   int i;
1574 
1575   /* We keep this vector sorted.  */
1576   for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1577     insert_in_history_vect (pvect, phist->uid, phist->type,
1578                             phist->old_expr_vinsn, phist->new_expr_vinsn,
1579                             phist->spec_ds);
1580 }
1581 
1582 /* Compare two vinsns as rhses if possible and as vinsns otherwise.  */
1583 bool
1584 vinsn_equal_p (vinsn_t x, vinsn_t y)
1585 {
1586   rtx_equal_p_callback_function repcf;
1587 
1588   if (x == y)
1589     return true;
1590 
1591   if (VINSN_TYPE (x) != VINSN_TYPE (y))
1592     return false;
1593 
1594   if (VINSN_HASH (x) != VINSN_HASH (y))
1595     return false;
1596 
1597   repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1598   if (VINSN_SEPARABLE_P (x))
1599     {
1600       /* Compare RHSes of VINSNs.  */
1601       gcc_assert (VINSN_RHS (x));
1602       gcc_assert (VINSN_RHS (y));
1603 
1604       return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1605     }
1606 
1607   return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1608 }
1609 
1610 
1611 /* Functions for working with expressions.  */
1612 
1613 /* Initialize EXPR.  */
1614 static void
1615 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1616 	   int sched_times, int orig_bb_index, ds_t spec_done_ds,
1617 	   ds_t spec_to_check_ds, int orig_sched_cycle,
1618 	   VEC(expr_history_def, heap) *history, signed char target_available,
1619            bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1620            bool cant_move)
1621 {
1622   vinsn_attach (vi);
1623 
1624   EXPR_VINSN (expr) = vi;
1625   EXPR_SPEC (expr) = spec;
1626   EXPR_USEFULNESS (expr) = use;
1627   EXPR_PRIORITY (expr) = priority;
1628   EXPR_PRIORITY_ADJ (expr) = 0;
1629   EXPR_SCHED_TIMES (expr) = sched_times;
1630   EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1631   EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1632   EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1633   EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1634 
1635   if (history)
1636     EXPR_HISTORY_OF_CHANGES (expr) = history;
1637   else
1638     EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1639 
1640   EXPR_TARGET_AVAILABLE (expr) = target_available;
1641   EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1642   EXPR_WAS_RENAMED (expr) = was_renamed;
1643   EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1644   EXPR_CANT_MOVE (expr) = cant_move;
1645 }
1646 
1647 /* Make a copy of the expr FROM into the expr TO.  */
1648 void
1649 copy_expr (expr_t to, expr_t from)
1650 {
1651   VEC(expr_history_def, heap) *temp = NULL;
1652 
1653   if (EXPR_HISTORY_OF_CHANGES (from))
1654     {
1655       unsigned i;
1656       expr_history_def *phist;
1657 
1658       temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1659       for (i = 0;
1660            VEC_iterate (expr_history_def, temp, i, phist);
1661            i++)
1662         {
1663           vinsn_attach (phist->old_expr_vinsn);
1664           vinsn_attach (phist->new_expr_vinsn);
1665         }
1666     }
1667 
1668   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1669              EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1670 	     EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1671 	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1672 	     EXPR_ORIG_SCHED_CYCLE (from), temp,
1673              EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1674              EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1675              EXPR_CANT_MOVE (from));
1676 }
1677 
1678 /* Same, but the final expr will not ever be in av sets, so don't copy
1679    "uninteresting" data such as bitmap cache.  */
1680 void
1681 copy_expr_onside (expr_t to, expr_t from)
1682 {
1683   init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1684 	     EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1685 	     EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1686 	     EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1687 	     EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1688              EXPR_CANT_MOVE (from));
1689 }
1690 
1691 /* Prepare the expr of INSN for scheduling.  Used when moving insn and when
1692    initializing new insns.  */
1693 static void
1694 prepare_insn_expr (insn_t insn, int seqno)
1695 {
1696   expr_t expr = INSN_EXPR (insn);
1697   ds_t ds;
1698 
1699   INSN_SEQNO (insn) = seqno;
1700   EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1701   EXPR_SPEC (expr) = 0;
1702   EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1703   EXPR_WAS_SUBSTITUTED (expr) = 0;
1704   EXPR_WAS_RENAMED (expr) = 0;
1705   EXPR_TARGET_AVAILABLE (expr) = 1;
1706   INSN_LIVE_VALID_P (insn) = false;
1707 
1708   /* ??? If this expression is speculative, make its dependence
1709      as weak as possible.  We can filter this expression later
1710      in process_spec_exprs, because we do not distinguish
1711      between the status we got during compute_av_set and the
1712      existing status.  To be fixed.  */
1713   ds = EXPR_SPEC_DONE_DS (expr);
1714   if (ds)
1715     EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1716 
1717   free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1718 }
1719 
1720 /* Update target_available bits when merging exprs TO and FROM.  SPLIT_POINT
1721    is non-null when expressions are merged from different successors at
1722    a split point.  */
1723 static void
1724 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1725 {
1726   if (EXPR_TARGET_AVAILABLE (to) < 0
1727       || EXPR_TARGET_AVAILABLE (from) < 0)
1728     EXPR_TARGET_AVAILABLE (to) = -1;
1729   else
1730     {
1731       /* We try to detect the case when one of the expressions
1732          can only be reached through another one.  In this case,
1733          we can do better.  */
1734       if (split_point == NULL)
1735         {
1736           int toind, fromind;
1737 
1738           toind = EXPR_ORIG_BB_INDEX (to);
1739           fromind = EXPR_ORIG_BB_INDEX (from);
1740 
1741           if (toind && toind == fromind)
1742             /* Do nothing -- everything is done in
1743                merge_with_other_exprs.  */
1744             ;
1745           else
1746             EXPR_TARGET_AVAILABLE (to) = -1;
1747         }
1748       else
1749         EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1750     }
1751 }
1752 
1753 /* Update speculation bits when merging exprs TO and FROM.  SPLIT_POINT
1754    is non-null when expressions are merged from different successors at
1755    a split point.  */
1756 static void
1757 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1758 {
1759   ds_t old_to_ds, old_from_ds;
1760 
1761   old_to_ds = EXPR_SPEC_DONE_DS (to);
1762   old_from_ds = EXPR_SPEC_DONE_DS (from);
1763 
1764   EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1765   EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1766   EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1767 
1768   /* When merging e.g. control & data speculative exprs, or a control
1769      speculative with a control&data speculative one, we really have
1770      to change vinsn too.  Also, when speculative status is changed,
1771      we also need to record this as a transformation in expr's history.  */
1772   if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1773     {
1774       old_to_ds = ds_get_speculation_types (old_to_ds);
1775       old_from_ds = ds_get_speculation_types (old_from_ds);
1776 
1777       if (old_to_ds != old_from_ds)
1778         {
1779           ds_t record_ds;
1780 
1781           /* When both expressions are speculative, we need to change
1782              the vinsn first.  */
1783           if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1784             {
1785               int res;
1786 
1787               res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1788               gcc_assert (res >= 0);
1789             }
1790 
1791           if (split_point != NULL)
1792             {
1793               /* Record the change with proper status.  */
1794               record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1795               record_ds &= ~(old_to_ds & SPECULATIVE);
1796               record_ds &= ~(old_from_ds & SPECULATIVE);
1797 
1798               insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1799                                       INSN_UID (split_point), TRANS_SPECULATION,
1800                                       EXPR_VINSN (from), EXPR_VINSN (to),
1801                                       record_ds);
1802             }
1803         }
1804     }
1805 }
1806 
1807 
1808 /* Merge bits of FROM expr to TO expr.  When SPLIT_POINT is not NULL,
1809    this is done along different paths.  */
1810 void
1811 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1812 {
1813   /* For now, we just set the spec of resulting expr to be minimum of the specs
1814      of merged exprs.  */
1815   if (EXPR_SPEC (to) > EXPR_SPEC (from))
1816     EXPR_SPEC (to) = EXPR_SPEC (from);
1817 
1818   if (split_point)
1819     EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1820   else
1821     EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1822                                 EXPR_USEFULNESS (from));
1823 
1824   if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1825     EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1826 
1827   if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1828     EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1829 
1830   if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1831     EXPR_ORIG_BB_INDEX (to) = 0;
1832 
1833   EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1834                                     EXPR_ORIG_SCHED_CYCLE (from));
1835 
1836   EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1837   EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1838   EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1839 
1840   merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1841 		      EXPR_HISTORY_OF_CHANGES (from));
1842   update_target_availability (to, from, split_point);
1843   update_speculative_bits (to, from, split_point);
1844 }
1845 
1846 /* Merge bits of FROM expr to TO expr.  Vinsns in the exprs should be equal
1847    in terms of vinsn_equal_p.  SPLIT_POINT is non-null when expressions
1848    are merged from different successors at a split point.  */
1849 void
1850 merge_expr (expr_t to, expr_t from, insn_t split_point)
1851 {
1852   vinsn_t to_vi = EXPR_VINSN (to);
1853   vinsn_t from_vi = EXPR_VINSN (from);
1854 
1855   gcc_assert (vinsn_equal_p (to_vi, from_vi));
1856 
1857   /* Make sure that speculative pattern is propagated into exprs that
1858      have non-speculative one.  This will provide us with consistent
1859      speculative bits and speculative patterns inside expr.  */
1860   if (EXPR_SPEC_DONE_DS (to) == 0
1861       && EXPR_SPEC_DONE_DS (from) != 0)
1862     change_vinsn_in_expr (to, EXPR_VINSN (from));
1863 
1864   merge_expr_data (to, from, split_point);
1865   gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1866 }
1867 
1868 /* Clear the information of this EXPR.  */
1869 void
1870 clear_expr (expr_t expr)
1871 {
1872 
1873   vinsn_detach (EXPR_VINSN (expr));
1874   EXPR_VINSN (expr) = NULL;
1875 
1876   free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1877 }
1878 
1879 /* For a given LV_SET, mark EXPR having unavailable target register.  */
1880 static void
1881 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1882 {
1883   if (EXPR_SEPARABLE_P (expr))
1884     {
1885       if (REG_P (EXPR_LHS (expr))
1886           && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1887 	{
1888 	  /* If it's an insn like r1 = use (r1, ...), and it exists in
1889 	     different forms in each of the av_sets being merged, we can't say
1890 	     whether original destination register is available or not.
1891 	     However, this still works if destination register is not used
1892 	     in the original expression: if the branch at which LV_SET we're
1893 	     looking here is not actually 'other branch' in sense that same
1894 	     expression is available through it (but it can't be determined
1895 	     at computation stage because of transformations on one of the
1896 	     branches), it still won't affect the availability.
1897 	     Liveness of a register somewhere on a code motion path means
1898 	     it's either read somewhere on a codemotion path, live on
1899 	     'other' branch, live at the point immediately following
1900 	     the original operation, or is read by the original operation.
1901 	     The latter case is filtered out in the condition below.
1902 	     It still doesn't cover the case when register is defined and used
1903 	     somewhere within the code motion path, and in this case we could
1904 	     miss a unifying code motion along both branches using a renamed
1905 	     register, but it won't affect a code correctness since upon
1906 	     an actual code motion a bookkeeping code would be generated.  */
1907 	  if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1908 			    REGNO (EXPR_LHS (expr))))
1909 	    EXPR_TARGET_AVAILABLE (expr) = -1;
1910 	  else
1911 	    EXPR_TARGET_AVAILABLE (expr) = false;
1912 	}
1913     }
1914   else
1915     {
1916       unsigned regno;
1917       reg_set_iterator rsi;
1918 
1919       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1920                                  0, regno, rsi)
1921         if (bitmap_bit_p (lv_set, regno))
1922           {
1923             EXPR_TARGET_AVAILABLE (expr) = false;
1924             break;
1925           }
1926 
1927       EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1928                                  0, regno, rsi)
1929         if (bitmap_bit_p (lv_set, regno))
1930           {
1931             EXPR_TARGET_AVAILABLE (expr) = false;
1932             break;
1933           }
1934     }
1935 }
1936 
1937 /* Try to make EXPR speculative.  Return 1 when EXPR's pattern
1938    or dependence status have changed, 2 when also the target register
1939    became unavailable, 0 if nothing had to be changed.  */
1940 int
1941 speculate_expr (expr_t expr, ds_t ds)
1942 {
1943   int res;
1944   rtx orig_insn_rtx;
1945   rtx spec_pat;
1946   ds_t target_ds, current_ds;
1947 
1948   /* Obtain the status we need to put on EXPR.   */
1949   target_ds = (ds & SPECULATIVE);
1950   current_ds = EXPR_SPEC_DONE_DS (expr);
1951   ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1952 
1953   orig_insn_rtx = EXPR_INSN_RTX (expr);
1954 
1955   res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1956 
1957   switch (res)
1958     {
1959     case 0:
1960       EXPR_SPEC_DONE_DS (expr) = ds;
1961       return current_ds != ds ? 1 : 0;
1962 
1963     case 1:
1964       {
1965 	rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1966 	vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1967 
1968 	change_vinsn_in_expr (expr, spec_vinsn);
1969 	EXPR_SPEC_DONE_DS (expr) = ds;
1970         EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1971 
1972         /* Do not allow clobbering the address register of speculative
1973            insns.  */
1974         if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1975                           expr_dest_regno (expr)))
1976           {
1977             EXPR_TARGET_AVAILABLE (expr) = false;
1978             return 2;
1979           }
1980 
1981 	return 1;
1982       }
1983 
1984     case -1:
1985       return -1;
1986 
1987     default:
1988       gcc_unreachable ();
1989       return -1;
1990     }
1991 }
1992 
1993 /* Return a destination register, if any, of EXPR.  */
1994 rtx
1995 expr_dest_reg (expr_t expr)
1996 {
1997   rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1998 
1999   if (dest != NULL_RTX && REG_P (dest))
2000     return dest;
2001 
2002   return NULL_RTX;
2003 }
2004 
2005 /* Returns the REGNO of the R's destination.  */
2006 unsigned
2007 expr_dest_regno (expr_t expr)
2008 {
2009   rtx dest = expr_dest_reg (expr);
2010 
2011   gcc_assert (dest != NULL_RTX);
2012   return REGNO (dest);
2013 }
2014 
2015 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2016    AV_SET having unavailable target register.  */
2017 void
2018 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2019 {
2020   expr_t expr;
2021   av_set_iterator avi;
2022 
2023   FOR_EACH_EXPR (expr, avi, join_set)
2024     if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2025       set_unavailable_target_for_expr (expr, lv_set);
2026 }
2027 
2028 
2029 /* Av set functions.  */
2030 
2031 /* Add a new element to av set SETP.
2032    Return the element added.  */
2033 static av_set_t
2034 av_set_add_element (av_set_t *setp)
2035 {
2036   /* Insert at the beginning of the list.  */
2037   _list_add (setp);
2038   return *setp;
2039 }
2040 
2041 /* Add EXPR to SETP.  */
2042 void
2043 av_set_add (av_set_t *setp, expr_t expr)
2044 {
2045   av_set_t elem;
2046 
2047   gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2048   elem = av_set_add_element (setp);
2049   copy_expr (_AV_SET_EXPR (elem), expr);
2050 }
2051 
2052 /* Same, but do not copy EXPR.  */
2053 static void
2054 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2055 {
2056   av_set_t elem;
2057 
2058   elem = av_set_add_element (setp);
2059   *_AV_SET_EXPR (elem) = *expr;
2060 }
2061 
2062 /* Remove expr pointed to by IP from the av_set.  */
2063 void
2064 av_set_iter_remove (av_set_iterator *ip)
2065 {
2066   clear_expr (_AV_SET_EXPR (*ip->lp));
2067   _list_iter_remove (ip);
2068 }
2069 
2070 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2071    sense of vinsn_equal_p function. Return NULL if no such expr is
2072    in SET was found.  */
2073 expr_t
2074 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2075 {
2076   expr_t expr;
2077   av_set_iterator i;
2078 
2079   FOR_EACH_EXPR (expr, i, set)
2080     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2081       return expr;
2082   return NULL;
2083 }
2084 
2085 /* Same, but also remove the EXPR found.   */
2086 static expr_t
2087 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2088 {
2089   expr_t expr;
2090   av_set_iterator i;
2091 
2092   FOR_EACH_EXPR_1 (expr, i, setp)
2093     if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2094       {
2095         _list_iter_remove_nofree (&i);
2096         return expr;
2097       }
2098   return NULL;
2099 }
2100 
2101 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2102    sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2103    Returns NULL if no such expr is in SET was found.  */
2104 static expr_t
2105 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2106 {
2107   expr_t cur_expr;
2108   av_set_iterator i;
2109 
2110   FOR_EACH_EXPR (cur_expr, i, set)
2111     {
2112       if (cur_expr == expr)
2113         continue;
2114       if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2115         return cur_expr;
2116     }
2117 
2118   return NULL;
2119 }
2120 
2121 /* If other expression is already in AVP, remove one of them.  */
2122 expr_t
2123 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2124 {
2125   expr_t expr2;
2126 
2127   expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2128   if (expr2 != NULL)
2129     {
2130       /* Reset target availability on merge, since taking it only from one
2131 	 of the exprs would be controversial for different code.  */
2132       EXPR_TARGET_AVAILABLE (expr2) = -1;
2133       EXPR_USEFULNESS (expr2) = 0;
2134 
2135       merge_expr (expr2, expr, NULL);
2136 
2137       /* Fix usefulness as it should be now REG_BR_PROB_BASE.  */
2138       EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2139 
2140       av_set_iter_remove (ip);
2141       return expr2;
2142     }
2143 
2144   return expr;
2145 }
2146 
2147 /* Return true if there is an expr that correlates to VI in SET.  */
2148 bool
2149 av_set_is_in_p (av_set_t set, vinsn_t vi)
2150 {
2151   return av_set_lookup (set, vi) != NULL;
2152 }
2153 
2154 /* Return a copy of SET.  */
2155 av_set_t
2156 av_set_copy (av_set_t set)
2157 {
2158   expr_t expr;
2159   av_set_iterator i;
2160   av_set_t res = NULL;
2161 
2162   FOR_EACH_EXPR (expr, i, set)
2163     av_set_add (&res, expr);
2164 
2165   return res;
2166 }
2167 
2168 /* Join two av sets that do not have common elements by attaching second set
2169    (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2170    _AV_SET_NEXT of first set's last element).  */
2171 static void
2172 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2173 {
2174   gcc_assert (*to_tailp == NULL);
2175   *to_tailp = *fromp;
2176   *fromp = NULL;
2177 }
2178 
2179 /* Makes set pointed to by TO to be the union of TO and FROM.  Clear av_set
2180    pointed to by FROMP afterwards.  */
2181 void
2182 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2183 {
2184   expr_t expr1;
2185   av_set_iterator i;
2186 
2187   /* Delete from TOP all exprs, that present in FROMP.  */
2188   FOR_EACH_EXPR_1 (expr1, i, top)
2189     {
2190       expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2191 
2192       if (expr2)
2193 	{
2194           merge_expr (expr2, expr1, insn);
2195 	  av_set_iter_remove (&i);
2196 	}
2197     }
2198 
2199   join_distinct_sets (i.lp, fromp);
2200 }
2201 
2202 /* Same as above, but also update availability of target register in
2203    TOP judging by TO_LV_SET and FROM_LV_SET.  */
2204 void
2205 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2206                        regset from_lv_set, insn_t insn)
2207 {
2208   expr_t expr1;
2209   av_set_iterator i;
2210   av_set_t *to_tailp, in_both_set = NULL;
2211 
2212   /* Delete from TOP all expres, that present in FROMP.  */
2213   FOR_EACH_EXPR_1 (expr1, i, top)
2214     {
2215       expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2216 
2217       if (expr2)
2218 	{
2219           /* It may be that the expressions have different destination
2220              registers, in which case we need to check liveness here.  */
2221           if (EXPR_SEPARABLE_P (expr1))
2222             {
2223               int regno1 = (REG_P (EXPR_LHS (expr1))
2224                             ? (int) expr_dest_regno (expr1) : -1);
2225               int regno2 = (REG_P (EXPR_LHS (expr2))
2226                             ? (int) expr_dest_regno (expr2) : -1);
2227 
2228               /* ??? We don't have a way to check restrictions for
2229                *other* register on the current path, we did it only
2230                for the current target register.  Give up.  */
2231               if (regno1 != regno2)
2232                 EXPR_TARGET_AVAILABLE (expr2) = -1;
2233             }
2234           else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2235             EXPR_TARGET_AVAILABLE (expr2) = -1;
2236 
2237           merge_expr (expr2, expr1, insn);
2238           av_set_add_nocopy (&in_both_set, expr2);
2239 	  av_set_iter_remove (&i);
2240 	}
2241       else
2242         /* EXPR1 is present in TOP, but not in FROMP.  Check it on
2243            FROM_LV_SET.  */
2244         set_unavailable_target_for_expr (expr1, from_lv_set);
2245     }
2246   to_tailp = i.lp;
2247 
2248   /* These expressions are not present in TOP.  Check liveness
2249      restrictions on TO_LV_SET.  */
2250   FOR_EACH_EXPR (expr1, i, *fromp)
2251     set_unavailable_target_for_expr (expr1, to_lv_set);
2252 
2253   join_distinct_sets (i.lp, &in_both_set);
2254   join_distinct_sets (to_tailp, fromp);
2255 }
2256 
2257 /* Clear av_set pointed to by SETP.  */
2258 void
2259 av_set_clear (av_set_t *setp)
2260 {
2261   expr_t expr;
2262   av_set_iterator i;
2263 
2264   FOR_EACH_EXPR_1 (expr, i, setp)
2265     av_set_iter_remove (&i);
2266 
2267   gcc_assert (*setp == NULL);
2268 }
2269 
2270 /* Leave only one non-speculative element in the SETP.  */
2271 void
2272 av_set_leave_one_nonspec (av_set_t *setp)
2273 {
2274   expr_t expr;
2275   av_set_iterator i;
2276   bool has_one_nonspec = false;
2277 
2278   /* Keep all speculative exprs, and leave one non-speculative
2279      (the first one).  */
2280   FOR_EACH_EXPR_1 (expr, i, setp)
2281     {
2282       if (!EXPR_SPEC_DONE_DS (expr))
2283 	{
2284   	  if (has_one_nonspec)
2285 	    av_set_iter_remove (&i);
2286 	  else
2287 	    has_one_nonspec = true;
2288 	}
2289     }
2290 }
2291 
2292 /* Return the N'th element of the SET.  */
2293 expr_t
2294 av_set_element (av_set_t set, int n)
2295 {
2296   expr_t expr;
2297   av_set_iterator i;
2298 
2299   FOR_EACH_EXPR (expr, i, set)
2300     if (n-- == 0)
2301       return expr;
2302 
2303   gcc_unreachable ();
2304   return NULL;
2305 }
2306 
2307 /* Deletes all expressions from AVP that are conditional branches (IFs).  */
2308 void
2309 av_set_substract_cond_branches (av_set_t *avp)
2310 {
2311   av_set_iterator i;
2312   expr_t expr;
2313 
2314   FOR_EACH_EXPR_1 (expr, i, avp)
2315     if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2316       av_set_iter_remove (&i);
2317 }
2318 
2319 /* Multiplies usefulness attribute of each member of av-set *AVP by
2320    value PROB / ALL_PROB.  */
2321 void
2322 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2323 {
2324   av_set_iterator i;
2325   expr_t expr;
2326 
2327   FOR_EACH_EXPR (expr, i, av)
2328     EXPR_USEFULNESS (expr) = (all_prob
2329                               ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2330                               : 0);
2331 }
2332 
2333 /* Leave in AVP only those expressions, which are present in AV,
2334    and return it, merging history expressions.  */
2335 void
2336 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2337 {
2338   av_set_iterator i;
2339   expr_t expr, expr2;
2340 
2341   FOR_EACH_EXPR_1 (expr, i, avp)
2342     if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2343       av_set_iter_remove (&i);
2344     else
2345       /* When updating av sets in bookkeeping blocks, we can add more insns
2346 	 there which will be transformed but the upper av sets will not
2347 	 reflect those transformations.  We then fail to undo those
2348 	 when searching for such insns.  So merge the history saved
2349 	 in the av set of the block we are processing.  */
2350       merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2351 			  EXPR_HISTORY_OF_CHANGES (expr2));
2352 }
2353 
2354 
2355 
2356 /* Dependence hooks to initialize insn data.  */
2357 
2358 /* This is used in hooks callable from dependence analysis when initializing
2359    instruction's data.  */
2360 static struct
2361 {
2362   /* Where the dependence was found (lhs/rhs).  */
2363   deps_where_t where;
2364 
2365   /* The actual data object to initialize.  */
2366   idata_t id;
2367 
2368   /* True when the insn should not be made clonable.  */
2369   bool force_unique_p;
2370 
2371   /* True when insn should be treated as of type USE, i.e. never renamed.  */
2372   bool force_use_p;
2373 } deps_init_id_data;
2374 
2375 
2376 /* Setup ID for INSN.  FORCE_UNIQUE_P is true when INSN should not be
2377    clonable.  */
2378 static void
2379 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2380 {
2381   int type;
2382 
2383   /* Determine whether INSN could be cloned and return appropriate vinsn type.
2384      That clonable insns which can be separated into lhs and rhs have type SET.
2385      Other clonable insns have type USE.  */
2386   type = GET_CODE (insn);
2387 
2388   /* Only regular insns could be cloned.  */
2389   if (type == INSN && !force_unique_p)
2390     type = SET;
2391   else if (type == JUMP_INSN && simplejump_p (insn))
2392     type = PC;
2393   else if (type == DEBUG_INSN)
2394     type = !force_unique_p ? USE : INSN;
2395 
2396   IDATA_TYPE (id) = type;
2397   IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2398   IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2399   IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2400 }
2401 
2402 /* Start initializing insn data.  */
2403 static void
2404 deps_init_id_start_insn (insn_t insn)
2405 {
2406   gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2407 
2408   setup_id_for_insn (deps_init_id_data.id, insn,
2409                      deps_init_id_data.force_unique_p);
2410   deps_init_id_data.where = DEPS_IN_INSN;
2411 }
2412 
2413 /* Start initializing lhs data.  */
2414 static void
2415 deps_init_id_start_lhs (rtx lhs)
2416 {
2417   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2418   gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2419 
2420   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2421     {
2422       IDATA_LHS (deps_init_id_data.id) = lhs;
2423       deps_init_id_data.where = DEPS_IN_LHS;
2424     }
2425 }
2426 
2427 /* Finish initializing lhs data.  */
2428 static void
2429 deps_init_id_finish_lhs (void)
2430 {
2431   deps_init_id_data.where = DEPS_IN_INSN;
2432 }
2433 
2434 /* Note a set of REGNO.  */
2435 static void
2436 deps_init_id_note_reg_set (int regno)
2437 {
2438   haifa_note_reg_set (regno);
2439 
2440   if (deps_init_id_data.where == DEPS_IN_RHS)
2441     deps_init_id_data.force_use_p = true;
2442 
2443   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444     SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2445 
2446 #ifdef STACK_REGS
2447   /* Make instructions that set stack registers to be ineligible for
2448      renaming to avoid issues with find_used_regs.  */
2449   if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2450     deps_init_id_data.force_use_p = true;
2451 #endif
2452 }
2453 
2454 /* Note a clobber of REGNO.  */
2455 static void
2456 deps_init_id_note_reg_clobber (int regno)
2457 {
2458   haifa_note_reg_clobber (regno);
2459 
2460   if (deps_init_id_data.where == DEPS_IN_RHS)
2461     deps_init_id_data.force_use_p = true;
2462 
2463   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2464     SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2465 }
2466 
2467 /* Note a use of REGNO.  */
2468 static void
2469 deps_init_id_note_reg_use (int regno)
2470 {
2471   haifa_note_reg_use (regno);
2472 
2473   if (IDATA_TYPE (deps_init_id_data.id) != PC)
2474     SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2475 }
2476 
2477 /* Start initializing rhs data.  */
2478 static void
2479 deps_init_id_start_rhs (rtx rhs)
2480 {
2481   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2482 
2483   /* And there was no sel_deps_reset_to_insn ().  */
2484   if (IDATA_LHS (deps_init_id_data.id) != NULL)
2485     {
2486       IDATA_RHS (deps_init_id_data.id) = rhs;
2487       deps_init_id_data.where = DEPS_IN_RHS;
2488     }
2489 }
2490 
2491 /* Finish initializing rhs data.  */
2492 static void
2493 deps_init_id_finish_rhs (void)
2494 {
2495   gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2496 	      || deps_init_id_data.where == DEPS_IN_INSN);
2497   deps_init_id_data.where = DEPS_IN_INSN;
2498 }
2499 
2500 /* Finish initializing insn data.  */
2501 static void
2502 deps_init_id_finish_insn (void)
2503 {
2504   gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2505 
2506   if (IDATA_TYPE (deps_init_id_data.id) == SET)
2507     {
2508       rtx lhs = IDATA_LHS (deps_init_id_data.id);
2509       rtx rhs = IDATA_RHS (deps_init_id_data.id);
2510 
2511       if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2512 	  || deps_init_id_data.force_use_p)
2513 	{
2514           /* This should be a USE, as we don't want to schedule its RHS
2515              separately.  However, we still want to have them recorded
2516              for the purposes of substitution.  That's why we don't
2517              simply call downgrade_to_use () here.  */
2518 	  gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2519 	  gcc_assert (!lhs == !rhs);
2520 
2521 	  IDATA_TYPE (deps_init_id_data.id) = USE;
2522 	}
2523     }
2524 
2525   deps_init_id_data.where = DEPS_IN_NOWHERE;
2526 }
2527 
2528 /* This is dependence info used for initializing insn's data.  */
2529 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2530 
2531 /* This initializes most of the static part of the above structure.  */
2532 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2533   {
2534     NULL,
2535 
2536     deps_init_id_start_insn,
2537     deps_init_id_finish_insn,
2538     deps_init_id_start_lhs,
2539     deps_init_id_finish_lhs,
2540     deps_init_id_start_rhs,
2541     deps_init_id_finish_rhs,
2542     deps_init_id_note_reg_set,
2543     deps_init_id_note_reg_clobber,
2544     deps_init_id_note_reg_use,
2545     NULL, /* note_mem_dep */
2546     NULL, /* note_dep */
2547 
2548     0, /* use_cselib */
2549     0, /* use_deps_list */
2550     0 /* generate_spec_deps */
2551   };
2552 
2553 /* Initialize INSN's lhs and rhs in ID.  When FORCE_UNIQUE_P is true,
2554    we don't actually need information about lhs and rhs.  */
2555 static void
2556 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2557 {
2558   rtx pat = PATTERN (insn);
2559 
2560   if (NONJUMP_INSN_P (insn)
2561       && GET_CODE (pat) == SET
2562       && !force_unique_p)
2563     {
2564       IDATA_RHS (id) = SET_SRC (pat);
2565       IDATA_LHS (id) = SET_DEST (pat);
2566     }
2567   else
2568     IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2569 }
2570 
2571 /* Possibly downgrade INSN to USE.  */
2572 static void
2573 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2574 {
2575   bool must_be_use = false;
2576   unsigned uid = INSN_UID (insn);
2577   df_ref *rec;
2578   rtx lhs = IDATA_LHS (id);
2579   rtx rhs = IDATA_RHS (id);
2580 
2581   /* We downgrade only SETs.  */
2582   if (IDATA_TYPE (id) != SET)
2583     return;
2584 
2585   if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2586     {
2587       IDATA_TYPE (id) = USE;
2588       return;
2589     }
2590 
2591   for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2592     {
2593       df_ref def = *rec;
2594 
2595       if (DF_REF_INSN (def)
2596           && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2597           && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2598         {
2599           must_be_use = true;
2600           break;
2601         }
2602 
2603 #ifdef STACK_REGS
2604       /* Make instructions that set stack registers to be ineligible for
2605 	 renaming to avoid issues with find_used_regs.  */
2606       if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2607 	{
2608 	  must_be_use = true;
2609 	  break;
2610 	}
2611 #endif
2612     }
2613 
2614   if (must_be_use)
2615     IDATA_TYPE (id) = USE;
2616 }
2617 
2618 /* Setup register sets describing INSN in ID.  */
2619 static void
2620 setup_id_reg_sets (idata_t id, insn_t insn)
2621 {
2622   unsigned uid = INSN_UID (insn);
2623   df_ref *rec;
2624   regset tmp = get_clear_regset_from_pool ();
2625 
2626   for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2627     {
2628       df_ref def = *rec;
2629       unsigned int regno = DF_REF_REGNO (def);
2630 
2631       /* Post modifies are treated like clobbers by sched-deps.c.  */
2632       if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2633                                      | DF_REF_PRE_POST_MODIFY)))
2634         SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2635       else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2636         {
2637 	  SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2638 
2639 #ifdef STACK_REGS
2640 	  /* For stack registers, treat writes to them as writes
2641 	     to the first one to be consistent with sched-deps.c.  */
2642 	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2643 	    SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2644 #endif
2645 	}
2646       /* Mark special refs that generate read/write def pair.  */
2647       if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2648           || regno == STACK_POINTER_REGNUM)
2649         bitmap_set_bit (tmp, regno);
2650     }
2651 
2652   for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2653     {
2654       df_ref use = *rec;
2655       unsigned int regno = DF_REF_REGNO (use);
2656 
2657       /* When these refs are met for the first time, skip them, as
2658          these uses are just counterparts of some defs.  */
2659       if (bitmap_bit_p (tmp, regno))
2660         bitmap_clear_bit (tmp, regno);
2661       else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2662 	{
2663 	  SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2664 
2665 #ifdef STACK_REGS
2666 	  /* For stack registers, treat reads from them as reads from
2667 	     the first one to be consistent with sched-deps.c.  */
2668 	  if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2669 	    SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2670 #endif
2671 	}
2672     }
2673 
2674   return_regset_to_pool (tmp);
2675 }
2676 
2677 /* Initialize instruction data for INSN in ID using DF's data.  */
2678 static void
2679 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2680 {
2681   gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2682 
2683   setup_id_for_insn (id, insn, force_unique_p);
2684   setup_id_lhs_rhs (id, insn, force_unique_p);
2685 
2686   if (INSN_NOP_P (insn))
2687     return;
2688 
2689   maybe_downgrade_id_to_use (id, insn);
2690   setup_id_reg_sets (id, insn);
2691 }
2692 
2693 /* Initialize instruction data for INSN in ID.  */
2694 static void
2695 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2696 {
2697   struct deps_desc _dc, *dc = &_dc;
2698 
2699   deps_init_id_data.where = DEPS_IN_NOWHERE;
2700   deps_init_id_data.id = id;
2701   deps_init_id_data.force_unique_p = force_unique_p;
2702   deps_init_id_data.force_use_p = false;
2703 
2704   init_deps (dc, false);
2705 
2706   memcpy (&deps_init_id_sched_deps_info,
2707 	  &const_deps_init_id_sched_deps_info,
2708 	  sizeof (deps_init_id_sched_deps_info));
2709 
2710   if (spec_info != NULL)
2711     deps_init_id_sched_deps_info.generate_spec_deps = 1;
2712 
2713   sched_deps_info = &deps_init_id_sched_deps_info;
2714 
2715   deps_analyze_insn (dc, insn);
2716 
2717   free_deps (dc);
2718 
2719   deps_init_id_data.id = NULL;
2720 }
2721 
2722 
2723 
2724 /* Implement hooks for collecting fundamental insn properties like if insn is
2725    an ASM or is within a SCHED_GROUP.  */
2726 
2727 /* True when a "one-time init" data for INSN was already inited.  */
2728 static bool
2729 first_time_insn_init (insn_t insn)
2730 {
2731   return INSN_LIVE (insn) == NULL;
2732 }
2733 
2734 /* Hash an entry in a transformed_insns hashtable.  */
2735 static hashval_t
2736 hash_transformed_insns (const void *p)
2737 {
2738   return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2739 }
2740 
2741 /* Compare the entries in a transformed_insns hashtable.  */
2742 static int
2743 eq_transformed_insns (const void *p, const void *q)
2744 {
2745   rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2746   rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2747 
2748   if (INSN_UID (i1) == INSN_UID (i2))
2749     return 1;
2750   return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2751 }
2752 
2753 /* Free an entry in a transformed_insns hashtable.  */
2754 static void
2755 free_transformed_insns (void *p)
2756 {
2757   struct transformed_insns *pti = (struct transformed_insns *) p;
2758 
2759   vinsn_detach (pti->vinsn_old);
2760   vinsn_detach (pti->vinsn_new);
2761   free (pti);
2762 }
2763 
2764 /* Init the s_i_d data for INSN which should be inited just once, when
2765    we first see the insn.  */
2766 static void
2767 init_first_time_insn_data (insn_t insn)
2768 {
2769   /* This should not be set if this is the first time we init data for
2770      insn.  */
2771   gcc_assert (first_time_insn_init (insn));
2772 
2773   /* These are needed for nops too.  */
2774   INSN_LIVE (insn) = get_regset_from_pool ();
2775   INSN_LIVE_VALID_P (insn) = false;
2776 
2777   if (!INSN_NOP_P (insn))
2778     {
2779       INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2780       INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2781       INSN_TRANSFORMED_INSNS (insn)
2782         = htab_create (16, hash_transformed_insns,
2783                        eq_transformed_insns, free_transformed_insns);
2784       init_deps (&INSN_DEPS_CONTEXT (insn), true);
2785     }
2786 }
2787 
2788 /* Free almost all above data for INSN that is scheduled already.
2789    Used for extra-large basic blocks.  */
2790 void
2791 free_data_for_scheduled_insn (insn_t insn)
2792 {
2793   gcc_assert (! first_time_insn_init (insn));
2794 
2795   if (! INSN_ANALYZED_DEPS (insn))
2796     return;
2797 
2798   BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2799   BITMAP_FREE (INSN_FOUND_DEPS (insn));
2800   htab_delete (INSN_TRANSFORMED_INSNS (insn));
2801 
2802   /* This is allocated only for bookkeeping insns.  */
2803   if (INSN_ORIGINATORS (insn))
2804     BITMAP_FREE (INSN_ORIGINATORS (insn));
2805   free_deps (&INSN_DEPS_CONTEXT (insn));
2806 
2807   INSN_ANALYZED_DEPS (insn) = NULL;
2808 
2809   /* Clear the readonly flag so we would ICE when trying to recalculate
2810      the deps context (as we believe that it should not happen).  */
2811   (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2812 }
2813 
2814 /* Free the same data as above for INSN.  */
2815 static void
2816 free_first_time_insn_data (insn_t insn)
2817 {
2818   gcc_assert (! first_time_insn_init (insn));
2819 
2820   free_data_for_scheduled_insn (insn);
2821   return_regset_to_pool (INSN_LIVE (insn));
2822   INSN_LIVE (insn) = NULL;
2823   INSN_LIVE_VALID_P (insn) = false;
2824 }
2825 
2826 /* Initialize region-scope data structures for basic blocks.  */
2827 static void
2828 init_global_and_expr_for_bb (basic_block bb)
2829 {
2830   if (sel_bb_empty_p (bb))
2831     return;
2832 
2833   invalidate_av_set (bb);
2834 }
2835 
2836 /* Data for global dependency analysis (to initialize CANT_MOVE and
2837    SCHED_GROUP_P).  */
2838 static struct
2839 {
2840   /* Previous insn.  */
2841   insn_t prev_insn;
2842 } init_global_data;
2843 
2844 /* Determine if INSN is in the sched_group, is an asm or should not be
2845    cloned.  After that initialize its expr.  */
2846 static void
2847 init_global_and_expr_for_insn (insn_t insn)
2848 {
2849   if (LABEL_P (insn))
2850     return;
2851 
2852   if (NOTE_INSN_BASIC_BLOCK_P (insn))
2853     {
2854       init_global_data.prev_insn = NULL_RTX;
2855       return;
2856     }
2857 
2858   gcc_assert (INSN_P (insn));
2859 
2860   if (SCHED_GROUP_P (insn))
2861     /* Setup a sched_group.  */
2862     {
2863       insn_t prev_insn = init_global_data.prev_insn;
2864 
2865       if (prev_insn)
2866 	INSN_SCHED_NEXT (prev_insn) = insn;
2867 
2868       init_global_data.prev_insn = insn;
2869     }
2870   else
2871     init_global_data.prev_insn = NULL_RTX;
2872 
2873   if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2874       || asm_noperands (PATTERN (insn)) >= 0)
2875     /* Mark INSN as an asm.  */
2876     INSN_ASM_P (insn) = true;
2877 
2878   {
2879     bool force_unique_p;
2880     ds_t spec_done_ds;
2881 
2882     /* Certain instructions cannot be cloned.  */
2883     if (CANT_MOVE (insn)
2884 	|| INSN_ASM_P (insn)
2885 	|| SCHED_GROUP_P (insn)
2886 	|| prologue_epilogue_contains (insn)
2887 	/* Exception handling insns are always unique.  */
2888 	|| (flag_non_call_exceptions && can_throw_internal (insn))
2889 	/* TRAP_IF though have an INSN code is control_flow_insn_p ().  */
2890 	|| control_flow_insn_p (insn))
2891       force_unique_p = true;
2892     else
2893       force_unique_p = false;
2894 
2895     if (targetm.sched.get_insn_spec_ds)
2896       {
2897 	spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2898 	spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2899       }
2900     else
2901       spec_done_ds = 0;
2902 
2903     /* Initialize INSN's expr.  */
2904     init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2905 	       REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2906 	       spec_done_ds, 0, 0, NULL, true, false, false, false,
2907                CANT_MOVE (insn));
2908   }
2909 
2910   init_first_time_insn_data (insn);
2911 }
2912 
2913 /* Scan the region and initialize instruction data for basic blocks BBS.  */
2914 void
2915 sel_init_global_and_expr (bb_vec_t bbs)
2916 {
2917   /* ??? It would be nice to implement push / pop scheme for sched_infos.  */
2918   const struct sched_scan_info_def ssi =
2919     {
2920       NULL, /* extend_bb */
2921       init_global_and_expr_for_bb, /* init_bb */
2922       extend_insn_data, /* extend_insn */
2923       init_global_and_expr_for_insn /* init_insn */
2924     };
2925 
2926   sched_scan (&ssi, bbs, NULL, NULL, NULL);
2927 }
2928 
2929 /* Finalize region-scope data structures for basic blocks.  */
2930 static void
2931 finish_global_and_expr_for_bb (basic_block bb)
2932 {
2933   av_set_clear (&BB_AV_SET (bb));
2934   BB_AV_LEVEL (bb) = 0;
2935 }
2936 
2937 /* Finalize INSN's data.  */
2938 static void
2939 finish_global_and_expr_insn (insn_t insn)
2940 {
2941   if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2942     return;
2943 
2944   gcc_assert (INSN_P (insn));
2945 
2946   if (INSN_LUID (insn) > 0)
2947     {
2948       free_first_time_insn_data (insn);
2949       INSN_WS_LEVEL (insn) = 0;
2950       CANT_MOVE (insn) = 0;
2951 
2952       /* We can no longer assert this, as vinsns of this insn could be
2953          easily live in other insn's caches.  This should be changed to
2954          a counter-like approach among all vinsns.  */
2955       gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2956       clear_expr (INSN_EXPR (insn));
2957     }
2958 }
2959 
2960 /* Finalize per instruction data for the whole region.  */
2961 void
2962 sel_finish_global_and_expr (void)
2963 {
2964   {
2965     bb_vec_t bbs;
2966     int i;
2967 
2968     bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2969 
2970     for (i = 0; i < current_nr_blocks; i++)
2971       VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2972 
2973     /* Clear AV_SETs and INSN_EXPRs.  */
2974     {
2975       const struct sched_scan_info_def ssi =
2976 	{
2977 	  NULL, /* extend_bb */
2978 	  finish_global_and_expr_for_bb, /* init_bb */
2979 	  NULL, /* extend_insn */
2980 	  finish_global_and_expr_insn /* init_insn */
2981 	};
2982 
2983       sched_scan (&ssi, bbs, NULL, NULL, NULL);
2984     }
2985 
2986     VEC_free (basic_block, heap, bbs);
2987   }
2988 
2989   finish_insns ();
2990 }
2991 
2992 
2993 /* In the below hooks, we merely calculate whether or not a dependence
2994    exists, and in what part of insn.  However, we will need more data
2995    when we'll start caching dependence requests.  */
2996 
2997 /* Container to hold information for dependency analysis.  */
2998 static struct
2999 {
3000   deps_t dc;
3001 
3002   /* A variable to track which part of rtx we are scanning in
3003      sched-deps.c: sched_analyze_insn ().  */
3004   deps_where_t where;
3005 
3006   /* Current producer.  */
3007   insn_t pro;
3008 
3009   /* Current consumer.  */
3010   vinsn_t con;
3011 
3012   /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3013      X is from { INSN, LHS, RHS }.  */
3014   ds_t has_dep_p[DEPS_IN_NOWHERE];
3015 } has_dependence_data;
3016 
3017 /* Start analyzing dependencies of INSN.  */
3018 static void
3019 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3020 {
3021   gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3022 
3023   has_dependence_data.where = DEPS_IN_INSN;
3024 }
3025 
3026 /* Finish analyzing dependencies of an insn.  */
3027 static void
3028 has_dependence_finish_insn (void)
3029 {
3030   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3031 
3032   has_dependence_data.where = DEPS_IN_NOWHERE;
3033 }
3034 
3035 /* Start analyzing dependencies of LHS.  */
3036 static void
3037 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3038 {
3039   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3040 
3041   if (VINSN_LHS (has_dependence_data.con) != NULL)
3042     has_dependence_data.where = DEPS_IN_LHS;
3043 }
3044 
3045 /* Finish analyzing dependencies of an lhs.  */
3046 static void
3047 has_dependence_finish_lhs (void)
3048 {
3049   has_dependence_data.where = DEPS_IN_INSN;
3050 }
3051 
3052 /* Start analyzing dependencies of RHS.  */
3053 static void
3054 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3055 {
3056   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3057 
3058   if (VINSN_RHS (has_dependence_data.con) != NULL)
3059     has_dependence_data.where = DEPS_IN_RHS;
3060 }
3061 
3062 /* Start analyzing dependencies of an rhs.  */
3063 static void
3064 has_dependence_finish_rhs (void)
3065 {
3066   gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3067 	      || has_dependence_data.where == DEPS_IN_INSN);
3068 
3069   has_dependence_data.where = DEPS_IN_INSN;
3070 }
3071 
3072 /* Note a set of REGNO.  */
3073 static void
3074 has_dependence_note_reg_set (int regno)
3075 {
3076   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3077 
3078   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3079 				       VINSN_INSN_RTX
3080 				       (has_dependence_data.con)))
3081     {
3082       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3083 
3084       if (reg_last->sets != NULL
3085 	  || reg_last->clobbers != NULL)
3086 	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3087 
3088       if (reg_last->uses)
3089 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3090     }
3091 }
3092 
3093 /* Note a clobber of REGNO.  */
3094 static void
3095 has_dependence_note_reg_clobber (int regno)
3096 {
3097   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3098 
3099   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3100 				       VINSN_INSN_RTX
3101 				       (has_dependence_data.con)))
3102     {
3103       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3104 
3105       if (reg_last->sets)
3106 	*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3107 
3108       if (reg_last->uses)
3109 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3110     }
3111 }
3112 
3113 /* Note a use of REGNO.  */
3114 static void
3115 has_dependence_note_reg_use (int regno)
3116 {
3117   struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3118 
3119   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3120 				       VINSN_INSN_RTX
3121 				       (has_dependence_data.con)))
3122     {
3123       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3124 
3125       if (reg_last->sets)
3126 	*dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3127 
3128       if (reg_last->clobbers)
3129 	*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3130 
3131       /* Handle BE_IN_SPEC.  */
3132       if (reg_last->uses)
3133 	{
3134 	  ds_t pro_spec_checked_ds;
3135 
3136 	  pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3137 	  pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3138 
3139 	  if (pro_spec_checked_ds != 0)
3140 	    /* Merge BE_IN_SPEC bits into *DSP.  */
3141 	    *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3142 				  NULL_RTX, NULL_RTX);
3143 	}
3144     }
3145 }
3146 
3147 /* Note a memory dependence.  */
3148 static void
3149 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3150 			     rtx pending_mem ATTRIBUTE_UNUSED,
3151 			     insn_t pending_insn ATTRIBUTE_UNUSED,
3152 			     ds_t ds ATTRIBUTE_UNUSED)
3153 {
3154   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3155 				       VINSN_INSN_RTX (has_dependence_data.con)))
3156     {
3157       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3158 
3159       *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3160     }
3161 }
3162 
3163 /* Note a dependence.  */
3164 static void
3165 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3166 			 ds_t ds ATTRIBUTE_UNUSED)
3167 {
3168   if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3169 				       VINSN_INSN_RTX (has_dependence_data.con)))
3170     {
3171       ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3172 
3173       *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3174     }
3175 }
3176 
3177 /* Mark the insn as having a hard dependence that prevents speculation.  */
3178 void
3179 sel_mark_hard_insn (rtx insn)
3180 {
3181   int i;
3182 
3183   /* Only work when we're in has_dependence_p mode.
3184      ??? This is a hack, this should actually be a hook.  */
3185   if (!has_dependence_data.dc || !has_dependence_data.pro)
3186     return;
3187 
3188   gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3189   gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3190 
3191   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3192     has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3193 }
3194 
3195 /* This structure holds the hooks for the dependency analysis used when
3196    actually processing dependencies in the scheduler.  */
3197 static struct sched_deps_info_def has_dependence_sched_deps_info;
3198 
3199 /* This initializes most of the fields of the above structure.  */
3200 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3201   {
3202     NULL,
3203 
3204     has_dependence_start_insn,
3205     has_dependence_finish_insn,
3206     has_dependence_start_lhs,
3207     has_dependence_finish_lhs,
3208     has_dependence_start_rhs,
3209     has_dependence_finish_rhs,
3210     has_dependence_note_reg_set,
3211     has_dependence_note_reg_clobber,
3212     has_dependence_note_reg_use,
3213     has_dependence_note_mem_dep,
3214     has_dependence_note_dep,
3215 
3216     0, /* use_cselib */
3217     0, /* use_deps_list */
3218     0 /* generate_spec_deps */
3219   };
3220 
3221 /* Initialize has_dependence_sched_deps_info with extra spec field.  */
3222 static void
3223 setup_has_dependence_sched_deps_info (void)
3224 {
3225   memcpy (&has_dependence_sched_deps_info,
3226 	  &const_has_dependence_sched_deps_info,
3227 	  sizeof (has_dependence_sched_deps_info));
3228 
3229   if (spec_info != NULL)
3230     has_dependence_sched_deps_info.generate_spec_deps = 1;
3231 
3232   sched_deps_info = &has_dependence_sched_deps_info;
3233 }
3234 
3235 /* Remove all dependences found and recorded in has_dependence_data array.  */
3236 void
3237 sel_clear_has_dependence (void)
3238 {
3239   int i;
3240 
3241   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3242     has_dependence_data.has_dep_p[i] = 0;
3243 }
3244 
3245 /* Return nonzero if EXPR has is dependent upon PRED.  Return the pointer
3246    to the dependence information array in HAS_DEP_PP.  */
3247 ds_t
3248 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3249 {
3250   int i;
3251   ds_t ds;
3252   struct deps_desc *dc;
3253 
3254   if (INSN_SIMPLEJUMP_P (pred))
3255     /* Unconditional jump is just a transfer of control flow.
3256        Ignore it.  */
3257     return false;
3258 
3259   dc = &INSN_DEPS_CONTEXT (pred);
3260 
3261   /* We init this field lazily.  */
3262   if (dc->reg_last == NULL)
3263     init_deps_reg_last (dc);
3264 
3265   if (!dc->readonly)
3266     {
3267       has_dependence_data.pro = NULL;
3268       /* Initialize empty dep context with information about PRED.  */
3269       advance_deps_context (dc, pred);
3270       dc->readonly = 1;
3271     }
3272 
3273   has_dependence_data.where = DEPS_IN_NOWHERE;
3274   has_dependence_data.pro = pred;
3275   has_dependence_data.con = EXPR_VINSN (expr);
3276   has_dependence_data.dc = dc;
3277 
3278   sel_clear_has_dependence ();
3279 
3280   /* Now catch all dependencies that would be generated between PRED and
3281      INSN.  */
3282   setup_has_dependence_sched_deps_info ();
3283   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3284   has_dependence_data.dc = NULL;
3285 
3286   /* When a barrier was found, set DEPS_IN_INSN bits.  */
3287   if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3288     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3289   else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3290     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3291 
3292   /* Do not allow stores to memory to move through checks.  Currently
3293      we don't move this to sched-deps.c as the check doesn't have
3294      obvious places to which this dependence can be attached.
3295      FIMXE: this should go to a hook.  */
3296   if (EXPR_LHS (expr)
3297       && MEM_P (EXPR_LHS (expr))
3298       && sel_insn_is_speculation_check (pred))
3299     has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3300 
3301   *has_dep_pp = has_dependence_data.has_dep_p;
3302   ds = 0;
3303   for (i = 0; i < DEPS_IN_NOWHERE; i++)
3304     ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3305 			NULL_RTX, NULL_RTX);
3306 
3307   return ds;
3308 }
3309 
3310 
3311 /* Dependence hooks implementation that checks dependence latency constraints
3312    on the insns being scheduled.  The entry point for these routines is
3313    tick_check_p predicate.  */
3314 
3315 static struct
3316 {
3317   /* An expr we are currently checking.  */
3318   expr_t expr;
3319 
3320   /* A minimal cycle for its scheduling.  */
3321   int cycle;
3322 
3323   /* Whether we have seen a true dependence while checking.  */
3324   bool seen_true_dep_p;
3325 } tick_check_data;
3326 
3327 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3328    on PRO with status DS and weight DW.  */
3329 static void
3330 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3331 {
3332   expr_t con_expr = tick_check_data.expr;
3333   insn_t con_insn = EXPR_INSN_RTX (con_expr);
3334 
3335   if (con_insn != pro_insn)
3336     {
3337       enum reg_note dt;
3338       int tick;
3339 
3340       if (/* PROducer was removed from above due to pipelining.  */
3341 	  !INSN_IN_STREAM_P (pro_insn)
3342 	  /* Or PROducer was originally on the next iteration regarding the
3343 	     CONsumer.  */
3344 	  || (INSN_SCHED_TIMES (pro_insn)
3345 	      - EXPR_SCHED_TIMES (con_expr)) > 1)
3346 	/* Don't count this dependence.  */
3347         return;
3348 
3349       dt = ds_to_dt (ds);
3350       if (dt == REG_DEP_TRUE)
3351         tick_check_data.seen_true_dep_p = true;
3352 
3353       gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3354 
3355       {
3356 	dep_def _dep, *dep = &_dep;
3357 
3358 	init_dep (dep, pro_insn, con_insn, dt);
3359 
3360 	tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3361       }
3362 
3363       /* When there are several kinds of dependencies between pro and con,
3364          only REG_DEP_TRUE should be taken into account.  */
3365       if (tick > tick_check_data.cycle
3366 	  && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3367 	tick_check_data.cycle = tick;
3368     }
3369 }
3370 
3371 /* An implementation of note_dep hook.  */
3372 static void
3373 tick_check_note_dep (insn_t pro, ds_t ds)
3374 {
3375   tick_check_dep_with_dw (pro, ds, 0);
3376 }
3377 
3378 /* An implementation of note_mem_dep hook.  */
3379 static void
3380 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3381 {
3382   dw_t dw;
3383 
3384   dw = (ds_to_dt (ds) == REG_DEP_TRUE
3385         ? estimate_dep_weak (mem1, mem2)
3386         : 0);
3387 
3388   tick_check_dep_with_dw (pro, ds, dw);
3389 }
3390 
3391 /* This structure contains hooks for dependence analysis used when determining
3392    whether an insn is ready for scheduling.  */
3393 static struct sched_deps_info_def tick_check_sched_deps_info =
3394   {
3395     NULL,
3396 
3397     NULL,
3398     NULL,
3399     NULL,
3400     NULL,
3401     NULL,
3402     NULL,
3403     haifa_note_reg_set,
3404     haifa_note_reg_clobber,
3405     haifa_note_reg_use,
3406     tick_check_note_mem_dep,
3407     tick_check_note_dep,
3408 
3409     0, 0, 0
3410   };
3411 
3412 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3413    scheduled.  Return 0 if all data from producers in DC is ready.  */
3414 int
3415 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3416 {
3417   int cycles_left;
3418   /* Initialize variables.  */
3419   tick_check_data.expr = expr;
3420   tick_check_data.cycle = 0;
3421   tick_check_data.seen_true_dep_p = false;
3422   sched_deps_info = &tick_check_sched_deps_info;
3423 
3424   gcc_assert (!dc->readonly);
3425   dc->readonly = 1;
3426   deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3427   dc->readonly = 0;
3428 
3429   cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3430 
3431   return cycles_left >= 0 ? cycles_left : 0;
3432 }
3433 
3434 
3435 /* Functions to work with insns.  */
3436 
3437 /* Returns true if LHS of INSN is the same as DEST of an insn
3438    being moved.  */
3439 bool
3440 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3441 {
3442   rtx lhs = INSN_LHS (insn);
3443 
3444   if (lhs == NULL || dest == NULL)
3445     return false;
3446 
3447   return rtx_equal_p (lhs, dest);
3448 }
3449 
3450 /* Return s_i_d entry of INSN.  Callable from debugger.  */
3451 sel_insn_data_def
3452 insn_sid (insn_t insn)
3453 {
3454   return *SID (insn);
3455 }
3456 
3457 /* True when INSN is a speculative check.  We can tell this by looking
3458    at the data structures of the selective scheduler, not by examining
3459    the pattern.  */
3460 bool
3461 sel_insn_is_speculation_check (rtx insn)
3462 {
3463   return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3464 }
3465 
3466 /* Extracts machine mode MODE and destination location DST_LOC
3467    for given INSN.  */
3468 void
3469 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3470 {
3471   rtx pat = PATTERN (insn);
3472 
3473   gcc_assert (dst_loc);
3474   gcc_assert (GET_CODE (pat) == SET);
3475 
3476   *dst_loc = SET_DEST (pat);
3477 
3478   gcc_assert (*dst_loc);
3479   gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3480 
3481   if (mode)
3482     *mode = GET_MODE (*dst_loc);
3483 }
3484 
3485 /* Returns true when moving through JUMP will result in bookkeeping
3486    creation.  */
3487 bool
3488 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3489 {
3490   insn_t succ;
3491   succ_iterator si;
3492 
3493   FOR_EACH_SUCC (succ, si, jump)
3494     if (sel_num_cfg_preds_gt_1 (succ))
3495       return true;
3496 
3497   return false;
3498 }
3499 
3500 /* Return 'true' if INSN is the only one in its basic block.  */
3501 static bool
3502 insn_is_the_only_one_in_bb_p (insn_t insn)
3503 {
3504   return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3505 }
3506 
3507 #ifdef ENABLE_CHECKING
3508 /* Check that the region we're scheduling still has at most one
3509    backedge.  */
3510 static void
3511 verify_backedges (void)
3512 {
3513   if (pipelining_p)
3514     {
3515       int i, n = 0;
3516       edge e;
3517       edge_iterator ei;
3518 
3519       for (i = 0; i < current_nr_blocks; i++)
3520         FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3521           if (in_current_region_p (e->dest)
3522               && BLOCK_TO_BB (e->dest->index) < i)
3523             n++;
3524 
3525       gcc_assert (n <= 1);
3526     }
3527 }
3528 #endif
3529 
3530 
3531 /* Functions to work with control flow.  */
3532 
3533 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3534    are sorted in topological order (it might have been invalidated by
3535    redirecting an edge).  */
3536 static void
3537 sel_recompute_toporder (void)
3538 {
3539   int i, n, rgn;
3540   int *postorder, n_blocks;
3541 
3542   postorder = XALLOCAVEC (int, n_basic_blocks);
3543   n_blocks = post_order_compute (postorder, false, false);
3544 
3545   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3546   for (n = 0, i = n_blocks - 1; i >= 0; i--)
3547     if (CONTAINING_RGN (postorder[i]) == rgn)
3548       {
3549 	BLOCK_TO_BB (postorder[i]) = n;
3550 	BB_TO_BLOCK (n) = postorder[i];
3551 	n++;
3552       }
3553 
3554   /* Assert that we updated info for all blocks.  We may miss some blocks if
3555      this function is called when redirecting an edge made a block
3556      unreachable, but that block is not deleted yet.  */
3557   gcc_assert (n == RGN_NR_BLOCKS (rgn));
3558 }
3559 
3560 /* Tidy the possibly empty block BB.  */
3561 static bool
3562 maybe_tidy_empty_bb (basic_block bb)
3563 {
3564   basic_block succ_bb, pred_bb;
3565   VEC (basic_block, heap) *dom_bbs;
3566   edge e;
3567   edge_iterator ei;
3568   bool rescan_p;
3569 
3570   /* Keep empty bb only if this block immediately precedes EXIT and
3571      has incoming non-fallthrough edge, or it has no predecessors or
3572      successors.  Otherwise remove it.  */
3573   if (!sel_bb_empty_p (bb)
3574       || (single_succ_p (bb)
3575           && single_succ (bb) == EXIT_BLOCK_PTR
3576           && (!single_pred_p (bb)
3577               || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3578       || EDGE_COUNT (bb->preds) == 0
3579       || EDGE_COUNT (bb->succs) == 0)
3580     return false;
3581 
3582   /* Do not attempt to redirect complex edges.  */
3583   FOR_EACH_EDGE (e, ei, bb->preds)
3584     if (e->flags & EDGE_COMPLEX)
3585       return false;
3586 
3587   free_data_sets (bb);
3588 
3589   /* Do not delete BB if it has more than one successor.
3590      That can occur when we moving a jump.  */
3591   if (!single_succ_p (bb))
3592     {
3593       gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3594       sel_merge_blocks (bb->prev_bb, bb);
3595       return true;
3596     }
3597 
3598   succ_bb = single_succ (bb);
3599   rescan_p = true;
3600   pred_bb = NULL;
3601   dom_bbs = NULL;
3602 
3603   /* Redirect all non-fallthru edges to the next bb.  */
3604   while (rescan_p)
3605     {
3606       rescan_p = false;
3607 
3608       FOR_EACH_EDGE (e, ei, bb->preds)
3609         {
3610           pred_bb = e->src;
3611 
3612           if (!(e->flags & EDGE_FALLTHRU))
3613             {
3614 	      /* We can not invalidate computed topological order by moving
3615 	         the edge destination block (E->SUCC) along a fallthru edge.
3616 
3617 		 We will update dominators here only when we'll get
3618 		 an unreachable block when redirecting, otherwise
3619 		 sel_redirect_edge_and_branch will take care of it.  */
3620 	      if (e->dest != bb
3621 		  && single_pred_p (e->dest))
3622 		VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3623               sel_redirect_edge_and_branch (e, succ_bb);
3624               rescan_p = true;
3625               break;
3626             }
3627 	  /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3628 	     to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3629 	     still have to adjust it.  */
3630 	  else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3631 	    {
3632 	      /* If possible, try to remove the unneeded conditional jump.  */
3633 	      if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3634 		  && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3635 		{
3636 		  if (!sel_remove_insn (BB_END (pred_bb), false, false))
3637 		    tidy_fallthru_edge (e);
3638 		}
3639 	      else
3640 		sel_redirect_edge_and_branch (e, succ_bb);
3641 	      rescan_p = true;
3642 	      break;
3643 	    }
3644         }
3645     }
3646 
3647   if (can_merge_blocks_p (bb->prev_bb, bb))
3648     sel_merge_blocks (bb->prev_bb, bb);
3649   else
3650     {
3651       /* This is a block without fallthru predecessor.  Just delete it.  */
3652       gcc_assert (pred_bb != NULL);
3653 
3654       if (in_current_region_p (pred_bb))
3655 	move_bb_info (pred_bb, bb);
3656       remove_empty_bb (bb, true);
3657     }
3658 
3659   if (!VEC_empty (basic_block, dom_bbs))
3660     {
3661       VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3662       iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3663       VEC_free (basic_block, heap, dom_bbs);
3664     }
3665 
3666   return true;
3667 }
3668 
3669 /* Tidy the control flow after we have removed original insn from
3670    XBB.  Return true if we have removed some blocks.  When FULL_TIDYING
3671    is true, also try to optimize control flow on non-empty blocks.  */
3672 bool
3673 tidy_control_flow (basic_block xbb, bool full_tidying)
3674 {
3675   bool changed = true;
3676   insn_t first, last;
3677 
3678   /* First check whether XBB is empty.  */
3679   changed = maybe_tidy_empty_bb (xbb);
3680   if (changed || !full_tidying)
3681     return changed;
3682 
3683   /* Check if there is a unnecessary jump after insn left.  */
3684   if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3685       && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3686       && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3687     {
3688       if (sel_remove_insn (BB_END (xbb), false, false))
3689         return true;
3690       tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3691     }
3692 
3693   first = sel_bb_head (xbb);
3694   last = sel_bb_end (xbb);
3695   if (MAY_HAVE_DEBUG_INSNS)
3696     {
3697       if (first != last && DEBUG_INSN_P (first))
3698 	do
3699 	  first = NEXT_INSN (first);
3700 	while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3701 
3702       if (first != last && DEBUG_INSN_P (last))
3703 	do
3704 	  last = PREV_INSN (last);
3705 	while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3706     }
3707   /* Check if there is an unnecessary jump in previous basic block leading
3708      to next basic block left after removing INSN from stream.
3709      If it is so, remove that jump and redirect edge to current
3710      basic block (where there was INSN before deletion).  This way
3711      when NOP will be deleted several instructions later with its
3712      basic block we will not get a jump to next instruction, which
3713      can be harmful.  */
3714   if (first == last
3715       && !sel_bb_empty_p (xbb)
3716       && INSN_NOP_P (last)
3717       /* Flow goes fallthru from current block to the next.  */
3718       && EDGE_COUNT (xbb->succs) == 1
3719       && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3720       /* When successor is an EXIT block, it may not be the next block.  */
3721       && single_succ (xbb) != EXIT_BLOCK_PTR
3722       /* And unconditional jump in previous basic block leads to
3723          next basic block of XBB and this jump can be safely removed.  */
3724       && in_current_region_p (xbb->prev_bb)
3725       && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3726       && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3727       /* Also this jump is not at the scheduling boundary.  */
3728       && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3729     {
3730       bool recompute_toporder_p;
3731       /* Clear data structures of jump - jump itself will be removed
3732          by sel_redirect_edge_and_branch.  */
3733       clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3734       recompute_toporder_p
3735         = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3736 
3737       gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3738 
3739       /* It can turn out that after removing unused jump, basic block
3740          that contained that jump, becomes empty too.  In such case
3741          remove it too.  */
3742       if (sel_bb_empty_p (xbb->prev_bb))
3743         changed = maybe_tidy_empty_bb (xbb->prev_bb);
3744       if (recompute_toporder_p)
3745 	sel_recompute_toporder ();
3746     }
3747 
3748 #ifdef ENABLE_CHECKING
3749   verify_backedges ();
3750   verify_dominators (CDI_DOMINATORS);
3751 #endif
3752 
3753   return changed;
3754 }
3755 
3756 /* Purge meaningless empty blocks in the middle of a region.  */
3757 void
3758 purge_empty_blocks (void)
3759 {
3760   int i;
3761 
3762   /* Do not attempt to delete the first basic block in the region.  */
3763   for (i = 1; i < current_nr_blocks; )
3764     {
3765       basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3766 
3767       if (maybe_tidy_empty_bb (b))
3768 	continue;
3769 
3770       i++;
3771     }
3772 }
3773 
3774 /* Rip-off INSN from the insn stream.  When ONLY_DISCONNECT is true,
3775    do not delete insn's data, because it will be later re-emitted.
3776    Return true if we have removed some blocks afterwards.  */
3777 bool
3778 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3779 {
3780   basic_block bb = BLOCK_FOR_INSN (insn);
3781 
3782   gcc_assert (INSN_IN_STREAM_P (insn));
3783 
3784   if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3785     {
3786       expr_t expr;
3787       av_set_iterator i;
3788 
3789       /* When we remove a debug insn that is head of a BB, it remains
3790 	 in the AV_SET of the block, but it shouldn't.  */
3791       FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3792 	if (EXPR_INSN_RTX (expr) == insn)
3793 	  {
3794 	    av_set_iter_remove (&i);
3795 	    break;
3796 	  }
3797     }
3798 
3799   if (only_disconnect)
3800     {
3801       insn_t prev = PREV_INSN (insn);
3802       insn_t next = NEXT_INSN (insn);
3803       basic_block bb = BLOCK_FOR_INSN (insn);
3804 
3805       NEXT_INSN (prev) = next;
3806       PREV_INSN (next) = prev;
3807 
3808       if (BB_HEAD (bb) == insn)
3809         {
3810           gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3811           BB_HEAD (bb) = prev;
3812         }
3813       if (BB_END (bb) == insn)
3814         BB_END (bb) = prev;
3815     }
3816   else
3817     {
3818       remove_insn (insn);
3819       clear_expr (INSN_EXPR (insn));
3820     }
3821 
3822   /* It is necessary to null this fields before calling add_insn ().  */
3823   PREV_INSN (insn) = NULL_RTX;
3824   NEXT_INSN (insn) = NULL_RTX;
3825 
3826   return tidy_control_flow (bb, full_tidying);
3827 }
3828 
3829 /* Estimate number of the insns in BB.  */
3830 static int
3831 sel_estimate_number_of_insns (basic_block bb)
3832 {
3833   int res = 0;
3834   insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3835 
3836   for (; insn != next_tail; insn = NEXT_INSN (insn))
3837     if (NONDEBUG_INSN_P (insn))
3838       res++;
3839 
3840   return res;
3841 }
3842 
3843 /* We don't need separate luids for notes or labels.  */
3844 static int
3845 sel_luid_for_non_insn (rtx x)
3846 {
3847   gcc_assert (NOTE_P (x) || LABEL_P (x));
3848 
3849   return -1;
3850 }
3851 
3852 /* Return seqno of the only predecessor of INSN.  */
3853 static int
3854 get_seqno_of_a_pred (insn_t insn)
3855 {
3856   int seqno;
3857 
3858   gcc_assert (INSN_SIMPLEJUMP_P (insn));
3859 
3860   if (!sel_bb_head_p (insn))
3861     seqno = INSN_SEQNO (PREV_INSN (insn));
3862   else
3863     {
3864       basic_block bb = BLOCK_FOR_INSN (insn);
3865 
3866       if (single_pred_p (bb)
3867 	  && !in_current_region_p (single_pred (bb)))
3868 	{
3869           /* We can have preds outside a region when splitting edges
3870              for pipelining of an outer loop.  Use succ instead.
3871              There should be only one of them.  */
3872 	  insn_t succ = NULL;
3873           succ_iterator si;
3874           bool first = true;
3875 
3876 	  gcc_assert (flag_sel_sched_pipelining_outer_loops
3877 		      && current_loop_nest);
3878           FOR_EACH_SUCC_1 (succ, si, insn,
3879                            SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3880             {
3881               gcc_assert (first);
3882               first = false;
3883             }
3884 
3885 	  gcc_assert (succ != NULL);
3886 	  seqno = INSN_SEQNO (succ);
3887 	}
3888       else
3889 	{
3890 	  insn_t *preds;
3891 	  int n;
3892 
3893 	  cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3894 	  gcc_assert (n == 1);
3895 
3896 	  seqno = INSN_SEQNO (preds[0]);
3897 
3898 	  free (preds);
3899 	}
3900     }
3901 
3902   return seqno;
3903 }
3904 
3905 /*  Find the proper seqno for inserting at INSN.  Returns -1 if no predecessors
3906     with positive seqno exist.  */
3907 int
3908 get_seqno_by_preds (rtx insn)
3909 {
3910   basic_block bb = BLOCK_FOR_INSN (insn);
3911   rtx tmp = insn, head = BB_HEAD (bb);
3912   insn_t *preds;
3913   int n, i, seqno;
3914 
3915   while (tmp != head)
3916     if (INSN_P (tmp))
3917       return INSN_SEQNO (tmp);
3918     else
3919       tmp = PREV_INSN (tmp);
3920 
3921   cfg_preds (bb, &preds, &n);
3922   for (i = 0, seqno = -1; i < n; i++)
3923     seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3924 
3925   return seqno;
3926 }
3927 
3928 
3929 
3930 /* Extend pass-scope data structures for basic blocks.  */
3931 void
3932 sel_extend_global_bb_info (void)
3933 {
3934   VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3935 			 last_basic_block);
3936 }
3937 
3938 /* Extend region-scope data structures for basic blocks.  */
3939 static void
3940 extend_region_bb_info (void)
3941 {
3942   VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3943 			 last_basic_block);
3944 }
3945 
3946 /* Extend all data structures to fit for all basic blocks.  */
3947 static void
3948 extend_bb_info (void)
3949 {
3950   sel_extend_global_bb_info ();
3951   extend_region_bb_info ();
3952 }
3953 
3954 /* Finalize pass-scope data structures for basic blocks.  */
3955 void
3956 sel_finish_global_bb_info (void)
3957 {
3958   VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3959 }
3960 
3961 /* Finalize region-scope data structures for basic blocks.  */
3962 static void
3963 finish_region_bb_info (void)
3964 {
3965   VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3966 }
3967 
3968 
3969 /* Data for each insn in current region.  */
3970 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3971 
3972 /* A vector for the insns we've emitted.  */
3973 static insn_vec_t new_insns = NULL;
3974 
3975 /* Extend data structures for insns from current region.  */
3976 static void
3977 extend_insn_data (void)
3978 {
3979   int reserve;
3980 
3981   sched_extend_target ();
3982   sched_deps_init (false);
3983 
3984   /* Extend data structures for insns from current region.  */
3985   reserve = (sched_max_luid + 1
3986              - VEC_length (sel_insn_data_def, s_i_d));
3987   if (reserve > 0
3988       && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3989     {
3990       int size;
3991 
3992       if (sched_max_luid / 2 > 1024)
3993         size = sched_max_luid + 1024;
3994       else
3995         size = 3 * sched_max_luid / 2;
3996 
3997 
3998       VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3999     }
4000 }
4001 
4002 /* Finalize data structures for insns from current region.  */
4003 static void
4004 finish_insns (void)
4005 {
4006   unsigned i;
4007 
4008   /* Clear here all dependence contexts that may have left from insns that were
4009      removed during the scheduling.  */
4010   for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4011     {
4012       sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4013 
4014       if (sid_entry->live)
4015         return_regset_to_pool (sid_entry->live);
4016       if (sid_entry->analyzed_deps)
4017 	{
4018 	  BITMAP_FREE (sid_entry->analyzed_deps);
4019 	  BITMAP_FREE (sid_entry->found_deps);
4020           htab_delete (sid_entry->transformed_insns);
4021 	  free_deps (&sid_entry->deps_context);
4022 	}
4023       if (EXPR_VINSN (&sid_entry->expr))
4024         {
4025           clear_expr (&sid_entry->expr);
4026 
4027           /* Also, clear CANT_MOVE bit here, because we really don't want it
4028              to be passed to the next region.  */
4029           CANT_MOVE_BY_LUID (i) = 0;
4030         }
4031     }
4032 
4033   VEC_free (sel_insn_data_def, heap, s_i_d);
4034 }
4035 
4036 /* A proxy to pass initialization data to init_insn ().  */
4037 static sel_insn_data_def _insn_init_ssid;
4038 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4039 
4040 /* If true create a new vinsn.  Otherwise use the one from EXPR.  */
4041 static bool insn_init_create_new_vinsn_p;
4042 
4043 /* Set all necessary data for initialization of the new insn[s].  */
4044 static expr_t
4045 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4046 {
4047   expr_t x = &insn_init_ssid->expr;
4048 
4049   copy_expr_onside (x, expr);
4050   if (vi != NULL)
4051     {
4052       insn_init_create_new_vinsn_p = false;
4053       change_vinsn_in_expr (x, vi);
4054     }
4055   else
4056     insn_init_create_new_vinsn_p = true;
4057 
4058   insn_init_ssid->seqno = seqno;
4059   return x;
4060 }
4061 
4062 /* Init data for INSN.  */
4063 static void
4064 init_insn_data (insn_t insn)
4065 {
4066   expr_t expr;
4067   sel_insn_data_t ssid = insn_init_ssid;
4068 
4069   /* The fields mentioned below are special and hence are not being
4070      propagated to the new insns.  */
4071   gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4072 	      && !ssid->after_stall_p && ssid->sched_cycle == 0);
4073   gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4074 
4075   expr = INSN_EXPR (insn);
4076   copy_expr (expr, &ssid->expr);
4077   prepare_insn_expr (insn, ssid->seqno);
4078 
4079   if (insn_init_create_new_vinsn_p)
4080     change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4081 
4082   if (first_time_insn_init (insn))
4083     init_first_time_insn_data (insn);
4084 }
4085 
4086 /* This is used to initialize spurious jumps generated by
4087    sel_redirect_edge ().  */
4088 static void
4089 init_simplejump_data (insn_t insn)
4090 {
4091   init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4092 	     REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4093 	     false, true);
4094   INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4095   init_first_time_insn_data (insn);
4096 }
4097 
4098 /* Perform deferred initialization of insns.  This is used to process
4099    a new jump that may be created by redirect_edge.  */
4100 void
4101 sel_init_new_insn (insn_t insn, int flags)
4102 {
4103   /* We create data structures for bb when the first insn is emitted in it.  */
4104   if (INSN_P (insn)
4105       && INSN_IN_STREAM_P (insn)
4106       && insn_is_the_only_one_in_bb_p (insn))
4107     {
4108       extend_bb_info ();
4109       create_initial_data_sets (BLOCK_FOR_INSN (insn));
4110     }
4111 
4112   if (flags & INSN_INIT_TODO_LUID)
4113     sched_init_luids (NULL, NULL, NULL, insn);
4114 
4115   if (flags & INSN_INIT_TODO_SSID)
4116     {
4117       extend_insn_data ();
4118       init_insn_data (insn);
4119       clear_expr (&insn_init_ssid->expr);
4120     }
4121 
4122   if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4123     {
4124       extend_insn_data ();
4125       init_simplejump_data (insn);
4126     }
4127 
4128   gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4129               == CONTAINING_RGN (BB_TO_BLOCK (0)));
4130 }
4131 
4132 
4133 /* Functions to init/finish work with lv sets.  */
4134 
4135 /* Init BB_LV_SET of BB from DF_LR_IN set of BB.  */
4136 static void
4137 init_lv_set (basic_block bb)
4138 {
4139   gcc_assert (!BB_LV_SET_VALID_P (bb));
4140 
4141   BB_LV_SET (bb) = get_regset_from_pool ();
4142   COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4143   BB_LV_SET_VALID_P (bb) = true;
4144 }
4145 
4146 /* Copy liveness information to BB from FROM_BB.  */
4147 static void
4148 copy_lv_set_from (basic_block bb, basic_block from_bb)
4149 {
4150   gcc_assert (!BB_LV_SET_VALID_P (bb));
4151 
4152   COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4153   BB_LV_SET_VALID_P (bb) = true;
4154 }
4155 
4156 /* Initialize lv set of all bb headers.  */
4157 void
4158 init_lv_sets (void)
4159 {
4160   basic_block bb;
4161 
4162   /* Initialize of LV sets.  */
4163   FOR_EACH_BB (bb)
4164     init_lv_set (bb);
4165 
4166   /* Don't forget EXIT_BLOCK.  */
4167   init_lv_set (EXIT_BLOCK_PTR);
4168 }
4169 
4170 /* Release lv set of HEAD.  */
4171 static void
4172 free_lv_set (basic_block bb)
4173 {
4174   gcc_assert (BB_LV_SET (bb) != NULL);
4175 
4176   return_regset_to_pool (BB_LV_SET (bb));
4177   BB_LV_SET (bb) = NULL;
4178   BB_LV_SET_VALID_P (bb) = false;
4179 }
4180 
4181 /* Finalize lv sets of all bb headers.  */
4182 void
4183 free_lv_sets (void)
4184 {
4185   basic_block bb;
4186 
4187   /* Don't forget EXIT_BLOCK.  */
4188   free_lv_set (EXIT_BLOCK_PTR);
4189 
4190   /* Free LV sets.  */
4191   FOR_EACH_BB (bb)
4192     if (BB_LV_SET (bb))
4193       free_lv_set (bb);
4194 }
4195 
4196 /* Initialize an invalid AV_SET for BB.
4197    This set will be updated next time compute_av () process BB.  */
4198 static void
4199 invalidate_av_set (basic_block bb)
4200 {
4201   gcc_assert (BB_AV_LEVEL (bb) <= 0
4202 	      && BB_AV_SET (bb) == NULL);
4203 
4204   BB_AV_LEVEL (bb) = -1;
4205 }
4206 
4207 /* Create initial data sets for BB (they will be invalid).  */
4208 static void
4209 create_initial_data_sets (basic_block bb)
4210 {
4211   if (BB_LV_SET (bb))
4212     BB_LV_SET_VALID_P (bb) = false;
4213   else
4214     BB_LV_SET (bb) = get_regset_from_pool ();
4215   invalidate_av_set (bb);
4216 }
4217 
4218 /* Free av set of BB.  */
4219 static void
4220 free_av_set (basic_block bb)
4221 {
4222   av_set_clear (&BB_AV_SET (bb));
4223   BB_AV_LEVEL (bb) = 0;
4224 }
4225 
4226 /* Free data sets of BB.  */
4227 void
4228 free_data_sets (basic_block bb)
4229 {
4230   free_lv_set (bb);
4231   free_av_set (bb);
4232 }
4233 
4234 /* Exchange lv sets of TO and FROM.  */
4235 static void
4236 exchange_lv_sets (basic_block to, basic_block from)
4237 {
4238   {
4239     regset to_lv_set = BB_LV_SET (to);
4240 
4241     BB_LV_SET (to) = BB_LV_SET (from);
4242     BB_LV_SET (from) = to_lv_set;
4243   }
4244 
4245   {
4246     bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4247 
4248     BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4249     BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4250   }
4251 }
4252 
4253 
4254 /* Exchange av sets of TO and FROM.  */
4255 static void
4256 exchange_av_sets (basic_block to, basic_block from)
4257 {
4258   {
4259     av_set_t to_av_set = BB_AV_SET (to);
4260 
4261     BB_AV_SET (to) = BB_AV_SET (from);
4262     BB_AV_SET (from) = to_av_set;
4263   }
4264 
4265   {
4266     int to_av_level = BB_AV_LEVEL (to);
4267 
4268     BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4269     BB_AV_LEVEL (from) = to_av_level;
4270   }
4271 }
4272 
4273 /* Exchange data sets of TO and FROM.  */
4274 void
4275 exchange_data_sets (basic_block to, basic_block from)
4276 {
4277   exchange_lv_sets (to, from);
4278   exchange_av_sets (to, from);
4279 }
4280 
4281 /* Copy data sets of FROM to TO.  */
4282 void
4283 copy_data_sets (basic_block to, basic_block from)
4284 {
4285   gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4286   gcc_assert (BB_AV_SET (to) == NULL);
4287 
4288   BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4289   BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4290 
4291   if (BB_AV_SET_VALID_P (from))
4292     {
4293       BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4294     }
4295   if (BB_LV_SET_VALID_P (from))
4296     {
4297       gcc_assert (BB_LV_SET (to) != NULL);
4298       COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4299     }
4300 }
4301 
4302 /* Return an av set for INSN, if any.  */
4303 av_set_t
4304 get_av_set (insn_t insn)
4305 {
4306   av_set_t av_set;
4307 
4308   gcc_assert (AV_SET_VALID_P (insn));
4309 
4310   if (sel_bb_head_p (insn))
4311     av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4312   else
4313     av_set = NULL;
4314 
4315   return av_set;
4316 }
4317 
4318 /* Implementation of AV_LEVEL () macro.  Return AV_LEVEL () of INSN.  */
4319 int
4320 get_av_level (insn_t insn)
4321 {
4322   int av_level;
4323 
4324   gcc_assert (INSN_P (insn));
4325 
4326   if (sel_bb_head_p (insn))
4327     av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4328   else
4329     av_level = INSN_WS_LEVEL (insn);
4330 
4331   return av_level;
4332 }
4333 
4334 
4335 
4336 /* Variables to work with control-flow graph.  */
4337 
4338 /* The basic block that already has been processed by the sched_data_update (),
4339    but hasn't been in sel_add_bb () yet.  */
4340 static VEC (basic_block, heap) *last_added_blocks = NULL;
4341 
4342 /* A pool for allocating successor infos.  */
4343 static struct
4344 {
4345   /* A stack for saving succs_info structures.  */
4346   struct succs_info *stack;
4347 
4348   /* Its size.  */
4349   int size;
4350 
4351   /* Top of the stack.  */
4352   int top;
4353 
4354   /* Maximal value of the top.  */
4355   int max_top;
4356 }  succs_info_pool;
4357 
4358 /* Functions to work with control-flow graph.  */
4359 
4360 /* Return basic block note of BB.  */
4361 insn_t
4362 sel_bb_head (basic_block bb)
4363 {
4364   insn_t head;
4365 
4366   if (bb == EXIT_BLOCK_PTR)
4367     {
4368       gcc_assert (exit_insn != NULL_RTX);
4369       head = exit_insn;
4370     }
4371   else
4372     {
4373       insn_t note;
4374 
4375       note = bb_note (bb);
4376       head = next_nonnote_insn (note);
4377 
4378       if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4379 	head = NULL_RTX;
4380     }
4381 
4382   return head;
4383 }
4384 
4385 /* Return true if INSN is a basic block header.  */
4386 bool
4387 sel_bb_head_p (insn_t insn)
4388 {
4389   return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4390 }
4391 
4392 /* Return last insn of BB.  */
4393 insn_t
4394 sel_bb_end (basic_block bb)
4395 {
4396   if (sel_bb_empty_p (bb))
4397     return NULL_RTX;
4398 
4399   gcc_assert (bb != EXIT_BLOCK_PTR);
4400 
4401   return BB_END (bb);
4402 }
4403 
4404 /* Return true if INSN is the last insn in its basic block.  */
4405 bool
4406 sel_bb_end_p (insn_t insn)
4407 {
4408   return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4409 }
4410 
4411 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK.  */
4412 bool
4413 sel_bb_empty_p (basic_block bb)
4414 {
4415   return sel_bb_head (bb) == NULL;
4416 }
4417 
4418 /* True when BB belongs to the current scheduling region.  */
4419 bool
4420 in_current_region_p (basic_block bb)
4421 {
4422   if (bb->index < NUM_FIXED_BLOCKS)
4423     return false;
4424 
4425   return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4426 }
4427 
4428 /* Return the block which is a fallthru bb of a conditional jump JUMP.  */
4429 basic_block
4430 fallthru_bb_of_jump (rtx jump)
4431 {
4432   if (!JUMP_P (jump))
4433     return NULL;
4434 
4435   if (!any_condjump_p (jump))
4436     return NULL;
4437 
4438   /* A basic block that ends with a conditional jump may still have one successor
4439      (and be followed by a barrier), we are not interested.  */
4440   if (single_succ_p (BLOCK_FOR_INSN (jump)))
4441     return NULL;
4442 
4443   return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4444 }
4445 
4446 /* Remove all notes from BB.  */
4447 static void
4448 init_bb (basic_block bb)
4449 {
4450   remove_notes (bb_note (bb), BB_END (bb));
4451   BB_NOTE_LIST (bb) = note_list;
4452 }
4453 
4454 void
4455 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4456 {
4457   const struct sched_scan_info_def ssi =
4458     {
4459       extend_bb_info, /* extend_bb */
4460       init_bb, /* init_bb */
4461       NULL, /* extend_insn */
4462       NULL /* init_insn */
4463     };
4464 
4465   sched_scan (&ssi, bbs, bb, new_insns, NULL);
4466 }
4467 
4468 /* Restore notes for the whole region.  */
4469 static void
4470 sel_restore_notes (void)
4471 {
4472   int bb;
4473   insn_t insn;
4474 
4475   for (bb = 0; bb < current_nr_blocks; bb++)
4476     {
4477       basic_block first, last;
4478 
4479       first = EBB_FIRST_BB (bb);
4480       last = EBB_LAST_BB (bb)->next_bb;
4481 
4482       do
4483 	{
4484 	  note_list = BB_NOTE_LIST (first);
4485 	  restore_other_notes (NULL, first);
4486 	  BB_NOTE_LIST (first) = NULL_RTX;
4487 
4488 	  FOR_BB_INSNS (first, insn)
4489 	    if (NONDEBUG_INSN_P (insn))
4490 	      reemit_notes (insn);
4491 
4492           first = first->next_bb;
4493 	}
4494       while (first != last);
4495     }
4496 }
4497 
4498 /* Free per-bb data structures.  */
4499 void
4500 sel_finish_bbs (void)
4501 {
4502   sel_restore_notes ();
4503 
4504   /* Remove current loop preheader from this loop.  */
4505   if (current_loop_nest)
4506     sel_remove_loop_preheader ();
4507 
4508   finish_region_bb_info ();
4509 }
4510 
4511 /* Return true if INSN has a single successor of type FLAGS.  */
4512 bool
4513 sel_insn_has_single_succ_p (insn_t insn, int flags)
4514 {
4515   insn_t succ;
4516   succ_iterator si;
4517   bool first_p = true;
4518 
4519   FOR_EACH_SUCC_1 (succ, si, insn, flags)
4520     {
4521       if (first_p)
4522 	first_p = false;
4523       else
4524 	return false;
4525     }
4526 
4527   return true;
4528 }
4529 
4530 /* Allocate successor's info.  */
4531 static struct succs_info *
4532 alloc_succs_info (void)
4533 {
4534   if (succs_info_pool.top == succs_info_pool.max_top)
4535     {
4536       int i;
4537 
4538       if (++succs_info_pool.max_top >= succs_info_pool.size)
4539         gcc_unreachable ();
4540 
4541       i = ++succs_info_pool.top;
4542       succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4543       succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4544       succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4545     }
4546   else
4547     succs_info_pool.top++;
4548 
4549   return &succs_info_pool.stack[succs_info_pool.top];
4550 }
4551 
4552 /* Free successor's info.  */
4553 void
4554 free_succs_info (struct succs_info * sinfo)
4555 {
4556   gcc_assert (succs_info_pool.top >= 0
4557               && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4558   succs_info_pool.top--;
4559 
4560   /* Clear stale info.  */
4561   VEC_block_remove (rtx, sinfo->succs_ok,
4562                     0, VEC_length (rtx, sinfo->succs_ok));
4563   VEC_block_remove (rtx, sinfo->succs_other,
4564                     0, VEC_length (rtx, sinfo->succs_other));
4565   VEC_block_remove (int, sinfo->probs_ok,
4566                     0, VEC_length (int, sinfo->probs_ok));
4567   sinfo->all_prob = 0;
4568   sinfo->succs_ok_n = 0;
4569   sinfo->all_succs_n = 0;
4570 }
4571 
4572 /* Compute successor info for INSN.  FLAGS are the flags passed
4573    to the FOR_EACH_SUCC_1 iterator.  */
4574 struct succs_info *
4575 compute_succs_info (insn_t insn, short flags)
4576 {
4577   succ_iterator si;
4578   insn_t succ;
4579   struct succs_info *sinfo = alloc_succs_info ();
4580 
4581   /* Traverse *all* successors and decide what to do with each.  */
4582   FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4583     {
4584       /* FIXME: this doesn't work for skipping to loop exits, as we don't
4585          perform code motion through inner loops.  */
4586       short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4587 
4588       if (current_flags & flags)
4589         {
4590           VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4591           VEC_safe_push (int, heap, sinfo->probs_ok,
4592                          /* FIXME: Improve calculation when skipping
4593                             inner loop to exits.  */
4594                          (si.bb_end
4595                           ? si.e1->probability
4596                           : REG_BR_PROB_BASE));
4597           sinfo->succs_ok_n++;
4598         }
4599       else
4600         VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4601 
4602       /* Compute all_prob.  */
4603       if (!si.bb_end)
4604         sinfo->all_prob = REG_BR_PROB_BASE;
4605       else
4606         sinfo->all_prob += si.e1->probability;
4607 
4608       sinfo->all_succs_n++;
4609     }
4610 
4611   return sinfo;
4612 }
4613 
4614 /* Return the predecessors of BB in PREDS and their number in N.
4615    Empty blocks are skipped.  SIZE is used to allocate PREDS.  */
4616 static void
4617 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4618 {
4619   edge e;
4620   edge_iterator ei;
4621 
4622   gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4623 
4624   FOR_EACH_EDGE (e, ei, bb->preds)
4625     {
4626       basic_block pred_bb = e->src;
4627       insn_t bb_end = BB_END (pred_bb);
4628 
4629       if (!in_current_region_p (pred_bb))
4630 	{
4631 	  gcc_assert (flag_sel_sched_pipelining_outer_loops
4632 		      && current_loop_nest);
4633 	  continue;
4634 	}
4635 
4636       if (sel_bb_empty_p (pred_bb))
4637 	cfg_preds_1 (pred_bb, preds, n, size);
4638       else
4639 	{
4640 	  if (*n == *size)
4641 	    *preds = XRESIZEVEC (insn_t, *preds,
4642                                  (*size = 2 * *size + 1));
4643 	  (*preds)[(*n)++] = bb_end;
4644 	}
4645     }
4646 
4647   gcc_assert (*n != 0
4648 	      || (flag_sel_sched_pipelining_outer_loops
4649 		  && current_loop_nest));
4650 }
4651 
4652 /* Find all predecessors of BB and record them in PREDS and their number
4653    in N.  Empty blocks are skipped, and only normal (forward in-region)
4654    edges are processed.  */
4655 static void
4656 cfg_preds (basic_block bb, insn_t **preds, int *n)
4657 {
4658   int size = 0;
4659 
4660   *preds = NULL;
4661   *n = 0;
4662   cfg_preds_1 (bb, preds, n, &size);
4663 }
4664 
4665 /* Returns true if we are moving INSN through join point.  */
4666 bool
4667 sel_num_cfg_preds_gt_1 (insn_t insn)
4668 {
4669   basic_block bb;
4670 
4671   if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4672     return false;
4673 
4674   bb = BLOCK_FOR_INSN (insn);
4675 
4676   while (1)
4677     {
4678       if (EDGE_COUNT (bb->preds) > 1)
4679 	return true;
4680 
4681       gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4682       bb = EDGE_PRED (bb, 0)->src;
4683 
4684       if (!sel_bb_empty_p (bb))
4685 	break;
4686     }
4687 
4688   return false;
4689 }
4690 
4691 /* Returns true when BB should be the end of an ebb.  Adapted from the
4692    code in sched-ebb.c.  */
4693 bool
4694 bb_ends_ebb_p (basic_block bb)
4695 {
4696   basic_block next_bb = bb_next_bb (bb);
4697   edge e;
4698   edge_iterator ei;
4699 
4700   if (next_bb == EXIT_BLOCK_PTR
4701       || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4702       || (LABEL_P (BB_HEAD (next_bb))
4703 	  /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4704 	     Work around that.  */
4705 	  && !single_pred_p (next_bb)))
4706     return true;
4707 
4708   if (!in_current_region_p (next_bb))
4709     return true;
4710 
4711   FOR_EACH_EDGE (e, ei, bb->succs)
4712     if ((e->flags & EDGE_FALLTHRU) != 0)
4713       {
4714 	gcc_assert (e->dest == next_bb);
4715 
4716 	return false;
4717       }
4718 
4719   return true;
4720 }
4721 
4722 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4723    successor of INSN.  */
4724 bool
4725 in_same_ebb_p (insn_t insn, insn_t succ)
4726 {
4727   basic_block ptr = BLOCK_FOR_INSN (insn);
4728 
4729   for(;;)
4730     {
4731       if (ptr == BLOCK_FOR_INSN (succ))
4732         return true;
4733 
4734       if (bb_ends_ebb_p (ptr))
4735         return false;
4736 
4737       ptr = bb_next_bb (ptr);
4738     }
4739 
4740   gcc_unreachable ();
4741   return false;
4742 }
4743 
4744 /* Recomputes the reverse topological order for the function and
4745    saves it in REV_TOP_ORDER_INDEX.  REV_TOP_ORDER_INDEX_LEN is also
4746    modified appropriately.  */
4747 static void
4748 recompute_rev_top_order (void)
4749 {
4750   int *postorder;
4751   int n_blocks, i;
4752 
4753   if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4754     {
4755       rev_top_order_index_len = last_basic_block;
4756       rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4757                                         rev_top_order_index_len);
4758     }
4759 
4760   postorder = XNEWVEC (int, n_basic_blocks);
4761 
4762   n_blocks = post_order_compute (postorder, true, false);
4763   gcc_assert (n_basic_blocks == n_blocks);
4764 
4765   /* Build reverse function: for each basic block with BB->INDEX == K
4766      rev_top_order_index[K] is it's reverse topological sort number.  */
4767   for (i = 0; i < n_blocks; i++)
4768     {
4769       gcc_assert (postorder[i] < rev_top_order_index_len);
4770       rev_top_order_index[postorder[i]] = i;
4771     }
4772 
4773   free (postorder);
4774 }
4775 
4776 /* Clear all flags from insns in BB that could spoil its rescheduling.  */
4777 void
4778 clear_outdated_rtx_info (basic_block bb)
4779 {
4780   rtx insn;
4781 
4782   FOR_BB_INSNS (bb, insn)
4783     if (INSN_P (insn))
4784       {
4785 	SCHED_GROUP_P (insn) = 0;
4786 	INSN_AFTER_STALL_P (insn) = 0;
4787 	INSN_SCHED_TIMES (insn) = 0;
4788 	EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4789 
4790         /* We cannot use the changed caches, as previously we could ignore
4791            the LHS dependence due to enabled renaming and transform
4792            the expression, and currently we'll be unable to do this.  */
4793         htab_empty (INSN_TRANSFORMED_INSNS (insn));
4794       }
4795 }
4796 
4797 /* Add BB_NOTE to the pool of available basic block notes.  */
4798 static void
4799 return_bb_to_pool (basic_block bb)
4800 {
4801   rtx note = bb_note (bb);
4802 
4803   gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4804 	      && bb->aux == NULL);
4805 
4806   /* It turns out that current cfg infrastructure does not support
4807      reuse of basic blocks.  Don't bother for now.  */
4808   /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4809 }
4810 
4811 /* Get a bb_note from pool or return NULL_RTX if pool is empty.  */
4812 static rtx
4813 get_bb_note_from_pool (void)
4814 {
4815   if (VEC_empty (rtx, bb_note_pool))
4816     return NULL_RTX;
4817   else
4818     {
4819       rtx note = VEC_pop (rtx, bb_note_pool);
4820 
4821       PREV_INSN (note) = NULL_RTX;
4822       NEXT_INSN (note) = NULL_RTX;
4823 
4824       return note;
4825     }
4826 }
4827 
4828 /* Free bb_note_pool.  */
4829 void
4830 free_bb_note_pool (void)
4831 {
4832   VEC_free (rtx, heap, bb_note_pool);
4833 }
4834 
4835 /* Setup scheduler pool and successor structure.  */
4836 void
4837 alloc_sched_pools (void)
4838 {
4839   int succs_size;
4840 
4841   succs_size = MAX_WS + 1;
4842   succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4843   succs_info_pool.size = succs_size;
4844   succs_info_pool.top = -1;
4845   succs_info_pool.max_top = -1;
4846 
4847   sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4848                                         sizeof (struct _list_node), 500);
4849 }
4850 
4851 /* Free the pools.  */
4852 void
4853 free_sched_pools (void)
4854 {
4855   int i;
4856 
4857   free_alloc_pool (sched_lists_pool);
4858   gcc_assert (succs_info_pool.top == -1);
4859   for (i = 0; i < succs_info_pool.max_top; i++)
4860     {
4861       VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4862       VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4863       VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4864     }
4865   free (succs_info_pool.stack);
4866 }
4867 
4868 
4869 /* Returns a position in RGN where BB can be inserted retaining
4870    topological order.  */
4871 static int
4872 find_place_to_insert_bb (basic_block bb, int rgn)
4873 {
4874   bool has_preds_outside_rgn = false;
4875   edge e;
4876   edge_iterator ei;
4877 
4878   /* Find whether we have preds outside the region.  */
4879   FOR_EACH_EDGE (e, ei, bb->preds)
4880     if (!in_current_region_p (e->src))
4881       {
4882         has_preds_outside_rgn = true;
4883         break;
4884       }
4885 
4886   /* Recompute the top order -- needed when we have > 1 pred
4887      and in case we don't have preds outside.  */
4888   if (flag_sel_sched_pipelining_outer_loops
4889       && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4890     {
4891       int i, bbi = bb->index, cur_bbi;
4892 
4893       recompute_rev_top_order ();
4894       for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4895         {
4896           cur_bbi = BB_TO_BLOCK (i);
4897           if (rev_top_order_index[bbi]
4898               < rev_top_order_index[cur_bbi])
4899             break;
4900         }
4901 
4902       /* We skipped the right block, so we increase i.  We accomodate
4903          it for increasing by step later, so we decrease i.  */
4904       return (i + 1) - 1;
4905     }
4906   else if (has_preds_outside_rgn)
4907     {
4908       /* This is the case when we generate an extra empty block
4909          to serve as region head during pipelining.  */
4910       e = EDGE_SUCC (bb, 0);
4911       gcc_assert (EDGE_COUNT (bb->succs) == 1
4912                   && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4913                   && (BLOCK_TO_BB (e->dest->index) == 0));
4914       return -1;
4915     }
4916 
4917   /* We don't have preds outside the region.  We should have
4918      the only pred, because the multiple preds case comes from
4919      the pipelining of outer loops, and that is handled above.
4920      Just take the bbi of this single pred.  */
4921   if (EDGE_COUNT (bb->succs) > 0)
4922     {
4923       int pred_bbi;
4924 
4925       gcc_assert (EDGE_COUNT (bb->preds) == 1);
4926 
4927       pred_bbi = EDGE_PRED (bb, 0)->src->index;
4928       return BLOCK_TO_BB (pred_bbi);
4929     }
4930   else
4931     /* BB has no successors.  It is safe to put it in the end.  */
4932     return current_nr_blocks - 1;
4933 }
4934 
4935 /* Deletes an empty basic block freeing its data.  */
4936 static void
4937 delete_and_free_basic_block (basic_block bb)
4938 {
4939   gcc_assert (sel_bb_empty_p (bb));
4940 
4941   if (BB_LV_SET (bb))
4942     free_lv_set (bb);
4943 
4944   bitmap_clear_bit (blocks_to_reschedule, bb->index);
4945 
4946   /* Can't assert av_set properties because we use sel_aremove_bb
4947      when removing loop preheader from the region.  At the point of
4948      removing the preheader we already have deallocated sel_region_bb_info.  */
4949   gcc_assert (BB_LV_SET (bb) == NULL
4950               && !BB_LV_SET_VALID_P (bb)
4951               && BB_AV_LEVEL (bb) == 0
4952               && BB_AV_SET (bb) == NULL);
4953 
4954   delete_basic_block (bb);
4955 }
4956 
4957 /* Add BB to the current region and update the region data.  */
4958 static void
4959 add_block_to_current_region (basic_block bb)
4960 {
4961   int i, pos, bbi = -2, rgn;
4962 
4963   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4964   bbi = find_place_to_insert_bb (bb, rgn);
4965   bbi += 1;
4966   pos = RGN_BLOCKS (rgn) + bbi;
4967 
4968   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4969               && ebb_head[bbi] == pos);
4970 
4971   /* Make a place for the new block.  */
4972   extend_regions ();
4973 
4974   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4975     BLOCK_TO_BB (rgn_bb_table[i])++;
4976 
4977   memmove (rgn_bb_table + pos + 1,
4978            rgn_bb_table + pos,
4979            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4980 
4981   /* Initialize data for BB.  */
4982   rgn_bb_table[pos] = bb->index;
4983   BLOCK_TO_BB (bb->index) = bbi;
4984   CONTAINING_RGN (bb->index) = rgn;
4985 
4986   RGN_NR_BLOCKS (rgn)++;
4987 
4988   for (i = rgn + 1; i <= nr_regions; i++)
4989     RGN_BLOCKS (i)++;
4990 }
4991 
4992 /* Remove BB from the current region and update the region data.  */
4993 static void
4994 remove_bb_from_region (basic_block bb)
4995 {
4996   int i, pos, bbi = -2, rgn;
4997 
4998   rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4999   bbi = BLOCK_TO_BB (bb->index);
5000   pos = RGN_BLOCKS (rgn) + bbi;
5001 
5002   gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5003               && ebb_head[bbi] == pos);
5004 
5005   for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5006     BLOCK_TO_BB (rgn_bb_table[i])--;
5007 
5008   memmove (rgn_bb_table + pos,
5009            rgn_bb_table + pos + 1,
5010            (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5011 
5012   RGN_NR_BLOCKS (rgn)--;
5013   for (i = rgn + 1; i <= nr_regions; i++)
5014     RGN_BLOCKS (i)--;
5015 }
5016 
5017 /* Add BB to the current region  and update all data.  If BB is NULL, add all
5018    blocks from last_added_blocks vector.  */
5019 static void
5020 sel_add_bb (basic_block bb)
5021 {
5022   /* Extend luids so that new notes will receive zero luids.  */
5023   sched_init_luids (NULL, NULL, NULL, NULL);
5024   sched_init_bbs ();
5025   sel_init_bbs (last_added_blocks, NULL);
5026 
5027   /* When bb is passed explicitly, the vector should contain
5028      the only element that equals to bb; otherwise, the vector
5029      should not be NULL.  */
5030   gcc_assert (last_added_blocks != NULL);
5031 
5032   if (bb != NULL)
5033     {
5034       gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5035                   && VEC_index (basic_block,
5036                                 last_added_blocks, 0) == bb);
5037       add_block_to_current_region (bb);
5038 
5039       /* We associate creating/deleting data sets with the first insn
5040          appearing / disappearing in the bb.  */
5041       if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5042 	create_initial_data_sets (bb);
5043 
5044       VEC_free (basic_block, heap, last_added_blocks);
5045     }
5046   else
5047     /* BB is NULL - process LAST_ADDED_BLOCKS instead.  */
5048     {
5049       int i;
5050       basic_block temp_bb = NULL;
5051 
5052       for (i = 0;
5053            VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5054         {
5055           add_block_to_current_region (bb);
5056           temp_bb = bb;
5057         }
5058 
5059       /* We need to fetch at least one bb so we know the region
5060          to update.  */
5061       gcc_assert (temp_bb != NULL);
5062       bb = temp_bb;
5063 
5064       VEC_free (basic_block, heap, last_added_blocks);
5065     }
5066 
5067   rgn_setup_region (CONTAINING_RGN (bb->index));
5068 }
5069 
5070 /* Remove BB from the current region and update all data.
5071    If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg.  */
5072 static void
5073 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5074 {
5075   unsigned idx = bb->index;
5076 
5077   gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5078 
5079   remove_bb_from_region (bb);
5080   return_bb_to_pool (bb);
5081   bitmap_clear_bit (blocks_to_reschedule, idx);
5082 
5083   if (remove_from_cfg_p)
5084     {
5085       basic_block succ = single_succ (bb);
5086       delete_and_free_basic_block (bb);
5087       set_immediate_dominator (CDI_DOMINATORS, succ,
5088                                recompute_dominator (CDI_DOMINATORS, succ));
5089     }
5090 
5091   rgn_setup_region (CONTAINING_RGN (idx));
5092 }
5093 
5094 /* Concatenate info of EMPTY_BB to info of MERGE_BB.  */
5095 static void
5096 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5097 {
5098   gcc_assert (in_current_region_p (merge_bb));
5099 
5100   concat_note_lists (BB_NOTE_LIST (empty_bb),
5101 		     &BB_NOTE_LIST (merge_bb));
5102   BB_NOTE_LIST (empty_bb) = NULL_RTX;
5103 
5104 }
5105 
5106 /* Remove EMPTY_BB.  If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5107    region, but keep it in CFG.  */
5108 static void
5109 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5110 {
5111   /* The block should contain just a note or a label.
5112      We try to check whether it is unused below.  */
5113   gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5114               || LABEL_P (BB_HEAD (empty_bb)));
5115 
5116   /* If basic block has predecessors or successors, redirect them.  */
5117   if (remove_from_cfg_p
5118       && (EDGE_COUNT (empty_bb->preds) > 0
5119 	  || EDGE_COUNT (empty_bb->succs) > 0))
5120     {
5121       basic_block pred;
5122       basic_block succ;
5123 
5124       /* We need to init PRED and SUCC before redirecting edges.  */
5125       if (EDGE_COUNT (empty_bb->preds) > 0)
5126 	{
5127 	  edge e;
5128 
5129 	  gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5130 
5131 	  e = EDGE_PRED (empty_bb, 0);
5132           gcc_assert (e->src == empty_bb->prev_bb
5133 		      && (e->flags & EDGE_FALLTHRU));
5134 
5135 	  pred = empty_bb->prev_bb;
5136 	}
5137       else
5138 	pred = NULL;
5139 
5140       if (EDGE_COUNT (empty_bb->succs) > 0)
5141 	{
5142           /* We do not check fallthruness here as above, because
5143              after removing a jump the edge may actually be not fallthru.  */
5144 	  gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5145 	  succ = EDGE_SUCC (empty_bb, 0)->dest;
5146 	}
5147       else
5148 	succ = NULL;
5149 
5150       if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5151         {
5152           edge e = EDGE_PRED (empty_bb, 0);
5153 
5154           if (e->flags & EDGE_FALLTHRU)
5155             redirect_edge_succ_nodup (e, succ);
5156           else
5157             sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5158         }
5159 
5160       if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5161 	{
5162 	  edge e = EDGE_SUCC (empty_bb, 0);
5163 
5164 	  if (find_edge (pred, e->dest) == NULL)
5165 	    redirect_edge_pred (e, pred);
5166 	}
5167     }
5168 
5169   /* Finish removing.  */
5170   sel_remove_bb (empty_bb, remove_from_cfg_p);
5171 }
5172 
5173 /* An implementation of create_basic_block hook, which additionally updates
5174    per-bb data structures.  */
5175 static basic_block
5176 sel_create_basic_block (void *headp, void *endp, basic_block after)
5177 {
5178   basic_block new_bb;
5179   insn_t new_bb_note;
5180 
5181   gcc_assert (flag_sel_sched_pipelining_outer_loops
5182               || last_added_blocks == NULL);
5183 
5184   new_bb_note = get_bb_note_from_pool ();
5185 
5186   if (new_bb_note == NULL_RTX)
5187     new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5188   else
5189     {
5190       new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5191 					     new_bb_note, after);
5192       new_bb->aux = NULL;
5193     }
5194 
5195   VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5196 
5197   return new_bb;
5198 }
5199 
5200 /* Implement sched_init_only_bb ().  */
5201 static void
5202 sel_init_only_bb (basic_block bb, basic_block after)
5203 {
5204   gcc_assert (after == NULL);
5205 
5206   extend_regions ();
5207   rgn_make_new_region_out_of_new_block (bb);
5208 }
5209 
5210 /* Update the latch when we've splitted or merged it from FROM block to TO.
5211    This should be checked for all outer loops, too.  */
5212 static void
5213 change_loops_latches (basic_block from, basic_block to)
5214 {
5215   gcc_assert (from != to);
5216 
5217   if (current_loop_nest)
5218     {
5219       struct loop *loop;
5220 
5221       for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5222         if (considered_for_pipelining_p (loop) && loop->latch == from)
5223           {
5224             gcc_assert (loop == current_loop_nest);
5225             loop->latch = to;
5226             gcc_assert (loop_latch_edge (loop));
5227           }
5228     }
5229 }
5230 
5231 /* Splits BB on two basic blocks, adding it to the region and extending
5232    per-bb data structures.  Returns the newly created bb.  */
5233 static basic_block
5234 sel_split_block (basic_block bb, rtx after)
5235 {
5236   basic_block new_bb;
5237   insn_t insn;
5238 
5239   new_bb = sched_split_block_1 (bb, after);
5240   sel_add_bb (new_bb);
5241 
5242   /* This should be called after sel_add_bb, because this uses
5243      CONTAINING_RGN for the new block, which is not yet initialized.
5244      FIXME: this function may be a no-op now.  */
5245   change_loops_latches (bb, new_bb);
5246 
5247   /* Update ORIG_BB_INDEX for insns moved into the new block.  */
5248   FOR_BB_INSNS (new_bb, insn)
5249    if (INSN_P (insn))
5250      EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5251 
5252   if (sel_bb_empty_p (bb))
5253     {
5254       gcc_assert (!sel_bb_empty_p (new_bb));
5255 
5256       /* NEW_BB has data sets that need to be updated and BB holds
5257 	 data sets that should be removed.  Exchange these data sets
5258 	 so that we won't lose BB's valid data sets.  */
5259       exchange_data_sets (new_bb, bb);
5260       free_data_sets (bb);
5261     }
5262 
5263   if (!sel_bb_empty_p (new_bb)
5264       && bitmap_bit_p (blocks_to_reschedule, bb->index))
5265     bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5266 
5267   return new_bb;
5268 }
5269 
5270 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5271    Otherwise returns NULL.  */
5272 static rtx
5273 check_for_new_jump (basic_block bb, int prev_max_uid)
5274 {
5275   rtx end;
5276 
5277   end = sel_bb_end (bb);
5278   if (end && INSN_UID (end) >= prev_max_uid)
5279     return end;
5280   return NULL;
5281 }
5282 
5283 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5284    New means having UID at least equal to PREV_MAX_UID.  */
5285 static rtx
5286 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5287 {
5288   rtx jump;
5289 
5290   /* Return immediately if no new insns were emitted.  */
5291   if (get_max_uid () == prev_max_uid)
5292     return NULL;
5293 
5294   /* Now check both blocks for new jumps.  It will ever be only one.  */
5295   if ((jump = check_for_new_jump (from, prev_max_uid)))
5296     return jump;
5297 
5298   if (jump_bb != NULL
5299       && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5300     return jump;
5301   return NULL;
5302 }
5303 
5304 /* Splits E and adds the newly created basic block to the current region.
5305    Returns this basic block.  */
5306 basic_block
5307 sel_split_edge (edge e)
5308 {
5309   basic_block new_bb, src, other_bb = NULL;
5310   int prev_max_uid;
5311   rtx jump;
5312 
5313   src = e->src;
5314   prev_max_uid = get_max_uid ();
5315   new_bb = split_edge (e);
5316 
5317   if (flag_sel_sched_pipelining_outer_loops
5318       && current_loop_nest)
5319     {
5320       int i;
5321       basic_block bb;
5322 
5323       /* Some of the basic blocks might not have been added to the loop.
5324          Add them here, until this is fixed in force_fallthru.  */
5325       for (i = 0;
5326            VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5327         if (!bb->loop_father)
5328           {
5329             add_bb_to_loop (bb, e->dest->loop_father);
5330 
5331             gcc_assert (!other_bb && (new_bb->index != bb->index));
5332             other_bb = bb;
5333           }
5334     }
5335 
5336   /* Add all last_added_blocks to the region.  */
5337   sel_add_bb (NULL);
5338 
5339   jump = find_new_jump (src, new_bb, prev_max_uid);
5340   if (jump)
5341     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5342 
5343   /* Put the correct lv set on this block.  */
5344   if (other_bb && !sel_bb_empty_p (other_bb))
5345     compute_live (sel_bb_head (other_bb));
5346 
5347   return new_bb;
5348 }
5349 
5350 /* Implement sched_create_empty_bb ().  */
5351 static basic_block
5352 sel_create_empty_bb (basic_block after)
5353 {
5354   basic_block new_bb;
5355 
5356   new_bb = sched_create_empty_bb_1 (after);
5357 
5358   /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5359      later.  */
5360   gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5361 	      && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5362 
5363   VEC_free (basic_block, heap, last_added_blocks);
5364   return new_bb;
5365 }
5366 
5367 /* Implement sched_create_recovery_block.  ORIG_INSN is where block
5368    will be splitted to insert a check.  */
5369 basic_block
5370 sel_create_recovery_block (insn_t orig_insn)
5371 {
5372   basic_block first_bb, second_bb, recovery_block;
5373   basic_block before_recovery = NULL;
5374   rtx jump;
5375 
5376   first_bb = BLOCK_FOR_INSN (orig_insn);
5377   if (sel_bb_end_p (orig_insn))
5378     {
5379       /* Avoid introducing an empty block while splitting.  */
5380       gcc_assert (single_succ_p (first_bb));
5381       second_bb = single_succ (first_bb);
5382     }
5383   else
5384     second_bb = sched_split_block (first_bb, orig_insn);
5385 
5386   recovery_block = sched_create_recovery_block (&before_recovery);
5387   if (before_recovery)
5388     copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5389 
5390   gcc_assert (sel_bb_empty_p (recovery_block));
5391   sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5392   if (current_loops != NULL)
5393     add_bb_to_loop (recovery_block, first_bb->loop_father);
5394 
5395   sel_add_bb (recovery_block);
5396 
5397   jump = BB_END (recovery_block);
5398   gcc_assert (sel_bb_head (recovery_block) == jump);
5399   sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5400 
5401   return recovery_block;
5402 }
5403 
5404 /* Merge basic block B into basic block A.  */
5405 static void
5406 sel_merge_blocks (basic_block a, basic_block b)
5407 {
5408   gcc_assert (sel_bb_empty_p (b)
5409               && EDGE_COUNT (b->preds) == 1
5410               && EDGE_PRED (b, 0)->src == b->prev_bb);
5411 
5412   move_bb_info (b->prev_bb, b);
5413   remove_empty_bb (b, false);
5414   merge_blocks (a, b);
5415   change_loops_latches (b, a);
5416 }
5417 
5418 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5419    data structures for possibly created bb and insns.  Returns the newly
5420    added bb or NULL, when a bb was not needed.  */
5421 void
5422 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5423 {
5424   basic_block jump_bb, src, orig_dest = e->dest;
5425   int prev_max_uid;
5426   rtx jump;
5427 
5428   /* This function is now used only for bookkeeping code creation, where
5429      we'll never get the single pred of orig_dest block and thus will not
5430      hit unreachable blocks when updating dominator info.  */
5431   gcc_assert (!sel_bb_empty_p (e->src)
5432               && !single_pred_p (orig_dest));
5433   src = e->src;
5434   prev_max_uid = get_max_uid ();
5435   jump_bb = redirect_edge_and_branch_force (e, to);
5436 
5437   if (jump_bb != NULL)
5438     sel_add_bb (jump_bb);
5439 
5440   /* This function could not be used to spoil the loop structure by now,
5441      thus we don't care to update anything.  But check it to be sure.  */
5442   if (current_loop_nest
5443       && pipelining_p)
5444     gcc_assert (loop_latch_edge (current_loop_nest));
5445 
5446   jump = find_new_jump (src, jump_bb, prev_max_uid);
5447   if (jump)
5448     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5449   set_immediate_dominator (CDI_DOMINATORS, to,
5450 			   recompute_dominator (CDI_DOMINATORS, to));
5451   set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5452 			   recompute_dominator (CDI_DOMINATORS, orig_dest));
5453 }
5454 
5455 /* A wrapper for redirect_edge_and_branch.  Return TRUE if blocks connected by
5456    redirected edge are in reverse topological order.  */
5457 bool
5458 sel_redirect_edge_and_branch (edge e, basic_block to)
5459 {
5460   bool latch_edge_p;
5461   basic_block src, orig_dest = e->dest;
5462   int prev_max_uid;
5463   rtx jump;
5464   edge redirected;
5465   bool recompute_toporder_p = false;
5466   bool maybe_unreachable = single_pred_p (orig_dest);
5467 
5468   latch_edge_p = (pipelining_p
5469                   && current_loop_nest
5470                   && e == loop_latch_edge (current_loop_nest));
5471 
5472   src = e->src;
5473   prev_max_uid = get_max_uid ();
5474 
5475   redirected = redirect_edge_and_branch (e, to);
5476 
5477   gcc_assert (redirected && last_added_blocks == NULL);
5478 
5479   /* When we've redirected a latch edge, update the header.  */
5480   if (latch_edge_p)
5481     {
5482       current_loop_nest->header = to;
5483       gcc_assert (loop_latch_edge (current_loop_nest));
5484     }
5485 
5486   /* In rare situations, the topological relation between the blocks connected
5487      by the redirected edge can change (see PR42245 for an example).  Update
5488      block_to_bb/bb_to_block.  */
5489   if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5490       && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5491     recompute_toporder_p = true;
5492 
5493   jump = find_new_jump (src, NULL, prev_max_uid);
5494   if (jump)
5495     sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5496 
5497   /* Only update dominator info when we don't have unreachable blocks.
5498      Otherwise we'll update in maybe_tidy_empty_bb.  */
5499   if (!maybe_unreachable)
5500     {
5501       set_immediate_dominator (CDI_DOMINATORS, to,
5502                                recompute_dominator (CDI_DOMINATORS, to));
5503       set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5504                                recompute_dominator (CDI_DOMINATORS, orig_dest));
5505     }
5506   return recompute_toporder_p;
5507 }
5508 
5509 /* This variable holds the cfg hooks used by the selective scheduler.  */
5510 static struct cfg_hooks sel_cfg_hooks;
5511 
5512 /* Register sel-sched cfg hooks.  */
5513 void
5514 sel_register_cfg_hooks (void)
5515 {
5516   sched_split_block = sel_split_block;
5517 
5518   orig_cfg_hooks = get_cfg_hooks ();
5519   sel_cfg_hooks = orig_cfg_hooks;
5520 
5521   sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5522 
5523   set_cfg_hooks (sel_cfg_hooks);
5524 
5525   sched_init_only_bb = sel_init_only_bb;
5526   sched_split_block = sel_split_block;
5527   sched_create_empty_bb = sel_create_empty_bb;
5528 }
5529 
5530 /* Unregister sel-sched cfg hooks.  */
5531 void
5532 sel_unregister_cfg_hooks (void)
5533 {
5534   sched_create_empty_bb = NULL;
5535   sched_split_block = NULL;
5536   sched_init_only_bb = NULL;
5537 
5538   set_cfg_hooks (orig_cfg_hooks);
5539 }
5540 
5541 
5542 /* Emit an insn rtx based on PATTERN.  If a jump insn is wanted,
5543    LABEL is where this jump should be directed.  */
5544 rtx
5545 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5546 {
5547   rtx insn_rtx;
5548 
5549   gcc_assert (!INSN_P (pattern));
5550 
5551   start_sequence ();
5552 
5553   if (label == NULL_RTX)
5554     insn_rtx = emit_insn (pattern);
5555   else if (DEBUG_INSN_P (label))
5556     insn_rtx = emit_debug_insn (pattern);
5557   else
5558     {
5559       insn_rtx = emit_jump_insn (pattern);
5560       JUMP_LABEL (insn_rtx) = label;
5561       ++LABEL_NUSES (label);
5562     }
5563 
5564   end_sequence ();
5565 
5566   sched_init_luids (NULL, NULL, NULL, NULL);
5567   sched_extend_target ();
5568   sched_deps_init (false);
5569 
5570   /* Initialize INSN_CODE now.  */
5571   recog_memoized (insn_rtx);
5572   return insn_rtx;
5573 }
5574 
5575 /* Create a new vinsn for INSN_RTX.  FORCE_UNIQUE_P is true when the vinsn
5576    must not be clonable.  */
5577 vinsn_t
5578 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5579 {
5580   gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5581 
5582   /* If VINSN_TYPE is not USE, retain its uniqueness.  */
5583   return vinsn_create (insn_rtx, force_unique_p);
5584 }
5585 
5586 /* Create a copy of INSN_RTX.  */
5587 rtx
5588 create_copy_of_insn_rtx (rtx insn_rtx)
5589 {
5590   rtx res;
5591 
5592   if (DEBUG_INSN_P (insn_rtx))
5593     return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5594 					 insn_rtx);
5595 
5596   gcc_assert (NONJUMP_INSN_P (insn_rtx));
5597 
5598   res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5599                                       NULL_RTX);
5600   return res;
5601 }
5602 
5603 /* Change vinsn field of EXPR to hold NEW_VINSN.  */
5604 void
5605 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5606 {
5607   vinsn_detach (EXPR_VINSN (expr));
5608 
5609   EXPR_VINSN (expr) = new_vinsn;
5610   vinsn_attach (new_vinsn);
5611 }
5612 
5613 /* Helpers for global init.  */
5614 /* This structure is used to be able to call existing bundling mechanism
5615    and calculate insn priorities.  */
5616 static struct haifa_sched_info sched_sel_haifa_sched_info =
5617 {
5618   NULL, /* init_ready_list */
5619   NULL, /* can_schedule_ready_p */
5620   NULL, /* schedule_more_p */
5621   NULL, /* new_ready */
5622   NULL, /* rgn_rank */
5623   sel_print_insn, /* rgn_print_insn */
5624   contributes_to_priority,
5625   NULL, /* insn_finishes_block_p */
5626 
5627   NULL, NULL,
5628   NULL, NULL,
5629   0, 0,
5630 
5631   NULL, /* add_remove_insn */
5632   NULL, /* begin_schedule_ready */
5633   NULL, /* advance_target_bb */
5634   SEL_SCHED | NEW_BBS
5635 };
5636 
5637 /* Setup special insns used in the scheduler.  */
5638 void
5639 setup_nop_and_exit_insns (void)
5640 {
5641   gcc_assert (nop_pattern == NULL_RTX
5642 	      && exit_insn == NULL_RTX);
5643 
5644   nop_pattern = constm1_rtx;
5645 
5646   start_sequence ();
5647   emit_insn (nop_pattern);
5648   exit_insn = get_insns ();
5649   end_sequence ();
5650   set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5651 }
5652 
5653 /* Free special insns used in the scheduler.  */
5654 void
5655 free_nop_and_exit_insns (void)
5656 {
5657   exit_insn = NULL_RTX;
5658   nop_pattern = NULL_RTX;
5659 }
5660 
5661 /* Setup a special vinsn used in new insns initialization.  */
5662 void
5663 setup_nop_vinsn (void)
5664 {
5665   nop_vinsn = vinsn_create (exit_insn, false);
5666   vinsn_attach (nop_vinsn);
5667 }
5668 
5669 /* Free a special vinsn used in new insns initialization.  */
5670 void
5671 free_nop_vinsn (void)
5672 {
5673   gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5674   vinsn_detach (nop_vinsn);
5675   nop_vinsn = NULL;
5676 }
5677 
5678 /* Call a set_sched_flags hook.  */
5679 void
5680 sel_set_sched_flags (void)
5681 {
5682   /* ??? This means that set_sched_flags were called, and we decided to
5683      support speculation.  However, set_sched_flags also modifies flags
5684      on current_sched_info, doing this only at global init.  And we
5685      sometimes change c_s_i later.  So put the correct flags again.  */
5686   if (spec_info && targetm.sched.set_sched_flags)
5687     targetm.sched.set_sched_flags (spec_info);
5688 }
5689 
5690 /* Setup pointers to global sched info structures.  */
5691 void
5692 sel_setup_sched_infos (void)
5693 {
5694   rgn_setup_common_sched_info ();
5695 
5696   memcpy (&sel_common_sched_info, common_sched_info,
5697 	  sizeof (sel_common_sched_info));
5698 
5699   sel_common_sched_info.fix_recovery_cfg = NULL;
5700   sel_common_sched_info.add_block = NULL;
5701   sel_common_sched_info.estimate_number_of_insns
5702     = sel_estimate_number_of_insns;
5703   sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5704   sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5705 
5706   common_sched_info = &sel_common_sched_info;
5707 
5708   current_sched_info = &sched_sel_haifa_sched_info;
5709   current_sched_info->sched_max_insns_priority =
5710     get_rgn_sched_max_insns_priority ();
5711 
5712   sel_set_sched_flags ();
5713 }
5714 
5715 
5716 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5717    *BB_ORD_INDEX after that is increased.  */
5718 static void
5719 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5720 {
5721   RGN_NR_BLOCKS (rgn) += 1;
5722   RGN_DONT_CALC_DEPS (rgn) = 0;
5723   RGN_HAS_REAL_EBB (rgn) = 0;
5724   CONTAINING_RGN (bb->index) = rgn;
5725   BLOCK_TO_BB (bb->index) = *bb_ord_index;
5726   rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5727   (*bb_ord_index)++;
5728 
5729   /* FIXME: it is true only when not scheduling ebbs.  */
5730   RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5731 }
5732 
5733 /* Functions to support pipelining of outer loops.  */
5734 
5735 /* Creates a new empty region and returns it's number.  */
5736 static int
5737 sel_create_new_region (void)
5738 {
5739   int new_rgn_number = nr_regions;
5740 
5741   RGN_NR_BLOCKS (new_rgn_number) = 0;
5742 
5743   /* FIXME: This will work only when EBBs are not created.  */
5744   if (new_rgn_number != 0)
5745     RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5746       RGN_NR_BLOCKS (new_rgn_number - 1);
5747   else
5748     RGN_BLOCKS (new_rgn_number) = 0;
5749 
5750   /* Set the blocks of the next region so the other functions may
5751      calculate the number of blocks in the region.  */
5752   RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5753     RGN_NR_BLOCKS (new_rgn_number);
5754 
5755   nr_regions++;
5756 
5757   return new_rgn_number;
5758 }
5759 
5760 /* If X has a smaller topological sort number than Y, returns -1;
5761    if greater, returns 1.  */
5762 static int
5763 bb_top_order_comparator (const void *x, const void *y)
5764 {
5765   basic_block bb1 = *(const basic_block *) x;
5766   basic_block bb2 = *(const basic_block *) y;
5767 
5768   gcc_assert (bb1 == bb2
5769 	      || rev_top_order_index[bb1->index]
5770 		 != rev_top_order_index[bb2->index]);
5771 
5772   /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5773      bbs with greater number should go earlier.  */
5774   if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5775     return -1;
5776   else
5777     return 1;
5778 }
5779 
5780 /* Create a region for LOOP and return its number.  If we don't want
5781    to pipeline LOOP, return -1.  */
5782 static int
5783 make_region_from_loop (struct loop *loop)
5784 {
5785   unsigned int i;
5786   int new_rgn_number = -1;
5787   struct loop *inner;
5788 
5789   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5790   int bb_ord_index = 0;
5791   basic_block *loop_blocks;
5792   basic_block preheader_block;
5793 
5794   if (loop->num_nodes
5795       > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5796     return -1;
5797 
5798   /* Don't pipeline loops whose latch belongs to some of its inner loops.  */
5799   for (inner = loop->inner; inner; inner = inner->inner)
5800     if (flow_bb_inside_loop_p (inner, loop->latch))
5801       return -1;
5802 
5803   loop->ninsns = num_loop_insns (loop);
5804   if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5805     return -1;
5806 
5807   loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5808 
5809   for (i = 0; i < loop->num_nodes; i++)
5810     if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5811       {
5812 	free (loop_blocks);
5813 	return -1;
5814       }
5815 
5816   preheader_block = loop_preheader_edge (loop)->src;
5817   gcc_assert (preheader_block);
5818   gcc_assert (loop_blocks[0] == loop->header);
5819 
5820   new_rgn_number = sel_create_new_region ();
5821 
5822   sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5823   SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5824 
5825   for (i = 0; i < loop->num_nodes; i++)
5826     {
5827       /* Add only those blocks that haven't been scheduled in the inner loop.
5828 	 The exception is the basic blocks with bookkeeping code - they should
5829 	 be added to the region (and they actually don't belong to the loop
5830 	 body, but to the region containing that loop body).  */
5831 
5832       gcc_assert (new_rgn_number >= 0);
5833 
5834       if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5835 	{
5836 	  sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5837                                    new_rgn_number);
5838 	  SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5839 	}
5840     }
5841 
5842   free (loop_blocks);
5843   MARK_LOOP_FOR_PIPELINING (loop);
5844 
5845   return new_rgn_number;
5846 }
5847 
5848 /* Create a new region from preheader blocks LOOP_BLOCKS.  */
5849 void
5850 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5851 {
5852   unsigned int i;
5853   int new_rgn_number = -1;
5854   basic_block bb;
5855 
5856   /* Basic block index, to be assigned to BLOCK_TO_BB.  */
5857   int bb_ord_index = 0;
5858 
5859   new_rgn_number = sel_create_new_region ();
5860 
5861   for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5862     {
5863       gcc_assert (new_rgn_number >= 0);
5864 
5865       sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5866     }
5867 
5868   VEC_free (basic_block, heap, *loop_blocks);
5869   gcc_assert (*loop_blocks == NULL);
5870 }
5871 
5872 
5873 /* Create region(s) from loop nest LOOP, such that inner loops will be
5874    pipelined before outer loops.  Returns true when a region for LOOP
5875    is created.  */
5876 static bool
5877 make_regions_from_loop_nest (struct loop *loop)
5878 {
5879   struct loop *cur_loop;
5880   int rgn_number;
5881 
5882   /* Traverse all inner nodes of the loop.  */
5883   for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5884     if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5885       return false;
5886 
5887   /* At this moment all regular inner loops should have been pipelined.
5888      Try to create a region from this loop.  */
5889   rgn_number = make_region_from_loop (loop);
5890 
5891   if (rgn_number < 0)
5892     return false;
5893 
5894   VEC_safe_push (loop_p, heap, loop_nests, loop);
5895   return true;
5896 }
5897 
5898 /* Initalize data structures needed.  */
5899 void
5900 sel_init_pipelining (void)
5901 {
5902   /* Collect loop information to be used in outer loops pipelining.  */
5903   loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5904                        | LOOPS_HAVE_FALLTHRU_PREHEADERS
5905 		       | LOOPS_HAVE_RECORDED_EXITS
5906 		       | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5907   current_loop_nest = NULL;
5908 
5909   bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5910   sbitmap_zero (bbs_in_loop_rgns);
5911 
5912   recompute_rev_top_order ();
5913 }
5914 
5915 /* Returns a struct loop for region RGN.  */
5916 loop_p
5917 get_loop_nest_for_rgn (unsigned int rgn)
5918 {
5919   /* Regions created with extend_rgns don't have corresponding loop nests,
5920      because they don't represent loops.  */
5921   if (rgn < VEC_length (loop_p, loop_nests))
5922     return VEC_index (loop_p, loop_nests, rgn);
5923   else
5924     return NULL;
5925 }
5926 
5927 /* True when LOOP was included into pipelining regions.   */
5928 bool
5929 considered_for_pipelining_p (struct loop *loop)
5930 {
5931   if (loop_depth (loop) == 0)
5932     return false;
5933 
5934   /* Now, the loop could be too large or irreducible.  Check whether its
5935      region is in LOOP_NESTS.
5936      We determine the region number of LOOP as the region number of its
5937      latch.  We can't use header here, because this header could be
5938      just removed preheader and it will give us the wrong region number.
5939      Latch can't be used because it could be in the inner loop too.  */
5940   if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5941     {
5942       int rgn = CONTAINING_RGN (loop->latch->index);
5943 
5944       gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5945       return true;
5946     }
5947 
5948   return false;
5949 }
5950 
5951 /* Makes regions from the rest of the blocks, after loops are chosen
5952    for pipelining.  */
5953 static void
5954 make_regions_from_the_rest (void)
5955 {
5956   int cur_rgn_blocks;
5957   int *loop_hdr;
5958   int i;
5959 
5960   basic_block bb;
5961   edge e;
5962   edge_iterator ei;
5963   int *degree;
5964 
5965   /* Index in rgn_bb_table where to start allocating new regions.  */
5966   cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5967 
5968   /* Make regions from all the rest basic blocks - those that don't belong to
5969      any loop or belong to irreducible loops.  Prepare the data structures
5970      for extend_rgns.  */
5971 
5972   /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5973      LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5974      loop.  */
5975   loop_hdr = XNEWVEC (int, last_basic_block);
5976   degree = XCNEWVEC (int, last_basic_block);
5977 
5978 
5979   /* For each basic block that belongs to some loop assign the number
5980      of innermost loop it belongs to.  */
5981   for (i = 0; i < last_basic_block; i++)
5982     loop_hdr[i] = -1;
5983 
5984   FOR_EACH_BB (bb)
5985     {
5986       if (bb->loop_father && !bb->loop_father->num == 0
5987 	  && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5988 	loop_hdr[bb->index] = bb->loop_father->num;
5989     }
5990 
5991   /* For each basic block degree is calculated as the number of incoming
5992      edges, that are going out of bbs that are not yet scheduled.
5993      The basic blocks that are scheduled have degree value of zero.  */
5994   FOR_EACH_BB (bb)
5995     {
5996       degree[bb->index] = 0;
5997 
5998       if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5999 	{
6000 	  FOR_EACH_EDGE (e, ei, bb->preds)
6001 	    if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6002 	      degree[bb->index]++;
6003 	}
6004       else
6005 	degree[bb->index] = -1;
6006     }
6007 
6008   extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6009 
6010   /* Any block that did not end up in a region is placed into a region
6011      by itself.  */
6012   FOR_EACH_BB (bb)
6013     if (degree[bb->index] >= 0)
6014       {
6015 	rgn_bb_table[cur_rgn_blocks] = bb->index;
6016 	RGN_NR_BLOCKS (nr_regions) = 1;
6017 	RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6018         RGN_DONT_CALC_DEPS (nr_regions) = 0;
6019 	RGN_HAS_REAL_EBB (nr_regions) = 0;
6020 	CONTAINING_RGN (bb->index) = nr_regions++;
6021 	BLOCK_TO_BB (bb->index) = 0;
6022       }
6023 
6024   free (degree);
6025   free (loop_hdr);
6026 }
6027 
6028 /* Free data structures used in pipelining of loops.  */
6029 void sel_finish_pipelining (void)
6030 {
6031   loop_iterator li;
6032   struct loop *loop;
6033 
6034   /* Release aux fields so we don't free them later by mistake.  */
6035   FOR_EACH_LOOP (li, loop, 0)
6036     loop->aux = NULL;
6037 
6038   loop_optimizer_finalize ();
6039 
6040   VEC_free (loop_p, heap, loop_nests);
6041 
6042   free (rev_top_order_index);
6043   rev_top_order_index = NULL;
6044 }
6045 
6046 /* This function replaces the find_rgns when
6047    FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set.  */
6048 void
6049 sel_find_rgns (void)
6050 {
6051   sel_init_pipelining ();
6052   extend_regions ();
6053 
6054   if (current_loops)
6055     {
6056       loop_p loop;
6057       loop_iterator li;
6058 
6059       FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6060 				? LI_FROM_INNERMOST
6061 				: LI_ONLY_INNERMOST))
6062 	make_regions_from_loop_nest (loop);
6063     }
6064 
6065   /* Make regions from all the rest basic blocks and schedule them.
6066      These blocks include blocks that don't belong to any loop or belong
6067      to irreducible loops.  */
6068   make_regions_from_the_rest ();
6069 
6070   /* We don't need bbs_in_loop_rgns anymore.  */
6071   sbitmap_free (bbs_in_loop_rgns);
6072   bbs_in_loop_rgns = NULL;
6073 }
6074 
6075 /* Adds the preheader blocks from previous loop to current region taking
6076    it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6077    This function is only used with -fsel-sched-pipelining-outer-loops.  */
6078 void
6079 sel_add_loop_preheaders (void)
6080 {
6081   int i;
6082   basic_block bb;
6083   VEC(basic_block, heap) *preheader_blocks
6084     = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6085 
6086   for (i = 0;
6087        VEC_iterate (basic_block, preheader_blocks, i, bb);
6088        i++)
6089     {
6090       VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6091       sel_add_bb (bb);
6092     }
6093 
6094   VEC_free (basic_block, heap, preheader_blocks);
6095 }
6096 
6097 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6098    Please note that the function should also work when pipelining_p is
6099    false, because it is used when deciding whether we should or should
6100    not reschedule pipelined code.  */
6101 bool
6102 sel_is_loop_preheader_p (basic_block bb)
6103 {
6104   if (current_loop_nest)
6105     {
6106       struct loop *outer;
6107 
6108       if (preheader_removed)
6109         return false;
6110 
6111       /* Preheader is the first block in the region.  */
6112       if (BLOCK_TO_BB (bb->index) == 0)
6113         return true;
6114 
6115       /* We used to find a preheader with the topological information.
6116          Check that the above code is equivalent to what we did before.  */
6117 
6118       if (in_current_region_p (current_loop_nest->header))
6119 	gcc_assert (!(BLOCK_TO_BB (bb->index)
6120 		      < BLOCK_TO_BB (current_loop_nest->header->index)));
6121 
6122       /* Support the situation when the latch block of outer loop
6123          could be from here.  */
6124       for (outer = loop_outer (current_loop_nest);
6125 	   outer;
6126 	   outer = loop_outer (outer))
6127         if (considered_for_pipelining_p (outer) && outer->latch == bb)
6128           gcc_unreachable ();
6129     }
6130 
6131   return false;
6132 }
6133 
6134 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6135    can be removed, making the corresponding edge fallthrough (assuming that
6136    all basic blocks between JUMP_BB and DEST_BB are empty).  */
6137 static bool
6138 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6139 {
6140   if (!onlyjump_p (BB_END (jump_bb))
6141       || tablejump_p (BB_END (jump_bb), NULL, NULL))
6142     return false;
6143 
6144   /* Several outgoing edges, abnormal edge or destination of jump is
6145      not DEST_BB.  */
6146   if (EDGE_COUNT (jump_bb->succs) != 1
6147       || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6148       || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6149     return false;
6150 
6151   /* If not anything of the upper.  */
6152   return true;
6153 }
6154 
6155 /* Removes the loop preheader from the current region and saves it in
6156    PREHEADER_BLOCKS of the father loop, so they will be added later to
6157    region that represents an outer loop.  */
6158 static void
6159 sel_remove_loop_preheader (void)
6160 {
6161   int i, old_len;
6162   int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6163   basic_block bb;
6164   bool all_empty_p = true;
6165   VEC(basic_block, heap) *preheader_blocks
6166     = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6167 
6168   gcc_assert (current_loop_nest);
6169   old_len = VEC_length (basic_block, preheader_blocks);
6170 
6171   /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS.  */
6172   for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6173     {
6174       bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6175 
6176       /* If the basic block belongs to region, but doesn't belong to
6177 	 corresponding loop, then it should be a preheader.  */
6178       if (sel_is_loop_preheader_p (bb))
6179         {
6180           VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6181           if (BB_END (bb) != bb_note (bb))
6182             all_empty_p = false;
6183         }
6184     }
6185 
6186   /* Remove these blocks only after iterating over the whole region.  */
6187   for (i = VEC_length (basic_block, preheader_blocks) - 1;
6188        i >= old_len;
6189        i--)
6190     {
6191       bb =  VEC_index (basic_block, preheader_blocks, i);
6192       sel_remove_bb (bb, false);
6193     }
6194 
6195   if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6196     {
6197       if (!all_empty_p)
6198         /* Immediately create new region from preheader.  */
6199         make_region_from_loop_preheader (&preheader_blocks);
6200       else
6201         {
6202           /* If all preheader blocks are empty - dont create new empty region.
6203              Instead, remove them completely.  */
6204           for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6205             {
6206               edge e;
6207               edge_iterator ei;
6208               basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6209 
6210               /* Redirect all incoming edges to next basic block.  */
6211               for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6212                 {
6213                   if (! (e->flags & EDGE_FALLTHRU))
6214                     redirect_edge_and_branch (e, bb->next_bb);
6215                   else
6216                     redirect_edge_succ (e, bb->next_bb);
6217                 }
6218               gcc_assert (BB_NOTE_LIST (bb) == NULL);
6219               delete_and_free_basic_block (bb);
6220 
6221               /* Check if after deleting preheader there is a nonconditional
6222                  jump in PREV_BB that leads to the next basic block NEXT_BB.
6223                  If it is so - delete this jump and clear data sets of its
6224                  basic block if it becomes empty.  */
6225 	      if (next_bb->prev_bb == prev_bb
6226                   && prev_bb != ENTRY_BLOCK_PTR
6227                   && bb_has_removable_jump_to_p (prev_bb, next_bb))
6228                 {
6229                   redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6230                   if (BB_END (prev_bb) == bb_note (prev_bb))
6231                     free_data_sets (prev_bb);
6232                 }
6233 
6234               set_immediate_dominator (CDI_DOMINATORS, next_bb,
6235                                        recompute_dominator (CDI_DOMINATORS,
6236                                                             next_bb));
6237             }
6238         }
6239       VEC_free (basic_block, heap, preheader_blocks);
6240     }
6241   else
6242     /* Store preheader within the father's loop structure.  */
6243     SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6244 			       preheader_blocks);
6245 }
6246 #endif
6247