xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/sched-rgn.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Instruction scheduling pass.
2    Copyright (C) 1992-2015 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4    and currently maintained by, Jim Wilson (wilson@cygnus.com)
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This pass implements list scheduling within basic blocks.  It is
23    run twice: (1) after flow analysis, but before register allocation,
24    and (2) after register allocation.
25 
26    The first run performs interblock scheduling, moving insns between
27    different blocks in the same "region", and the second runs only
28    basic block scheduling.
29 
30    Interblock motions performed are useful motions and speculative
31    motions, including speculative loads.  Motions requiring code
32    duplication are not supported.  The identification of motion type
33    and the check for validity of speculative motions requires
34    construction and analysis of the function's control flow graph.
35 
36    The main entry point for this pass is schedule_insns(), called for
37    each function.  The work of the scheduler is organized in three
38    levels: (1) function level: insns are subject to splitting,
39    control-flow-graph is constructed, regions are computed (after
40    reload, each region is of one block), (2) region level: control
41    flow graph attributes required for interblock scheduling are
42    computed (dominators, reachability, etc.), data dependences and
43    priorities are computed, and (3) block level: insns in the block
44    are actually scheduled.  */
45 
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "hashtab.h"
56 #include "hash-set.h"
57 #include "vec.h"
58 #include "machmode.h"
59 #include "input.h"
60 #include "function.h"
61 #include "profile.h"
62 #include "flags.h"
63 #include "insn-config.h"
64 #include "insn-attr.h"
65 #include "except.h"
66 #include "recog.h"
67 #include "params.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "cfganal.h"
71 #include "predict.h"
72 #include "basic-block.h"
73 #include "sched-int.h"
74 #include "sel-sched.h"
75 #include "target.h"
76 #include "tree-pass.h"
77 #include "dbgcnt.h"
78 
79 #ifdef INSN_SCHEDULING
80 
81 /* Some accessor macros for h_i_d members only used within this file.  */
82 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
83 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
84 
85 /* nr_inter/spec counts interblock/speculative motion for the function.  */
86 static int nr_inter, nr_spec;
87 
88 static int is_cfg_nonregular (void);
89 
90 /* Number of regions in the procedure.  */
91 int nr_regions = 0;
92 
93 /* Same as above before adding any new regions.  */
94 static int nr_regions_initial = 0;
95 
96 /* Table of region descriptions.  */
97 region *rgn_table = NULL;
98 
99 /* Array of lists of regions' blocks.  */
100 int *rgn_bb_table = NULL;
101 
102 /* Topological order of blocks in the region (if b2 is reachable from
103    b1, block_to_bb[b2] > block_to_bb[b1]).  Note: A basic block is
104    always referred to by either block or b, while its topological
105    order name (in the region) is referred to by bb.  */
106 int *block_to_bb = NULL;
107 
108 /* The number of the region containing a block.  */
109 int *containing_rgn = NULL;
110 
111 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
112    Currently we can get a ebb only through splitting of currently
113    scheduling block, therefore, we don't need ebb_head array for every region,
114    hence, its sufficient to hold it for current one only.  */
115 int *ebb_head = NULL;
116 
117 /* The minimum probability of reaching a source block so that it will be
118    considered for speculative scheduling.  */
119 static int min_spec_prob;
120 
121 static void find_single_block_region (bool);
122 static void find_rgns (void);
123 static bool too_large (int, int *, int *);
124 
125 /* Blocks of the current region being scheduled.  */
126 int current_nr_blocks;
127 int current_blocks;
128 
129 /* A speculative motion requires checking live information on the path
130    from 'source' to 'target'.  The split blocks are those to be checked.
131    After a speculative motion, live information should be modified in
132    the 'update' blocks.
133 
134    Lists of split and update blocks for each candidate of the current
135    target are in array bblst_table.  */
136 static basic_block *bblst_table;
137 static int bblst_size, bblst_last;
138 
139 /* Arrays that hold the DFA state at the end of a basic block, to re-use
140    as the initial state at the start of successor blocks.  The BB_STATE
141    array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
142    into BB_STATE for basic block I.  FIXME: This should be a vec.  */
143 static char *bb_state_array = NULL;
144 static state_t *bb_state = NULL;
145 
146 /* Target info declarations.
147 
148    The block currently being scheduled is referred to as the "target" block,
149    while other blocks in the region from which insns can be moved to the
150    target are called "source" blocks.  The candidate structure holds info
151    about such sources: are they valid?  Speculative?  Etc.  */
152 typedef struct
153 {
154   basic_block *first_member;
155   int nr_members;
156 }
157 bblst;
158 
159 typedef struct
160 {
161   char is_valid;
162   char is_speculative;
163   int src_prob;
164   bblst split_bbs;
165   bblst update_bbs;
166 }
167 candidate;
168 
169 static candidate *candidate_table;
170 #define IS_VALID(src) (candidate_table[src].is_valid)
171 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
172 #define IS_SPECULATIVE_INSN(INSN)			\
173   (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
174 #define SRC_PROB(src) ( candidate_table[src].src_prob )
175 
176 /* The bb being currently scheduled.  */
177 int target_bb;
178 
179 /* List of edges.  */
180 typedef struct
181 {
182   edge *first_member;
183   int nr_members;
184 }
185 edgelst;
186 
187 static edge *edgelst_table;
188 static int edgelst_last;
189 
190 static void extract_edgelst (sbitmap, edgelst *);
191 
192 /* Target info functions.  */
193 static void split_edges (int, int, edgelst *);
194 static void compute_trg_info (int);
195 void debug_candidate (int);
196 void debug_candidates (int);
197 
198 /* Dominators array: dom[i] contains the sbitmap of dominators of
199    bb i in the region.  */
200 static sbitmap *dom;
201 
202 /* bb 0 is the only region entry.  */
203 #define IS_RGN_ENTRY(bb) (!bb)
204 
205 /* Is bb_src dominated by bb_trg.  */
206 #define IS_DOMINATED(bb_src, bb_trg)                                 \
207 ( bitmap_bit_p (dom[bb_src], bb_trg) )
208 
209 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
210    the probability of bb i relative to the region entry.  */
211 static int *prob;
212 
213 /* Bit-set of edges, where bit i stands for edge i.  */
214 typedef sbitmap edgeset;
215 
216 /* Number of edges in the region.  */
217 static int rgn_nr_edges;
218 
219 /* Array of size rgn_nr_edges.  */
220 static edge *rgn_edges;
221 
222 /* Mapping from each edge in the graph to its number in the rgn.  */
223 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
224 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
225 
226 /* The split edges of a source bb is different for each target
227    bb.  In order to compute this efficiently, the 'potential-split edges'
228    are computed for each bb prior to scheduling a region.  This is actually
229    the split edges of each bb relative to the region entry.
230 
231    pot_split[bb] is the set of potential split edges of bb.  */
232 static edgeset *pot_split;
233 
234 /* For every bb, a set of its ancestor edges.  */
235 static edgeset *ancestor_edges;
236 
237 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
238 
239 /* Speculative scheduling functions.  */
240 static int check_live_1 (int, rtx);
241 static void update_live_1 (int, rtx);
242 static int is_pfree (rtx, int, int);
243 static int find_conditional_protection (rtx, int);
244 static int is_conditionally_protected (rtx, int, int);
245 static int is_prisky (rtx, int, int);
246 static int is_exception_free (rtx, int, int);
247 
248 static bool sets_likely_spilled (rtx);
249 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
250 static void add_branch_dependences (rtx_insn *, rtx_insn *);
251 static void compute_block_dependences (int);
252 
253 static void schedule_region (int);
254 static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
255 				  rtx_insn_list **, rtx_expr_list **);
256 static void propagate_deps (int, struct deps_desc *);
257 static void free_pending_lists (void);
258 
259 /* Functions for construction of the control flow graph.  */
260 
261 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
262 
263    We decide not to build the control flow graph if there is possibly more
264    than one entry to the function, if computed branches exist, if we
265    have nonlocal gotos, or if we have an unreachable loop.  */
266 
267 static int
268 is_cfg_nonregular (void)
269 {
270   basic_block b;
271   rtx_insn *insn;
272 
273   /* If we have a label that could be the target of a nonlocal goto, then
274      the cfg is not well structured.  */
275   if (nonlocal_goto_handler_labels)
276     return 1;
277 
278   /* If we have any forced labels, then the cfg is not well structured.  */
279   if (forced_labels)
280     return 1;
281 
282   /* If we have exception handlers, then we consider the cfg not well
283      structured.  ?!?  We should be able to handle this now that we
284      compute an accurate cfg for EH.  */
285   if (current_function_has_exception_handlers ())
286     return 1;
287 
288   /* If we have insns which refer to labels as non-jumped-to operands,
289      then we consider the cfg not well structured.  */
290   FOR_EACH_BB_FN (b, cfun)
291     FOR_BB_INSNS (b, insn)
292       {
293 	rtx note, set, dest;
294 	rtx_insn *next;
295 
296 	/* If this function has a computed jump, then we consider the cfg
297 	   not well structured.  */
298 	if (JUMP_P (insn) && computed_jump_p (insn))
299 	  return 1;
300 
301 	if (!INSN_P (insn))
302 	  continue;
303 
304 	note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
305 	if (note == NULL_RTX)
306 	  continue;
307 
308 	/* For that label not to be seen as a referred-to label, this
309 	   must be a single-set which is feeding a jump *only*.  This
310 	   could be a conditional jump with the label split off for
311 	   machine-specific reasons or a casesi/tablejump.  */
312 	next = next_nonnote_insn (insn);
313 	if (next == NULL_RTX
314 	    || !JUMP_P (next)
315 	    || (JUMP_LABEL (next) != XEXP (note, 0)
316 		&& find_reg_note (next, REG_LABEL_TARGET,
317 				  XEXP (note, 0)) == NULL_RTX)
318 	    || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
319 	  return 1;
320 
321 	set = single_set (insn);
322 	if (set == NULL_RTX)
323 	  return 1;
324 
325 	dest = SET_DEST (set);
326 	if (!REG_P (dest) || !dead_or_set_p (next, dest))
327 	  return 1;
328       }
329 
330   /* Unreachable loops with more than one basic block are detected
331      during the DFS traversal in find_rgns.
332 
333      Unreachable loops with a single block are detected here.  This
334      test is redundant with the one in find_rgns, but it's much
335      cheaper to go ahead and catch the trivial case here.  */
336   FOR_EACH_BB_FN (b, cfun)
337     {
338       if (EDGE_COUNT (b->preds) == 0
339 	  || (single_pred_p (b)
340 	      && single_pred (b) == b))
341 	return 1;
342     }
343 
344   /* All the tests passed.  Consider the cfg well structured.  */
345   return 0;
346 }
347 
348 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits.  */
349 
350 static void
351 extract_edgelst (sbitmap set, edgelst *el)
352 {
353   unsigned int i = 0;
354   sbitmap_iterator sbi;
355 
356   /* edgelst table space is reused in each call to extract_edgelst.  */
357   edgelst_last = 0;
358 
359   el->first_member = &edgelst_table[edgelst_last];
360   el->nr_members = 0;
361 
362   /* Iterate over each word in the bitset.  */
363   EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
364     {
365       edgelst_table[edgelst_last++] = rgn_edges[i];
366       el->nr_members++;
367     }
368 }
369 
370 /* Functions for the construction of regions.  */
371 
372 /* Print the regions, for debugging purposes.  Callable from debugger.  */
373 
374 DEBUG_FUNCTION void
375 debug_regions (void)
376 {
377   int rgn, bb;
378 
379   fprintf (sched_dump, "\n;;   ------------ REGIONS ----------\n\n");
380   for (rgn = 0; rgn < nr_regions; rgn++)
381     {
382       fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
383 	       rgn_table[rgn].rgn_nr_blocks);
384       fprintf (sched_dump, ";;\tbb/block: ");
385 
386       /* We don't have ebb_head initialized yet, so we can't use
387 	 BB_TO_BLOCK ().  */
388       current_blocks = RGN_BLOCKS (rgn);
389 
390       for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
391 	fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
392 
393       fprintf (sched_dump, "\n\n");
394     }
395 }
396 
397 /* Print the region's basic blocks.  */
398 
399 DEBUG_FUNCTION void
400 debug_region (int rgn)
401 {
402   int bb;
403 
404   fprintf (stderr, "\n;;   ------------ REGION %d ----------\n\n", rgn);
405   fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
406 	   rgn_table[rgn].rgn_nr_blocks);
407   fprintf (stderr, ";;\tbb/block: ");
408 
409   /* We don't have ebb_head initialized yet, so we can't use
410      BB_TO_BLOCK ().  */
411   current_blocks = RGN_BLOCKS (rgn);
412 
413   for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
414     fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
415 
416   fprintf (stderr, "\n\n");
417 
418   for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
419     {
420       dump_bb (stderr,
421 	       BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
422 	       0, TDF_SLIM | TDF_BLOCKS);
423       fprintf (stderr, "\n");
424     }
425 
426   fprintf (stderr, "\n");
427 
428 }
429 
430 /* True when a bb with index BB_INDEX contained in region RGN.  */
431 static bool
432 bb_in_region_p (int bb_index, int rgn)
433 {
434   int i;
435 
436   for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
437     if (rgn_bb_table[current_blocks + i] == bb_index)
438       return true;
439 
440   return false;
441 }
442 
443 /* Dump region RGN to file F using dot syntax.  */
444 void
445 dump_region_dot (FILE *f, int rgn)
446 {
447   int i;
448 
449   fprintf (f, "digraph Region_%d {\n", rgn);
450 
451   /* We don't have ebb_head initialized yet, so we can't use
452      BB_TO_BLOCK ().  */
453   current_blocks = RGN_BLOCKS (rgn);
454 
455   for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
456     {
457       edge e;
458       edge_iterator ei;
459       int src_bb_num = rgn_bb_table[current_blocks + i];
460       basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
461 
462       FOR_EACH_EDGE (e, ei, bb->succs)
463         if (bb_in_region_p (e->dest->index, rgn))
464 	  fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
465     }
466   fprintf (f, "}\n");
467 }
468 
469 /* The same, but first open a file specified by FNAME.  */
470 void
471 dump_region_dot_file (const char *fname, int rgn)
472 {
473   FILE *f = fopen (fname, "wt");
474   dump_region_dot (f, rgn);
475   fclose (f);
476 }
477 
478 /* Build a single block region for each basic block in the function.
479    This allows for using the same code for interblock and basic block
480    scheduling.  */
481 
482 static void
483 find_single_block_region (bool ebbs_p)
484 {
485   basic_block bb, ebb_start;
486   int i = 0;
487 
488   nr_regions = 0;
489 
490   if (ebbs_p) {
491     int probability_cutoff;
492     if (profile_info && flag_branch_probabilities)
493       probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
494     else
495       probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
496     probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
497 
498     FOR_EACH_BB_FN (ebb_start, cfun)
499       {
500         RGN_NR_BLOCKS (nr_regions) = 0;
501         RGN_BLOCKS (nr_regions) = i;
502         RGN_DONT_CALC_DEPS (nr_regions) = 0;
503         RGN_HAS_REAL_EBB (nr_regions) = 0;
504 
505         for (bb = ebb_start; ; bb = bb->next_bb)
506           {
507             edge e;
508 
509             rgn_bb_table[i] = bb->index;
510             RGN_NR_BLOCKS (nr_regions)++;
511             CONTAINING_RGN (bb->index) = nr_regions;
512             BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
513             i++;
514 
515 	    if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
516                 || LABEL_P (BB_HEAD (bb->next_bb)))
517               break;
518 
519 	    e = find_fallthru_edge (bb->succs);
520             if (! e)
521               break;
522             if (e->probability <= probability_cutoff)
523               break;
524           }
525 
526         ebb_start = bb;
527         nr_regions++;
528       }
529   }
530   else
531     FOR_EACH_BB_FN (bb, cfun)
532       {
533         rgn_bb_table[nr_regions] = bb->index;
534         RGN_NR_BLOCKS (nr_regions) = 1;
535         RGN_BLOCKS (nr_regions) = nr_regions;
536         RGN_DONT_CALC_DEPS (nr_regions) = 0;
537         RGN_HAS_REAL_EBB (nr_regions) = 0;
538 
539         CONTAINING_RGN (bb->index) = nr_regions;
540         BLOCK_TO_BB (bb->index) = 0;
541         nr_regions++;
542       }
543 }
544 
545 /* Estimate number of the insns in the BB.  */
546 static int
547 rgn_estimate_number_of_insns (basic_block bb)
548 {
549   int count;
550 
551   count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
552 
553   if (MAY_HAVE_DEBUG_INSNS)
554     {
555       rtx_insn *insn;
556 
557       FOR_BB_INSNS (bb, insn)
558 	if (DEBUG_INSN_P (insn))
559 	  count--;
560     }
561 
562   return count;
563 }
564 
565 /* Update number of blocks and the estimate for number of insns
566    in the region.  Return true if the region is "too large" for interblock
567    scheduling (compile time considerations).  */
568 
569 static bool
570 too_large (int block, int *num_bbs, int *num_insns)
571 {
572   (*num_bbs)++;
573   (*num_insns) += (common_sched_info->estimate_number_of_insns
574                    (BASIC_BLOCK_FOR_FN (cfun, block)));
575 
576   return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
577 	  || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
578 }
579 
580 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
581    is still an inner loop.  Put in max_hdr[blk] the header of the most inner
582    loop containing blk.  */
583 #define UPDATE_LOOP_RELATIONS(blk, hdr)		\
584 {						\
585   if (max_hdr[blk] == -1)			\
586     max_hdr[blk] = hdr;				\
587   else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr])	\
588     bitmap_clear_bit (inner, hdr);			\
589   else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr])	\
590     {						\
591       bitmap_clear_bit (inner,max_hdr[blk]);		\
592       max_hdr[blk] = hdr;			\
593     }						\
594 }
595 
596 /* Find regions for interblock scheduling.
597 
598    A region for scheduling can be:
599 
600      * A loop-free procedure, or
601 
602      * A reducible inner loop, or
603 
604      * A basic block not contained in any other region.
605 
606    ?!? In theory we could build other regions based on extended basic
607    blocks or reverse extended basic blocks.  Is it worth the trouble?
608 
609    Loop blocks that form a region are put into the region's block list
610    in topological order.
611 
612    This procedure stores its results into the following global (ick) variables
613 
614      * rgn_nr
615      * rgn_table
616      * rgn_bb_table
617      * block_to_bb
618      * containing region
619 
620    We use dominator relationships to avoid making regions out of non-reducible
621    loops.
622 
623    This procedure needs to be converted to work on pred/succ lists instead
624    of edge tables.  That would simplify it somewhat.  */
625 
626 static void
627 haifa_find_rgns (void)
628 {
629   int *max_hdr, *dfs_nr, *degree;
630   char no_loops = 1;
631   int node, child, loop_head, i, head, tail;
632   int count = 0, sp, idx = 0;
633   edge_iterator current_edge;
634   edge_iterator *stack;
635   int num_bbs, num_insns, unreachable;
636   int too_large_failure;
637   basic_block bb;
638 
639   /* Note if a block is a natural loop header.  */
640   sbitmap header;
641 
642   /* Note if a block is a natural inner loop header.  */
643   sbitmap inner;
644 
645   /* Note if a block is in the block queue.  */
646   sbitmap in_queue;
647 
648   /* Note if a block is in the block queue.  */
649   sbitmap in_stack;
650 
651   /* Perform a DFS traversal of the cfg.  Identify loop headers, inner loops
652      and a mapping from block to its loop header (if the block is contained
653      in a loop, else -1).
654 
655      Store results in HEADER, INNER, and MAX_HDR respectively, these will
656      be used as inputs to the second traversal.
657 
658      STACK, SP and DFS_NR are only used during the first traversal.  */
659 
660   /* Allocate and initialize variables for the first traversal.  */
661   max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
662   dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
663   stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
664 
665   inner = sbitmap_alloc (last_basic_block_for_fn (cfun));
666   bitmap_ones (inner);
667 
668   header = sbitmap_alloc (last_basic_block_for_fn (cfun));
669   bitmap_clear (header);
670 
671   in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
672   bitmap_clear (in_queue);
673 
674   in_stack = sbitmap_alloc (last_basic_block_for_fn (cfun));
675   bitmap_clear (in_stack);
676 
677   for (i = 0; i < last_basic_block_for_fn (cfun); i++)
678     max_hdr[i] = -1;
679 
680   #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
681   #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
682 
683   /* DFS traversal to find inner loops in the cfg.  */
684 
685   current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
686   sp = -1;
687 
688   while (1)
689     {
690       if (EDGE_PASSED (current_edge))
691 	{
692 	  /* We have reached a leaf node or a node that was already
693 	     processed.  Pop edges off the stack until we find
694 	     an edge that has not yet been processed.  */
695 	  while (sp >= 0 && EDGE_PASSED (current_edge))
696 	    {
697 	      /* Pop entry off the stack.  */
698 	      current_edge = stack[sp--];
699 	      node = ei_edge (current_edge)->src->index;
700 	      gcc_assert (node != ENTRY_BLOCK);
701 	      child = ei_edge (current_edge)->dest->index;
702 	      gcc_assert (child != EXIT_BLOCK);
703 	      bitmap_clear_bit (in_stack, child);
704 	      if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
705 		UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
706 	      ei_next (&current_edge);
707 	    }
708 
709 	  /* See if have finished the DFS tree traversal.  */
710 	  if (sp < 0 && EDGE_PASSED (current_edge))
711 	    break;
712 
713 	  /* Nope, continue the traversal with the popped node.  */
714 	  continue;
715 	}
716 
717       /* Process a node.  */
718       node = ei_edge (current_edge)->src->index;
719       gcc_assert (node != ENTRY_BLOCK);
720       bitmap_set_bit (in_stack, node);
721       dfs_nr[node] = ++count;
722 
723       /* We don't traverse to the exit block.  */
724       child = ei_edge (current_edge)->dest->index;
725       if (child == EXIT_BLOCK)
726 	{
727 	  SET_EDGE_PASSED (current_edge);
728 	  ei_next (&current_edge);
729 	  continue;
730 	}
731 
732       /* If the successor is in the stack, then we've found a loop.
733 	 Mark the loop, if it is not a natural loop, then it will
734 	 be rejected during the second traversal.  */
735       if (bitmap_bit_p (in_stack, child))
736 	{
737 	  no_loops = 0;
738 	  bitmap_set_bit (header, child);
739 	  UPDATE_LOOP_RELATIONS (node, child);
740 	  SET_EDGE_PASSED (current_edge);
741 	  ei_next (&current_edge);
742 	  continue;
743 	}
744 
745       /* If the child was already visited, then there is no need to visit
746 	 it again.  Just update the loop relationships and restart
747 	 with a new edge.  */
748       if (dfs_nr[child])
749 	{
750 	  if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
751 	    UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
752 	  SET_EDGE_PASSED (current_edge);
753 	  ei_next (&current_edge);
754 	  continue;
755 	}
756 
757       /* Push an entry on the stack and continue DFS traversal.  */
758       stack[++sp] = current_edge;
759       SET_EDGE_PASSED (current_edge);
760       current_edge = ei_start (ei_edge (current_edge)->dest->succs);
761     }
762 
763   /* Reset ->aux field used by EDGE_PASSED.  */
764   FOR_ALL_BB_FN (bb, cfun)
765     {
766       edge_iterator ei;
767       edge e;
768       FOR_EACH_EDGE (e, ei, bb->succs)
769 	e->aux = NULL;
770     }
771 
772 
773   /* Another check for unreachable blocks.  The earlier test in
774      is_cfg_nonregular only finds unreachable blocks that do not
775      form a loop.
776 
777      The DFS traversal will mark every block that is reachable from
778      the entry node by placing a nonzero value in dfs_nr.  Thus if
779      dfs_nr is zero for any block, then it must be unreachable.  */
780   unreachable = 0;
781   FOR_EACH_BB_FN (bb, cfun)
782     if (dfs_nr[bb->index] == 0)
783       {
784 	unreachable = 1;
785 	break;
786       }
787 
788   /* Gross.  To avoid wasting memory, the second pass uses the dfs_nr array
789      to hold degree counts.  */
790   degree = dfs_nr;
791 
792   FOR_EACH_BB_FN (bb, cfun)
793     degree[bb->index] = EDGE_COUNT (bb->preds);
794 
795   /* Do not perform region scheduling if there are any unreachable
796      blocks.  */
797   if (!unreachable)
798     {
799       int *queue, *degree1 = NULL;
800       /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
801 	 there basic blocks, which are forced to be region heads.
802 	 This is done to try to assemble few smaller regions
803 	 from a too_large region.  */
804       sbitmap extended_rgn_header = NULL;
805       bool extend_regions_p;
806 
807       if (no_loops)
808 	bitmap_set_bit (header, 0);
809 
810       /* Second traversal:find reducible inner loops and topologically sort
811 	 block of each region.  */
812 
813       queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
814 
815       extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
816       if (extend_regions_p)
817         {
818           degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
819           extended_rgn_header =
820 	    sbitmap_alloc (last_basic_block_for_fn (cfun));
821           bitmap_clear (extended_rgn_header);
822 	}
823 
824       /* Find blocks which are inner loop headers.  We still have non-reducible
825 	 loops to consider at this point.  */
826       FOR_EACH_BB_FN (bb, cfun)
827 	{
828 	  if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
829 	    {
830 	      edge e;
831 	      edge_iterator ei;
832 	      basic_block jbb;
833 
834 	      /* Now check that the loop is reducible.  We do this separate
835 		 from finding inner loops so that we do not find a reducible
836 		 loop which contains an inner non-reducible loop.
837 
838 		 A simple way to find reducible/natural loops is to verify
839 		 that each block in the loop is dominated by the loop
840 		 header.
841 
842 		 If there exists a block that is not dominated by the loop
843 		 header, then the block is reachable from outside the loop
844 		 and thus the loop is not a natural loop.  */
845 	      FOR_EACH_BB_FN (jbb, cfun)
846 		{
847 		  /* First identify blocks in the loop, except for the loop
848 		     entry block.  */
849 		  if (bb->index == max_hdr[jbb->index] && bb != jbb)
850 		    {
851 		      /* Now verify that the block is dominated by the loop
852 			 header.  */
853 		      if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
854 			break;
855 		    }
856 		}
857 
858 	      /* If we exited the loop early, then I is the header of
859 		 a non-reducible loop and we should quit processing it
860 		 now.  */
861 	      if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
862 		continue;
863 
864 	      /* I is a header of an inner loop, or block 0 in a subroutine
865 		 with no loops at all.  */
866 	      head = tail = -1;
867 	      too_large_failure = 0;
868 	      loop_head = max_hdr[bb->index];
869 
870               if (extend_regions_p)
871                 /* We save degree in case when we meet a too_large region
872 		   and cancel it.  We need a correct degree later when
873                    calling extend_rgns.  */
874                 memcpy (degree1, degree,
875 			last_basic_block_for_fn (cfun) * sizeof (int));
876 
877 	      /* Decrease degree of all I's successors for topological
878 		 ordering.  */
879 	      FOR_EACH_EDGE (e, ei, bb->succs)
880 		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
881 		  --degree[e->dest->index];
882 
883 	      /* Estimate # insns, and count # blocks in the region.  */
884 	      num_bbs = 1;
885 	      num_insns = common_sched_info->estimate_number_of_insns (bb);
886 
887 	      /* Find all loop latches (blocks with back edges to the loop
888 		 header) or all the leaf blocks in the cfg has no loops.
889 
890 		 Place those blocks into the queue.  */
891 	      if (no_loops)
892 		{
893 		  FOR_EACH_BB_FN (jbb, cfun)
894 		    /* Leaf nodes have only a single successor which must
895 		       be EXIT_BLOCK.  */
896 		    if (single_succ_p (jbb)
897 			&& single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
898 		      {
899 			queue[++tail] = jbb->index;
900 			bitmap_set_bit (in_queue, jbb->index);
901 
902 			if (too_large (jbb->index, &num_bbs, &num_insns))
903 			  {
904 			    too_large_failure = 1;
905 			    break;
906 			  }
907 		      }
908 		}
909 	      else
910 		{
911 		  edge e;
912 
913 		  FOR_EACH_EDGE (e, ei, bb->preds)
914 		    {
915 		      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
916 			continue;
917 
918 		      node = e->src->index;
919 
920 		      if (max_hdr[node] == loop_head && node != bb->index)
921 			{
922 			  /* This is a loop latch.  */
923 			  queue[++tail] = node;
924 			  bitmap_set_bit (in_queue, node);
925 
926 			  if (too_large (node, &num_bbs, &num_insns))
927 			    {
928 			      too_large_failure = 1;
929 			      break;
930 			    }
931 			}
932 		    }
933 		}
934 
935 	      /* Now add all the blocks in the loop to the queue.
936 
937 	     We know the loop is a natural loop; however the algorithm
938 	     above will not always mark certain blocks as being in the
939 	     loop.  Consider:
940 		node   children
941 		 a	  b,c
942 		 b	  c
943 		 c	  a,d
944 		 d	  b
945 
946 	     The algorithm in the DFS traversal may not mark B & D as part
947 	     of the loop (i.e. they will not have max_hdr set to A).
948 
949 	     We know they can not be loop latches (else they would have
950 	     had max_hdr set since they'd have a backedge to a dominator
951 	     block).  So we don't need them on the initial queue.
952 
953 	     We know they are part of the loop because they are dominated
954 	     by the loop header and can be reached by a backwards walk of
955 	     the edges starting with nodes on the initial queue.
956 
957 	     It is safe and desirable to include those nodes in the
958 	     loop/scheduling region.  To do so we would need to decrease
959 	     the degree of a node if it is the target of a backedge
960 	     within the loop itself as the node is placed in the queue.
961 
962 	     We do not do this because I'm not sure that the actual
963 	     scheduling code will properly handle this case. ?!? */
964 
965 	      while (head < tail && !too_large_failure)
966 		{
967 		  edge e;
968 		  child = queue[++head];
969 
970 		  FOR_EACH_EDGE (e, ei,
971 				 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
972 		    {
973 		      node = e->src->index;
974 
975 		      /* See discussion above about nodes not marked as in
976 			 this loop during the initial DFS traversal.  */
977 		      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
978 			  || max_hdr[node] != loop_head)
979 			{
980 			  tail = -1;
981 			  break;
982 			}
983 		      else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
984 			{
985 			  queue[++tail] = node;
986 			  bitmap_set_bit (in_queue, node);
987 
988 			  if (too_large (node, &num_bbs, &num_insns))
989 			    {
990 			      too_large_failure = 1;
991 			      break;
992 			    }
993 			}
994 		    }
995 		}
996 
997 	      if (tail >= 0 && !too_large_failure)
998 		{
999 		  /* Place the loop header into list of region blocks.  */
1000 		  degree[bb->index] = -1;
1001 		  rgn_bb_table[idx] = bb->index;
1002 		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
1003 		  RGN_BLOCKS (nr_regions) = idx++;
1004                   RGN_DONT_CALC_DEPS (nr_regions) = 0;
1005 		  RGN_HAS_REAL_EBB (nr_regions) = 0;
1006 		  CONTAINING_RGN (bb->index) = nr_regions;
1007 		  BLOCK_TO_BB (bb->index) = count = 0;
1008 
1009 		  /* Remove blocks from queue[] when their in degree
1010 		     becomes zero.  Repeat until no blocks are left on the
1011 		     list.  This produces a topological list of blocks in
1012 		     the region.  */
1013 		  while (tail >= 0)
1014 		    {
1015 		      if (head < 0)
1016 			head = tail;
1017 		      child = queue[head];
1018 		      if (degree[child] == 0)
1019 			{
1020 			  edge e;
1021 
1022 			  degree[child] = -1;
1023 			  rgn_bb_table[idx++] = child;
1024 			  BLOCK_TO_BB (child) = ++count;
1025 			  CONTAINING_RGN (child) = nr_regions;
1026 			  queue[head] = queue[tail--];
1027 
1028 			  FOR_EACH_EDGE (e, ei,
1029 					 BASIC_BLOCK_FOR_FN (cfun,
1030 							     child)->succs)
1031 			    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1032 			      --degree[e->dest->index];
1033 			}
1034 		      else
1035 			--head;
1036 		    }
1037 		  ++nr_regions;
1038 		}
1039               else if (extend_regions_p)
1040                 {
1041                   /* Restore DEGREE.  */
1042                   int *t = degree;
1043 
1044                   degree = degree1;
1045                   degree1 = t;
1046 
1047                   /* And force successors of BB to be region heads.
1048 		     This may provide several smaller regions instead
1049 		     of one too_large region.  */
1050                   FOR_EACH_EDGE (e, ei, bb->succs)
1051 		    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1052                       bitmap_set_bit (extended_rgn_header, e->dest->index);
1053                 }
1054 	    }
1055 	}
1056       free (queue);
1057 
1058       if (extend_regions_p)
1059         {
1060           free (degree1);
1061 
1062           bitmap_ior (header, header, extended_rgn_header);
1063           sbitmap_free (extended_rgn_header);
1064 
1065           extend_rgns (degree, &idx, header, max_hdr);
1066         }
1067     }
1068 
1069   /* Any block that did not end up in a region is placed into a region
1070      by itself.  */
1071   FOR_EACH_BB_FN (bb, cfun)
1072     if (degree[bb->index] >= 0)
1073       {
1074 	rgn_bb_table[idx] = bb->index;
1075 	RGN_NR_BLOCKS (nr_regions) = 1;
1076 	RGN_BLOCKS (nr_regions) = idx++;
1077         RGN_DONT_CALC_DEPS (nr_regions) = 0;
1078 	RGN_HAS_REAL_EBB (nr_regions) = 0;
1079 	CONTAINING_RGN (bb->index) = nr_regions++;
1080 	BLOCK_TO_BB (bb->index) = 0;
1081       }
1082 
1083   free (max_hdr);
1084   free (degree);
1085   free (stack);
1086   sbitmap_free (header);
1087   sbitmap_free (inner);
1088   sbitmap_free (in_queue);
1089   sbitmap_free (in_stack);
1090 }
1091 
1092 
1093 /* Wrapper function.
1094    If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1095    regions.  Otherwise just call find_rgns_haifa.  */
1096 static void
1097 find_rgns (void)
1098 {
1099   if (sel_sched_p () && flag_sel_sched_pipelining)
1100     sel_find_rgns ();
1101   else
1102     haifa_find_rgns ();
1103 }
1104 
1105 static int gather_region_statistics (int **);
1106 static void print_region_statistics (int *, int, int *, int);
1107 
1108 /* Calculate the histogram that shows the number of regions having the
1109    given number of basic blocks, and store it in the RSP array.  Return
1110    the size of this array.  */
1111 static int
1112 gather_region_statistics (int **rsp)
1113 {
1114   int i, *a = 0, a_sz = 0;
1115 
1116   /* a[i] is the number of regions that have (i + 1) basic blocks.  */
1117   for (i = 0; i < nr_regions; i++)
1118     {
1119       int nr_blocks = RGN_NR_BLOCKS (i);
1120 
1121       gcc_assert (nr_blocks >= 1);
1122 
1123       if (nr_blocks > a_sz)
1124 	{
1125 	  a = XRESIZEVEC (int, a, nr_blocks);
1126 	  do
1127 	    a[a_sz++] = 0;
1128 	  while (a_sz != nr_blocks);
1129 	}
1130 
1131       a[nr_blocks - 1]++;
1132     }
1133 
1134   *rsp = a;
1135   return a_sz;
1136 }
1137 
1138 /* Print regions statistics.  S1 and S2 denote the data before and after
1139    calling extend_rgns, respectively.  */
1140 static void
1141 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1142 {
1143   int i;
1144 
1145   /* We iterate until s2_sz because extend_rgns does not decrease
1146      the maximal region size.  */
1147   for (i = 1; i < s2_sz; i++)
1148     {
1149       int n1, n2;
1150 
1151       n2 = s2[i];
1152 
1153       if (n2 == 0)
1154 	continue;
1155 
1156       if (i >= s1_sz)
1157 	n1 = 0;
1158       else
1159 	n1 = s1[i];
1160 
1161       fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1162 	       "was %d + %d more\n", i + 1, n1, n2 - n1);
1163     }
1164 }
1165 
1166 /* Extend regions.
1167    DEGREE - Array of incoming edge count, considering only
1168    the edges, that don't have their sources in formed regions yet.
1169    IDXP - pointer to the next available index in rgn_bb_table.
1170    HEADER - set of all region heads.
1171    LOOP_HDR - mapping from block to the containing loop
1172    (two blocks can reside within one region if they have
1173    the same loop header).  */
1174 void
1175 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1176 {
1177   int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1178   int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1179 
1180   max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1181 
1182   max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1183 
1184   order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1185   post_order_compute (order, false, false);
1186 
1187   for (i = nblocks - 1; i >= 0; i--)
1188     {
1189       int bbn = order[i];
1190       if (degree[bbn] >= 0)
1191 	{
1192 	  max_hdr[bbn] = bbn;
1193 	  rescan = 1;
1194 	}
1195       else
1196         /* This block already was processed in find_rgns.  */
1197         max_hdr[bbn] = -1;
1198     }
1199 
1200   /* The idea is to topologically walk through CFG in top-down order.
1201      During the traversal, if all the predecessors of a node are
1202      marked to be in the same region (they all have the same max_hdr),
1203      then current node is also marked to be a part of that region.
1204      Otherwise the node starts its own region.
1205      CFG should be traversed until no further changes are made.  On each
1206      iteration the set of the region heads is extended (the set of those
1207      blocks that have max_hdr[bbi] == bbi).  This set is upper bounded by the
1208      set of all basic blocks, thus the algorithm is guaranteed to
1209      terminate.  */
1210 
1211   while (rescan && iter < max_iter)
1212     {
1213       rescan = 0;
1214 
1215       for (i = nblocks - 1; i >= 0; i--)
1216 	{
1217 	  edge e;
1218 	  edge_iterator ei;
1219 	  int bbn = order[i];
1220 
1221 	  if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1222 	    {
1223 	      int hdr = -1;
1224 
1225 	      FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1226 		{
1227 		  int predn = e->src->index;
1228 
1229 		  if (predn != ENTRY_BLOCK
1230 		      /* If pred wasn't processed in find_rgns.  */
1231 		      && max_hdr[predn] != -1
1232 		      /* And pred and bb reside in the same loop.
1233 			 (Or out of any loop).  */
1234 		      && loop_hdr[bbn] == loop_hdr[predn])
1235 		    {
1236 		      if (hdr == -1)
1237 			/* Then bb extends the containing region of pred.  */
1238 			hdr = max_hdr[predn];
1239 		      else if (hdr != max_hdr[predn])
1240 			/* Too bad, there are at least two predecessors
1241 			   that reside in different regions.  Thus, BB should
1242 			   begin its own region.  */
1243 			{
1244 			  hdr = bbn;
1245 			  break;
1246 			}
1247 		    }
1248 		  else
1249 		    /* BB starts its own region.  */
1250 		    {
1251 		      hdr = bbn;
1252 		      break;
1253 		    }
1254 		}
1255 
1256 	      if (hdr == bbn)
1257 		{
1258 		  /* If BB start its own region,
1259 		     update set of headers with BB.  */
1260 		  bitmap_set_bit (header, bbn);
1261 		  rescan = 1;
1262 		}
1263 	      else
1264 		gcc_assert (hdr != -1);
1265 
1266 	      max_hdr[bbn] = hdr;
1267 	    }
1268 	}
1269 
1270       iter++;
1271     }
1272 
1273   /* Statistics were gathered on the SPEC2000 package of tests with
1274      mainline weekly snapshot gcc-4.1-20051015 on ia64.
1275 
1276      Statistics for SPECint:
1277      1 iteration : 1751 cases (38.7%)
1278      2 iterations: 2770 cases (61.3%)
1279      Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1280      Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1281      (We don't count single block regions here).
1282 
1283      Statistics for SPECfp:
1284      1 iteration : 621 cases (35.9%)
1285      2 iterations: 1110 cases (64.1%)
1286      Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1287      Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1288      (We don't count single block regions here).
1289 
1290      By default we do at most 2 iterations.
1291      This can be overridden with max-sched-extend-regions-iters parameter:
1292      0 - disable region extension,
1293      N > 0 - do at most N iterations.  */
1294 
1295   if (sched_verbose && iter != 0)
1296     fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1297 	     rescan ? "... failed" : "");
1298 
1299   if (!rescan && iter != 0)
1300     {
1301       int *s1 = NULL, s1_sz = 0;
1302 
1303       /* Save the old statistics for later printout.  */
1304       if (sched_verbose >= 6)
1305 	s1_sz = gather_region_statistics (&s1);
1306 
1307       /* We have succeeded.  Now assemble the regions.  */
1308       for (i = nblocks - 1; i >= 0; i--)
1309 	{
1310 	  int bbn = order[i];
1311 
1312 	  if (max_hdr[bbn] == bbn)
1313 	    /* BBN is a region head.  */
1314 	    {
1315 	      edge e;
1316 	      edge_iterator ei;
1317 	      int num_bbs = 0, j, num_insns = 0, large;
1318 
1319 	      large = too_large (bbn, &num_bbs, &num_insns);
1320 
1321 	      degree[bbn] = -1;
1322 	      rgn_bb_table[idx] = bbn;
1323 	      RGN_BLOCKS (nr_regions) = idx++;
1324 	      RGN_DONT_CALC_DEPS (nr_regions) = 0;
1325 	      RGN_HAS_REAL_EBB (nr_regions) = 0;
1326 	      CONTAINING_RGN (bbn) = nr_regions;
1327 	      BLOCK_TO_BB (bbn) = 0;
1328 
1329 	      FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1330 		if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1331 		  degree[e->dest->index]--;
1332 
1333 	      if (!large)
1334 		/* Here we check whether the region is too_large.  */
1335 		for (j = i - 1; j >= 0; j--)
1336 		  {
1337 		    int succn = order[j];
1338 		    if (max_hdr[succn] == bbn)
1339 		      {
1340 			if ((large = too_large (succn, &num_bbs, &num_insns)))
1341 			  break;
1342 		      }
1343 		  }
1344 
1345 	      if (large)
1346 		/* If the region is too_large, then wrap every block of
1347 		   the region into single block region.
1348 		   Here we wrap region head only.  Other blocks are
1349 		   processed in the below cycle.  */
1350 		{
1351 		  RGN_NR_BLOCKS (nr_regions) = 1;
1352 		  nr_regions++;
1353 		}
1354 
1355 	      num_bbs = 1;
1356 
1357 	      for (j = i - 1; j >= 0; j--)
1358 		{
1359 		  int succn = order[j];
1360 
1361 		  if (max_hdr[succn] == bbn)
1362 		    /* This cycle iterates over all basic blocks, that
1363 		       are supposed to be in the region with head BBN,
1364 		       and wraps them into that region (or in single
1365 		       block region).  */
1366 		    {
1367 		      gcc_assert (degree[succn] == 0);
1368 
1369 		      degree[succn] = -1;
1370 		      rgn_bb_table[idx] = succn;
1371 		      BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1372 		      CONTAINING_RGN (succn) = nr_regions;
1373 
1374 		      if (large)
1375 			/* Wrap SUCCN into single block region.  */
1376 			{
1377 			  RGN_BLOCKS (nr_regions) = idx;
1378 			  RGN_NR_BLOCKS (nr_regions) = 1;
1379 			  RGN_DONT_CALC_DEPS (nr_regions) = 0;
1380 			  RGN_HAS_REAL_EBB (nr_regions) = 0;
1381 			  nr_regions++;
1382 			}
1383 
1384 		      idx++;
1385 
1386 		      FOR_EACH_EDGE (e, ei,
1387 				     BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1388 			if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1389 			  degree[e->dest->index]--;
1390 		    }
1391 		}
1392 
1393 	      if (!large)
1394 		{
1395 		  RGN_NR_BLOCKS (nr_regions) = num_bbs;
1396 		  nr_regions++;
1397 		}
1398 	    }
1399 	}
1400 
1401       if (sched_verbose >= 6)
1402 	{
1403 	  int *s2, s2_sz;
1404 
1405           /* Get the new statistics and print the comparison with the
1406              one before calling this function.  */
1407 	  s2_sz = gather_region_statistics (&s2);
1408 	  print_region_statistics (s1, s1_sz, s2, s2_sz);
1409 	  free (s1);
1410 	  free (s2);
1411 	}
1412     }
1413 
1414   free (order);
1415   free (max_hdr);
1416 
1417   *idxp = idx;
1418 }
1419 
1420 /* Functions for regions scheduling information.  */
1421 
1422 /* Compute dominators, probability, and potential-split-edges of bb.
1423    Assume that these values were already computed for bb's predecessors.  */
1424 
1425 static void
1426 compute_dom_prob_ps (int bb)
1427 {
1428   edge_iterator in_ei;
1429   edge in_edge;
1430 
1431   /* We shouldn't have any real ebbs yet.  */
1432   gcc_assert (ebb_head [bb] == bb + current_blocks);
1433 
1434   if (IS_RGN_ENTRY (bb))
1435     {
1436       bitmap_set_bit (dom[bb], 0);
1437       prob[bb] = REG_BR_PROB_BASE;
1438       return;
1439     }
1440 
1441   prob[bb] = 0;
1442 
1443   /* Initialize dom[bb] to '111..1'.  */
1444   bitmap_ones (dom[bb]);
1445 
1446   FOR_EACH_EDGE (in_edge, in_ei,
1447 		 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1448     {
1449       int pred_bb;
1450       edge out_edge;
1451       edge_iterator out_ei;
1452 
1453       if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1454 	continue;
1455 
1456       pred_bb = BLOCK_TO_BB (in_edge->src->index);
1457       bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1458       bitmap_ior (ancestor_edges[bb],
1459 		      ancestor_edges[bb], ancestor_edges[pred_bb]);
1460 
1461       bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1462 
1463       bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1464 
1465       FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1466 	bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1467 
1468       prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1469       // The rounding divide in combine_probabilities can result in an extra
1470       // probability increment propagating along 50-50 edges. Eventually when
1471       // the edges re-merge, the accumulated probability can go slightly above
1472       // REG_BR_PROB_BASE.
1473       if (prob[bb] > REG_BR_PROB_BASE)
1474         prob[bb] = REG_BR_PROB_BASE;
1475     }
1476 
1477   bitmap_set_bit (dom[bb], bb);
1478   bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1479 
1480   if (sched_verbose >= 2)
1481     fprintf (sched_dump, ";;  bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1482 	     (100 * prob[bb]) / REG_BR_PROB_BASE);
1483 }
1484 
1485 /* Functions for target info.  */
1486 
1487 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1488    Note that bb_trg dominates bb_src.  */
1489 
1490 static void
1491 split_edges (int bb_src, int bb_trg, edgelst *bl)
1492 {
1493   sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1494   bitmap_copy (src, pot_split[bb_src]);
1495 
1496   bitmap_and_compl (src, src, pot_split[bb_trg]);
1497   extract_edgelst (src, bl);
1498   sbitmap_free (src);
1499 }
1500 
1501 /* Find the valid candidate-source-blocks for the target block TRG, compute
1502    their probability, and check if they are speculative or not.
1503    For speculative sources, compute their update-blocks and split-blocks.  */
1504 
1505 static void
1506 compute_trg_info (int trg)
1507 {
1508   candidate *sp;
1509   edgelst el = { NULL, 0 };
1510   int i, j, k, update_idx;
1511   basic_block block;
1512   sbitmap visited;
1513   edge_iterator ei;
1514   edge e;
1515 
1516   candidate_table = XNEWVEC (candidate, current_nr_blocks);
1517 
1518   bblst_last = 0;
1519   /* bblst_table holds split blocks and update blocks for each block after
1520      the current one in the region.  split blocks and update blocks are
1521      the TO blocks of region edges, so there can be at most rgn_nr_edges
1522      of them.  */
1523   bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1524   bblst_table = XNEWVEC (basic_block, bblst_size);
1525 
1526   edgelst_last = 0;
1527   edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1528 
1529   /* Define some of the fields for the target bb as well.  */
1530   sp = candidate_table + trg;
1531   sp->is_valid = 1;
1532   sp->is_speculative = 0;
1533   sp->src_prob = REG_BR_PROB_BASE;
1534 
1535   visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1536 
1537   for (i = trg + 1; i < current_nr_blocks; i++)
1538     {
1539       sp = candidate_table + i;
1540 
1541       sp->is_valid = IS_DOMINATED (i, trg);
1542       if (sp->is_valid)
1543 	{
1544 	  int tf = prob[trg], cf = prob[i];
1545 
1546 	  /* In CFGs with low probability edges TF can possibly be zero.  */
1547 	  sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1548 	  sp->is_valid = (sp->src_prob >= min_spec_prob);
1549 	}
1550 
1551       if (sp->is_valid)
1552 	{
1553 	  split_edges (i, trg, &el);
1554 	  sp->is_speculative = (el.nr_members) ? 1 : 0;
1555 	  if (sp->is_speculative && !flag_schedule_speculative)
1556 	    sp->is_valid = 0;
1557 	}
1558 
1559       if (sp->is_valid)
1560 	{
1561 	  /* Compute split blocks and store them in bblst_table.
1562 	     The TO block of every split edge is a split block.  */
1563 	  sp->split_bbs.first_member = &bblst_table[bblst_last];
1564 	  sp->split_bbs.nr_members = el.nr_members;
1565 	  for (j = 0; j < el.nr_members; bblst_last++, j++)
1566 	    bblst_table[bblst_last] = el.first_member[j]->dest;
1567 	  sp->update_bbs.first_member = &bblst_table[bblst_last];
1568 
1569 	  /* Compute update blocks and store them in bblst_table.
1570 	     For every split edge, look at the FROM block, and check
1571 	     all out edges.  For each out edge that is not a split edge,
1572 	     add the TO block to the update block list.  This list can end
1573 	     up with a lot of duplicates.  We need to weed them out to avoid
1574 	     overrunning the end of the bblst_table.  */
1575 
1576 	  update_idx = 0;
1577 	  bitmap_clear (visited);
1578 	  for (j = 0; j < el.nr_members; j++)
1579 	    {
1580 	      block = el.first_member[j]->src;
1581 	      FOR_EACH_EDGE (e, ei, block->succs)
1582 		{
1583 		  if (!bitmap_bit_p (visited, e->dest->index))
1584 		    {
1585 		      for (k = 0; k < el.nr_members; k++)
1586 			if (e == el.first_member[k])
1587 			  break;
1588 
1589 		      if (k >= el.nr_members)
1590 			{
1591 			  bblst_table[bblst_last++] = e->dest;
1592 			  bitmap_set_bit (visited, e->dest->index);
1593 			  update_idx++;
1594 			}
1595 		    }
1596 		}
1597 	    }
1598 	  sp->update_bbs.nr_members = update_idx;
1599 
1600 	  /* Make sure we didn't overrun the end of bblst_table.  */
1601 	  gcc_assert (bblst_last <= bblst_size);
1602 	}
1603       else
1604 	{
1605 	  sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1606 
1607 	  sp->is_speculative = 0;
1608 	  sp->src_prob = 0;
1609 	}
1610     }
1611 
1612   sbitmap_free (visited);
1613 }
1614 
1615 /* Free the computed target info.  */
1616 static void
1617 free_trg_info (void)
1618 {
1619   free (candidate_table);
1620   free (bblst_table);
1621   free (edgelst_table);
1622 }
1623 
1624 /* Print candidates info, for debugging purposes.  Callable from debugger.  */
1625 
1626 DEBUG_FUNCTION void
1627 debug_candidate (int i)
1628 {
1629   if (!candidate_table[i].is_valid)
1630     return;
1631 
1632   if (candidate_table[i].is_speculative)
1633     {
1634       int j;
1635       fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1636 
1637       fprintf (sched_dump, "split path: ");
1638       for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1639 	{
1640 	  int b = candidate_table[i].split_bbs.first_member[j]->index;
1641 
1642 	  fprintf (sched_dump, " %d ", b);
1643 	}
1644       fprintf (sched_dump, "\n");
1645 
1646       fprintf (sched_dump, "update path: ");
1647       for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1648 	{
1649 	  int b = candidate_table[i].update_bbs.first_member[j]->index;
1650 
1651 	  fprintf (sched_dump, " %d ", b);
1652 	}
1653       fprintf (sched_dump, "\n");
1654     }
1655   else
1656     {
1657       fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1658     }
1659 }
1660 
1661 /* Print candidates info, for debugging purposes.  Callable from debugger.  */
1662 
1663 DEBUG_FUNCTION void
1664 debug_candidates (int trg)
1665 {
1666   int i;
1667 
1668   fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1669 	   BB_TO_BLOCK (trg), trg);
1670   for (i = trg + 1; i < current_nr_blocks; i++)
1671     debug_candidate (i);
1672 }
1673 
1674 /* Functions for speculative scheduling.  */
1675 
1676 static bitmap_head not_in_df;
1677 
1678 /* Return 0 if x is a set of a register alive in the beginning of one
1679    of the split-blocks of src, otherwise return 1.  */
1680 
1681 static int
1682 check_live_1 (int src, rtx x)
1683 {
1684   int i;
1685   int regno;
1686   rtx reg = SET_DEST (x);
1687 
1688   if (reg == 0)
1689     return 1;
1690 
1691   while (GET_CODE (reg) == SUBREG
1692 	 || GET_CODE (reg) == ZERO_EXTRACT
1693 	 || GET_CODE (reg) == STRICT_LOW_PART)
1694     reg = XEXP (reg, 0);
1695 
1696   if (GET_CODE (reg) == PARALLEL)
1697     {
1698       int i;
1699 
1700       for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1701 	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1702 	  if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1703 	    return 1;
1704 
1705       return 0;
1706     }
1707 
1708   if (!REG_P (reg))
1709     return 1;
1710 
1711   regno = REGNO (reg);
1712 
1713   if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1714     {
1715       /* Global registers are assumed live.  */
1716       return 0;
1717     }
1718   else
1719     {
1720       if (regno < FIRST_PSEUDO_REGISTER)
1721 	{
1722 	  /* Check for hard registers.  */
1723 	  int j = hard_regno_nregs[regno][GET_MODE (reg)];
1724 	  while (--j >= 0)
1725 	    {
1726 	      for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1727 		{
1728 		  basic_block b = candidate_table[src].split_bbs.first_member[i];
1729 		  int t = bitmap_bit_p (&not_in_df, b->index);
1730 
1731 		  /* We can have split blocks, that were recently generated.
1732 		     Such blocks are always outside current region.  */
1733 		  gcc_assert (!t || (CONTAINING_RGN (b->index)
1734 				     != CONTAINING_RGN (BB_TO_BLOCK (src))));
1735 
1736 		  if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1737 		    return 0;
1738 		}
1739 	    }
1740 	}
1741       else
1742 	{
1743 	  /* Check for pseudo registers.  */
1744 	  for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1745 	    {
1746 	      basic_block b = candidate_table[src].split_bbs.first_member[i];
1747 	      int t = bitmap_bit_p (&not_in_df, b->index);
1748 
1749 	      gcc_assert (!t || (CONTAINING_RGN (b->index)
1750 				 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1751 
1752 	      if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1753 		return 0;
1754 	    }
1755 	}
1756     }
1757 
1758   return 1;
1759 }
1760 
1761 /* If x is a set of a register R, mark that R is alive in the beginning
1762    of every update-block of src.  */
1763 
1764 static void
1765 update_live_1 (int src, rtx x)
1766 {
1767   int i;
1768   int regno;
1769   rtx reg = SET_DEST (x);
1770 
1771   if (reg == 0)
1772     return;
1773 
1774   while (GET_CODE (reg) == SUBREG
1775 	 || GET_CODE (reg) == ZERO_EXTRACT
1776 	 || GET_CODE (reg) == STRICT_LOW_PART)
1777     reg = XEXP (reg, 0);
1778 
1779   if (GET_CODE (reg) == PARALLEL)
1780     {
1781       int i;
1782 
1783       for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1784 	if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1785 	  update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1786 
1787       return;
1788     }
1789 
1790   if (!REG_P (reg))
1791     return;
1792 
1793   /* Global registers are always live, so the code below does not apply
1794      to them.  */
1795 
1796   regno = REGNO (reg);
1797 
1798   if (! HARD_REGISTER_NUM_P (regno)
1799       || !global_regs[regno])
1800     {
1801       for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1802 	{
1803 	  basic_block b = candidate_table[src].update_bbs.first_member[i];
1804 
1805 	  if (HARD_REGISTER_NUM_P (regno))
1806 	    bitmap_set_range (df_get_live_in (b), regno,
1807 			      hard_regno_nregs[regno][GET_MODE (reg)]);
1808 	  else
1809 	    bitmap_set_bit (df_get_live_in (b), regno);
1810 	}
1811     }
1812 }
1813 
1814 /* Return 1 if insn can be speculatively moved from block src to trg,
1815    otherwise return 0.  Called before first insertion of insn to
1816    ready-list or before the scheduling.  */
1817 
1818 static int
1819 check_live (rtx_insn *insn, int src)
1820 {
1821   /* Find the registers set by instruction.  */
1822   if (GET_CODE (PATTERN (insn)) == SET
1823       || GET_CODE (PATTERN (insn)) == CLOBBER)
1824     return check_live_1 (src, PATTERN (insn));
1825   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1826     {
1827       int j;
1828       for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1829 	if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1830 	     || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1831 	    && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1832 	  return 0;
1833 
1834       return 1;
1835     }
1836 
1837   return 1;
1838 }
1839 
1840 /* Update the live registers info after insn was moved speculatively from
1841    block src to trg.  */
1842 
1843 static void
1844 update_live (rtx insn, int src)
1845 {
1846   /* Find the registers set by instruction.  */
1847   if (GET_CODE (PATTERN (insn)) == SET
1848       || GET_CODE (PATTERN (insn)) == CLOBBER)
1849     update_live_1 (src, PATTERN (insn));
1850   else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1851     {
1852       int j;
1853       for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1854 	if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1855 	    || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1856 	  update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1857     }
1858 }
1859 
1860 /* Nonzero if block bb_to is equal to, or reachable from block bb_from.  */
1861 #define IS_REACHABLE(bb_from, bb_to)					\
1862   (bb_from == bb_to							\
1863    || IS_RGN_ENTRY (bb_from)						\
1864    || (bitmap_bit_p (ancestor_edges[bb_to],					\
1865 	 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1866 							    BB_TO_BLOCK (bb_from)))))))
1867 
1868 /* Turns on the fed_by_spec_load flag for insns fed by load_insn.  */
1869 
1870 static void
1871 set_spec_fed (rtx load_insn)
1872 {
1873   sd_iterator_def sd_it;
1874   dep_t dep;
1875 
1876   FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1877     if (DEP_TYPE (dep) == REG_DEP_TRUE)
1878       FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1879 }
1880 
1881 /* On the path from the insn to load_insn_bb, find a conditional
1882 branch depending on insn, that guards the speculative load.  */
1883 
1884 static int
1885 find_conditional_protection (rtx insn, int load_insn_bb)
1886 {
1887   sd_iterator_def sd_it;
1888   dep_t dep;
1889 
1890   /* Iterate through DEF-USE forward dependences.  */
1891   FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1892     {
1893       rtx_insn *next = DEP_CON (dep);
1894 
1895       if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1896 	   CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1897 	  && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1898 	  && load_insn_bb != INSN_BB (next)
1899 	  && DEP_TYPE (dep) == REG_DEP_TRUE
1900 	  && (JUMP_P (next)
1901 	      || find_conditional_protection (next, load_insn_bb)))
1902 	return 1;
1903     }
1904   return 0;
1905 }				/* find_conditional_protection */
1906 
1907 /* Returns 1 if the same insn1 that participates in the computation
1908    of load_insn's address is feeding a conditional branch that is
1909    guarding on load_insn. This is true if we find two DEF-USE
1910    chains:
1911    insn1 -> ... -> conditional-branch
1912    insn1 -> ... -> load_insn,
1913    and if a flow path exists:
1914    insn1 -> ... -> conditional-branch -> ... -> load_insn,
1915    and if insn1 is on the path
1916    region-entry -> ... -> bb_trg -> ... load_insn.
1917 
1918    Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1919    Locate the branch by following INSN_FORW_DEPS from insn1.  */
1920 
1921 static int
1922 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1923 {
1924   sd_iterator_def sd_it;
1925   dep_t dep;
1926 
1927   FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1928     {
1929       rtx_insn *insn1 = DEP_PRO (dep);
1930 
1931       /* Must be a DEF-USE dependence upon non-branch.  */
1932       if (DEP_TYPE (dep) != REG_DEP_TRUE
1933 	  || JUMP_P (insn1))
1934 	continue;
1935 
1936       /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn.  */
1937       if (INSN_BB (insn1) == bb_src
1938 	  || (CONTAINING_RGN (BLOCK_NUM (insn1))
1939 	      != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1940 	  || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1941 	      && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1942 	continue;
1943 
1944       /* Now search for the conditional-branch.  */
1945       if (find_conditional_protection (insn1, bb_src))
1946 	return 1;
1947 
1948       /* Recursive step: search another insn1, "above" current insn1.  */
1949       return is_conditionally_protected (insn1, bb_src, bb_trg);
1950     }
1951 
1952   /* The chain does not exist.  */
1953   return 0;
1954 }				/* is_conditionally_protected */
1955 
1956 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1957    load_insn can move speculatively from bb_src to bb_trg.  All the
1958    following must hold:
1959 
1960    (1) both loads have 1 base register (PFREE_CANDIDATEs).
1961    (2) load_insn and load1 have a def-use dependence upon
1962    the same insn 'insn1'.
1963    (3) either load2 is in bb_trg, or:
1964    - there's only one split-block, and
1965    - load1 is on the escape path, and
1966 
1967    From all these we can conclude that the two loads access memory
1968    addresses that differ at most by a constant, and hence if moving
1969    load_insn would cause an exception, it would have been caused by
1970    load2 anyhow.  */
1971 
1972 static int
1973 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1974 {
1975   sd_iterator_def back_sd_it;
1976   dep_t back_dep;
1977   candidate *candp = candidate_table + bb_src;
1978 
1979   if (candp->split_bbs.nr_members != 1)
1980     /* Must have exactly one escape block.  */
1981     return 0;
1982 
1983   FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1984     {
1985       rtx_insn *insn1 = DEP_PRO (back_dep);
1986 
1987       if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1988 	/* Found a DEF-USE dependence (insn1, load_insn).  */
1989 	{
1990 	  sd_iterator_def fore_sd_it;
1991 	  dep_t fore_dep;
1992 
1993 	  FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1994 	    {
1995 	      rtx_insn *insn2 = DEP_CON (fore_dep);
1996 
1997 	      if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1998 		{
1999 		  /* Found a DEF-USE dependence (insn1, insn2).  */
2000 		  if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
2001 		    /* insn2 not guaranteed to be a 1 base reg load.  */
2002 		    continue;
2003 
2004 		  if (INSN_BB (insn2) == bb_trg)
2005 		    /* insn2 is the similar load, in the target block.  */
2006 		    return 1;
2007 
2008 		  if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
2009 		    /* insn2 is a similar load, in a split-block.  */
2010 		    return 1;
2011 		}
2012 	    }
2013 	}
2014     }
2015 
2016   /* Couldn't find a similar load.  */
2017   return 0;
2018 }				/* is_pfree */
2019 
2020 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2021    a load moved speculatively, or if load_insn is protected by
2022    a compare on load_insn's address).  */
2023 
2024 static int
2025 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2026 {
2027   if (FED_BY_SPEC_LOAD (load_insn))
2028     return 1;
2029 
2030   if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2031     /* Dependence may 'hide' out of the region.  */
2032     return 1;
2033 
2034   if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2035     return 1;
2036 
2037   return 0;
2038 }
2039 
2040 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2041    Return 1 if insn is exception-free (and the motion is valid)
2042    and 0 otherwise.  */
2043 
2044 static int
2045 is_exception_free (rtx insn, int bb_src, int bb_trg)
2046 {
2047   int insn_class = haifa_classify_insn (insn);
2048 
2049   /* Handle non-load insns.  */
2050   switch (insn_class)
2051     {
2052     case TRAP_FREE:
2053       return 1;
2054     case TRAP_RISKY:
2055       return 0;
2056     default:;
2057     }
2058 
2059   /* Handle loads.  */
2060   if (!flag_schedule_speculative_load)
2061     return 0;
2062   IS_LOAD_INSN (insn) = 1;
2063   switch (insn_class)
2064     {
2065     case IFREE:
2066       return (1);
2067     case IRISKY:
2068       return 0;
2069     case PFREE_CANDIDATE:
2070       if (is_pfree (insn, bb_src, bb_trg))
2071 	return 1;
2072       /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate.  */
2073     case PRISKY_CANDIDATE:
2074       if (!flag_schedule_speculative_load_dangerous
2075 	  || is_prisky (insn, bb_src, bb_trg))
2076 	return 0;
2077       break;
2078     default:;
2079     }
2080 
2081   return flag_schedule_speculative_load_dangerous;
2082 }
2083 
2084 /* The number of insns from the current block scheduled so far.  */
2085 static int sched_target_n_insns;
2086 /* The number of insns from the current block to be scheduled in total.  */
2087 static int target_n_insns;
2088 /* The number of insns from the entire region scheduled so far.  */
2089 static int sched_n_insns;
2090 
2091 /* Implementations of the sched_info functions for region scheduling.  */
2092 static void init_ready_list (void);
2093 static int can_schedule_ready_p (rtx_insn *);
2094 static void begin_schedule_ready (rtx_insn *);
2095 static ds_t new_ready (rtx_insn *, ds_t);
2096 static int schedule_more_p (void);
2097 static const char *rgn_print_insn (const rtx_insn *, int);
2098 static int rgn_rank (rtx_insn *, rtx_insn *);
2099 static void compute_jump_reg_dependencies (rtx, regset);
2100 
2101 /* Functions for speculative scheduling.  */
2102 static void rgn_add_remove_insn (rtx_insn *, int);
2103 static void rgn_add_block (basic_block, basic_block);
2104 static void rgn_fix_recovery_cfg (int, int, int);
2105 static basic_block advance_target_bb (basic_block, rtx_insn *);
2106 
2107 /* Return nonzero if there are more insns that should be scheduled.  */
2108 
2109 static int
2110 schedule_more_p (void)
2111 {
2112   return sched_target_n_insns < target_n_insns;
2113 }
2114 
2115 /* Add all insns that are initially ready to the ready list READY.  Called
2116    once before scheduling a set of insns.  */
2117 
2118 static void
2119 init_ready_list (void)
2120 {
2121   rtx_insn *prev_head = current_sched_info->prev_head;
2122   rtx_insn *next_tail = current_sched_info->next_tail;
2123   int bb_src;
2124   rtx_insn *insn;
2125 
2126   target_n_insns = 0;
2127   sched_target_n_insns = 0;
2128   sched_n_insns = 0;
2129 
2130   /* Print debugging information.  */
2131   if (sched_verbose >= 5)
2132     debug_rgn_dependencies (target_bb);
2133 
2134   /* Prepare current target block info.  */
2135   if (current_nr_blocks > 1)
2136     compute_trg_info (target_bb);
2137 
2138   /* Initialize ready list with all 'ready' insns in target block.
2139      Count number of insns in the target block being scheduled.  */
2140   for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2141     {
2142       gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2143       TODO_SPEC (insn) = HARD_DEP;
2144       try_ready (insn);
2145       target_n_insns++;
2146 
2147       gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2148     }
2149 
2150   /* Add to ready list all 'ready' insns in valid source blocks.
2151      For speculative insns, check-live, exception-free, and
2152      issue-delay.  */
2153   for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2154     if (IS_VALID (bb_src))
2155       {
2156 	rtx_insn *src_head;
2157 	rtx_insn *src_next_tail;
2158 	rtx_insn *tail, *head;
2159 
2160 	get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2161 			   &head, &tail);
2162 	src_next_tail = NEXT_INSN (tail);
2163 	src_head = head;
2164 
2165 	for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2166 	  if (INSN_P (insn))
2167 	    {
2168 	      gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2169 	      TODO_SPEC (insn) = HARD_DEP;
2170 	      try_ready (insn);
2171 	    }
2172       }
2173 }
2174 
2175 /* Called after taking INSN from the ready list.  Returns nonzero if this
2176    insn can be scheduled, nonzero if we should silently discard it.  */
2177 
2178 static int
2179 can_schedule_ready_p (rtx_insn *insn)
2180 {
2181   /* An interblock motion?  */
2182   if (INSN_BB (insn) != target_bb
2183       && IS_SPECULATIVE_INSN (insn)
2184       && !check_live (insn, INSN_BB (insn)))
2185     return 0;
2186   else
2187     return 1;
2188 }
2189 
2190 /* Updates counter and other information.  Split from can_schedule_ready_p ()
2191    because when we schedule insn speculatively then insn passed to
2192    can_schedule_ready_p () differs from the one passed to
2193    begin_schedule_ready ().  */
2194 static void
2195 begin_schedule_ready (rtx_insn *insn)
2196 {
2197   /* An interblock motion?  */
2198   if (INSN_BB (insn) != target_bb)
2199     {
2200       if (IS_SPECULATIVE_INSN (insn))
2201 	{
2202 	  gcc_assert (check_live (insn, INSN_BB (insn)));
2203 
2204 	  update_live (insn, INSN_BB (insn));
2205 
2206 	  /* For speculative load, mark insns fed by it.  */
2207 	  if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2208 	    set_spec_fed (insn);
2209 
2210 	  nr_spec++;
2211 	}
2212       nr_inter++;
2213     }
2214   else
2215     {
2216       /* In block motion.  */
2217       sched_target_n_insns++;
2218     }
2219   sched_n_insns++;
2220 }
2221 
2222 /* Called after INSN has all its hard dependencies resolved and the speculation
2223    of type TS is enough to overcome them all.
2224    Return nonzero if it should be moved to the ready list or the queue, or zero
2225    if we should silently discard it.  */
2226 static ds_t
2227 new_ready (rtx_insn *next, ds_t ts)
2228 {
2229   if (INSN_BB (next) != target_bb)
2230     {
2231       int not_ex_free = 0;
2232 
2233       /* For speculative insns, before inserting to ready/queue,
2234 	 check live, exception-free, and issue-delay.  */
2235       if (!IS_VALID (INSN_BB (next))
2236 	  || CANT_MOVE (next)
2237 	  || (IS_SPECULATIVE_INSN (next)
2238 	      && ((recog_memoized (next) >= 0
2239 		   && min_insn_conflict_delay (curr_state, next, next)
2240                    > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2241                   || IS_SPECULATION_CHECK_P (next)
2242 		  || !check_live (next, INSN_BB (next))
2243 		  || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2244 							target_bb)))))
2245 	{
2246 	  if (not_ex_free
2247 	      /* We are here because is_exception_free () == false.
2248 		 But we possibly can handle that with control speculation.  */
2249 	      && sched_deps_info->generate_spec_deps
2250 	      && spec_info->mask & BEGIN_CONTROL)
2251 	    {
2252 	      ds_t new_ds;
2253 
2254 	      /* Add control speculation to NEXT's dependency type.  */
2255 	      new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2256 
2257 	      /* Check if NEXT can be speculated with new dependency type.  */
2258 	      if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2259 		/* Here we got new control-speculative instruction.  */
2260 		ts = new_ds;
2261 	      else
2262 		/* NEXT isn't ready yet.  */
2263 		ts = DEP_POSTPONED;
2264 	    }
2265 	  else
2266 	    /* NEXT isn't ready yet.  */
2267             ts = DEP_POSTPONED;
2268 	}
2269     }
2270 
2271   return ts;
2272 }
2273 
2274 /* Return a string that contains the insn uid and optionally anything else
2275    necessary to identify this insn in an output.  It's valid to use a
2276    static buffer for this.  The ALIGNED parameter should cause the string
2277    to be formatted so that multiple output lines will line up nicely.  */
2278 
2279 static const char *
2280 rgn_print_insn (const rtx_insn *insn, int aligned)
2281 {
2282   static char tmp[80];
2283 
2284   if (aligned)
2285     sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2286   else
2287     {
2288       if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2289 	sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2290       else
2291 	sprintf (tmp, "%d", INSN_UID (insn));
2292     }
2293   return tmp;
2294 }
2295 
2296 /* Compare priority of two insns.  Return a positive number if the second
2297    insn is to be preferred for scheduling, and a negative one if the first
2298    is to be preferred.  Zero if they are equally good.  */
2299 
2300 static int
2301 rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2302 {
2303   /* Some comparison make sense in interblock scheduling only.  */
2304   if (INSN_BB (insn1) != INSN_BB (insn2))
2305     {
2306       int spec_val, prob_val;
2307 
2308       /* Prefer an inblock motion on an interblock motion.  */
2309       if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2310 	return 1;
2311       if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2312 	return -1;
2313 
2314       /* Prefer a useful motion on a speculative one.  */
2315       spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2316       if (spec_val)
2317 	return spec_val;
2318 
2319       /* Prefer a more probable (speculative) insn.  */
2320       prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2321       if (prob_val)
2322 	return prob_val;
2323     }
2324   return 0;
2325 }
2326 
2327 /* NEXT is an instruction that depends on INSN (a backward dependence);
2328    return nonzero if we should include this dependence in priority
2329    calculations.  */
2330 
2331 int
2332 contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2333 {
2334   /* NEXT and INSN reside in one ebb.  */
2335   return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2336 }
2337 
2338 /* INSN is a JUMP_INSN.  Store the set of registers that must be
2339    considered as used by this jump in USED.  */
2340 
2341 static void
2342 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2343 			       regset used ATTRIBUTE_UNUSED)
2344 {
2345   /* Nothing to do here, since we postprocess jumps in
2346      add_branch_dependences.  */
2347 }
2348 
2349 /* This variable holds common_sched_info hooks and data relevant to
2350    the interblock scheduler.  */
2351 static struct common_sched_info_def rgn_common_sched_info;
2352 
2353 
2354 /* This holds data for the dependence analysis relevant to
2355    the interblock scheduler.  */
2356 static struct sched_deps_info_def rgn_sched_deps_info;
2357 
2358 /* This holds constant data used for initializing the above structure
2359    for the Haifa scheduler.  */
2360 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2361   {
2362     compute_jump_reg_dependencies,
2363     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2364     0, 0, 0
2365   };
2366 
2367 /* Same as above, but for the selective scheduler.  */
2368 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2369   {
2370     compute_jump_reg_dependencies,
2371     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2372     0, 0, 0
2373   };
2374 
2375 /* Return true if scheduling INSN will trigger finish of scheduling
2376    current block.  */
2377 static bool
2378 rgn_insn_finishes_block_p (rtx_insn *insn)
2379 {
2380   if (INSN_BB (insn) == target_bb
2381       && sched_target_n_insns + 1 == target_n_insns)
2382     /* INSN is the last not-scheduled instruction in the current block.  */
2383     return true;
2384 
2385   return false;
2386 }
2387 
2388 /* Used in schedule_insns to initialize current_sched_info for scheduling
2389    regions (or single basic blocks).  */
2390 
2391 static const struct haifa_sched_info rgn_const_sched_info =
2392 {
2393   init_ready_list,
2394   can_schedule_ready_p,
2395   schedule_more_p,
2396   new_ready,
2397   rgn_rank,
2398   rgn_print_insn,
2399   contributes_to_priority,
2400   rgn_insn_finishes_block_p,
2401 
2402   NULL, NULL,
2403   NULL, NULL,
2404   0, 0,
2405 
2406   rgn_add_remove_insn,
2407   begin_schedule_ready,
2408   NULL,
2409   advance_target_bb,
2410   NULL, NULL,
2411   SCHED_RGN
2412 };
2413 
2414 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2415    for the interblock scheduler frontend.  */
2416 static struct haifa_sched_info rgn_sched_info;
2417 
2418 /* Returns maximum priority that an insn was assigned to.  */
2419 
2420 int
2421 get_rgn_sched_max_insns_priority (void)
2422 {
2423   return rgn_sched_info.sched_max_insns_priority;
2424 }
2425 
2426 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register.  */
2427 
2428 static bool
2429 sets_likely_spilled (rtx pat)
2430 {
2431   bool ret = false;
2432   note_stores (pat, sets_likely_spilled_1, &ret);
2433   return ret;
2434 }
2435 
2436 static void
2437 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2438 {
2439   bool *ret = (bool *) data;
2440 
2441   if (GET_CODE (pat) == SET
2442       && REG_P (x)
2443       && HARD_REGISTER_P (x)
2444       && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2445     *ret = true;
2446 }
2447 
2448 /* A bitmap to note insns that participate in any dependency.  Used in
2449    add_branch_dependences.  */
2450 static sbitmap insn_referenced;
2451 
2452 /* Add dependences so that branches are scheduled to run last in their
2453    block.  */
2454 static void
2455 add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2456 {
2457   rtx_insn *insn, *last;
2458 
2459   /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2460      that can throw exceptions, force them to remain in order at the end of
2461      the block by adding dependencies and giving the last a high priority.
2462      There may be notes present, and prev_head may also be a note.
2463 
2464      Branches must obviously remain at the end.  Calls should remain at the
2465      end since moving them results in worse register allocation.  Uses remain
2466      at the end to ensure proper register allocation.
2467 
2468      cc0 setters remain at the end because they can't be moved away from
2469      their cc0 user.
2470 
2471      Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2472 
2473      COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2474 
2475      Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2476      values) are not moved before reload because we can wind up with register
2477      allocation failures.  */
2478 
2479   while (tail != head && DEBUG_INSN_P (tail))
2480     tail = PREV_INSN (tail);
2481 
2482   insn = tail;
2483   last = 0;
2484   while (CALL_P (insn)
2485 	 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2486 	 || (NONJUMP_INSN_P (insn)
2487 	     && (GET_CODE (PATTERN (insn)) == USE
2488 		 || GET_CODE (PATTERN (insn)) == CLOBBER
2489 		 || can_throw_internal (insn)
2490 #ifdef HAVE_cc0
2491 		 || sets_cc0_p (PATTERN (insn))
2492 #endif
2493 		 || (!reload_completed
2494 		     && sets_likely_spilled (PATTERN (insn)))))
2495 	 || NOTE_P (insn)
2496 	 || (last != 0 && SCHED_GROUP_P (last)))
2497     {
2498       if (!NOTE_P (insn))
2499 	{
2500 	  if (last != 0
2501 	      && sd_find_dep_between (insn, last, false) == NULL)
2502 	    {
2503 	      if (! sched_insns_conditions_mutex_p (last, insn))
2504 		add_dependence (last, insn, REG_DEP_ANTI);
2505 	      bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2506 	    }
2507 
2508 	  CANT_MOVE (insn) = 1;
2509 
2510 	  last = insn;
2511 	}
2512 
2513       /* Don't overrun the bounds of the basic block.  */
2514       if (insn == head)
2515 	break;
2516 
2517       do
2518 	insn = PREV_INSN (insn);
2519       while (insn != head && DEBUG_INSN_P (insn));
2520     }
2521 
2522   /* Make sure these insns are scheduled last in their block.  */
2523   insn = last;
2524   if (insn != 0)
2525     while (insn != head)
2526       {
2527 	insn = prev_nonnote_insn (insn);
2528 
2529 	if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2530 	    || DEBUG_INSN_P (insn))
2531 	  continue;
2532 
2533 	if (! sched_insns_conditions_mutex_p (last, insn))
2534 	  add_dependence (last, insn, REG_DEP_ANTI);
2535       }
2536 
2537   if (!targetm.have_conditional_execution ())
2538     return;
2539 
2540   /* Finally, if the block ends in a jump, and we are doing intra-block
2541      scheduling, make sure that the branch depends on any COND_EXEC insns
2542      inside the block to avoid moving the COND_EXECs past the branch insn.
2543 
2544      We only have to do this after reload, because (1) before reload there
2545      are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2546      scheduler after reload.
2547 
2548      FIXME: We could in some cases move COND_EXEC insns past the branch if
2549      this scheduler would be a little smarter.  Consider this code:
2550 
2551 		T = [addr]
2552 	C  ?	addr += 4
2553 	!C ?	X += 12
2554 	C  ?	T += 1
2555 	C  ?	jump foo
2556 
2557      On a target with a one cycle stall on a memory access the optimal
2558      sequence would be:
2559 
2560 		T = [addr]
2561 	C  ?	addr += 4
2562 	C  ?	T += 1
2563 	C  ?	jump foo
2564 	!C ?	X += 12
2565 
2566      We don't want to put the 'X += 12' before the branch because it just
2567      wastes a cycle of execution time when the branch is taken.
2568 
2569      Note that in the example "!C" will always be true.  That is another
2570      possible improvement for handling COND_EXECs in this scheduler: it
2571      could remove always-true predicates.  */
2572 
2573   if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2574     return;
2575 
2576   insn = tail;
2577   while (insn != head)
2578     {
2579       insn = PREV_INSN (insn);
2580 
2581       /* Note that we want to add this dependency even when
2582 	 sched_insns_conditions_mutex_p returns true.  The whole point
2583 	 is that we _want_ this dependency, even if these insns really
2584 	 are independent.  */
2585       if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2586 	add_dependence (tail, insn, REG_DEP_ANTI);
2587     }
2588 }
2589 
2590 /* Data structures for the computation of data dependences in a regions.  We
2591    keep one `deps' structure for every basic block.  Before analyzing the
2592    data dependences for a bb, its variables are initialized as a function of
2593    the variables of its predecessors.  When the analysis for a bb completes,
2594    we save the contents to the corresponding bb_deps[bb] variable.  */
2595 
2596 static struct deps_desc *bb_deps;
2597 
2598 static void
2599 concat_insn_mem_list (rtx_insn_list *copy_insns,
2600 		      rtx_expr_list *copy_mems,
2601 		      rtx_insn_list **old_insns_p,
2602 		      rtx_expr_list **old_mems_p)
2603 {
2604   rtx_insn_list *new_insns = *old_insns_p;
2605   rtx_expr_list *new_mems = *old_mems_p;
2606 
2607   while (copy_insns)
2608     {
2609       new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2610       new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2611       copy_insns = copy_insns->next ();
2612       copy_mems = copy_mems->next ();
2613     }
2614 
2615   *old_insns_p = new_insns;
2616   *old_mems_p = new_mems;
2617 }
2618 
2619 /* Join PRED_DEPS to the SUCC_DEPS.  */
2620 void
2621 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2622 {
2623   unsigned reg;
2624   reg_set_iterator rsi;
2625 
2626   /* The reg_last lists are inherited by successor.  */
2627   EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2628     {
2629       struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2630       struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2631 
2632       succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2633       succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2634       succ_rl->implicit_sets
2635 	= concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2636       succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2637                                             succ_rl->clobbers);
2638       succ_rl->uses_length += pred_rl->uses_length;
2639       succ_rl->clobbers_length += pred_rl->clobbers_length;
2640     }
2641   IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2642 
2643   /* Mem read/write lists are inherited by successor.  */
2644   concat_insn_mem_list (pred_deps->pending_read_insns,
2645                         pred_deps->pending_read_mems,
2646                         &succ_deps->pending_read_insns,
2647                         &succ_deps->pending_read_mems);
2648   concat_insn_mem_list (pred_deps->pending_write_insns,
2649                         pred_deps->pending_write_mems,
2650                         &succ_deps->pending_write_insns,
2651                         &succ_deps->pending_write_mems);
2652 
2653   succ_deps->pending_jump_insns
2654     = concat_INSN_LIST (pred_deps->pending_jump_insns,
2655                         succ_deps->pending_jump_insns);
2656   succ_deps->last_pending_memory_flush
2657     = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2658                         succ_deps->last_pending_memory_flush);
2659 
2660   succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2661   succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2662   succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2663 
2664   /* last_function_call is inherited by successor.  */
2665   succ_deps->last_function_call
2666     = concat_INSN_LIST (pred_deps->last_function_call,
2667                         succ_deps->last_function_call);
2668 
2669   /* last_function_call_may_noreturn is inherited by successor.  */
2670   succ_deps->last_function_call_may_noreturn
2671     = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2672                         succ_deps->last_function_call_may_noreturn);
2673 
2674   /* sched_before_next_call is inherited by successor.  */
2675   succ_deps->sched_before_next_call
2676     = concat_INSN_LIST (pred_deps->sched_before_next_call,
2677                         succ_deps->sched_before_next_call);
2678 }
2679 
2680 /* After computing the dependencies for block BB, propagate the dependencies
2681    found in TMP_DEPS to the successors of the block.  */
2682 static void
2683 propagate_deps (int bb, struct deps_desc *pred_deps)
2684 {
2685   basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2686   edge_iterator ei;
2687   edge e;
2688 
2689   /* bb's structures are inherited by its successors.  */
2690   FOR_EACH_EDGE (e, ei, block->succs)
2691     {
2692       /* Only bbs "below" bb, in the same region, are interesting.  */
2693       if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2694 	  || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2695 	  || BLOCK_TO_BB (e->dest->index) <= bb)
2696 	continue;
2697 
2698       deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2699     }
2700 
2701   /* These lists should point to the right place, for correct
2702      freeing later.  */
2703   bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2704   bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2705   bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2706   bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2707   bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2708 
2709   /* Can't allow these to be freed twice.  */
2710   pred_deps->pending_read_insns = 0;
2711   pred_deps->pending_read_mems = 0;
2712   pred_deps->pending_write_insns = 0;
2713   pred_deps->pending_write_mems = 0;
2714   pred_deps->pending_jump_insns = 0;
2715 }
2716 
2717 /* Compute dependences inside bb.  In a multiple blocks region:
2718    (1) a bb is analyzed after its predecessors, and (2) the lists in
2719    effect at the end of bb (after analyzing for bb) are inherited by
2720    bb's successors.
2721 
2722    Specifically for reg-reg data dependences, the block insns are
2723    scanned by sched_analyze () top-to-bottom.  Three lists are
2724    maintained by sched_analyze (): reg_last[].sets for register DEFs,
2725    reg_last[].implicit_sets for implicit hard register DEFs, and
2726    reg_last[].uses for register USEs.
2727 
2728    When analysis is completed for bb, we update for its successors:
2729    ;  - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2730    ;  - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2731    ;  - USES[succ] = Union (USES [succ], DEFS [bb])
2732 
2733    The mechanism for computing mem-mem data dependence is very
2734    similar, and the result is interblock dependences in the region.  */
2735 
2736 static void
2737 compute_block_dependences (int bb)
2738 {
2739   rtx_insn *head, *tail;
2740   struct deps_desc tmp_deps;
2741 
2742   tmp_deps = bb_deps[bb];
2743 
2744   /* Do the analysis for this block.  */
2745   gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2746   get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2747 
2748   sched_analyze (&tmp_deps, head, tail);
2749 
2750   /* Selective scheduling handles control dependencies by itself.  */
2751   if (!sel_sched_p ())
2752     add_branch_dependences (head, tail);
2753 
2754   if (current_nr_blocks > 1)
2755     propagate_deps (bb, &tmp_deps);
2756 
2757   /* Free up the INSN_LISTs.  */
2758   free_deps (&tmp_deps);
2759 
2760   if (targetm.sched.dependencies_evaluation_hook)
2761     targetm.sched.dependencies_evaluation_hook (head, tail);
2762 }
2763 
2764 /* Free dependencies of instructions inside BB.  */
2765 static void
2766 free_block_dependencies (int bb)
2767 {
2768   rtx_insn *head;
2769   rtx_insn *tail;
2770 
2771   get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2772 
2773   if (no_real_insns_p (head, tail))
2774     return;
2775 
2776   sched_free_deps (head, tail, true);
2777 }
2778 
2779 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2780    them to the unused_*_list variables, so that they can be reused.  */
2781 
2782 static void
2783 free_pending_lists (void)
2784 {
2785   int bb;
2786 
2787   for (bb = 0; bb < current_nr_blocks; bb++)
2788     {
2789       free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2790       free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2791       free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2792       free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2793       free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2794     }
2795 }
2796 
2797 /* Print dependences for debugging starting from FROM_BB.
2798    Callable from debugger.  */
2799 /* Print dependences for debugging starting from FROM_BB.
2800    Callable from debugger.  */
2801 DEBUG_FUNCTION void
2802 debug_rgn_dependencies (int from_bb)
2803 {
2804   int bb;
2805 
2806   fprintf (sched_dump,
2807 	   ";;   --------------- forward dependences: ------------ \n");
2808 
2809   for (bb = from_bb; bb < current_nr_blocks; bb++)
2810     {
2811       rtx_insn *head, *tail;
2812 
2813       get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2814       fprintf (sched_dump, "\n;;   --- Region Dependences --- b %d bb %d \n",
2815 	       BB_TO_BLOCK (bb), bb);
2816 
2817       debug_dependencies (head, tail);
2818     }
2819 }
2820 
2821 /* Print dependencies information for instructions between HEAD and TAIL.
2822    ??? This function would probably fit best in haifa-sched.c.  */
2823 void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2824 {
2825   rtx_insn *insn;
2826   rtx_insn *next_tail = NEXT_INSN (tail);
2827 
2828   fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
2829 	   "insn", "code", "bb", "dep", "prio", "cost",
2830 	   "reservation");
2831   fprintf (sched_dump, ";;   %7s%6s%6s%6s%6s%6s%14s\n",
2832 	   "----", "----", "--", "---", "----", "----",
2833 	   "-----------");
2834 
2835   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2836     {
2837       if (! INSN_P (insn))
2838 	{
2839 	  int n;
2840 	  fprintf (sched_dump, ";;   %6d ", INSN_UID (insn));
2841 	  if (NOTE_P (insn))
2842 	    {
2843 	      n = NOTE_KIND (insn);
2844 	      fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2845 	    }
2846 	  else
2847 	    fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2848 	  continue;
2849 	}
2850 
2851       fprintf (sched_dump,
2852 	       ";;   %s%5d%6d%6d%6d%6d%6d   ",
2853 	       (SCHED_GROUP_P (insn) ? "+" : " "),
2854 	       INSN_UID (insn),
2855 	       INSN_CODE (insn),
2856 	       BLOCK_NUM (insn),
2857 	       sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2858 	       (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2859 			       : INSN_PRIORITY (insn))
2860 		: INSN_PRIORITY (insn)),
2861 	       (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2862 			       : insn_cost (insn))
2863 		: insn_cost (insn)));
2864 
2865       if (recog_memoized (insn) < 0)
2866 	fprintf (sched_dump, "nothing");
2867       else
2868 	print_reservation (sched_dump, insn);
2869 
2870       fprintf (sched_dump, "\t: ");
2871       {
2872 	sd_iterator_def sd_it;
2873 	dep_t dep;
2874 
2875 	FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2876 	  fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2877 		   DEP_NONREG (dep) ? "n" : "",
2878 		   DEP_MULTIPLE (dep) ? "m" : "");
2879       }
2880       fprintf (sched_dump, "\n");
2881     }
2882 
2883   fprintf (sched_dump, "\n");
2884 }
2885 
2886 /* Returns true if all the basic blocks of the current region have
2887    NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region.  */
2888 bool
2889 sched_is_disabled_for_current_region_p (void)
2890 {
2891   int bb;
2892 
2893   for (bb = 0; bb < current_nr_blocks; bb++)
2894     if (!(BASIC_BLOCK_FOR_FN (cfun,
2895 			      BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2896       return false;
2897 
2898   return true;
2899 }
2900 
2901 /* Free all region dependencies saved in INSN_BACK_DEPS and
2902    INSN_RESOLVED_BACK_DEPS.  The Haifa scheduler does this on the fly
2903    when scheduling, so this function is supposed to be called from
2904    the selective scheduling only.  */
2905 void
2906 free_rgn_deps (void)
2907 {
2908   int bb;
2909 
2910   for (bb = 0; bb < current_nr_blocks; bb++)
2911     {
2912       rtx_insn *head, *tail;
2913 
2914       gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2915       get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2916 
2917       sched_free_deps (head, tail, false);
2918     }
2919 }
2920 
2921 static int rgn_n_insns;
2922 
2923 /* Compute insn priority for a current region.  */
2924 void
2925 compute_priorities (void)
2926 {
2927   int bb;
2928 
2929   current_sched_info->sched_max_insns_priority = 0;
2930   for (bb = 0; bb < current_nr_blocks; bb++)
2931     {
2932       rtx_insn *head, *tail;
2933 
2934       gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2935       get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2936 
2937       if (no_real_insns_p (head, tail))
2938 	continue;
2939 
2940       rgn_n_insns += set_priorities (head, tail);
2941     }
2942   current_sched_info->sched_max_insns_priority++;
2943 }
2944 
2945 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2946 
2947    SAVED_LAST_BASIC_BLOCK is the previous length of the arrays.  It must be
2948    zero for the first call to this function, to allocate the arrays for the
2949    first time.
2950 
2951    This function is called once during initialization of the scheduler, and
2952    called again to resize the arrays if new basic blocks have been created,
2953    for example for speculation recovery code.  */
2954 
2955 static void
2956 realloc_bb_state_array (int saved_last_basic_block)
2957 {
2958   char *old_bb_state_array = bb_state_array;
2959   size_t lbb = (size_t) last_basic_block_for_fn (cfun);
2960   size_t slbb = (size_t) saved_last_basic_block;
2961 
2962   /* Nothing to do if nothing changed since the last time this was called.  */
2963   if (saved_last_basic_block == last_basic_block_for_fn (cfun))
2964     return;
2965 
2966   /* The selective scheduler doesn't use the state arrays.  */
2967   if (sel_sched_p ())
2968     {
2969       gcc_assert (bb_state_array == NULL && bb_state == NULL);
2970       return;
2971     }
2972 
2973   gcc_checking_assert (saved_last_basic_block == 0
2974 		       || (bb_state_array != NULL && bb_state != NULL));
2975 
2976   bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2977   bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2978 
2979   /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2980      Otherwise only fixup the newly allocated ones.  For the state
2981      array itself, only initialize the new entries.  */
2982   bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2983   for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2984     bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2985   for (size_t i = slbb; i < lbb; i++)
2986     state_reset (bb_state[i]);
2987 }
2988 
2989 /* Free the arrays of DFA states at the end of each basic block.  */
2990 
2991 static void
2992 free_bb_state_array (void)
2993 {
2994   free (bb_state_array);
2995   free (bb_state);
2996   bb_state_array = NULL;
2997   bb_state = NULL;
2998 }
2999 
3000 /* Schedule a region.  A region is either an inner loop, a loop-free
3001    subroutine, or a single basic block.  Each bb in the region is
3002    scheduled after its flow predecessors.  */
3003 
3004 static void
3005 schedule_region (int rgn)
3006 {
3007   int bb;
3008   int sched_rgn_n_insns = 0;
3009 
3010   rgn_n_insns = 0;
3011 
3012   /* Do not support register pressure sensitive scheduling for the new regions
3013      as we don't update the liveness info for them.  */
3014   if (sched_pressure != SCHED_PRESSURE_NONE
3015       && rgn >= nr_regions_initial)
3016     {
3017       free_global_sched_pressure_data ();
3018       sched_pressure = SCHED_PRESSURE_NONE;
3019     }
3020 
3021   rgn_setup_region (rgn);
3022 
3023   /* Don't schedule region that is marked by
3024      NOTE_DISABLE_SCHED_OF_BLOCK.  */
3025   if (sched_is_disabled_for_current_region_p ())
3026     return;
3027 
3028   sched_rgn_compute_dependencies (rgn);
3029 
3030   sched_rgn_local_init (rgn);
3031 
3032   /* Set priorities.  */
3033   compute_priorities ();
3034 
3035   sched_extend_ready_list (rgn_n_insns);
3036 
3037   if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3038     {
3039       sched_init_region_reg_pressure_info ();
3040       for (bb = 0; bb < current_nr_blocks; bb++)
3041 	{
3042 	  basic_block first_bb, last_bb;
3043 	  rtx_insn *head, *tail;
3044 
3045 	  first_bb = EBB_FIRST_BB (bb);
3046 	  last_bb = EBB_LAST_BB (bb);
3047 
3048 	  get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3049 
3050 	  if (no_real_insns_p (head, tail))
3051 	    {
3052 	      gcc_assert (first_bb == last_bb);
3053 	      continue;
3054 	    }
3055 	  sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3056 	}
3057     }
3058 
3059   /* Now we can schedule all blocks.  */
3060   for (bb = 0; bb < current_nr_blocks; bb++)
3061     {
3062       basic_block first_bb, last_bb, curr_bb;
3063       rtx_insn *head, *tail;
3064 
3065       first_bb = EBB_FIRST_BB (bb);
3066       last_bb = EBB_LAST_BB (bb);
3067 
3068       get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3069 
3070       if (no_real_insns_p (head, tail))
3071 	{
3072 	  gcc_assert (first_bb == last_bb);
3073 	  continue;
3074 	}
3075 
3076       current_sched_info->prev_head = PREV_INSN (head);
3077       current_sched_info->next_tail = NEXT_INSN (tail);
3078 
3079       remove_notes (head, tail);
3080 
3081       unlink_bb_notes (first_bb, last_bb);
3082 
3083       target_bb = bb;
3084 
3085       gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3086       current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3087 
3088       curr_bb = first_bb;
3089       if (dbg_cnt (sched_block))
3090         {
3091 	  edge f;
3092 	  int saved_last_basic_block = last_basic_block_for_fn (cfun);
3093 
3094 	  schedule_block (&curr_bb, bb_state[first_bb->index]);
3095 	  gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3096 	  sched_rgn_n_insns += sched_n_insns;
3097 	  realloc_bb_state_array (saved_last_basic_block);
3098 	  f = find_fallthru_edge (last_bb->succs);
3099 	  if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3100 	      PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3101 	    {
3102 	      memcpy (bb_state[f->dest->index], curr_state,
3103 		      dfa_state_size);
3104 	      if (sched_verbose >= 5)
3105 		fprintf (sched_dump, "saving state for edge %d->%d\n",
3106 			 f->src->index, f->dest->index);
3107 	    }
3108         }
3109       else
3110         {
3111           sched_rgn_n_insns += rgn_n_insns;
3112         }
3113 
3114       /* Clean up.  */
3115       if (current_nr_blocks > 1)
3116 	free_trg_info ();
3117     }
3118 
3119   /* Sanity check: verify that all region insns were scheduled.  */
3120   gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3121 
3122   sched_finish_ready_list ();
3123 
3124   /* Done with this region.  */
3125   sched_rgn_local_finish ();
3126 
3127   /* Free dependencies.  */
3128   for (bb = 0; bb < current_nr_blocks; ++bb)
3129     free_block_dependencies (bb);
3130 
3131   gcc_assert (haifa_recovery_bb_ever_added_p
3132 	      || deps_pools_are_empty_p ());
3133 }
3134 
3135 /* Initialize data structures for region scheduling.  */
3136 
3137 void
3138 sched_rgn_init (bool single_blocks_p)
3139 {
3140   min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3141 		    / 100);
3142 
3143   nr_inter = 0;
3144   nr_spec = 0;
3145 
3146   extend_regions ();
3147 
3148   CONTAINING_RGN (ENTRY_BLOCK) = -1;
3149   CONTAINING_RGN (EXIT_BLOCK) = -1;
3150 
3151   realloc_bb_state_array (0);
3152 
3153   /* Compute regions for scheduling.  */
3154   if (single_blocks_p
3155       || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3156       || !flag_schedule_interblock
3157       || is_cfg_nonregular ())
3158     {
3159       find_single_block_region (sel_sched_p ());
3160     }
3161   else
3162     {
3163       /* Compute the dominators and post dominators.  */
3164       if (!sel_sched_p ())
3165 	calculate_dominance_info (CDI_DOMINATORS);
3166 
3167       /* Find regions.  */
3168       find_rgns ();
3169 
3170       if (sched_verbose >= 3)
3171 	debug_regions ();
3172 
3173       /* For now.  This will move as more and more of haifa is converted
3174 	 to using the cfg code.  */
3175       if (!sel_sched_p ())
3176 	free_dominance_info (CDI_DOMINATORS);
3177     }
3178 
3179   gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3180 
3181   RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3182 			     RGN_NR_BLOCKS (nr_regions - 1));
3183   nr_regions_initial = nr_regions;
3184 }
3185 
3186 /* Free data structures for region scheduling.  */
3187 void
3188 sched_rgn_finish (void)
3189 {
3190   free_bb_state_array ();
3191 
3192   /* Reposition the prologue and epilogue notes in case we moved the
3193      prologue/epilogue insns.  */
3194   if (reload_completed)
3195     reposition_prologue_and_epilogue_notes ();
3196 
3197   if (sched_verbose)
3198     {
3199       if (reload_completed == 0
3200 	  && flag_schedule_interblock)
3201 	{
3202 	  fprintf (sched_dump,
3203 		   "\n;; Procedure interblock/speculative motions == %d/%d \n",
3204 		   nr_inter, nr_spec);
3205 	}
3206       else
3207 	gcc_assert (nr_inter <= 0);
3208       fprintf (sched_dump, "\n\n");
3209     }
3210 
3211   nr_regions = 0;
3212 
3213   free (rgn_table);
3214   rgn_table = NULL;
3215 
3216   free (rgn_bb_table);
3217   rgn_bb_table = NULL;
3218 
3219   free (block_to_bb);
3220   block_to_bb = NULL;
3221 
3222   free (containing_rgn);
3223   containing_rgn = NULL;
3224 
3225   free (ebb_head);
3226   ebb_head = NULL;
3227 }
3228 
3229 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3230    point to the region RGN.  */
3231 void
3232 rgn_setup_region (int rgn)
3233 {
3234   int bb;
3235 
3236   /* Set variables for the current region.  */
3237   current_nr_blocks = RGN_NR_BLOCKS (rgn);
3238   current_blocks = RGN_BLOCKS (rgn);
3239 
3240   /* EBB_HEAD is a region-scope structure.  But we realloc it for
3241      each region to save time/memory/something else.
3242      See comments in add_block1, for what reasons we allocate +1 element.  */
3243   ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3244   for (bb = 0; bb <= current_nr_blocks; bb++)
3245     ebb_head[bb] = current_blocks + bb;
3246 }
3247 
3248 /* Compute instruction dependencies in region RGN.  */
3249 void
3250 sched_rgn_compute_dependencies (int rgn)
3251 {
3252   if (!RGN_DONT_CALC_DEPS (rgn))
3253     {
3254       int bb;
3255 
3256       if (sel_sched_p ())
3257 	sched_emulate_haifa_p = 1;
3258 
3259       init_deps_global ();
3260 
3261       /* Initializations for region data dependence analysis.  */
3262       bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3263       for (bb = 0; bb < current_nr_blocks; bb++)
3264 	init_deps (bb_deps + bb, false);
3265 
3266       /* Initialize bitmap used in add_branch_dependences.  */
3267       insn_referenced = sbitmap_alloc (sched_max_luid);
3268       bitmap_clear (insn_referenced);
3269 
3270       /* Compute backward dependencies.  */
3271       for (bb = 0; bb < current_nr_blocks; bb++)
3272 	compute_block_dependences (bb);
3273 
3274       sbitmap_free (insn_referenced);
3275       free_pending_lists ();
3276       finish_deps_global ();
3277       free (bb_deps);
3278 
3279       /* We don't want to recalculate this twice.  */
3280       RGN_DONT_CALC_DEPS (rgn) = 1;
3281 
3282       if (sel_sched_p ())
3283 	sched_emulate_haifa_p = 0;
3284     }
3285   else
3286     /* (This is a recovery block.  It is always a single block region.)
3287        OR (We use selective scheduling.)  */
3288     gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3289 }
3290 
3291 /* Init region data structures.  Returns true if this region should
3292    not be scheduled.  */
3293 void
3294 sched_rgn_local_init (int rgn)
3295 {
3296   int bb;
3297 
3298   /* Compute interblock info: probabilities, split-edges, dominators, etc.  */
3299   if (current_nr_blocks > 1)
3300     {
3301       basic_block block;
3302       edge e;
3303       edge_iterator ei;
3304 
3305       prob = XNEWVEC (int, current_nr_blocks);
3306 
3307       dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3308       bitmap_vector_clear (dom, current_nr_blocks);
3309 
3310       /* Use ->aux to implement EDGE_TO_BIT mapping.  */
3311       rgn_nr_edges = 0;
3312       FOR_EACH_BB_FN (block, cfun)
3313 	{
3314 	  if (CONTAINING_RGN (block->index) != rgn)
3315 	    continue;
3316 	  FOR_EACH_EDGE (e, ei, block->succs)
3317 	    SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3318 	}
3319 
3320       rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3321       rgn_nr_edges = 0;
3322       FOR_EACH_BB_FN (block, cfun)
3323 	{
3324 	  if (CONTAINING_RGN (block->index) != rgn)
3325 	    continue;
3326 	  FOR_EACH_EDGE (e, ei, block->succs)
3327 	    rgn_edges[rgn_nr_edges++] = e;
3328 	}
3329 
3330       /* Split edges.  */
3331       pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3332       bitmap_vector_clear (pot_split, current_nr_blocks);
3333       ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3334       bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3335 
3336       /* Compute probabilities, dominators, split_edges.  */
3337       for (bb = 0; bb < current_nr_blocks; bb++)
3338 	compute_dom_prob_ps (bb);
3339 
3340       /* Cleanup ->aux used for EDGE_TO_BIT mapping.  */
3341       /* We don't need them anymore.  But we want to avoid duplication of
3342 	 aux fields in the newly created edges.  */
3343       FOR_EACH_BB_FN (block, cfun)
3344 	{
3345 	  if (CONTAINING_RGN (block->index) != rgn)
3346 	    continue;
3347 	  FOR_EACH_EDGE (e, ei, block->succs)
3348 	    e->aux = NULL;
3349         }
3350     }
3351 }
3352 
3353 /* Free data computed for the finished region.  */
3354 void
3355 sched_rgn_local_free (void)
3356 {
3357   free (prob);
3358   sbitmap_vector_free (dom);
3359   sbitmap_vector_free (pot_split);
3360   sbitmap_vector_free (ancestor_edges);
3361   free (rgn_edges);
3362 }
3363 
3364 /* Free data computed for the finished region.  */
3365 void
3366 sched_rgn_local_finish (void)
3367 {
3368   if (current_nr_blocks > 1 && !sel_sched_p ())
3369     {
3370       sched_rgn_local_free ();
3371     }
3372 }
3373 
3374 /* Setup scheduler infos.  */
3375 void
3376 rgn_setup_common_sched_info (void)
3377 {
3378   memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3379 	  sizeof (rgn_common_sched_info));
3380 
3381   rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3382   rgn_common_sched_info.add_block = rgn_add_block;
3383   rgn_common_sched_info.estimate_number_of_insns
3384     = rgn_estimate_number_of_insns;
3385   rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3386 
3387   common_sched_info = &rgn_common_sched_info;
3388 }
3389 
3390 /* Setup all *_sched_info structures (for the Haifa frontend
3391    and for the dependence analysis) in the interblock scheduler.  */
3392 void
3393 rgn_setup_sched_infos (void)
3394 {
3395   if (!sel_sched_p ())
3396     memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3397 	    sizeof (rgn_sched_deps_info));
3398   else
3399     memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3400 	    sizeof (rgn_sched_deps_info));
3401 
3402   sched_deps_info = &rgn_sched_deps_info;
3403 
3404   memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3405   current_sched_info = &rgn_sched_info;
3406 }
3407 
3408 /* The one entry point in this file.  */
3409 void
3410 schedule_insns (void)
3411 {
3412   int rgn;
3413 
3414   /* Taking care of this degenerate case makes the rest of
3415      this code simpler.  */
3416   if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3417     return;
3418 
3419   rgn_setup_common_sched_info ();
3420   rgn_setup_sched_infos ();
3421 
3422   haifa_sched_init ();
3423   sched_rgn_init (reload_completed);
3424 
3425   bitmap_initialize (&not_in_df, 0);
3426   bitmap_clear (&not_in_df);
3427 
3428   /* Schedule every region in the subroutine.  */
3429   for (rgn = 0; rgn < nr_regions; rgn++)
3430     if (dbg_cnt (sched_region))
3431       schedule_region (rgn);
3432 
3433   /* Clean up.  */
3434   sched_rgn_finish ();
3435   bitmap_clear (&not_in_df);
3436 
3437   haifa_sched_finish ();
3438 }
3439 
3440 /* INSN has been added to/removed from current region.  */
3441 static void
3442 rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3443 {
3444   if (!remove_p)
3445     rgn_n_insns++;
3446   else
3447     rgn_n_insns--;
3448 
3449   if (INSN_BB (insn) == target_bb)
3450     {
3451       if (!remove_p)
3452 	target_n_insns++;
3453       else
3454 	target_n_insns--;
3455     }
3456 }
3457 
3458 /* Extend internal data structures.  */
3459 void
3460 extend_regions (void)
3461 {
3462   rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3463   rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3464 			     n_basic_blocks_for_fn (cfun));
3465   block_to_bb = XRESIZEVEC (int, block_to_bb,
3466 			    last_basic_block_for_fn (cfun));
3467   containing_rgn = XRESIZEVEC (int, containing_rgn,
3468 			       last_basic_block_for_fn (cfun));
3469 }
3470 
3471 void
3472 rgn_make_new_region_out_of_new_block (basic_block bb)
3473 {
3474   int i;
3475 
3476   i = RGN_BLOCKS (nr_regions);
3477   /* I - first free position in rgn_bb_table.  */
3478 
3479   rgn_bb_table[i] = bb->index;
3480   RGN_NR_BLOCKS (nr_regions) = 1;
3481   RGN_HAS_REAL_EBB (nr_regions) = 0;
3482   RGN_DONT_CALC_DEPS (nr_regions) = 0;
3483   CONTAINING_RGN (bb->index) = nr_regions;
3484   BLOCK_TO_BB (bb->index) = 0;
3485 
3486   nr_regions++;
3487 
3488   RGN_BLOCKS (nr_regions) = i + 1;
3489 }
3490 
3491 /* BB was added to ebb after AFTER.  */
3492 static void
3493 rgn_add_block (basic_block bb, basic_block after)
3494 {
3495   extend_regions ();
3496   bitmap_set_bit (&not_in_df, bb->index);
3497 
3498   if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3499     {
3500       rgn_make_new_region_out_of_new_block (bb);
3501       RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3502 					     == EXIT_BLOCK_PTR_FOR_FN (cfun));
3503     }
3504   else
3505     {
3506       int i, pos;
3507 
3508       /* We need to fix rgn_table, block_to_bb, containing_rgn
3509 	 and ebb_head.  */
3510 
3511       BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3512 
3513       /* We extend ebb_head to one more position to
3514 	 easily find the last position of the last ebb in
3515 	 the current region.  Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3516 	 is _always_ valid for access.  */
3517 
3518       i = BLOCK_TO_BB (after->index) + 1;
3519       pos = ebb_head[i] - 1;
3520       /* Now POS is the index of the last block in the region.  */
3521 
3522       /* Find index of basic block AFTER.  */
3523       for (; rgn_bb_table[pos] != after->index; pos--)
3524 	;
3525 
3526       pos++;
3527       gcc_assert (pos > ebb_head[i - 1]);
3528 
3529       /* i - ebb right after "AFTER".  */
3530       /* ebb_head[i] - VALID.  */
3531 
3532       /* Source position: ebb_head[i]
3533 	 Destination position: ebb_head[i] + 1
3534 	 Last position:
3535 	   RGN_BLOCKS (nr_regions) - 1
3536 	 Number of elements to copy: (last_position) - (source_position) + 1
3537        */
3538 
3539       memmove (rgn_bb_table + pos + 1,
3540 	       rgn_bb_table + pos,
3541 	       ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3542 	       * sizeof (*rgn_bb_table));
3543 
3544       rgn_bb_table[pos] = bb->index;
3545 
3546       for (; i <= current_nr_blocks; i++)
3547 	ebb_head [i]++;
3548 
3549       i = CONTAINING_RGN (after->index);
3550       CONTAINING_RGN (bb->index) = i;
3551 
3552       RGN_HAS_REAL_EBB (i) = 1;
3553 
3554       for (++i; i <= nr_regions; i++)
3555 	RGN_BLOCKS (i)++;
3556     }
3557 }
3558 
3559 /* Fix internal data after interblock movement of jump instruction.
3560    For parameter meaning please refer to
3561    sched-int.h: struct sched_info: fix_recovery_cfg.  */
3562 static void
3563 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3564 {
3565   int old_pos, new_pos, i;
3566 
3567   BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3568 
3569   for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3570        rgn_bb_table[old_pos] != check_bb_nexti;
3571        old_pos--)
3572     ;
3573   gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3574 
3575   for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3576        rgn_bb_table[new_pos] != bbi;
3577        new_pos--)
3578     ;
3579   new_pos++;
3580   gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3581 
3582   gcc_assert (new_pos < old_pos);
3583 
3584   memmove (rgn_bb_table + new_pos + 1,
3585 	   rgn_bb_table + new_pos,
3586 	   (old_pos - new_pos) * sizeof (*rgn_bb_table));
3587 
3588   rgn_bb_table[new_pos] = check_bb_nexti;
3589 
3590   for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3591     ebb_head[i]++;
3592 }
3593 
3594 /* Return next block in ebb chain.  For parameter meaning please refer to
3595    sched-int.h: struct sched_info: advance_target_bb.  */
3596 static basic_block
3597 advance_target_bb (basic_block bb, rtx_insn *insn)
3598 {
3599   if (insn)
3600     return 0;
3601 
3602   gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3603 	      && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3604   return bb->next_bb;
3605 }
3606 
3607 #endif
3608 
3609 /* Run instruction scheduler.  */
3610 static unsigned int
3611 rest_of_handle_live_range_shrinkage (void)
3612 {
3613 #ifdef INSN_SCHEDULING
3614   int saved;
3615 
3616   initialize_live_range_shrinkage ();
3617   saved = flag_schedule_interblock;
3618   flag_schedule_interblock = false;
3619   schedule_insns ();
3620   flag_schedule_interblock = saved;
3621   finish_live_range_shrinkage ();
3622 #endif
3623   return 0;
3624 }
3625 
3626 /* Run instruction scheduler.  */
3627 static unsigned int
3628 rest_of_handle_sched (void)
3629 {
3630 #ifdef INSN_SCHEDULING
3631   if (flag_selective_scheduling
3632       && ! maybe_skip_selective_scheduling ())
3633     run_selective_scheduling ();
3634   else
3635     schedule_insns ();
3636 #endif
3637   return 0;
3638 }
3639 
3640 /* Run second scheduling pass after reload.  */
3641 static unsigned int
3642 rest_of_handle_sched2 (void)
3643 {
3644 #ifdef INSN_SCHEDULING
3645   if (flag_selective_scheduling2
3646       && ! maybe_skip_selective_scheduling ())
3647     run_selective_scheduling ();
3648   else
3649     {
3650       /* Do control and data sched analysis again,
3651 	 and write some more of the results to dump file.  */
3652       if (flag_sched2_use_superblocks)
3653 	schedule_ebbs ();
3654       else
3655 	schedule_insns ();
3656     }
3657 #endif
3658   return 0;
3659 }
3660 
3661 static unsigned int
3662 rest_of_handle_sched_fusion (void)
3663 {
3664 #ifdef INSN_SCHEDULING
3665   sched_fusion = true;
3666   schedule_insns ();
3667   sched_fusion = false;
3668 #endif
3669   return 0;
3670 }
3671 
3672 namespace {
3673 
3674 const pass_data pass_data_live_range_shrinkage =
3675 {
3676   RTL_PASS, /* type */
3677   "lr_shrinkage", /* name */
3678   OPTGROUP_NONE, /* optinfo_flags */
3679   TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3680   0, /* properties_required */
3681   0, /* properties_provided */
3682   0, /* properties_destroyed */
3683   0, /* todo_flags_start */
3684   TODO_df_finish, /* todo_flags_finish */
3685 };
3686 
3687 class pass_live_range_shrinkage : public rtl_opt_pass
3688 {
3689 public:
3690   pass_live_range_shrinkage(gcc::context *ctxt)
3691     : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3692   {}
3693 
3694   /* opt_pass methods: */
3695   virtual bool gate (function *)
3696     {
3697 #ifdef INSN_SCHEDULING
3698       return flag_live_range_shrinkage;
3699 #else
3700       return 0;
3701 #endif
3702     }
3703 
3704   virtual unsigned int execute (function *)
3705     {
3706       return rest_of_handle_live_range_shrinkage ();
3707     }
3708 
3709 }; // class pass_live_range_shrinkage
3710 
3711 } // anon namespace
3712 
3713 rtl_opt_pass *
3714 make_pass_live_range_shrinkage (gcc::context *ctxt)
3715 {
3716   return new pass_live_range_shrinkage (ctxt);
3717 }
3718 
3719 namespace {
3720 
3721 const pass_data pass_data_sched =
3722 {
3723   RTL_PASS, /* type */
3724   "sched1", /* name */
3725   OPTGROUP_NONE, /* optinfo_flags */
3726   TV_SCHED, /* tv_id */
3727   0, /* properties_required */
3728   0, /* properties_provided */
3729   0, /* properties_destroyed */
3730   0, /* todo_flags_start */
3731   TODO_df_finish, /* todo_flags_finish */
3732 };
3733 
3734 class pass_sched : public rtl_opt_pass
3735 {
3736 public:
3737   pass_sched (gcc::context *ctxt)
3738     : rtl_opt_pass (pass_data_sched, ctxt)
3739   {}
3740 
3741   /* opt_pass methods: */
3742   virtual bool gate (function *);
3743   virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3744 
3745 }; // class pass_sched
3746 
3747 bool
3748 pass_sched::gate (function *)
3749 {
3750 #ifdef INSN_SCHEDULING
3751   return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3752 #else
3753   return 0;
3754 #endif
3755 }
3756 
3757 } // anon namespace
3758 
3759 rtl_opt_pass *
3760 make_pass_sched (gcc::context *ctxt)
3761 {
3762   return new pass_sched (ctxt);
3763 }
3764 
3765 namespace {
3766 
3767 const pass_data pass_data_sched2 =
3768 {
3769   RTL_PASS, /* type */
3770   "sched2", /* name */
3771   OPTGROUP_NONE, /* optinfo_flags */
3772   TV_SCHED2, /* tv_id */
3773   0, /* properties_required */
3774   0, /* properties_provided */
3775   0, /* properties_destroyed */
3776   0, /* todo_flags_start */
3777   TODO_df_finish, /* todo_flags_finish */
3778 };
3779 
3780 class pass_sched2 : public rtl_opt_pass
3781 {
3782 public:
3783   pass_sched2 (gcc::context *ctxt)
3784     : rtl_opt_pass (pass_data_sched2, ctxt)
3785   {}
3786 
3787   /* opt_pass methods: */
3788   virtual bool gate (function *);
3789   virtual unsigned int execute (function *)
3790     {
3791       return rest_of_handle_sched2 ();
3792     }
3793 
3794 }; // class pass_sched2
3795 
3796 bool
3797 pass_sched2::gate (function *)
3798 {
3799 #ifdef INSN_SCHEDULING
3800   return optimize > 0 && flag_schedule_insns_after_reload
3801     && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3802 #else
3803   return 0;
3804 #endif
3805 }
3806 
3807 } // anon namespace
3808 
3809 rtl_opt_pass *
3810 make_pass_sched2 (gcc::context *ctxt)
3811 {
3812   return new pass_sched2 (ctxt);
3813 }
3814 
3815 namespace {
3816 
3817 const pass_data pass_data_sched_fusion =
3818 {
3819   RTL_PASS, /* type */
3820   "sched_fusion", /* name */
3821   OPTGROUP_NONE, /* optinfo_flags */
3822   TV_SCHED_FUSION, /* tv_id */
3823   0, /* properties_required */
3824   0, /* properties_provided */
3825   0, /* properties_destroyed */
3826   0, /* todo_flags_start */
3827   TODO_df_finish, /* todo_flags_finish */
3828 };
3829 
3830 class pass_sched_fusion : public rtl_opt_pass
3831 {
3832 public:
3833   pass_sched_fusion (gcc::context *ctxt)
3834     : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3835   {}
3836 
3837   /* opt_pass methods: */
3838   virtual bool gate (function *);
3839   virtual unsigned int execute (function *)
3840     {
3841       return rest_of_handle_sched_fusion ();
3842     }
3843 
3844 }; // class pass_sched2
3845 
3846 bool
3847 pass_sched_fusion::gate (function *)
3848 {
3849 #ifdef INSN_SCHEDULING
3850   /* Scheduling fusion relies on peephole2 to do real fusion work,
3851      so only enable it if peephole2 is in effect.  */
3852   return (optimize > 0 && flag_peephole2
3853     && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3854 #else
3855   return 0;
3856 #endif
3857 }
3858 
3859 } // anon namespace
3860 
3861 rtl_opt_pass *
3862 make_pass_sched_fusion (gcc::context *ctxt)
3863 {
3864   return new pass_sched_fusion (ctxt);
3865 }
3866