xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/rtl.h (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Register Transfer Language (RTL) definitions for GCC
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22 
23 /* This file is occasionally included by generator files which expect
24    machmode.h and other files to exist and would not normally have been
25    included by coretypes.h.  */
26 #ifdef GENERATOR_FILE
27 #include "machmode.h"
28 #include "signop.h"
29 #include "wide-int.h"
30 #include "double-int.h"
31 #include "real.h"
32 #include "fixed-value.h"
33 #include "statistics.h"
34 #include "vec.h"
35 #include "hash-table.h"
36 #include "hash-set.h"
37 #include "input.h"
38 #include "is-a.h"
39 #endif  /* GENERATOR_FILE */
40 
41 #include "hard-reg-set.h"
42 
43 /* Value used by some passes to "recognize" noop moves as valid
44  instructions.  */
45 #define NOOP_MOVE_INSN_CODE	INT_MAX
46 
47 /* Register Transfer Language EXPRESSIONS CODES */
48 
49 #define RTX_CODE	enum rtx_code
50 enum rtx_code  {
51 
52 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
53 #include "rtl.def"		/* rtl expressions are documented here */
54 #undef DEF_RTL_EXPR
55 
56   LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
57 				   NUM_RTX_CODE.
58 				   Assumes default enum value assignment.  */
59 
60 /* The cast here, saves many elsewhere.  */
61 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
62 
63 /* Similar, but since generator files get more entries... */
64 #ifdef GENERATOR_FILE
65 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
66 #endif
67 
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
69 
70 enum rtx_class  {
71   /* We check bit 0-1 of some rtx class codes in the predicates below.  */
72 
73   /* Bit 0 = comparison if 0, arithmetic is 1
74      Bit 1 = 1 if commutative.  */
75   RTX_COMPARE,		/* 0 */
76   RTX_COMM_COMPARE,
77   RTX_BIN_ARITH,
78   RTX_COMM_ARITH,
79 
80   /* Must follow the four preceding values.  */
81   RTX_UNARY,		/* 4 */
82 
83   RTX_EXTRA,
84   RTX_MATCH,
85   RTX_INSN,
86 
87   /* Bit 0 = 1 if constant.  */
88   RTX_OBJ,		/* 8 */
89   RTX_CONST_OBJ,
90 
91   RTX_TERNARY,
92   RTX_BITFIELD_OPS,
93   RTX_AUTOINC
94 };
95 
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107 
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
110 
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
113 
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
116 
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
119 
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121    and NEXT_INSN fields).  */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123 
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
126 
127 /* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
128    relative to which the offsets are calculated, as explained in rtl.def.  */
129 struct addr_diff_vec_flags
130 {
131   /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132   unsigned min_align: 8;
133   /* Flags: */
134   unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
135   unsigned min_after_vec: 1;  /* minimum address target label is
136 				 after the ADDR_DIFF_VEC.  */
137   unsigned max_after_vec: 1;  /* maximum address target label is
138 				 after the ADDR_DIFF_VEC.  */
139   unsigned min_after_base: 1; /* minimum address target label is
140 				 after BASE.  */
141   unsigned max_after_base: 1; /* maximum address target label is
142 				 after BASE.  */
143   /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144   unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
145   unsigned : 2;
146   unsigned scale : 8;
147 };
148 
149 /* Structure used to describe the attributes of a MEM.  These are hashed
150    so MEMs that the same attributes share a data structure.  This means
151    they cannot be modified in place.  */
152 struct GTY(()) mem_attrs
153 {
154   /* The expression that the MEM accesses, or null if not known.
155      This expression might be larger than the memory reference itself.
156      (In other words, the MEM might access only part of the object.)  */
157   tree expr;
158 
159   /* The offset of the memory reference from the start of EXPR.
160      Only valid if OFFSET_KNOWN_P.  */
161   HOST_WIDE_INT offset;
162 
163   /* The size of the memory reference in bytes.  Only valid if
164      SIZE_KNOWN_P.  */
165   HOST_WIDE_INT size;
166 
167   /* The alias set of the memory reference.  */
168   alias_set_type alias;
169 
170   /* The alignment of the reference in bits.  Always a multiple of
171      BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
172      than the memory reference itself.  */
173   unsigned int align;
174 
175   /* The address space that the memory reference uses.  */
176   unsigned char addrspace;
177 
178   /* True if OFFSET is known.  */
179   bool offset_known_p;
180 
181   /* True if SIZE is known.  */
182   bool size_known_p;
183 };
184 
185 /* Structure used to describe the attributes of a REG in similar way as
186    mem_attrs does for MEM above.  Note that the OFFSET field is calculated
187    in the same way as for mem_attrs, rather than in the same way as a
188    SUBREG_BYTE.  For example, if a big-endian target stores a byte
189    object in the low part of a 4-byte register, the OFFSET field
190    will be -3 rather than 0.  */
191 
192 struct GTY((for_user)) reg_attrs {
193   tree decl;			/* decl corresponding to REG.  */
194   HOST_WIDE_INT offset;		/* Offset from start of DECL.  */
195 };
196 
197 /* Common union for an element of an rtx.  */
198 
199 union rtunion
200 {
201   int rt_int;
202   unsigned int rt_uint;
203   const char *rt_str;
204   rtx rt_rtx;
205   rtvec rt_rtvec;
206   machine_mode rt_type;
207   addr_diff_vec_flags rt_addr_diff_vec_flags;
208   struct cselib_val *rt_cselib;
209   tree rt_tree;
210   basic_block rt_bb;
211   mem_attrs *rt_mem;
212   struct constant_descriptor_rtx *rt_constant;
213   struct dw_cfi_node *rt_cfi;
214 };
215 
216 /* Describes the properties of a REG.  */
217 struct GTY(()) reg_info {
218   /* The value of REGNO.  */
219   unsigned int regno;
220 
221   /* The value of REG_NREGS.  */
222   unsigned int nregs : 8;
223   unsigned int unused : 24;
224 
225   /* The value of REG_ATTRS.  */
226   reg_attrs *attrs;
227 };
228 
229 /* This structure remembers the position of a SYMBOL_REF within an
230    object_block structure.  A SYMBOL_REF only provides this information
231    if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
232 struct GTY(()) block_symbol {
233   /* The usual SYMBOL_REF fields.  */
234   rtunion GTY ((skip)) fld[2];
235 
236   /* The block that contains this object.  */
237   struct object_block *block;
238 
239   /* The offset of this object from the start of its block.  It is negative
240      if the symbol has not yet been assigned an offset.  */
241   HOST_WIDE_INT offset;
242 };
243 
244 /* Describes a group of objects that are to be placed together in such
245    a way that their relative positions are known.  */
246 struct GTY((for_user)) object_block {
247   /* The section in which these objects should be placed.  */
248   section *sect;
249 
250   /* The alignment of the first object, measured in bits.  */
251   unsigned int alignment;
252 
253   /* The total size of the objects, measured in bytes.  */
254   HOST_WIDE_INT size;
255 
256   /* The SYMBOL_REFs for each object.  The vector is sorted in
257      order of increasing offset and the following conditions will
258      hold for each element X:
259 
260 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
261 	 !SYMBOL_REF_ANCHOR_P (X)
262 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
263 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
264   vec<rtx, va_gc> *objects;
265 
266   /* All the anchor SYMBOL_REFs used to address these objects, sorted
267      in order of increasing offset, and then increasing TLS model.
268      The following conditions will hold for each element X in this vector:
269 
270 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
271 	 SYMBOL_REF_ANCHOR_P (X)
272 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
273 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
274   vec<rtx, va_gc> *anchors;
275 };
276 
277 struct GTY((variable_size)) hwivec_def {
278   HOST_WIDE_INT elem[1];
279 };
280 
281 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
282 #define CWI_GET_NUM_ELEM(RTX)					\
283   ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
284 #define CWI_PUT_NUM_ELEM(RTX, NUM)					\
285   (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 
287 /* RTL expression ("rtx").  */
288 
289 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
290    field for gengtype to recognize that inheritance is occurring,
291    so that all subclasses are redirected to the traversal hook for the
292    base class.
293    However, all of the fields are in the base class, and special-casing
294    is at work.  Hence we use desc and tag of 0, generating a switch
295    statement of the form:
296      switch (0)
297        {
298        case 0: // all the work happens here
299       }
300    in order to work with the existing special-casing in gengtype.  */
301 
302 struct GTY((desc("0"), tag("0"),
303 	    chain_next ("RTX_NEXT (&%h)"),
304 	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
305   /* The kind of expression this is.  */
306   ENUM_BITFIELD(rtx_code) code: 16;
307 
308   /* The kind of value the expression has.  */
309   ENUM_BITFIELD(machine_mode) mode : 8;
310 
311   /* 1 in a MEM if we should keep the alias set for this mem unchanged
312      when we access a component.
313      1 in a JUMP_INSN if it is a crossing jump.
314      1 in a CALL_INSN if it is a sibling call.
315      1 in a SET that is for a return.
316      In a CODE_LABEL, part of the two-bit alternate entry field.
317      1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
318      1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
319      1 in a SUBREG generated by LRA for reload insns.
320      1 in a REG if this is a static chain register.
321      1 in a CALL for calls instrumented by Pointer Bounds Checker.
322      Dumped as "/j" in RTL dumps.  */
323   unsigned int jump : 1;
324   /* In a CODE_LABEL, part of the two-bit alternate entry field.
325      1 in a MEM if it cannot trap.
326      1 in a CALL_INSN logically equivalent to
327        ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
328      Dumped as "/c" in RTL dumps.  */
329   unsigned int call : 1;
330   /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
331      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
332      1 in a SYMBOL_REF if it addresses something in the per-function
333      constants pool.
334      1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
335      1 in a NOTE, or EXPR_LIST for a const call.
336      1 in a JUMP_INSN of an annulling branch.
337      1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
338      1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
339      1 in a clobber temporarily created for LRA.
340      Dumped as "/u" in RTL dumps.  */
341   unsigned int unchanging : 1;
342   /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
343      1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
344      if it has been deleted.
345      1 in a REG expression if corresponds to a variable declared by the user,
346      0 for an internally generated temporary.
347      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
348      1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
349      non-local label.
350      In a SYMBOL_REF, this flag is used for machine-specific purposes.
351      In a PREFETCH, this flag indicates that it should be considered a
352      scheduling barrier.
353      1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
354      Dumped as "/v" in RTL dumps.  */
355   unsigned int volatil : 1;
356   /* 1 in a REG if the register is used only in exit code a loop.
357      1 in a SUBREG expression if was generated from a variable with a
358      promoted mode.
359      1 in a CODE_LABEL if the label is used for nonlocal gotos
360      and must not be deleted even if its count is zero.
361      1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
362      together with the preceding insn.  Valid only within sched.
363      1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
364      from the target of a branch.  Valid from reorg until end of compilation;
365      cleared before used.
366 
367      The name of the field is historical.  It used to be used in MEMs
368      to record whether the MEM accessed part of a structure.
369      Dumped as "/s" in RTL dumps.  */
370   unsigned int in_struct : 1;
371   /* At the end of RTL generation, 1 if this rtx is used.  This is used for
372      copying shared structure.  See `unshare_all_rtl'.
373      In a REG, this is not needed for that purpose, and used instead
374      in `leaf_renumber_regs_insn'.
375      1 in a SYMBOL_REF, means that emit_library_call
376      has used it as the function.
377      1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
378      1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
379   unsigned int used : 1;
380   /* 1 in an INSN or a SET if this rtx is related to the call frame,
381      either changing how we compute the frame address or saving and
382      restoring registers in the prologue and epilogue.
383      1 in a REG or MEM if it is a pointer.
384      1 in a SYMBOL_REF if it addresses something in the per-function
385      constant string pool.
386      1 in a VALUE is VALUE_CHANGED in var-tracking.c.
387      Dumped as "/f" in RTL dumps.  */
388   unsigned frame_related : 1;
389   /* 1 in a REG or PARALLEL that is the current function's return value.
390      1 in a SYMBOL_REF for a weak symbol.
391      1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
392      1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
393      1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
394      Dumped as "/i" in RTL dumps.  */
395   unsigned return_val : 1;
396 
397   union {
398     /* The final union field is aligned to 64 bits on LP64 hosts,
399        giving a 32-bit gap after the fields above.  We optimize the
400        layout for that case and use the gap for extra code-specific
401        information.  */
402 
403     /* The ORIGINAL_REGNO of a REG.  */
404     unsigned int original_regno;
405 
406     /* The INSN_UID of an RTX_INSN-class code.  */
407     int insn_uid;
408 
409     /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
410     unsigned int symbol_ref_flags;
411 
412     /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
413     enum var_init_status var_location_status;
414 
415     /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
416        HOST_WIDE_INTs in the hwivec_def.  */
417     unsigned int num_elem;
418   } GTY ((skip)) u2;
419 
420   /* The first element of the operands of this rtx.
421      The number of operands and their types are controlled
422      by the `code' field, according to rtl.def.  */
423   union u {
424     rtunion fld[1];
425     HOST_WIDE_INT hwint[1];
426     struct reg_info reg;
427     struct block_symbol block_sym;
428     struct real_value rv;
429     struct fixed_value fv;
430     struct hwivec_def hwiv;
431   } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
432 };
433 
434 /* A node for constructing singly-linked lists of rtx.  */
435 
436 class GTY(()) rtx_expr_list : public rtx_def
437 {
438   /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
439 
440 public:
441   /* Get next in list.  */
442   rtx_expr_list *next () const;
443 
444   /* Get at the underlying rtx.  */
445   rtx element () const;
446 };
447 
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_expr_list *>::test (rtx rt)
452 {
453   return rt->code == EXPR_LIST;
454 }
455 
456 class GTY(()) rtx_insn_list : public rtx_def
457 {
458   /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
459 
460      This is an instance of:
461 
462        DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
463 
464      i.e. a node for constructing singly-linked lists of rtx_insn *, where
465      the list is "external" to the insn (as opposed to the doubly-linked
466      list embedded within rtx_insn itself).  */
467 
468 public:
469   /* Get next in list.  */
470   rtx_insn_list *next () const;
471 
472   /* Get at the underlying instruction.  */
473   rtx_insn *insn () const;
474 
475 };
476 
477 template <>
478 template <>
479 inline bool
480 is_a_helper <rtx_insn_list *>::test (rtx rt)
481 {
482   return rt->code == INSN_LIST;
483 }
484 
485 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
486    typically (but not always) of rtx_insn *, used in the late passes.  */
487 
488 class GTY(()) rtx_sequence : public rtx_def
489 {
490   /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
491 
492 public:
493   /* Get number of elements in sequence.  */
494   int len () const;
495 
496   /* Get i-th element of the sequence.  */
497   rtx element (int index) const;
498 
499   /* Get i-th element of the sequence, with a checked cast to
500      rtx_insn *.  */
501   rtx_insn *insn (int index) const;
502 };
503 
504 template <>
505 template <>
506 inline bool
507 is_a_helper <rtx_sequence *>::test (rtx rt)
508 {
509   return rt->code == SEQUENCE;
510 }
511 
512 template <>
513 template <>
514 inline bool
515 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
516 {
517   return rt->code == SEQUENCE;
518 }
519 
520 class GTY(()) rtx_insn : public rtx_def
521 {
522 public:
523   /* No extra fields, but adds the invariant:
524 
525      (INSN_P (X)
526       || NOTE_P (X)
527       || JUMP_TABLE_DATA_P (X)
528       || BARRIER_P (X)
529       || LABEL_P (X))
530 
531      i.e. that we must be able to use the following:
532       INSN_UID ()
533       NEXT_INSN ()
534       PREV_INSN ()
535     i.e. we have an rtx that has an INSN_UID field and can be part of
536     a linked list of insns.
537   */
538 
539   /* Returns true if this insn has been deleted.  */
540 
541   bool deleted () const { return volatil; }
542 
543   /* Mark this insn as deleted.  */
544 
545   void set_deleted () { volatil = true; }
546 
547   /* Mark this insn as not deleted.  */
548 
549   void set_undeleted () { volatil = false; }
550 };
551 
552 /* Subclasses of rtx_insn.  */
553 
554 class GTY(()) rtx_debug_insn : public rtx_insn
555 {
556   /* No extra fields, but adds the invariant:
557        DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
558      i.e. an annotation for tracking variable assignments.
559 
560      This is an instance of:
561        DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
562      from rtl.def.  */
563 };
564 
565 class GTY(()) rtx_nonjump_insn : public rtx_insn
566 {
567   /* No extra fields, but adds the invariant:
568        NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
569      i.e an instruction that cannot jump.
570 
571      This is an instance of:
572        DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
573      from rtl.def.  */
574 };
575 
576 class GTY(()) rtx_jump_insn : public rtx_insn
577 {
578 public:
579   /* No extra fields, but adds the invariant:
580        JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
581      i.e. an instruction that can possibly jump.
582 
583      This is an instance of:
584        DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
585      from rtl.def.  */
586 
587   /* Returns jump target of this instruction.  The returned value is not
588      necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
589      expression.  Also, when the code label is marked "deleted", it is
590      replaced by a NOTE.  In some cases the value is NULL_RTX.  */
591 
592   inline rtx jump_label () const;
593 
594   /* Returns jump target cast to rtx_code_label *.  */
595 
596   inline rtx_code_label *jump_target () const;
597 
598   /* Set jump target.  */
599 
600   inline void set_jump_target (rtx_code_label *);
601 };
602 
603 class GTY(()) rtx_call_insn : public rtx_insn
604 {
605   /* No extra fields, but adds the invariant:
606        CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
607      i.e. an instruction that can possibly call a subroutine
608      but which will not change which instruction comes next
609      in the current function.
610 
611      This is an instance of:
612        DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
613      from rtl.def.  */
614 };
615 
616 class GTY(()) rtx_jump_table_data : public rtx_insn
617 {
618   /* No extra fields, but adds the invariant:
619        JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
620      i.e. a data for a jump table, considered an instruction for
621      historical reasons.
622 
623      This is an instance of:
624        DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
625      from rtl.def.  */
626 
627 public:
628 
629   /* This can be either:
630 
631        (a) a table of absolute jumps, in which case PATTERN (this) is an
632            ADDR_VEC with arg 0 a vector of labels, or
633 
634        (b) a table of relative jumps (e.g. for -fPIC), in which case
635            PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
636 	   arg 1 the vector of labels.
637 
638      This method gets the underlying vec.  */
639 
640   inline rtvec get_labels () const;
641 };
642 
643 class GTY(()) rtx_barrier : public rtx_insn
644 {
645   /* No extra fields, but adds the invariant:
646        BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
647      i.e. a marker that indicates that control will not flow through.
648 
649      This is an instance of:
650        DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
651      from rtl.def.  */
652 };
653 
654 class GTY(()) rtx_code_label : public rtx_insn
655 {
656   /* No extra fields, but adds the invariant:
657        LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
658      i.e. a label in the assembler.
659 
660      This is an instance of:
661        DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
662      from rtl.def.  */
663 };
664 
665 class GTY(()) rtx_note : public rtx_insn
666 {
667   /* No extra fields, but adds the invariant:
668        NOTE_P(X) aka (GET_CODE (X) == NOTE)
669      i.e. a note about the corresponding source code.
670 
671      This is an instance of:
672        DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
673      from rtl.def.  */
674 };
675 
676 /* The size in bytes of an rtx header (code, mode and flags).  */
677 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
678 
679 /* The size in bytes of an rtx with code CODE.  */
680 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
681 
682 #define NULL_RTX (rtx) 0
683 
684 /* The "next" and "previous" RTX, relative to this one.  */
685 
686 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
687 		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
688 
689 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
690  */
691 #define RTX_PREV(X) ((INSN_P (X)       			\
692                       || NOTE_P (X)       		\
693                       || JUMP_TABLE_DATA_P (X)		\
694                       || BARRIER_P (X)        		\
695                       || LABEL_P (X))    		\
696 		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
697                      && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
698                      ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
699 
700 /* Define macros to access the `code' field of the rtx.  */
701 
702 #define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
703 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
704 
705 #define GET_MODE(RTX)		((machine_mode) (RTX)->mode)
706 #define PUT_MODE_RAW(RTX, MODE)	((RTX)->mode = (MODE))
707 
708 /* RTL vector.  These appear inside RTX's when there is a need
709    for a variable number of things.  The principle use is inside
710    PARALLEL expressions.  */
711 
712 struct GTY(()) rtvec_def {
713   int num_elem;		/* number of elements */
714   rtx GTY ((length ("%h.num_elem"))) elem[1];
715 };
716 
717 #define NULL_RTVEC (rtvec) 0
718 
719 #define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
720 #define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
721 
722 /* Predicate yielding nonzero iff X is an rtx for a register.  */
723 #define REG_P(X) (GET_CODE (X) == REG)
724 
725 /* Predicate yielding nonzero iff X is an rtx for a memory location.  */
726 #define MEM_P(X) (GET_CODE (X) == MEM)
727 
728 #if TARGET_SUPPORTS_WIDE_INT
729 
730 /* Match CONST_*s that can represent compile-time constant integers.  */
731 #define CASE_CONST_SCALAR_INT \
732    case CONST_INT: \
733    case CONST_WIDE_INT
734 
735 /* Match CONST_*s for which pointer equality corresponds to value
736    equality.  */
737 #define CASE_CONST_UNIQUE \
738    case CONST_INT: \
739    case CONST_WIDE_INT: \
740    case CONST_DOUBLE: \
741    case CONST_FIXED
742 
743 /* Match all CONST_* rtxes.  */
744 #define CASE_CONST_ANY \
745    case CONST_INT: \
746    case CONST_WIDE_INT: \
747    case CONST_DOUBLE: \
748    case CONST_FIXED: \
749    case CONST_VECTOR
750 
751 #else
752 
753 /* Match CONST_*s that can represent compile-time constant integers.  */
754 #define CASE_CONST_SCALAR_INT \
755    case CONST_INT: \
756    case CONST_DOUBLE
757 
758 /* Match CONST_*s for which pointer equality corresponds to value
759    equality.  */
760 #define CASE_CONST_UNIQUE \
761    case CONST_INT: \
762    case CONST_DOUBLE: \
763    case CONST_FIXED
764 
765 /* Match all CONST_* rtxes.  */
766 #define CASE_CONST_ANY \
767    case CONST_INT: \
768    case CONST_DOUBLE: \
769    case CONST_FIXED: \
770    case CONST_VECTOR
771 #endif
772 
773 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
774 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
775 
776 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
777 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
778 
779 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
780 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
781 
782 /* Predicate yielding true iff X is an rtx for a double-int
783    or floating point constant.  */
784 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
785 
786 /* Predicate yielding true iff X is an rtx for a double-int.  */
787 #define CONST_DOUBLE_AS_INT_P(X) \
788   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
789 
790 /* Predicate yielding true iff X is an rtx for a integer const.  */
791 #if TARGET_SUPPORTS_WIDE_INT
792 #define CONST_SCALAR_INT_P(X) \
793   (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
794 #else
795 #define CONST_SCALAR_INT_P(X) \
796   (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
797 #endif
798 
799 /* Predicate yielding true iff X is an rtx for a double-int.  */
800 #define CONST_DOUBLE_AS_FLOAT_P(X) \
801   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
802 
803 /* Predicate yielding nonzero iff X is a label insn.  */
804 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
805 
806 /* Predicate yielding nonzero iff X is a jump insn.  */
807 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
808 
809 /* Predicate yielding nonzero iff X is a call insn.  */
810 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
811 
812 /* Predicate yielding nonzero iff X is an insn that cannot jump.  */
813 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
814 
815 /* Predicate yielding nonzero iff X is a debug note/insn.  */
816 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
817 
818 /* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
819 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
820 
821 /* Nonzero if DEBUG_INSN_P may possibly hold.  */
822 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
823 
824 /* Predicate yielding nonzero iff X is a real insn.  */
825 #define INSN_P(X) \
826   (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
827 
828 /* Predicate yielding nonzero iff X is a note insn.  */
829 #define NOTE_P(X) (GET_CODE (X) == NOTE)
830 
831 /* Predicate yielding nonzero iff X is a barrier insn.  */
832 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
833 
834 /* Predicate yielding nonzero iff X is a data for a jump table.  */
835 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
836 
837 /* Predicate yielding nonzero iff RTX is a subreg.  */
838 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
839 
840 /* Predicate yielding true iff RTX is a symbol ref.  */
841 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
842 
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_insn *>::test (rtx rt)
847 {
848   return (INSN_P (rt)
849 	  || NOTE_P (rt)
850 	  || JUMP_TABLE_DATA_P (rt)
851 	  || BARRIER_P (rt)
852 	  || LABEL_P (rt));
853 }
854 
855 template <>
856 template <>
857 inline bool
858 is_a_helper <const rtx_insn *>::test (const_rtx rt)
859 {
860   return (INSN_P (rt)
861 	  || NOTE_P (rt)
862 	  || JUMP_TABLE_DATA_P (rt)
863 	  || BARRIER_P (rt)
864 	  || LABEL_P (rt));
865 }
866 
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_debug_insn *>::test (rtx rt)
871 {
872   return DEBUG_INSN_P (rt);
873 }
874 
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
879 {
880   return NONJUMP_INSN_P (rt);
881 }
882 
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_jump_insn *>::test (rtx rt)
887 {
888   return JUMP_P (rt);
889 }
890 
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
895 {
896   return JUMP_P (insn);
897 }
898 
899 template <>
900 template <>
901 inline bool
902 is_a_helper <rtx_call_insn *>::test (rtx rt)
903 {
904   return CALL_P (rt);
905 }
906 
907 template <>
908 template <>
909 inline bool
910 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
911 {
912   return CALL_P (insn);
913 }
914 
915 template <>
916 template <>
917 inline bool
918 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
919 {
920   return JUMP_TABLE_DATA_P (rt);
921 }
922 
923 template <>
924 template <>
925 inline bool
926 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
927 {
928   return JUMP_TABLE_DATA_P (insn);
929 }
930 
931 template <>
932 template <>
933 inline bool
934 is_a_helper <rtx_barrier *>::test (rtx rt)
935 {
936   return BARRIER_P (rt);
937 }
938 
939 template <>
940 template <>
941 inline bool
942 is_a_helper <rtx_code_label *>::test (rtx rt)
943 {
944   return LABEL_P (rt);
945 }
946 
947 template <>
948 template <>
949 inline bool
950 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
951 {
952   return LABEL_P (insn);
953 }
954 
955 template <>
956 template <>
957 inline bool
958 is_a_helper <rtx_note *>::test (rtx rt)
959 {
960   return NOTE_P (rt);
961 }
962 
963 template <>
964 template <>
965 inline bool
966 is_a_helper <rtx_note *>::test (rtx_insn *insn)
967 {
968   return NOTE_P (insn);
969 }
970 
971 /* Predicate yielding nonzero iff X is a return or simple_return.  */
972 #define ANY_RETURN_P(X) \
973   (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
974 
975 /* 1 if X is a unary operator.  */
976 
977 #define UNARY_P(X)   \
978   (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
979 
980 /* 1 if X is a binary operator.  */
981 
982 #define BINARY_P(X)   \
983   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
984 
985 /* 1 if X is an arithmetic operator.  */
986 
987 #define ARITHMETIC_P(X)   \
988   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
989     == RTX_ARITHMETIC_RESULT)
990 
991 /* 1 if X is an arithmetic operator.  */
992 
993 #define COMMUTATIVE_ARITH_P(X)   \
994   (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
995 
996 /* 1 if X is a commutative arithmetic operator or a comparison operator.
997    These two are sometimes selected together because it is possible to
998    swap the two operands.  */
999 
1000 #define SWAPPABLE_OPERANDS_P(X)   \
1001   ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
1002     & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
1003        | (1 << RTX_COMPARE)))
1004 
1005 /* 1 if X is a non-commutative operator.  */
1006 
1007 #define NON_COMMUTATIVE_P(X)   \
1008   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1009     == RTX_NON_COMMUTATIVE_RESULT)
1010 
1011 /* 1 if X is a commutative operator on integers.  */
1012 
1013 #define COMMUTATIVE_P(X)   \
1014   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
1015     == RTX_COMMUTATIVE_RESULT)
1016 
1017 /* 1 if X is a relational operator.  */
1018 
1019 #define COMPARISON_P(X)   \
1020   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1021 
1022 /* 1 if X is a constant value that is an integer.  */
1023 
1024 #define CONSTANT_P(X)   \
1025   (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1026 
1027 /* 1 if X can be used to represent an object.  */
1028 #define OBJECT_P(X)							\
1029   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1030 
1031 /* General accessor macros for accessing the fields of an rtx.  */
1032 
1033 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1034 /* The bit with a star outside the statement expr and an & inside is
1035    so that N can be evaluated only once.  */
1036 #define RTL_CHECK1(RTX, N, C1) __extension__				\
1037 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1038      const enum rtx_code _code = GET_CODE (_rtx);			\
1039      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1040        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1041 				__FUNCTION__);				\
1042      if (GET_RTX_FORMAT (_code)[_n] != C1)				\
1043        rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
1044 			       __FUNCTION__);				\
1045      &_rtx->u.fld[_n]; }))
1046 
1047 #define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
1048 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1049      const enum rtx_code _code = GET_CODE (_rtx);			\
1050      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1051        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1052 				__FUNCTION__);				\
1053      if (GET_RTX_FORMAT (_code)[_n] != C1				\
1054 	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
1055        rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1056 			       __FUNCTION__);				\
1057      &_rtx->u.fld[_n]; }))
1058 
1059 #define RTL_CHECKC1(RTX, N, C) __extension__				\
1060 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1061      if (GET_CODE (_rtx) != (C))					\
1062        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1063 			       __FUNCTION__);				\
1064      &_rtx->u.fld[_n]; }))
1065 
1066 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1067 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1068      const enum rtx_code _code = GET_CODE (_rtx);			\
1069      if (_code != (C1) && _code != (C2))				\
1070        rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1071 			       __FUNCTION__); \
1072      &_rtx->u.fld[_n]; }))
1073 
1074 #define RTVEC_ELT(RTVEC, I) __extension__				\
1075 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1076      if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1077        rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1078 				  __FUNCTION__);			\
1079      &_rtvec->elem[_i]; }))
1080 
1081 #define XWINT(RTX, N) __extension__					\
1082 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1083      const enum rtx_code _code = GET_CODE (_rtx);			\
1084      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1085        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1086 				__FUNCTION__);				\
1087      if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1088        rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1089 			       __FUNCTION__);				\
1090      &_rtx->u.hwint[_n]; }))
1091 
1092 #define CWI_ELT(RTX, I) __extension__					\
1093 (*({ __typeof (RTX) const _cwi = (RTX);					\
1094      int _max = CWI_GET_NUM_ELEM (_cwi);				\
1095      const int _i = (I);						\
1096      if (_i < 0 || _i >= _max)						\
1097        cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1098 				__FUNCTION__);				\
1099      &_cwi->u.hwiv.elem[_i]; }))
1100 
1101 #define XCWINT(RTX, N, C) __extension__					\
1102 (*({ __typeof (RTX) const _rtx = (RTX);					\
1103      if (GET_CODE (_rtx) != (C))					\
1104        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1105 			       __FUNCTION__);				\
1106      &_rtx->u.hwint[N]; }))
1107 
1108 #define XCMWINT(RTX, N, C, M) __extension__				\
1109 (*({ __typeof (RTX) const _rtx = (RTX);					\
1110      if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1111        rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1112 				   __LINE__, __FUNCTION__);		\
1113      &_rtx->u.hwint[N]; }))
1114 
1115 #define XCNMPRV(RTX, C, M) __extension__				\
1116 ({ __typeof (RTX) const _rtx = (RTX);					\
1117    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1118      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1119 				 __LINE__, __FUNCTION__);		\
1120    &_rtx->u.rv; })
1121 
1122 #define XCNMPFV(RTX, C, M) __extension__				\
1123 ({ __typeof (RTX) const _rtx = (RTX);					\
1124    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1125      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1126 				 __LINE__, __FUNCTION__);		\
1127    &_rtx->u.fv; })
1128 
1129 #define REG_CHECK(RTX) __extension__					\
1130 ({ __typeof (RTX) const _rtx = (RTX);					\
1131    if (GET_CODE (_rtx) != REG)						\
1132      rtl_check_failed_code1 (_rtx, REG,  __FILE__, __LINE__,		\
1133 			     __FUNCTION__);				\
1134    &_rtx->u.reg; })
1135 
1136 #define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1137 ({ __typeof (RTX) const _symbol = (RTX);				\
1138    const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1139    if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1140      rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1141 				    __FUNCTION__);			\
1142    &_symbol->u.block_sym; })
1143 
1144 #define HWIVEC_CHECK(RTX,C) __extension__				\
1145 ({ __typeof (RTX) const _symbol = (RTX);				\
1146    RTL_CHECKC1 (_symbol, 0, C);						\
1147    &_symbol->u.hwiv; })
1148 
1149 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1150 				     const char *)
1151     ATTRIBUTE_NORETURN;
1152 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1153 				    const char *)
1154     ATTRIBUTE_NORETURN;
1155 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1156 				    int, const char *)
1157     ATTRIBUTE_NORETURN;
1158 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1159 				    int, const char *)
1160     ATTRIBUTE_NORETURN;
1161 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1162 				    const char *, int, const char *)
1163     ATTRIBUTE_NORETURN;
1164 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1165 					bool, const char *, int, const char *)
1166     ATTRIBUTE_NORETURN;
1167 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1168     ATTRIBUTE_NORETURN;
1169 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1170 				     const char *)
1171     ATTRIBUTE_NORETURN;
1172 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1173 				       const char *)
1174     ATTRIBUTE_NORETURN;
1175 
1176 #else   /* not ENABLE_RTL_CHECKING */
1177 
1178 #define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1179 #define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1180 #define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1181 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1182 #define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1183 #define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1184 #define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1185 #define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1186 #define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1187 #define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1188 #define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1189 #define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1190 #define REG_CHECK(RTX)		    (&(RTX)->u.reg)
1191 #define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1192 #define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1193 
1194 #endif
1195 
1196 /* General accessor macros for accessing the flags of an rtx.  */
1197 
1198 /* Access an individual rtx flag, with no checking of any kind.  */
1199 #define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1200 
1201 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1202 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1203 ({ __typeof (RTX) const _rtx = (RTX);					\
1204    if (GET_CODE (_rtx) != C1)						\
1205      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1206 			     __FUNCTION__);				\
1207    _rtx; })
1208 
1209 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1210 ({ __typeof (RTX) const _rtx = (RTX);					\
1211    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1212      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1213 			      __FUNCTION__);				\
1214    _rtx; })
1215 
1216 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1217 ({ __typeof (RTX) const _rtx = (RTX);					\
1218    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1219        && GET_CODE (_rtx) != C3)					\
1220      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1221 			     __FUNCTION__);				\
1222    _rtx; })
1223 
1224 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1225 ({ __typeof (RTX) const _rtx = (RTX);					\
1226    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1227        && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1228      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1229 			      __FUNCTION__);				\
1230    _rtx; })
1231 
1232 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1233 ({ __typeof (RTX) const _rtx = (RTX);					\
1234    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1235        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1236        && GET_CODE (_rtx) != C5)					\
1237      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1238 			     __FUNCTION__);				\
1239    _rtx; })
1240 
1241 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1242   __extension__								\
1243 ({ __typeof (RTX) const _rtx = (RTX);					\
1244    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1245        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1246        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1247      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1248 			     __FUNCTION__);				\
1249    _rtx; })
1250 
1251 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1252   __extension__								\
1253 ({ __typeof (RTX) const _rtx = (RTX);					\
1254    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1255        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1256        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1257        && GET_CODE (_rtx) != C7)					\
1258      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1259 			     __FUNCTION__);				\
1260    _rtx; })
1261 
1262 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1263   __extension__								\
1264 ({ __typeof (RTX) const _rtx = (RTX);					\
1265    if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1266      rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1267 			    __FUNCTION__);				\
1268    _rtx; })
1269 
1270 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1271 				   int, const char *)
1272     ATTRIBUTE_NORETURN
1273     ;
1274 
1275 #else	/* not ENABLE_RTL_FLAG_CHECKING */
1276 
1277 #define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1278 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1279 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1280 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1281 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1282 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1283 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1284 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1285 #endif
1286 
1287 #define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1288 #define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1289 #define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1290 #define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1291 #define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1292 #define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1293 #define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1294 #define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1295 #define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1296 #define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1297 
1298 #define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1299 #define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1300 
1301 /* These are like XINT, etc. except that they expect a '0' field instead
1302    of the normal type code.  */
1303 
1304 #define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1305 #define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1306 #define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1307 #define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1308 #define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1309 #define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1310 #define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1311 #define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1312 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1313 #define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1314 #define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1315 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1316 
1317 /* Access a '0' field with any type.  */
1318 #define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1319 
1320 #define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1321 #define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1322 #define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1323 #define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1324 #define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1325 #define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1326 #define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1327 #define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1328 #define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1329 #define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1330 
1331 #define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1332 #define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1333 
1334 #define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1335 
1336 
1337 /* Methods of rtx_expr_list.  */
1338 
1339 inline rtx_expr_list *rtx_expr_list::next () const
1340 {
1341   rtx tmp = XEXP (this, 1);
1342   return safe_as_a <rtx_expr_list *> (tmp);
1343 }
1344 
1345 inline rtx rtx_expr_list::element () const
1346 {
1347   return XEXP (this, 0);
1348 }
1349 
1350 /* Methods of rtx_insn_list.  */
1351 
1352 inline rtx_insn_list *rtx_insn_list::next () const
1353 {
1354   rtx tmp = XEXP (this, 1);
1355   return safe_as_a <rtx_insn_list *> (tmp);
1356 }
1357 
1358 inline rtx_insn *rtx_insn_list::insn () const
1359 {
1360   rtx tmp = XEXP (this, 0);
1361   return safe_as_a <rtx_insn *> (tmp);
1362 }
1363 
1364 /* Methods of rtx_sequence.  */
1365 
1366 inline int rtx_sequence::len () const
1367 {
1368   return XVECLEN (this, 0);
1369 }
1370 
1371 inline rtx rtx_sequence::element (int index) const
1372 {
1373   return XVECEXP (this, 0, index);
1374 }
1375 
1376 inline rtx_insn *rtx_sequence::insn (int index) const
1377 {
1378   return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1379 }
1380 
1381 /* ACCESS MACROS for particular fields of insns.  */
1382 
1383 /* Holds a unique number for each insn.
1384    These are not necessarily sequentially increasing.  */
1385 inline int INSN_UID (const_rtx insn)
1386 {
1387   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1388 				    (insn))->u2.insn_uid;
1389 }
1390 inline int& INSN_UID (rtx insn)
1391 {
1392   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1393 				    (insn))->u2.insn_uid;
1394 }
1395 
1396 /* Chain insns together in sequence.  */
1397 
1398 /* For now these are split in two: an rvalue form:
1399      PREV_INSN/NEXT_INSN
1400    and an lvalue form:
1401      SET_NEXT_INSN/SET_PREV_INSN.  */
1402 
1403 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1404 {
1405   rtx prev = XEXP (insn, 0);
1406   return safe_as_a <rtx_insn *> (prev);
1407 }
1408 
1409 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1410 {
1411   return XEXP (insn, 0);
1412 }
1413 
1414 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1415 {
1416   rtx next = XEXP (insn, 1);
1417   return safe_as_a <rtx_insn *> (next);
1418 }
1419 
1420 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1421 {
1422   return XEXP (insn, 1);
1423 }
1424 
1425 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1426 {
1427   return XBBDEF (insn, 2);
1428 }
1429 
1430 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1431 {
1432   return XBBDEF (insn, 2);
1433 }
1434 
1435 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1436 {
1437   BLOCK_FOR_INSN (insn) = bb;
1438 }
1439 
1440 /* The body of an insn.  */
1441 inline rtx PATTERN (const_rtx insn)
1442 {
1443   return XEXP (insn, 3);
1444 }
1445 
1446 inline rtx& PATTERN (rtx insn)
1447 {
1448   return XEXP (insn, 3);
1449 }
1450 
1451 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1452 {
1453   return XUINT (insn, 4);
1454 }
1455 
1456 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1457 {
1458   return XUINT (insn, 4);
1459 }
1460 
1461 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1462 {
1463   return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1464 }
1465 
1466 /* LOCATION of an RTX if relevant.  */
1467 #define RTL_LOCATION(X) (INSN_P (X) ? \
1468 			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1469 			 : UNKNOWN_LOCATION)
1470 
1471 /* Code number of instruction, from when it was recognized.
1472    -1 means this instruction has not been recognized yet.  */
1473 #define INSN_CODE(INSN) XINT (INSN, 5)
1474 
1475 inline rtvec rtx_jump_table_data::get_labels () const
1476 {
1477   rtx pat = PATTERN (this);
1478   if (GET_CODE (pat) == ADDR_VEC)
1479     return XVEC (pat, 0);
1480   else
1481     return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1482 }
1483 
1484 #define RTX_FRAME_RELATED_P(RTX)					\
1485   (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1486 		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1487 
1488 /* 1 if JUMP RTX is a crossing jump.  */
1489 #define CROSSING_JUMP_P(RTX) \
1490   (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1491 
1492 /* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1493    TREE_READONLY.  */
1494 #define RTL_CONST_CALL_P(RTX)					\
1495   (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1496 
1497 /* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1498    DECL_PURE_P.  */
1499 #define RTL_PURE_CALL_P(RTX)					\
1500   (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1501 
1502 /* 1 if RTX is a call to a const or pure function.  */
1503 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1504   (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1505 
1506 /* 1 if RTX is a call to a looping const or pure function.  Built from
1507    ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1508 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1509   (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1510 
1511 /* 1 if RTX is a call_insn for a sibling call.  */
1512 #define SIBLING_CALL_P(RTX)						\
1513   (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1514 
1515 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1516 #define INSN_ANNULLED_BRANCH_P(RTX)					\
1517   (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1518 
1519 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1520    If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1521    executed if the branch is taken.  For annulled branches with this bit
1522    clear, the insn should be executed only if the branch is not taken.  */
1523 #define INSN_FROM_TARGET_P(RTX)						\
1524   (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1525 		    CALL_INSN)->in_struct)
1526 
1527 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1528    See the comments for ADDR_DIFF_VEC in rtl.def.  */
1529 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1530 
1531 /* In a VALUE, the value cselib has assigned to RTX.
1532    This is a "struct cselib_val", see cselib.h.  */
1533 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1534 
1535 /* Holds a list of notes on what this insn does to various REGs.
1536    It is a chain of EXPR_LIST rtx's, where the second operand is the
1537    chain pointer and the first operand is the REG being described.
1538    The mode field of the EXPR_LIST contains not a real machine mode
1539    but a value from enum reg_note.  */
1540 #define REG_NOTES(INSN)	XEXP(INSN, 6)
1541 
1542 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1543    question.  */
1544 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1545 
1546 enum reg_note
1547 {
1548 #define DEF_REG_NOTE(NAME) NAME,
1549 #include "reg-notes.def"
1550 #undef DEF_REG_NOTE
1551   REG_NOTE_MAX
1552 };
1553 
1554 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1555 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1556 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1557   PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1558 
1559 /* Names for REG_NOTE's in EXPR_LIST insn's.  */
1560 
1561 extern const char * const reg_note_name[];
1562 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1563 
1564 /* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1565    USE and CLOBBER expressions.
1566      USE expressions list the registers filled with arguments that
1567    are passed to the function.
1568      CLOBBER expressions document the registers explicitly clobbered
1569    by this CALL_INSN.
1570      Pseudo registers can not be mentioned in this list.  */
1571 #define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1572 
1573 /* The label-number of a code-label.  The assembler label
1574    is made from `L' and the label-number printed in decimal.
1575    Label numbers are unique in a compilation.  */
1576 #define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1577 
1578 /* In a NOTE that is a line number, this is a string for the file name that the
1579    line is in.  We use the same field to record block numbers temporarily in
1580    NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1581    between ints and pointers if we use a different macro for the block number.)
1582    */
1583 
1584 /* Opaque data.  */
1585 #define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1586 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1587 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1588 #define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1589 #define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1590 #define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1591 #define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1592 #define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1593 #define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1594 
1595 /* In a NOTE that is a line number, this is the line number.
1596    Other kinds of NOTEs are identified by negative numbers here.  */
1597 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1598 
1599 /* Nonzero if INSN is a note marking the beginning of a basic block.  */
1600 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1601   (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1602 
1603 /* Variable declaration and the location of a variable.  */
1604 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1605 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1606 
1607 /* Initialization status of the variable in the location.  Status
1608    can be unknown, uninitialized or initialized.  See enumeration
1609    type below.  */
1610 #define PAT_VAR_LOCATION_STATUS(PAT) \
1611   (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1612    ->u2.var_location_status)
1613 
1614 /* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1615 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1616   PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1617 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1618   PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1619 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1620   PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1621 
1622 /* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1623 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1624 
1625 /* Accessors for a tree-expanded var location debug insn.  */
1626 #define INSN_VAR_LOCATION_DECL(INSN) \
1627   PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1628 #define INSN_VAR_LOCATION_LOC(INSN) \
1629   PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1630 #define INSN_VAR_LOCATION_STATUS(INSN) \
1631   PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1632 
1633 /* Expand to the RTL that denotes an unknown variable location in a
1634    DEBUG_INSN.  */
1635 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1636 
1637 /* Determine whether X is such an unknown location.  */
1638 #define VAR_LOC_UNKNOWN_P(X) \
1639   (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1640 
1641 /* 1 if RTX is emitted after a call, but it should take effect before
1642    the call returns.  */
1643 #define NOTE_DURING_CALL_P(RTX)				\
1644   (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1645 
1646 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1647 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1648 
1649 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1650 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1651 
1652 /* PARM_DECL DEBUG_PARAMETER_REF references.  */
1653 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1654 
1655 /* Codes that appear in the NOTE_KIND field for kinds of notes
1656    that are not line numbers.  These codes are all negative.
1657 
1658    Notice that we do not try to use zero here for any of
1659    the special note codes because sometimes the source line
1660    actually can be zero!  This happens (for example) when we
1661    are generating code for the per-translation-unit constructor
1662    and destructor routines for some C++ translation unit.  */
1663 
1664 enum insn_note
1665 {
1666 #define DEF_INSN_NOTE(NAME) NAME,
1667 #include "insn-notes.def"
1668 #undef DEF_INSN_NOTE
1669 
1670   NOTE_INSN_MAX
1671 };
1672 
1673 /* Names for NOTE insn's other than line numbers.  */
1674 
1675 extern const char * const note_insn_name[NOTE_INSN_MAX];
1676 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1677   (note_insn_name[(NOTE_CODE)])
1678 
1679 /* The name of a label, in case it corresponds to an explicit label
1680    in the input source code.  */
1681 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1682 
1683 /* In jump.c, each label contains a count of the number
1684    of LABEL_REFs that point at it, so unused labels can be deleted.  */
1685 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1686 
1687 /* Labels carry a two-bit field composed of the ->jump and ->call
1688    bits.  This field indicates whether the label is an alternate
1689    entry point, and if so, what kind.  */
1690 enum label_kind
1691 {
1692   LABEL_NORMAL = 0,	/* ordinary label */
1693   LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1694   LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1695   LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1696 };
1697 
1698 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1699 
1700 /* Retrieve the kind of LABEL.  */
1701 #define LABEL_KIND(LABEL) __extension__					\
1702 ({ __typeof (LABEL) const _label = (LABEL);				\
1703    if (! LABEL_P (_label))						\
1704      rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1705 			    __FUNCTION__);				\
1706    (enum label_kind) ((_label->jump << 1) | _label->call); })
1707 
1708 /* Set the kind of LABEL.  */
1709 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1710    __typeof (LABEL) const _label = (LABEL);				\
1711    const unsigned int _kind = (KIND);					\
1712    if (! LABEL_P (_label))						\
1713      rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1714 			    __FUNCTION__);				\
1715    _label->jump = ((_kind >> 1) & 1);					\
1716    _label->call = (_kind & 1);						\
1717 } while (0)
1718 
1719 #else
1720 
1721 /* Retrieve the kind of LABEL.  */
1722 #define LABEL_KIND(LABEL) \
1723    ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1724 
1725 /* Set the kind of LABEL.  */
1726 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1727    rtx const _label = (LABEL);						\
1728    const unsigned int _kind = (KIND);					\
1729    _label->jump = ((_kind >> 1) & 1);					\
1730    _label->call = (_kind & 1);						\
1731 } while (0)
1732 
1733 #endif /* rtl flag checking */
1734 
1735 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1736 
1737 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1738    so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1739    be decremented and possibly the label can be deleted.  */
1740 #define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1741 
1742 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1743 {
1744   return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1745 }
1746 
1747 /* Methods of rtx_jump_insn.  */
1748 
1749 inline rtx rtx_jump_insn::jump_label () const
1750 {
1751   return JUMP_LABEL (this);
1752 }
1753 
1754 inline rtx_code_label *rtx_jump_insn::jump_target () const
1755 {
1756   return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1757 }
1758 
1759 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1760 {
1761   JUMP_LABEL (this) = target;
1762 }
1763 
1764 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1765    goes through all the LABEL_REFs that jump to that label.  The chain
1766    eventually winds up at the CODE_LABEL: it is circular.  */
1767 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1768 
1769 /* Get the label that a LABEL_REF references.  */
1770 static inline rtx_insn *
1771 label_ref_label (const_rtx ref)
1772 {
1773   return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1774 }
1775 
1776 /* Set the label that LABEL_REF ref refers to.  */
1777 
1778 static inline void
1779 set_label_ref_label (rtx ref, rtx_insn *label)
1780 {
1781   XCEXP (ref, 0, LABEL_REF) = label;
1782 }
1783 
1784 /* For a REG rtx, REGNO extracts the register number.  REGNO can only
1785    be used on RHS.  Use SET_REGNO to change the value.  */
1786 #define REGNO(RTX) (rhs_regno(RTX))
1787 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1788 
1789 /* Return the number of consecutive registers in a REG.  This is always
1790    1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1791    hard registers.  */
1792 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1793 
1794 /* ORIGINAL_REGNO holds the number the register originally had; for a
1795    pseudo register turned into a hard reg this will hold the old pseudo
1796    register number.  */
1797 #define ORIGINAL_REGNO(RTX) \
1798   (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1799 
1800 /* Force the REGNO macro to only be used on the lhs.  */
1801 static inline unsigned int
1802 rhs_regno (const_rtx x)
1803 {
1804   return REG_CHECK (x)->regno;
1805 }
1806 
1807 /* Return the final register in REG X plus one.  */
1808 static inline unsigned int
1809 END_REGNO (const_rtx x)
1810 {
1811   return REGNO (x) + REG_NREGS (x);
1812 }
1813 
1814 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1815    bypassing the df machinery.  */
1816 static inline void
1817 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1818 {
1819   reg_info *reg = REG_CHECK (x);
1820   reg->regno = regno;
1821   reg->nregs = nregs;
1822 }
1823 
1824 /* 1 if RTX is a reg or parallel that is the current function's return
1825    value.  */
1826 #define REG_FUNCTION_VALUE_P(RTX)					\
1827   (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1828 
1829 /* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1830 #define REG_USERVAR_P(RTX)						\
1831   (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1832 
1833 /* 1 if RTX is a reg that holds a pointer value.  */
1834 #define REG_POINTER(RTX)						\
1835   (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1836 
1837 /* 1 if RTX is a mem that holds a pointer value.  */
1838 #define MEM_POINTER(RTX)						\
1839   (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1840 
1841 /* 1 if the given register REG corresponds to a hard register.  */
1842 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1843 
1844 /* 1 if the given register number REG_NO corresponds to a hard register.  */
1845 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1846 
1847 /* For a CONST_INT rtx, INTVAL extracts the integer.  */
1848 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1849 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1850 
1851 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1852    elements actually needed to represent the constant.
1853    CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1854    significant HOST_WIDE_INT.  */
1855 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1856 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1857 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1858 
1859 /* For a CONST_DOUBLE:
1860 #if TARGET_SUPPORTS_WIDE_INT == 0
1861    For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1862      low-order word and ..._HIGH the high-order.
1863 #endif
1864    For a float, there is a REAL_VALUE_TYPE structure, and
1865      CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1866 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1867 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1868 #define CONST_DOUBLE_REAL_VALUE(r) \
1869   ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1870 
1871 #define CONST_FIXED_VALUE(r) \
1872   ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1873 #define CONST_FIXED_VALUE_HIGH(r) \
1874   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1875 #define CONST_FIXED_VALUE_LOW(r) \
1876   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1877 
1878 /* For a CONST_VECTOR, return element #n.  */
1879 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1880 
1881 /* For a CONST_VECTOR, return the number of elements in a vector.  */
1882 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1883 
1884 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1885    SUBREG_BYTE extracts the byte-number.  */
1886 
1887 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1888 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1889 
1890 /* in rtlanal.c */
1891 /* Return the right cost to give to an operation
1892    to make the cost of the corresponding register-to-register instruction
1893    N times that of a fast register-to-register instruction.  */
1894 #define COSTS_N_INSNS(N) ((N) * 4)
1895 
1896 /* Maximum cost of an rtl expression.  This value has the special meaning
1897    not to use an rtx with this cost under any circumstances.  */
1898 #define MAX_COST INT_MAX
1899 
1900 /* Return true if CODE always has VOIDmode.  */
1901 
1902 static inline bool
1903 always_void_p (enum rtx_code code)
1904 {
1905   return code == SET;
1906 }
1907 
1908 /* A structure to hold all available cost information about an rtl
1909    expression.  */
1910 struct full_rtx_costs
1911 {
1912   int speed;
1913   int size;
1914 };
1915 
1916 /* Initialize a full_rtx_costs structure C to the maximum cost.  */
1917 static inline void
1918 init_costs_to_max (struct full_rtx_costs *c)
1919 {
1920   c->speed = MAX_COST;
1921   c->size = MAX_COST;
1922 }
1923 
1924 /* Initialize a full_rtx_costs structure C to zero cost.  */
1925 static inline void
1926 init_costs_to_zero (struct full_rtx_costs *c)
1927 {
1928   c->speed = 0;
1929   c->size = 0;
1930 }
1931 
1932 /* Compare two full_rtx_costs structures A and B, returning true
1933    if A < B when optimizing for speed.  */
1934 static inline bool
1935 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1936 	    bool speed)
1937 {
1938   if (speed)
1939     return (a->speed < b->speed
1940 	    || (a->speed == b->speed && a->size < b->size));
1941   else
1942     return (a->size < b->size
1943 	    || (a->size == b->size && a->speed < b->speed));
1944 }
1945 
1946 /* Increase both members of the full_rtx_costs structure C by the
1947    cost of N insns.  */
1948 static inline void
1949 costs_add_n_insns (struct full_rtx_costs *c, int n)
1950 {
1951   c->speed += COSTS_N_INSNS (n);
1952   c->size += COSTS_N_INSNS (n);
1953 }
1954 
1955 /* Describes the shape of a subreg:
1956 
1957    inner_mode == the mode of the SUBREG_REG
1958    offset     == the SUBREG_BYTE
1959    outer_mode == the mode of the SUBREG itself.  */
1960 struct subreg_shape {
1961   subreg_shape (machine_mode, unsigned int, machine_mode);
1962   bool operator == (const subreg_shape &) const;
1963   bool operator != (const subreg_shape &) const;
1964   unsigned int unique_id () const;
1965 
1966   machine_mode inner_mode;
1967   unsigned int offset;
1968   machine_mode outer_mode;
1969 };
1970 
1971 inline
1972 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1973 			    unsigned int offset_in,
1974 			    machine_mode outer_mode_in)
1975   : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1976 {}
1977 
1978 inline bool
1979 subreg_shape::operator == (const subreg_shape &other) const
1980 {
1981   return (inner_mode == other.inner_mode
1982 	  && offset == other.offset
1983 	  && outer_mode == other.outer_mode);
1984 }
1985 
1986 inline bool
1987 subreg_shape::operator != (const subreg_shape &other) const
1988 {
1989   return !operator == (other);
1990 }
1991 
1992 /* Return an integer that uniquely identifies this shape.  Structures
1993    like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1994    current mode is anywhere near being 65536 bytes in size, so the
1995    id comfortably fits in an int.  */
1996 
1997 inline unsigned int
1998 subreg_shape::unique_id () const
1999 {
2000   STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2001   return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2002 }
2003 
2004 /* Return the shape of a SUBREG rtx.  */
2005 
2006 static inline subreg_shape
2007 shape_of_subreg (const_rtx x)
2008 {
2009   return subreg_shape (GET_MODE (SUBREG_REG (x)),
2010 		       SUBREG_BYTE (x), GET_MODE (x));
2011 }
2012 
2013 /* Information about an address.  This structure is supposed to be able
2014    to represent all supported target addresses.  Please extend it if it
2015    is not yet general enough.  */
2016 struct address_info {
2017   /* The mode of the value being addressed, or VOIDmode if this is
2018      a load-address operation with no known address mode.  */
2019   machine_mode mode;
2020 
2021   /* The address space.  */
2022   addr_space_t as;
2023 
2024   /* True if this is an RTX_AUTOINC address.  */
2025   bool autoinc_p;
2026 
2027   /* A pointer to the top-level address.  */
2028   rtx *outer;
2029 
2030   /* A pointer to the inner address, after all address mutations
2031      have been stripped from the top-level address.  It can be one
2032      of the following:
2033 
2034      - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
2035 
2036      - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
2037        points to the step value, depending on whether the step is variable
2038        or constant respectively.  SEGMENT is null.
2039 
2040      - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2041        with null fields evaluating to 0.  */
2042   rtx *inner;
2043 
2044   /* Components that make up *INNER.  Each one may be null or nonnull.
2045      When nonnull, their meanings are as follows:
2046 
2047      - *SEGMENT is the "segment" of memory to which the address refers.
2048        This value is entirely target-specific and is only called a "segment"
2049        because that's its most typical use.  It contains exactly one UNSPEC,
2050        pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
2051        reloading.
2052 
2053      - *BASE is a variable expression representing a base address.
2054        It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2055 
2056      - *INDEX is a variable expression representing an index value.
2057        It may be a scaled expression, such as a MULT.  It has exactly
2058        one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2059 
2060      - *DISP is a constant, possibly mutated.  DISP_TERM points to the
2061        unmutated RTX_CONST_OBJ.  */
2062   rtx *segment;
2063   rtx *base;
2064   rtx *index;
2065   rtx *disp;
2066 
2067   rtx *segment_term;
2068   rtx *base_term;
2069   rtx *index_term;
2070   rtx *disp_term;
2071 
2072   /* In a {PRE,POST}_MODIFY address, this points to a second copy
2073      of BASE_TERM, otherwise it is null.  */
2074   rtx *base_term2;
2075 
2076   /* ADDRESS if this structure describes an address operand, MEM if
2077      it describes a MEM address.  */
2078   enum rtx_code addr_outer_code;
2079 
2080   /* If BASE is nonnull, this is the code of the rtx that contains it.  */
2081   enum rtx_code base_outer_code;
2082 };
2083 
2084 /* This is used to bundle an rtx and a mode together so that the pair
2085    can be used with the wi:: routines.  If we ever put modes into rtx
2086    integer constants, this should go away and then just pass an rtx in.  */
2087 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2088 
2089 namespace wi
2090 {
2091   template <>
2092   struct int_traits <rtx_mode_t>
2093   {
2094     static const enum precision_type precision_type = VAR_PRECISION;
2095     static const bool host_dependent_precision = false;
2096     /* This ought to be true, except for the special case that BImode
2097        is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
2098     static const bool is_sign_extended = false;
2099     static unsigned int get_precision (const rtx_mode_t &);
2100     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2101 				      const rtx_mode_t &);
2102   };
2103 }
2104 
2105 inline unsigned int
2106 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2107 {
2108   gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
2109   return GET_MODE_PRECISION (x.second);
2110 }
2111 
2112 inline wi::storage_ref
2113 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2114 					unsigned int precision,
2115 					const rtx_mode_t &x)
2116 {
2117   gcc_checking_assert (precision == get_precision (x));
2118   switch (GET_CODE (x.first))
2119     {
2120     case CONST_INT:
2121       if (precision < HOST_BITS_PER_WIDE_INT)
2122 	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2123 	   targets is 1 rather than -1.  */
2124 	gcc_checking_assert (INTVAL (x.first)
2125 			     == sext_hwi (INTVAL (x.first), precision)
2126 			     || (x.second == BImode && INTVAL (x.first) == 1));
2127 
2128       return wi::storage_ref (&INTVAL (x.first), 1, precision);
2129 
2130     case CONST_WIDE_INT:
2131       return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2132 			      CONST_WIDE_INT_NUNITS (x.first), precision);
2133 
2134 #if TARGET_SUPPORTS_WIDE_INT == 0
2135     case CONST_DOUBLE:
2136       return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2137 #endif
2138 
2139     default:
2140       gcc_unreachable ();
2141     }
2142 }
2143 
2144 namespace wi
2145 {
2146   hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2147   wide_int min_value (machine_mode, signop);
2148   wide_int max_value (machine_mode, signop);
2149 }
2150 
2151 inline wi::hwi_with_prec
2152 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2153 {
2154   return shwi (val, GET_MODE_PRECISION (mode));
2155 }
2156 
2157 /* Produce the smallest number that is represented in MODE.  The precision
2158    is taken from MODE and the sign from SGN.  */
2159 inline wide_int
2160 wi::min_value (machine_mode mode, signop sgn)
2161 {
2162   return min_value (GET_MODE_PRECISION (mode), sgn);
2163 }
2164 
2165 /* Produce the largest number that is represented in MODE.  The precision
2166    is taken from MODE and the sign from SGN.  */
2167 inline wide_int
2168 wi::max_value (machine_mode mode, signop sgn)
2169 {
2170   return max_value (GET_MODE_PRECISION (mode), sgn);
2171 }
2172 
2173 extern void init_rtlanal (void);
2174 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2175 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2176 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2177 			       struct full_rtx_costs *);
2178 extern unsigned int subreg_lsb (const_rtx);
2179 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2180 				  unsigned int);
2181 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2182 						 unsigned int);
2183 
2184 /* Return the subreg byte offset for a subreg whose outer mode is
2185    OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2186    LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2187    the inner value.  This is the inverse of subreg_lsb_1 (which converts
2188    byte offsets to bit shifts).  */
2189 
2190 inline unsigned int
2191 subreg_offset_from_lsb (machine_mode outer_mode,
2192 			machine_mode inner_mode,
2193 			unsigned int lsb_shift)
2194 {
2195   return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2196 				      GET_MODE_SIZE (inner_mode), lsb_shift);
2197 }
2198 
2199 extern unsigned int subreg_regno_offset	(unsigned int, machine_mode,
2200 					 unsigned int, machine_mode);
2201 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2202 					   unsigned int, machine_mode);
2203 extern unsigned int subreg_regno (const_rtx);
2204 extern int simplify_subreg_regno (unsigned int, machine_mode,
2205 				  unsigned int, machine_mode);
2206 extern unsigned int subreg_nregs (const_rtx);
2207 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2208 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2209 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2210 extern bool constant_pool_constant_p (rtx);
2211 extern bool truncated_to_mode (machine_mode, const_rtx);
2212 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2213 extern void split_double (rtx, rtx *, rtx *);
2214 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2215 extern void decompose_address (struct address_info *, rtx *,
2216 			       machine_mode, addr_space_t, enum rtx_code);
2217 extern void decompose_lea_address (struct address_info *, rtx *);
2218 extern void decompose_mem_address (struct address_info *, rtx);
2219 extern void update_address (struct address_info *);
2220 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2221 extern enum rtx_code get_index_code (const struct address_info *);
2222 
2223 /* 1 if RTX is a subreg containing a reg that is already known to be
2224    sign- or zero-extended from the mode of the subreg to the mode of
2225    the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2226    extension.
2227 
2228    When used as a LHS, is means that this extension must be done
2229    when assigning to SUBREG_REG.  */
2230 
2231 #define SUBREG_PROMOTED_VAR_P(RTX)					\
2232   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2233 
2234 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2235    this gives the necessary extensions:
2236    0  - signed (SPR_SIGNED)
2237    1  - normal unsigned (SPR_UNSIGNED)
2238    2  - value is both sign and unsign extended for mode
2239 	(SPR_SIGNED_AND_UNSIGNED).
2240    -1 - pointer unsigned, which most often can be handled like unsigned
2241         extension, except for generating instructions where we need to
2242 	emit special code (ptr_extend insns) on some architectures
2243 	(SPR_POINTER). */
2244 
2245 const int SRP_POINTER = -1;
2246 const int SRP_SIGNED = 0;
2247 const int SRP_UNSIGNED = 1;
2248 const int SRP_SIGNED_AND_UNSIGNED = 2;
2249 
2250 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2251 #define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2252 do {								        \
2253   rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2254                                     (RTX), SUBREG);			\
2255   switch (VAL)								\
2256   {									\
2257     case SRP_POINTER:							\
2258       _rtx->volatil = 0;						\
2259       _rtx->unchanging = 0;						\
2260       break;								\
2261     case SRP_SIGNED:							\
2262       _rtx->volatil = 0;						\
2263       _rtx->unchanging = 1;						\
2264       break;								\
2265     case SRP_UNSIGNED:							\
2266       _rtx->volatil = 1;						\
2267       _rtx->unchanging = 0;						\
2268       break;								\
2269     case SRP_SIGNED_AND_UNSIGNED:					\
2270       _rtx->volatil = 1;						\
2271       _rtx->unchanging = 1;						\
2272       break;								\
2273   }									\
2274 } while (0)
2275 
2276 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2277    including SRP_SIGNED_AND_UNSIGNED if promoted for
2278    both signed and unsigned.  */
2279 #define SUBREG_PROMOTED_GET(RTX)	\
2280   (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2281    + (RTX)->unchanging - 1)
2282 
2283 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2284 #define SUBREG_PROMOTED_SIGN(RTX)	\
2285   ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2286    : (RTX)->unchanging - 1)
2287 
2288 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2289    for SIGNED type.  */
2290 #define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2291   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2292 
2293 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2294    for UNSIGNED type.  */
2295 #define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2296   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2297 
2298 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2299 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2300 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2301  : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2302  : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2303 
2304 /* True if the REG is the static chain register for some CALL_INSN.  */
2305 #define STATIC_CHAIN_REG_P(RTX)	\
2306   (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2307 
2308 /* True if the subreg was generated by LRA for reload insns.  Such
2309    subregs are valid only during LRA.  */
2310 #define LRA_SUBREG_P(RTX)	\
2311   (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2312 
2313 /* True if call is instrumented by Pointer Bounds Checker.  */
2314 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2315   (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2316 
2317 /* Access various components of an ASM_OPERANDS rtx.  */
2318 
2319 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2320 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2321 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2322 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2323 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2324 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2325 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2326 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2327   XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2328 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2329   XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2330 #define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2331   GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2332 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2333 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2334 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2335 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2336 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2337 
2338 /* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2339 #define MEM_READONLY_P(RTX) \
2340   (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2341 
2342 /* 1 if RTX is a mem and we should keep the alias set for this mem
2343    unchanged when we access a component.  Set to 1, or example, when we
2344    are already in a non-addressable component of an aggregate.  */
2345 #define MEM_KEEP_ALIAS_SET_P(RTX)					\
2346   (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2347 
2348 /* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2349 #define MEM_VOLATILE_P(RTX)						\
2350   (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2351 		    ASM_INPUT)->volatil)
2352 
2353 /* 1 if RTX is a mem that cannot trap.  */
2354 #define MEM_NOTRAP_P(RTX) \
2355   (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2356 
2357 /* The memory attribute block.  We provide access macros for each value
2358    in the block and provide defaults if none specified.  */
2359 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2360 
2361 /* The register attribute block.  We provide access macros for each value
2362    in the block and provide defaults if none specified.  */
2363 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2364 
2365 #ifndef GENERATOR_FILE
2366 /* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2367    set, and may alias anything.  Otherwise, the MEM can only alias
2368    MEMs in a conflicting alias set.  This value is set in a
2369    language-dependent manner in the front-end, and should not be
2370    altered in the back-end.  These set numbers are tested with
2371    alias_sets_conflict_p.  */
2372 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2373 
2374 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2375    refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2376 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2377 
2378 /* For a MEM rtx, true if its MEM_OFFSET is known.  */
2379 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2380 
2381 /* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2382 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2383 
2384 /* For a MEM rtx, the address space.  */
2385 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2386 
2387 /* For a MEM rtx, true if its MEM_SIZE is known.  */
2388 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2389 
2390 /* For a MEM rtx, the size in bytes of the MEM.  */
2391 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2392 
2393 /* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2394    mode as a default when STRICT_ALIGNMENT, but not if not.  */
2395 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2396 #else
2397 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2398 #endif
2399 
2400 /* For a REG rtx, the decl it is known to refer to, if it is known to
2401    refer to part of a DECL.  */
2402 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2403 
2404 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2405    HOST_WIDE_INT.  */
2406 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2407 
2408 /* Copy the attributes that apply to memory locations from RHS to LHS.  */
2409 #define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2410   (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2411    MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2412    MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2413    MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2414    MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2415    MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2416 
2417 /* 1 if RTX is a label_ref for a nonlocal label.  */
2418 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2419    REG_LABEL_TARGET note.  */
2420 #define LABEL_REF_NONLOCAL_P(RTX)					\
2421   (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2422 
2423 /* 1 if RTX is a code_label that should always be considered to be needed.  */
2424 #define LABEL_PRESERVE_P(RTX)						\
2425   (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2426 
2427 /* During sched, 1 if RTX is an insn that must be scheduled together
2428    with the preceding insn.  */
2429 #define SCHED_GROUP_P(RTX)						\
2430   (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2431 		    JUMP_INSN, CALL_INSN)->in_struct)
2432 
2433 /* For a SET rtx, SET_DEST is the place that is set
2434    and SET_SRC is the value it is set to.  */
2435 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2436 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2437 #define SET_IS_RETURN_P(RTX)						\
2438   (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2439 
2440 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2441 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2442 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2443 
2444 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2445    conditionally executing the code on, COND_EXEC_CODE is the code
2446    to execute if the condition is true.  */
2447 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2448 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2449 
2450 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2451    constants pool.  */
2452 #define CONSTANT_POOL_ADDRESS_P(RTX)					\
2453   (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2454 
2455 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2456    tree constant pool.  This information is private to varasm.c.  */
2457 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2458   (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2459 		    (RTX), SYMBOL_REF)->frame_related)
2460 
2461 /* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2462 #define SYMBOL_REF_FLAG(RTX)						\
2463   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2464 
2465 /* 1 if RTX is a symbol_ref that has been the library function in
2466    emit_library_call.  */
2467 #define SYMBOL_REF_USED(RTX)						\
2468   (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2469 
2470 /* 1 if RTX is a symbol_ref for a weak symbol.  */
2471 #define SYMBOL_REF_WEAK(RTX)						\
2472   (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2473 
2474 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2475    SYMBOL_REF_CONSTANT.  */
2476 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2477 
2478 /* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2479    pool symbol.  */
2480 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2481   (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2482 
2483 /* The tree (decl or constant) associated with the symbol, or null.  */
2484 #define SYMBOL_REF_DECL(RTX) \
2485   (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2486 
2487 /* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2488 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2489   (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2490 
2491 /* The rtx constant pool entry for a symbol, or null.  */
2492 #define SYMBOL_REF_CONSTANT(RTX) \
2493   (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2494 
2495 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2496    information derivable from the tree decl associated with this symbol.
2497    Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2498    decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2499    this information to avoid recomputing it.  Finally, this allows space for
2500    the target to store more than one bit of information, as with
2501    SYMBOL_REF_FLAG.  */
2502 #define SYMBOL_REF_FLAGS(RTX) \
2503   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2504    ->u2.symbol_ref_flags)
2505 
2506 /* These flags are common enough to be defined for all targets.  They
2507    are computed by the default version of targetm.encode_section_info.  */
2508 
2509 /* Set if this symbol is a function.  */
2510 #define SYMBOL_FLAG_FUNCTION	(1 << 0)
2511 #define SYMBOL_REF_FUNCTION_P(RTX) \
2512   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2513 /* Set if targetm.binds_local_p is true.  */
2514 #define SYMBOL_FLAG_LOCAL	(1 << 1)
2515 #define SYMBOL_REF_LOCAL_P(RTX) \
2516   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2517 /* Set if targetm.in_small_data_p is true.  */
2518 #define SYMBOL_FLAG_SMALL	(1 << 2)
2519 #define SYMBOL_REF_SMALL_P(RTX) \
2520   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2521 /* The three-bit field at [5:3] is true for TLS variables; use
2522    SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2523 #define SYMBOL_FLAG_TLS_SHIFT	3
2524 #define SYMBOL_REF_TLS_MODEL(RTX) \
2525   ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2526 /* Set if this symbol is not defined in this translation unit.  */
2527 #define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2528 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2529   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2530 /* Set if this symbol has a block_symbol structure associated with it.  */
2531 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2532 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2533   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2534 /* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2535    SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2536 #define SYMBOL_FLAG_ANCHOR	(1 << 8)
2537 #define SYMBOL_REF_ANCHOR_P(RTX) \
2538   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2539 
2540 /* Subsequent bits are available for the target to use.  */
2541 #define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2542 #define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2543 
2544 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2545    structure to which the symbol belongs, or NULL if it has not been
2546    assigned a block.  */
2547 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2548 
2549 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2550    the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2551    RTX has not yet been assigned to a block, or it has not been given an
2552    offset within that block.  */
2553 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2554 
2555 /* True if RTX is flagged to be a scheduling barrier.  */
2556 #define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2557   (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2558 
2559 /* Indicate whether the machine has any sort of auto increment addressing.
2560    If not, we can avoid checking for REG_INC notes.  */
2561 
2562 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2563      || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2564      || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2565      || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2566 #define AUTO_INC_DEC 1
2567 #else
2568 #define AUTO_INC_DEC 0
2569 #endif
2570 
2571 /* Define a macro to look for REG_INC notes,
2572    but save time on machines where they never exist.  */
2573 
2574 #if AUTO_INC_DEC
2575 #define FIND_REG_INC_NOTE(INSN, REG)			\
2576   ((REG) != NULL_RTX && REG_P ((REG))			\
2577    ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2578    : find_reg_note ((INSN), REG_INC, (REG)))
2579 #else
2580 #define FIND_REG_INC_NOTE(INSN, REG) 0
2581 #endif
2582 
2583 #ifndef HAVE_PRE_INCREMENT
2584 #define HAVE_PRE_INCREMENT 0
2585 #endif
2586 
2587 #ifndef HAVE_PRE_DECREMENT
2588 #define HAVE_PRE_DECREMENT 0
2589 #endif
2590 
2591 #ifndef HAVE_POST_INCREMENT
2592 #define HAVE_POST_INCREMENT 0
2593 #endif
2594 
2595 #ifndef HAVE_POST_DECREMENT
2596 #define HAVE_POST_DECREMENT 0
2597 #endif
2598 
2599 #ifndef HAVE_POST_MODIFY_DISP
2600 #define HAVE_POST_MODIFY_DISP 0
2601 #endif
2602 
2603 #ifndef HAVE_POST_MODIFY_REG
2604 #define HAVE_POST_MODIFY_REG 0
2605 #endif
2606 
2607 #ifndef HAVE_PRE_MODIFY_DISP
2608 #define HAVE_PRE_MODIFY_DISP 0
2609 #endif
2610 
2611 #ifndef HAVE_PRE_MODIFY_REG
2612 #define HAVE_PRE_MODIFY_REG 0
2613 #endif
2614 
2615 
2616 /* Some architectures do not have complete pre/post increment/decrement
2617    instruction sets, or only move some modes efficiently.  These macros
2618    allow us to tune autoincrement generation.  */
2619 
2620 #ifndef USE_LOAD_POST_INCREMENT
2621 #define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2622 #endif
2623 
2624 #ifndef USE_LOAD_POST_DECREMENT
2625 #define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2626 #endif
2627 
2628 #ifndef USE_LOAD_PRE_INCREMENT
2629 #define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2630 #endif
2631 
2632 #ifndef USE_LOAD_PRE_DECREMENT
2633 #define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2634 #endif
2635 
2636 #ifndef USE_STORE_POST_INCREMENT
2637 #define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2638 #endif
2639 
2640 #ifndef USE_STORE_POST_DECREMENT
2641 #define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2642 #endif
2643 
2644 #ifndef USE_STORE_PRE_INCREMENT
2645 #define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2646 #endif
2647 
2648 #ifndef USE_STORE_PRE_DECREMENT
2649 #define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2650 #endif
2651 
2652 /* Nonzero when we are generating CONCATs.  */
2653 extern int generating_concat_p;
2654 
2655 /* Nonzero when we are expanding trees to RTL.  */
2656 extern int currently_expanding_to_rtl;
2657 
2658 /* Generally useful functions.  */
2659 
2660 #ifndef GENERATOR_FILE
2661 /* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2662    rather than size.  */
2663 
2664 static inline int
2665 set_rtx_cost (rtx x, bool speed_p)
2666 {
2667   return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2668 }
2669 
2670 /* Like set_rtx_cost, but return both the speed and size costs in C.  */
2671 
2672 static inline void
2673 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2674 {
2675   get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2676 }
2677 
2678 /* Return the cost of moving X into a register, relative to the cost
2679    of a register move.  SPEED_P is true if optimizing for speed rather
2680    than size.  */
2681 
2682 static inline int
2683 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2684 {
2685   return rtx_cost (x, mode, SET, 1, speed_p);
2686 }
2687 
2688 /* Like set_src_cost, but return both the speed and size costs in C.  */
2689 
2690 static inline void
2691 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2692 {
2693   get_full_rtx_cost (x, mode, SET, 1, c);
2694 }
2695 #endif
2696 
2697 /* A convenience macro to validate the arguments of a zero_extract
2698    expression.  It determines whether SIZE lies inclusively within
2699    [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2700    and the sum lies inclusively within [1, RANGE].  RANGE must be
2701    >= 1, but SIZE and POS may be negative.  */
2702 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2703   (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2704    && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2705 			   - (unsigned HOST_WIDE_INT)(POS)))
2706 
2707 /* In explow.c */
2708 extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2709 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2710 
2711 /* In rtl.c */
2712 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2713 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2714 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2715 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2716 #define const_wide_int_alloc(NWORDS)				\
2717   rtx_alloc_v (CONST_WIDE_INT,					\
2718 	       (sizeof (struct hwivec_def)			\
2719 		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2720 
2721 extern rtvec rtvec_alloc (int);
2722 extern rtvec shallow_copy_rtvec (rtvec);
2723 extern bool shared_const_p (const_rtx);
2724 extern rtx copy_rtx (rtx);
2725 extern enum rtx_code classify_insn (rtx);
2726 extern void dump_rtx_statistics (void);
2727 
2728 /* In emit-rtl.c */
2729 extern rtx copy_rtx_if_shared (rtx);
2730 
2731 /* In rtl.c */
2732 extern unsigned int rtx_size (const_rtx);
2733 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2734 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2735 extern int rtx_equal_p (const_rtx, const_rtx);
2736 extern bool rtvec_all_equal_p (const_rtvec);
2737 
2738 /* Return true if X is a vector constant with a duplicated element value.  */
2739 
2740 inline bool
2741 const_vec_duplicate_p (const_rtx x)
2742 {
2743   return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2744 }
2745 
2746 /* Return true if X is a vector constant with a duplicated element value.
2747    Store the duplicated element in *ELT if so.  */
2748 
2749 template <typename T>
2750 inline bool
2751 const_vec_duplicate_p (T x, T *elt)
2752 {
2753   if (const_vec_duplicate_p (x))
2754     {
2755       *elt = CONST_VECTOR_ELT (x, 0);
2756       return true;
2757     }
2758   return false;
2759 }
2760 
2761 /* If X is a vector constant with a duplicated element value, return that
2762    element value, otherwise return X.  */
2763 
2764 template <typename T>
2765 inline T
2766 unwrap_const_vec_duplicate (T x)
2767 {
2768   if (const_vec_duplicate_p (x))
2769     x = CONST_VECTOR_ELT (x, 0);
2770   return x;
2771 }
2772 
2773 /* In emit-rtl.c */
2774 extern rtvec gen_rtvec_v (int, rtx *);
2775 extern rtvec gen_rtvec_v (int, rtx_insn **);
2776 extern rtx gen_reg_rtx (machine_mode);
2777 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2778 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2779 extern rtx gen_reg_rtx_and_attrs (rtx);
2780 extern rtx_code_label *gen_label_rtx (void);
2781 extern rtx gen_lowpart_common (machine_mode, rtx);
2782 
2783 /* In cse.c */
2784 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2785 
2786 /* In emit-rtl.c */
2787 extern rtx gen_highpart (machine_mode, rtx);
2788 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2789 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2790 
2791 /* In emit-rtl.c */
2792 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2793 extern bool paradoxical_subreg_p (const_rtx);
2794 extern int subreg_lowpart_p (const_rtx);
2795 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2796 
2797 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value.  */
2798 
2799 inline unsigned int
2800 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2801 {
2802   return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2803 				     GET_MODE_SIZE (innermode));
2804 }
2805 
2806 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2807 
2808 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value.  */
2809 
2810 inline unsigned int
2811 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2812 {
2813   return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2814 				      GET_MODE_SIZE (innermode));
2815 }
2816 
2817 extern int byte_lowpart_offset (machine_mode, machine_mode);
2818 extern rtx make_safe_from (rtx, rtx);
2819 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2820 						addr_space_t, bool, bool);
2821 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2822 					      addr_space_t);
2823 #define convert_memory_address(to_mode,x) \
2824 	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2825 extern const char *get_insn_name (int);
2826 extern rtx_insn *get_last_insn_anywhere (void);
2827 extern rtx_insn *get_first_nonnote_insn (void);
2828 extern rtx_insn *get_last_nonnote_insn (void);
2829 extern void start_sequence (void);
2830 extern void push_to_sequence (rtx_insn *);
2831 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2832 extern void end_sequence (void);
2833 #if TARGET_SUPPORTS_WIDE_INT == 0
2834 extern double_int rtx_to_double_int (const_rtx);
2835 #endif
2836 extern void cwi_output_hex (FILE *, const_rtx);
2837 #ifndef GENERATOR_FILE
2838 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2839 #endif
2840 #if TARGET_SUPPORTS_WIDE_INT == 0
2841 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2842 			       machine_mode);
2843 #endif
2844 
2845 /* In varasm.c  */
2846 extern rtx force_const_mem (machine_mode, rtx);
2847 
2848 /* In varasm.c  */
2849 
2850 struct function;
2851 extern rtx get_pool_constant (const_rtx);
2852 extern rtx get_pool_constant_mark (rtx, bool *);
2853 extern machine_mode get_pool_mode (const_rtx);
2854 extern rtx simplify_subtraction (rtx);
2855 extern void decide_function_section (tree);
2856 
2857 /* In emit-rtl.c */
2858 extern rtx_insn *emit_insn_before (rtx, rtx);
2859 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2860 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2861 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2862 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2863 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2864 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2865 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2866 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2867 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2868 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2869 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2870 extern rtx_barrier *emit_barrier_before (rtx);
2871 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2872 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2873 extern rtx_insn *emit_insn_after (rtx, rtx);
2874 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2875 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2876 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2877 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2878 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2879 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2880 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2881 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2882 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2883 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2884 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2885 extern rtx_barrier *emit_barrier_after (rtx);
2886 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2887 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2888 extern rtx_insn *emit_insn (rtx);
2889 extern rtx_insn *emit_debug_insn (rtx);
2890 extern rtx_insn *emit_jump_insn (rtx);
2891 extern rtx_insn *emit_call_insn (rtx);
2892 extern rtx_code_label *emit_label (rtx);
2893 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2894 extern rtx_barrier *emit_barrier (void);
2895 extern rtx_note *emit_note (enum insn_note);
2896 extern rtx_note *emit_note_copy (rtx_note *);
2897 extern rtx_insn *gen_clobber (rtx);
2898 extern rtx_insn *emit_clobber (rtx);
2899 extern rtx_insn *gen_use (rtx);
2900 extern rtx_insn *emit_use (rtx);
2901 extern rtx_insn *make_insn_raw (rtx);
2902 extern void add_function_usage_to (rtx, rtx);
2903 extern rtx_call_insn *last_call_insn (void);
2904 extern rtx_insn *previous_insn (rtx_insn *);
2905 extern rtx_insn *next_insn (rtx_insn *);
2906 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
2907 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
2908 extern rtx_insn *next_nonnote_insn (rtx_insn *);
2909 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2910 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
2911 extern rtx_insn *next_nondebug_insn (rtx_insn *);
2912 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
2913 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
2914 extern rtx_insn *prev_real_insn (rtx_insn *);
2915 extern rtx_insn *next_real_insn (rtx);
2916 extern rtx_insn *prev_active_insn (rtx_insn *);
2917 extern rtx_insn *next_active_insn (rtx_insn *);
2918 extern int active_insn_p (const rtx_insn *);
2919 extern rtx_insn *next_cc0_user (rtx_insn *);
2920 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2921 
2922 /* In emit-rtl.c  */
2923 extern int insn_line (const rtx_insn *);
2924 extern const char * insn_file (const rtx_insn *);
2925 extern tree insn_scope (const rtx_insn *);
2926 extern expanded_location insn_location (const rtx_insn *);
2927 extern location_t prologue_location, epilogue_location;
2928 
2929 /* In jump.c */
2930 extern enum rtx_code reverse_condition (enum rtx_code);
2931 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2932 extern enum rtx_code swap_condition (enum rtx_code);
2933 extern enum rtx_code unsigned_condition (enum rtx_code);
2934 extern enum rtx_code signed_condition (enum rtx_code);
2935 extern void mark_jump_label (rtx, rtx_insn *, int);
2936 
2937 /* In jump.c */
2938 extern rtx_insn *delete_related_insns (rtx);
2939 
2940 /* In recog.c  */
2941 extern rtx *find_constant_term_loc (rtx *);
2942 
2943 /* In emit-rtl.c  */
2944 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2945 extern int split_branch_probability;
2946 
2947 /* In insn-recog.c (generated by genrecog).  */
2948 extern rtx_insn *split_insns (rtx, rtx_insn *);
2949 
2950 /* In simplify-rtx.c  */
2951 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2952 					   rtx, machine_mode);
2953 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2954 				     machine_mode);
2955 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2956 					    rtx, rtx);
2957 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2958 				      rtx);
2959 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2960 				       machine_mode, rtx, rtx, rtx);
2961 extern rtx simplify_const_relational_operation (enum rtx_code,
2962 						machine_mode, rtx, rtx);
2963 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2964 					  machine_mode, rtx, rtx);
2965 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2966 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2967 			       machine_mode);
2968 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2969 				 machine_mode, rtx, rtx, rtx);
2970 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2971 				    machine_mode, rtx, rtx);
2972 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2973 			    unsigned int);
2974 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2975 				unsigned int);
2976 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2977 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2978 				    rtx (*fn) (rtx, const_rtx, void *), void *);
2979 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2980 extern rtx simplify_rtx (const_rtx);
2981 extern rtx avoid_constant_pool_reference (rtx);
2982 extern rtx delegitimize_mem_from_attrs (rtx);
2983 extern bool mode_signbit_p (machine_mode, const_rtx);
2984 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2985 extern bool val_signbit_known_set_p (machine_mode,
2986 				     unsigned HOST_WIDE_INT);
2987 extern bool val_signbit_known_clear_p (machine_mode,
2988 				       unsigned HOST_WIDE_INT);
2989 
2990 /* In reginfo.c  */
2991 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2992 					       bool);
2993 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2994 
2995 /* In emit-rtl.c  */
2996 extern rtx set_for_reg_notes (rtx);
2997 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2998 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2999 extern void set_insn_deleted (rtx);
3000 
3001 /* Functions in rtlanal.c */
3002 
3003 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3004 extern bool contains_symbol_ref_p (const_rtx);
3005 extern bool contains_symbolic_reference_p (const_rtx);
3006 
3007 /* Handle the cheap and common cases inline for performance.  */
3008 
3009 inline rtx single_set (const rtx_insn *insn)
3010 {
3011   if (!INSN_P (insn))
3012     return NULL_RTX;
3013 
3014   if (GET_CODE (PATTERN (insn)) == SET)
3015     return PATTERN (insn);
3016 
3017   /* Defer to the more expensive case.  */
3018   return single_set_2 (insn, PATTERN (insn));
3019 }
3020 
3021 extern machine_mode get_address_mode (rtx mem);
3022 extern int rtx_addr_can_trap_p (const_rtx);
3023 extern bool nonzero_address_p (const_rtx);
3024 extern int rtx_unstable_p (const_rtx);
3025 extern bool rtx_varies_p (const_rtx, bool);
3026 extern bool rtx_addr_varies_p (const_rtx, bool);
3027 extern rtx get_call_rtx_from (rtx);
3028 extern HOST_WIDE_INT get_integer_term (const_rtx);
3029 extern rtx get_related_value (const_rtx);
3030 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3031 extern void split_const (rtx, rtx *, rtx *);
3032 extern bool unsigned_reg_p (rtx);
3033 extern int reg_mentioned_p (const_rtx, const_rtx);
3034 extern int count_occurrences (const_rtx, const_rtx, int);
3035 extern int reg_referenced_p (const_rtx, const_rtx);
3036 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3037 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3038 extern int commutative_operand_precedence (rtx);
3039 extern bool swap_commutative_operands_p (rtx, rtx);
3040 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3041 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3042 extern int modified_in_p (const_rtx, const_rtx);
3043 extern int reg_set_p (const_rtx, const_rtx);
3044 extern int multiple_sets (const_rtx);
3045 extern int set_noop_p (const_rtx);
3046 extern int noop_move_p (const rtx_insn *);
3047 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3048 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3049 extern const_rtx set_of (const_rtx, const_rtx);
3050 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3051 extern void record_hard_reg_uses (rtx *, void *);
3052 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3053 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3054 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3055 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3056 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3057 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3058 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3059 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3060 extern rtx find_reg_equal_equiv_note (const_rtx);
3061 extern rtx find_constant_src (const rtx_insn *);
3062 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3063 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3064 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3065 extern void add_reg_note (rtx, enum reg_note, rtx);
3066 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3067 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3068 extern rtx duplicate_reg_note (rtx);
3069 extern void remove_note (rtx_insn *, const_rtx);
3070 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3071 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3072 extern int side_effects_p (const_rtx);
3073 extern int volatile_refs_p (const_rtx);
3074 extern int volatile_insn_p (const_rtx);
3075 extern int may_trap_p_1 (const_rtx, unsigned);
3076 extern int may_trap_p (const_rtx);
3077 extern int may_trap_or_fault_p (const_rtx);
3078 extern bool can_throw_internal (const_rtx);
3079 extern bool can_throw_external (const_rtx);
3080 extern bool insn_could_throw_p (const_rtx);
3081 extern bool insn_nothrow_p (const_rtx);
3082 extern bool can_nonlocal_goto (const rtx_insn *);
3083 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3084 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3085 extern int inequality_comparisons_p (const_rtx);
3086 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3087 extern void replace_label (rtx *, rtx, rtx, bool);
3088 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3089 extern bool rtx_referenced_p (const_rtx, const_rtx);
3090 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3091 extern int computed_jump_p (const rtx_insn *);
3092 extern bool tls_referenced_p (const_rtx);
3093 extern bool contains_mem_rtx_p (rtx x);
3094 
3095 /* Overload for refers_to_regno_p for checking a single register.  */
3096 inline bool
3097 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3098 {
3099   return refers_to_regno_p (regnum, regnum + 1, x, loc);
3100 }
3101 
3102 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3103    within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3104    NULL.  The callback is passed the same opaque ARG passed to
3105    for_each_inc_dec.  Return zero to continue looking for other
3106    autoinc operations or any other value to interrupt the traversal and
3107    return that value to the caller of for_each_inc_dec.  */
3108 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3109 				    rtx srcoff, void *arg);
3110 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3111 
3112 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3113                                               rtx *, rtx *);
3114 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3115                            rtx_equal_p_callback_function);
3116 
3117 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3118                                            machine_mode *);
3119 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3120                              bool, hash_rtx_callback_function);
3121 
3122 extern rtx regno_use_in (unsigned int, rtx);
3123 extern int auto_inc_p (const_rtx);
3124 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3125 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3126 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3127 extern int loc_mentioned_in_p (rtx *, const_rtx);
3128 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3129 extern bool keep_with_call_p (const rtx_insn *);
3130 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3131 extern int insn_rtx_cost (rtx, bool);
3132 extern unsigned seq_cost (const rtx_insn *, bool);
3133 
3134 /* Given an insn and condition, return a canonical description of
3135    the test being made.  */
3136 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3137 				   int, int);
3138 
3139 /* Given a JUMP_INSN, return a canonical description of the test
3140    being made.  */
3141 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3142 
3143 /* Information about a subreg of a hard register.  */
3144 struct subreg_info
3145 {
3146   /* Offset of first hard register involved in the subreg.  */
3147   int offset;
3148   /* Number of hard registers involved in the subreg.  In the case of
3149      a paradoxical subreg, this is the number of registers that would
3150      be modified by writing to the subreg; some of them may be don't-care
3151      when reading from the subreg.  */
3152   int nregs;
3153   /* Whether this subreg can be represented as a hard reg with the new
3154      mode (by adding OFFSET to the original hard register).  */
3155   bool representable_p;
3156 };
3157 
3158 extern void subreg_get_info (unsigned int, machine_mode,
3159 			     unsigned int, machine_mode,
3160 			     struct subreg_info *);
3161 
3162 /* lists.c */
3163 
3164 extern void free_EXPR_LIST_list (rtx_expr_list **);
3165 extern void free_INSN_LIST_list (rtx_insn_list **);
3166 extern void free_EXPR_LIST_node (rtx);
3167 extern void free_INSN_LIST_node (rtx);
3168 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3169 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3170 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3171 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3172 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3173 extern rtx remove_list_elem (rtx, rtx *);
3174 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3175 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3176 
3177 
3178 /* reginfo.c */
3179 
3180 /* Resize reg info.  */
3181 extern bool resize_reg_info (void);
3182 /* Free up register info memory.  */
3183 extern void free_reg_info (void);
3184 extern void init_subregs_of_mode (void);
3185 extern void finish_subregs_of_mode (void);
3186 
3187 /* recog.c */
3188 extern rtx extract_asm_operands (rtx);
3189 extern int asm_noperands (const_rtx);
3190 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3191 					machine_mode *, location_t *);
3192 extern void get_referenced_operands (const char *, bool *, unsigned int);
3193 
3194 extern enum reg_class reg_preferred_class (int);
3195 extern enum reg_class reg_alternate_class (int);
3196 extern enum reg_class reg_allocno_class (int);
3197 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3198 			       enum reg_class);
3199 
3200 extern void split_all_insns (void);
3201 extern unsigned int split_all_insns_noflow (void);
3202 
3203 #define MAX_SAVED_CONST_INT 64
3204 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3205 
3206 #define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3207 #define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3208 #define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3209 #define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3210 extern GTY(()) rtx const_true_rtx;
3211 
3212 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3213 
3214 /* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3215    same as VOIDmode.  */
3216 
3217 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3218 
3219 /* Likewise, for the constants 1 and 2 and -1.  */
3220 
3221 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3222 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3223 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3224 
3225 extern GTY(()) rtx pc_rtx;
3226 extern GTY(()) rtx cc0_rtx;
3227 extern GTY(()) rtx ret_rtx;
3228 extern GTY(()) rtx simple_return_rtx;
3229 extern GTY(()) rtx_insn *invalid_insn_rtx;
3230 
3231 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3232    is used to represent the frame pointer.  This is because the
3233    hard frame pointer and the automatic variables are separated by an amount
3234    that cannot be determined until after register allocation.  We can assume
3235    that in this case ELIMINABLE_REGS will be defined, one action of which
3236    will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3237 #ifndef HARD_FRAME_POINTER_REGNUM
3238 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3239 #endif
3240 
3241 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3242 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3243   (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3244 #endif
3245 
3246 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3247 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3248   (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3249 #endif
3250 
3251 /* Index labels for global_rtl.  */
3252 enum global_rtl_index
3253 {
3254   GR_STACK_POINTER,
3255   GR_FRAME_POINTER,
3256 /* For register elimination to work properly these hard_frame_pointer_rtx,
3257    frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3258    the same register.  */
3259 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3260   GR_ARG_POINTER = GR_FRAME_POINTER,
3261 #endif
3262 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3263   GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3264 #else
3265   GR_HARD_FRAME_POINTER,
3266 #endif
3267 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3268 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3269   GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3270 #else
3271   GR_ARG_POINTER,
3272 #endif
3273 #endif
3274   GR_VIRTUAL_INCOMING_ARGS,
3275   GR_VIRTUAL_STACK_ARGS,
3276   GR_VIRTUAL_STACK_DYNAMIC,
3277   GR_VIRTUAL_OUTGOING_ARGS,
3278   GR_VIRTUAL_CFA,
3279   GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3280 
3281   GR_MAX
3282 };
3283 
3284 /* Target-dependent globals.  */
3285 struct GTY(()) target_rtl {
3286   /* All references to the hard registers in global_rtl_index go through
3287      these unique rtl objects.  On machines where the frame-pointer and
3288      arg-pointer are the same register, they use the same unique object.
3289 
3290      After register allocation, other rtl objects which used to be pseudo-regs
3291      may be clobbered to refer to the frame-pointer register.
3292      But references that were originally to the frame-pointer can be
3293      distinguished from the others because they contain frame_pointer_rtx.
3294 
3295      When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3296      tricky: until register elimination has taken place hard_frame_pointer_rtx
3297      should be used if it is being set, and frame_pointer_rtx otherwise.  After
3298      register elimination hard_frame_pointer_rtx should always be used.
3299      On machines where the two registers are same (most) then these are the
3300      same.  */
3301   rtx x_global_rtl[GR_MAX];
3302 
3303   /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3304   rtx x_pic_offset_table_rtx;
3305 
3306   /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3307      This is used to implement __builtin_return_address for some machines;
3308      see for instance the MIPS port.  */
3309   rtx x_return_address_pointer_rtx;
3310 
3311   /* Commonly used RTL for hard registers.  These objects are not
3312      necessarily unique, so we allocate them separately from global_rtl.
3313      They are initialized once per compilation unit, then copied into
3314      regno_reg_rtx at the beginning of each function.  */
3315   rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3316 
3317   /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3318   rtx x_top_of_stack[MAX_MACHINE_MODE];
3319 
3320   /* Static hunks of RTL used by the aliasing code; these are treated
3321      as persistent to avoid unnecessary RTL allocations.  */
3322   rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3323 
3324   /* The default memory attributes for each mode.  */
3325   struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3326 
3327   /* Track if RTL has been initialized.  */
3328   bool target_specific_initialized;
3329 };
3330 
3331 extern GTY(()) struct target_rtl default_target_rtl;
3332 #if SWITCHABLE_TARGET
3333 extern struct target_rtl *this_target_rtl;
3334 #else
3335 #define this_target_rtl (&default_target_rtl)
3336 #endif
3337 
3338 #define global_rtl				\
3339   (this_target_rtl->x_global_rtl)
3340 #define pic_offset_table_rtx \
3341   (this_target_rtl->x_pic_offset_table_rtx)
3342 #define return_address_pointer_rtx \
3343   (this_target_rtl->x_return_address_pointer_rtx)
3344 #define top_of_stack \
3345   (this_target_rtl->x_top_of_stack)
3346 #define mode_mem_attrs \
3347   (this_target_rtl->x_mode_mem_attrs)
3348 
3349 /* All references to certain hard regs, except those created
3350    by allocating pseudo regs into them (when that's possible),
3351    go through these unique rtx objects.  */
3352 #define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3353 #define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3354 #define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3355 #define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3356 
3357 #ifndef GENERATOR_FILE
3358 /* Return the attributes of a MEM rtx.  */
3359 static inline const struct mem_attrs *
3360 get_mem_attrs (const_rtx x)
3361 {
3362   struct mem_attrs *attrs;
3363 
3364   attrs = MEM_ATTRS (x);
3365   if (!attrs)
3366     attrs = mode_mem_attrs[(int) GET_MODE (x)];
3367   return attrs;
3368 }
3369 #endif
3370 
3371 /* Include the RTL generation functions.  */
3372 
3373 #ifndef GENERATOR_FILE
3374 #include "genrtl.h"
3375 #undef gen_rtx_ASM_INPUT
3376 #define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3377   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3378 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3379   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3380 #endif
3381 
3382 /* There are some RTL codes that require special attention; the
3383    generation functions included above do the raw handling.  If you
3384    add to this list, modify special_rtx in gengenrtl.c as well.  */
3385 
3386 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3387 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3388 extern rtx_insn *
3389 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3390 	      basic_block bb, rtx pattern, int location, int code,
3391 	      rtx reg_notes);
3392 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3393 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3394 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3395 extern rtx gen_raw_REG (machine_mode, unsigned int);
3396 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3397 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3398 extern rtx gen_rtx_MEM (machine_mode, rtx);
3399 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3400 				 enum var_init_status);
3401 
3402 #ifdef GENERATOR_FILE
3403 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3404 #else
3405 static inline void
3406 PUT_MODE (rtx x, machine_mode mode)
3407 {
3408   if (REG_P (x))
3409     set_mode_and_regno (x, mode, REGNO (x));
3410   else
3411     PUT_MODE_RAW (x, mode);
3412 }
3413 #endif
3414 
3415 #define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3416 
3417 /* Virtual registers are used during RTL generation to refer to locations into
3418    the stack frame when the actual location isn't known until RTL generation
3419    is complete.  The routine instantiate_virtual_regs replaces these with
3420    the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3421    a constant.  */
3422 
3423 #define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3424 
3425 /* This points to the first word of the incoming arguments passed on the stack,
3426    either by the caller or by the callee when pretending it was passed by the
3427    caller.  */
3428 
3429 #define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3430 
3431 #define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3432 
3433 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3434    variable on the stack.  Otherwise, it points to the first variable on
3435    the stack.  */
3436 
3437 #define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3438 
3439 #define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3440 
3441 /* This points to the location of dynamically-allocated memory on the stack
3442    immediately after the stack pointer has been adjusted by the amount
3443    desired.  */
3444 
3445 #define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3446 
3447 #define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3448 
3449 /* This points to the location in the stack at which outgoing arguments should
3450    be written when the stack is pre-pushed (arguments pushed using push
3451    insns always use sp).  */
3452 
3453 #define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3454 
3455 #define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3456 
3457 /* This points to the Canonical Frame Address of the function.  This
3458    should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3459    but is calculated relative to the arg pointer for simplicity; the
3460    frame pointer nor stack pointer are necessarily fixed relative to
3461    the CFA until after reload.  */
3462 
3463 #define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3464 
3465 #define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3466 
3467 #define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3468 
3469 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3470    when finalized.  */
3471 
3472 #define virtual_preferred_stack_boundary_rtx \
3473 	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3474 
3475 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3476 					((FIRST_VIRTUAL_REGISTER) + 5)
3477 
3478 #define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3479 
3480 /* Nonzero if REGNUM is a pointer into the stack frame.  */
3481 #define REGNO_PTR_FRAME_P(REGNUM)		\
3482   ((REGNUM) == STACK_POINTER_REGNUM		\
3483    || (REGNUM) == FRAME_POINTER_REGNUM		\
3484    || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3485    || (REGNUM) == ARG_POINTER_REGNUM		\
3486    || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3487        && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3488 
3489 /* REGNUM never really appearing in the INSN stream.  */
3490 #define INVALID_REGNUM			(~(unsigned int) 0)
3491 
3492 /* REGNUM for which no debug information can be generated.  */
3493 #define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3494 
3495 extern rtx output_constant_def (tree, int);
3496 extern rtx lookup_constant_def (tree);
3497 
3498 /* Nonzero after end of reload pass.
3499    Set to 1 or 0 by reload1.c.  */
3500 
3501 extern int reload_completed;
3502 
3503 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3504 extern int epilogue_completed;
3505 
3506 /* Set to 1 while reload_as_needed is operating.
3507    Required by some machines to handle any generated moves differently.  */
3508 
3509 extern int reload_in_progress;
3510 
3511 /* Set to 1 while in lra.  */
3512 extern int lra_in_progress;
3513 
3514 /* This macro indicates whether you may create a new
3515    pseudo-register.  */
3516 
3517 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3518 
3519 #ifdef STACK_REGS
3520 /* Nonzero after end of regstack pass.
3521    Set to 1 or 0 by reg-stack.c.  */
3522 extern int regstack_completed;
3523 #endif
3524 
3525 /* If this is nonzero, we do not bother generating VOLATILE
3526    around volatile memory references, and we are willing to
3527    output indirect addresses.  If cse is to follow, we reject
3528    indirect addresses so a useful potential cse is generated;
3529    if it is used only once, instruction combination will produce
3530    the same indirect address eventually.  */
3531 extern int cse_not_expected;
3532 
3533 /* Translates rtx code to tree code, for those codes needed by
3534    real_arithmetic.  The function returns an int because the caller may not
3535    know what `enum tree_code' means.  */
3536 
3537 extern int rtx_to_tree_code (enum rtx_code);
3538 
3539 /* In cse.c */
3540 extern int delete_trivially_dead_insns (rtx_insn *, int);
3541 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3542 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3543 
3544 /* In dse.c */
3545 extern bool check_for_inc_dec (rtx_insn *insn);
3546 
3547 /* In jump.c */
3548 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3549 extern bool jump_to_label_p (const rtx_insn *);
3550 extern int condjump_p (const rtx_insn *);
3551 extern int any_condjump_p (const rtx_insn *);
3552 extern int any_uncondjump_p (const rtx_insn *);
3553 extern rtx pc_set (const rtx_insn *);
3554 extern rtx condjump_label (const rtx_insn *);
3555 extern int simplejump_p (const rtx_insn *);
3556 extern int returnjump_p (const rtx_insn *);
3557 extern int eh_returnjump_p (rtx_insn *);
3558 extern int onlyjump_p (const rtx_insn *);
3559 extern int only_sets_cc0_p (const_rtx);
3560 extern int sets_cc0_p (const_rtx);
3561 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3562 extern int invert_jump (rtx_jump_insn *, rtx, int);
3563 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3564 extern int true_regnum (const_rtx);
3565 extern unsigned int reg_or_subregno (const_rtx);
3566 extern int redirect_jump_1 (rtx_insn *, rtx);
3567 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3568 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3569 extern void rebuild_jump_labels (rtx_insn *);
3570 extern void rebuild_jump_labels_chain (rtx_insn *);
3571 extern rtx reversed_comparison (const_rtx, machine_mode);
3572 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3573 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3574 						     const_rtx, const rtx_insn *);
3575 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3576 extern int condjump_in_parallel_p (const rtx_insn *);
3577 
3578 /* In emit-rtl.c.  */
3579 extern int max_reg_num (void);
3580 extern int max_label_num (void);
3581 extern int get_first_label_num (void);
3582 extern void maybe_set_first_label_num (rtx_code_label *);
3583 extern void delete_insns_since (rtx_insn *);
3584 extern void mark_reg_pointer (rtx, int);
3585 extern void mark_user_reg (rtx);
3586 extern void reset_used_flags (rtx);
3587 extern void set_used_flags (rtx);
3588 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3589 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3590 extern int get_max_insn_count (void);
3591 extern int in_sequence_p (void);
3592 extern void init_emit (void);
3593 extern void init_emit_regs (void);
3594 extern void init_derived_machine_modes (void);
3595 extern void init_emit_once (void);
3596 extern void push_topmost_sequence (void);
3597 extern void pop_topmost_sequence (void);
3598 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3599 extern unsigned int unshare_all_rtl (void);
3600 extern void unshare_all_rtl_again (rtx_insn *);
3601 extern void unshare_all_rtl_in_chain (rtx_insn *);
3602 extern void verify_rtl_sharing (void);
3603 extern void add_insn (rtx_insn *);
3604 extern void add_insn_before (rtx, rtx, basic_block);
3605 extern void add_insn_after (rtx, rtx, basic_block);
3606 extern void remove_insn (rtx);
3607 extern rtx_insn *emit (rtx, bool = true);
3608 extern void emit_insn_at_entry (rtx);
3609 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3610 extern rtx gen_const_mem (machine_mode, rtx);
3611 extern rtx gen_frame_mem (machine_mode, rtx);
3612 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3613 extern bool validate_subreg (machine_mode, machine_mode,
3614 			     const_rtx, unsigned int);
3615 
3616 /* In combine.c  */
3617 extern unsigned int extended_count (const_rtx, machine_mode, int);
3618 extern rtx remove_death (unsigned int, rtx_insn *);
3619 extern void dump_combine_stats (FILE *);
3620 extern void dump_combine_total_stats (FILE *);
3621 extern rtx make_compound_operation (rtx, enum rtx_code);
3622 
3623 /* In sched-rgn.c.  */
3624 extern void schedule_insns (void);
3625 
3626 /* In sched-ebb.c.  */
3627 extern void schedule_ebbs (void);
3628 
3629 /* In sel-sched-dump.c.  */
3630 extern void sel_sched_fix_param (const char *param, const char *val);
3631 
3632 /* In print-rtl.c */
3633 extern const char *print_rtx_head;
3634 extern void debug (const rtx_def &ref);
3635 extern void debug (const rtx_def *ptr);
3636 extern void debug_rtx (const_rtx);
3637 extern void debug_rtx_list (const rtx_insn *, int);
3638 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3639 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3640 extern void print_mem_expr (FILE *, const_tree);
3641 extern void print_rtl (FILE *, const_rtx);
3642 extern void print_simple_rtl (FILE *, const_rtx);
3643 extern int print_rtl_single (FILE *, const_rtx);
3644 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3645 extern void print_inline_rtx (FILE *, const_rtx, int);
3646 
3647 /* In stmt.c */
3648 extern void expand_null_return (void);
3649 extern void expand_naked_return (void);
3650 extern void emit_jump (rtx);
3651 
3652 /* In expr.c */
3653 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3654 			   unsigned int, int);
3655 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3656 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3657 
3658 /* In expmed.c */
3659 extern void init_expmed (void);
3660 extern void expand_inc (rtx, rtx);
3661 extern void expand_dec (rtx, rtx);
3662 
3663 /* In lower-subreg.c */
3664 extern void init_lower_subreg (void);
3665 
3666 /* In gcse.c */
3667 extern bool can_copy_p (machine_mode);
3668 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3669 extern rtx_insn *prepare_copy_insn (rtx, rtx);
3670 
3671 /* In cprop.c */
3672 extern rtx fis_get_condition (rtx_insn *);
3673 
3674 /* In ira.c */
3675 extern HARD_REG_SET eliminable_regset;
3676 extern void mark_elimination (int, int);
3677 
3678 /* In reginfo.c */
3679 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3680 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3681 extern void globalize_reg (tree, int);
3682 extern void init_reg_modes_target (void);
3683 extern void init_regs (void);
3684 extern void reinit_regs (void);
3685 extern void init_fake_stack_mems (void);
3686 extern void save_register_info (void);
3687 extern void init_reg_sets (void);
3688 extern void regclass (rtx, int);
3689 extern void reg_scan (rtx_insn *, unsigned int);
3690 extern void fix_register (const char *, int, int);
3691 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3692 
3693 /* In reload1.c */
3694 extern int function_invariant_p (const_rtx);
3695 
3696 /* In calls.c */
3697 enum libcall_type
3698 {
3699   LCT_NORMAL = 0,
3700   LCT_CONST = 1,
3701   LCT_PURE = 2,
3702   LCT_NORETURN = 3,
3703   LCT_THROW = 4,
3704   LCT_RETURNS_TWICE = 5
3705 };
3706 
3707 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3708 			       ...);
3709 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3710 				    machine_mode, int, ...);
3711 
3712 /* In varasm.c */
3713 extern void init_varasm_once (void);
3714 
3715 extern rtx make_debug_expr_from_rtl (const_rtx);
3716 
3717 /* In read-rtl.c */
3718 #ifdef GENERATOR_FILE
3719 extern bool read_rtx (const char *, vec<rtx> *);
3720 #endif
3721 
3722 /* In alias.c */
3723 extern rtx canon_rtx (rtx);
3724 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3725 extern rtx get_addr (rtx);
3726 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3727 				  const_rtx, rtx);
3728 extern int read_dependence (const_rtx, const_rtx);
3729 extern int anti_dependence (const_rtx, const_rtx);
3730 extern int canon_anti_dependence (const_rtx, bool,
3731 				  const_rtx, machine_mode, rtx);
3732 extern int output_dependence (const_rtx, const_rtx);
3733 extern int canon_output_dependence (const_rtx, bool,
3734 				    const_rtx, machine_mode, rtx);
3735 extern int may_alias_p (const_rtx, const_rtx);
3736 extern void init_alias_target (void);
3737 extern void init_alias_analysis (void);
3738 extern void end_alias_analysis (void);
3739 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3740 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3741 extern bool may_be_sp_based_p (rtx);
3742 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3743 extern rtx get_reg_known_value (unsigned int);
3744 extern bool get_reg_known_equiv_p (unsigned int);
3745 extern rtx get_reg_base_value (unsigned int);
3746 
3747 #ifdef STACK_REGS
3748 extern int stack_regs_mentioned (const_rtx insn);
3749 #endif
3750 
3751 /* In toplev.c */
3752 extern GTY(()) rtx stack_limit_rtx;
3753 
3754 /* In var-tracking.c */
3755 extern unsigned int variable_tracking_main (void);
3756 
3757 /* In stor-layout.c.  */
3758 extern void get_mode_bounds (machine_mode, int, machine_mode,
3759 			     rtx *, rtx *);
3760 
3761 /* In loop-iv.c  */
3762 extern rtx canon_condition (rtx);
3763 extern void simplify_using_condition (rtx, rtx *, bitmap);
3764 
3765 /* In final.c  */
3766 extern unsigned int compute_alignments (void);
3767 extern void update_alignments (vec<rtx> &);
3768 extern int asm_str_count (const char *templ);
3769 
3770 struct rtl_hooks
3771 {
3772   rtx (*gen_lowpart) (machine_mode, rtx);
3773   rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3774   rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3775 			   unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3776   rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3777 				  unsigned int, unsigned int *);
3778   bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3779 
3780   /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
3781 };
3782 
3783 /* Each pass can provide its own.  */
3784 extern struct rtl_hooks rtl_hooks;
3785 
3786 /* ... but then it has to restore these.  */
3787 extern const struct rtl_hooks general_rtl_hooks;
3788 
3789 /* Keep this for the nonce.  */
3790 #define gen_lowpart rtl_hooks.gen_lowpart
3791 
3792 extern void insn_locations_init (void);
3793 extern void insn_locations_finalize (void);
3794 extern void set_curr_insn_location (location_t);
3795 extern location_t curr_insn_location (void);
3796 
3797 /* rtl-error.c */
3798 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3799      ATTRIBUTE_NORETURN;
3800 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3801      ATTRIBUTE_NORETURN;
3802 
3803 #define fatal_insn(msgid, insn) \
3804 	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3805 #define fatal_insn_not_found(insn) \
3806 	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3807 
3808 /* reginfo.c */
3809 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3810 
3811 /* Information about the function that is propagated by the RTL backend.
3812    Available only for functions that has been already assembled.  */
3813 
3814 struct GTY(()) cgraph_rtl_info {
3815    unsigned int preferred_incoming_stack_boundary;
3816 
3817   /* Call unsaved hard registers really used by the corresponding
3818      function (including ones used by functions called by the
3819      function).  */
3820   HARD_REG_SET function_used_regs;
3821   /* Set if function_used_regs is valid.  */
3822   unsigned function_used_regs_valid: 1;
3823 };
3824 
3825 /* If loads from memories of mode MODE always sign or zero extend,
3826    return SIGN_EXTEND or ZERO_EXTEND as appropriate.  Return UNKNOWN
3827    otherwise.  */
3828 
3829 inline rtx_code
3830 load_extend_op (machine_mode mode)
3831 {
3832   if (SCALAR_INT_MODE_P (mode)
3833       && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
3834     return LOAD_EXTEND_OP (mode);
3835   return UNKNOWN;
3836 }
3837 
3838 /* Return true if X is an operation that always operates on the full
3839    registers for WORD_REGISTER_OPERATIONS architectures.  */
3840 
3841 inline bool
3842 word_register_operation_p (const_rtx x)
3843 {
3844   switch (GET_CODE (x))
3845     {
3846     case ROTATE:
3847     case ROTATERT:
3848     case SIGN_EXTRACT:
3849     case ZERO_EXTRACT:
3850       return false;
3851 
3852     default:
3853       return true;
3854     }
3855 }
3856 
3857 /* gtype-desc.c.  */
3858 extern void gt_ggc_mx (rtx &);
3859 extern void gt_pch_nx (rtx &);
3860 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
3861 
3862 #endif /* ! GCC_RTL_H */
3863