xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/rtl.h (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Register Transfer Language (RTL) definitions for GCC
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22 
23 #include "statistics.h"
24 #include "machmode.h"
25 #include "input.h"
26 #include "real.h"
27 #include "vec.h"
28 #include "fixed-value.h"
29 #include "alias.h"
30 #include "hashtab.h"
31 #include "wide-int.h"
32 #include "flags.h"
33 #include "is-a.h"
34 
35 /* Value used by some passes to "recognize" noop moves as valid
36  instructions.  */
37 #define NOOP_MOVE_INSN_CODE	INT_MAX
38 
39 /* Register Transfer Language EXPRESSIONS CODES */
40 
41 #define RTX_CODE	enum rtx_code
42 enum rtx_code  {
43 
44 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS)   ENUM ,
45 #include "rtl.def"		/* rtl expressions are documented here */
46 #undef DEF_RTL_EXPR
47 
48   LAST_AND_UNUSED_RTX_CODE};	/* A convenient way to get a value for
49 				   NUM_RTX_CODE.
50 				   Assumes default enum value assignment.  */
51 
52 /* The cast here, saves many elsewhere.  */
53 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54 
55 /* Similar, but since generator files get more entries... */
56 #ifdef GENERATOR_FILE
57 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58 #endif
59 
60 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
61 
62 enum rtx_class  {
63   /* We check bit 0-1 of some rtx class codes in the predicates below.  */
64 
65   /* Bit 0 = comparison if 0, arithmetic is 1
66      Bit 1 = 1 if commutative.  */
67   RTX_COMPARE,		/* 0 */
68   RTX_COMM_COMPARE,
69   RTX_BIN_ARITH,
70   RTX_COMM_ARITH,
71 
72   /* Must follow the four preceding values.  */
73   RTX_UNARY,		/* 4 */
74 
75   RTX_EXTRA,
76   RTX_MATCH,
77   RTX_INSN,
78 
79   /* Bit 0 = 1 if constant.  */
80   RTX_OBJ,		/* 8 */
81   RTX_CONST_OBJ,
82 
83   RTX_TERNARY,
84   RTX_BITFIELD_OPS,
85   RTX_AUTOINC
86 };
87 
88 #define RTX_OBJ_MASK (~1)
89 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90 #define RTX_COMPARE_MASK (~1)
91 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92 #define RTX_ARITHMETIC_MASK (~1)
93 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94 #define RTX_BINARY_MASK (~3)
95 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96 #define RTX_COMMUTATIVE_MASK (~2)
97 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99 
100 extern const unsigned char rtx_length[NUM_RTX_CODE];
101 #define GET_RTX_LENGTH(CODE)		(rtx_length[(int) (CODE)])
102 
103 extern const char * const rtx_name[NUM_RTX_CODE];
104 #define GET_RTX_NAME(CODE)		(rtx_name[(int) (CODE)])
105 
106 extern const char * const rtx_format[NUM_RTX_CODE];
107 #define GET_RTX_FORMAT(CODE)		(rtx_format[(int) (CODE)])
108 
109 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110 #define GET_RTX_CLASS(CODE)		(rtx_class[(int) (CODE)])
111 
112 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113    and NEXT_INSN fields).  */
114 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115 
116 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117 extern const unsigned char rtx_next[NUM_RTX_CODE];
118 
119 /* The flags and bitfields of an ADDR_DIFF_VEC.  BASE is the base label
120    relative to which the offsets are calculated, as explained in rtl.def.  */
121 struct addr_diff_vec_flags
122 {
123   /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124   unsigned min_align: 8;
125   /* Flags: */
126   unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC.  */
127   unsigned min_after_vec: 1;  /* minimum address target label is
128 				 after the ADDR_DIFF_VEC.  */
129   unsigned max_after_vec: 1;  /* maximum address target label is
130 				 after the ADDR_DIFF_VEC.  */
131   unsigned min_after_base: 1; /* minimum address target label is
132 				 after BASE.  */
133   unsigned max_after_base: 1; /* maximum address target label is
134 				 after BASE.  */
135   /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136   unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned.  */
137   unsigned : 2;
138   unsigned scale : 8;
139 };
140 
141 /* Structure used to describe the attributes of a MEM.  These are hashed
142    so MEMs that the same attributes share a data structure.  This means
143    they cannot be modified in place.  */
144 struct GTY(()) mem_attrs
145 {
146   /* The expression that the MEM accesses, or null if not known.
147      This expression might be larger than the memory reference itself.
148      (In other words, the MEM might access only part of the object.)  */
149   tree expr;
150 
151   /* The offset of the memory reference from the start of EXPR.
152      Only valid if OFFSET_KNOWN_P.  */
153   HOST_WIDE_INT offset;
154 
155   /* The size of the memory reference in bytes.  Only valid if
156      SIZE_KNOWN_P.  */
157   HOST_WIDE_INT size;
158 
159   /* The alias set of the memory reference.  */
160   alias_set_type alias;
161 
162   /* The alignment of the reference in bits.  Always a multiple of
163      BITS_PER_UNIT.  Note that EXPR may have a stricter alignment
164      than the memory reference itself.  */
165   unsigned int align;
166 
167   /* The address space that the memory reference uses.  */
168   unsigned char addrspace;
169 
170   /* True if OFFSET is known.  */
171   bool offset_known_p;
172 
173   /* True if SIZE is known.  */
174   bool size_known_p;
175 };
176 
177 /* Structure used to describe the attributes of a REG in similar way as
178    mem_attrs does for MEM above.  Note that the OFFSET field is calculated
179    in the same way as for mem_attrs, rather than in the same way as a
180    SUBREG_BYTE.  For example, if a big-endian target stores a byte
181    object in the low part of a 4-byte register, the OFFSET field
182    will be -3 rather than 0.  */
183 
184 struct GTY((for_user)) reg_attrs {
185   tree decl;			/* decl corresponding to REG.  */
186   HOST_WIDE_INT offset;		/* Offset from start of DECL.  */
187 };
188 
189 /* Common union for an element of an rtx.  */
190 
191 union rtunion
192 {
193   int rt_int;
194   unsigned int rt_uint;
195   const char *rt_str;
196   rtx rt_rtx;
197   rtvec rt_rtvec;
198   machine_mode rt_type;
199   addr_diff_vec_flags rt_addr_diff_vec_flags;
200   struct cselib_val *rt_cselib;
201   tree rt_tree;
202   basic_block rt_bb;
203   mem_attrs *rt_mem;
204   reg_attrs *rt_reg;
205   struct constant_descriptor_rtx *rt_constant;
206   struct dw_cfi_node *rt_cfi;
207 };
208 
209 /* This structure remembers the position of a SYMBOL_REF within an
210    object_block structure.  A SYMBOL_REF only provides this information
211    if SYMBOL_REF_HAS_BLOCK_INFO_P is true.  */
212 struct GTY(()) block_symbol {
213   /* The usual SYMBOL_REF fields.  */
214   rtunion GTY ((skip)) fld[2];
215 
216   /* The block that contains this object.  */
217   struct object_block *block;
218 
219   /* The offset of this object from the start of its block.  It is negative
220      if the symbol has not yet been assigned an offset.  */
221   HOST_WIDE_INT offset;
222 };
223 
224 /* Describes a group of objects that are to be placed together in such
225    a way that their relative positions are known.  */
226 struct GTY((for_user)) object_block {
227   /* The section in which these objects should be placed.  */
228   section *sect;
229 
230   /* The alignment of the first object, measured in bits.  */
231   unsigned int alignment;
232 
233   /* The total size of the objects, measured in bytes.  */
234   HOST_WIDE_INT size;
235 
236   /* The SYMBOL_REFs for each object.  The vector is sorted in
237      order of increasing offset and the following conditions will
238      hold for each element X:
239 
240 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
241 	 !SYMBOL_REF_ANCHOR_P (X)
242 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
243 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
244   vec<rtx, va_gc> *objects;
245 
246   /* All the anchor SYMBOL_REFs used to address these objects, sorted
247      in order of increasing offset, and then increasing TLS model.
248      The following conditions will hold for each element X in this vector:
249 
250 	 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
251 	 SYMBOL_REF_ANCHOR_P (X)
252 	 SYMBOL_REF_BLOCK (X) == [address of this structure]
253 	 SYMBOL_REF_BLOCK_OFFSET (X) >= 0.  */
254   vec<rtx, va_gc> *anchors;
255 };
256 
257 struct GTY((variable_size)) hwivec_def {
258   HOST_WIDE_INT elem[1];
259 };
260 
261 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT.  */
262 #define CWI_GET_NUM_ELEM(RTX)					\
263   ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
264 #define CWI_PUT_NUM_ELEM(RTX, NUM)					\
265   (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
266 
267 /* RTL expression ("rtx").  */
268 
269 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
270    field for for gengtype to recognize that inheritance is occurring,
271    so that all subclasses are redirected to the traversal hook for the
272    base class.
273    However, all of the fields are in the base class, and special-casing
274    is at work.  Hence we use desc and tag of 0, generating a switch
275    statement of the form:
276      switch (0)
277        {
278        case 0: // all the work happens here
279       }
280    in order to work with the existing special-casing in gengtype.  */
281 
282 struct GTY((desc("0"), tag("0"),
283 	    chain_next ("RTX_NEXT (&%h)"),
284 	    chain_prev ("RTX_PREV (&%h)"))) rtx_def {
285   /* The kind of expression this is.  */
286   ENUM_BITFIELD(rtx_code) code: 16;
287 
288   /* The kind of value the expression has.  */
289   ENUM_BITFIELD(machine_mode) mode : 8;
290 
291   /* 1 in a MEM if we should keep the alias set for this mem unchanged
292      when we access a component.
293      1 in a JUMP_INSN if it is a crossing jump.
294      1 in a CALL_INSN if it is a sibling call.
295      1 in a SET that is for a return.
296      In a CODE_LABEL, part of the two-bit alternate entry field.
297      1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
298      1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
299      1 in a SUBREG generated by LRA for reload insns.
300      1 in a CALL for calls instrumented by Pointer Bounds Checker.  */
301   unsigned int jump : 1;
302   /* In a CODE_LABEL, part of the two-bit alternate entry field.
303      1 in a MEM if it cannot trap.
304      1 in a CALL_INSN logically equivalent to
305        ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306   unsigned int call : 1;
307   /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309      1 in a SYMBOL_REF if it addresses something in the per-function
310      constants pool.
311      1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312      1 in a NOTE, or EXPR_LIST for a const call.
313      1 in a JUMP_INSN of an annulling branch.
314      1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315      1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316      1 in a clobber temporarily created for LRA.  */
317   unsigned int unchanging : 1;
318   /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319      1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320      if it has been deleted.
321      1 in a REG expression if corresponds to a variable declared by the user,
322      0 for an internally generated temporary.
323      1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324      1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325      non-local label.
326      In a SYMBOL_REF, this flag is used for machine-specific purposes.
327      In a PREFETCH, this flag indicates that it should be considered a scheduling
328      barrier.
329      1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.  */
330   unsigned int volatil : 1;
331   /* 1 in a REG if the register is used only in exit code a loop.
332      1 in a SUBREG expression if was generated from a variable with a
333      promoted mode.
334      1 in a CODE_LABEL if the label is used for nonlocal gotos
335      and must not be deleted even if its count is zero.
336      1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337      together with the preceding insn.  Valid only within sched.
338      1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339      from the target of a branch.  Valid from reorg until end of compilation;
340      cleared before used.
341 
342      The name of the field is historical.  It used to be used in MEMs
343      to record whether the MEM accessed part of a structure.  */
344   unsigned int in_struct : 1;
345   /* At the end of RTL generation, 1 if this rtx is used.  This is used for
346      copying shared structure.  See `unshare_all_rtl'.
347      In a REG, this is not needed for that purpose, and used instead
348      in `leaf_renumber_regs_insn'.
349      1 in a SYMBOL_REF, means that emit_library_call
350      has used it as the function.
351      1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352      1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c.  */
353   unsigned int used : 1;
354   /* 1 in an INSN or a SET if this rtx is related to the call frame,
355      either changing how we compute the frame address or saving and
356      restoring registers in the prologue and epilogue.
357      1 in a REG or MEM if it is a pointer.
358      1 in a SYMBOL_REF if it addresses something in the per-function
359      constant string pool.
360      1 in a VALUE is VALUE_CHANGED in var-tracking.c.  */
361   unsigned frame_related : 1;
362   /* 1 in a REG or PARALLEL that is the current function's return value.
363      1 in a SYMBOL_REF for a weak symbol.
364      1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365      1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366      1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.  */
367   unsigned return_val : 1;
368 
369   union {
370     /* The final union field is aligned to 64 bits on LP64 hosts,
371        giving a 32-bit gap after the fields above.  We optimize the
372        layout for that case and use the gap for extra code-specific
373        information.  */
374 
375     /* The ORIGINAL_REGNO of a REG.  */
376     unsigned int original_regno;
377 
378     /* The INSN_UID of an RTX_INSN-class code.  */
379     int insn_uid;
380 
381     /* The SYMBOL_REF_FLAGS of a SYMBOL_REF.  */
382     unsigned int symbol_ref_flags;
383 
384     /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION.  */
385     enum var_init_status var_location_status;
386 
387     /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388        HOST_WIDE_INTs in the hwivec_def.  */
389     unsigned int num_elem;
390   } GTY ((skip)) u2;
391 
392   /* The first element of the operands of this rtx.
393      The number of operands and their types are controlled
394      by the `code' field, according to rtl.def.  */
395   union u {
396     rtunion fld[1];
397     HOST_WIDE_INT hwint[1];
398     struct block_symbol block_sym;
399     struct real_value rv;
400     struct fixed_value fv;
401     struct hwivec_def hwiv;
402   } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404 
405 /* A node for constructing singly-linked lists of rtx.  */
406 
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409   /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST).  */
410 
411 public:
412   /* Get next in list.  */
413   rtx_expr_list *next () const;
414 
415   /* Get at the underlying rtx.  */
416   rtx element () const;
417 };
418 
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424   return rt->code == EXPR_LIST;
425 }
426 
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429   /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430 
431      This is an instance of:
432 
433        DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434 
435      i.e. a node for constructing singly-linked lists of rtx_insn *, where
436      the list is "external" to the insn (as opposed to the doubly-linked
437      list embedded within rtx_insn itself).  */
438 
439 public:
440   /* Get next in list.  */
441   rtx_insn_list *next () const;
442 
443   /* Get at the underlying instruction.  */
444   rtx_insn *insn () const;
445 
446 };
447 
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453   return rt->code == INSN_LIST;
454 }
455 
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457    typically (but not always) of rtx_insn *, used in the late passes.  */
458 
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461   /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE).  */
462 
463 public:
464   /* Get number of elements in sequence.  */
465   int len () const;
466 
467   /* Get i-th element of the sequence.  */
468   rtx element (int index) const;
469 
470   /* Get i-th element of the sequence, with a checked cast to
471      rtx_insn *.  */
472   rtx_insn *insn (int index) const;
473 };
474 
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480   return rt->code == SEQUENCE;
481 }
482 
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488   return rt->code == SEQUENCE;
489 }
490 
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 public:
494   /* No extra fields, but adds the invariant:
495 
496      (INSN_P (X)
497       || NOTE_P (X)
498       || JUMP_TABLE_DATA_P (X)
499       || BARRIER_P (X)
500       || LABEL_P (X))
501 
502      i.e. that we must be able to use the following:
503       INSN_UID ()
504       NEXT_INSN ()
505       PREV_INSN ()
506     i.e. we have an rtx that has an INSN_UID field and can be part of
507     a linked list of insns.
508   */
509 
510   /* Returns true if this insn has been deleted.  */
511 
512   bool deleted () const { return volatil; }
513 
514   /* Mark this insn as deleted.  */
515 
516   void set_deleted () { volatil = true; }
517 
518   /* Mark this insn as not deleted.  */
519 
520   void set_undeleted () { volatil = false; }
521 };
522 
523 /* Subclasses of rtx_insn.  */
524 
525 class GTY(()) rtx_debug_insn : public rtx_insn
526 {
527   /* No extra fields, but adds the invariant:
528        DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529      i.e. an annotation for tracking variable assignments.
530 
531      This is an instance of:
532        DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533      from rtl.def.  */
534 };
535 
536 class GTY(()) rtx_nonjump_insn : public rtx_insn
537 {
538   /* No extra fields, but adds the invariant:
539        NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540      i.e an instruction that cannot jump.
541 
542      This is an instance of:
543        DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544      from rtl.def.  */
545 };
546 
547 class GTY(()) rtx_jump_insn : public rtx_insn
548 {
549   /* No extra fields, but adds the invariant:
550        JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551      i.e. an instruction that can possibly jump.
552 
553      This is an instance of:
554        DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555      from rtl.def.  */
556 };
557 
558 class GTY(()) rtx_call_insn : public rtx_insn
559 {
560   /* No extra fields, but adds the invariant:
561        CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562      i.e. an instruction that can possibly call a subroutine
563      but which will not change which instruction comes next
564      in the current function.
565 
566      This is an instance of:
567        DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568      from rtl.def.  */
569 };
570 
571 class GTY(()) rtx_jump_table_data : public rtx_insn
572 {
573   /* No extra fields, but adds the invariant:
574        JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575      i.e. a data for a jump table, considered an instruction for
576      historical reasons.
577 
578      This is an instance of:
579        DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580      from rtl.def.  */
581 
582 public:
583 
584   /* This can be either:
585 
586        (a) a table of absolute jumps, in which case PATTERN (this) is an
587            ADDR_VEC with arg 0 a vector of labels, or
588 
589        (b) a table of relative jumps (e.g. for -fPIC), in which case
590            PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591 	   arg 1 the vector of labels.
592 
593      This method gets the underlying vec.  */
594 
595   inline rtvec get_labels () const;
596 };
597 
598 class GTY(()) rtx_barrier : public rtx_insn
599 {
600   /* No extra fields, but adds the invariant:
601        BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602      i.e. a marker that indicates that control will not flow through.
603 
604      This is an instance of:
605        DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606      from rtl.def.  */
607 };
608 
609 class GTY(()) rtx_code_label : public rtx_insn
610 {
611   /* No extra fields, but adds the invariant:
612        LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613      i.e. a label in the assembler.
614 
615      This is an instance of:
616        DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617      from rtl.def.  */
618 };
619 
620 class GTY(()) rtx_note : public rtx_insn
621 {
622   /* No extra fields, but adds the invariant:
623        NOTE_P(X) aka (GET_CODE (X) == NOTE)
624      i.e. a note about the corresponding source code.
625 
626      This is an instance of:
627        DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628      from rtl.def.  */
629 };
630 
631 /* The size in bytes of an rtx header (code, mode and flags).  */
632 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633 
634 /* The size in bytes of an rtx with code CODE.  */
635 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636 
637 #define NULL_RTX (rtx) 0
638 
639 /* The "next" and "previous" RTX, relative to this one.  */
640 
641 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL			\
642 		     : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643 
644 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645  */
646 #define RTX_PREV(X) ((INSN_P (X)       			\
647                       || NOTE_P (X)       		\
648                       || JUMP_TABLE_DATA_P (X)		\
649                       || BARRIER_P (X)        		\
650                       || LABEL_P (X))    		\
651 		     && PREV_INSN (as_a <rtx_insn *> (X)) != NULL	\
652                      && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653                      ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654 
655 /* Define macros to access the `code' field of the rtx.  */
656 
657 #define GET_CODE(RTX)	    ((enum rtx_code) (RTX)->code)
658 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659 
660 #define GET_MODE(RTX)	    ((machine_mode) (RTX)->mode)
661 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662 
663 /* RTL vector.  These appear inside RTX's when there is a need
664    for a variable number of things.  The principle use is inside
665    PARALLEL expressions.  */
666 
667 struct GTY(()) rtvec_def {
668   int num_elem;		/* number of elements */
669   rtx GTY ((length ("%h.num_elem"))) elem[1];
670 };
671 
672 #define NULL_RTVEC (rtvec) 0
673 
674 #define GET_NUM_ELEM(RTVEC)		((RTVEC)->num_elem)
675 #define PUT_NUM_ELEM(RTVEC, NUM)	((RTVEC)->num_elem = (NUM))
676 
677 /* Predicate yielding nonzero iff X is an rtx for a register.  */
678 #define REG_P(X) (GET_CODE (X) == REG)
679 
680 /* Predicate yielding nonzero iff X is an rtx for a memory location.  */
681 #define MEM_P(X) (GET_CODE (X) == MEM)
682 
683 #if TARGET_SUPPORTS_WIDE_INT
684 
685 /* Match CONST_*s that can represent compile-time constant integers.  */
686 #define CASE_CONST_SCALAR_INT \
687    case CONST_INT: \
688    case CONST_WIDE_INT
689 
690 /* Match CONST_*s for which pointer equality corresponds to value
691    equality.  */
692 #define CASE_CONST_UNIQUE \
693    case CONST_INT: \
694    case CONST_WIDE_INT: \
695    case CONST_DOUBLE: \
696    case CONST_FIXED
697 
698 /* Match all CONST_* rtxes.  */
699 #define CASE_CONST_ANY \
700    case CONST_INT: \
701    case CONST_WIDE_INT: \
702    case CONST_DOUBLE: \
703    case CONST_FIXED: \
704    case CONST_VECTOR
705 
706 #else
707 
708 /* Match CONST_*s that can represent compile-time constant integers.  */
709 #define CASE_CONST_SCALAR_INT \
710    case CONST_INT: \
711    case CONST_DOUBLE
712 
713 /* Match CONST_*s for which pointer equality corresponds to value
714    equality.  */
715 #define CASE_CONST_UNIQUE \
716    case CONST_INT: \
717    case CONST_DOUBLE: \
718    case CONST_FIXED
719 
720 /* Match all CONST_* rtxes.  */
721 #define CASE_CONST_ANY \
722    case CONST_INT: \
723    case CONST_DOUBLE: \
724    case CONST_FIXED: \
725    case CONST_VECTOR
726 #endif
727 
728 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
729 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730 
731 /* Predicate yielding nonzero iff X is an rtx for a constant integer.  */
732 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733 
734 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point.  */
735 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736 
737 /* Predicate yielding true iff X is an rtx for a double-int
738    or floating point constant.  */
739 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740 
741 /* Predicate yielding true iff X is an rtx for a double-int.  */
742 #define CONST_DOUBLE_AS_INT_P(X) \
743   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744 
745 /* Predicate yielding true iff X is an rtx for a integer const.  */
746 #if TARGET_SUPPORTS_WIDE_INT
747 #define CONST_SCALAR_INT_P(X) \
748   (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749 #else
750 #define CONST_SCALAR_INT_P(X) \
751   (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752 #endif
753 
754 /* Predicate yielding true iff X is an rtx for a double-int.  */
755 #define CONST_DOUBLE_AS_FLOAT_P(X) \
756   (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757 
758 /* Predicate yielding nonzero iff X is a label insn.  */
759 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760 
761 /* Predicate yielding nonzero iff X is a jump insn.  */
762 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763 
764 /* Predicate yielding nonzero iff X is a call insn.  */
765 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766 
767 /* Predicate yielding nonzero iff X is an insn that cannot jump.  */
768 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769 
770 /* Predicate yielding nonzero iff X is a debug note/insn.  */
771 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772 
773 /* Predicate yielding nonzero iff X is an insn that is not a debug insn.  */
774 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775 
776 /* Nonzero if DEBUG_INSN_P may possibly hold.  */
777 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778 
779 /* Predicate yielding nonzero iff X is a real insn.  */
780 #define INSN_P(X) \
781   (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782 
783 /* Predicate yielding nonzero iff X is a note insn.  */
784 #define NOTE_P(X) (GET_CODE (X) == NOTE)
785 
786 /* Predicate yielding nonzero iff X is a barrier insn.  */
787 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788 
789 /* Predicate yielding nonzero iff X is a data for a jump table.  */
790 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791 
792 /* Predicate yielding nonzero iff RTX is a subreg.  */
793 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
794 
795 template <>
796 template <>
797 inline bool
798 is_a_helper <rtx_insn *>::test (rtx rt)
799 {
800   return (INSN_P (rt)
801 	  || NOTE_P (rt)
802 	  || JUMP_TABLE_DATA_P (rt)
803 	  || BARRIER_P (rt)
804 	  || LABEL_P (rt));
805 }
806 
807 template <>
808 template <>
809 inline bool
810 is_a_helper <const rtx_insn *>::test (const_rtx rt)
811 {
812   return (INSN_P (rt)
813 	  || NOTE_P (rt)
814 	  || JUMP_TABLE_DATA_P (rt)
815 	  || BARRIER_P (rt)
816 	  || LABEL_P (rt));
817 }
818 
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_debug_insn *>::test (rtx rt)
823 {
824   return DEBUG_INSN_P (rt);
825 }
826 
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
831 {
832   return NONJUMP_INSN_P (rt);
833 }
834 
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_jump_insn *>::test (rtx rt)
839 {
840   return JUMP_P (rt);
841 }
842 
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_call_insn *>::test (rtx rt)
847 {
848   return CALL_P (rt);
849 }
850 
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
855 {
856   return CALL_P (insn);
857 }
858 
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
863 {
864   return JUMP_TABLE_DATA_P (rt);
865 }
866 
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
871 {
872   return JUMP_TABLE_DATA_P (insn);
873 }
874 
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_barrier *>::test (rtx rt)
879 {
880   return BARRIER_P (rt);
881 }
882 
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_code_label *>::test (rtx rt)
887 {
888   return LABEL_P (rt);
889 }
890 
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
895 {
896   return LABEL_P (insn);
897 }
898 
899 template <>
900 template <>
901 inline bool
902 is_a_helper <rtx_note *>::test (rtx rt)
903 {
904   return NOTE_P (rt);
905 }
906 
907 template <>
908 template <>
909 inline bool
910 is_a_helper <rtx_note *>::test (rtx_insn *insn)
911 {
912   return NOTE_P (insn);
913 }
914 
915 /* Predicate yielding nonzero iff X is a return or simple_return.  */
916 #define ANY_RETURN_P(X) \
917   (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
918 
919 /* 1 if X is a unary operator.  */
920 
921 #define UNARY_P(X)   \
922   (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
923 
924 /* 1 if X is a binary operator.  */
925 
926 #define BINARY_P(X)   \
927   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
928 
929 /* 1 if X is an arithmetic operator.  */
930 
931 #define ARITHMETIC_P(X)   \
932   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK)			\
933     == RTX_ARITHMETIC_RESULT)
934 
935 /* 1 if X is an arithmetic operator.  */
936 
937 #define COMMUTATIVE_ARITH_P(X)   \
938   (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
939 
940 /* 1 if X is a commutative arithmetic operator or a comparison operator.
941    These two are sometimes selected together because it is possible to
942    swap the two operands.  */
943 
944 #define SWAPPABLE_OPERANDS_P(X)   \
945   ((1 << GET_RTX_CLASS (GET_CODE (X)))					\
946     & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE)			\
947        | (1 << RTX_COMPARE)))
948 
949 /* 1 if X is a non-commutative operator.  */
950 
951 #define NON_COMMUTATIVE_P(X)   \
952   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
953     == RTX_NON_COMMUTATIVE_RESULT)
954 
955 /* 1 if X is a commutative operator on integers.  */
956 
957 #define COMMUTATIVE_P(X)   \
958   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK)		\
959     == RTX_COMMUTATIVE_RESULT)
960 
961 /* 1 if X is a relational operator.  */
962 
963 #define COMPARISON_P(X)   \
964   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
965 
966 /* 1 if X is a constant value that is an integer.  */
967 
968 #define CONSTANT_P(X)   \
969   (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
970 
971 /* 1 if X can be used to represent an object.  */
972 #define OBJECT_P(X)							\
973   ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
974 
975 /* General accessor macros for accessing the fields of an rtx.  */
976 
977 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
978 /* The bit with a star outside the statement expr and an & inside is
979    so that N can be evaluated only once.  */
980 #define RTL_CHECK1(RTX, N, C1) __extension__				\
981 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
982      const enum rtx_code _code = GET_CODE (_rtx);			\
983      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
984        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
985 				__FUNCTION__);				\
986      if (GET_RTX_FORMAT (_code)[_n] != C1)				\
987        rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__,	\
988 			       __FUNCTION__);				\
989      &_rtx->u.fld[_n]; }))
990 
991 #define RTL_CHECK2(RTX, N, C1, C2) __extension__			\
992 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
993      const enum rtx_code _code = GET_CODE (_rtx);			\
994      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
995        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
996 				__FUNCTION__);				\
997      if (GET_RTX_FORMAT (_code)[_n] != C1				\
998 	 && GET_RTX_FORMAT (_code)[_n] != C2)				\
999        rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__,	\
1000 			       __FUNCTION__);				\
1001      &_rtx->u.fld[_n]; }))
1002 
1003 #define RTL_CHECKC1(RTX, N, C) __extension__				\
1004 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1005      if (GET_CODE (_rtx) != (C))					\
1006        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1007 			       __FUNCTION__);				\
1008      &_rtx->u.fld[_n]; }))
1009 
1010 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__			\
1011 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1012      const enum rtx_code _code = GET_CODE (_rtx);			\
1013      if (_code != (C1) && _code != (C2))				\
1014        rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__,	\
1015 			       __FUNCTION__); \
1016      &_rtx->u.fld[_n]; }))
1017 
1018 #define RTVEC_ELT(RTVEC, I) __extension__				\
1019 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I);	\
1020      if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec))				\
1021        rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__,	\
1022 				  __FUNCTION__);			\
1023      &_rtvec->elem[_i]; }))
1024 
1025 #define XWINT(RTX, N) __extension__					\
1026 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N);		\
1027      const enum rtx_code _code = GET_CODE (_rtx);			\
1028      if (_n < 0 || _n >= GET_RTX_LENGTH (_code))			\
1029        rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__,		\
1030 				__FUNCTION__);				\
1031      if (GET_RTX_FORMAT (_code)[_n] != 'w')				\
1032        rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__,	\
1033 			       __FUNCTION__);				\
1034      &_rtx->u.hwint[_n]; }))
1035 
1036 #define CWI_ELT(RTX, I) __extension__					\
1037 (*({ __typeof (RTX) const _cwi = (RTX);					\
1038      int _max = CWI_GET_NUM_ELEM (_cwi);				\
1039      const int _i = (I);						\
1040      if (_i < 0 || _i >= _max)						\
1041        cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__,		\
1042 				__FUNCTION__);				\
1043      &_cwi->u.hwiv.elem[_i]; }))
1044 
1045 #define XCWINT(RTX, N, C) __extension__					\
1046 (*({ __typeof (RTX) const _rtx = (RTX);					\
1047      if (GET_CODE (_rtx) != (C))					\
1048        rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__,		\
1049 			       __FUNCTION__);				\
1050      &_rtx->u.hwint[N]; }))
1051 
1052 #define XCMWINT(RTX, N, C, M) __extension__				\
1053 (*({ __typeof (RTX) const _rtx = (RTX);					\
1054      if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M))		\
1055        rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__,	\
1056 				   __LINE__, __FUNCTION__);		\
1057      &_rtx->u.hwint[N]; }))
1058 
1059 #define XCNMPRV(RTX, C, M) __extension__				\
1060 ({ __typeof (RTX) const _rtx = (RTX);					\
1061    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1062      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1063 				 __LINE__, __FUNCTION__);		\
1064    &_rtx->u.rv; })
1065 
1066 #define XCNMPFV(RTX, C, M) __extension__				\
1067 ({ __typeof (RTX) const _rtx = (RTX);					\
1068    if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M))		\
1069      rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__,	\
1070 				 __LINE__, __FUNCTION__);		\
1071    &_rtx->u.fv; })
1072 
1073 #define BLOCK_SYMBOL_CHECK(RTX) __extension__				\
1074 ({ __typeof (RTX) const _symbol = (RTX);				\
1075    const unsigned int flags = SYMBOL_REF_FLAGS (_symbol);		\
1076    if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0)			\
1077      rtl_check_failed_block_symbol (__FILE__, __LINE__,			\
1078 				    __FUNCTION__);			\
1079    &_symbol->u.block_sym; })
1080 
1081 #define HWIVEC_CHECK(RTX,C) __extension__				\
1082 ({ __typeof (RTX) const _symbol = (RTX);				\
1083    RTL_CHECKC1 (_symbol, 0, C);						\
1084    &_symbol->u.hwiv; })
1085 
1086 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1087 				     const char *)
1088     ATTRIBUTE_NORETURN;
1089 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1090 				    const char *)
1091     ATTRIBUTE_NORETURN;
1092 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1093 				    int, const char *)
1094     ATTRIBUTE_NORETURN;
1095 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1096 				    int, const char *)
1097     ATTRIBUTE_NORETURN;
1098 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1099 				    const char *, int, const char *)
1100     ATTRIBUTE_NORETURN;
1101 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1102 					bool, const char *, int, const char *)
1103     ATTRIBUTE_NORETURN;
1104 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1105     ATTRIBUTE_NORETURN;
1106 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1107 				     const char *)
1108     ATTRIBUTE_NORETURN;
1109 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1110 				       const char *)
1111     ATTRIBUTE_NORETURN;
1112 
1113 #else   /* not ENABLE_RTL_CHECKING */
1114 
1115 #define RTL_CHECK1(RTX, N, C1)      ((RTX)->u.fld[N])
1116 #define RTL_CHECK2(RTX, N, C1, C2)  ((RTX)->u.fld[N])
1117 #define RTL_CHECKC1(RTX, N, C)	    ((RTX)->u.fld[N])
1118 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1119 #define RTVEC_ELT(RTVEC, I)	    ((RTVEC)->elem[I])
1120 #define XWINT(RTX, N)		    ((RTX)->u.hwint[N])
1121 #define CWI_ELT(RTX, I)		    ((RTX)->u.hwiv.elem[I])
1122 #define XCWINT(RTX, N, C)	    ((RTX)->u.hwint[N])
1123 #define XCMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1124 #define XCNMWINT(RTX, N, C, M)	    ((RTX)->u.hwint[N])
1125 #define XCNMPRV(RTX, C, M)	    (&(RTX)->u.rv)
1126 #define XCNMPFV(RTX, C, M)	    (&(RTX)->u.fv)
1127 #define BLOCK_SYMBOL_CHECK(RTX)	    (&(RTX)->u.block_sym)
1128 #define HWIVEC_CHECK(RTX,C)	    (&(RTX)->u.hwiv)
1129 
1130 #endif
1131 
1132 /* General accessor macros for accessing the flags of an rtx.  */
1133 
1134 /* Access an individual rtx flag, with no checking of any kind.  */
1135 #define RTX_FLAG(RTX, FLAG)	((RTX)->FLAG)
1136 
1137 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1138 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__			\
1139 ({ __typeof (RTX) const _rtx = (RTX);					\
1140    if (GET_CODE (_rtx) != C1)						\
1141      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1142 			     __FUNCTION__);				\
1143    _rtx; })
1144 
1145 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__		\
1146 ({ __typeof (RTX) const _rtx = (RTX);					\
1147    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2)			\
1148      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1149 			      __FUNCTION__);				\
1150    _rtx; })
1151 
1152 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__		\
1153 ({ __typeof (RTX) const _rtx = (RTX);					\
1154    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1155        && GET_CODE (_rtx) != C3)					\
1156      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1157 			     __FUNCTION__);				\
1158    _rtx; })
1159 
1160 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__	\
1161 ({ __typeof (RTX) const _rtx = (RTX);					\
1162    if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2			\
1163        && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4)		\
1164      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1165 			      __FUNCTION__);				\
1166    _rtx; })
1167 
1168 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__	\
1169 ({ __typeof (RTX) const _rtx = (RTX);					\
1170    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1171        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1172        && GET_CODE (_rtx) != C5)					\
1173      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1174 			     __FUNCTION__);				\
1175    _rtx; })
1176 
1177 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		\
1178   __extension__								\
1179 ({ __typeof (RTX) const _rtx = (RTX);					\
1180    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1181        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1182        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6)		\
1183      rtl_check_failed_flag  (NAME,_rtx, __FILE__, __LINE__,		\
1184 			     __FUNCTION__);				\
1185    _rtx; })
1186 
1187 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		\
1188   __extension__								\
1189 ({ __typeof (RTX) const _rtx = (RTX);					\
1190    if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2			\
1191        && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4		\
1192        && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6		\
1193        && GET_CODE (_rtx) != C7)					\
1194      rtl_check_failed_flag  (NAME, _rtx, __FILE__, __LINE__,		\
1195 			     __FUNCTION__);				\
1196    _rtx; })
1197 
1198 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				\
1199   __extension__								\
1200 ({ __typeof (RTX) const _rtx = (RTX);					\
1201    if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx)))				\
1202      rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__,		\
1203 			    __FUNCTION__);				\
1204    _rtx; })
1205 
1206 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1207 				   int, const char *)
1208     ATTRIBUTE_NORETURN
1209     ;
1210 
1211 #else	/* not ENABLE_RTL_FLAG_CHECKING */
1212 
1213 #define RTL_FLAG_CHECK1(NAME, RTX, C1)					(RTX)
1214 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2)				(RTX)
1215 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3)				(RTX)
1216 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4)			(RTX)
1217 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5)			(RTX)
1218 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6)		(RTX)
1219 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7)		(RTX)
1220 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) 				(RTX)
1221 #endif
1222 
1223 #define XINT(RTX, N)	(RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1224 #define XUINT(RTX, N)   (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1225 #define XSTR(RTX, N)	(RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1226 #define XEXP(RTX, N)	(RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1227 #define XVEC(RTX, N)	(RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1228 #define XMODE(RTX, N)	(RTL_CHECK1 (RTX, N, 'M').rt_type)
1229 #define XTREE(RTX, N)   (RTL_CHECK1 (RTX, N, 't').rt_tree)
1230 #define XBBDEF(RTX, N)	(RTL_CHECK1 (RTX, N, 'B').rt_bb)
1231 #define XTMPL(RTX, N)	(RTL_CHECK1 (RTX, N, 'T').rt_str)
1232 #define XCFI(RTX, N)	(RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1233 
1234 #define XVECEXP(RTX, N, M)	RTVEC_ELT (XVEC (RTX, N), M)
1235 #define XVECLEN(RTX, N)		GET_NUM_ELEM (XVEC (RTX, N))
1236 
1237 /* These are like XINT, etc. except that they expect a '0' field instead
1238    of the normal type code.  */
1239 
1240 #define X0INT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_int)
1241 #define X0UINT(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_uint)
1242 #define X0STR(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_str)
1243 #define X0EXP(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1244 #define X0VEC(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1245 #define X0MODE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_type)
1246 #define X0TREE(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_tree)
1247 #define X0BBDEF(RTX, N)	   (RTL_CHECK1 (RTX, N, '0').rt_bb)
1248 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1249 #define X0CSELIB(RTX, N)   (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1250 #define X0MEMATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1251 #define X0REGATTR(RTX, N)  (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1252 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1253 
1254 /* Access a '0' field with any type.  */
1255 #define X0ANY(RTX, N)	   RTL_CHECK1 (RTX, N, '0')
1256 
1257 #define XCINT(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_int)
1258 #define XCUINT(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_uint)
1259 #define XCSTR(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_str)
1260 #define XCEXP(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1261 #define XCVEC(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1262 #define XCMODE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_type)
1263 #define XCTREE(RTX, N, C)     (RTL_CHECKC1 (RTX, N, C).rt_tree)
1264 #define XCBBDEF(RTX, N, C)    (RTL_CHECKC1 (RTX, N, C).rt_bb)
1265 #define XCCFI(RTX, N, C)      (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1266 #define XCCSELIB(RTX, N, C)   (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1267 
1268 #define XCVECEXP(RTX, N, M, C)	RTVEC_ELT (XCVEC (RTX, N, C), M)
1269 #define XCVECLEN(RTX, N, C)	GET_NUM_ELEM (XCVEC (RTX, N, C))
1270 
1271 #define XC2EXP(RTX, N, C1, C2)      (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1272 
1273 
1274 /* Methods of rtx_expr_list.  */
1275 
1276 inline rtx_expr_list *rtx_expr_list::next () const
1277 {
1278   rtx tmp = XEXP (this, 1);
1279   return safe_as_a <rtx_expr_list *> (tmp);
1280 }
1281 
1282 inline rtx rtx_expr_list::element () const
1283 {
1284   return XEXP (this, 0);
1285 }
1286 
1287 /* Methods of rtx_insn_list.  */
1288 
1289 inline rtx_insn_list *rtx_insn_list::next () const
1290 {
1291   rtx tmp = XEXP (this, 1);
1292   return safe_as_a <rtx_insn_list *> (tmp);
1293 }
1294 
1295 inline rtx_insn *rtx_insn_list::insn () const
1296 {
1297   rtx tmp = XEXP (this, 0);
1298   return safe_as_a <rtx_insn *> (tmp);
1299 }
1300 
1301 /* Methods of rtx_sequence.  */
1302 
1303 inline int rtx_sequence::len () const
1304 {
1305   return XVECLEN (this, 0);
1306 }
1307 
1308 inline rtx rtx_sequence::element (int index) const
1309 {
1310   return XVECEXP (this, 0, index);
1311 }
1312 
1313 inline rtx_insn *rtx_sequence::insn (int index) const
1314 {
1315   return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1316 }
1317 
1318 /* ACCESS MACROS for particular fields of insns.  */
1319 
1320 /* Holds a unique number for each insn.
1321    These are not necessarily sequentially increasing.  */
1322 inline int INSN_UID (const_rtx insn)
1323 {
1324   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1325 				    (insn))->u2.insn_uid;
1326 }
1327 inline int& INSN_UID (rtx insn)
1328 {
1329   return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1330 				    (insn))->u2.insn_uid;
1331 }
1332 
1333 /* Chain insns together in sequence.  */
1334 
1335 /* For now these are split in two: an rvalue form:
1336      PREV_INSN/NEXT_INSN
1337    and an lvalue form:
1338      SET_NEXT_INSN/SET_PREV_INSN.  */
1339 
1340 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1341 {
1342   rtx prev = XEXP (insn, 0);
1343   return safe_as_a <rtx_insn *> (prev);
1344 }
1345 
1346 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1347 {
1348   return XEXP (insn, 0);
1349 }
1350 
1351 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1352 {
1353   rtx next = XEXP (insn, 1);
1354   return safe_as_a <rtx_insn *> (next);
1355 }
1356 
1357 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1358 {
1359   return XEXP (insn, 1);
1360 }
1361 
1362 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1363 {
1364   return XBBDEF (insn, 2);
1365 }
1366 
1367 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1368 {
1369   return XBBDEF (insn, 2);
1370 }
1371 
1372 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1373 {
1374   BLOCK_FOR_INSN (insn) = bb;
1375 }
1376 
1377 /* The body of an insn.  */
1378 inline rtx PATTERN (const_rtx insn)
1379 {
1380   return XEXP (insn, 3);
1381 }
1382 
1383 inline rtx& PATTERN (rtx insn)
1384 {
1385   return XEXP (insn, 3);
1386 }
1387 
1388 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1389 {
1390   return XUINT (insn, 4);
1391 }
1392 
1393 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1394 {
1395   return XUINT (insn, 4);
1396 }
1397 
1398 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1399 {
1400   return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1401 }
1402 
1403 /* LOCATION of an RTX if relevant.  */
1404 #define RTL_LOCATION(X) (INSN_P (X) ? \
1405 			 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1406 			 : UNKNOWN_LOCATION)
1407 
1408 /* Code number of instruction, from when it was recognized.
1409    -1 means this instruction has not been recognized yet.  */
1410 #define INSN_CODE(INSN) XINT (INSN, 5)
1411 
1412 inline rtvec rtx_jump_table_data::get_labels () const
1413 {
1414   rtx pat = PATTERN (this);
1415   if (GET_CODE (pat) == ADDR_VEC)
1416     return XVEC (pat, 0);
1417   else
1418     return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1419 }
1420 
1421 #define RTX_FRAME_RELATED_P(RTX)					\
1422   (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN,	\
1423 		    CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1424 
1425 /* 1 if JUMP RTX is a crossing jump.  */
1426 #define CROSSING_JUMP_P(RTX) \
1427   (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1428 
1429 /* 1 if RTX is a call to a const function.  Built from ECF_CONST and
1430    TREE_READONLY.  */
1431 #define RTL_CONST_CALL_P(RTX)					\
1432   (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1433 
1434 /* 1 if RTX is a call to a pure function.  Built from ECF_PURE and
1435    DECL_PURE_P.  */
1436 #define RTL_PURE_CALL_P(RTX)					\
1437   (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1438 
1439 /* 1 if RTX is a call to a const or pure function.  */
1440 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1441   (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1442 
1443 /* 1 if RTX is a call to a looping const or pure function.  Built from
1444    ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.  */
1445 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX)				\
1446   (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1447 
1448 /* 1 if RTX is a call_insn for a sibling call.  */
1449 #define SIBLING_CALL_P(RTX)						\
1450   (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1451 
1452 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch.  */
1453 #define INSN_ANNULLED_BRANCH_P(RTX)					\
1454   (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1455 
1456 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1457    If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1458    executed if the branch is taken.  For annulled branches with this bit
1459    clear, the insn should be executed only if the branch is not taken.  */
1460 #define INSN_FROM_TARGET_P(RTX)						\
1461   (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1462 		    CALL_INSN)->in_struct)
1463 
1464 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1465    See the comments for ADDR_DIFF_VEC in rtl.def.  */
1466 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1467 
1468 /* In a VALUE, the value cselib has assigned to RTX.
1469    This is a "struct cselib_val", see cselib.h.  */
1470 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1471 
1472 /* Holds a list of notes on what this insn does to various REGs.
1473    It is a chain of EXPR_LIST rtx's, where the second operand is the
1474    chain pointer and the first operand is the REG being described.
1475    The mode field of the EXPR_LIST contains not a real machine mode
1476    but a value from enum reg_note.  */
1477 #define REG_NOTES(INSN)	XEXP(INSN, 6)
1478 
1479 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1480    question.  */
1481 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1482 
1483 enum reg_note
1484 {
1485 #define DEF_REG_NOTE(NAME) NAME,
1486 #include "reg-notes.def"
1487 #undef DEF_REG_NOTE
1488   REG_NOTE_MAX
1489 };
1490 
1491 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST.  */
1492 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1493 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1494   PUT_MODE (LINK, (machine_mode) (KIND))
1495 
1496 /* Names for REG_NOTE's in EXPR_LIST insn's.  */
1497 
1498 extern const char * const reg_note_name[];
1499 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1500 
1501 /* This field is only present on CALL_INSNs.  It holds a chain of EXPR_LIST of
1502    USE and CLOBBER expressions.
1503      USE expressions list the registers filled with arguments that
1504    are passed to the function.
1505      CLOBBER expressions document the registers explicitly clobbered
1506    by this CALL_INSN.
1507      Pseudo registers can not be mentioned in this list.  */
1508 #define CALL_INSN_FUNCTION_USAGE(INSN)	XEXP(INSN, 7)
1509 
1510 /* The label-number of a code-label.  The assembler label
1511    is made from `L' and the label-number printed in decimal.
1512    Label numbers are unique in a compilation.  */
1513 #define CODE_LABEL_NUMBER(INSN)	XINT (INSN, 5)
1514 
1515 /* In a NOTE that is a line number, this is a string for the file name that the
1516    line is in.  We use the same field to record block numbers temporarily in
1517    NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes.  (We avoid lots of casts
1518    between ints and pointers if we use a different macro for the block number.)
1519    */
1520 
1521 /* Opaque data.  */
1522 #define NOTE_DATA(INSN)	        RTL_CHECKC1 (INSN, 3, NOTE)
1523 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1524 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1525 #define NOTE_BLOCK(INSN)	XCTREE (INSN, 3, NOTE)
1526 #define NOTE_EH_HANDLER(INSN)	XCINT (INSN, 3, NOTE)
1527 #define NOTE_BASIC_BLOCK(INSN)	XCBBDEF (INSN, 3, NOTE)
1528 #define NOTE_VAR_LOCATION(INSN)	XCEXP (INSN, 3, NOTE)
1529 #define NOTE_CFI(INSN)		XCCFI (INSN, 3, NOTE)
1530 #define NOTE_LABEL_NUMBER(INSN)	XCINT (INSN, 3, NOTE)
1531 
1532 /* In a NOTE that is a line number, this is the line number.
1533    Other kinds of NOTEs are identified by negative numbers here.  */
1534 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1535 
1536 /* Nonzero if INSN is a note marking the beginning of a basic block.  */
1537 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1538   (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1539 
1540 /* Variable declaration and the location of a variable.  */
1541 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1542 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1543 
1544 /* Initialization status of the variable in the location.  Status
1545    can be unknown, uninitialized or initialized.  See enumeration
1546    type below.  */
1547 #define PAT_VAR_LOCATION_STATUS(PAT) \
1548   (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1549    ->u2.var_location_status)
1550 
1551 /* Accessors for a NOTE_INSN_VAR_LOCATION.  */
1552 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1553   PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1554 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1555   PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1556 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1557   PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1558 
1559 /* The VAR_LOCATION rtx in a DEBUG_INSN.  */
1560 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1561 
1562 /* Accessors for a tree-expanded var location debug insn.  */
1563 #define INSN_VAR_LOCATION_DECL(INSN) \
1564   PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1565 #define INSN_VAR_LOCATION_LOC(INSN) \
1566   PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1567 #define INSN_VAR_LOCATION_STATUS(INSN) \
1568   PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1569 
1570 /* Expand to the RTL that denotes an unknown variable location in a
1571    DEBUG_INSN.  */
1572 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1573 
1574 /* Determine whether X is such an unknown location.  */
1575 #define VAR_LOC_UNKNOWN_P(X) \
1576   (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1577 
1578 /* 1 if RTX is emitted after a call, but it should take effect before
1579    the call returns.  */
1580 #define NOTE_DURING_CALL_P(RTX)				\
1581   (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1582 
1583 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX.  */
1584 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1585 
1586 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of.  */
1587 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1588 
1589 /* PARM_DECL DEBUG_PARAMETER_REF references.  */
1590 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1591 
1592 /* Codes that appear in the NOTE_KIND field for kinds of notes
1593    that are not line numbers.  These codes are all negative.
1594 
1595    Notice that we do not try to use zero here for any of
1596    the special note codes because sometimes the source line
1597    actually can be zero!  This happens (for example) when we
1598    are generating code for the per-translation-unit constructor
1599    and destructor routines for some C++ translation unit.  */
1600 
1601 enum insn_note
1602 {
1603 #define DEF_INSN_NOTE(NAME) NAME,
1604 #include "insn-notes.def"
1605 #undef DEF_INSN_NOTE
1606 
1607   NOTE_INSN_MAX
1608 };
1609 
1610 /* Names for NOTE insn's other than line numbers.  */
1611 
1612 extern const char * const note_insn_name[NOTE_INSN_MAX];
1613 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1614   (note_insn_name[(NOTE_CODE)])
1615 
1616 /* The name of a label, in case it corresponds to an explicit label
1617    in the input source code.  */
1618 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1619 
1620 /* In jump.c, each label contains a count of the number
1621    of LABEL_REFs that point at it, so unused labels can be deleted.  */
1622 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1623 
1624 /* Labels carry a two-bit field composed of the ->jump and ->call
1625    bits.  This field indicates whether the label is an alternate
1626    entry point, and if so, what kind.  */
1627 enum label_kind
1628 {
1629   LABEL_NORMAL = 0,	/* ordinary label */
1630   LABEL_STATIC_ENTRY,	/* alternate entry point, not exported */
1631   LABEL_GLOBAL_ENTRY,	/* alternate entry point, exported */
1632   LABEL_WEAK_ENTRY	/* alternate entry point, exported as weak symbol */
1633 };
1634 
1635 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1636 
1637 /* Retrieve the kind of LABEL.  */
1638 #define LABEL_KIND(LABEL) __extension__					\
1639 ({ __typeof (LABEL) const _label = (LABEL);				\
1640    if (! LABEL_P (_label))						\
1641      rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__,	\
1642 			    __FUNCTION__);				\
1643    (enum label_kind) ((_label->jump << 1) | _label->call); })
1644 
1645 /* Set the kind of LABEL.  */
1646 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1647    __typeof (LABEL) const _label = (LABEL);				\
1648    const unsigned int _kind = (KIND);					\
1649    if (! LABEL_P (_label))						\
1650      rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1651 			    __FUNCTION__);				\
1652    _label->jump = ((_kind >> 1) & 1);					\
1653    _label->call = (_kind & 1);						\
1654 } while (0)
1655 
1656 #else
1657 
1658 /* Retrieve the kind of LABEL.  */
1659 #define LABEL_KIND(LABEL) \
1660    ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1661 
1662 /* Set the kind of LABEL.  */
1663 #define SET_LABEL_KIND(LABEL, KIND) do {				\
1664    rtx const _label = (LABEL);						\
1665    const unsigned int _kind = (KIND);					\
1666    _label->jump = ((_kind >> 1) & 1);					\
1667    _label->call = (_kind & 1);						\
1668 } while (0)
1669 
1670 #endif /* rtl flag checking */
1671 
1672 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1673 
1674 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1675    so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1676    be decremented and possibly the label can be deleted.  */
1677 #define JUMP_LABEL(INSN)   XCEXP (INSN, 7, JUMP_INSN)
1678 
1679 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1680 {
1681   return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1682 }
1683 
1684 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1685    goes through all the LABEL_REFs that jump to that label.  The chain
1686    eventually winds up at the CODE_LABEL: it is circular.  */
1687 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1688 
1689 /* Get the label that a LABEL_REF references.  */
1690 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1691 
1692 
1693 /* For a REG rtx, REGNO extracts the register number.  REGNO can only
1694    be used on RHS.  Use SET_REGNO to change the value.  */
1695 #define REGNO(RTX) (rhs_regno(RTX))
1696 #define SET_REGNO(RTX,N) \
1697   (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1698 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1699 
1700 /* ORIGINAL_REGNO holds the number the register originally had; for a
1701    pseudo register turned into a hard reg this will hold the old pseudo
1702    register number.  */
1703 #define ORIGINAL_REGNO(RTX) \
1704   (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1705 
1706 /* Force the REGNO macro to only be used on the lhs.  */
1707 static inline unsigned int
1708 rhs_regno (const_rtx x)
1709 {
1710   return XCUINT (x, 0, REG);
1711 }
1712 
1713 
1714 /* 1 if RTX is a reg or parallel that is the current function's return
1715    value.  */
1716 #define REG_FUNCTION_VALUE_P(RTX)					\
1717   (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1718 
1719 /* 1 if RTX is a reg that corresponds to a variable declared by the user.  */
1720 #define REG_USERVAR_P(RTX)						\
1721   (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1722 
1723 /* 1 if RTX is a reg that holds a pointer value.  */
1724 #define REG_POINTER(RTX)						\
1725   (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1726 
1727 /* 1 if RTX is a mem that holds a pointer value.  */
1728 #define MEM_POINTER(RTX)						\
1729   (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1730 
1731 /* 1 if the given register REG corresponds to a hard register.  */
1732 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1733 
1734 /* 1 if the given register number REG_NO corresponds to a hard register.  */
1735 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1736 
1737 /* For a CONST_INT rtx, INTVAL extracts the integer.  */
1738 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1739 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1740 
1741 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1742    elements actually needed to represent the constant.
1743    CONST_WIDE_INT_ELT gets one of the elements.  0 is the least
1744    significant HOST_WIDE_INT.  */
1745 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1746 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1747 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1748 
1749 /* For a CONST_DOUBLE:
1750 #if TARGET_SUPPORTS_WIDE_INT == 0
1751    For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1752      low-order word and ..._HIGH the high-order.
1753 #endif
1754    For a float, there is a REAL_VALUE_TYPE structure, and
1755      CONST_DOUBLE_REAL_VALUE(r) is a pointer to it.  */
1756 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1757 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1758 #define CONST_DOUBLE_REAL_VALUE(r) \
1759   ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1760 
1761 #define CONST_FIXED_VALUE(r) \
1762   ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1763 #define CONST_FIXED_VALUE_HIGH(r) \
1764   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1765 #define CONST_FIXED_VALUE_LOW(r) \
1766   ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1767 
1768 /* For a CONST_VECTOR, return element #n.  */
1769 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1770 
1771 /* For a CONST_VECTOR, return the number of elements in a vector.  */
1772 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1773 
1774 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1775    SUBREG_BYTE extracts the byte-number.  */
1776 
1777 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1778 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1779 
1780 /* in rtlanal.c */
1781 /* Return the right cost to give to an operation
1782    to make the cost of the corresponding register-to-register instruction
1783    N times that of a fast register-to-register instruction.  */
1784 #define COSTS_N_INSNS(N) ((N) * 4)
1785 
1786 /* Maximum cost of an rtl expression.  This value has the special meaning
1787    not to use an rtx with this cost under any circumstances.  */
1788 #define MAX_COST INT_MAX
1789 
1790 /* A structure to hold all available cost information about an rtl
1791    expression.  */
1792 struct full_rtx_costs
1793 {
1794   int speed;
1795   int size;
1796 };
1797 
1798 /* Initialize a full_rtx_costs structure C to the maximum cost.  */
1799 static inline void
1800 init_costs_to_max (struct full_rtx_costs *c)
1801 {
1802   c->speed = MAX_COST;
1803   c->size = MAX_COST;
1804 }
1805 
1806 /* Initialize a full_rtx_costs structure C to zero cost.  */
1807 static inline void
1808 init_costs_to_zero (struct full_rtx_costs *c)
1809 {
1810   c->speed = 0;
1811   c->size = 0;
1812 }
1813 
1814 /* Compare two full_rtx_costs structures A and B, returning true
1815    if A < B when optimizing for speed.  */
1816 static inline bool
1817 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1818 	    bool speed)
1819 {
1820   if (speed)
1821     return (a->speed < b->speed
1822 	    || (a->speed == b->speed && a->size < b->size));
1823   else
1824     return (a->size < b->size
1825 	    || (a->size == b->size && a->speed < b->speed));
1826 }
1827 
1828 /* Increase both members of the full_rtx_costs structure C by the
1829    cost of N insns.  */
1830 static inline void
1831 costs_add_n_insns (struct full_rtx_costs *c, int n)
1832 {
1833   c->speed += COSTS_N_INSNS (n);
1834   c->size += COSTS_N_INSNS (n);
1835 }
1836 
1837 /* Describes the shape of a subreg:
1838 
1839    inner_mode == the mode of the SUBREG_REG
1840    offset     == the SUBREG_BYTE
1841    outer_mode == the mode of the SUBREG itself.  */
1842 struct subreg_shape {
1843   subreg_shape (machine_mode, unsigned int, machine_mode);
1844   bool operator == (const subreg_shape &) const;
1845   bool operator != (const subreg_shape &) const;
1846   unsigned int unique_id () const;
1847 
1848   machine_mode inner_mode;
1849   unsigned int offset;
1850   machine_mode outer_mode;
1851 };
1852 
1853 inline
1854 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1855 			    unsigned int offset_in,
1856 			    machine_mode outer_mode_in)
1857   : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1858 {}
1859 
1860 inline bool
1861 subreg_shape::operator == (const subreg_shape &other) const
1862 {
1863   return (inner_mode == other.inner_mode
1864 	  && offset == other.offset
1865 	  && outer_mode == other.outer_mode);
1866 }
1867 
1868 inline bool
1869 subreg_shape::operator != (const subreg_shape &other) const
1870 {
1871   return !operator == (other);
1872 }
1873 
1874 /* Return an integer that uniquely identifies this shape.  Structures
1875    like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1876    current mode is anywhere near being 65536 bytes in size, so the
1877    id comfortably fits in an int.  */
1878 
1879 inline unsigned int
1880 subreg_shape::unique_id () const
1881 {
1882   STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1883   return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1884 }
1885 
1886 /* Return the shape of a SUBREG rtx.  */
1887 
1888 static inline subreg_shape
1889 shape_of_subreg (const_rtx x)
1890 {
1891   return subreg_shape (GET_MODE (SUBREG_REG (x)),
1892 		       SUBREG_BYTE (x), GET_MODE (x));
1893 }
1894 
1895 /* Information about an address.  This structure is supposed to be able
1896    to represent all supported target addresses.  Please extend it if it
1897    is not yet general enough.  */
1898 struct address_info {
1899   /* The mode of the value being addressed, or VOIDmode if this is
1900      a load-address operation with no known address mode.  */
1901   machine_mode mode;
1902 
1903   /* The address space.  */
1904   addr_space_t as;
1905 
1906   /* A pointer to the top-level address.  */
1907   rtx *outer;
1908 
1909   /* A pointer to the inner address, after all address mutations
1910      have been stripped from the top-level address.  It can be one
1911      of the following:
1912 
1913      - A {PRE,POST}_{INC,DEC} of *BASE.  SEGMENT, INDEX and DISP are null.
1914 
1915      - A {PRE,POST}_MODIFY of *BASE.  In this case either INDEX or DISP
1916        points to the step value, depending on whether the step is variable
1917        or constant respectively.  SEGMENT is null.
1918 
1919      - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1920        with null fields evaluating to 0.  */
1921   rtx *inner;
1922 
1923   /* Components that make up *INNER.  Each one may be null or nonnull.
1924      When nonnull, their meanings are as follows:
1925 
1926      - *SEGMENT is the "segment" of memory to which the address refers.
1927        This value is entirely target-specific and is only called a "segment"
1928        because that's its most typical use.  It contains exactly one UNSPEC,
1929        pointed to by SEGMENT_TERM.  The contents of *SEGMENT do not need
1930        reloading.
1931 
1932      - *BASE is a variable expression representing a base address.
1933        It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1934 
1935      - *INDEX is a variable expression representing an index value.
1936        It may be a scaled expression, such as a MULT.  It has exactly
1937        one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1938 
1939      - *DISP is a constant, possibly mutated.  DISP_TERM points to the
1940        unmutated RTX_CONST_OBJ.  */
1941   rtx *segment;
1942   rtx *base;
1943   rtx *index;
1944   rtx *disp;
1945 
1946   rtx *segment_term;
1947   rtx *base_term;
1948   rtx *index_term;
1949   rtx *disp_term;
1950 
1951   /* In a {PRE,POST}_MODIFY address, this points to a second copy
1952      of BASE_TERM, otherwise it is null.  */
1953   rtx *base_term2;
1954 
1955   /* ADDRESS if this structure describes an address operand, MEM if
1956      it describes a MEM address.  */
1957   enum rtx_code addr_outer_code;
1958 
1959   /* If BASE is nonnull, this is the code of the rtx that contains it.  */
1960   enum rtx_code base_outer_code;
1961 
1962   /* True if this is an RTX_AUTOINC address.  */
1963   bool autoinc_p;
1964 };
1965 
1966 /* This is used to bundle an rtx and a mode together so that the pair
1967    can be used with the wi:: routines.  If we ever put modes into rtx
1968    integer constants, this should go away and then just pass an rtx in.  */
1969 typedef std::pair <rtx, machine_mode> rtx_mode_t;
1970 
1971 namespace wi
1972 {
1973   template <>
1974   struct int_traits <rtx_mode_t>
1975   {
1976     static const enum precision_type precision_type = VAR_PRECISION;
1977     static const bool host_dependent_precision = false;
1978     /* This ought to be true, except for the special case that BImode
1979        is canonicalized to STORE_FLAG_VALUE, which might be 1.  */
1980     static const bool is_sign_extended = false;
1981     static unsigned int get_precision (const rtx_mode_t &);
1982     static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1983 				      const rtx_mode_t &);
1984   };
1985 }
1986 
1987 inline unsigned int
1988 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1989 {
1990   gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
1991   return GET_MODE_PRECISION (x.second);
1992 }
1993 
1994 inline wi::storage_ref
1995 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1996 					unsigned int precision,
1997 					const rtx_mode_t &x)
1998 {
1999   gcc_checking_assert (precision == get_precision (x));
2000   switch (GET_CODE (x.first))
2001     {
2002     case CONST_INT:
2003       if (precision < HOST_BITS_PER_WIDE_INT)
2004 	/* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2005 	   targets is 1 rather than -1.  */
2006 	gcc_checking_assert (INTVAL (x.first)
2007 			     == sext_hwi (INTVAL (x.first), precision)
2008 			     || (x.second == BImode && INTVAL (x.first) == 1));
2009 
2010       return wi::storage_ref (&INTVAL (x.first), 1, precision);
2011 
2012     case CONST_WIDE_INT:
2013       return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2014 			      CONST_WIDE_INT_NUNITS (x.first), precision);
2015 
2016 #if TARGET_SUPPORTS_WIDE_INT == 0
2017     case CONST_DOUBLE:
2018       return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2019 #endif
2020 
2021     default:
2022       gcc_unreachable ();
2023     }
2024 }
2025 
2026 namespace wi
2027 {
2028   hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2029   wide_int min_value (machine_mode, signop);
2030   wide_int max_value (machine_mode, signop);
2031 }
2032 
2033 inline wi::hwi_with_prec
2034 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2035 {
2036   return shwi (val, GET_MODE_PRECISION (mode));
2037 }
2038 
2039 /* Produce the smallest number that is represented in MODE.  The precision
2040    is taken from MODE and the sign from SGN.  */
2041 inline wide_int
2042 wi::min_value (machine_mode mode, signop sgn)
2043 {
2044   return min_value (GET_MODE_PRECISION (mode), sgn);
2045 }
2046 
2047 /* Produce the largest number that is represented in MODE.  The precision
2048    is taken from MODE and the sign from SGN.  */
2049 inline wide_int
2050 wi::max_value (machine_mode mode, signop sgn)
2051 {
2052   return max_value (GET_MODE_PRECISION (mode), sgn);
2053 }
2054 
2055 extern void init_rtlanal (void);
2056 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2057 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2058 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2059 			       struct full_rtx_costs *);
2060 extern unsigned int subreg_lsb (const_rtx);
2061 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2062 				  unsigned int);
2063 extern unsigned int subreg_regno_offset	(unsigned int, machine_mode,
2064 					 unsigned int, machine_mode);
2065 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2066 					   unsigned int, machine_mode);
2067 extern unsigned int subreg_regno (const_rtx);
2068 extern int simplify_subreg_regno (unsigned int, machine_mode,
2069 				  unsigned int, machine_mode);
2070 extern unsigned int subreg_nregs (const_rtx);
2071 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2072 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2073 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2074 extern bool constant_pool_constant_p (rtx);
2075 extern bool truncated_to_mode (machine_mode, const_rtx);
2076 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2077 extern void split_double (rtx, rtx *, rtx *);
2078 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2079 extern void decompose_address (struct address_info *, rtx *,
2080 			       machine_mode, addr_space_t, enum rtx_code);
2081 extern void decompose_lea_address (struct address_info *, rtx *);
2082 extern void decompose_mem_address (struct address_info *, rtx);
2083 extern void update_address (struct address_info *);
2084 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2085 extern enum rtx_code get_index_code (const struct address_info *);
2086 
2087 #ifndef GENERATOR_FILE
2088 /* Return the cost of SET X.  SPEED_P is true if optimizing for speed
2089    rather than size.  */
2090 
2091 static inline int
2092 set_rtx_cost (rtx x, bool speed_p)
2093 {
2094   return rtx_cost (x, INSN, 4, speed_p);
2095 }
2096 
2097 /* Like set_rtx_cost, but return both the speed and size costs in C.  */
2098 
2099 static inline void
2100 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2101 {
2102   get_full_rtx_cost (x, INSN, 4, c);
2103 }
2104 
2105 /* Return the cost of moving X into a register, relative to the cost
2106    of a register move.  SPEED_P is true if optimizing for speed rather
2107    than size.  */
2108 
2109 static inline int
2110 set_src_cost (rtx x, bool speed_p)
2111 {
2112   return rtx_cost (x, SET, 1, speed_p);
2113 }
2114 
2115 /* Like set_src_cost, but return both the speed and size costs in C.  */
2116 
2117 static inline void
2118 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2119 {
2120   get_full_rtx_cost (x, SET, 1, c);
2121 }
2122 #endif
2123 
2124 /* 1 if RTX is a subreg containing a reg that is already known to be
2125    sign- or zero-extended from the mode of the subreg to the mode of
2126    the reg.  SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2127    extension.
2128 
2129    When used as a LHS, is means that this extension must be done
2130    when assigning to SUBREG_REG.  */
2131 
2132 #define SUBREG_PROMOTED_VAR_P(RTX)					\
2133   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2134 
2135 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P().  In that case
2136    this gives the necessary extensions:
2137    0  - signed (SPR_SIGNED)
2138    1  - normal unsigned (SPR_UNSIGNED)
2139    2  - value is both sign and unsign extended for mode
2140 	(SPR_SIGNED_AND_UNSIGNED).
2141    -1 - pointer unsigned, which most often can be handled like unsigned
2142         extension, except for generating instructions where we need to
2143 	emit special code (ptr_extend insns) on some architectures
2144 	(SPR_POINTER). */
2145 
2146 const int SRP_POINTER = -1;
2147 const int SRP_SIGNED = 0;
2148 const int SRP_UNSIGNED = 1;
2149 const int SRP_SIGNED_AND_UNSIGNED = 2;
2150 
2151 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P().  */
2152 #define SUBREG_PROMOTED_SET(RTX, VAL)		                        \
2153 do {								        \
2154   rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET",		\
2155                                     (RTX), SUBREG);			\
2156   switch (VAL)								\
2157   {									\
2158     case SRP_POINTER:							\
2159       _rtx->volatil = 0;						\
2160       _rtx->unchanging = 0;						\
2161       break;								\
2162     case SRP_SIGNED:							\
2163       _rtx->volatil = 0;						\
2164       _rtx->unchanging = 1;						\
2165       break;								\
2166     case SRP_UNSIGNED:							\
2167       _rtx->volatil = 1;						\
2168       _rtx->unchanging = 0;						\
2169       break;								\
2170     case SRP_SIGNED_AND_UNSIGNED:					\
2171       _rtx->volatil = 1;						\
2172       _rtx->unchanging = 1;						\
2173       break;								\
2174   }									\
2175 } while (0)
2176 
2177 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2178    including SRP_SIGNED_AND_UNSIGNED if promoted for
2179    both signed and unsigned.  */
2180 #define SUBREG_PROMOTED_GET(RTX)	\
2181   (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2182    + (RTX)->unchanging - 1)
2183 
2184 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P().  */
2185 #define SUBREG_PROMOTED_SIGN(RTX)	\
2186   ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2187    : (RTX)->unchanging - 1)
2188 
2189 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2190    for SIGNED type.  */
2191 #define SUBREG_PROMOTED_SIGNED_P(RTX)	\
2192   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2193 
2194 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2195    for UNSIGNED type.  */
2196 #define SUBREG_PROMOTED_UNSIGNED_P(RTX)	\
2197   (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2198 
2199 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN.  */
2200 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN)	\
2201 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER	\
2202  : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX)		\
2203  : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2204 
2205 /* True if the subreg was generated by LRA for reload insns.  Such
2206    subregs are valid only during LRA.  */
2207 #define LRA_SUBREG_P(RTX)	\
2208   (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2209 
2210 /* True if call is instrumented by Pointer Bounds Checker.  */
2211 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2212   (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2213 
2214 /* Access various components of an ASM_OPERANDS rtx.  */
2215 
2216 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2217 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2218 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2219 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2220 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2221 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2222 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2223 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2224   XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2225 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2226   XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2227 #define ASM_OPERANDS_INPUT_MODE(RTX, N)  \
2228   GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2229 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2230 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2231 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2232 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2233 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2234 
2235 /* 1 if RTX is a mem that is statically allocated in read-only memory.  */
2236 #define MEM_READONLY_P(RTX) \
2237   (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2238 
2239 /* 1 if RTX is a mem and we should keep the alias set for this mem
2240    unchanged when we access a component.  Set to 1, or example, when we
2241    are already in a non-addressable component of an aggregate.  */
2242 #define MEM_KEEP_ALIAS_SET_P(RTX)					\
2243   (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2244 
2245 /* 1 if RTX is a mem or asm_operand for a volatile reference.  */
2246 #define MEM_VOLATILE_P(RTX)						\
2247   (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS,		\
2248 		    ASM_INPUT)->volatil)
2249 
2250 /* 1 if RTX is a mem that cannot trap.  */
2251 #define MEM_NOTRAP_P(RTX) \
2252   (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2253 
2254 /* The memory attribute block.  We provide access macros for each value
2255    in the block and provide defaults if none specified.  */
2256 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2257 
2258 /* The register attribute block.  We provide access macros for each value
2259    in the block and provide defaults if none specified.  */
2260 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2261 
2262 #ifndef GENERATOR_FILE
2263 /* For a MEM rtx, the alias set.  If 0, this MEM is not in any alias
2264    set, and may alias anything.  Otherwise, the MEM can only alias
2265    MEMs in a conflicting alias set.  This value is set in a
2266    language-dependent manner in the front-end, and should not be
2267    altered in the back-end.  These set numbers are tested with
2268    alias_sets_conflict_p.  */
2269 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2270 
2271 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2272    refer to part of a DECL.  It may also be a COMPONENT_REF.  */
2273 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2274 
2275 /* For a MEM rtx, true if its MEM_OFFSET is known.  */
2276 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2277 
2278 /* For a MEM rtx, the offset from the start of MEM_EXPR.  */
2279 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2280 
2281 /* For a MEM rtx, the address space.  */
2282 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2283 
2284 /* For a MEM rtx, true if its MEM_SIZE is known.  */
2285 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2286 
2287 /* For a MEM rtx, the size in bytes of the MEM.  */
2288 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2289 
2290 /* For a MEM rtx, the alignment in bits.  We can use the alignment of the
2291    mode as a default when STRICT_ALIGNMENT, but not if not.  */
2292 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2293 #else
2294 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2295 #endif
2296 
2297 /* For a REG rtx, the decl it is known to refer to, if it is known to
2298    refer to part of a DECL.  */
2299 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2300 
2301 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2302    HOST_WIDE_INT.  */
2303 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2304 
2305 /* Copy the attributes that apply to memory locations from RHS to LHS.  */
2306 #define MEM_COPY_ATTRIBUTES(LHS, RHS)				\
2307   (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS),			\
2308    MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS),			\
2309    MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS),			\
2310    MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS),	\
2311    MEM_POINTER (LHS) = MEM_POINTER (RHS),			\
2312    MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2313 
2314 /* 1 if RTX is a label_ref for a nonlocal label.  */
2315 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2316    REG_LABEL_TARGET note.  */
2317 #define LABEL_REF_NONLOCAL_P(RTX)					\
2318   (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2319 
2320 /* 1 if RTX is a code_label that should always be considered to be needed.  */
2321 #define LABEL_PRESERVE_P(RTX)						\
2322   (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2323 
2324 /* During sched, 1 if RTX is an insn that must be scheduled together
2325    with the preceding insn.  */
2326 #define SCHED_GROUP_P(RTX)						\
2327   (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN,		\
2328 		    JUMP_INSN, CALL_INSN)->in_struct)
2329 
2330 /* For a SET rtx, SET_DEST is the place that is set
2331    and SET_SRC is the value it is set to.  */
2332 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2333 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2334 #define SET_IS_RETURN_P(RTX)						\
2335   (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2336 
2337 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression.  */
2338 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2339 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2340 
2341 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2342    conditionally executing the code on, COND_EXEC_CODE is the code
2343    to execute if the condition is true.  */
2344 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2345 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2346 
2347 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2348    constants pool.  */
2349 #define CONSTANT_POOL_ADDRESS_P(RTX)					\
2350   (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2351 
2352 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2353    tree constant pool.  This information is private to varasm.c.  */
2354 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX)				\
2355   (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P",			\
2356 		    (RTX), SYMBOL_REF)->frame_related)
2357 
2358 /* Used if RTX is a symbol_ref, for machine-specific purposes.  */
2359 #define SYMBOL_REF_FLAG(RTX)						\
2360   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2361 
2362 /* 1 if RTX is a symbol_ref that has been the library function in
2363    emit_library_call.  */
2364 #define SYMBOL_REF_USED(RTX)						\
2365   (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2366 
2367 /* 1 if RTX is a symbol_ref for a weak symbol.  */
2368 #define SYMBOL_REF_WEAK(RTX)						\
2369   (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2370 
2371 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2372    SYMBOL_REF_CONSTANT.  */
2373 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2374 
2375 /* Set RTX's SYMBOL_REF_DECL to DECL.  RTX must not be a constant
2376    pool symbol.  */
2377 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2378   (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2379 
2380 /* The tree (decl or constant) associated with the symbol, or null.  */
2381 #define SYMBOL_REF_DECL(RTX) \
2382   (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2383 
2384 /* Set RTX's SYMBOL_REF_CONSTANT to C.  RTX must be a constant pool symbol.  */
2385 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2386   (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2387 
2388 /* The rtx constant pool entry for a symbol, or null.  */
2389 #define SYMBOL_REF_CONSTANT(RTX) \
2390   (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2391 
2392 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2393    information derivable from the tree decl associated with this symbol.
2394    Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2395    decl.  In some cases this is a bug.  But beyond that, it's nice to cache
2396    this information to avoid recomputing it.  Finally, this allows space for
2397    the target to store more than one bit of information, as with
2398    SYMBOL_REF_FLAG.  */
2399 #define SYMBOL_REF_FLAGS(RTX) \
2400   (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2401    ->u2.symbol_ref_flags)
2402 
2403 /* These flags are common enough to be defined for all targets.  They
2404    are computed by the default version of targetm.encode_section_info.  */
2405 
2406 /* Set if this symbol is a function.  */
2407 #define SYMBOL_FLAG_FUNCTION	(1 << 0)
2408 #define SYMBOL_REF_FUNCTION_P(RTX) \
2409   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2410 /* Set if targetm.binds_local_p is true.  */
2411 #define SYMBOL_FLAG_LOCAL	(1 << 1)
2412 #define SYMBOL_REF_LOCAL_P(RTX) \
2413   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2414 /* Set if targetm.in_small_data_p is true.  */
2415 #define SYMBOL_FLAG_SMALL	(1 << 2)
2416 #define SYMBOL_REF_SMALL_P(RTX) \
2417   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2418 /* The three-bit field at [5:3] is true for TLS variables; use
2419    SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model.  */
2420 #define SYMBOL_FLAG_TLS_SHIFT	3
2421 #define SYMBOL_REF_TLS_MODEL(RTX) \
2422   ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2423 /* Set if this symbol is not defined in this translation unit.  */
2424 #define SYMBOL_FLAG_EXTERNAL	(1 << 6)
2425 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2426   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2427 /* Set if this symbol has a block_symbol structure associated with it.  */
2428 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2429 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2430   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2431 /* Set if this symbol is a section anchor.  SYMBOL_REF_ANCHOR_P implies
2432    SYMBOL_REF_HAS_BLOCK_INFO_P.  */
2433 #define SYMBOL_FLAG_ANCHOR	(1 << 8)
2434 #define SYMBOL_REF_ANCHOR_P(RTX) \
2435   ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2436 
2437 /* Subsequent bits are available for the target to use.  */
2438 #define SYMBOL_FLAG_MACH_DEP_SHIFT	9
2439 #define SYMBOL_FLAG_MACH_DEP		(1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2440 
2441 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2442    structure to which the symbol belongs, or NULL if it has not been
2443    assigned a block.  */
2444 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2445 
2446 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2447    the first object in SYMBOL_REF_BLOCK (RTX).  The value is negative if
2448    RTX has not yet been assigned to a block, or it has not been given an
2449    offset within that block.  */
2450 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2451 
2452 /* True if RTX is flagged to be a scheduling barrier.  */
2453 #define PREFETCH_SCHEDULE_BARRIER_P(RTX)					\
2454   (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2455 
2456 /* Indicate whether the machine has any sort of auto increment addressing.
2457    If not, we can avoid checking for REG_INC notes.  */
2458 
2459 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2460      || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2461      || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2462      || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2463 #define AUTO_INC_DEC
2464 #endif
2465 
2466 /* Define a macro to look for REG_INC notes,
2467    but save time on machines where they never exist.  */
2468 
2469 #ifdef AUTO_INC_DEC
2470 #define FIND_REG_INC_NOTE(INSN, REG)			\
2471   ((REG) != NULL_RTX && REG_P ((REG))			\
2472    ? find_regno_note ((INSN), REG_INC, REGNO (REG))	\
2473    : find_reg_note ((INSN), REG_INC, (REG)))
2474 #else
2475 #define FIND_REG_INC_NOTE(INSN, REG) 0
2476 #endif
2477 
2478 #ifndef HAVE_PRE_INCREMENT
2479 #define HAVE_PRE_INCREMENT 0
2480 #endif
2481 
2482 #ifndef HAVE_PRE_DECREMENT
2483 #define HAVE_PRE_DECREMENT 0
2484 #endif
2485 
2486 #ifndef HAVE_POST_INCREMENT
2487 #define HAVE_POST_INCREMENT 0
2488 #endif
2489 
2490 #ifndef HAVE_POST_DECREMENT
2491 #define HAVE_POST_DECREMENT 0
2492 #endif
2493 
2494 #ifndef HAVE_POST_MODIFY_DISP
2495 #define HAVE_POST_MODIFY_DISP 0
2496 #endif
2497 
2498 #ifndef HAVE_POST_MODIFY_REG
2499 #define HAVE_POST_MODIFY_REG 0
2500 #endif
2501 
2502 #ifndef HAVE_PRE_MODIFY_DISP
2503 #define HAVE_PRE_MODIFY_DISP 0
2504 #endif
2505 
2506 #ifndef HAVE_PRE_MODIFY_REG
2507 #define HAVE_PRE_MODIFY_REG 0
2508 #endif
2509 
2510 
2511 /* Some architectures do not have complete pre/post increment/decrement
2512    instruction sets, or only move some modes efficiently.  These macros
2513    allow us to tune autoincrement generation.  */
2514 
2515 #ifndef USE_LOAD_POST_INCREMENT
2516 #define USE_LOAD_POST_INCREMENT(MODE)   HAVE_POST_INCREMENT
2517 #endif
2518 
2519 #ifndef USE_LOAD_POST_DECREMENT
2520 #define USE_LOAD_POST_DECREMENT(MODE)   HAVE_POST_DECREMENT
2521 #endif
2522 
2523 #ifndef USE_LOAD_PRE_INCREMENT
2524 #define USE_LOAD_PRE_INCREMENT(MODE)    HAVE_PRE_INCREMENT
2525 #endif
2526 
2527 #ifndef USE_LOAD_PRE_DECREMENT
2528 #define USE_LOAD_PRE_DECREMENT(MODE)    HAVE_PRE_DECREMENT
2529 #endif
2530 
2531 #ifndef USE_STORE_POST_INCREMENT
2532 #define USE_STORE_POST_INCREMENT(MODE)  HAVE_POST_INCREMENT
2533 #endif
2534 
2535 #ifndef USE_STORE_POST_DECREMENT
2536 #define USE_STORE_POST_DECREMENT(MODE)  HAVE_POST_DECREMENT
2537 #endif
2538 
2539 #ifndef USE_STORE_PRE_INCREMENT
2540 #define USE_STORE_PRE_INCREMENT(MODE)   HAVE_PRE_INCREMENT
2541 #endif
2542 
2543 #ifndef USE_STORE_PRE_DECREMENT
2544 #define USE_STORE_PRE_DECREMENT(MODE)   HAVE_PRE_DECREMENT
2545 #endif
2546 
2547 /* Nonzero when we are generating CONCATs.  */
2548 extern int generating_concat_p;
2549 
2550 /* Nonzero when we are expanding trees to RTL.  */
2551 extern int currently_expanding_to_rtl;
2552 
2553 /* Generally useful functions.  */
2554 
2555 /* In explow.c */
2556 extern HOST_WIDE_INT trunc_int_for_mode	(HOST_WIDE_INT, machine_mode);
2557 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2558 
2559 /* In rtl.c */
2560 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2561 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2562 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2563 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2564 #define const_wide_int_alloc(NWORDS)				\
2565   rtx_alloc_v (CONST_WIDE_INT,					\
2566 	       (sizeof (struct hwivec_def)			\
2567 		+ ((NWORDS)-1) * sizeof (HOST_WIDE_INT)))	\
2568 
2569 extern rtvec rtvec_alloc (int);
2570 extern rtvec shallow_copy_rtvec (rtvec);
2571 extern bool shared_const_p (const_rtx);
2572 extern rtx copy_rtx (rtx);
2573 extern void dump_rtx_statistics (void);
2574 
2575 /* In emit-rtl.c */
2576 extern rtx copy_rtx_if_shared (rtx);
2577 
2578 /* In rtl.c */
2579 extern unsigned int rtx_size (const_rtx);
2580 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2581 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2582 extern int rtx_equal_p (const_rtx, const_rtx);
2583 
2584 /* In emit-rtl.c */
2585 extern rtvec gen_rtvec_v (int, rtx *);
2586 extern rtvec gen_rtvec_v (int, rtx_insn **);
2587 extern rtx gen_reg_rtx (machine_mode);
2588 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2589 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2590 extern rtx gen_reg_rtx_and_attrs (rtx);
2591 extern rtx_code_label *gen_label_rtx (void);
2592 extern rtx gen_lowpart_common (machine_mode, rtx);
2593 
2594 /* In cse.c */
2595 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2596 
2597 /* In emit-rtl.c */
2598 extern rtx gen_highpart (machine_mode, rtx);
2599 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2600 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2601 
2602 /* In emit-rtl.c */
2603 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2604 extern bool paradoxical_subreg_p (const_rtx);
2605 extern int subreg_lowpart_p (const_rtx);
2606 extern unsigned int subreg_lowpart_offset (machine_mode,
2607 					   machine_mode);
2608 extern unsigned int subreg_highpart_offset (machine_mode,
2609 					    machine_mode);
2610 extern int byte_lowpart_offset (machine_mode, machine_mode);
2611 extern rtx make_safe_from (rtx, rtx);
2612 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2613 						addr_space_t, bool, bool);
2614 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2615 					      addr_space_t);
2616 #define convert_memory_address(to_mode,x) \
2617 	convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2618 extern const char *get_insn_name (int);
2619 extern rtx_insn *get_last_insn_anywhere (void);
2620 extern rtx_insn *get_first_nonnote_insn (void);
2621 extern rtx_insn *get_last_nonnote_insn (void);
2622 extern void start_sequence (void);
2623 extern void push_to_sequence (rtx_insn *);
2624 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2625 extern void end_sequence (void);
2626 #if TARGET_SUPPORTS_WIDE_INT == 0
2627 extern double_int rtx_to_double_int (const_rtx);
2628 #endif
2629 extern void cwi_output_hex (FILE *, const_rtx);
2630 #ifndef GENERATOR_FILE
2631 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2632 #endif
2633 #if TARGET_SUPPORTS_WIDE_INT == 0
2634 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2635 			       machine_mode);
2636 #endif
2637 
2638 /* In loop-iv.c  */
2639 
2640 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2641 
2642 /* In varasm.c  */
2643 extern rtx force_const_mem (machine_mode, rtx);
2644 
2645 /* In varasm.c  */
2646 
2647 struct function;
2648 extern rtx get_pool_constant (const_rtx);
2649 extern rtx get_pool_constant_mark (rtx, bool *);
2650 extern machine_mode get_pool_mode (const_rtx);
2651 extern rtx simplify_subtraction (rtx);
2652 extern void decide_function_section (tree);
2653 
2654 /* In emit-rtl.c */
2655 extern rtx_insn *emit_insn_before (rtx, rtx);
2656 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2657 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2658 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2659 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2660 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2661 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2662 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2663 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2664 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2665 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2666 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2667 extern rtx_barrier *emit_barrier_before (rtx);
2668 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2669 extern rtx_note *emit_note_before (enum insn_note, rtx);
2670 extern rtx_insn *emit_insn_after (rtx, rtx);
2671 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2672 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2673 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2674 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2675 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2676 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2677 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2678 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2679 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2680 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2681 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2682 extern rtx_barrier *emit_barrier_after (rtx);
2683 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2684 extern rtx_note *emit_note_after (enum insn_note, rtx);
2685 extern rtx_insn *emit_insn (rtx);
2686 extern rtx_insn *emit_debug_insn (rtx);
2687 extern rtx_insn *emit_jump_insn (rtx);
2688 extern rtx_insn *emit_call_insn (rtx);
2689 extern rtx_insn *emit_label (rtx);
2690 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2691 extern rtx_barrier *emit_barrier (void);
2692 extern rtx_note *emit_note (enum insn_note);
2693 extern rtx_note *emit_note_copy (rtx_note *);
2694 extern rtx_insn *gen_clobber (rtx);
2695 extern rtx_insn *emit_clobber (rtx);
2696 extern rtx_insn *gen_use (rtx);
2697 extern rtx_insn *emit_use (rtx);
2698 extern rtx_insn *make_insn_raw (rtx);
2699 extern void add_function_usage_to (rtx, rtx);
2700 extern rtx_call_insn *last_call_insn (void);
2701 extern rtx_insn *previous_insn (rtx_insn *);
2702 extern rtx_insn *next_insn (rtx_insn *);
2703 extern rtx_insn *prev_nonnote_insn (rtx);
2704 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2705 extern rtx_insn *next_nonnote_insn (rtx);
2706 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2707 extern rtx_insn *prev_nondebug_insn (rtx);
2708 extern rtx_insn *next_nondebug_insn (rtx);
2709 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2710 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2711 extern rtx_insn *prev_real_insn (rtx);
2712 extern rtx_insn *next_real_insn (rtx);
2713 extern rtx_insn *prev_active_insn (rtx);
2714 extern rtx_insn *next_active_insn (rtx);
2715 extern int active_insn_p (const_rtx);
2716 extern rtx_insn *next_cc0_user (rtx);
2717 extern rtx_insn *prev_cc0_setter (rtx);
2718 
2719 /* In emit-rtl.c  */
2720 extern int insn_line (const rtx_insn *);
2721 extern const char * insn_file (const rtx_insn *);
2722 extern tree insn_scope (const rtx_insn *);
2723 extern expanded_location insn_location (const rtx_insn *);
2724 extern location_t prologue_location, epilogue_location;
2725 
2726 /* In jump.c */
2727 extern enum rtx_code reverse_condition (enum rtx_code);
2728 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2729 extern enum rtx_code swap_condition (enum rtx_code);
2730 extern enum rtx_code unsigned_condition (enum rtx_code);
2731 extern enum rtx_code signed_condition (enum rtx_code);
2732 extern void mark_jump_label (rtx, rtx_insn *, int);
2733 
2734 /* In jump.c */
2735 extern rtx_insn *delete_related_insns (rtx);
2736 
2737 /* In recog.c  */
2738 extern rtx *find_constant_term_loc (rtx *);
2739 
2740 /* In emit-rtl.c  */
2741 extern rtx_insn *try_split (rtx, rtx, int);
2742 extern int split_branch_probability;
2743 
2744 /* In unknown file  */
2745 extern rtx split_insns (rtx, rtx);
2746 
2747 /* In simplify-rtx.c  */
2748 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2749 					   rtx, machine_mode);
2750 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2751 				     machine_mode);
2752 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2753 					    rtx, rtx);
2754 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2755 				      rtx);
2756 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2757 				       machine_mode, rtx, rtx, rtx);
2758 extern rtx simplify_const_relational_operation (enum rtx_code,
2759 						machine_mode, rtx, rtx);
2760 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2761 					  machine_mode, rtx, rtx);
2762 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2763 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2764 			       machine_mode);
2765 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2766 				 machine_mode, rtx, rtx, rtx);
2767 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2768 				    machine_mode, rtx, rtx);
2769 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2770 			    unsigned int);
2771 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2772 				unsigned int);
2773 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2774 				    rtx (*fn) (rtx, const_rtx, void *), void *);
2775 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2776 extern rtx simplify_rtx (const_rtx);
2777 extern rtx avoid_constant_pool_reference (rtx);
2778 extern rtx delegitimize_mem_from_attrs (rtx);
2779 extern bool mode_signbit_p (machine_mode, const_rtx);
2780 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2781 extern bool val_signbit_known_set_p (machine_mode,
2782 				     unsigned HOST_WIDE_INT);
2783 extern bool val_signbit_known_clear_p (machine_mode,
2784 				       unsigned HOST_WIDE_INT);
2785 
2786 /* In reginfo.c  */
2787 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2788 					       bool);
2789 #ifdef HARD_CONST
2790 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2791 #endif
2792 
2793 /* In emit-rtl.c  */
2794 extern rtx set_for_reg_notes (rtx);
2795 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2796 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2797 extern void set_insn_deleted (rtx);
2798 
2799 /* Functions in rtlanal.c */
2800 
2801 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2802 
2803 /* Handle the cheap and common cases inline for performance.  */
2804 
2805 inline rtx single_set (const rtx_insn *insn)
2806 {
2807   if (!INSN_P (insn))
2808     return NULL_RTX;
2809 
2810   if (GET_CODE (PATTERN (insn)) == SET)
2811     return PATTERN (insn);
2812 
2813   /* Defer to the more expensive case.  */
2814   return single_set_2 (insn, PATTERN (insn));
2815 }
2816 
2817 extern machine_mode get_address_mode (rtx mem);
2818 extern int rtx_addr_can_trap_p (const_rtx);
2819 extern bool nonzero_address_p (const_rtx);
2820 extern int rtx_unstable_p (const_rtx);
2821 extern bool rtx_varies_p (const_rtx, bool);
2822 extern bool rtx_addr_varies_p (const_rtx, bool);
2823 extern rtx get_call_rtx_from (rtx);
2824 extern HOST_WIDE_INT get_integer_term (const_rtx);
2825 extern rtx get_related_value (const_rtx);
2826 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2827 extern void split_const (rtx, rtx *, rtx *);
2828 extern bool unsigned_reg_p (rtx);
2829 extern int reg_mentioned_p (const_rtx, const_rtx);
2830 extern int count_occurrences (const_rtx, const_rtx, int);
2831 extern int reg_referenced_p (const_rtx, const_rtx);
2832 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2833 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2834 extern int commutative_operand_precedence (rtx);
2835 extern bool swap_commutative_operands_p (rtx, rtx);
2836 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2837 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2838 extern int modified_in_p (const_rtx, const_rtx);
2839 extern int reg_set_p (const_rtx, const_rtx);
2840 extern int multiple_sets (const_rtx);
2841 extern int set_noop_p (const_rtx);
2842 extern int noop_move_p (const_rtx);
2843 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2844 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2845 extern const_rtx set_of (const_rtx, const_rtx);
2846 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2847 extern void record_hard_reg_uses (rtx *, void *);
2848 #ifdef HARD_CONST
2849 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2850 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2851 #endif
2852 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2853 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2854 extern int dead_or_set_p (const_rtx, const_rtx);
2855 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2856 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2857 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2858 extern rtx find_reg_equal_equiv_note (const_rtx);
2859 extern rtx find_constant_src (const rtx_insn *);
2860 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2861 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2862 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2863 extern void add_reg_note (rtx, enum reg_note, rtx);
2864 extern void add_int_reg_note (rtx, enum reg_note, int);
2865 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2866 extern void remove_note (rtx, const_rtx);
2867 extern void remove_reg_equal_equiv_notes (rtx);
2868 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2869 extern int side_effects_p (const_rtx);
2870 extern int volatile_refs_p (const_rtx);
2871 extern int volatile_insn_p (const_rtx);
2872 extern int may_trap_p_1 (const_rtx, unsigned);
2873 extern int may_trap_p (const_rtx);
2874 extern int may_trap_or_fault_p (const_rtx);
2875 extern bool can_throw_internal (const_rtx);
2876 extern bool can_throw_external (const_rtx);
2877 extern bool insn_could_throw_p (const_rtx);
2878 extern bool insn_nothrow_p (const_rtx);
2879 extern bool can_nonlocal_goto (const_rtx);
2880 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2881 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2882 extern int inequality_comparisons_p (const_rtx);
2883 extern rtx replace_rtx (rtx, rtx, rtx);
2884 extern void replace_label (rtx *, rtx, rtx, bool);
2885 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2886 extern bool rtx_referenced_p (const_rtx, const_rtx);
2887 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2888 extern int computed_jump_p (const_rtx);
2889 extern bool tls_referenced_p (const_rtx);
2890 
2891 /* Overload for refers_to_regno_p for checking a single register.  */
2892 inline bool
2893 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2894 {
2895   return refers_to_regno_p (regnum, regnum + 1, x, loc);
2896 }
2897 
2898 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2899    within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2900    NULL.  The callback is passed the same opaque ARG passed to
2901    for_each_inc_dec.  Return zero to continue looking for other
2902    autoinc operations or any other value to interrupt the traversal and
2903    return that value to the caller of for_each_inc_dec.  */
2904 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2905 				    rtx srcoff, void *arg);
2906 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2907 
2908 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2909                                               rtx *, rtx *);
2910 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2911                            rtx_equal_p_callback_function);
2912 
2913 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2914                                            machine_mode *);
2915 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2916                              bool, hash_rtx_callback_function);
2917 
2918 extern rtx regno_use_in (unsigned int, rtx);
2919 extern int auto_inc_p (const_rtx);
2920 extern int in_expr_list_p (const_rtx, const_rtx);
2921 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2922 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2923 extern int loc_mentioned_in_p (rtx *, const_rtx);
2924 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2925 extern bool keep_with_call_p (const rtx_insn *);
2926 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2927 extern int insn_rtx_cost (rtx, bool);
2928 extern unsigned seq_cost (const rtx_insn *, bool);
2929 
2930 /* Given an insn and condition, return a canonical description of
2931    the test being made.  */
2932 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2933 				   int, int);
2934 
2935 /* Given a JUMP_INSN, return a canonical description of the test
2936    being made.  */
2937 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2938 
2939 /* Information about a subreg of a hard register.  */
2940 struct subreg_info
2941 {
2942   /* Offset of first hard register involved in the subreg.  */
2943   int offset;
2944   /* Number of hard registers involved in the subreg.  In the case of
2945      a paradoxical subreg, this is the number of registers that would
2946      be modified by writing to the subreg; some of them may be don't-care
2947      when reading from the subreg.  */
2948   int nregs;
2949   /* Whether this subreg can be represented as a hard reg with the new
2950      mode (by adding OFFSET to the original hard register).  */
2951   bool representable_p;
2952 };
2953 
2954 extern void subreg_get_info (unsigned int, machine_mode,
2955 			     unsigned int, machine_mode,
2956 			     struct subreg_info *);
2957 
2958 /* lists.c */
2959 
2960 extern void free_EXPR_LIST_list (rtx_expr_list **);
2961 extern void free_INSN_LIST_list (rtx_insn_list **);
2962 extern void free_EXPR_LIST_node (rtx);
2963 extern void free_INSN_LIST_node (rtx);
2964 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2965 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2966 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2967 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2968 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2969 extern rtx remove_list_elem (rtx, rtx *);
2970 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2971 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2972 
2973 
2974 /* reginfo.c */
2975 
2976 /* Resize reg info.  */
2977 extern bool resize_reg_info (void);
2978 /* Free up register info memory.  */
2979 extern void free_reg_info (void);
2980 extern void init_subregs_of_mode (void);
2981 extern void finish_subregs_of_mode (void);
2982 
2983 /* recog.c */
2984 extern rtx extract_asm_operands (rtx);
2985 extern int asm_noperands (const_rtx);
2986 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2987 					machine_mode *, location_t *);
2988 extern void get_referenced_operands (const char *, bool *, unsigned int);
2989 
2990 extern enum reg_class reg_preferred_class (int);
2991 extern enum reg_class reg_alternate_class (int);
2992 extern enum reg_class reg_allocno_class (int);
2993 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2994 			       enum reg_class);
2995 
2996 extern void split_all_insns (void);
2997 extern unsigned int split_all_insns_noflow (void);
2998 
2999 #define MAX_SAVED_CONST_INT 64
3000 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3001 
3002 #define const0_rtx	(const_int_rtx[MAX_SAVED_CONST_INT])
3003 #define const1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+1])
3004 #define const2_rtx	(const_int_rtx[MAX_SAVED_CONST_INT+2])
3005 #define constm1_rtx	(const_int_rtx[MAX_SAVED_CONST_INT-1])
3006 extern GTY(()) rtx const_true_rtx;
3007 
3008 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3009 
3010 /* Returns a constant 0 rtx in mode MODE.  Integer modes are treated the
3011    same as VOIDmode.  */
3012 
3013 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3014 
3015 /* Likewise, for the constants 1 and 2 and -1.  */
3016 
3017 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3018 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3019 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3020 
3021 extern GTY(()) rtx pc_rtx;
3022 extern GTY(()) rtx cc0_rtx;
3023 extern GTY(()) rtx ret_rtx;
3024 extern GTY(()) rtx simple_return_rtx;
3025 
3026 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3027    is used to represent the frame pointer.  This is because the
3028    hard frame pointer and the automatic variables are separated by an amount
3029    that cannot be determined until after register allocation.  We can assume
3030    that in this case ELIMINABLE_REGS will be defined, one action of which
3031    will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM.  */
3032 #ifndef HARD_FRAME_POINTER_REGNUM
3033 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3034 #endif
3035 
3036 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3037 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3038   (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3039 #endif
3040 
3041 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3042 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3043   (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3044 #endif
3045 
3046 /* Index labels for global_rtl.  */
3047 enum global_rtl_index
3048 {
3049   GR_STACK_POINTER,
3050   GR_FRAME_POINTER,
3051 /* For register elimination to work properly these hard_frame_pointer_rtx,
3052    frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3053    the same register.  */
3054 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3055   GR_ARG_POINTER = GR_FRAME_POINTER,
3056 #endif
3057 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3058   GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3059 #else
3060   GR_HARD_FRAME_POINTER,
3061 #endif
3062 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3063 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3064   GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3065 #else
3066   GR_ARG_POINTER,
3067 #endif
3068 #endif
3069   GR_VIRTUAL_INCOMING_ARGS,
3070   GR_VIRTUAL_STACK_ARGS,
3071   GR_VIRTUAL_STACK_DYNAMIC,
3072   GR_VIRTUAL_OUTGOING_ARGS,
3073   GR_VIRTUAL_CFA,
3074   GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3075 
3076   GR_MAX
3077 };
3078 
3079 /* Target-dependent globals.  */
3080 struct GTY(()) target_rtl {
3081   /* All references to the hard registers in global_rtl_index go through
3082      these unique rtl objects.  On machines where the frame-pointer and
3083      arg-pointer are the same register, they use the same unique object.
3084 
3085      After register allocation, other rtl objects which used to be pseudo-regs
3086      may be clobbered to refer to the frame-pointer register.
3087      But references that were originally to the frame-pointer can be
3088      distinguished from the others because they contain frame_pointer_rtx.
3089 
3090      When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3091      tricky: until register elimination has taken place hard_frame_pointer_rtx
3092      should be used if it is being set, and frame_pointer_rtx otherwise.  After
3093      register elimination hard_frame_pointer_rtx should always be used.
3094      On machines where the two registers are same (most) then these are the
3095      same.  */
3096   rtx x_global_rtl[GR_MAX];
3097 
3098   /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM).  */
3099   rtx x_pic_offset_table_rtx;
3100 
3101   /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3102      This is used to implement __builtin_return_address for some machines;
3103      see for instance the MIPS port.  */
3104   rtx x_return_address_pointer_rtx;
3105 
3106   /* Commonly used RTL for hard registers.  These objects are not
3107      necessarily unique, so we allocate them separately from global_rtl.
3108      They are initialized once per compilation unit, then copied into
3109      regno_reg_rtx at the beginning of each function.  */
3110   rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3111 
3112   /* A sample (mem:M stack_pointer_rtx) rtx for each mode M.  */
3113   rtx x_top_of_stack[MAX_MACHINE_MODE];
3114 
3115   /* Static hunks of RTL used by the aliasing code; these are treated
3116      as persistent to avoid unnecessary RTL allocations.  */
3117   rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3118 
3119   /* The default memory attributes for each mode.  */
3120   struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3121 
3122   /* Track if RTL has been initialized.  */
3123   bool target_specific_initialized;
3124 };
3125 
3126 extern GTY(()) struct target_rtl default_target_rtl;
3127 #if SWITCHABLE_TARGET
3128 extern struct target_rtl *this_target_rtl;
3129 #else
3130 #define this_target_rtl (&default_target_rtl)
3131 #endif
3132 
3133 #define global_rtl				\
3134   (this_target_rtl->x_global_rtl)
3135 #define pic_offset_table_rtx \
3136   (this_target_rtl->x_pic_offset_table_rtx)
3137 #define return_address_pointer_rtx \
3138   (this_target_rtl->x_return_address_pointer_rtx)
3139 #define top_of_stack \
3140   (this_target_rtl->x_top_of_stack)
3141 #define mode_mem_attrs \
3142   (this_target_rtl->x_mode_mem_attrs)
3143 
3144 /* All references to certain hard regs, except those created
3145    by allocating pseudo regs into them (when that's possible),
3146    go through these unique rtx objects.  */
3147 #define stack_pointer_rtx       (global_rtl[GR_STACK_POINTER])
3148 #define frame_pointer_rtx       (global_rtl[GR_FRAME_POINTER])
3149 #define hard_frame_pointer_rtx	(global_rtl[GR_HARD_FRAME_POINTER])
3150 #define arg_pointer_rtx		(global_rtl[GR_ARG_POINTER])
3151 
3152 #ifndef GENERATOR_FILE
3153 /* Return the attributes of a MEM rtx.  */
3154 static inline struct mem_attrs *
3155 get_mem_attrs (const_rtx x)
3156 {
3157   struct mem_attrs *attrs;
3158 
3159   attrs = MEM_ATTRS (x);
3160   if (!attrs)
3161     attrs = mode_mem_attrs[(int) GET_MODE (x)];
3162   return attrs;
3163 }
3164 #endif
3165 
3166 /* Include the RTL generation functions.  */
3167 
3168 #ifndef GENERATOR_FILE
3169 #include "genrtl.h"
3170 #undef gen_rtx_ASM_INPUT
3171 #define gen_rtx_ASM_INPUT(MODE, ARG0)				\
3172   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3173 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC)			\
3174   gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3175 #endif
3176 
3177 /* There are some RTL codes that require special attention; the
3178    generation functions included above do the raw handling.  If you
3179    add to this list, modify special_rtx in gengenrtl.c as well.  */
3180 
3181 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3182 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3183 extern rtx_insn *
3184 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3185 	      basic_block bb, rtx pattern, int location, int code,
3186 	      rtx reg_notes);
3187 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3188 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3189 extern rtx gen_raw_REG (machine_mode, int);
3190 extern rtx gen_rtx_REG (machine_mode, unsigned);
3191 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3192 extern rtx gen_rtx_MEM (machine_mode, rtx);
3193 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3194 				 enum var_init_status);
3195 
3196 #define GEN_INT(N)  gen_rtx_CONST_INT (VOIDmode, (N))
3197 
3198 /* Virtual registers are used during RTL generation to refer to locations into
3199    the stack frame when the actual location isn't known until RTL generation
3200    is complete.  The routine instantiate_virtual_regs replaces these with
3201    the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3202    a constant.  */
3203 
3204 #define FIRST_VIRTUAL_REGISTER	(FIRST_PSEUDO_REGISTER)
3205 
3206 /* This points to the first word of the incoming arguments passed on the stack,
3207    either by the caller or by the callee when pretending it was passed by the
3208    caller.  */
3209 
3210 #define virtual_incoming_args_rtx       (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3211 
3212 #define VIRTUAL_INCOMING_ARGS_REGNUM	(FIRST_VIRTUAL_REGISTER)
3213 
3214 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3215    variable on the stack.  Otherwise, it points to the first variable on
3216    the stack.  */
3217 
3218 #define virtual_stack_vars_rtx	        (global_rtl[GR_VIRTUAL_STACK_ARGS])
3219 
3220 #define VIRTUAL_STACK_VARS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 1)
3221 
3222 /* This points to the location of dynamically-allocated memory on the stack
3223    immediately after the stack pointer has been adjusted by the amount
3224    desired.  */
3225 
3226 #define virtual_stack_dynamic_rtx	(global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3227 
3228 #define VIRTUAL_STACK_DYNAMIC_REGNUM	((FIRST_VIRTUAL_REGISTER) + 2)
3229 
3230 /* This points to the location in the stack at which outgoing arguments should
3231    be written when the stack is pre-pushed (arguments pushed using push
3232    insns always use sp).  */
3233 
3234 #define virtual_outgoing_args_rtx	(global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3235 
3236 #define VIRTUAL_OUTGOING_ARGS_REGNUM	((FIRST_VIRTUAL_REGISTER) + 3)
3237 
3238 /* This points to the Canonical Frame Address of the function.  This
3239    should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3240    but is calculated relative to the arg pointer for simplicity; the
3241    frame pointer nor stack pointer are necessarily fixed relative to
3242    the CFA until after reload.  */
3243 
3244 #define virtual_cfa_rtx			(global_rtl[GR_VIRTUAL_CFA])
3245 
3246 #define VIRTUAL_CFA_REGNUM		((FIRST_VIRTUAL_REGISTER) + 4)
3247 
3248 #define LAST_VIRTUAL_POINTER_REGISTER	((FIRST_VIRTUAL_REGISTER) + 4)
3249 
3250 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3251    when finalized.  */
3252 
3253 #define virtual_preferred_stack_boundary_rtx \
3254 	(global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3255 
3256 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3257 					((FIRST_VIRTUAL_REGISTER) + 5)
3258 
3259 #define LAST_VIRTUAL_REGISTER		((FIRST_VIRTUAL_REGISTER) + 5)
3260 
3261 /* Nonzero if REGNUM is a pointer into the stack frame.  */
3262 #define REGNO_PTR_FRAME_P(REGNUM)		\
3263   ((REGNUM) == STACK_POINTER_REGNUM		\
3264    || (REGNUM) == FRAME_POINTER_REGNUM		\
3265    || (REGNUM) == HARD_FRAME_POINTER_REGNUM	\
3266    || (REGNUM) == ARG_POINTER_REGNUM		\
3267    || ((REGNUM) >= FIRST_VIRTUAL_REGISTER	\
3268        && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3269 
3270 /* REGNUM never really appearing in the INSN stream.  */
3271 #define INVALID_REGNUM			(~(unsigned int) 0)
3272 
3273 /* REGNUM for which no debug information can be generated.  */
3274 #define IGNORED_DWARF_REGNUM            (INVALID_REGNUM - 1)
3275 
3276 extern rtx output_constant_def (tree, int);
3277 extern rtx lookup_constant_def (tree);
3278 
3279 /* Nonzero after end of reload pass.
3280    Set to 1 or 0 by reload1.c.  */
3281 
3282 extern int reload_completed;
3283 
3284 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
3285 extern int epilogue_completed;
3286 
3287 /* Set to 1 while reload_as_needed is operating.
3288    Required by some machines to handle any generated moves differently.  */
3289 
3290 extern int reload_in_progress;
3291 
3292 /* Set to 1 while in lra.  */
3293 extern int lra_in_progress;
3294 
3295 /* This macro indicates whether you may create a new
3296    pseudo-register.  */
3297 
3298 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3299 
3300 #ifdef STACK_REGS
3301 /* Nonzero after end of regstack pass.
3302    Set to 1 or 0 by reg-stack.c.  */
3303 extern int regstack_completed;
3304 #endif
3305 
3306 /* If this is nonzero, we do not bother generating VOLATILE
3307    around volatile memory references, and we are willing to
3308    output indirect addresses.  If cse is to follow, we reject
3309    indirect addresses so a useful potential cse is generated;
3310    if it is used only once, instruction combination will produce
3311    the same indirect address eventually.  */
3312 extern int cse_not_expected;
3313 
3314 /* Translates rtx code to tree code, for those codes needed by
3315    REAL_ARITHMETIC.  The function returns an int because the caller may not
3316    know what `enum tree_code' means.  */
3317 
3318 extern int rtx_to_tree_code (enum rtx_code);
3319 
3320 /* In cse.c */
3321 extern int delete_trivially_dead_insns (rtx_insn *, int);
3322 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3323 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3324 
3325 /* In dse.c */
3326 extern bool check_for_inc_dec (rtx_insn *insn);
3327 
3328 /* In jump.c */
3329 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3330 extern bool jump_to_label_p (const rtx_insn *);
3331 extern int condjump_p (const rtx_insn *);
3332 extern int any_condjump_p (const rtx_insn *);
3333 extern int any_uncondjump_p (const rtx_insn *);
3334 extern rtx pc_set (const rtx_insn *);
3335 extern rtx condjump_label (const rtx_insn *);
3336 extern int simplejump_p (const rtx_insn *);
3337 extern int returnjump_p (const rtx_insn *);
3338 extern int eh_returnjump_p (rtx_insn *);
3339 extern int onlyjump_p (const rtx_insn *);
3340 extern int only_sets_cc0_p (const_rtx);
3341 extern int sets_cc0_p (const_rtx);
3342 extern int invert_jump_1 (rtx_insn *, rtx);
3343 extern int invert_jump (rtx_insn *, rtx, int);
3344 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3345 extern int true_regnum (const_rtx);
3346 extern unsigned int reg_or_subregno (const_rtx);
3347 extern int redirect_jump_1 (rtx, rtx);
3348 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3349 extern int redirect_jump (rtx, rtx, int);
3350 extern void rebuild_jump_labels (rtx_insn *);
3351 extern void rebuild_jump_labels_chain (rtx_insn *);
3352 extern rtx reversed_comparison (const_rtx, machine_mode);
3353 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3354 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3355 						     const_rtx, const_rtx);
3356 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3357 extern int condjump_in_parallel_p (const rtx_insn *);
3358 
3359 /* In emit-rtl.c.  */
3360 extern int max_reg_num (void);
3361 extern int max_label_num (void);
3362 extern int get_first_label_num (void);
3363 extern void maybe_set_first_label_num (rtx);
3364 extern void delete_insns_since (rtx_insn *);
3365 extern void mark_reg_pointer (rtx, int);
3366 extern void mark_user_reg (rtx);
3367 extern void reset_used_flags (rtx);
3368 extern void set_used_flags (rtx);
3369 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3370 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3371 extern int get_max_insn_count (void);
3372 extern int in_sequence_p (void);
3373 extern void init_emit (void);
3374 extern void init_emit_regs (void);
3375 extern void init_derived_machine_modes (void);
3376 extern void init_emit_once (void);
3377 extern void push_topmost_sequence (void);
3378 extern void pop_topmost_sequence (void);
3379 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3380 extern unsigned int unshare_all_rtl (void);
3381 extern void unshare_all_rtl_again (rtx_insn *);
3382 extern void unshare_all_rtl_in_chain (rtx_insn *);
3383 extern void verify_rtl_sharing (void);
3384 extern void add_insn (rtx_insn *);
3385 extern void add_insn_before (rtx, rtx, basic_block);
3386 extern void add_insn_after (rtx, rtx, basic_block);
3387 extern void remove_insn (rtx);
3388 extern rtx_insn *emit (rtx);
3389 extern void emit_insn_at_entry (rtx);
3390 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3391 extern rtx gen_const_mem (machine_mode, rtx);
3392 extern rtx gen_frame_mem (machine_mode, rtx);
3393 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3394 extern bool validate_subreg (machine_mode, machine_mode,
3395 			     const_rtx, unsigned int);
3396 
3397 /* In combine.c  */
3398 extern unsigned int extended_count (const_rtx, machine_mode, int);
3399 extern rtx remove_death (unsigned int, rtx_insn *);
3400 extern void dump_combine_stats (FILE *);
3401 extern void dump_combine_total_stats (FILE *);
3402 extern rtx make_compound_operation (rtx, enum rtx_code);
3403 
3404 /* In sched-rgn.c.  */
3405 extern void schedule_insns (void);
3406 
3407 /* In sched-ebb.c.  */
3408 extern void schedule_ebbs (void);
3409 
3410 /* In sel-sched-dump.c.  */
3411 extern void sel_sched_fix_param (const char *param, const char *val);
3412 
3413 /* In print-rtl.c */
3414 extern const char *print_rtx_head;
3415 extern void debug (const rtx_def &ref);
3416 extern void debug (const rtx_def *ptr);
3417 extern void debug_rtx (const_rtx);
3418 extern void debug_rtx_list (const rtx_insn *, int);
3419 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3420 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3421 extern void print_mem_expr (FILE *, const_tree);
3422 extern void print_rtl (FILE *, const_rtx);
3423 extern void print_simple_rtl (FILE *, const_rtx);
3424 extern int print_rtl_single (FILE *, const_rtx);
3425 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3426 extern void print_inline_rtx (FILE *, const_rtx, int);
3427 
3428 /* Functions in sched-vis.c.  FIXME: Ideally these functions would
3429    not be in sched-vis.c but in rtl.c, because they are not only used
3430    by the scheduler anymore but for all "slim" RTL dumping.  */
3431 extern void dump_value_slim (FILE *, const_rtx, int);
3432 extern void dump_insn_slim (FILE *, const_rtx);
3433 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3434 			   int, int);
3435 extern void print_value (pretty_printer *, const_rtx, int);
3436 extern void print_pattern (pretty_printer *, const_rtx, int);
3437 extern void print_insn (pretty_printer *, const_rtx, int);
3438 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3439 extern const char *str_pattern_slim (const_rtx);
3440 
3441 /* In stmt.c */
3442 extern void expand_null_return (void);
3443 extern void expand_naked_return (void);
3444 extern void emit_jump (rtx);
3445 
3446 /* In expr.c */
3447 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3448 			   unsigned int, int);
3449 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3450 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3451 
3452 /* In expmed.c */
3453 extern void init_expmed (void);
3454 extern void expand_inc (rtx, rtx);
3455 extern void expand_dec (rtx, rtx);
3456 
3457 /* In lower-subreg.c */
3458 extern void init_lower_subreg (void);
3459 
3460 /* In gcse.c */
3461 extern bool can_copy_p (machine_mode);
3462 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3463 extern rtx fis_get_condition (rtx_insn *);
3464 
3465 /* In ira.c */
3466 #ifdef HARD_CONST
3467 extern HARD_REG_SET eliminable_regset;
3468 #endif
3469 extern void mark_elimination (int, int);
3470 
3471 /* In reginfo.c */
3472 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3473 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3474 extern void globalize_reg (tree, int);
3475 extern void init_reg_modes_target (void);
3476 extern void init_regs (void);
3477 extern void reinit_regs (void);
3478 extern void init_fake_stack_mems (void);
3479 extern void save_register_info (void);
3480 extern void init_reg_sets (void);
3481 extern void regclass (rtx, int);
3482 extern void reg_scan (rtx_insn *, unsigned int);
3483 extern void fix_register (const char *, int, int);
3484 #ifdef HARD_CONST
3485 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3486 #endif
3487 
3488 /* In reload1.c */
3489 extern int function_invariant_p (const_rtx);
3490 
3491 /* In calls.c */
3492 enum libcall_type
3493 {
3494   LCT_NORMAL = 0,
3495   LCT_CONST = 1,
3496   LCT_PURE = 2,
3497   LCT_NORETURN = 3,
3498   LCT_THROW = 4,
3499   LCT_RETURNS_TWICE = 5
3500 };
3501 
3502 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3503 			       ...);
3504 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3505 				    machine_mode, int, ...);
3506 
3507 /* In varasm.c */
3508 extern void init_varasm_once (void);
3509 
3510 extern rtx make_debug_expr_from_rtl (const_rtx);
3511 
3512 /* In read-rtl.c */
3513 extern bool read_rtx (const char *, rtx *);
3514 
3515 /* In alias.c */
3516 extern rtx canon_rtx (rtx);
3517 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3518 extern rtx get_addr (rtx);
3519 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3520 				  const_rtx, rtx);
3521 extern int read_dependence (const_rtx, const_rtx);
3522 extern int anti_dependence (const_rtx, const_rtx);
3523 extern int canon_anti_dependence (const_rtx, bool,
3524 				  const_rtx, machine_mode, rtx);
3525 extern int output_dependence (const_rtx, const_rtx);
3526 extern int canon_output_dependence (const_rtx, bool,
3527 				    const_rtx, machine_mode, rtx);
3528 extern int may_alias_p (const_rtx, const_rtx);
3529 extern void init_alias_target (void);
3530 extern void init_alias_analysis (void);
3531 extern void end_alias_analysis (void);
3532 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3533 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3534 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3535 extern bool may_be_sp_based_p (rtx);
3536 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3537 extern rtx get_reg_known_value (unsigned int);
3538 extern bool get_reg_known_equiv_p (unsigned int);
3539 extern rtx get_reg_base_value (unsigned int);
3540 
3541 #ifdef STACK_REGS
3542 extern int stack_regs_mentioned (const_rtx insn);
3543 #endif
3544 
3545 /* In toplev.c */
3546 extern GTY(()) rtx stack_limit_rtx;
3547 
3548 /* In var-tracking.c */
3549 extern unsigned int variable_tracking_main (void);
3550 
3551 /* In stor-layout.c.  */
3552 extern void get_mode_bounds (machine_mode, int, machine_mode,
3553 			     rtx *, rtx *);
3554 
3555 /* In loop-iv.c  */
3556 extern rtx canon_condition (rtx);
3557 extern void simplify_using_condition (rtx, rtx *, bitmap);
3558 
3559 /* In final.c  */
3560 extern unsigned int compute_alignments (void);
3561 extern void update_alignments (vec<rtx> &);
3562 extern int asm_str_count (const char *templ);
3563 
3564 struct rtl_hooks
3565 {
3566   rtx (*gen_lowpart) (machine_mode, rtx);
3567   rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3568   rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3569 			   unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3570   rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3571 				  unsigned int, unsigned int *);
3572   bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3573 
3574   /* Whenever you add entries here, make sure you adjust rtlhooks-def.h.  */
3575 };
3576 
3577 /* Each pass can provide its own.  */
3578 extern struct rtl_hooks rtl_hooks;
3579 
3580 /* ... but then it has to restore these.  */
3581 extern const struct rtl_hooks general_rtl_hooks;
3582 
3583 /* Keep this for the nonce.  */
3584 #define gen_lowpart rtl_hooks.gen_lowpart
3585 
3586 extern void insn_locations_init (void);
3587 extern void insn_locations_finalize (void);
3588 extern void set_curr_insn_location (location_t);
3589 extern location_t curr_insn_location (void);
3590 
3591 /* rtl-error.c */
3592 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3593      ATTRIBUTE_NORETURN;
3594 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3595      ATTRIBUTE_NORETURN;
3596 
3597 #define fatal_insn(msgid, insn) \
3598 	_fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3599 #define fatal_insn_not_found(insn) \
3600 	_fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3601 
3602 /* reginfo.c */
3603 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3604 
3605 
3606 #endif /* ! GCC_RTL_H */
3607