xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reorg.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Perform instruction reorganizations for delay slot filling.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5    Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6    Hacked by Michael Tiemann (tiemann@cygnus.com).
7 
8 This file is part of GCC.
9 
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14 
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18 for more details.
19 
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3.  If not see
22 <http://www.gnu.org/licenses/>.  */
23 
24 /* Instruction reorganization pass.
25 
26    This pass runs after register allocation and final jump
27    optimization.  It should be the last pass to run before peephole.
28    It serves primarily to fill delay slots of insns, typically branch
29    and call insns.  Other insns typically involve more complicated
30    interactions of data dependencies and resource constraints, and
31    are better handled by scheduling before register allocation (by the
32    function `schedule_insns').
33 
34    The Branch Penalty is the number of extra cycles that are needed to
35    execute a branch insn.  On an ideal machine, branches take a single
36    cycle, and the Branch Penalty is 0.  Several RISC machines approach
37    branch delays differently:
38 
39    The MIPS has a single branch delay slot.  Most insns
40    (except other branches) can be used to fill this slot.  When the
41    slot is filled, two insns execute in two cycles, reducing the
42    branch penalty to zero.
43 
44    The SPARC always has a branch delay slot, but its effects can be
45    annulled when the branch is not taken.  This means that failing to
46    find other sources of insns, we can hoist an insn from the branch
47    target that would only be safe to execute knowing that the branch
48    is taken.
49 
50    The HP-PA always has a branch delay slot.  For unconditional branches
51    its effects can be annulled when the branch is taken.  The effects
52    of the delay slot in a conditional branch can be nullified for forward
53    taken branches, or for untaken backward branches.  This means
54    we can hoist insns from the fall-through path for forward branches or
55    steal insns from the target of backward branches.
56 
57    The TMS320C3x and C4x have three branch delay slots.  When the three
58    slots are filled, the branch penalty is zero.  Most insns can fill the
59    delay slots except jump insns.
60 
61    Three techniques for filling delay slots have been implemented so far:
62 
63    (1) `fill_simple_delay_slots' is the simplest, most efficient way
64    to fill delay slots.  This pass first looks for insns which come
65    from before the branch and which are safe to execute after the
66    branch.  Then it searches after the insn requiring delay slots or,
67    in the case of a branch, for insns that are after the point at
68    which the branch merges into the fallthrough code, if such a point
69    exists.  When such insns are found, the branch penalty decreases
70    and no code expansion takes place.
71 
72    (2) `fill_eager_delay_slots' is more complicated: it is used for
73    scheduling conditional jumps, or for scheduling jumps which cannot
74    be filled using (1).  A machine need not have annulled jumps to use
75    this strategy, but it helps (by keeping more options open).
76    `fill_eager_delay_slots' tries to guess the direction the branch
77    will go; if it guesses right 100% of the time, it can reduce the
78    branch penalty as much as `fill_simple_delay_slots' does.  If it
79    guesses wrong 100% of the time, it might as well schedule nops.  When
80    `fill_eager_delay_slots' takes insns from the fall-through path of
81    the jump, usually there is no code expansion; when it takes insns
82    from the branch target, there is code expansion if it is not the
83    only way to reach that target.
84 
85    (3) `relax_delay_slots' uses a set of rules to simplify code that
86    has been reorganized by (1) and (2).  It finds cases where
87    conditional test can be eliminated, jumps can be threaded, extra
88    insns can be eliminated, etc.  It is the job of (1) and (2) to do a
89    good job of scheduling locally; `relax_delay_slots' takes care of
90    making the various individual schedules work well together.  It is
91    especially tuned to handle the control flow interactions of branch
92    insns.  It does nothing for insns with delay slots that do not
93    branch.
94 
95    On machines that use CC0, we are very conservative.  We will not make
96    a copy of an insn involving CC0 since we want to maintain a 1-1
97    correspondence between the insn that sets and uses CC0.  The insns are
98    allowed to be separated by placing an insn that sets CC0 (but not an insn
99    that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100    delay slot.  In that case, we point each insn at the other with REG_CC_USER
101    and REG_CC_SETTER notes.  Note that these restrictions affect very few
102    machines because most RISC machines with delay slots will not use CC0
103    (the RT is the only known exception at this point).
104 
105    Not yet implemented:
106 
107    The Acorn Risc Machine can conditionally execute most insns, so
108    it is profitable to move single insns into a position to execute
109    based on the condition code of the previous insn.
110 
111    The HP-PA can conditionally nullify insns, providing a similar
112    effect to the ARM, differing mostly in which insn is "in charge".  */
113 
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
139 
140 #ifdef DELAY_SLOTS
141 
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
148 
149 /* Insns which have delay slots that have not yet been filled.  */
150 
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
153 
154 /* Define macros to refer to the first and last slot containing unfilled
155    insns.  These are used because the list may move and its address
156    should be recomputed at each use.  */
157 
158 #define unfilled_slots_base	\
159   ((rtx *) obstack_base (&unfilled_slots_obstack))
160 
161 #define unfilled_slots_next	\
162   ((rtx *) obstack_next_free (&unfilled_slots_obstack))
163 
164 /* Points to the label before the end of the function.  */
165 static rtx end_of_function_label;
166 
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168    not always monotonically increase.  */
169 static int *uid_to_ruid;
170 
171 /* Highest valid index in `uid_to_ruid'.  */
172 static int max_uid;
173 
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, bool);
177 static int insn_sets_resource_p (rtx, struct resources *, bool);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 					 struct resources *,
197 					 struct resources *,
198 					 struct resources *,
199 					 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 					      struct resources *,
202 					      struct resources *,
203 					      struct resources *,
204 					      int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
215 				   int, int, int, int,
216 				   int *, rtx);
217 static void fill_eager_delay_slots (void);
218 static void relax_delay_slots (rtx);
219 #ifdef HAVE_return
220 static void make_return_insns (rtx);
221 #endif
222 
223 /* Return TRUE if this insn should stop the search for insn to fill delay
224    slots.  LABELS_P indicates that labels should terminate the search.
225    In all cases, jumps terminate the search.  */
226 
227 static int
228 stop_search_p (rtx insn, int labels_p)
229 {
230   if (insn == 0)
231     return 1;
232 
233   /* If the insn can throw an exception that is caught within the function,
234      it may effectively perform a jump from the viewpoint of the function.
235      Therefore act like for a jump.  */
236   if (can_throw_internal (insn))
237     return 1;
238 
239   switch (GET_CODE (insn))
240     {
241     case NOTE:
242     case CALL_INSN:
243       return 0;
244 
245     case CODE_LABEL:
246       return labels_p;
247 
248     case JUMP_INSN:
249     case BARRIER:
250       return 1;
251 
252     case INSN:
253       /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 	 We don't know anything about these.  */
255       return (GET_CODE (PATTERN (insn)) == SEQUENCE
256 	      || GET_CODE (PATTERN (insn)) == ASM_INPUT
257 	      || asm_noperands (PATTERN (insn)) >= 0);
258 
259     default:
260       gcc_unreachable ();
261     }
262 }
263 
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265    resource set contains a volatile memory reference.  Otherwise, return FALSE.  */
266 
267 static int
268 resource_conflicts_p (struct resources *res1, struct resources *res2)
269 {
270   if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
271       || (res1->unch_memory && res2->unch_memory)
272       || res1->volatil || res2->volatil)
273     return 1;
274 
275 #ifdef HARD_REG_SET
276   return (res1->regs & res2->regs) != HARD_CONST (0);
277 #else
278   {
279     int i;
280 
281     for (i = 0; i < HARD_REG_SET_LONGS; i++)
282       if ((res1->regs[i] & res2->regs[i]) != 0)
283 	return 1;
284     return 0;
285   }
286 #endif
287 }
288 
289 /* Return TRUE if any resource marked in RES, a `struct resources', is
290    referenced by INSN.  If INCLUDE_DELAYED_EFFECTS is set, return if the called
291    routine is using those resources.
292 
293    We compute this by computing all the resources referenced by INSN and
294    seeing if this conflicts with RES.  It might be faster to directly check
295    ourselves, and this is the way it used to work, but it means duplicating
296    a large block of complex code.  */
297 
298 static int
299 insn_references_resource_p (rtx insn, struct resources *res,
300 			    bool include_delayed_effects)
301 {
302   struct resources insn_res;
303 
304   CLEAR_RESOURCE (&insn_res);
305   mark_referenced_resources (insn, &insn_res, include_delayed_effects);
306   return resource_conflicts_p (&insn_res, res);
307 }
308 
309 /* Return TRUE if INSN modifies resources that are marked in RES.
310    INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
311    included.   CC0 is only modified if it is explicitly set; see comments
312    in front of mark_set_resources for details.  */
313 
314 static int
315 insn_sets_resource_p (rtx insn, struct resources *res,
316 		      bool include_delayed_effects)
317 {
318   struct resources insn_sets;
319 
320   CLEAR_RESOURCE (&insn_sets);
321   mark_set_resources (insn, &insn_sets, 0,
322 		      (include_delayed_effects
323 		       ? MARK_SRC_DEST_CALL
324 		       : MARK_SRC_DEST));
325   return resource_conflicts_p (&insn_sets, res);
326 }
327 
328 /* Find a label at the end of the function or before a RETURN.  If there
329    is none, try to make one.  If that fails, returns 0.
330 
331    The property of such a label is that it is placed just before the
332    epilogue or a bare RETURN insn, so that another bare RETURN can be
333    turned into a jump to the label unconditionally.  In particular, the
334    label cannot be placed before a RETURN insn with a filled delay slot.
335 
336    ??? There may be a problem with the current implementation.  Suppose
337    we start with a bare RETURN insn and call find_end_label.  It may set
338    end_of_function_label just before the RETURN.  Suppose the machinery
339    is able to fill the delay slot of the RETURN insn afterwards.  Then
340    end_of_function_label is no longer valid according to the property
341    described above and find_end_label will still return it unmodified.
342    Note that this is probably mitigated by the following observation:
343    once end_of_function_label is made, it is very likely the target of
344    a jump, so filling the delay slot of the RETURN will be much more
345    difficult.  */
346 
347 static rtx
348 find_end_label (void)
349 {
350   rtx insn;
351 
352   /* If we found one previously, return it.  */
353   if (end_of_function_label)
354     return end_of_function_label;
355 
356   /* Otherwise, see if there is a label at the end of the function.  If there
357      is, it must be that RETURN insns aren't needed, so that is our return
358      label and we don't have to do anything else.  */
359 
360   insn = get_last_insn ();
361   while (NOTE_P (insn)
362 	 || (NONJUMP_INSN_P (insn)
363 	     && (GET_CODE (PATTERN (insn)) == USE
364 		 || GET_CODE (PATTERN (insn)) == CLOBBER)))
365     insn = PREV_INSN (insn);
366 
367   /* When a target threads its epilogue we might already have a
368      suitable return insn.  If so put a label before it for the
369      end_of_function_label.  */
370   if (BARRIER_P (insn)
371       && JUMP_P (PREV_INSN (insn))
372       && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
373     {
374       rtx temp = PREV_INSN (PREV_INSN (insn));
375       end_of_function_label = gen_label_rtx ();
376       LABEL_NUSES (end_of_function_label) = 0;
377 
378       /* Put the label before an USE insns that may precede the RETURN insn.  */
379       while (GET_CODE (temp) == USE)
380 	temp = PREV_INSN (temp);
381 
382       emit_label_after (end_of_function_label, temp);
383     }
384 
385   else if (LABEL_P (insn))
386     end_of_function_label = insn;
387   else
388     {
389       end_of_function_label = gen_label_rtx ();
390       LABEL_NUSES (end_of_function_label) = 0;
391       /* If the basic block reorder pass moves the return insn to
392 	 some other place try to locate it again and put our
393 	 end_of_function_label there.  */
394       while (insn && ! (JUMP_P (insn)
395 		        && (GET_CODE (PATTERN (insn)) == RETURN)))
396 	insn = PREV_INSN (insn);
397       if (insn)
398 	{
399 	  insn = PREV_INSN (insn);
400 
401 	  /* Put the label before an USE insns that may proceed the
402 	     RETURN insn.  */
403 	  while (GET_CODE (insn) == USE)
404 	    insn = PREV_INSN (insn);
405 
406 	  emit_label_after (end_of_function_label, insn);
407 	}
408       else
409 	{
410 #ifdef HAVE_epilogue
411 	  if (HAVE_epilogue
412 #ifdef HAVE_return
413 	      && ! HAVE_return
414 #endif
415 	      )
416 	    {
417 	      /* The RETURN insn has its delay slot filled so we cannot
418 		 emit the label just before it.  Since we already have
419 		 an epilogue and cannot emit a new RETURN, we cannot
420 		 emit the label at all.  */
421 	      end_of_function_label = NULL_RTX;
422 	      return end_of_function_label;
423 	    }
424 #endif /* HAVE_epilogue */
425 
426 	  /* Otherwise, make a new label and emit a RETURN and BARRIER,
427 	     if needed.  */
428 	  emit_label (end_of_function_label);
429 #ifdef HAVE_return
430 	  /* We don't bother trying to create a return insn if the
431 	     epilogue has filled delay-slots; we would have to try and
432 	     move the delay-slot fillers to the delay-slots for the new
433 	     return insn or in front of the new return insn.  */
434 	  if (crtl->epilogue_delay_list == NULL
435 	      && HAVE_return)
436 	    {
437 	      /* The return we make may have delay slots too.  */
438 	      rtx insn = gen_return ();
439 	      insn = emit_jump_insn (insn);
440 	      emit_barrier ();
441 	      if (num_delay_slots (insn) > 0)
442 		obstack_ptr_grow (&unfilled_slots_obstack, insn);
443 	    }
444 #endif
445 	}
446     }
447 
448   /* Show one additional use for this label so it won't go away until
449      we are done.  */
450   ++LABEL_NUSES (end_of_function_label);
451 
452   return end_of_function_label;
453 }
454 
455 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
456    the pattern of INSN with the SEQUENCE.
457 
458    Chain the insns so that NEXT_INSN of each insn in the sequence points to
459    the next and NEXT_INSN of the last insn in the sequence points to
460    the first insn after the sequence.  Similarly for PREV_INSN.  This makes
461    it easier to scan all insns.
462 
463    Returns the SEQUENCE that replaces INSN.  */
464 
465 static rtx
466 emit_delay_sequence (rtx insn, rtx list, int length)
467 {
468   int i = 1;
469   rtx li;
470   int had_barrier = 0;
471 
472   /* Allocate the rtvec to hold the insns and the SEQUENCE.  */
473   rtvec seqv = rtvec_alloc (length + 1);
474   rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
475   rtx seq_insn = make_insn_raw (seq);
476   rtx first = get_insns ();
477   rtx last = get_last_insn ();
478 
479   /* Make a copy of the insn having delay slots.  */
480   rtx delay_insn = copy_rtx (insn);
481 
482   /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
483      confuse further processing.  Update LAST in case it was the last insn.
484      We will put the BARRIER back in later.  */
485   if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
486     {
487       delete_related_insns (NEXT_INSN (insn));
488       last = get_last_insn ();
489       had_barrier = 1;
490     }
491 
492   /* Splice our SEQUENCE into the insn stream where INSN used to be.  */
493   NEXT_INSN (seq_insn) = NEXT_INSN (insn);
494   PREV_INSN (seq_insn) = PREV_INSN (insn);
495 
496   if (insn != last)
497     PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
498 
499   if (insn != first)
500     NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
501 
502   /* Note the calls to set_new_first_and_last_insn must occur after
503      SEQ_INSN has been completely spliced into the insn stream.
504 
505      Otherwise CUR_INSN_UID will get set to an incorrect value because
506      set_new_first_and_last_insn will not find SEQ_INSN in the chain.  */
507   if (insn == last)
508     set_new_first_and_last_insn (first, seq_insn);
509 
510   if (insn == first)
511     set_new_first_and_last_insn (seq_insn, last);
512 
513   /* Build our SEQUENCE and rebuild the insn chain.  */
514   XVECEXP (seq, 0, 0) = delay_insn;
515   INSN_DELETED_P (delay_insn) = 0;
516   PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
517 
518   INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
519 
520   for (li = list; li; li = XEXP (li, 1), i++)
521     {
522       rtx tem = XEXP (li, 0);
523       rtx note, next;
524 
525       /* Show that this copy of the insn isn't deleted.  */
526       INSN_DELETED_P (tem) = 0;
527 
528       XVECEXP (seq, 0, i) = tem;
529       PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
530       NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
531 
532       /* SPARC assembler, for instance, emit warning when debug info is output
533          into the delay slot.  */
534       if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
535 	INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
536       INSN_LOCATOR (tem) = 0;
537 
538       for (note = REG_NOTES (tem); note; note = next)
539 	{
540 	  next = XEXP (note, 1);
541 	  switch (REG_NOTE_KIND (note))
542 	    {
543 	    case REG_DEAD:
544 	      /* Remove any REG_DEAD notes because we can't rely on them now
545 		 that the insn has been moved.  */
546 	      remove_note (tem, note);
547 	      break;
548 
549 	    case REG_LABEL_OPERAND:
550 	    case REG_LABEL_TARGET:
551 	      /* Keep the label reference count up to date.  */
552 	      if (LABEL_P (XEXP (note, 0)))
553 		LABEL_NUSES (XEXP (note, 0)) ++;
554 	      break;
555 
556 	    default:
557 	      break;
558 	    }
559 	}
560     }
561 
562   NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
563 
564   /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
565      last insn in that SEQUENCE to point to us.  Similarly for the first
566      insn in the following insn if it is a SEQUENCE.  */
567 
568   if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
569       && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
570     NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
571 			XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
572       = seq_insn;
573 
574   if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
575       && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
576     PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
577 
578   /* If there used to be a BARRIER, put it back.  */
579   if (had_barrier)
580     emit_barrier_after (seq_insn);
581 
582   gcc_assert (i == length + 1);
583 
584   return seq_insn;
585 }
586 
587 /* Add INSN to DELAY_LIST and return the head of the new list.  The list must
588    be in the order in which the insns are to be executed.  */
589 
590 static rtx
591 add_to_delay_list (rtx insn, rtx delay_list)
592 {
593   /* If we have an empty list, just make a new list element.  If
594      INSN has its block number recorded, clear it since we may
595      be moving the insn to a new block.  */
596 
597   if (delay_list == 0)
598     {
599       clear_hashed_info_for_insn (insn);
600       return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
601     }
602 
603   /* Otherwise this must be an INSN_LIST.  Add INSN to the end of the
604      list.  */
605   XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
606 
607   return delay_list;
608 }
609 
610 /* Delete INSN from the delay slot of the insn that it is in, which may
611    produce an insn with no delay slots.  Return the new insn.  */
612 
613 static rtx
614 delete_from_delay_slot (rtx insn)
615 {
616   rtx trial, seq_insn, seq, prev;
617   rtx delay_list = 0;
618   int i;
619   int had_barrier = 0;
620 
621   /* We first must find the insn containing the SEQUENCE with INSN in its
622      delay slot.  Do this by finding an insn, TRIAL, where
623      PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL.  */
624 
625   for (trial = insn;
626        PREV_INSN (NEXT_INSN (trial)) == trial;
627        trial = NEXT_INSN (trial))
628     ;
629 
630   seq_insn = PREV_INSN (NEXT_INSN (trial));
631   seq = PATTERN (seq_insn);
632 
633   if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
634     had_barrier = 1;
635 
636   /* Create a delay list consisting of all the insns other than the one
637      we are deleting (unless we were the only one).  */
638   if (XVECLEN (seq, 0) > 2)
639     for (i = 1; i < XVECLEN (seq, 0); i++)
640       if (XVECEXP (seq, 0, i) != insn)
641 	delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
642 
643   /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
644      list, and rebuild the delay list if non-empty.  */
645   prev = PREV_INSN (seq_insn);
646   trial = XVECEXP (seq, 0, 0);
647   delete_related_insns (seq_insn);
648   add_insn_after (trial, prev, NULL);
649 
650   /* If there was a barrier after the old SEQUENCE, remit it.  */
651   if (had_barrier)
652     emit_barrier_after (trial);
653 
654   /* If there are any delay insns, remit them.  Otherwise clear the
655      annul flag.  */
656   if (delay_list)
657     trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
658   else if (INSN_P (trial))
659     INSN_ANNULLED_BRANCH_P (trial) = 0;
660 
661   INSN_FROM_TARGET_P (insn) = 0;
662 
663   /* Show we need to fill this insn again.  */
664   obstack_ptr_grow (&unfilled_slots_obstack, trial);
665 
666   return trial;
667 }
668 
669 /* Delete INSN, a JUMP_INSN.  If it is a conditional jump, we must track down
670    the insn that sets CC0 for it and delete it too.  */
671 
672 static void
673 delete_scheduled_jump (rtx insn)
674 {
675   /* Delete the insn that sets cc0 for us.  On machines without cc0, we could
676      delete the insn that sets the condition code, but it is hard to find it.
677      Since this case is rare anyway, don't bother trying; there would likely
678      be other insns that became dead anyway, which we wouldn't know to
679      delete.  */
680 
681 #ifdef HAVE_cc0
682   if (reg_mentioned_p (cc0_rtx, insn))
683     {
684       rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
685 
686       /* If a reg-note was found, it points to an insn to set CC0.  This
687 	 insn is in the delay list of some other insn.  So delete it from
688 	 the delay list it was in.  */
689       if (note)
690 	{
691 	  if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
692 	      && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
693 	    delete_from_delay_slot (XEXP (note, 0));
694 	}
695       else
696 	{
697 	  /* The insn setting CC0 is our previous insn, but it may be in
698 	     a delay slot.  It will be the last insn in the delay slot, if
699 	     it is.  */
700 	  rtx trial = previous_insn (insn);
701 	  if (NOTE_P (trial))
702 	    trial = prev_nonnote_insn (trial);
703 	  if (sets_cc0_p (PATTERN (trial)) != 1
704 	      || FIND_REG_INC_NOTE (trial, NULL_RTX))
705 	    return;
706 	  if (PREV_INSN (NEXT_INSN (trial)) == trial)
707 	    delete_related_insns (trial);
708 	  else
709 	    delete_from_delay_slot (trial);
710 	}
711     }
712 #endif
713 
714   delete_related_insns (insn);
715 }
716 
717 /* Counters for delay-slot filling.  */
718 
719 #define NUM_REORG_FUNCTIONS 2
720 #define MAX_DELAY_HISTOGRAM 3
721 #define MAX_REORG_PASSES 2
722 
723 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
724 
725 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
726 
727 static int reorg_pass_number;
728 
729 static void
730 note_delay_statistics (int slots_filled, int index)
731 {
732   num_insns_needing_delays[index][reorg_pass_number]++;
733   if (slots_filled > MAX_DELAY_HISTOGRAM)
734     slots_filled = MAX_DELAY_HISTOGRAM;
735   num_filled_delays[index][slots_filled][reorg_pass_number]++;
736 }
737 
738 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
739 
740 /* Optimize the following cases:
741 
742    1.  When a conditional branch skips over only one instruction,
743        use an annulling branch and put that insn in the delay slot.
744        Use either a branch that annuls when the condition if true or
745        invert the test with a branch that annuls when the condition is
746        false.  This saves insns, since otherwise we must copy an insn
747        from the L1 target.
748 
749         (orig)		 (skip)		(otherwise)
750 	Bcc.n L1	Bcc',a L1	Bcc,a L1'
751 	insn		insn		insn2
752       L1:	      L1:	      L1:
753 	insn2		insn2		insn2
754 	insn3		insn3	      L1':
755 					insn3
756 
757    2.  When a conditional branch skips over only one instruction,
758        and after that, it unconditionally branches somewhere else,
759        perform the similar optimization. This saves executing the
760        second branch in the case where the inverted condition is true.
761 
762 	Bcc.n L1	Bcc',a L2
763 	insn		insn
764       L1:	      L1:
765 	Bra L2		Bra L2
766 
767    INSN is a JUMP_INSN.
768 
769    This should be expanded to skip over N insns, where N is the number
770    of delay slots required.  */
771 
772 static rtx
773 optimize_skip (rtx insn)
774 {
775   rtx trial = next_nonnote_insn (insn);
776   rtx next_trial = next_active_insn (trial);
777   rtx delay_list = 0;
778   int flags;
779 
780   flags = get_jump_flags (insn, JUMP_LABEL (insn));
781 
782   if (trial == 0
783       || !NONJUMP_INSN_P (trial)
784       || GET_CODE (PATTERN (trial)) == SEQUENCE
785       || recog_memoized (trial) < 0
786       || (! eligible_for_annul_false (insn, 0, trial, flags)
787 	  && ! eligible_for_annul_true (insn, 0, trial, flags))
788       || can_throw_internal (trial))
789     return 0;
790 
791   /* There are two cases where we are just executing one insn (we assume
792      here that a branch requires only one insn; this should be generalized
793      at some point):  Where the branch goes around a single insn or where
794      we have one insn followed by a branch to the same label we branch to.
795      In both of these cases, inverting the jump and annulling the delay
796      slot give the same effect in fewer insns.  */
797   if ((next_trial == next_active_insn (JUMP_LABEL (insn))
798        && ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
799       || (next_trial != 0
800 	  && JUMP_P (next_trial)
801 	  && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
802 	  && (simplejump_p (next_trial)
803 	      || GET_CODE (PATTERN (next_trial)) == RETURN)))
804     {
805       if (eligible_for_annul_false (insn, 0, trial, flags))
806 	{
807 	  if (invert_jump (insn, JUMP_LABEL (insn), 1))
808 	    INSN_FROM_TARGET_P (trial) = 1;
809 	  else if (! eligible_for_annul_true (insn, 0, trial, flags))
810 	    return 0;
811 	}
812 
813       delay_list = add_to_delay_list (trial, NULL_RTX);
814       next_trial = next_active_insn (trial);
815       update_block (trial, trial);
816       delete_related_insns (trial);
817 
818       /* Also, if we are targeting an unconditional
819 	 branch, thread our jump to the target of that branch.  Don't
820 	 change this into a RETURN here, because it may not accept what
821 	 we have in the delay slot.  We'll fix this up later.  */
822       if (next_trial && JUMP_P (next_trial)
823 	  && (simplejump_p (next_trial)
824 	      || GET_CODE (PATTERN (next_trial)) == RETURN))
825 	{
826 	  rtx target_label = JUMP_LABEL (next_trial);
827 	  if (target_label == 0)
828 	    target_label = find_end_label ();
829 
830 	  if (target_label)
831 	    {
832 	      /* Recompute the flags based on TARGET_LABEL since threading
833 		 the jump to TARGET_LABEL may change the direction of the
834 		 jump (which may change the circumstances in which the
835 		 delay slot is nullified).  */
836 	      flags = get_jump_flags (insn, target_label);
837 	      if (eligible_for_annul_true (insn, 0, trial, flags))
838 		reorg_redirect_jump (insn, target_label);
839 	    }
840 	}
841 
842       INSN_ANNULLED_BRANCH_P (insn) = 1;
843     }
844 
845   return delay_list;
846 }
847 #endif
848 
849 /*  Encode and return branch direction and prediction information for
850     INSN assuming it will jump to LABEL.
851 
852     Non conditional branches return no direction information and
853     are predicted as very likely taken.  */
854 
855 static int
856 get_jump_flags (rtx insn, rtx label)
857 {
858   int flags;
859 
860   /* get_jump_flags can be passed any insn with delay slots, these may
861      be INSNs, CALL_INSNs, or JUMP_INSNs.  Only JUMP_INSNs have branch
862      direction information, and only if they are conditional jumps.
863 
864      If LABEL is zero, then there is no way to determine the branch
865      direction.  */
866   if (JUMP_P (insn)
867       && (condjump_p (insn) || condjump_in_parallel_p (insn))
868       && INSN_UID (insn) <= max_uid
869       && label != 0
870       && INSN_UID (label) <= max_uid)
871     flags
872       = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
873 	 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
874   /* No valid direction information.  */
875   else
876     flags = 0;
877 
878   /* If insn is a conditional branch call mostly_true_jump to get
879      determine the branch prediction.
880 
881      Non conditional branches are predicted as very likely taken.  */
882   if (JUMP_P (insn)
883       && (condjump_p (insn) || condjump_in_parallel_p (insn)))
884     {
885       int prediction;
886 
887       prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
888       switch (prediction)
889 	{
890 	case 2:
891 	  flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
892 	  break;
893 	case 1:
894 	  flags |= ATTR_FLAG_likely;
895 	  break;
896 	case 0:
897 	  flags |= ATTR_FLAG_unlikely;
898 	  break;
899 	case -1:
900 	  flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
901 	  break;
902 
903 	default:
904 	  gcc_unreachable ();
905 	}
906     }
907   else
908     flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
909 
910   return flags;
911 }
912 
913 /* Return 1 if INSN is a destination that will be branched to rarely (the
914    return point of a function); return 2 if DEST will be branched to very
915    rarely (a call to a function that doesn't return).  Otherwise,
916    return 0.  */
917 
918 static int
919 rare_destination (rtx insn)
920 {
921   int jump_count = 0;
922   rtx next;
923 
924   for (; insn; insn = next)
925     {
926       if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
927 	insn = XVECEXP (PATTERN (insn), 0, 0);
928 
929       next = NEXT_INSN (insn);
930 
931       switch (GET_CODE (insn))
932 	{
933 	case CODE_LABEL:
934 	  return 0;
935 	case BARRIER:
936 	  /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN.  We
937 	     don't scan past JUMP_INSNs, so any barrier we find here must
938 	     have been after a CALL_INSN and hence mean the call doesn't
939 	     return.  */
940 	  return 2;
941 	case JUMP_INSN:
942 	  if (GET_CODE (PATTERN (insn)) == RETURN)
943 	    return 1;
944 	  else if (simplejump_p (insn)
945 		   && jump_count++ < 10)
946 	    next = JUMP_LABEL (insn);
947 	  else
948 	    return 0;
949 
950 	default:
951 	  break;
952 	}
953     }
954 
955   /* If we got here it means we hit the end of the function.  So this
956      is an unlikely destination.  */
957 
958   return 1;
959 }
960 
961 /* Return truth value of the statement that this branch
962    is mostly taken.  If we think that the branch is extremely likely
963    to be taken, we return 2.  If the branch is slightly more likely to be
964    taken, return 1.  If the branch is slightly less likely to be taken,
965    return 0 and if the branch is highly unlikely to be taken, return -1.
966 
967    CONDITION, if nonzero, is the condition that JUMP_INSN is testing.  */
968 
969 static int
970 mostly_true_jump (rtx jump_insn, rtx condition)
971 {
972   rtx target_label = JUMP_LABEL (jump_insn);
973   rtx note;
974   int rare_dest, rare_fallthrough;
975 
976   /* If branch probabilities are available, then use that number since it
977      always gives a correct answer.  */
978   note = find_reg_note (jump_insn, REG_BR_PROB, 0);
979   if (note)
980     {
981       int prob = INTVAL (XEXP (note, 0));
982 
983       if (prob >= REG_BR_PROB_BASE * 9 / 10)
984 	return 2;
985       else if (prob >= REG_BR_PROB_BASE / 2)
986 	return 1;
987       else if (prob >= REG_BR_PROB_BASE / 10)
988 	return 0;
989       else
990 	return -1;
991     }
992 
993   /* Look at the relative rarities of the fallthrough and destination.  If
994      they differ, we can predict the branch that way.  */
995   rare_dest = rare_destination (target_label);
996   rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
997 
998   switch (rare_fallthrough - rare_dest)
999     {
1000     case -2:
1001       return -1;
1002     case -1:
1003       return 0;
1004     case 0:
1005       break;
1006     case 1:
1007       return 1;
1008     case 2:
1009       return 2;
1010     }
1011 
1012   /* If we couldn't figure out what this jump was, assume it won't be
1013      taken.  This should be rare.  */
1014   if (condition == 0)
1015     return 0;
1016 
1017   /* Predict backward branches usually take, forward branches usually not.  If
1018      we don't know whether this is forward or backward, assume the branch
1019      will be taken, since most are.  */
1020   return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1021 	  || INSN_UID (target_label) > max_uid
1022 	  || (uid_to_ruid[INSN_UID (jump_insn)]
1023 	      > uid_to_ruid[INSN_UID (target_label)]));
1024 }
1025 
1026 /* Return the condition under which INSN will branch to TARGET.  If TARGET
1027    is zero, return the condition under which INSN will return.  If INSN is
1028    an unconditional branch, return const_true_rtx.  If INSN isn't a simple
1029    type of jump, or it doesn't go to TARGET, return 0.  */
1030 
1031 static rtx
1032 get_branch_condition (rtx insn, rtx target)
1033 {
1034   rtx pat = PATTERN (insn);
1035   rtx src;
1036 
1037   if (condjump_in_parallel_p (insn))
1038     pat = XVECEXP (pat, 0, 0);
1039 
1040   if (GET_CODE (pat) == RETURN)
1041     return target == 0 ? const_true_rtx : 0;
1042 
1043   else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1044     return 0;
1045 
1046   src = SET_SRC (pat);
1047   if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1048     return const_true_rtx;
1049 
1050   else if (GET_CODE (src) == IF_THEN_ELSE
1051 	   && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1052 	       || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1053 		   && XEXP (XEXP (src, 1), 0) == target))
1054 	   && XEXP (src, 2) == pc_rtx)
1055     return XEXP (src, 0);
1056 
1057   else if (GET_CODE (src) == IF_THEN_ELSE
1058 	   && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1059 	       || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1060 		   && XEXP (XEXP (src, 2), 0) == target))
1061 	   && XEXP (src, 1) == pc_rtx)
1062     {
1063       enum rtx_code rev;
1064       rev = reversed_comparison_code (XEXP (src, 0), insn);
1065       if (rev != UNKNOWN)
1066 	return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1067 			       XEXP (XEXP (src, 0), 0),
1068 			       XEXP (XEXP (src, 0), 1));
1069     }
1070 
1071   return 0;
1072 }
1073 
1074 /* Return nonzero if CONDITION is more strict than the condition of
1075    INSN, i.e., if INSN will always branch if CONDITION is true.  */
1076 
1077 static int
1078 condition_dominates_p (rtx condition, rtx insn)
1079 {
1080   rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1081   enum rtx_code code = GET_CODE (condition);
1082   enum rtx_code other_code;
1083 
1084   if (rtx_equal_p (condition, other_condition)
1085       || other_condition == const_true_rtx)
1086     return 1;
1087 
1088   else if (condition == const_true_rtx || other_condition == 0)
1089     return 0;
1090 
1091   other_code = GET_CODE (other_condition);
1092   if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1093       || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1094       || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1095     return 0;
1096 
1097   return comparison_dominates_p (code, other_code);
1098 }
1099 
1100 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1101    any insns already in the delay slot of JUMP.  */
1102 
1103 static int
1104 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1105 {
1106   int flags, i;
1107   rtx pat = PATTERN (seq);
1108 
1109   /* Make sure all the delay slots of this jump would still
1110      be valid after threading the jump.  If they are still
1111      valid, then return nonzero.  */
1112 
1113   flags = get_jump_flags (jump, newlabel);
1114   for (i = 1; i < XVECLEN (pat, 0); i++)
1115     if (! (
1116 #ifdef ANNUL_IFFALSE_SLOTS
1117 	   (INSN_ANNULLED_BRANCH_P (jump)
1118 	    && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1119 	   ? eligible_for_annul_false (jump, i - 1,
1120 				       XVECEXP (pat, 0, i), flags) :
1121 #endif
1122 #ifdef ANNUL_IFTRUE_SLOTS
1123 	   (INSN_ANNULLED_BRANCH_P (jump)
1124 	    && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1125 	   ? eligible_for_annul_true (jump, i - 1,
1126 				      XVECEXP (pat, 0, i), flags) :
1127 #endif
1128 	   eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1129       break;
1130 
1131   return (i == XVECLEN (pat, 0));
1132 }
1133 
1134 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1135    any insns we wish to place in the delay slot of JUMP.  */
1136 
1137 static int
1138 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1139 {
1140   int flags, i;
1141   rtx li;
1142 
1143   /* Make sure all the insns in DELAY_LIST would still be
1144      valid after threading the jump.  If they are still
1145      valid, then return nonzero.  */
1146 
1147   flags = get_jump_flags (jump, newlabel);
1148   for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1149     if (! (
1150 #ifdef ANNUL_IFFALSE_SLOTS
1151 	   (INSN_ANNULLED_BRANCH_P (jump)
1152 	    && INSN_FROM_TARGET_P (XEXP (li, 0)))
1153 	   ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1154 #endif
1155 #ifdef ANNUL_IFTRUE_SLOTS
1156 	   (INSN_ANNULLED_BRANCH_P (jump)
1157 	    && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1158 	   ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1159 #endif
1160 	   eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1161       break;
1162 
1163   return (li == NULL);
1164 }
1165 
1166 /* DELAY_LIST is a list of insns that have already been placed into delay
1167    slots.  See if all of them have the same annulling status as ANNUL_TRUE_P.
1168    If not, return 0; otherwise return 1.  */
1169 
1170 static int
1171 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1172 {
1173   rtx temp;
1174 
1175   if (delay_list)
1176     {
1177       for (temp = delay_list; temp; temp = XEXP (temp, 1))
1178 	{
1179 	  rtx trial = XEXP (temp, 0);
1180 
1181 	  if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1182 	      || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1183 	    return 0;
1184 	}
1185     }
1186 
1187   return 1;
1188 }
1189 
1190 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE.  Given that
1191    the condition tested by INSN is CONDITION and the resources shown in
1192    OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1193    from SEQ's delay list, in addition to whatever insns it may execute
1194    (in DELAY_LIST).   SETS and NEEDED are denote resources already set and
1195    needed while searching for delay slot insns.  Return the concatenated
1196    delay list if possible, otherwise, return 0.
1197 
1198    SLOTS_TO_FILL is the total number of slots required by INSN, and
1199    PSLOTS_FILLED points to the number filled so far (also the number of
1200    insns in DELAY_LIST).  It is updated with the number that have been
1201    filled from the SEQUENCE, if any.
1202 
1203    PANNUL_P points to a nonzero value if we already know that we need
1204    to annul INSN.  If this routine determines that annulling is needed,
1205    it may set that value nonzero.
1206 
1207    PNEW_THREAD points to a location that is to receive the place at which
1208    execution should continue.  */
1209 
1210 static rtx
1211 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1212 			      rtx delay_list, struct resources *sets,
1213 			      struct resources *needed,
1214 			      struct resources *other_needed,
1215 			      int slots_to_fill, int *pslots_filled,
1216 			      int *pannul_p, rtx *pnew_thread)
1217 {
1218   rtx temp;
1219   int slots_remaining = slots_to_fill - *pslots_filled;
1220   int total_slots_filled = *pslots_filled;
1221   rtx new_delay_list = 0;
1222   int must_annul = *pannul_p;
1223   int used_annul = 0;
1224   int i;
1225   struct resources cc_set;
1226 
1227   /* We can't do anything if there are more delay slots in SEQ than we
1228      can handle, or if we don't know that it will be a taken branch.
1229      We know that it will be a taken branch if it is either an unconditional
1230      branch or a conditional branch with a stricter branch condition.
1231 
1232      Also, exit if the branch has more than one set, since then it is computing
1233      other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1234      ??? It may be possible to move other sets into INSN in addition to
1235      moving the instructions in the delay slots.
1236 
1237      We can not steal the delay list if one of the instructions in the
1238      current delay_list modifies the condition codes and the jump in the
1239      sequence is a conditional jump. We can not do this because we can
1240      not change the direction of the jump because the condition codes
1241      will effect the direction of the jump in the sequence.  */
1242 
1243   CLEAR_RESOURCE (&cc_set);
1244   for (temp = delay_list; temp; temp = XEXP (temp, 1))
1245     {
1246       rtx trial = XEXP (temp, 0);
1247 
1248       mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1249       if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, false))
1250 	return delay_list;
1251     }
1252 
1253   if (XVECLEN (seq, 0) - 1 > slots_remaining
1254       || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1255       || ! single_set (XVECEXP (seq, 0, 0)))
1256     return delay_list;
1257 
1258 #ifdef MD_CAN_REDIRECT_BRANCH
1259   /* On some targets, branches with delay slots can have a limited
1260      displacement.  Give the back end a chance to tell us we can't do
1261      this.  */
1262   if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1263     return delay_list;
1264 #endif
1265 
1266   for (i = 1; i < XVECLEN (seq, 0); i++)
1267     {
1268       rtx trial = XVECEXP (seq, 0, i);
1269       int flags;
1270 
1271       if (insn_references_resource_p (trial, sets, false)
1272 	  || insn_sets_resource_p (trial, needed, false)
1273 	  || insn_sets_resource_p (trial, sets, false)
1274 #ifdef HAVE_cc0
1275 	  /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1276 	     delay list.  */
1277 	  || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1278 #endif
1279 	  /* If TRIAL is from the fallthrough code of an annulled branch insn
1280 	     in SEQ, we cannot use it.  */
1281 	  || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1282 	      && ! INSN_FROM_TARGET_P (trial)))
1283 	return delay_list;
1284 
1285       /* If this insn was already done (usually in a previous delay slot),
1286 	 pretend we put it in our delay slot.  */
1287       if (redundant_insn (trial, insn, new_delay_list))
1288 	continue;
1289 
1290       /* We will end up re-vectoring this branch, so compute flags
1291 	 based on jumping to the new label.  */
1292       flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1293 
1294       if (! must_annul
1295 	  && ((condition == const_true_rtx
1296 	       || (! insn_sets_resource_p (trial, other_needed, false)
1297 		   && ! may_trap_or_fault_p (PATTERN (trial)))))
1298 	  ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1299 	  : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1300 	     && (must_annul = 1,
1301 	         check_annul_list_true_false (0, delay_list)
1302 	         && check_annul_list_true_false (0, new_delay_list)
1303 	         && eligible_for_annul_false (insn, total_slots_filled,
1304 					      trial, flags)))
1305 	{
1306 	  if (must_annul)
1307 	    used_annul = 1;
1308 	  temp = copy_rtx (trial);
1309 	  INSN_FROM_TARGET_P (temp) = 1;
1310 	  new_delay_list = add_to_delay_list (temp, new_delay_list);
1311 	  total_slots_filled++;
1312 
1313 	  if (--slots_remaining == 0)
1314 	    break;
1315 	}
1316       else
1317 	return delay_list;
1318     }
1319 
1320   /* Show the place to which we will be branching.  */
1321   *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1322 
1323   /* Add any new insns to the delay list and update the count of the
1324      number of slots filled.  */
1325   *pslots_filled = total_slots_filled;
1326   if (used_annul)
1327     *pannul_p = 1;
1328 
1329   if (delay_list == 0)
1330     return new_delay_list;
1331 
1332   for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1333     delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1334 
1335   return delay_list;
1336 }
1337 
1338 /* Similar to steal_delay_list_from_target except that SEQ is on the
1339    fallthrough path of INSN.  Here we only do something if the delay insn
1340    of SEQ is an unconditional branch.  In that case we steal its delay slot
1341    for INSN since unconditional branches are much easier to fill.  */
1342 
1343 static rtx
1344 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1345 				   rtx delay_list, struct resources *sets,
1346 				   struct resources *needed,
1347 				   struct resources *other_needed,
1348 				   int slots_to_fill, int *pslots_filled,
1349 				   int *pannul_p)
1350 {
1351   int i;
1352   int flags;
1353   int must_annul = *pannul_p;
1354   int used_annul = 0;
1355 
1356   flags = get_jump_flags (insn, JUMP_LABEL (insn));
1357 
1358   /* We can't do anything if SEQ's delay insn isn't an
1359      unconditional branch.  */
1360 
1361   if (! simplejump_p (XVECEXP (seq, 0, 0))
1362       && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1363     return delay_list;
1364 
1365   for (i = 1; i < XVECLEN (seq, 0); i++)
1366     {
1367       rtx trial = XVECEXP (seq, 0, i);
1368 
1369       /* If TRIAL sets CC0, stealing it will move it too far from the use
1370 	 of CC0.  */
1371       if (insn_references_resource_p (trial, sets, false)
1372 	  || insn_sets_resource_p (trial, needed, false)
1373 	  || insn_sets_resource_p (trial, sets, false)
1374 #ifdef HAVE_cc0
1375 	  || sets_cc0_p (PATTERN (trial))
1376 #endif
1377 	  )
1378 
1379 	break;
1380 
1381       /* If this insn was already done, we don't need it.  */
1382       if (redundant_insn (trial, insn, delay_list))
1383 	{
1384 	  delete_from_delay_slot (trial);
1385 	  continue;
1386 	}
1387 
1388       if (! must_annul
1389 	  && ((condition == const_true_rtx
1390 	       || (! insn_sets_resource_p (trial, other_needed, false)
1391 		   && ! may_trap_or_fault_p (PATTERN (trial)))))
1392 	  ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1393 	  : (must_annul || delay_list == NULL) && (must_annul = 1,
1394 	     check_annul_list_true_false (1, delay_list)
1395 	     && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1396 	{
1397 	  if (must_annul)
1398 	    used_annul = 1;
1399 	  delete_from_delay_slot (trial);
1400 	  delay_list = add_to_delay_list (trial, delay_list);
1401 
1402 	  if (++(*pslots_filled) == slots_to_fill)
1403 	    break;
1404 	}
1405       else
1406 	break;
1407     }
1408 
1409   if (used_annul)
1410     *pannul_p = 1;
1411   return delay_list;
1412 }
1413 
1414 /* Try merging insns starting at THREAD which match exactly the insns in
1415    INSN's delay list.
1416 
1417    If all insns were matched and the insn was previously annulling, the
1418    annul bit will be cleared.
1419 
1420    For each insn that is merged, if the branch is or will be non-annulling,
1421    we delete the merged insn.  */
1422 
1423 static void
1424 try_merge_delay_insns (rtx insn, rtx thread)
1425 {
1426   rtx trial, next_trial;
1427   rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1428   int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1429   int slot_number = 1;
1430   int num_slots = XVECLEN (PATTERN (insn), 0);
1431   rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1432   struct resources set, needed;
1433   rtx merged_insns = 0;
1434   int i;
1435   int flags;
1436 
1437   flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1438 
1439   CLEAR_RESOURCE (&needed);
1440   CLEAR_RESOURCE (&set);
1441 
1442   /* If this is not an annulling branch, take into account anything needed in
1443      INSN's delay slot.  This prevents two increments from being incorrectly
1444      folded into one.  If we are annulling, this would be the correct
1445      thing to do.  (The alternative, looking at things set in NEXT_TO_MATCH
1446      will essentially disable this optimization.  This method is somewhat of
1447      a kludge, but I don't see a better way.)  */
1448   if (! annul_p)
1449     for (i = 1 ; i < num_slots; i++)
1450       if (XVECEXP (PATTERN (insn), 0, i))
1451 	mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed,
1452 				   true);
1453 
1454   for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1455     {
1456       rtx pat = PATTERN (trial);
1457       rtx oldtrial = trial;
1458 
1459       next_trial = next_nonnote_insn (trial);
1460 
1461       /* TRIAL must be a CALL_INSN or INSN.  Skip USE and CLOBBER.  */
1462       if (NONJUMP_INSN_P (trial)
1463 	  && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1464 	continue;
1465 
1466       if (GET_CODE (next_to_match) == GET_CODE (trial)
1467 #ifdef HAVE_cc0
1468 	  /* We can't share an insn that sets cc0.  */
1469 	  && ! sets_cc0_p (pat)
1470 #endif
1471 	  && ! insn_references_resource_p (trial, &set, true)
1472 	  && ! insn_sets_resource_p (trial, &set, true)
1473 	  && ! insn_sets_resource_p (trial, &needed, true)
1474 	  && (trial = try_split (pat, trial, 0)) != 0
1475 	  /* Update next_trial, in case try_split succeeded.  */
1476 	  && (next_trial = next_nonnote_insn (trial))
1477 	  /* Likewise THREAD.  */
1478 	  && (thread = oldtrial == thread ? trial : thread)
1479 	  && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1480 	  /* Have to test this condition if annul condition is different
1481 	     from (and less restrictive than) non-annulling one.  */
1482 	  && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1483 	{
1484 
1485 	  if (! annul_p)
1486 	    {
1487 	      update_block (trial, thread);
1488 	      if (trial == thread)
1489 		thread = next_active_insn (thread);
1490 
1491 	      delete_related_insns (trial);
1492 	      INSN_FROM_TARGET_P (next_to_match) = 0;
1493 	    }
1494 	  else
1495 	    merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1496 
1497 	  if (++slot_number == num_slots)
1498 	    break;
1499 
1500 	  next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1501 	}
1502 
1503       mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1504       mark_referenced_resources (trial, &needed, true);
1505     }
1506 
1507   /* See if we stopped on a filled insn.  If we did, try to see if its
1508      delay slots match.  */
1509   if (slot_number != num_slots
1510       && trial && NONJUMP_INSN_P (trial)
1511       && GET_CODE (PATTERN (trial)) == SEQUENCE
1512       && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1513     {
1514       rtx pat = PATTERN (trial);
1515       rtx filled_insn = XVECEXP (pat, 0, 0);
1516 
1517       /* Account for resources set/needed by the filled insn.  */
1518       mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1519       mark_referenced_resources (filled_insn, &needed, true);
1520 
1521       for (i = 1; i < XVECLEN (pat, 0); i++)
1522 	{
1523 	  rtx dtrial = XVECEXP (pat, 0, i);
1524 
1525 	  if (! insn_references_resource_p (dtrial, &set, true)
1526 	      && ! insn_sets_resource_p (dtrial, &set, true)
1527 	      && ! insn_sets_resource_p (dtrial, &needed, true)
1528 #ifdef HAVE_cc0
1529 	      && ! sets_cc0_p (PATTERN (dtrial))
1530 #endif
1531 	      && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1532 	      && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1533 	    {
1534 	      if (! annul_p)
1535 		{
1536 		  rtx new_rtx;
1537 
1538 		  update_block (dtrial, thread);
1539 		  new_rtx = delete_from_delay_slot (dtrial);
1540 	          if (INSN_DELETED_P (thread))
1541 		    thread = new_rtx;
1542 		  INSN_FROM_TARGET_P (next_to_match) = 0;
1543 		}
1544 	      else
1545 		merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1546 						  merged_insns);
1547 
1548 	      if (++slot_number == num_slots)
1549 		break;
1550 
1551 	      next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1552 	    }
1553 	  else
1554 	    {
1555 	      /* Keep track of the set/referenced resources for the delay
1556 		 slots of any trial insns we encounter.  */
1557 	      mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1558 	      mark_referenced_resources (dtrial, &needed, true);
1559 	    }
1560 	}
1561     }
1562 
1563   /* If all insns in the delay slot have been matched and we were previously
1564      annulling the branch, we need not any more.  In that case delete all the
1565      merged insns.  Also clear the INSN_FROM_TARGET_P bit of each insn in
1566      the delay list so that we know that it isn't only being used at the
1567      target.  */
1568   if (slot_number == num_slots && annul_p)
1569     {
1570       for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1571 	{
1572 	  if (GET_MODE (merged_insns) == SImode)
1573 	    {
1574 	      rtx new_rtx;
1575 
1576 	      update_block (XEXP (merged_insns, 0), thread);
1577 	      new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
1578 	      if (INSN_DELETED_P (thread))
1579 		thread = new_rtx;
1580 	    }
1581 	  else
1582 	    {
1583 	      update_block (XEXP (merged_insns, 0), thread);
1584 	      delete_related_insns (XEXP (merged_insns, 0));
1585 	    }
1586 	}
1587 
1588       INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1589 
1590       for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1591 	INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1592     }
1593 }
1594 
1595 /* See if INSN is redundant with an insn in front of TARGET.  Often this
1596    is called when INSN is a candidate for a delay slot of TARGET.
1597    DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1598    of INSN.  Often INSN will be redundant with an insn in a delay slot of
1599    some previous insn.  This happens when we have a series of branches to the
1600    same label; in that case the first insn at the target might want to go
1601    into each of the delay slots.
1602 
1603    If we are not careful, this routine can take up a significant fraction
1604    of the total compilation time (4%), but only wins rarely.  Hence we
1605    speed this routine up by making two passes.  The first pass goes back
1606    until it hits a label and sees if it finds an insn with an identical
1607    pattern.  Only in this (relatively rare) event does it check for
1608    data conflicts.
1609 
1610    We do not split insns we encounter.  This could cause us not to find a
1611    redundant insn, but the cost of splitting seems greater than the possible
1612    gain in rare cases.  */
1613 
1614 static rtx
1615 redundant_insn (rtx insn, rtx target, rtx delay_list)
1616 {
1617   rtx target_main = target;
1618   rtx ipat = PATTERN (insn);
1619   rtx trial, pat;
1620   struct resources needed, set;
1621   int i;
1622   unsigned insns_to_search;
1623 
1624   /* If INSN has any REG_UNUSED notes, it can't match anything since we
1625      are allowed to not actually assign to such a register.  */
1626   if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1627     return 0;
1628 
1629   /* Scan backwards looking for a match.  */
1630   for (trial = PREV_INSN (target),
1631 	 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1632        trial && insns_to_search > 0;
1633        trial = PREV_INSN (trial))
1634     {
1635       if (LABEL_P (trial))
1636 	return 0;
1637 
1638       if (!NONDEBUG_INSN_P (trial))
1639 	continue;
1640       --insns_to_search;
1641 
1642       pat = PATTERN (trial);
1643       if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1644 	continue;
1645 
1646       if (GET_CODE (pat) == SEQUENCE)
1647 	{
1648 	  /* Stop for a CALL and its delay slots because it is difficult to
1649 	     track its resource needs correctly.  */
1650 	  if (CALL_P (XVECEXP (pat, 0, 0)))
1651 	    return 0;
1652 
1653 	  /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1654 	     slots because it is difficult to track its resource needs
1655 	     correctly.  */
1656 
1657 #ifdef INSN_SETS_ARE_DELAYED
1658 	  if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1659 	    return 0;
1660 #endif
1661 
1662 #ifdef INSN_REFERENCES_ARE_DELAYED
1663 	  if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1664 	    return 0;
1665 #endif
1666 
1667 	  /* See if any of the insns in the delay slot match, updating
1668 	     resource requirements as we go.  */
1669 	  for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1670 	    if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1671 		&& rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1672 		&& ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1673 	      break;
1674 
1675 	  /* If found a match, exit this loop early.  */
1676 	  if (i > 0)
1677 	    break;
1678 	}
1679 
1680       else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1681 	       && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1682 	break;
1683     }
1684 
1685   /* If we didn't find an insn that matches, return 0.  */
1686   if (trial == 0)
1687     return 0;
1688 
1689   /* See what resources this insn sets and needs.  If they overlap, or
1690      if this insn references CC0, it can't be redundant.  */
1691 
1692   CLEAR_RESOURCE (&needed);
1693   CLEAR_RESOURCE (&set);
1694   mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1695   mark_referenced_resources (insn, &needed, true);
1696 
1697   /* If TARGET is a SEQUENCE, get the main insn.  */
1698   if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1699     target_main = XVECEXP (PATTERN (target), 0, 0);
1700 
1701   if (resource_conflicts_p (&needed, &set)
1702 #ifdef HAVE_cc0
1703       || reg_mentioned_p (cc0_rtx, ipat)
1704 #endif
1705       /* The insn requiring the delay may not set anything needed or set by
1706 	 INSN.  */
1707       || insn_sets_resource_p (target_main, &needed, true)
1708       || insn_sets_resource_p (target_main, &set, true))
1709     return 0;
1710 
1711   /* Insns we pass may not set either NEEDED or SET, so merge them for
1712      simpler tests.  */
1713   needed.memory |= set.memory;
1714   needed.unch_memory |= set.unch_memory;
1715   IOR_HARD_REG_SET (needed.regs, set.regs);
1716 
1717   /* This insn isn't redundant if it conflicts with an insn that either is
1718      or will be in a delay slot of TARGET.  */
1719 
1720   while (delay_list)
1721     {
1722       if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, true))
1723 	return 0;
1724       delay_list = XEXP (delay_list, 1);
1725     }
1726 
1727   if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1728     for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1729       if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed,
1730 				true))
1731 	return 0;
1732 
1733   /* Scan backwards until we reach a label or an insn that uses something
1734      INSN sets or sets something insn uses or sets.  */
1735 
1736   for (trial = PREV_INSN (target),
1737 	 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1738        trial && !LABEL_P (trial) && insns_to_search > 0;
1739        trial = PREV_INSN (trial))
1740     {
1741       if (!NONDEBUG_INSN_P (trial))
1742 	continue;
1743       --insns_to_search;
1744 
1745       pat = PATTERN (trial);
1746       if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1747 	continue;
1748 
1749       if (GET_CODE (pat) == SEQUENCE)
1750 	{
1751 	  /* If this is a CALL_INSN and its delay slots, it is hard to track
1752 	     the resource needs properly, so give up.  */
1753 	  if (CALL_P (XVECEXP (pat, 0, 0)))
1754 	    return 0;
1755 
1756 	  /* If this is an INSN or JUMP_INSN with delayed effects, it
1757 	     is hard to track the resource needs properly, so give up.  */
1758 
1759 #ifdef INSN_SETS_ARE_DELAYED
1760 	  if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1761 	    return 0;
1762 #endif
1763 
1764 #ifdef INSN_REFERENCES_ARE_DELAYED
1765 	  if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1766 	    return 0;
1767 #endif
1768 
1769 	  /* See if any of the insns in the delay slot match, updating
1770 	     resource requirements as we go.  */
1771 	  for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1772 	    {
1773 	      rtx candidate = XVECEXP (pat, 0, i);
1774 
1775 	      /* If an insn will be annulled if the branch is false, it isn't
1776 		 considered as a possible duplicate insn.  */
1777 	      if (rtx_equal_p (PATTERN (candidate), ipat)
1778 		  && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1779 			&& INSN_FROM_TARGET_P (candidate)))
1780 		{
1781 		  /* Show that this insn will be used in the sequel.  */
1782 		  INSN_FROM_TARGET_P (candidate) = 0;
1783 		  return candidate;
1784 		}
1785 
1786 	      /* Unless this is an annulled insn from the target of a branch,
1787 		 we must stop if it sets anything needed or set by INSN.  */
1788 	      if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1789 		   || ! INSN_FROM_TARGET_P (candidate))
1790 		  && insn_sets_resource_p (candidate, &needed, true))
1791 		return 0;
1792 	    }
1793 
1794 	  /* If the insn requiring the delay slot conflicts with INSN, we
1795 	     must stop.  */
1796 	  if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, true))
1797 	    return 0;
1798 	}
1799       else
1800 	{
1801 	  /* See if TRIAL is the same as INSN.  */
1802 	  pat = PATTERN (trial);
1803 	  if (rtx_equal_p (pat, ipat))
1804 	    return trial;
1805 
1806 	  /* Can't go any further if TRIAL conflicts with INSN.  */
1807 	  if (insn_sets_resource_p (trial, &needed, true))
1808 	    return 0;
1809 	}
1810     }
1811 
1812   return 0;
1813 }
1814 
1815 /* Return 1 if THREAD can only be executed in one way.  If LABEL is nonzero,
1816    it is the target of the branch insn being scanned.  If ALLOW_FALLTHROUGH
1817    is nonzero, we are allowed to fall into this thread; otherwise, we are
1818    not.
1819 
1820    If LABEL is used more than one or we pass a label other than LABEL before
1821    finding an active insn, we do not own this thread.  */
1822 
1823 static int
1824 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1825 {
1826   rtx active_insn;
1827   rtx insn;
1828 
1829   /* We don't own the function end.  */
1830   if (thread == 0)
1831     return 0;
1832 
1833   /* Get the first active insn, or THREAD, if it is an active insn.  */
1834   active_insn = next_active_insn (PREV_INSN (thread));
1835 
1836   for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1837     if (LABEL_P (insn)
1838 	&& (insn != label || LABEL_NUSES (insn) != 1))
1839       return 0;
1840 
1841   if (allow_fallthrough)
1842     return 1;
1843 
1844   /* Ensure that we reach a BARRIER before any insn or label.  */
1845   for (insn = prev_nonnote_insn (thread);
1846        insn == 0 || !BARRIER_P (insn);
1847        insn = prev_nonnote_insn (insn))
1848     if (insn == 0
1849 	|| LABEL_P (insn)
1850 	|| (NONJUMP_INSN_P (insn)
1851 	    && GET_CODE (PATTERN (insn)) != USE
1852 	    && GET_CODE (PATTERN (insn)) != CLOBBER))
1853       return 0;
1854 
1855   return 1;
1856 }
1857 
1858 /* Called when INSN is being moved from a location near the target of a jump.
1859    We leave a marker of the form (use (INSN)) immediately in front
1860    of WHERE for mark_target_live_regs.  These markers will be deleted when
1861    reorg finishes.
1862 
1863    We used to try to update the live status of registers if WHERE is at
1864    the start of a basic block, but that can't work since we may remove a
1865    BARRIER in relax_delay_slots.  */
1866 
1867 static void
1868 update_block (rtx insn, rtx where)
1869 {
1870   /* Ignore if this was in a delay slot and it came from the target of
1871      a branch.  */
1872   if (INSN_FROM_TARGET_P (insn))
1873     return;
1874 
1875   emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1876 
1877   /* INSN might be making a value live in a block where it didn't use to
1878      be.  So recompute liveness information for this block.  */
1879 
1880   incr_ticks_for_insn (insn);
1881 }
1882 
1883 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1884    the basic block containing the jump.  */
1885 
1886 static int
1887 reorg_redirect_jump (rtx jump, rtx nlabel)
1888 {
1889   incr_ticks_for_insn (jump);
1890   return redirect_jump (jump, nlabel, 1);
1891 }
1892 
1893 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1894    We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1895    that reference values used in INSN.  If we find one, then we move the
1896    REG_DEAD note to INSN.
1897 
1898    This is needed to handle the case where a later insn (after INSN) has a
1899    REG_DEAD note for a register used by INSN, and this later insn subsequently
1900    gets moved before a CODE_LABEL because it is a redundant insn.  In this
1901    case, mark_target_live_regs may be confused into thinking the register
1902    is dead because it sees a REG_DEAD note immediately before a CODE_LABEL.  */
1903 
1904 static void
1905 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1906 {
1907   rtx p, link, next;
1908 
1909   for (p = next_nonnote_insn (insn); p != delayed_insn;
1910        p = next_nonnote_insn (p))
1911     for (link = REG_NOTES (p); link; link = next)
1912       {
1913 	next = XEXP (link, 1);
1914 
1915 	if (REG_NOTE_KIND (link) != REG_DEAD
1916 	    || !REG_P (XEXP (link, 0)))
1917 	  continue;
1918 
1919 	if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1920 	  {
1921 	    /* Move the REG_DEAD note from P to INSN.  */
1922 	    remove_note (p, link);
1923 	    XEXP (link, 1) = REG_NOTES (insn);
1924 	    REG_NOTES (insn) = link;
1925 	  }
1926       }
1927 }
1928 
1929 /* Called when an insn redundant with start_insn is deleted.  If there
1930    is a REG_DEAD note for the target of start_insn between start_insn
1931    and stop_insn, then the REG_DEAD note needs to be deleted since the
1932    value no longer dies there.
1933 
1934    If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1935    confused into thinking the register is dead.  */
1936 
1937 static void
1938 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1939 {
1940   rtx p, link, next;
1941 
1942   for (p = next_nonnote_insn (start_insn); p != stop_insn;
1943        p = next_nonnote_insn (p))
1944     for (link = REG_NOTES (p); link; link = next)
1945       {
1946 	next = XEXP (link, 1);
1947 
1948 	if (REG_NOTE_KIND (link) != REG_DEAD
1949 	    || !REG_P (XEXP (link, 0)))
1950 	  continue;
1951 
1952 	if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1953 	  {
1954 	    remove_note (p, link);
1955 	    return;
1956 	  }
1957       }
1958 }
1959 
1960 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1961 
1962    This handles the case of udivmodXi4 instructions which optimize their
1963    output depending on whether any REG_UNUSED notes are present.
1964    we must make sure that INSN calculates as many results as REDUNDANT_INSN
1965    does.  */
1966 
1967 static void
1968 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1969 {
1970   rtx link, next;
1971 
1972   for (link = REG_NOTES (insn); link; link = next)
1973     {
1974       next = XEXP (link, 1);
1975 
1976       if (REG_NOTE_KIND (link) != REG_UNUSED
1977 	  || !REG_P (XEXP (link, 0)))
1978 	continue;
1979 
1980       if (! find_regno_note (redundant_insn, REG_UNUSED,
1981 			     REGNO (XEXP (link, 0))))
1982 	remove_note (insn, link);
1983     }
1984 }
1985 
1986 /* Return the label before INSN, or put a new label there.  */
1987 
1988 static rtx
1989 get_label_before (rtx insn)
1990 {
1991   rtx label;
1992 
1993   /* Find an existing label at this point
1994      or make a new one if there is none.  */
1995   label = prev_nonnote_insn (insn);
1996 
1997   if (label == 0 || !LABEL_P (label))
1998     {
1999       rtx prev = PREV_INSN (insn);
2000 
2001       label = gen_label_rtx ();
2002       emit_label_after (label, prev);
2003       LABEL_NUSES (label) = 0;
2004     }
2005   return label;
2006 }
2007 
2008 /* Scan a function looking for insns that need a delay slot and find insns to
2009    put into the delay slot.
2010 
2011    NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2012    as calls).  We do these first since we don't want jump insns (that are
2013    easier to fill) to get the only insns that could be used for non-jump insns.
2014    When it is zero, only try to fill JUMP_INSNs.
2015 
2016    When slots are filled in this manner, the insns (including the
2017    delay_insn) are put together in a SEQUENCE rtx.  In this fashion,
2018    it is possible to tell whether a delay slot has really been filled
2019    or not.  `final' knows how to deal with this, by communicating
2020    through FINAL_SEQUENCE.  */
2021 
2022 static void
2023 fill_simple_delay_slots (int non_jumps_p)
2024 {
2025   rtx insn, pat, trial, next_trial;
2026   int i;
2027   int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2028   struct resources needed, set;
2029   int slots_to_fill, slots_filled;
2030   rtx delay_list;
2031 
2032   for (i = 0; i < num_unfilled_slots; i++)
2033     {
2034       int flags;
2035       /* Get the next insn to fill.  If it has already had any slots assigned,
2036 	 we can't do anything with it.  Maybe we'll improve this later.  */
2037 
2038       insn = unfilled_slots_base[i];
2039       if (insn == 0
2040 	  || INSN_DELETED_P (insn)
2041 	  || (NONJUMP_INSN_P (insn)
2042 	      && GET_CODE (PATTERN (insn)) == SEQUENCE)
2043 	  || (JUMP_P (insn) && non_jumps_p)
2044 	  || (!JUMP_P (insn) && ! non_jumps_p))
2045 	continue;
2046 
2047       /* It may have been that this insn used to need delay slots, but
2048 	 now doesn't; ignore in that case.  This can happen, for example,
2049 	 on the HP PA RISC, where the number of delay slots depends on
2050 	 what insns are nearby.  */
2051       slots_to_fill = num_delay_slots (insn);
2052 
2053       /* Some machine description have defined instructions to have
2054 	 delay slots only in certain circumstances which may depend on
2055 	 nearby insns (which change due to reorg's actions).
2056 
2057 	 For example, the PA port normally has delay slots for unconditional
2058 	 jumps.
2059 
2060 	 However, the PA port claims such jumps do not have a delay slot
2061 	 if they are immediate successors of certain CALL_INSNs.  This
2062 	 allows the port to favor filling the delay slot of the call with
2063 	 the unconditional jump.  */
2064       if (slots_to_fill == 0)
2065 	continue;
2066 
2067       /* This insn needs, or can use, some delay slots.  SLOTS_TO_FILL
2068 	 says how many.  After initialization, first try optimizing
2069 
2070 	 call _foo		call _foo
2071 	 nop			add %o7,.-L1,%o7
2072 	 b,a L1
2073 	 nop
2074 
2075 	 If this case applies, the delay slot of the call is filled with
2076 	 the unconditional jump.  This is done first to avoid having the
2077 	 delay slot of the call filled in the backward scan.  Also, since
2078 	 the unconditional jump is likely to also have a delay slot, that
2079 	 insn must exist when it is subsequently scanned.
2080 
2081 	 This is tried on each insn with delay slots as some machines
2082 	 have insns which perform calls, but are not represented as
2083 	 CALL_INSNs.  */
2084 
2085       slots_filled = 0;
2086       delay_list = 0;
2087 
2088       if (JUMP_P (insn))
2089 	flags = get_jump_flags (insn, JUMP_LABEL (insn));
2090       else
2091 	flags = get_jump_flags (insn, NULL_RTX);
2092 
2093       if ((trial = next_active_insn (insn))
2094 	  && JUMP_P (trial)
2095 	  && simplejump_p (trial)
2096 	  && eligible_for_delay (insn, slots_filled, trial, flags)
2097 	  && no_labels_between_p (insn, trial)
2098 	  && ! can_throw_internal (trial))
2099 	{
2100 	  rtx *tmp;
2101 	  slots_filled++;
2102 	  delay_list = add_to_delay_list (trial, delay_list);
2103 
2104 	  /* TRIAL may have had its delay slot filled, then unfilled.  When
2105 	     the delay slot is unfilled, TRIAL is placed back on the unfilled
2106 	     slots obstack.  Unfortunately, it is placed on the end of the
2107 	     obstack, not in its original location.  Therefore, we must search
2108 	     from entry i + 1 to the end of the unfilled slots obstack to
2109 	     try and find TRIAL.  */
2110 	  tmp = &unfilled_slots_base[i + 1];
2111 	  while (*tmp != trial && tmp != unfilled_slots_next)
2112 	    tmp++;
2113 
2114 	  /* Remove the unconditional jump from consideration for delay slot
2115 	     filling and unthread it.  */
2116 	  if (*tmp == trial)
2117 	    *tmp = 0;
2118 	  {
2119 	    rtx next = NEXT_INSN (trial);
2120 	    rtx prev = PREV_INSN (trial);
2121 	    if (prev)
2122 	      NEXT_INSN (prev) = next;
2123 	    if (next)
2124 	      PREV_INSN (next) = prev;
2125 	  }
2126 	}
2127 
2128       /* Now, scan backwards from the insn to search for a potential
2129 	 delay-slot candidate.  Stop searching when a label or jump is hit.
2130 
2131 	 For each candidate, if it is to go into the delay slot (moved
2132 	 forward in execution sequence), it must not need or set any resources
2133 	 that were set by later insns and must not set any resources that
2134 	 are needed for those insns.
2135 
2136 	 The delay slot insn itself sets resources unless it is a call
2137 	 (in which case the called routine, not the insn itself, is doing
2138 	 the setting).  */
2139 
2140       if (slots_filled < slots_to_fill)
2141 	{
2142 	  CLEAR_RESOURCE (&needed);
2143 	  CLEAR_RESOURCE (&set);
2144 	  mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2145 	  mark_referenced_resources (insn, &needed, false);
2146 
2147 	  for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2148 	       trial = next_trial)
2149 	    {
2150 	      next_trial = prev_nonnote_insn (trial);
2151 
2152 	      /* This must be an INSN or CALL_INSN.  */
2153 	      pat = PATTERN (trial);
2154 
2155 	      /* USE and CLOBBER at this level was just for flow; ignore it.  */
2156 	      if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2157 		continue;
2158 
2159 	      /* Check for resource conflict first, to avoid unnecessary
2160 		 splitting.  */
2161 	      if (! insn_references_resource_p (trial, &set, true)
2162 		  && ! insn_sets_resource_p (trial, &set, true)
2163 		  && ! insn_sets_resource_p (trial, &needed, true)
2164 #ifdef HAVE_cc0
2165 		  /* Can't separate set of cc0 from its use.  */
2166 		  && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2167 #endif
2168 		  && ! can_throw_internal (trial))
2169 		{
2170 		  trial = try_split (pat, trial, 1);
2171 		  next_trial = prev_nonnote_insn (trial);
2172 		  if (eligible_for_delay (insn, slots_filled, trial, flags))
2173 		    {
2174 		      /* In this case, we are searching backward, so if we
2175 			 find insns to put on the delay list, we want
2176 			 to put them at the head, rather than the
2177 			 tail, of the list.  */
2178 
2179 		      update_reg_dead_notes (trial, insn);
2180 		      delay_list = gen_rtx_INSN_LIST (VOIDmode,
2181 						      trial, delay_list);
2182 		      update_block (trial, trial);
2183 		      delete_related_insns (trial);
2184 		      if (slots_to_fill == ++slots_filled)
2185 			break;
2186 		      continue;
2187 		    }
2188 		}
2189 
2190 	      mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2191 	      mark_referenced_resources (trial, &needed, true);
2192 	    }
2193 	}
2194 
2195       /* If all needed slots haven't been filled, we come here.  */
2196 
2197       /* Try to optimize case of jumping around a single insn.  */
2198 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2199       if (slots_filled != slots_to_fill
2200 	  && delay_list == 0
2201 	  && JUMP_P (insn)
2202 	  && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2203 	{
2204 	  delay_list = optimize_skip (insn);
2205 	  if (delay_list)
2206 	    slots_filled += 1;
2207 	}
2208 #endif
2209 
2210       /* Try to get insns from beyond the insn needing the delay slot.
2211 	 These insns can neither set or reference resources set in insns being
2212 	 skipped, cannot set resources in the insn being skipped, and, if this
2213 	 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2214 	 call might not return).
2215 
2216 	 There used to be code which continued past the target label if
2217 	 we saw all uses of the target label.  This code did not work,
2218 	 because it failed to account for some instructions which were
2219 	 both annulled and marked as from the target.  This can happen as a
2220 	 result of optimize_skip.  Since this code was redundant with
2221 	 fill_eager_delay_slots anyways, it was just deleted.  */
2222 
2223       if (slots_filled != slots_to_fill
2224 	  /* If this instruction could throw an exception which is
2225 	     caught in the same function, then it's not safe to fill
2226 	     the delay slot with an instruction from beyond this
2227 	     point.  For example, consider:
2228 
2229                int i = 2;
2230 
2231 	       try {
2232                  f();
2233 	         i = 3;
2234                } catch (...) {}
2235 
2236                return i;
2237 
2238 	     Even though `i' is a local variable, we must be sure not
2239 	     to put `i = 3' in the delay slot if `f' might throw an
2240 	     exception.
2241 
2242 	     Presumably, we should also check to see if we could get
2243 	     back to this function via `setjmp'.  */
2244 	  && ! can_throw_internal (insn)
2245 	  && (!JUMP_P (insn)
2246 	      || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2247 		  && ! simplejump_p (insn)
2248 		  && JUMP_LABEL (insn) != 0)))
2249 	{
2250 	  /* Invariant: If insn is a JUMP_INSN, the insn's jump
2251 	     label.  Otherwise, zero.  */
2252 	  rtx target = 0;
2253 	  int maybe_never = 0;
2254 	  rtx pat, trial_delay;
2255 
2256 	  CLEAR_RESOURCE (&needed);
2257 	  CLEAR_RESOURCE (&set);
2258 
2259 	  if (CALL_P (insn))
2260 	    {
2261 	      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2262 	      mark_referenced_resources (insn, &needed, true);
2263 	      maybe_never = 1;
2264 	    }
2265 	  else
2266 	    {
2267 	      mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2268 	      mark_referenced_resources (insn, &needed, true);
2269 	      if (JUMP_P (insn))
2270 		target = JUMP_LABEL (insn);
2271 	    }
2272 
2273 	  if (target == 0)
2274 	    for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2275 	      {
2276 		next_trial = next_nonnote_insn (trial);
2277 
2278 		if (LABEL_P (trial)
2279 		    || BARRIER_P (trial))
2280 		  break;
2281 
2282 		/* We must have an INSN, JUMP_INSN, or CALL_INSN.  */
2283 		pat = PATTERN (trial);
2284 
2285 		/* Stand-alone USE and CLOBBER are just for flow.  */
2286 		if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2287 		  continue;
2288 
2289 		/* If this already has filled delay slots, get the insn needing
2290 		   the delay slots.  */
2291 		if (GET_CODE (pat) == SEQUENCE)
2292 		  trial_delay = XVECEXP (pat, 0, 0);
2293 		else
2294 		  trial_delay = trial;
2295 
2296 		/* Stop our search when seeing an unconditional jump.  */
2297 		if (JUMP_P (trial_delay))
2298 		  break;
2299 
2300 		/* See if we have a resource problem before we try to
2301 		   split.  */
2302 		if (GET_CODE (pat) != SEQUENCE
2303 		    && ! insn_references_resource_p (trial, &set, true)
2304 		    && ! insn_sets_resource_p (trial, &set, true)
2305 		    && ! insn_sets_resource_p (trial, &needed, true)
2306 #ifdef HAVE_cc0
2307 		    && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2308 #endif
2309 		    && ! (maybe_never && may_trap_or_fault_p (pat))
2310 		    && (trial = try_split (pat, trial, 0))
2311 		    && eligible_for_delay (insn, slots_filled, trial, flags)
2312 		    && ! can_throw_internal(trial))
2313 		  {
2314 		    next_trial = next_nonnote_insn (trial);
2315 		    delay_list = add_to_delay_list (trial, delay_list);
2316 
2317 #ifdef HAVE_cc0
2318 		    if (reg_mentioned_p (cc0_rtx, pat))
2319 		      link_cc0_insns (trial);
2320 #endif
2321 
2322 		    delete_related_insns (trial);
2323 		    if (slots_to_fill == ++slots_filled)
2324 		      break;
2325 		    continue;
2326 		  }
2327 
2328 		mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2329 		mark_referenced_resources (trial, &needed, true);
2330 
2331 		/* Ensure we don't put insns between the setting of cc and the
2332 		   comparison by moving a setting of cc into an earlier delay
2333 		   slot since these insns could clobber the condition code.  */
2334 		set.cc = 1;
2335 
2336 		/* If this is a call or jump, we might not get here.  */
2337 		if (CALL_P (trial_delay)
2338 		    || JUMP_P (trial_delay))
2339 		  maybe_never = 1;
2340 	      }
2341 
2342 	  /* If there are slots left to fill and our search was stopped by an
2343 	     unconditional branch, try the insn at the branch target.  We can
2344 	     redirect the branch if it works.
2345 
2346 	     Don't do this if the insn at the branch target is a branch.  */
2347 	  if (slots_to_fill != slots_filled
2348 	      && trial
2349 	      && JUMP_P (trial)
2350 	      && simplejump_p (trial)
2351 	      && (target == 0 || JUMP_LABEL (trial) == target)
2352 	      && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2353 	      && ! (NONJUMP_INSN_P (next_trial)
2354 		    && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2355 	      && !JUMP_P (next_trial)
2356 	      && ! insn_references_resource_p (next_trial, &set, true)
2357 	      && ! insn_sets_resource_p (next_trial, &set, true)
2358 	      && ! insn_sets_resource_p (next_trial, &needed, true)
2359 #ifdef HAVE_cc0
2360 	      && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2361 #endif
2362 	      && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2363 	      && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2364 	      && eligible_for_delay (insn, slots_filled, next_trial, flags)
2365 	      && ! can_throw_internal (trial))
2366 	    {
2367 	      /* See comment in relax_delay_slots about necessity of using
2368 		 next_real_insn here.  */
2369 	      rtx new_label = next_real_insn (next_trial);
2370 
2371 	      if (new_label != 0)
2372 		new_label = get_label_before (new_label);
2373 	      else
2374 		new_label = find_end_label ();
2375 
2376 	      if (new_label)
2377 	        {
2378 		  delay_list
2379 		    = add_to_delay_list (copy_rtx (next_trial), delay_list);
2380 		  slots_filled++;
2381 		  reorg_redirect_jump (trial, new_label);
2382 
2383 		  /* If we merged because we both jumped to the same place,
2384 		     redirect the original insn also.  */
2385 		  if (target)
2386 		    reorg_redirect_jump (insn, new_label);
2387 		}
2388 	    }
2389 	}
2390 
2391       /* If this is an unconditional jump, then try to get insns from the
2392 	 target of the jump.  */
2393       if (JUMP_P (insn)
2394 	  && simplejump_p (insn)
2395 	  && slots_filled != slots_to_fill)
2396 	delay_list
2397 	  = fill_slots_from_thread (insn, const_true_rtx,
2398 				    next_active_insn (JUMP_LABEL (insn)),
2399 				    NULL, 1, 1,
2400 				    own_thread_p (JUMP_LABEL (insn),
2401 						  JUMP_LABEL (insn), 0),
2402 				    slots_to_fill, &slots_filled,
2403 				    delay_list);
2404 
2405       if (delay_list)
2406 	unfilled_slots_base[i]
2407 	  = emit_delay_sequence (insn, delay_list, slots_filled);
2408 
2409       if (slots_to_fill == slots_filled)
2410 	unfilled_slots_base[i] = 0;
2411 
2412       note_delay_statistics (slots_filled, 0);
2413     }
2414 
2415 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2416   /* See if the epilogue needs any delay slots.  Try to fill them if so.
2417      The only thing we can do is scan backwards from the end of the
2418      function.  If we did this in a previous pass, it is incorrect to do it
2419      again.  */
2420   if (crtl->epilogue_delay_list)
2421     return;
2422 
2423   slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2424   if (slots_to_fill == 0)
2425     return;
2426 
2427   slots_filled = 0;
2428   CLEAR_RESOURCE (&set);
2429 
2430   /* The frame pointer and stack pointer are needed at the beginning of
2431      the epilogue, so instructions setting them can not be put in the
2432      epilogue delay slot.  However, everything else needed at function
2433      end is safe, so we don't want to use end_of_function_needs here.  */
2434   CLEAR_RESOURCE (&needed);
2435   if (frame_pointer_needed)
2436     {
2437       SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2438 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2439       SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2440 #endif
2441       if (! EXIT_IGNORE_STACK
2442 	  || current_function_sp_is_unchanging)
2443 	SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2444     }
2445   else
2446     SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2447 
2448 #ifdef EPILOGUE_USES
2449   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2450     {
2451       if (EPILOGUE_USES (i))
2452 	SET_HARD_REG_BIT (needed.regs, i);
2453     }
2454 #endif
2455 
2456   for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2457        trial = PREV_INSN (trial))
2458     {
2459       if (NOTE_P (trial))
2460 	continue;
2461       pat = PATTERN (trial);
2462       if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2463 	continue;
2464 
2465       if (! insn_references_resource_p (trial, &set, true)
2466 	  && ! insn_sets_resource_p (trial, &needed, true)
2467 	  && ! insn_sets_resource_p (trial, &set, true)
2468 #ifdef HAVE_cc0
2469 	  /* Don't want to mess with cc0 here.  */
2470 	  && ! reg_mentioned_p (cc0_rtx, pat)
2471 #endif
2472 	  && ! can_throw_internal (trial))
2473 	{
2474 	  trial = try_split (pat, trial, 1);
2475 	  if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2476 	    {
2477 	      /* Here as well we are searching backward, so put the
2478 		 insns we find on the head of the list.  */
2479 
2480 	      crtl->epilogue_delay_list
2481 		= gen_rtx_INSN_LIST (VOIDmode, trial,
2482 				     crtl->epilogue_delay_list);
2483 	      mark_end_of_function_resources (trial, true);
2484 	      update_block (trial, trial);
2485 	      delete_related_insns (trial);
2486 
2487 	      /* Clear deleted bit so final.c will output the insn.  */
2488 	      INSN_DELETED_P (trial) = 0;
2489 
2490 	      if (slots_to_fill == ++slots_filled)
2491 		break;
2492 	      continue;
2493 	    }
2494 	}
2495 
2496       mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2497       mark_referenced_resources (trial, &needed, true);
2498     }
2499 
2500   note_delay_statistics (slots_filled, 0);
2501 #endif
2502 }
2503 
2504 /* Follow any unconditional jump at LABEL;
2505    return the ultimate label reached by any such chain of jumps.
2506    Return null if the chain ultimately leads to a return instruction.
2507    If LABEL is not followed by a jump, return LABEL.
2508    If the chain loops or we can't find end, return LABEL,
2509    since that tells caller to avoid changing the insn.  */
2510 
2511 static rtx
2512 follow_jumps (rtx label)
2513 {
2514   rtx insn;
2515   rtx next;
2516   rtx value = label;
2517   int depth;
2518 
2519   for (depth = 0;
2520        (depth < 10
2521 	&& (insn = next_active_insn (value)) != 0
2522 	&& JUMP_P (insn)
2523 	&& ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2524 	     && onlyjump_p (insn))
2525 	    || GET_CODE (PATTERN (insn)) == RETURN)
2526 	&& (next = NEXT_INSN (insn))
2527 	&& BARRIER_P (next));
2528        depth++)
2529     {
2530       rtx tem;
2531 
2532       /* If we have found a cycle, make the insn jump to itself.  */
2533       if (JUMP_LABEL (insn) == label)
2534 	return label;
2535 
2536       tem = next_active_insn (JUMP_LABEL (insn));
2537       if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2538 		  || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2539 	break;
2540 
2541       value = JUMP_LABEL (insn);
2542     }
2543   if (depth == 10)
2544     return label;
2545   return value;
2546 }
2547 
2548 /* Try to find insns to place in delay slots.
2549 
2550    INSN is the jump needing SLOTS_TO_FILL delay slots.  It tests CONDITION
2551    or is an unconditional branch if CONDITION is const_true_rtx.
2552    *PSLOTS_FILLED is updated with the number of slots that we have filled.
2553 
2554    THREAD is a flow-of-control, either the insns to be executed if the
2555    branch is true or if the branch is false, THREAD_IF_TRUE says which.
2556 
2557    OPPOSITE_THREAD is the thread in the opposite direction.  It is used
2558    to see if any potential delay slot insns set things needed there.
2559 
2560    LIKELY is nonzero if it is extremely likely that the branch will be
2561    taken and THREAD_IF_TRUE is set.  This is used for the branch at the
2562    end of a loop back up to the top.
2563 
2564    OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2565    thread.  I.e., it is the fallthrough code of our jump or the target of the
2566    jump when we are the only jump going there.
2567 
2568    If OWN_THREAD is false, it must be the "true" thread of a jump.  In that
2569    case, we can only take insns from the head of the thread for our delay
2570    slot.  We then adjust the jump to point after the insns we have taken.  */
2571 
2572 static rtx
2573 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2574 			rtx opposite_thread, int likely, int thread_if_true,
2575 			int own_thread, int slots_to_fill,
2576 			int *pslots_filled, rtx delay_list)
2577 {
2578   rtx new_thread;
2579   struct resources opposite_needed, set, needed;
2580   rtx trial;
2581   int lose = 0;
2582   int must_annul = 0;
2583   int flags;
2584 
2585   /* Validate our arguments.  */
2586   gcc_assert(condition != const_true_rtx || thread_if_true);
2587   gcc_assert(own_thread || thread_if_true);
2588 
2589   flags = get_jump_flags (insn, JUMP_LABEL (insn));
2590 
2591   /* If our thread is the end of subroutine, we can't get any delay
2592      insns from that.  */
2593   if (thread == 0)
2594     return delay_list;
2595 
2596   /* If this is an unconditional branch, nothing is needed at the
2597      opposite thread.  Otherwise, compute what is needed there.  */
2598   if (condition == const_true_rtx)
2599     CLEAR_RESOURCE (&opposite_needed);
2600   else
2601     mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2602 
2603   /* If the insn at THREAD can be split, do it here to avoid having to
2604      update THREAD and NEW_THREAD if it is done in the loop below.  Also
2605      initialize NEW_THREAD.  */
2606 
2607   new_thread = thread = try_split (PATTERN (thread), thread, 0);
2608 
2609   /* Scan insns at THREAD.  We are looking for an insn that can be removed
2610      from THREAD (it neither sets nor references resources that were set
2611      ahead of it and it doesn't set anything needs by the insns ahead of
2612      it) and that either can be placed in an annulling insn or aren't
2613      needed at OPPOSITE_THREAD.  */
2614 
2615   CLEAR_RESOURCE (&needed);
2616   CLEAR_RESOURCE (&set);
2617 
2618   /* If we do not own this thread, we must stop as soon as we find
2619      something that we can't put in a delay slot, since all we can do
2620      is branch into THREAD at a later point.  Therefore, labels stop
2621      the search if this is not the `true' thread.  */
2622 
2623   for (trial = thread;
2624        ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2625        trial = next_nonnote_insn (trial))
2626     {
2627       rtx pat, old_trial;
2628 
2629       /* If we have passed a label, we no longer own this thread.  */
2630       if (LABEL_P (trial))
2631 	{
2632 	  own_thread = 0;
2633 	  continue;
2634 	}
2635 
2636       pat = PATTERN (trial);
2637       if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2638 	continue;
2639 
2640       /* If TRIAL conflicts with the insns ahead of it, we lose.  Also,
2641 	 don't separate or copy insns that set and use CC0.  */
2642       if (! insn_references_resource_p (trial, &set, true)
2643 	  && ! insn_sets_resource_p (trial, &set, true)
2644 	  && ! insn_sets_resource_p (trial, &needed, true)
2645 #ifdef HAVE_cc0
2646 	  && ! (reg_mentioned_p (cc0_rtx, pat)
2647 		&& (! own_thread || ! sets_cc0_p (pat)))
2648 #endif
2649 	  && ! can_throw_internal (trial))
2650 	{
2651 	  rtx prior_insn;
2652 
2653 	  /* If TRIAL is redundant with some insn before INSN, we don't
2654 	     actually need to add it to the delay list; we can merely pretend
2655 	     we did.  */
2656 	  if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2657 	    {
2658 	      fix_reg_dead_note (prior_insn, insn);
2659 	      if (own_thread)
2660 		{
2661 		  update_block (trial, thread);
2662 		  if (trial == thread)
2663 		    {
2664 		      thread = next_active_insn (thread);
2665 		      if (new_thread == trial)
2666 			new_thread = thread;
2667 		    }
2668 
2669 		  delete_related_insns (trial);
2670 		}
2671 	      else
2672 		{
2673 		  update_reg_unused_notes (prior_insn, trial);
2674 		  new_thread = next_active_insn (trial);
2675 		}
2676 
2677 	      continue;
2678 	    }
2679 
2680 	  /* There are two ways we can win:  If TRIAL doesn't set anything
2681 	     needed at the opposite thread and can't trap, or if it can
2682 	     go into an annulled delay slot.  */
2683 	  if (!must_annul
2684 	      && (condition == const_true_rtx
2685 	          || (! insn_sets_resource_p (trial, &opposite_needed, true)
2686 		      && ! may_trap_or_fault_p (pat))))
2687 	    {
2688 	      old_trial = trial;
2689 	      trial = try_split (pat, trial, 0);
2690 	      if (new_thread == old_trial)
2691 		new_thread = trial;
2692 	      if (thread == old_trial)
2693 		thread = trial;
2694 	      pat = PATTERN (trial);
2695 	      if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2696 		goto winner;
2697 	    }
2698 	  else if (0
2699 #ifdef ANNUL_IFTRUE_SLOTS
2700 		   || ! thread_if_true
2701 #endif
2702 #ifdef ANNUL_IFFALSE_SLOTS
2703 		   || thread_if_true
2704 #endif
2705 		   )
2706 	    {
2707 	      old_trial = trial;
2708 	      trial = try_split (pat, trial, 0);
2709 	      if (new_thread == old_trial)
2710 		new_thread = trial;
2711 	      if (thread == old_trial)
2712 		thread = trial;
2713 	      pat = PATTERN (trial);
2714 	      if ((must_annul || delay_list == NULL) && (thread_if_true
2715 		   ? check_annul_list_true_false (0, delay_list)
2716 		     && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2717 		   : check_annul_list_true_false (1, delay_list)
2718 		     && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2719 		{
2720 		  rtx temp;
2721 
2722 		  must_annul = 1;
2723 		winner:
2724 
2725 #ifdef HAVE_cc0
2726 		  if (reg_mentioned_p (cc0_rtx, pat))
2727 		    link_cc0_insns (trial);
2728 #endif
2729 
2730 		  /* If we own this thread, delete the insn.  If this is the
2731 		     destination of a branch, show that a basic block status
2732 		     may have been updated.  In any case, mark the new
2733 		     starting point of this thread.  */
2734 		  if (own_thread)
2735 		    {
2736 		      rtx note;
2737 
2738 		      update_block (trial, thread);
2739 		      if (trial == thread)
2740 			{
2741 			  thread = next_active_insn (thread);
2742 			  if (new_thread == trial)
2743 			    new_thread = thread;
2744 			}
2745 
2746 		      /* We are moving this insn, not deleting it.  We must
2747 			 temporarily increment the use count on any referenced
2748 			 label lest it be deleted by delete_related_insns.  */
2749 		      for (note = REG_NOTES (trial);
2750 			   note != NULL_RTX;
2751 			   note = XEXP (note, 1))
2752 			if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2753 			    || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2754 			  {
2755 			    /* REG_LABEL_OPERAND could be
2756 			       NOTE_INSN_DELETED_LABEL too.  */
2757 			    if (LABEL_P (XEXP (note, 0)))
2758 			      LABEL_NUSES (XEXP (note, 0))++;
2759 			    else
2760 			      gcc_assert (REG_NOTE_KIND (note)
2761 					  == REG_LABEL_OPERAND);
2762 			  }
2763 		      if (JUMP_P (trial) && JUMP_LABEL (trial))
2764 			LABEL_NUSES (JUMP_LABEL (trial))++;
2765 
2766 		      delete_related_insns (trial);
2767 
2768 		      for (note = REG_NOTES (trial);
2769 			   note != NULL_RTX;
2770 			   note = XEXP (note, 1))
2771 			if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2772 			    || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2773 			  {
2774 			    /* REG_LABEL_OPERAND could be
2775 			       NOTE_INSN_DELETED_LABEL too.  */
2776 			    if (LABEL_P (XEXP (note, 0)))
2777 			      LABEL_NUSES (XEXP (note, 0))--;
2778 			    else
2779 			      gcc_assert (REG_NOTE_KIND (note)
2780 					  == REG_LABEL_OPERAND);
2781 			  }
2782 		      if (JUMP_P (trial) && JUMP_LABEL (trial))
2783 			LABEL_NUSES (JUMP_LABEL (trial))--;
2784 		    }
2785 		  else
2786 		    new_thread = next_active_insn (trial);
2787 
2788 		  temp = own_thread ? trial : copy_rtx (trial);
2789 		  if (thread_if_true)
2790 		    INSN_FROM_TARGET_P (temp) = 1;
2791 
2792 		  delay_list = add_to_delay_list (temp, delay_list);
2793 
2794 		  if (slots_to_fill == ++(*pslots_filled))
2795 		    {
2796 		      /* Even though we have filled all the slots, we
2797 			 may be branching to a location that has a
2798 			 redundant insn.  Skip any if so.  */
2799 		      while (new_thread && ! own_thread
2800 			     && ! insn_sets_resource_p (new_thread, &set, true)
2801 			     && ! insn_sets_resource_p (new_thread, &needed,
2802 							true)
2803 			     && ! insn_references_resource_p (new_thread,
2804 							      &set, true)
2805 			     && (prior_insn
2806 				 = redundant_insn (new_thread, insn,
2807 						   delay_list)))
2808 			{
2809 			  /* We know we do not own the thread, so no need
2810 			     to call update_block and delete_insn.  */
2811 			  fix_reg_dead_note (prior_insn, insn);
2812 			  update_reg_unused_notes (prior_insn, new_thread);
2813 			  new_thread = next_active_insn (new_thread);
2814 			}
2815 		      break;
2816 		    }
2817 
2818 		  continue;
2819 		}
2820 	    }
2821 	}
2822 
2823       /* This insn can't go into a delay slot.  */
2824       lose = 1;
2825       mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2826       mark_referenced_resources (trial, &needed, true);
2827 
2828       /* Ensure we don't put insns between the setting of cc and the comparison
2829 	 by moving a setting of cc into an earlier delay slot since these insns
2830 	 could clobber the condition code.  */
2831       set.cc = 1;
2832 
2833       /* If this insn is a register-register copy and the next insn has
2834 	 a use of our destination, change it to use our source.  That way,
2835 	 it will become a candidate for our delay slot the next time
2836 	 through this loop.  This case occurs commonly in loops that
2837 	 scan a list.
2838 
2839 	 We could check for more complex cases than those tested below,
2840 	 but it doesn't seem worth it.  It might also be a good idea to try
2841 	 to swap the two insns.  That might do better.
2842 
2843 	 We can't do this if the next insn modifies our destination, because
2844 	 that would make the replacement into the insn invalid.  We also can't
2845 	 do this if it modifies our source, because it might be an earlyclobber
2846 	 operand.  This latter test also prevents updating the contents of
2847 	 a PRE_INC.  We also can't do this if there's overlap of source and
2848 	 destination.  Overlap may happen for larger-than-register-size modes.  */
2849 
2850       if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2851 	  && REG_P (SET_SRC (pat))
2852 	  && REG_P (SET_DEST (pat))
2853 	  && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2854 	{
2855 	  rtx next = next_nonnote_insn (trial);
2856 
2857 	  if (next && NONJUMP_INSN_P (next)
2858 	      && GET_CODE (PATTERN (next)) != USE
2859 	      && ! reg_set_p (SET_DEST (pat), next)
2860 	      && ! reg_set_p (SET_SRC (pat), next)
2861 	      && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2862 	      && ! modified_in_p (SET_DEST (pat), next))
2863 	    validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2864 	}
2865     }
2866 
2867   /* If we stopped on a branch insn that has delay slots, see if we can
2868      steal some of the insns in those slots.  */
2869   if (trial && NONJUMP_INSN_P (trial)
2870       && GET_CODE (PATTERN (trial)) == SEQUENCE
2871       && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2872     {
2873       /* If this is the `true' thread, we will want to follow the jump,
2874 	 so we can only do this if we have taken everything up to here.  */
2875       if (thread_if_true && trial == new_thread)
2876 	{
2877 	  delay_list
2878 	    = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2879 					    delay_list, &set, &needed,
2880 					    &opposite_needed, slots_to_fill,
2881 					    pslots_filled, &must_annul,
2882 					    &new_thread);
2883 	  /* If we owned the thread and are told that it branched
2884 	     elsewhere, make sure we own the thread at the new location.  */
2885 	  if (own_thread && trial != new_thread)
2886 	    own_thread = own_thread_p (new_thread, new_thread, 0);
2887 	}
2888       else if (! thread_if_true)
2889 	delay_list
2890 	  = steal_delay_list_from_fallthrough (insn, condition,
2891 					       PATTERN (trial),
2892 					       delay_list, &set, &needed,
2893 					       &opposite_needed, slots_to_fill,
2894 					       pslots_filled, &must_annul);
2895     }
2896 
2897   /* If we haven't found anything for this delay slot and it is very
2898      likely that the branch will be taken, see if the insn at our target
2899      increments or decrements a register with an increment that does not
2900      depend on the destination register.  If so, try to place the opposite
2901      arithmetic insn after the jump insn and put the arithmetic insn in the
2902      delay slot.  If we can't do this, return.  */
2903   if (delay_list == 0 && likely && new_thread
2904       && NONJUMP_INSN_P (new_thread)
2905       && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2906       && asm_noperands (PATTERN (new_thread)) < 0)
2907     {
2908       rtx pat = PATTERN (new_thread);
2909       rtx dest;
2910       rtx src;
2911 
2912       trial = new_thread;
2913       pat = PATTERN (trial);
2914 
2915       if (!NONJUMP_INSN_P (trial)
2916 	  || GET_CODE (pat) != SET
2917 	  || ! eligible_for_delay (insn, 0, trial, flags)
2918 	  || can_throw_internal (trial))
2919 	return 0;
2920 
2921       dest = SET_DEST (pat), src = SET_SRC (pat);
2922       if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2923 	  && rtx_equal_p (XEXP (src, 0), dest)
2924 	  && (!FLOAT_MODE_P (GET_MODE (src))
2925 	      || flag_unsafe_math_optimizations)
2926 	  && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2927 	  && ! side_effects_p (pat))
2928 	{
2929 	  rtx other = XEXP (src, 1);
2930 	  rtx new_arith;
2931 	  rtx ninsn;
2932 
2933 	  /* If this is a constant adjustment, use the same code with
2934 	     the negated constant.  Otherwise, reverse the sense of the
2935 	     arithmetic.  */
2936 	  if (CONST_INT_P (other))
2937 	    new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2938 					negate_rtx (GET_MODE (src), other));
2939 	  else
2940 	    new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2941 					GET_MODE (src), dest, other);
2942 
2943 	  ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2944 				   insn);
2945 
2946 	  if (recog_memoized (ninsn) < 0
2947 	      || (extract_insn (ninsn), ! constrain_operands (1)))
2948 	    {
2949 	      delete_related_insns (ninsn);
2950 	      return 0;
2951 	    }
2952 
2953 	  if (own_thread)
2954 	    {
2955 	      update_block (trial, thread);
2956 	      if (trial == thread)
2957 		{
2958 		  thread = next_active_insn (thread);
2959 		  if (new_thread == trial)
2960 		    new_thread = thread;
2961 		}
2962 	      delete_related_insns (trial);
2963 	    }
2964 	  else
2965 	    new_thread = next_active_insn (trial);
2966 
2967 	  ninsn = own_thread ? trial : copy_rtx (trial);
2968 	  if (thread_if_true)
2969 	    INSN_FROM_TARGET_P (ninsn) = 1;
2970 
2971 	  delay_list = add_to_delay_list (ninsn, NULL_RTX);
2972 	  (*pslots_filled)++;
2973 	}
2974     }
2975 
2976   if (delay_list && must_annul)
2977     INSN_ANNULLED_BRANCH_P (insn) = 1;
2978 
2979   /* If we are to branch into the middle of this thread, find an appropriate
2980      label or make a new one if none, and redirect INSN to it.  If we hit the
2981      end of the function, use the end-of-function label.  */
2982   if (new_thread != thread)
2983     {
2984       rtx label;
2985 
2986       gcc_assert (thread_if_true);
2987 
2988       if (new_thread && JUMP_P (new_thread)
2989 	  && (simplejump_p (new_thread)
2990 	      || GET_CODE (PATTERN (new_thread)) == RETURN)
2991 	  && redirect_with_delay_list_safe_p (insn,
2992 					      JUMP_LABEL (new_thread),
2993 					      delay_list))
2994 	new_thread = follow_jumps (JUMP_LABEL (new_thread));
2995 
2996       if (new_thread == 0)
2997 	label = find_end_label ();
2998       else if (LABEL_P (new_thread))
2999 	label = new_thread;
3000       else
3001 	label = get_label_before (new_thread);
3002 
3003       if (label)
3004 	reorg_redirect_jump (insn, label);
3005     }
3006 
3007   return delay_list;
3008 }
3009 
3010 /* Make another attempt to find insns to place in delay slots.
3011 
3012    We previously looked for insns located in front of the delay insn
3013    and, for non-jump delay insns, located behind the delay insn.
3014 
3015    Here only try to schedule jump insns and try to move insns from either
3016    the target or the following insns into the delay slot.  If annulling is
3017    supported, we will be likely to do this.  Otherwise, we can do this only
3018    if safe.  */
3019 
3020 static void
3021 fill_eager_delay_slots (void)
3022 {
3023   rtx insn;
3024   int i;
3025   int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3026 
3027   for (i = 0; i < num_unfilled_slots; i++)
3028     {
3029       rtx condition;
3030       rtx target_label, insn_at_target, fallthrough_insn;
3031       rtx delay_list = 0;
3032       int own_target;
3033       int own_fallthrough;
3034       int prediction, slots_to_fill, slots_filled;
3035 
3036       insn = unfilled_slots_base[i];
3037       if (insn == 0
3038 	  || INSN_DELETED_P (insn)
3039 	  || !JUMP_P (insn)
3040 	  || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3041 	continue;
3042 
3043       slots_to_fill = num_delay_slots (insn);
3044       /* Some machine description have defined instructions to have
3045 	 delay slots only in certain circumstances which may depend on
3046 	 nearby insns (which change due to reorg's actions).
3047 
3048 	 For example, the PA port normally has delay slots for unconditional
3049 	 jumps.
3050 
3051 	 However, the PA port claims such jumps do not have a delay slot
3052 	 if they are immediate successors of certain CALL_INSNs.  This
3053 	 allows the port to favor filling the delay slot of the call with
3054 	 the unconditional jump.  */
3055       if (slots_to_fill == 0)
3056 	continue;
3057 
3058       slots_filled = 0;
3059       target_label = JUMP_LABEL (insn);
3060       condition = get_branch_condition (insn, target_label);
3061 
3062       if (condition == 0)
3063 	continue;
3064 
3065       /* Get the next active fallthrough and target insns and see if we own
3066 	 them.  Then see whether the branch is likely true.  We don't need
3067 	 to do a lot of this for unconditional branches.  */
3068 
3069       insn_at_target = next_active_insn (target_label);
3070       own_target = own_thread_p (target_label, target_label, 0);
3071 
3072       if (condition == const_true_rtx)
3073 	{
3074 	  own_fallthrough = 0;
3075 	  fallthrough_insn = 0;
3076 	  prediction = 2;
3077 	}
3078       else
3079 	{
3080 	  fallthrough_insn = next_active_insn (insn);
3081 	  own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3082 	  prediction = mostly_true_jump (insn, condition);
3083 	}
3084 
3085       /* If this insn is expected to branch, first try to get insns from our
3086 	 target, then our fallthrough insns.  If it is not expected to branch,
3087 	 try the other order.  */
3088 
3089       if (prediction > 0)
3090 	{
3091 	  delay_list
3092 	    = fill_slots_from_thread (insn, condition, insn_at_target,
3093 				      fallthrough_insn, prediction == 2, 1,
3094 				      own_target,
3095 				      slots_to_fill, &slots_filled, delay_list);
3096 
3097 	  if (delay_list == 0 && own_fallthrough)
3098 	    {
3099 	      /* Even though we didn't find anything for delay slots,
3100 		 we might have found a redundant insn which we deleted
3101 		 from the thread that was filled.  So we have to recompute
3102 		 the next insn at the target.  */
3103 	      target_label = JUMP_LABEL (insn);
3104 	      insn_at_target = next_active_insn (target_label);
3105 
3106 	      delay_list
3107 		= fill_slots_from_thread (insn, condition, fallthrough_insn,
3108 					  insn_at_target, 0, 0,
3109 					  own_fallthrough,
3110 					  slots_to_fill, &slots_filled,
3111 					  delay_list);
3112 	    }
3113 	}
3114       else
3115 	{
3116 	  if (own_fallthrough)
3117 	    delay_list
3118 	      = fill_slots_from_thread (insn, condition, fallthrough_insn,
3119 					insn_at_target, 0, 0,
3120 					own_fallthrough,
3121 					slots_to_fill, &slots_filled,
3122 					delay_list);
3123 
3124 	  if (delay_list == 0)
3125 	    delay_list
3126 	      = fill_slots_from_thread (insn, condition, insn_at_target,
3127 					next_active_insn (insn), 0, 1,
3128 					own_target,
3129 					slots_to_fill, &slots_filled,
3130 					delay_list);
3131 	}
3132 
3133       if (delay_list)
3134 	unfilled_slots_base[i]
3135 	  = emit_delay_sequence (insn, delay_list, slots_filled);
3136 
3137       if (slots_to_fill == slots_filled)
3138 	unfilled_slots_base[i] = 0;
3139 
3140       note_delay_statistics (slots_filled, 1);
3141     }
3142 }
3143 
3144 static void delete_computation (rtx insn);
3145 
3146 /* Recursively delete prior insns that compute the value (used only by INSN
3147    which the caller is deleting) stored in the register mentioned by NOTE
3148    which is a REG_DEAD note associated with INSN.  */
3149 
3150 static void
3151 delete_prior_computation (rtx note, rtx insn)
3152 {
3153   rtx our_prev;
3154   rtx reg = XEXP (note, 0);
3155 
3156   for (our_prev = prev_nonnote_insn (insn);
3157        our_prev && (NONJUMP_INSN_P (our_prev)
3158 		    || CALL_P (our_prev));
3159        our_prev = prev_nonnote_insn (our_prev))
3160     {
3161       rtx pat = PATTERN (our_prev);
3162 
3163       /* If we reach a CALL which is not calling a const function
3164 	 or the callee pops the arguments, then give up.  */
3165       if (CALL_P (our_prev)
3166 	  && (! RTL_CONST_CALL_P (our_prev)
3167 	      || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
3168 	break;
3169 
3170       /* If we reach a SEQUENCE, it is too complex to try to
3171 	 do anything with it, so give up.  We can be run during
3172 	 and after reorg, so SEQUENCE rtl can legitimately show
3173 	 up here.  */
3174       if (GET_CODE (pat) == SEQUENCE)
3175 	break;
3176 
3177       if (GET_CODE (pat) == USE
3178 	  && NONJUMP_INSN_P (XEXP (pat, 0)))
3179 	/* reorg creates USEs that look like this.  We leave them
3180 	   alone because reorg needs them for its own purposes.  */
3181 	break;
3182 
3183       if (reg_set_p (reg, pat))
3184 	{
3185 	  if (side_effects_p (pat) && !CALL_P (our_prev))
3186 	    break;
3187 
3188 	  if (GET_CODE (pat) == PARALLEL)
3189 	    {
3190 	      /* If we find a SET of something else, we can't
3191 		 delete the insn.  */
3192 
3193 	      int i;
3194 
3195 	      for (i = 0; i < XVECLEN (pat, 0); i++)
3196 		{
3197 		  rtx part = XVECEXP (pat, 0, i);
3198 
3199 		  if (GET_CODE (part) == SET
3200 		      && SET_DEST (part) != reg)
3201 		    break;
3202 		}
3203 
3204 	      if (i == XVECLEN (pat, 0))
3205 		delete_computation (our_prev);
3206 	    }
3207 	  else if (GET_CODE (pat) == SET
3208 		   && REG_P (SET_DEST (pat)))
3209 	    {
3210 	      int dest_regno = REGNO (SET_DEST (pat));
3211 	      int dest_endregno = END_REGNO (SET_DEST (pat));
3212 	      int regno = REGNO (reg);
3213 	      int endregno = END_REGNO (reg);
3214 
3215 	      if (dest_regno >= regno
3216 		  && dest_endregno <= endregno)
3217 		delete_computation (our_prev);
3218 
3219 	      /* We may have a multi-word hard register and some, but not
3220 		 all, of the words of the register are needed in subsequent
3221 		 insns.  Write REG_UNUSED notes for those parts that were not
3222 		 needed.  */
3223 	      else if (dest_regno <= regno
3224 		       && dest_endregno >= endregno)
3225 		{
3226 		  int i;
3227 
3228 		  add_reg_note (our_prev, REG_UNUSED, reg);
3229 
3230 		  for (i = dest_regno; i < dest_endregno; i++)
3231 		    if (! find_regno_note (our_prev, REG_UNUSED, i))
3232 		      break;
3233 
3234 		  if (i == dest_endregno)
3235 		    delete_computation (our_prev);
3236 		}
3237 	    }
3238 
3239 	  break;
3240 	}
3241 
3242       /* If PAT references the register that dies here, it is an
3243 	 additional use.  Hence any prior SET isn't dead.  However, this
3244 	 insn becomes the new place for the REG_DEAD note.  */
3245       if (reg_overlap_mentioned_p (reg, pat))
3246 	{
3247 	  XEXP (note, 1) = REG_NOTES (our_prev);
3248 	  REG_NOTES (our_prev) = note;
3249 	  break;
3250 	}
3251     }
3252 }
3253 
3254 /* Delete INSN and recursively delete insns that compute values used only
3255    by INSN.  This uses the REG_DEAD notes computed during flow analysis.
3256 
3257    Look at all our REG_DEAD notes.  If a previous insn does nothing other
3258    than set a register that dies in this insn, we can delete that insn
3259    as well.
3260 
3261    On machines with CC0, if CC0 is used in this insn, we may be able to
3262    delete the insn that set it.  */
3263 
3264 static void
3265 delete_computation (rtx insn)
3266 {
3267   rtx note, next;
3268 
3269 #ifdef HAVE_cc0
3270   if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3271     {
3272       rtx prev = prev_nonnote_insn (insn);
3273       /* We assume that at this stage
3274 	 CC's are always set explicitly
3275 	 and always immediately before the jump that
3276 	 will use them.  So if the previous insn
3277 	 exists to set the CC's, delete it
3278 	 (unless it performs auto-increments, etc.).  */
3279       if (prev && NONJUMP_INSN_P (prev)
3280 	  && sets_cc0_p (PATTERN (prev)))
3281 	{
3282 	  if (sets_cc0_p (PATTERN (prev)) > 0
3283 	      && ! side_effects_p (PATTERN (prev)))
3284 	    delete_computation (prev);
3285 	  else
3286 	    /* Otherwise, show that cc0 won't be used.  */
3287 	    add_reg_note (prev, REG_UNUSED, cc0_rtx);
3288 	}
3289     }
3290 #endif
3291 
3292   for (note = REG_NOTES (insn); note; note = next)
3293     {
3294       next = XEXP (note, 1);
3295 
3296       if (REG_NOTE_KIND (note) != REG_DEAD
3297 	  /* Verify that the REG_NOTE is legitimate.  */
3298 	  || !REG_P (XEXP (note, 0)))
3299 	continue;
3300 
3301       delete_prior_computation (note, insn);
3302     }
3303 
3304   delete_related_insns (insn);
3305 }
3306 
3307 /* If all INSN does is set the pc, delete it,
3308    and delete the insn that set the condition codes for it
3309    if that's what the previous thing was.  */
3310 
3311 static void
3312 delete_jump (rtx insn)
3313 {
3314   rtx set = single_set (insn);
3315 
3316   if (set && GET_CODE (SET_DEST (set)) == PC)
3317     delete_computation (insn);
3318 }
3319 
3320 
3321 /* Once we have tried two ways to fill a delay slot, make a pass over the
3322    code to try to improve the results and to do such things as more jump
3323    threading.  */
3324 
3325 static void
3326 relax_delay_slots (rtx first)
3327 {
3328   rtx insn, next, pat;
3329   rtx trial, delay_insn, target_label;
3330 
3331   /* Look at every JUMP_INSN and see if we can improve it.  */
3332   for (insn = first; insn; insn = next)
3333     {
3334       rtx other;
3335 
3336       next = next_active_insn (insn);
3337 
3338       /* If this is a jump insn, see if it now jumps to a jump, jumps to
3339 	 the next insn, or jumps to a label that is not the last of a
3340 	 group of consecutive labels.  */
3341       if (JUMP_P (insn)
3342 	  && (condjump_p (insn) || condjump_in_parallel_p (insn))
3343 	  && (target_label = JUMP_LABEL (insn)) != 0)
3344 	{
3345 	  target_label = skip_consecutive_labels (follow_jumps (target_label));
3346 	  if (target_label == 0)
3347 	    target_label = find_end_label ();
3348 
3349 	  if (target_label && next_active_insn (target_label) == next
3350 	      && ! condjump_in_parallel_p (insn))
3351 	    {
3352 	      delete_jump (insn);
3353 	      continue;
3354 	    }
3355 
3356 	  if (target_label && target_label != JUMP_LABEL (insn))
3357 	    reorg_redirect_jump (insn, target_label);
3358 
3359 	  /* See if this jump conditionally branches around an unconditional
3360 	     jump.  If so, invert this jump and point it to the target of the
3361 	     second jump.  */
3362 	  if (next && JUMP_P (next)
3363 	      && any_condjump_p (insn)
3364 	      && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3365 	      && target_label
3366 	      && next_active_insn (target_label) == next_active_insn (next)
3367 	      && no_labels_between_p (insn, next))
3368 	    {
3369 	      rtx label = JUMP_LABEL (next);
3370 
3371 	      /* Be careful how we do this to avoid deleting code or
3372 		 labels that are momentarily dead.  See similar optimization
3373 		 in jump.c.
3374 
3375 		 We also need to ensure we properly handle the case when
3376 		 invert_jump fails.  */
3377 
3378 	      ++LABEL_NUSES (target_label);
3379 	      if (label)
3380 		++LABEL_NUSES (label);
3381 
3382 	      if (invert_jump (insn, label, 1))
3383 		{
3384 		  delete_related_insns (next);
3385 		  next = insn;
3386 		}
3387 
3388 	      if (label)
3389 		--LABEL_NUSES (label);
3390 
3391 	      if (--LABEL_NUSES (target_label) == 0)
3392 		delete_related_insns (target_label);
3393 
3394 	      continue;
3395 	    }
3396 	}
3397 
3398       /* If this is an unconditional jump and the previous insn is a
3399 	 conditional jump, try reversing the condition of the previous
3400 	 insn and swapping our targets.  The next pass might be able to
3401 	 fill the slots.
3402 
3403 	 Don't do this if we expect the conditional branch to be true, because
3404 	 we would then be making the more common case longer.  */
3405 
3406       if (JUMP_P (insn)
3407 	  && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3408 	  && (other = prev_active_insn (insn)) != 0
3409 	  && any_condjump_p (other)
3410 	  && no_labels_between_p (other, insn)
3411 	  && 0 > mostly_true_jump (other,
3412 				   get_branch_condition (other,
3413 							 JUMP_LABEL (other))))
3414 	{
3415 	  rtx other_target = JUMP_LABEL (other);
3416 	  target_label = JUMP_LABEL (insn);
3417 
3418 	  if (invert_jump (other, target_label, 0))
3419 	    reorg_redirect_jump (insn, other_target);
3420 	}
3421 
3422       /* Now look only at cases where we have filled a delay slot.  */
3423       if (!NONJUMP_INSN_P (insn)
3424 	  || GET_CODE (PATTERN (insn)) != SEQUENCE)
3425 	continue;
3426 
3427       pat = PATTERN (insn);
3428       delay_insn = XVECEXP (pat, 0, 0);
3429 
3430       /* See if the first insn in the delay slot is redundant with some
3431 	 previous insn.  Remove it from the delay slot if so; then set up
3432 	 to reprocess this insn.  */
3433       if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3434 	{
3435 	  delete_from_delay_slot (XVECEXP (pat, 0, 1));
3436 	  next = prev_active_insn (next);
3437 	  continue;
3438 	}
3439 
3440       /* See if we have a RETURN insn with a filled delay slot followed
3441 	 by a RETURN insn with an unfilled a delay slot.  If so, we can delete
3442 	 the first RETURN (but not its delay insn).  This gives the same
3443 	 effect in fewer instructions.
3444 
3445 	 Only do so if optimizing for size since this results in slower, but
3446 	 smaller code.  */
3447       if (optimize_function_for_size_p (cfun)
3448 	  && GET_CODE (PATTERN (delay_insn)) == RETURN
3449 	  && next
3450 	  && JUMP_P (next)
3451 	  && GET_CODE (PATTERN (next)) == RETURN)
3452 	{
3453 	  rtx after;
3454 	  int i;
3455 
3456 	  /* Delete the RETURN and just execute the delay list insns.
3457 
3458 	     We do this by deleting the INSN containing the SEQUENCE, then
3459 	     re-emitting the insns separately, and then deleting the RETURN.
3460 	     This allows the count of the jump target to be properly
3461 	     decremented.
3462 
3463 	     Note that we need to change the INSN_UID of the re-emitted insns
3464 	     since it is used to hash the insns for mark_target_live_regs and
3465 	     the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3466 
3467 	     Clear the from target bit, since these insns are no longer
3468 	     in delay slots.  */
3469 	  for (i = 0; i < XVECLEN (pat, 0); i++)
3470 	    INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3471 
3472 	  trial = PREV_INSN (insn);
3473 	  delete_related_insns (insn);
3474 	  gcc_assert (GET_CODE (pat) == SEQUENCE);
3475 	  add_insn_after (delay_insn, trial, NULL);
3476 	  after = delay_insn;
3477 	  for (i = 1; i < XVECLEN (pat, 0); i++)
3478 	    after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
3479 	  delete_scheduled_jump (delay_insn);
3480 	  continue;
3481 	}
3482 
3483       /* Now look only at the cases where we have a filled JUMP_INSN.  */
3484       if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3485 	  || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3486 		|| condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3487 	continue;
3488 
3489       target_label = JUMP_LABEL (delay_insn);
3490 
3491       if (target_label)
3492 	{
3493 	  /* If this jump goes to another unconditional jump, thread it, but
3494 	     don't convert a jump into a RETURN here.  */
3495 	  trial = skip_consecutive_labels (follow_jumps (target_label));
3496 	  if (trial == 0)
3497 	    trial = find_end_label ();
3498 
3499 	  if (trial && trial != target_label
3500 	      && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3501 	    {
3502 	      reorg_redirect_jump (delay_insn, trial);
3503 	      target_label = trial;
3504 	    }
3505 
3506 	  /* If the first insn at TARGET_LABEL is redundant with a previous
3507 	     insn, redirect the jump to the following insn and process again.
3508 	     We use next_real_insn instead of next_active_insn so we
3509 	     don't skip USE-markers, or we'll end up with incorrect
3510 	     liveness info.  */
3511 	  trial = next_real_insn (target_label);
3512 	  if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3513 	      && redundant_insn (trial, insn, 0)
3514 	      && ! can_throw_internal (trial))
3515 	    {
3516 	      /* Figure out where to emit the special USE insn so we don't
3517 		 later incorrectly compute register live/death info.  */
3518 	      rtx tmp = next_active_insn (trial);
3519 	      if (tmp == 0)
3520 		tmp = find_end_label ();
3521 
3522 	      if (tmp)
3523 	        {
3524 		  /* Insert the special USE insn and update dataflow info.  */
3525 		  update_block (trial, tmp);
3526 
3527 		  /* Now emit a label before the special USE insn, and
3528 		     redirect our jump to the new label.  */
3529 		  target_label = get_label_before (PREV_INSN (tmp));
3530 		  reorg_redirect_jump (delay_insn, target_label);
3531 		  next = insn;
3532 		  continue;
3533 		}
3534 	    }
3535 
3536 	  /* Similarly, if it is an unconditional jump with one insn in its
3537 	     delay list and that insn is redundant, thread the jump.  */
3538 	  if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3539 	      && XVECLEN (PATTERN (trial), 0) == 2
3540 	      && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3541 	      && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3542 		  || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3543 	      && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3544 	    {
3545 	      target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3546 	      if (target_label == 0)
3547 		target_label = find_end_label ();
3548 
3549 	      if (target_label
3550 	          && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3551 						       insn))
3552 		{
3553 		  reorg_redirect_jump (delay_insn, target_label);
3554 		  next = insn;
3555 		  continue;
3556 		}
3557 	    }
3558 	}
3559 
3560       /* See if we have a simple (conditional) jump that is useless.  */
3561       if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3562 	  && ! condjump_in_parallel_p (delay_insn)
3563 	  && prev_active_insn (target_label) == insn
3564 	  && ! BARRIER_P (prev_nonnote_insn (target_label))
3565 #ifdef HAVE_cc0
3566 	  /* If the last insn in the delay slot sets CC0 for some insn,
3567 	     various code assumes that it is in a delay slot.  We could
3568 	     put it back where it belonged and delete the register notes,
3569 	     but it doesn't seem worthwhile in this uncommon case.  */
3570 	  && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3571 			      REG_CC_USER, NULL_RTX)
3572 #endif
3573 	  )
3574 	{
3575 	  rtx after;
3576 	  int i;
3577 
3578 	  /* All this insn does is execute its delay list and jump to the
3579 	     following insn.  So delete the jump and just execute the delay
3580 	     list insns.
3581 
3582 	     We do this by deleting the INSN containing the SEQUENCE, then
3583 	     re-emitting the insns separately, and then deleting the jump.
3584 	     This allows the count of the jump target to be properly
3585 	     decremented.
3586 
3587 	     Note that we need to change the INSN_UID of the re-emitted insns
3588 	     since it is used to hash the insns for mark_target_live_regs and
3589 	     the re-emitted insns will no longer be wrapped up in a SEQUENCE.
3590 
3591 	     Clear the from target bit, since these insns are no longer
3592 	     in delay slots.  */
3593 	  for (i = 0; i < XVECLEN (pat, 0); i++)
3594 	    INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3595 
3596 	  trial = PREV_INSN (insn);
3597 	  delete_related_insns (insn);
3598 	  gcc_assert (GET_CODE (pat) == SEQUENCE);
3599 	  add_insn_after (delay_insn, trial, NULL);
3600 	  after = delay_insn;
3601 	  for (i = 1; i < XVECLEN (pat, 0); i++)
3602 	    after = emit_copy_of_insn_after (XVECEXP (pat, 0, i), after);
3603 	  delete_scheduled_jump (delay_insn);
3604 	  continue;
3605 	}
3606 
3607       /* See if this is an unconditional jump around a single insn which is
3608 	 identical to the one in its delay slot.  In this case, we can just
3609 	 delete the branch and the insn in its delay slot.  */
3610       if (next && NONJUMP_INSN_P (next)
3611 	  && prev_label (next_active_insn (next)) == target_label
3612 	  && simplejump_p (insn)
3613 	  && XVECLEN (pat, 0) == 2
3614 	  && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3615 	{
3616 	  delete_related_insns (insn);
3617 	  continue;
3618 	}
3619 
3620       /* See if this jump (with its delay slots) conditionally branches
3621 	 around an unconditional jump (without delay slots).  If so, invert
3622 	 this jump and point it to the target of the second jump.  We cannot
3623 	 do this for annulled jumps, though.  Again, don't convert a jump to
3624 	 a RETURN here.  */
3625       if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3626 	  && any_condjump_p (delay_insn)
3627 	  && next && JUMP_P (next)
3628 	  && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3629 	  && next_active_insn (target_label) == next_active_insn (next)
3630 	  && no_labels_between_p (insn, next))
3631 	{
3632 	  rtx label = JUMP_LABEL (next);
3633 	  rtx old_label = JUMP_LABEL (delay_insn);
3634 
3635 	  if (label == 0)
3636 	    label = find_end_label ();
3637 
3638 	  /* find_end_label can generate a new label. Check this first.  */
3639 	  if (label
3640 	      && no_labels_between_p (insn, next)
3641 	      && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3642 	    {
3643 	      /* Be careful how we do this to avoid deleting code or labels
3644 		 that are momentarily dead.  See similar optimization in
3645 		 jump.c  */
3646 	      if (old_label)
3647 		++LABEL_NUSES (old_label);
3648 
3649 	      if (invert_jump (delay_insn, label, 1))
3650 		{
3651 		  int i;
3652 
3653 		  /* Must update the INSN_FROM_TARGET_P bits now that
3654 		     the branch is reversed, so that mark_target_live_regs
3655 		     will handle the delay slot insn correctly.  */
3656 		  for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3657 		    {
3658 		      rtx slot = XVECEXP (PATTERN (insn), 0, i);
3659 		      INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3660 		    }
3661 
3662 		  delete_related_insns (next);
3663 		  next = insn;
3664 		}
3665 
3666 	      if (old_label && --LABEL_NUSES (old_label) == 0)
3667 		delete_related_insns (old_label);
3668 	      continue;
3669 	    }
3670 	}
3671 
3672       /* If we own the thread opposite the way this insn branches, see if we
3673 	 can merge its delay slots with following insns.  */
3674       if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3675 	  && own_thread_p (NEXT_INSN (insn), 0, 1))
3676 	try_merge_delay_insns (insn, next);
3677       else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3678 	       && own_thread_p (target_label, target_label, 0))
3679 	try_merge_delay_insns (insn, next_active_insn (target_label));
3680 
3681       /* If we get here, we haven't deleted INSN.  But we may have deleted
3682 	 NEXT, so recompute it.  */
3683       next = next_active_insn (insn);
3684     }
3685 }
3686 
3687 #ifdef HAVE_return
3688 
3689 /* Look for filled jumps to the end of function label.  We can try to convert
3690    them into RETURN insns if the insns in the delay slot are valid for the
3691    RETURN as well.  */
3692 
3693 static void
3694 make_return_insns (rtx first)
3695 {
3696   rtx insn, jump_insn, pat;
3697   rtx real_return_label = end_of_function_label;
3698   int slots, i;
3699 
3700 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3701   /* If a previous pass filled delay slots in the epilogue, things get a
3702      bit more complicated, as those filler insns would generally (without
3703      data flow analysis) have to be executed after any existing branch
3704      delay slot filler insns.  It is also unknown whether such a
3705      transformation would actually be profitable.  Note that the existing
3706      code only cares for branches with (some) filled delay slots.  */
3707   if (crtl->epilogue_delay_list != NULL)
3708     return;
3709 #endif
3710 
3711   /* See if there is a RETURN insn in the function other than the one we
3712      made for END_OF_FUNCTION_LABEL.  If so, set up anything we can't change
3713      into a RETURN to jump to it.  */
3714   for (insn = first; insn; insn = NEXT_INSN (insn))
3715     if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3716       {
3717 	real_return_label = get_label_before (insn);
3718 	break;
3719       }
3720 
3721   /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3722      was equal to END_OF_FUNCTION_LABEL.  */
3723   LABEL_NUSES (real_return_label)++;
3724 
3725   /* Clear the list of insns to fill so we can use it.  */
3726   obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3727 
3728   for (insn = first; insn; insn = NEXT_INSN (insn))
3729     {
3730       int flags;
3731 
3732       /* Only look at filled JUMP_INSNs that go to the end of function
3733 	 label.  */
3734       if (!NONJUMP_INSN_P (insn)
3735 	  || GET_CODE (PATTERN (insn)) != SEQUENCE
3736 	  || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3737 	  || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3738 	continue;
3739 
3740       pat = PATTERN (insn);
3741       jump_insn = XVECEXP (pat, 0, 0);
3742 
3743       /* If we can't make the jump into a RETURN, try to redirect it to the best
3744 	 RETURN and go on to the next insn.  */
3745       if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3746 	{
3747 	  /* Make sure redirecting the jump will not invalidate the delay
3748 	     slot insns.  */
3749 	  if (redirect_with_delay_slots_safe_p (jump_insn,
3750 						real_return_label,
3751 						insn))
3752 	    reorg_redirect_jump (jump_insn, real_return_label);
3753 	  continue;
3754 	}
3755 
3756       /* See if this RETURN can accept the insns current in its delay slot.
3757 	 It can if it has more or an equal number of slots and the contents
3758 	 of each is valid.  */
3759 
3760       flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3761       slots = num_delay_slots (jump_insn);
3762       if (slots >= XVECLEN (pat, 0) - 1)
3763 	{
3764 	  for (i = 1; i < XVECLEN (pat, 0); i++)
3765 	    if (! (
3766 #ifdef ANNUL_IFFALSE_SLOTS
3767 		   (INSN_ANNULLED_BRANCH_P (jump_insn)
3768 		    && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3769 		   ? eligible_for_annul_false (jump_insn, i - 1,
3770 					       XVECEXP (pat, 0, i), flags) :
3771 #endif
3772 #ifdef ANNUL_IFTRUE_SLOTS
3773 		   (INSN_ANNULLED_BRANCH_P (jump_insn)
3774 		    && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3775 		   ? eligible_for_annul_true (jump_insn, i - 1,
3776 					      XVECEXP (pat, 0, i), flags) :
3777 #endif
3778 		   eligible_for_delay (jump_insn, i - 1,
3779 				       XVECEXP (pat, 0, i), flags)))
3780 	      break;
3781 	}
3782       else
3783 	i = 0;
3784 
3785       if (i == XVECLEN (pat, 0))
3786 	continue;
3787 
3788       /* We have to do something with this insn.  If it is an unconditional
3789 	 RETURN, delete the SEQUENCE and output the individual insns,
3790 	 followed by the RETURN.  Then set things up so we try to find
3791 	 insns for its delay slots, if it needs some.  */
3792       if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3793 	{
3794 	  rtx prev = PREV_INSN (insn);
3795 
3796 	  delete_related_insns (insn);
3797 	  for (i = 1; i < XVECLEN (pat, 0); i++)
3798 	    prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3799 
3800 	  insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3801 	  emit_barrier_after (insn);
3802 
3803 	  if (slots)
3804 	    obstack_ptr_grow (&unfilled_slots_obstack, insn);
3805 	}
3806       else
3807 	/* It is probably more efficient to keep this with its current
3808 	   delay slot as a branch to a RETURN.  */
3809 	reorg_redirect_jump (jump_insn, real_return_label);
3810     }
3811 
3812   /* Now delete REAL_RETURN_LABEL if we never used it.  Then try to fill any
3813      new delay slots we have created.  */
3814   if (--LABEL_NUSES (real_return_label) == 0)
3815     delete_related_insns (real_return_label);
3816 
3817   fill_simple_delay_slots (1);
3818   fill_simple_delay_slots (0);
3819 }
3820 #endif
3821 
3822 /* Try to find insns to place in delay slots.  */
3823 
3824 void
3825 dbr_schedule (rtx first)
3826 {
3827   rtx insn, next, epilogue_insn = 0;
3828   int i;
3829 
3830   /* If the current function has no insns other than the prologue and
3831      epilogue, then do not try to fill any delay slots.  */
3832   if (n_basic_blocks == NUM_FIXED_BLOCKS)
3833     return;
3834 
3835   /* Find the highest INSN_UID and allocate and initialize our map from
3836      INSN_UID's to position in code.  */
3837   for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3838     {
3839       if (INSN_UID (insn) > max_uid)
3840 	max_uid = INSN_UID (insn);
3841       if (NOTE_P (insn)
3842 	  && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3843 	epilogue_insn = insn;
3844     }
3845 
3846   uid_to_ruid = XNEWVEC (int, max_uid + 1);
3847   for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3848     uid_to_ruid[INSN_UID (insn)] = i;
3849 
3850   /* Initialize the list of insns that need filling.  */
3851   if (unfilled_firstobj == 0)
3852     {
3853       gcc_obstack_init (&unfilled_slots_obstack);
3854       unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3855     }
3856 
3857   for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3858     {
3859       rtx target;
3860 
3861       INSN_ANNULLED_BRANCH_P (insn) = 0;
3862       INSN_FROM_TARGET_P (insn) = 0;
3863 
3864       /* Skip vector tables.  We can't get attributes for them.  */
3865       if (JUMP_TABLE_DATA_P (insn))
3866 	continue;
3867 
3868       if (num_delay_slots (insn) > 0)
3869 	obstack_ptr_grow (&unfilled_slots_obstack, insn);
3870 
3871       /* Ensure all jumps go to the last of a set of consecutive labels.  */
3872       if (JUMP_P (insn)
3873 	  && (condjump_p (insn) || condjump_in_parallel_p (insn))
3874 	  && JUMP_LABEL (insn) != 0
3875 	  && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3876 	      != JUMP_LABEL (insn)))
3877 	redirect_jump (insn, target, 1);
3878     }
3879 
3880   init_resource_info (epilogue_insn);
3881 
3882   /* Show we haven't computed an end-of-function label yet.  */
3883   end_of_function_label = 0;
3884 
3885   /* Initialize the statistics for this function.  */
3886   memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3887   memset (num_filled_delays, 0, sizeof num_filled_delays);
3888 
3889   /* Now do the delay slot filling.  Try everything twice in case earlier
3890      changes make more slots fillable.  */
3891 
3892   for (reorg_pass_number = 0;
3893        reorg_pass_number < MAX_REORG_PASSES;
3894        reorg_pass_number++)
3895     {
3896       fill_simple_delay_slots (1);
3897       fill_simple_delay_slots (0);
3898       fill_eager_delay_slots ();
3899       relax_delay_slots (first);
3900     }
3901 
3902   /* If we made an end of function label, indicate that it is now
3903      safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3904      If it is now unused, delete it.  */
3905   if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3906     delete_related_insns (end_of_function_label);
3907 
3908 #ifdef HAVE_return
3909   if (HAVE_return && end_of_function_label != 0)
3910     make_return_insns (first);
3911 #endif
3912 
3913   /* Delete any USE insns made by update_block; subsequent passes don't need
3914      them or know how to deal with them.  */
3915   for (insn = first; insn; insn = next)
3916     {
3917       next = NEXT_INSN (insn);
3918 
3919       if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3920 	  && INSN_P (XEXP (PATTERN (insn), 0)))
3921 	next = delete_related_insns (insn);
3922     }
3923 
3924   obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3925 
3926   /* It is not clear why the line below is needed, but it does seem to be.  */
3927   unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3928 
3929   if (dump_file)
3930     {
3931       int i, j, need_comma;
3932       int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3933       int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3934 
3935       for (reorg_pass_number = 0;
3936 	   reorg_pass_number < MAX_REORG_PASSES;
3937 	   reorg_pass_number++)
3938 	{
3939 	  fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3940 	  for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3941 	    {
3942 	      need_comma = 0;
3943 	      fprintf (dump_file, ";; Reorg function #%d\n", i);
3944 
3945 	      fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3946 		       num_insns_needing_delays[i][reorg_pass_number]);
3947 
3948 	      for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3949 		if (num_filled_delays[i][j][reorg_pass_number])
3950 		  {
3951 		    if (need_comma)
3952 		      fprintf (dump_file, ", ");
3953 		    need_comma = 1;
3954 		    fprintf (dump_file, "%d got %d delays",
3955 			     num_filled_delays[i][j][reorg_pass_number], j);
3956 		  }
3957 	      fprintf (dump_file, "\n");
3958 	    }
3959 	}
3960       memset (total_delay_slots, 0, sizeof total_delay_slots);
3961       memset (total_annul_slots, 0, sizeof total_annul_slots);
3962       for (insn = first; insn; insn = NEXT_INSN (insn))
3963 	{
3964 	  if (! INSN_DELETED_P (insn)
3965 	      && NONJUMP_INSN_P (insn)
3966 	      && GET_CODE (PATTERN (insn)) != USE
3967 	      && GET_CODE (PATTERN (insn)) != CLOBBER)
3968 	    {
3969 	      if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3970 		{
3971 		  j = XVECLEN (PATTERN (insn), 0) - 1;
3972 		  if (j > MAX_DELAY_HISTOGRAM)
3973 		    j = MAX_DELAY_HISTOGRAM;
3974 		  if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3975 		    total_annul_slots[j]++;
3976 		  else
3977 		    total_delay_slots[j]++;
3978 		}
3979 	      else if (num_delay_slots (insn) > 0)
3980 		total_delay_slots[0]++;
3981 	    }
3982 	}
3983       fprintf (dump_file, ";; Reorg totals: ");
3984       need_comma = 0;
3985       for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3986 	{
3987 	  if (total_delay_slots[j])
3988 	    {
3989 	      if (need_comma)
3990 		fprintf (dump_file, ", ");
3991 	      need_comma = 1;
3992 	      fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3993 	    }
3994 	}
3995       fprintf (dump_file, "\n");
3996 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3997       fprintf (dump_file, ";; Reorg annuls: ");
3998       need_comma = 0;
3999       for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
4000 	{
4001 	  if (total_annul_slots[j])
4002 	    {
4003 	      if (need_comma)
4004 		fprintf (dump_file, ", ");
4005 	      need_comma = 1;
4006 	      fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
4007 	    }
4008 	}
4009       fprintf (dump_file, "\n");
4010 #endif
4011       fprintf (dump_file, "\n");
4012     }
4013 
4014   /* For all JUMP insns, fill in branch prediction notes, so that during
4015      assembler output a target can set branch prediction bits in the code.
4016      We have to do this now, as up until this point the destinations of
4017      JUMPS can be moved around and changed, but past right here that cannot
4018      happen.  */
4019   for (insn = first; insn; insn = NEXT_INSN (insn))
4020     {
4021       int pred_flags;
4022 
4023       if (NONJUMP_INSN_P (insn))
4024 	{
4025 	  rtx pat = PATTERN (insn);
4026 
4027 	  if (GET_CODE (pat) == SEQUENCE)
4028 	    insn = XVECEXP (pat, 0, 0);
4029 	}
4030       if (!JUMP_P (insn))
4031 	continue;
4032 
4033       pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4034       add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
4035     }
4036   free_resource_info ();
4037   free (uid_to_ruid);
4038 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4039   /* SPARC assembler, for instance, emit warning when debug info is output
4040      into the delay slot.  */
4041   {
4042     rtx link;
4043 
4044     for (link = crtl->epilogue_delay_list;
4045          link;
4046          link = XEXP (link, 1))
4047       INSN_LOCATOR (XEXP (link, 0)) = 0;
4048   }
4049 
4050 #endif
4051   crtl->dbr_scheduled_p = true;
4052 }
4053 #endif /* DELAY_SLOTS */
4054 
4055 static bool
4056 gate_handle_delay_slots (void)
4057 {
4058 #ifdef DELAY_SLOTS
4059   /* At -O0 dataflow info isn't updated after RA.  */
4060   return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
4061 #else
4062   return 0;
4063 #endif
4064 }
4065 
4066 /* Run delay slot optimization.  */
4067 static unsigned int
4068 rest_of_handle_delay_slots (void)
4069 {
4070 #ifdef DELAY_SLOTS
4071   dbr_schedule (get_insns ());
4072 #endif
4073   return 0;
4074 }
4075 
4076 struct rtl_opt_pass pass_delay_slots =
4077 {
4078  {
4079   RTL_PASS,
4080   "dbr",                                /* name */
4081   gate_handle_delay_slots,              /* gate */
4082   rest_of_handle_delay_slots,           /* execute */
4083   NULL,                                 /* sub */
4084   NULL,                                 /* next */
4085   0,                                    /* static_pass_number */
4086   TV_DBR_SCHED,                         /* tv_id */
4087   0,                                    /* properties_required */
4088   0,                                    /* properties_provided */
4089   0,                                    /* properties_destroyed */
4090   0,                                    /* todo_flags_start */
4091   TODO_dump_func |
4092   TODO_ggc_collect                      /* todo_flags_finish */
4093  }
4094 };
4095 
4096 /* Machine dependent reorg pass.  */
4097 static bool
4098 gate_handle_machine_reorg (void)
4099 {
4100   return targetm.machine_dependent_reorg != 0;
4101 }
4102 
4103 
4104 static unsigned int
4105 rest_of_handle_machine_reorg (void)
4106 {
4107   targetm.machine_dependent_reorg ();
4108   return 0;
4109 }
4110 
4111 struct rtl_opt_pass pass_machine_reorg =
4112 {
4113  {
4114   RTL_PASS,
4115   "mach",                               /* name */
4116   gate_handle_machine_reorg,            /* gate */
4117   rest_of_handle_machine_reorg,         /* execute */
4118   NULL,                                 /* sub */
4119   NULL,                                 /* next */
4120   0,                                    /* static_pass_number */
4121   TV_MACH_DEP,                          /* tv_id */
4122   0,                                    /* properties_required */
4123   0,                                    /* properties_provided */
4124   0,                                    /* properties_destroyed */
4125   0,                                    /* todo_flags_start */
4126   TODO_dump_func |
4127   TODO_ggc_collect                      /* todo_flags_finish */
4128  }
4129 };
4130