xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reload1.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2    Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48 
49 /* This file contains the reload pass of the compiler, which is
50    run after register allocation has been done.  It checks that
51    each insn is valid (operands required to be in registers really
52    are in registers of the proper class) and fixes up invalid ones
53    by copying values temporarily into registers for the insns
54    that need them.
55 
56    The results of register allocation are described by the vector
57    reg_renumber; the insns still contain pseudo regs, but reg_renumber
58    can be used to find which hard reg, if any, a pseudo reg is in.
59 
60    The technique we always use is to free up a few hard regs that are
61    called ``reload regs'', and for each place where a pseudo reg
62    must be in a hard reg, copy it temporarily into one of the reload regs.
63 
64    Reload regs are allocated locally for every instruction that needs
65    reloads.  When there are pseudos which are allocated to a register that
66    has been chosen as a reload reg, such pseudos must be ``spilled''.
67    This means that they go to other hard regs, or to stack slots if no other
68    available hard regs can be found.  Spilling can invalidate more
69    insns, requiring additional need for reloads, so we must keep checking
70    until the process stabilizes.
71 
72    For machines with different classes of registers, we must keep track
73    of the register class needed for each reload, and make sure that
74    we allocate enough reload registers of each class.
75 
76    The file reload.c contains the code that checks one insn for
77    validity and reports the reloads that it needs.  This file
78    is in charge of scanning the entire rtl code, accumulating the
79    reload needs, spilling, assigning reload registers to use for
80    fixing up each insn, and generating the new insns to copy values
81    into the reload registers.  */
82 
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
87 
88 #define spill_indirect_levels			\
89   (this_target_reload->x_spill_indirect_levels)
90 
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92    into which reg N has been reloaded (perhaps for a previous insn).  */
93 static rtx *reg_last_reload_reg;
94 
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96    for an output reload that stores into reg N.  */
97 static regset_head reg_has_output_reload;
98 
99 /* Indicates which hard regs are reload-registers for an output reload
100    in the current insn.  */
101 static HARD_REG_SET reg_is_output_reload;
102 
103 /* Widest width in which each pseudo reg is referred to (via subreg).  */
104 static unsigned int *reg_max_ref_width;
105 
106 /* Vector to remember old contents of reg_renumber before spilling.  */
107 static short *reg_old_renumber;
108 
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110    into hard register N.  If that pseudo reg occupied more than one register,
111    reg_reloaded_contents points to that pseudo for each spill register in
112    use; all of these must remain set for an inheritance to occur.  */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
114 
115 /* During reload_as_needed, element N contains the insn for which
116    hard register N was last used.   Its contents are significant only
117    when reg_reloaded_valid is set for this register.  */
118 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
119 
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid.  */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123    This is only valid if reg_reloaded_contents is set and valid.  */
124 static HARD_REG_SET reg_reloaded_dead;
125 
126 /* Indicate whether the register's current value is one that is not
127    safe to retain across a call, even for registers that are normally
128    call-saved.  This is only meaningful for members of reg_reloaded_valid.  */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
130 
131 /* Number of spill-regs so far; number of valid elements of spill_regs.  */
132 static int n_spills;
133 
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135    Holds the last rtx used for any given reg, or 0 if it has never
136    been used for spilling yet.  This rtx is reused, provided it has
137    the proper mode.  */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
139 
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141    that was stored after the last time it was used.
142    The precise value is the insn generated to do the store.  */
143 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
144 
145 /* This is the register that was stored with spill_reg_store.  This is a
146    copy of reload_out / reload_out_reg when the value was stored; if
147    reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg.  */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
149 
150 /* This table is the inverse mapping of spill_regs:
151    indexed by hard reg number,
152    it contains the position of that reg in spill_regs,
153    or -1 for something that is not in spill_regs.
154 
155    ?!?  This is no longer accurate.  */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
157 
158 /* This reg set indicates registers that can't be used as spill registers for
159    the currently processed insn.  These are the hard registers which are live
160    during the insn, but not allocated to pseudos, as well as fixed
161    registers.  */
162 static HARD_REG_SET bad_spill_regs;
163 
164 /* These are the hard registers that can't be used as spill register for any
165    insn.  This includes registers used for user variables and registers that
166    we can't eliminate.  A register that appears in this set also can't be used
167    to retry register allocation.  */
168 static HARD_REG_SET bad_spill_regs_global;
169 
170 /* Describes order of use of registers for reloading
171    of spilled pseudo-registers.  `n_spills' is the number of
172    elements that are actually valid; new ones are added at the end.
173 
174    Both spill_regs and spill_reg_order are used on two occasions:
175    once during find_reload_regs, where they keep track of the spill registers
176    for a single insn, but also during reload_as_needed where they show all
177    the registers ever used by reload.  For the latter case, the information
178    is calculated during finish_spills.  */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
180 
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182    may not be used for retrying global allocation because the register was
183    formerly spilled from one of them.  If we allowed reallocating a pseudo to
184    a register that it was already allocated to, reload might not
185    terminate.  */
186 static HARD_REG_SET *pseudo_previous_regs;
187 
188 /* This vector of reg sets indicates, for each pseudo, which hard
189    registers may not be used for retrying global allocation because they
190    are used as spill registers during one of the insns in which the
191    pseudo is live.  */
192 static HARD_REG_SET *pseudo_forbidden_regs;
193 
194 /* All hard regs that have been used as spill registers for any insn are
195    marked in this set.  */
196 static HARD_REG_SET used_spill_regs;
197 
198 /* Index of last register assigned as a spill register.  We allocate in
199    a round-robin fashion.  */
200 static int last_spill_reg;
201 
202 /* Record the stack slot for each spilled hard register.  */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
204 
205 /* Width allocated so far for that stack slot.  */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
207 
208 /* Record which pseudos needed to be spilled.  */
209 static regset_head spilled_pseudos;
210 
211 /* Record which pseudos changed their allocation in finish_spills.  */
212 static regset_head changed_allocation_pseudos;
213 
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215    Used to avoid counting one pseudo twice.  */
216 static regset_head pseudos_counted;
217 
218 /* First uid used by insns created by reload in this function.
219    Used in find_equiv_reg.  */
220 int reload_first_uid;
221 
222 /* Flag set by local-alloc or global-alloc if anything is live in
223    a call-clobbered reg across calls.  */
224 int caller_save_needed;
225 
226 /* Set to 1 while reload_as_needed is operating.
227    Required by some machines to handle any generated moves differently.  */
228 int reload_in_progress = 0;
229 
230 /* This obstack is used for allocation of rtl during register elimination.
231    The allocated storage can be freed once find_reloads has processed the
232    insn.  */
233 static struct obstack reload_obstack;
234 
235 /* Points to the beginning of the reload_obstack.  All insn_chain structures
236    are allocated first.  */
237 static char *reload_startobj;
238 
239 /* The point after all insn_chain structures.  Used to quickly deallocate
240    memory allocated in copy_reloads during calculate_needs_all_insns.  */
241 static char *reload_firstobj;
242 
243 /* This points before all local rtl generated by register elimination.
244    Used to quickly free all memory after processing one insn.  */
245 static char *reload_insn_firstobj;
246 
247 /* List of insn_chain instructions, one for every insn that reload needs to
248    examine.  */
249 struct insn_chain *reload_insn_chain;
250 
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252    run DCE immediately after reload, FALSE otherwise.  */
253 static bool need_dce;
254 
255 /* List of all insns needing reloads.  */
256 static struct insn_chain *insns_need_reload;
257 
258 /* This structure is used to record information about register eliminations.
259    Each array entry describes one possible way of eliminating a register
260    in favor of another.   If there is more than one way of eliminating a
261    particular register, the most preferred should be specified first.  */
262 
263 struct elim_table
264 {
265   int from;			/* Register number to be eliminated.  */
266   int to;			/* Register number used as replacement.  */
267   HOST_WIDE_INT initial_offset;	/* Initial difference between values.  */
268   int can_eliminate;		/* Nonzero if this elimination can be done.  */
269   int can_eliminate_previous;	/* Value returned by TARGET_CAN_ELIMINATE
270 				   target hook in previous scan over insns
271 				   made by reload.  */
272   HOST_WIDE_INT offset;		/* Current offset between the two regs.  */
273   HOST_WIDE_INT previous_offset;/* Offset at end of previous insn.  */
274   int ref_outside_mem;		/* "to" has been referenced outside a MEM.  */
275   rtx from_rtx;			/* REG rtx for the register to be eliminated.
276 				   We cannot simply compare the number since
277 				   we might then spuriously replace a hard
278 				   register corresponding to a pseudo
279 				   assigned to the reg to be eliminated.  */
280   rtx to_rtx;			/* REG rtx for the replacement.  */
281 };
282 
283 static struct elim_table *reg_eliminate = 0;
284 
285 /* This is an intermediate structure to initialize the table.  It has
286    exactly the members provided by ELIMINABLE_REGS.  */
287 static const struct elim_table_1
288 {
289   const int from;
290   const int to;
291 } reg_eliminate_1[] =
292 
293 /* If a set of eliminable registers was specified, define the table from it.
294    Otherwise, default to the normal case of the frame pointer being
295    replaced by the stack pointer.  */
296 
297 #ifdef ELIMINABLE_REGS
298   ELIMINABLE_REGS;
299 #else
300   {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
302 
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
304 
305 /* Record the number of pending eliminations that have an offset not equal
306    to their initial offset.  If nonzero, we use a new copy of each
307    replacement result in any insns encountered.  */
308 int num_not_at_initial_offset;
309 
310 /* Count the number of registers that we may be able to eliminate.  */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313    can be eliminated to frame_pointer / arg_pointer + constant.  */
314 static int num_eliminable_invariants;
315 
316 /* For each label, we record the offset of each elimination.  If we reach
317    a label by more than one path and an offset differs, we cannot do the
318    elimination.  This information is indexed by the difference of the
319    number of the label and the first label number.  We can't offset the
320    pointer itself as this can cause problems on machines with segmented
321    memory.  The first table is an array of flags that records whether we
322    have yet encountered a label and the second table is an array of arrays,
323    one entry in the latter array for each elimination.  */
324 
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
328 
329 vec<reg_equivs_t, va_gc> *reg_equivs;
330 
331 /* Stack of addresses where an rtx has been changed.  We can undo the
332    changes by popping items off the stack and restoring the original
333    value at each location.
334 
335    We use this simplistic undo capability rather than copy_rtx as copy_rtx
336    will not make a deep copy of a normally sharable rtx, such as
337    (const (plus (symbol_ref) (const_int))).  If such an expression appears
338    as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339    rtx expression would be changed.  See PR 42431.  */
340 
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
343 
344 /* Number of labels in the current function.  */
345 
346 static int num_labels;
347 
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
356 
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static void elimination_costs_in_insn (rtx);
377 static void spill_hard_reg (unsigned int, int);
378 static int finish_spills (int);
379 static void scan_paradoxical_subregs (rtx);
380 static void count_pseudo (int);
381 static void order_regs_for_reload (struct insn_chain *);
382 static void reload_as_needed (int);
383 static void forget_old_reloads_1 (rtx, const_rtx, void *);
384 static void forget_marked_reloads (regset);
385 static int reload_reg_class_lower (const void *, const void *);
386 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
387 				    enum machine_mode);
388 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
389 				     enum machine_mode);
390 static int reload_reg_free_p (unsigned int, int, enum reload_type);
391 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
392 					rtx, rtx, int, int);
393 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
394 			     rtx, rtx, int, int);
395 static int allocate_reload_reg (struct insn_chain *, int, int);
396 static int conflicts_with_override (rtx);
397 static void failed_reload (rtx, int);
398 static int set_reload_reg (int, int);
399 static void choose_reload_regs_init (struct insn_chain *, rtx *);
400 static void choose_reload_regs (struct insn_chain *);
401 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
402 				     rtx, int);
403 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
404 				      int);
405 static void do_input_reload (struct insn_chain *, struct reload *, int);
406 static void do_output_reload (struct insn_chain *, struct reload *, int);
407 static void emit_reload_insns (struct insn_chain *);
408 static void delete_output_reload (rtx, int, int, rtx);
409 static void delete_address_reloads (rtx, rtx);
410 static void delete_address_reloads_1 (rtx, rtx, rtx);
411 static void inc_for_reload (rtx, rtx, rtx, int);
412 #ifdef AUTO_INC_DEC
413 static void add_auto_inc_notes (rtx, rtx);
414 #endif
415 static void substitute (rtx *, const_rtx, rtx);
416 static bool gen_reload_chain_without_interm_reg_p (int, int);
417 static int reloads_conflict (int, int);
418 static rtx gen_reload (rtx, rtx, int, enum reload_type);
419 static rtx emit_insn_if_valid_for_reload (rtx);
420 
421 /* Initialize the reload pass.  This is called at the beginning of compilation
422    and may be called again if the target is reinitialized.  */
423 
424 void
425 init_reload (void)
426 {
427   int i;
428 
429   /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
430      Set spill_indirect_levels to the number of levels such addressing is
431      permitted, zero if it is not permitted at all.  */
432 
433   rtx tem
434     = gen_rtx_MEM (Pmode,
435 		   gen_rtx_PLUS (Pmode,
436 				 gen_rtx_REG (Pmode,
437 					      LAST_VIRTUAL_REGISTER + 1),
438 				 GEN_INT (4)));
439   spill_indirect_levels = 0;
440 
441   while (memory_address_p (QImode, tem))
442     {
443       spill_indirect_levels++;
444       tem = gen_rtx_MEM (Pmode, tem);
445     }
446 
447   /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)).  */
448 
449   tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
450   indirect_symref_ok = memory_address_p (QImode, tem);
451 
452   /* See if reg+reg is a valid (and offsettable) address.  */
453 
454   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
455     {
456       tem = gen_rtx_PLUS (Pmode,
457 			  gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
458 			  gen_rtx_REG (Pmode, i));
459 
460       /* This way, we make sure that reg+reg is an offsettable address.  */
461       tem = plus_constant (Pmode, tem, 4);
462 
463       if (memory_address_p (QImode, tem))
464 	{
465 	  double_reg_address_ok = 1;
466 	  break;
467 	}
468     }
469 
470   /* Initialize obstack for our rtl allocation.  */
471   if (reload_startobj == NULL)
472     {
473       gcc_obstack_init (&reload_obstack);
474       reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
475     }
476 
477   INIT_REG_SET (&spilled_pseudos);
478   INIT_REG_SET (&changed_allocation_pseudos);
479   INIT_REG_SET (&pseudos_counted);
480 }
481 
482 /* List of insn chains that are currently unused.  */
483 static struct insn_chain *unused_insn_chains = 0;
484 
485 /* Allocate an empty insn_chain structure.  */
486 struct insn_chain *
487 new_insn_chain (void)
488 {
489   struct insn_chain *c;
490 
491   if (unused_insn_chains == 0)
492     {
493       c = XOBNEW (&reload_obstack, struct insn_chain);
494       INIT_REG_SET (&c->live_throughout);
495       INIT_REG_SET (&c->dead_or_set);
496     }
497   else
498     {
499       c = unused_insn_chains;
500       unused_insn_chains = c->next;
501     }
502   c->is_caller_save_insn = 0;
503   c->need_operand_change = 0;
504   c->need_reload = 0;
505   c->need_elim = 0;
506   return c;
507 }
508 
509 /* Small utility function to set all regs in hard reg set TO which are
510    allocated to pseudos in regset FROM.  */
511 
512 void
513 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
514 {
515   unsigned int regno;
516   reg_set_iterator rsi;
517 
518   EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
519     {
520       int r = reg_renumber[regno];
521 
522       if (r < 0)
523 	{
524 	  /* reload_combine uses the information from DF_LIVE_IN,
525 	     which might still contain registers that have not
526 	     actually been allocated since they have an
527 	     equivalence.  */
528 	  gcc_assert (ira_conflicts_p || reload_completed);
529 	}
530       else
531 	add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
532     }
533 }
534 
535 /* Replace all pseudos found in LOC with their corresponding
536    equivalences.  */
537 
538 static void
539 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
540 {
541   rtx x = *loc;
542   enum rtx_code code;
543   const char *fmt;
544   int i, j;
545 
546   if (! x)
547     return;
548 
549   code = GET_CODE (x);
550   if (code == REG)
551     {
552       unsigned int regno = REGNO (x);
553 
554       if (regno < FIRST_PSEUDO_REGISTER)
555 	return;
556 
557       x = eliminate_regs_1 (x, mem_mode, usage, true, false);
558       if (x != *loc)
559 	{
560 	  *loc = x;
561 	  replace_pseudos_in (loc, mem_mode, usage);
562 	  return;
563 	}
564 
565       if (reg_equiv_constant (regno))
566 	*loc = reg_equiv_constant (regno);
567       else if (reg_equiv_invariant (regno))
568 	*loc = reg_equiv_invariant (regno);
569       else if (reg_equiv_mem (regno))
570 	*loc = reg_equiv_mem (regno);
571       else if (reg_equiv_address (regno))
572 	*loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
573       else
574 	{
575 	  gcc_assert (!REG_P (regno_reg_rtx[regno])
576 		      || REGNO (regno_reg_rtx[regno]) != regno);
577 	  *loc = regno_reg_rtx[regno];
578 	}
579 
580       return;
581     }
582   else if (code == MEM)
583     {
584       replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
585       return;
586     }
587 
588   /* Process each of our operands recursively.  */
589   fmt = GET_RTX_FORMAT (code);
590   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
591     if (*fmt == 'e')
592       replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
593     else if (*fmt == 'E')
594       for (j = 0; j < XVECLEN (x, i); j++)
595 	replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
596 }
597 
598 /* Determine if the current function has an exception receiver block
599    that reaches the exit block via non-exceptional edges  */
600 
601 static bool
602 has_nonexceptional_receiver (void)
603 {
604   edge e;
605   edge_iterator ei;
606   basic_block *tos, *worklist, bb;
607 
608   /* If we're not optimizing, then just err on the safe side.  */
609   if (!optimize)
610     return true;
611 
612   /* First determine which blocks can reach exit via normal paths.  */
613   tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
614 
615   FOR_EACH_BB (bb)
616     bb->flags &= ~BB_REACHABLE;
617 
618   /* Place the exit block on our worklist.  */
619   EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
620   *tos++ = EXIT_BLOCK_PTR;
621 
622   /* Iterate: find everything reachable from what we've already seen.  */
623   while (tos != worklist)
624     {
625       bb = *--tos;
626 
627       FOR_EACH_EDGE (e, ei, bb->preds)
628 	if (!(e->flags & EDGE_ABNORMAL))
629 	  {
630 	    basic_block src = e->src;
631 
632 	    if (!(src->flags & BB_REACHABLE))
633 	      {
634 		src->flags |= BB_REACHABLE;
635 		*tos++ = src;
636 	      }
637 	  }
638     }
639   free (worklist);
640 
641   /* Now see if there's a reachable block with an exceptional incoming
642      edge.  */
643   FOR_EACH_BB (bb)
644     if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
645       return true;
646 
647   /* No exceptional block reached exit unexceptionally.  */
648   return false;
649 }
650 
651 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
652    zero elements) to MAX_REG_NUM elements.
653 
654    Initialize all new fields to NULL and update REG_EQUIVS_SIZE.  */
655 void
656 grow_reg_equivs (void)
657 {
658   int old_size = vec_safe_length (reg_equivs);
659   int max_regno = max_reg_num ();
660   int i;
661   reg_equivs_t ze;
662 
663   memset (&ze, 0, sizeof (reg_equivs_t));
664   vec_safe_reserve (reg_equivs, max_regno);
665   for (i = old_size; i < max_regno; i++)
666     reg_equivs->quick_insert (i, ze);
667 }
668 
669 
670 /* Global variables used by reload and its subroutines.  */
671 
672 /* The current basic block while in calculate_elim_costs_all_insns.  */
673 static basic_block elim_bb;
674 
675 /* Set during calculate_needs if an insn needs register elimination.  */
676 static int something_needs_elimination;
677 /* Set during calculate_needs if an insn needs an operand changed.  */
678 static int something_needs_operands_changed;
679 /* Set by alter_regs if we spilled a register to the stack.  */
680 static bool something_was_spilled;
681 
682 /* Nonzero means we couldn't get enough spill regs.  */
683 static int failure;
684 
685 /* Temporary array of pseudo-register number.  */
686 static int *temp_pseudo_reg_arr;
687 
688 /* Main entry point for the reload pass.
689 
690    FIRST is the first insn of the function being compiled.
691 
692    GLOBAL nonzero means we were called from global_alloc
693    and should attempt to reallocate any pseudoregs that we
694    displace from hard regs we will use for reloads.
695    If GLOBAL is zero, we do not have enough information to do that,
696    so any pseudo reg that is spilled must go to the stack.
697 
698    Return value is TRUE if reload likely left dead insns in the
699    stream and a DCE pass should be run to elimiante them.  Else the
700    return value is FALSE.  */
701 
702 bool
703 reload (rtx first, int global)
704 {
705   int i, n;
706   rtx insn;
707   struct elim_table *ep;
708   basic_block bb;
709   bool inserted;
710 
711   /* Make sure even insns with volatile mem refs are recognizable.  */
712   init_recog ();
713 
714   failure = 0;
715 
716   reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
717 
718   /* Make sure that the last insn in the chain
719      is not something that needs reloading.  */
720   emit_note (NOTE_INSN_DELETED);
721 
722   /* Enable find_equiv_reg to distinguish insns made by reload.  */
723   reload_first_uid = get_max_uid ();
724 
725 #ifdef SECONDARY_MEMORY_NEEDED
726   /* Initialize the secondary memory table.  */
727   clear_secondary_mem ();
728 #endif
729 
730   /* We don't have a stack slot for any spill reg yet.  */
731   memset (spill_stack_slot, 0, sizeof spill_stack_slot);
732   memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
733 
734   /* Initialize the save area information for caller-save, in case some
735      are needed.  */
736   init_save_areas ();
737 
738   /* Compute which hard registers are now in use
739      as homes for pseudo registers.
740      This is done here rather than (eg) in global_alloc
741      because this point is reached even if not optimizing.  */
742   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
743     mark_home_live (i);
744 
745   /* A function that has a nonlocal label that can reach the exit
746      block via non-exceptional paths must save all call-saved
747      registers.  */
748   if (cfun->has_nonlocal_label
749       && has_nonexceptional_receiver ())
750     crtl->saves_all_registers = 1;
751 
752   if (crtl->saves_all_registers)
753     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754       if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
755 	df_set_regs_ever_live (i, true);
756 
757   /* Find all the pseudo registers that didn't get hard regs
758      but do have known equivalent constants or memory slots.
759      These include parameters (known equivalent to parameter slots)
760      and cse'd or loop-moved constant memory addresses.
761 
762      Record constant equivalents in reg_equiv_constant
763      so they will be substituted by find_reloads.
764      Record memory equivalents in reg_mem_equiv so they can
765      be substituted eventually by altering the REG-rtx's.  */
766 
767   grow_reg_equivs ();
768   reg_old_renumber = XCNEWVEC (short, max_regno);
769   memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
770   pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
771   pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
772 
773   CLEAR_HARD_REG_SET (bad_spill_regs_global);
774 
775   init_eliminable_invariants (first, true);
776   init_elim_table ();
777 
778   /* Alter each pseudo-reg rtx to contain its hard reg number.  Assign
779      stack slots to the pseudos that lack hard regs or equivalents.
780      Do not touch virtual registers.  */
781 
782   temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
783   for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
784     temp_pseudo_reg_arr[n++] = i;
785 
786   if (ira_conflicts_p)
787     /* Ask IRA to order pseudo-registers for better stack slot
788        sharing.  */
789     ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
790 
791   for (i = 0; i < n; i++)
792     alter_reg (temp_pseudo_reg_arr[i], -1, false);
793 
794   /* If we have some registers we think can be eliminated, scan all insns to
795      see if there is an insn that sets one of these registers to something
796      other than itself plus a constant.  If so, the register cannot be
797      eliminated.  Doing this scan here eliminates an extra pass through the
798      main reload loop in the most common case where register elimination
799      cannot be done.  */
800   for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
801     if (INSN_P (insn))
802       note_stores (PATTERN (insn), mark_not_eliminable, NULL);
803 
804   maybe_fix_stack_asms ();
805 
806   insns_need_reload = 0;
807   something_needs_elimination = 0;
808 
809   /* Initialize to -1, which means take the first spill register.  */
810   last_spill_reg = -1;
811 
812   /* Spill any hard regs that we know we can't eliminate.  */
813   CLEAR_HARD_REG_SET (used_spill_regs);
814   /* There can be multiple ways to eliminate a register;
815      they should be listed adjacently.
816      Elimination for any register fails only if all possible ways fail.  */
817   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
818     {
819       int from = ep->from;
820       int can_eliminate = 0;
821       do
822 	{
823           can_eliminate |= ep->can_eliminate;
824           ep++;
825 	}
826       while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
827       if (! can_eliminate)
828 	spill_hard_reg (from, 1);
829     }
830 
831 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
832   if (frame_pointer_needed)
833     spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
834 #endif
835   finish_spills (global);
836 
837   /* From now on, we may need to generate moves differently.  We may also
838      allow modifications of insns which cause them to not be recognized.
839      Any such modifications will be cleaned up during reload itself.  */
840   reload_in_progress = 1;
841 
842   /* This loop scans the entire function each go-round
843      and repeats until one repetition spills no additional hard regs.  */
844   for (;;)
845     {
846       int something_changed;
847       int did_spill;
848       HOST_WIDE_INT starting_frame_size;
849 
850       starting_frame_size = get_frame_size ();
851       something_was_spilled = false;
852 
853       set_initial_elim_offsets ();
854       set_initial_label_offsets ();
855 
856       /* For each pseudo register that has an equivalent location defined,
857 	 try to eliminate any eliminable registers (such as the frame pointer)
858 	 assuming initial offsets for the replacement register, which
859 	 is the normal case.
860 
861 	 If the resulting location is directly addressable, substitute
862 	 the MEM we just got directly for the old REG.
863 
864 	 If it is not addressable but is a constant or the sum of a hard reg
865 	 and constant, it is probably not addressable because the constant is
866 	 out of range, in that case record the address; we will generate
867 	 hairy code to compute the address in a register each time it is
868 	 needed.  Similarly if it is a hard register, but one that is not
869 	 valid as an address register.
870 
871 	 If the location is not addressable, but does not have one of the
872 	 above forms, assign a stack slot.  We have to do this to avoid the
873 	 potential of producing lots of reloads if, e.g., a location involves
874 	 a pseudo that didn't get a hard register and has an equivalent memory
875 	 location that also involves a pseudo that didn't get a hard register.
876 
877 	 Perhaps at some point we will improve reload_when_needed handling
878 	 so this problem goes away.  But that's very hairy.  */
879 
880       for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
881 	if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
882 	  {
883 	    rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
884 				    NULL_RTX);
885 
886 	    if (strict_memory_address_addr_space_p
887 		  (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
888 		   MEM_ADDR_SPACE (x)))
889 	      reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
890 	    else if (CONSTANT_P (XEXP (x, 0))
891 		     || (REG_P (XEXP (x, 0))
892 			 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
893 		     || (GET_CODE (XEXP (x, 0)) == PLUS
894 			 && REG_P (XEXP (XEXP (x, 0), 0))
895 			 && (REGNO (XEXP (XEXP (x, 0), 0))
896 			     < FIRST_PSEUDO_REGISTER)
897 			 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
898 	      reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
899 	    else
900 	      {
901 		/* Make a new stack slot.  Then indicate that something
902 		   changed so we go back and recompute offsets for
903 		   eliminable registers because the allocation of memory
904 		   below might change some offset.  reg_equiv_{mem,address}
905 		   will be set up for this pseudo on the next pass around
906 		   the loop.  */
907 		reg_equiv_memory_loc (i) = 0;
908 		reg_equiv_init (i) = 0;
909 		alter_reg (i, -1, true);
910 	      }
911 	  }
912 
913       if (caller_save_needed)
914 	setup_save_areas ();
915 
916       /* If we allocated another stack slot, redo elimination bookkeeping.  */
917       if (something_was_spilled || starting_frame_size != get_frame_size ())
918 	continue;
919       if (starting_frame_size && crtl->stack_alignment_needed)
920 	{
921 	  /* If we have a stack frame, we must align it now.  The
922 	     stack size may be a part of the offset computation for
923 	     register elimination.  So if this changes the stack size,
924 	     then repeat the elimination bookkeeping.  We don't
925 	     realign when there is no stack, as that will cause a
926 	     stack frame when none is needed should
927 	     STARTING_FRAME_OFFSET not be already aligned to
928 	     STACK_BOUNDARY.  */
929 	  assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
930 	  if (starting_frame_size != get_frame_size ())
931 	    continue;
932 	}
933 
934       if (caller_save_needed)
935 	{
936 	  save_call_clobbered_regs ();
937 	  /* That might have allocated new insn_chain structures.  */
938 	  reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
939 	}
940 
941       calculate_needs_all_insns (global);
942 
943       if (! ira_conflicts_p)
944 	/* Don't do it for IRA.  We need this info because we don't
945 	   change live_throughout and dead_or_set for chains when IRA
946 	   is used.  */
947 	CLEAR_REG_SET (&spilled_pseudos);
948 
949       did_spill = 0;
950 
951       something_changed = 0;
952 
953       /* If we allocated any new memory locations, make another pass
954 	 since it might have changed elimination offsets.  */
955       if (something_was_spilled || starting_frame_size != get_frame_size ())
956 	something_changed = 1;
957 
958       /* Even if the frame size remained the same, we might still have
959 	 changed elimination offsets, e.g. if find_reloads called
960 	 force_const_mem requiring the back end to allocate a constant
961 	 pool base register that needs to be saved on the stack.  */
962       else if (!verify_initial_elim_offsets ())
963 	something_changed = 1;
964 
965       {
966 	HARD_REG_SET to_spill;
967 	CLEAR_HARD_REG_SET (to_spill);
968 	update_eliminables (&to_spill);
969 	AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
970 
971 	for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
972 	  if (TEST_HARD_REG_BIT (to_spill, i))
973 	    {
974 	      spill_hard_reg (i, 1);
975 	      did_spill = 1;
976 
977 	      /* Regardless of the state of spills, if we previously had
978 		 a register that we thought we could eliminate, but now can
979 		 not eliminate, we must run another pass.
980 
981 		 Consider pseudos which have an entry in reg_equiv_* which
982 		 reference an eliminable register.  We must make another pass
983 		 to update reg_equiv_* so that we do not substitute in the
984 		 old value from when we thought the elimination could be
985 		 performed.  */
986 	      something_changed = 1;
987 	    }
988       }
989 
990       select_reload_regs ();
991       if (failure)
992 	goto failed;
993 
994       if (insns_need_reload != 0 || did_spill)
995 	something_changed |= finish_spills (global);
996 
997       if (! something_changed)
998 	break;
999 
1000       if (caller_save_needed)
1001 	delete_caller_save_insns ();
1002 
1003       obstack_free (&reload_obstack, reload_firstobj);
1004     }
1005 
1006   /* If global-alloc was run, notify it of any register eliminations we have
1007      done.  */
1008   if (global)
1009     for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1010       if (ep->can_eliminate)
1011 	mark_elimination (ep->from, ep->to);
1012 
1013   /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1014      If that insn didn't set the register (i.e., it copied the register to
1015      memory), just delete that insn instead of the equivalencing insn plus
1016      anything now dead.  If we call delete_dead_insn on that insn, we may
1017      delete the insn that actually sets the register if the register dies
1018      there and that is incorrect.  */
1019 
1020   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1021     {
1022       if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1023 	{
1024 	  rtx list;
1025 	  for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1026 	    {
1027 	      rtx equiv_insn = XEXP (list, 0);
1028 
1029 	      /* If we already deleted the insn or if it may trap, we can't
1030 		 delete it.  The latter case shouldn't happen, but can
1031 		 if an insn has a variable address, gets a REG_EH_REGION
1032 		 note added to it, and then gets converted into a load
1033 		 from a constant address.  */
1034 	      if (NOTE_P (equiv_insn)
1035 		  || can_throw_internal (equiv_insn))
1036 		;
1037 	      else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1038 		delete_dead_insn (equiv_insn);
1039 	      else
1040 		SET_INSN_DELETED (equiv_insn);
1041 	    }
1042 	}
1043     }
1044 
1045   /* Use the reload registers where necessary
1046      by generating move instructions to move the must-be-register
1047      values into or out of the reload registers.  */
1048 
1049   if (insns_need_reload != 0 || something_needs_elimination
1050       || something_needs_operands_changed)
1051     {
1052       HOST_WIDE_INT old_frame_size = get_frame_size ();
1053 
1054       reload_as_needed (global);
1055 
1056       gcc_assert (old_frame_size == get_frame_size ());
1057 
1058       gcc_assert (verify_initial_elim_offsets ());
1059     }
1060 
1061   /* If we were able to eliminate the frame pointer, show that it is no
1062      longer live at the start of any basic block.  If it ls live by
1063      virtue of being in a pseudo, that pseudo will be marked live
1064      and hence the frame pointer will be known to be live via that
1065      pseudo.  */
1066 
1067   if (! frame_pointer_needed)
1068     FOR_EACH_BB (bb)
1069       bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1070 
1071   /* Come here (with failure set nonzero) if we can't get enough spill
1072      regs.  */
1073  failed:
1074 
1075   CLEAR_REG_SET (&changed_allocation_pseudos);
1076   CLEAR_REG_SET (&spilled_pseudos);
1077   reload_in_progress = 0;
1078 
1079   /* Now eliminate all pseudo regs by modifying them into
1080      their equivalent memory references.
1081      The REG-rtx's for the pseudos are modified in place,
1082      so all insns that used to refer to them now refer to memory.
1083 
1084      For a reg that has a reg_equiv_address, all those insns
1085      were changed by reloading so that no insns refer to it any longer;
1086      but the DECL_RTL of a variable decl may refer to it,
1087      and if so this causes the debugging info to mention the variable.  */
1088 
1089   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1090     {
1091       rtx addr = 0;
1092 
1093       if (reg_equiv_mem (i))
1094 	addr = XEXP (reg_equiv_mem (i), 0);
1095 
1096       if (reg_equiv_address (i))
1097 	addr = reg_equiv_address (i);
1098 
1099       if (addr)
1100 	{
1101 	  if (reg_renumber[i] < 0)
1102 	    {
1103 	      rtx reg = regno_reg_rtx[i];
1104 
1105 	      REG_USERVAR_P (reg) = 0;
1106 	      PUT_CODE (reg, MEM);
1107 	      XEXP (reg, 0) = addr;
1108 	      if (reg_equiv_memory_loc (i))
1109 		MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1110 	      else
1111 		MEM_ATTRS (reg) = 0;
1112 	      MEM_NOTRAP_P (reg) = 1;
1113 	    }
1114 	  else if (reg_equiv_mem (i))
1115 	    XEXP (reg_equiv_mem (i), 0) = addr;
1116 	}
1117 
1118       /* We don't want complex addressing modes in debug insns
1119 	 if simpler ones will do, so delegitimize equivalences
1120 	 in debug insns.  */
1121       if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1122 	{
1123 	  rtx reg = regno_reg_rtx[i];
1124 	  rtx equiv = 0;
1125 	  df_ref use, next;
1126 
1127 	  if (reg_equiv_constant (i))
1128 	    equiv = reg_equiv_constant (i);
1129 	  else if (reg_equiv_invariant (i))
1130 	    equiv = reg_equiv_invariant (i);
1131 	  else if (reg && MEM_P (reg))
1132 	    equiv = targetm.delegitimize_address (reg);
1133 	  else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1134 	    equiv = reg;
1135 
1136 	  if (equiv == reg)
1137 	    continue;
1138 
1139 	  for (use = DF_REG_USE_CHAIN (i); use; use = next)
1140 	    {
1141 	      insn = DF_REF_INSN (use);
1142 
1143 	      /* Make sure the next ref is for a different instruction,
1144 		 so that we're not affected by the rescan.  */
1145 	      next = DF_REF_NEXT_REG (use);
1146 	      while (next && DF_REF_INSN (next) == insn)
1147 		next = DF_REF_NEXT_REG (next);
1148 
1149 	      if (DEBUG_INSN_P (insn))
1150 		{
1151 		  if (!equiv)
1152 		    {
1153 		      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1154 		      df_insn_rescan_debug_internal (insn);
1155 		    }
1156 		  else
1157 		    INSN_VAR_LOCATION_LOC (insn)
1158 		      = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1159 					      reg, equiv);
1160 		}
1161 	    }
1162 	}
1163     }
1164 
1165   /* We must set reload_completed now since the cleanup_subreg_operands call
1166      below will re-recognize each insn and reload may have generated insns
1167      which are only valid during and after reload.  */
1168   reload_completed = 1;
1169 
1170   /* Make a pass over all the insns and delete all USEs which we inserted
1171      only to tag a REG_EQUAL note on them.  Remove all REG_DEAD and REG_UNUSED
1172      notes.  Delete all CLOBBER insns, except those that refer to the return
1173      value and the special mem:BLK CLOBBERs added to prevent the scheduler
1174      from misarranging variable-array code, and simplify (subreg (reg))
1175      operands.  Strip and regenerate REG_INC notes that may have been moved
1176      around.  */
1177 
1178   for (insn = first; insn; insn = NEXT_INSN (insn))
1179     if (INSN_P (insn))
1180       {
1181 	rtx *pnote;
1182 
1183 	if (CALL_P (insn))
1184 	  replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1185 			      VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1186 
1187 	if ((GET_CODE (PATTERN (insn)) == USE
1188 	     /* We mark with QImode USEs introduced by reload itself.  */
1189 	     && (GET_MODE (insn) == QImode
1190 		 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1191 	    || (GET_CODE (PATTERN (insn)) == CLOBBER
1192 		&& (!MEM_P (XEXP (PATTERN (insn), 0))
1193 		    || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1194 		    || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1195 			&& XEXP (XEXP (PATTERN (insn), 0), 0)
1196 				!= stack_pointer_rtx))
1197 		&& (!REG_P (XEXP (PATTERN (insn), 0))
1198 		    || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1199 	  {
1200 	    delete_insn (insn);
1201 	    continue;
1202 	  }
1203 
1204 	/* Some CLOBBERs may survive until here and still reference unassigned
1205 	   pseudos with const equivalent, which may in turn cause ICE in later
1206 	   passes if the reference remains in place.  */
1207 	if (GET_CODE (PATTERN (insn)) == CLOBBER)
1208 	  replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1209 			      VOIDmode, PATTERN (insn));
1210 
1211 	/* Discard obvious no-ops, even without -O.  This optimization
1212 	   is fast and doesn't interfere with debugging.  */
1213 	if (NONJUMP_INSN_P (insn)
1214 	    && GET_CODE (PATTERN (insn)) == SET
1215 	    && REG_P (SET_SRC (PATTERN (insn)))
1216 	    && REG_P (SET_DEST (PATTERN (insn)))
1217 	    && (REGNO (SET_SRC (PATTERN (insn)))
1218 		== REGNO (SET_DEST (PATTERN (insn)))))
1219 	  {
1220 	    delete_insn (insn);
1221 	    continue;
1222 	  }
1223 
1224 	pnote = &REG_NOTES (insn);
1225 	while (*pnote != 0)
1226 	  {
1227 	    if (REG_NOTE_KIND (*pnote) == REG_DEAD
1228 		|| REG_NOTE_KIND (*pnote) == REG_UNUSED
1229 		|| REG_NOTE_KIND (*pnote) == REG_INC)
1230 	      *pnote = XEXP (*pnote, 1);
1231 	    else
1232 	      pnote = &XEXP (*pnote, 1);
1233 	  }
1234 
1235 #ifdef AUTO_INC_DEC
1236 	add_auto_inc_notes (insn, PATTERN (insn));
1237 #endif
1238 
1239 	/* Simplify (subreg (reg)) if it appears as an operand.  */
1240 	cleanup_subreg_operands (insn);
1241 
1242 	/* Clean up invalid ASMs so that they don't confuse later passes.
1243 	   See PR 21299.  */
1244 	if (asm_noperands (PATTERN (insn)) >= 0)
1245 	  {
1246 	    extract_insn (insn);
1247 	    if (!constrain_operands (1))
1248 	      {
1249 		error_for_asm (insn,
1250 			       "%<asm%> operand has impossible constraints");
1251 		delete_insn (insn);
1252 		continue;
1253 	      }
1254 	  }
1255       }
1256 
1257   /* If we are doing generic stack checking, give a warning if this
1258      function's frame size is larger than we expect.  */
1259   if (flag_stack_check == GENERIC_STACK_CHECK)
1260     {
1261       HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1262       static int verbose_warned = 0;
1263 
1264       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 	if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1266 	  size += UNITS_PER_WORD;
1267 
1268       if (size > STACK_CHECK_MAX_FRAME_SIZE)
1269 	{
1270 	  warning (0, "frame size too large for reliable stack checking");
1271 	  if (! verbose_warned)
1272 	    {
1273 	      warning (0, "try reducing the number of local variables");
1274 	      verbose_warned = 1;
1275 	    }
1276 	}
1277     }
1278 
1279   free (temp_pseudo_reg_arr);
1280 
1281   /* Indicate that we no longer have known memory locations or constants.  */
1282   free_reg_equiv ();
1283 
1284   free (reg_max_ref_width);
1285   free (reg_old_renumber);
1286   free (pseudo_previous_regs);
1287   free (pseudo_forbidden_regs);
1288 
1289   CLEAR_HARD_REG_SET (used_spill_regs);
1290   for (i = 0; i < n_spills; i++)
1291     SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1292 
1293   /* Free all the insn_chain structures at once.  */
1294   obstack_free (&reload_obstack, reload_startobj);
1295   unused_insn_chains = 0;
1296 
1297   inserted = fixup_abnormal_edges ();
1298 
1299   /* We've possibly turned single trapping insn into multiple ones.  */
1300   if (cfun->can_throw_non_call_exceptions)
1301     {
1302       sbitmap blocks;
1303       blocks = sbitmap_alloc (last_basic_block);
1304       bitmap_ones (blocks);
1305       find_many_sub_basic_blocks (blocks);
1306       sbitmap_free (blocks);
1307     }
1308 
1309   if (inserted)
1310     commit_edge_insertions ();
1311 
1312   /* Replacing pseudos with their memory equivalents might have
1313      created shared rtx.  Subsequent passes would get confused
1314      by this, so unshare everything here.  */
1315   unshare_all_rtl_again (first);
1316 
1317 #ifdef STACK_BOUNDARY
1318   /* init_emit has set the alignment of the hard frame pointer
1319      to STACK_BOUNDARY.  It is very likely no longer valid if
1320      the hard frame pointer was used for register allocation.  */
1321   if (!frame_pointer_needed)
1322     REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1323 #endif
1324 
1325   substitute_stack.release ();
1326 
1327   gcc_assert (bitmap_empty_p (&spilled_pseudos));
1328 
1329   reload_completed = !failure;
1330 
1331   return need_dce;
1332 }
1333 
1334 /* Yet another special case.  Unfortunately, reg-stack forces people to
1335    write incorrect clobbers in asm statements.  These clobbers must not
1336    cause the register to appear in bad_spill_regs, otherwise we'll call
1337    fatal_insn later.  We clear the corresponding regnos in the live
1338    register sets to avoid this.
1339    The whole thing is rather sick, I'm afraid.  */
1340 
1341 static void
1342 maybe_fix_stack_asms (void)
1343 {
1344 #ifdef STACK_REGS
1345   const char *constraints[MAX_RECOG_OPERANDS];
1346   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1347   struct insn_chain *chain;
1348 
1349   for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350     {
1351       int i, noperands;
1352       HARD_REG_SET clobbered, allowed;
1353       rtx pat;
1354 
1355       if (! INSN_P (chain->insn)
1356 	  || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1357 	continue;
1358       pat = PATTERN (chain->insn);
1359       if (GET_CODE (pat) != PARALLEL)
1360 	continue;
1361 
1362       CLEAR_HARD_REG_SET (clobbered);
1363       CLEAR_HARD_REG_SET (allowed);
1364 
1365       /* First, make a mask of all stack regs that are clobbered.  */
1366       for (i = 0; i < XVECLEN (pat, 0); i++)
1367 	{
1368 	  rtx t = XVECEXP (pat, 0, i);
1369 	  if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1370 	    SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1371 	}
1372 
1373       /* Get the operand values and constraints out of the insn.  */
1374       decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1375 			   constraints, operand_mode, NULL);
1376 
1377       /* For every operand, see what registers are allowed.  */
1378       for (i = 0; i < noperands; i++)
1379 	{
1380 	  const char *p = constraints[i];
1381 	  /* For every alternative, we compute the class of registers allowed
1382 	     for reloading in CLS, and merge its contents into the reg set
1383 	     ALLOWED.  */
1384 	  int cls = (int) NO_REGS;
1385 
1386 	  for (;;)
1387 	    {
1388 	      char c = *p;
1389 
1390 	      if (c == '\0' || c == ',' || c == '#')
1391 		{
1392 		  /* End of one alternative - mark the regs in the current
1393 		     class, and reset the class.  */
1394 		  IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1395 		  cls = NO_REGS;
1396 		  p++;
1397 		  if (c == '#')
1398 		    do {
1399 		      c = *p++;
1400 		    } while (c != '\0' && c != ',');
1401 		  if (c == '\0')
1402 		    break;
1403 		  continue;
1404 		}
1405 
1406 	      switch (c)
1407 		{
1408 		case '=': case '+': case '*': case '%': case '?': case '!':
1409 		case '0': case '1': case '2': case '3': case '4': case '<':
1410 		case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1411 		case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1412 		case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1413 		case TARGET_MEM_CONSTRAINT:
1414 		  break;
1415 
1416 		case 'p':
1417 		  cls = (int) reg_class_subunion[cls]
1418 		      [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1419 					     ADDRESS, SCRATCH)];
1420 		  break;
1421 
1422 		case 'g':
1423 		case 'r':
1424 		  cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 		  break;
1426 
1427 		default:
1428 		  if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1429 		    cls = (int) reg_class_subunion[cls]
1430 		      [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1431 					     ADDRESS, SCRATCH)];
1432 		  else
1433 		    cls = (int) reg_class_subunion[cls]
1434 		      [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1435 		}
1436 	      p += CONSTRAINT_LEN (c, p);
1437 	    }
1438 	}
1439       /* Those of the registers which are clobbered, but allowed by the
1440 	 constraints, must be usable as reload registers.  So clear them
1441 	 out of the life information.  */
1442       AND_HARD_REG_SET (allowed, clobbered);
1443       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 	if (TEST_HARD_REG_BIT (allowed, i))
1445 	  {
1446 	    CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1447 	    CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1448 	  }
1449     }
1450 
1451 #endif
1452 }
1453 
1454 /* Copy the global variables n_reloads and rld into the corresponding elts
1455    of CHAIN.  */
1456 static void
1457 copy_reloads (struct insn_chain *chain)
1458 {
1459   chain->n_reloads = n_reloads;
1460   chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1461   memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1462   reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1463 }
1464 
1465 /* Walk the chain of insns, and determine for each whether it needs reloads
1466    and/or eliminations.  Build the corresponding insns_need_reload list, and
1467    set something_needs_elimination as appropriate.  */
1468 static void
1469 calculate_needs_all_insns (int global)
1470 {
1471   struct insn_chain **pprev_reload = &insns_need_reload;
1472   struct insn_chain *chain, *next = 0;
1473 
1474   something_needs_elimination = 0;
1475 
1476   reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1477   for (chain = reload_insn_chain; chain != 0; chain = next)
1478     {
1479       rtx insn = chain->insn;
1480 
1481       next = chain->next;
1482 
1483       /* Clear out the shortcuts.  */
1484       chain->n_reloads = 0;
1485       chain->need_elim = 0;
1486       chain->need_reload = 0;
1487       chain->need_operand_change = 0;
1488 
1489       /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1490 	 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1491 	 what effects this has on the known offsets at labels.  */
1492 
1493       if (LABEL_P (insn) || JUMP_P (insn)
1494 	  || (INSN_P (insn) && REG_NOTES (insn) != 0))
1495 	set_label_offsets (insn, insn, 0);
1496 
1497       if (INSN_P (insn))
1498 	{
1499 	  rtx old_body = PATTERN (insn);
1500 	  int old_code = INSN_CODE (insn);
1501 	  rtx old_notes = REG_NOTES (insn);
1502 	  int did_elimination = 0;
1503 	  int operands_changed = 0;
1504 	  rtx set = single_set (insn);
1505 
1506 	  /* Skip insns that only set an equivalence.  */
1507 	  if (set && REG_P (SET_DEST (set))
1508 	      && reg_renumber[REGNO (SET_DEST (set))] < 0
1509 	      && (reg_equiv_constant (REGNO (SET_DEST (set)))
1510 		  || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1511 		      && reg_equiv_init (REGNO (SET_DEST (set))))
1512 	    continue;
1513 
1514 	  /* If needed, eliminate any eliminable registers.  */
1515 	  if (num_eliminable || num_eliminable_invariants)
1516 	    did_elimination = eliminate_regs_in_insn (insn, 0);
1517 
1518 	  /* Analyze the instruction.  */
1519 	  operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1520 					   global, spill_reg_order);
1521 
1522 	  /* If a no-op set needs more than one reload, this is likely
1523 	     to be something that needs input address reloads.  We
1524 	     can't get rid of this cleanly later, and it is of no use
1525 	     anyway, so discard it now.
1526 	     We only do this when expensive_optimizations is enabled,
1527 	     since this complements reload inheritance / output
1528 	     reload deletion, and it can make debugging harder.  */
1529 	  if (flag_expensive_optimizations && n_reloads > 1)
1530 	    {
1531 	      rtx set = single_set (insn);
1532 	      if (set
1533 		  &&
1534 		  ((SET_SRC (set) == SET_DEST (set)
1535 		    && REG_P (SET_SRC (set))
1536 		    && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1537 		   || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1538 		       && reg_renumber[REGNO (SET_SRC (set))] < 0
1539 		       && reg_renumber[REGNO (SET_DEST (set))] < 0
1540 		       && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1541 		       && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1542 		       && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1543 				       reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 		{
1545 		  if (ira_conflicts_p)
1546 		    /* Inform IRA about the insn deletion.  */
1547 		    ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1548 						   REGNO (SET_SRC (set)));
1549 		  delete_insn (insn);
1550 		  /* Delete it from the reload chain.  */
1551 		  if (chain->prev)
1552 		    chain->prev->next = next;
1553 		  else
1554 		    reload_insn_chain = next;
1555 		  if (next)
1556 		    next->prev = chain->prev;
1557 		  chain->next = unused_insn_chains;
1558 		  unused_insn_chains = chain;
1559 		  continue;
1560 		}
1561 	    }
1562 	  if (num_eliminable)
1563 	    update_eliminable_offsets ();
1564 
1565 	  /* Remember for later shortcuts which insns had any reloads or
1566 	     register eliminations.  */
1567 	  chain->need_elim = did_elimination;
1568 	  chain->need_reload = n_reloads > 0;
1569 	  chain->need_operand_change = operands_changed;
1570 
1571 	  /* Discard any register replacements done.  */
1572 	  if (did_elimination)
1573 	    {
1574 	      obstack_free (&reload_obstack, reload_insn_firstobj);
1575 	      PATTERN (insn) = old_body;
1576 	      INSN_CODE (insn) = old_code;
1577 	      REG_NOTES (insn) = old_notes;
1578 	      something_needs_elimination = 1;
1579 	    }
1580 
1581 	  something_needs_operands_changed |= operands_changed;
1582 
1583 	  if (n_reloads != 0)
1584 	    {
1585 	      copy_reloads (chain);
1586 	      *pprev_reload = chain;
1587 	      pprev_reload = &chain->next_need_reload;
1588 	    }
1589 	}
1590     }
1591   *pprev_reload = 0;
1592 }
1593 
1594 /* This function is called from the register allocator to set up estimates
1595    for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1596    an invariant.  The structure is similar to calculate_needs_all_insns.  */
1597 
1598 void
1599 calculate_elim_costs_all_insns (void)
1600 {
1601   int *reg_equiv_init_cost;
1602   basic_block bb;
1603   int i;
1604 
1605   reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1606   init_elim_table ();
1607   init_eliminable_invariants (get_insns (), false);
1608 
1609   set_initial_elim_offsets ();
1610   set_initial_label_offsets ();
1611 
1612   FOR_EACH_BB (bb)
1613     {
1614       rtx insn;
1615       elim_bb = bb;
1616 
1617       FOR_BB_INSNS (bb, insn)
1618 	{
1619 	  /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1620 	     include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1621 	     what effects this has on the known offsets at labels.  */
1622 
1623 	  if (LABEL_P (insn) || JUMP_P (insn)
1624 	      || (INSN_P (insn) && REG_NOTES (insn) != 0))
1625 	    set_label_offsets (insn, insn, 0);
1626 
1627 	  if (INSN_P (insn))
1628 	    {
1629 	      rtx set = single_set (insn);
1630 
1631 	      /* Skip insns that only set an equivalence.  */
1632 	      if (set && REG_P (SET_DEST (set))
1633 		  && reg_renumber[REGNO (SET_DEST (set))] < 0
1634 		  && (reg_equiv_constant (REGNO (SET_DEST (set)))
1635 		      || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 		{
1637 		  unsigned regno = REGNO (SET_DEST (set));
1638 		  rtx init = reg_equiv_init (regno);
1639 		  if (init)
1640 		    {
1641 		      rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1642 						false, true);
1643 		      int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1644 		      int freq = REG_FREQ_FROM_BB (bb);
1645 
1646 		      reg_equiv_init_cost[regno] = cost * freq;
1647 		      continue;
1648 		    }
1649 		}
1650 	      /* If needed, eliminate any eliminable registers.  */
1651 	      if (num_eliminable || num_eliminable_invariants)
1652 		elimination_costs_in_insn (insn);
1653 
1654 	      if (num_eliminable)
1655 		update_eliminable_offsets ();
1656 	    }
1657 	}
1658     }
1659   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660     {
1661       if (reg_equiv_invariant (i))
1662 	{
1663 	  if (reg_equiv_init (i))
1664 	    {
1665 	      int cost = reg_equiv_init_cost[i];
1666 	      if (dump_file)
1667 		fprintf (dump_file,
1668 			 "Reg %d has equivalence, initial gains %d\n", i, cost);
1669 	      if (cost != 0)
1670 		ira_adjust_equiv_reg_cost (i, cost);
1671 	    }
1672 	  else
1673 	    {
1674 	      if (dump_file)
1675 		fprintf (dump_file,
1676 			 "Reg %d had equivalence, but can't be eliminated\n",
1677 			 i);
1678 	      ira_adjust_equiv_reg_cost (i, 0);
1679 	    }
1680 	}
1681     }
1682 
1683   free (reg_equiv_init_cost);
1684   free (offsets_known_at);
1685   free (offsets_at);
1686   offsets_at = NULL;
1687   offsets_known_at = NULL;
1688 }
1689 
1690 /* Comparison function for qsort to decide which of two reloads
1691    should be handled first.  *P1 and *P2 are the reload numbers.  */
1692 
1693 static int
1694 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 {
1696   int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1697   int t;
1698 
1699   /* Consider required reloads before optional ones.  */
1700   t = rld[r1].optional - rld[r2].optional;
1701   if (t != 0)
1702     return t;
1703 
1704   /* Count all solitary classes before non-solitary ones.  */
1705   t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1706        - (reg_class_size[(int) rld[r1].rclass] == 1));
1707   if (t != 0)
1708     return t;
1709 
1710   /* Aside from solitaires, consider all multi-reg groups first.  */
1711   t = rld[r2].nregs - rld[r1].nregs;
1712   if (t != 0)
1713     return t;
1714 
1715   /* Consider reloads in order of increasing reg-class number.  */
1716   t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1717   if (t != 0)
1718     return t;
1719 
1720   /* If reloads are equally urgent, sort by reload number,
1721      so that the results of qsort leave nothing to chance.  */
1722   return r1 - r2;
1723 }
1724 
1725 /* The cost of spilling each hard reg.  */
1726 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727 
1728 /* When spilling multiple hard registers, we use SPILL_COST for the first
1729    spilled hard reg and SPILL_ADD_COST for subsequent regs.  SPILL_ADD_COST
1730    only the first hard reg for a multi-reg pseudo.  */
1731 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732 
1733 /* Map of hard regno to pseudo regno currently occupying the hard
1734    reg.  */
1735 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736 
1737 /* Update the spill cost arrays, considering that pseudo REG is live.  */
1738 
1739 static void
1740 count_pseudo (int reg)
1741 {
1742   int freq = REG_FREQ (reg);
1743   int r = reg_renumber[reg];
1744   int nregs;
1745 
1746   /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
1747   if (ira_conflicts_p && r < 0)
1748     return;
1749 
1750   if (REGNO_REG_SET_P (&pseudos_counted, reg)
1751       || REGNO_REG_SET_P (&spilled_pseudos, reg))
1752     return;
1753 
1754   SET_REGNO_REG_SET (&pseudos_counted, reg);
1755 
1756   gcc_assert (r >= 0);
1757 
1758   spill_add_cost[r] += freq;
1759   nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1760   while (nregs-- > 0)
1761     {
1762       hard_regno_to_pseudo_regno[r + nregs] = reg;
1763       spill_cost[r + nregs] += freq;
1764     }
1765 }
1766 
1767 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1768    contents of BAD_SPILL_REGS for the insn described by CHAIN.  */
1769 
1770 static void
1771 order_regs_for_reload (struct insn_chain *chain)
1772 {
1773   unsigned i;
1774   HARD_REG_SET used_by_pseudos;
1775   HARD_REG_SET used_by_pseudos2;
1776   reg_set_iterator rsi;
1777 
1778   COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779 
1780   memset (spill_cost, 0, sizeof spill_cost);
1781   memset (spill_add_cost, 0, sizeof spill_add_cost);
1782   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783     hard_regno_to_pseudo_regno[i] = -1;
1784 
1785   /* Count number of uses of each hard reg by pseudo regs allocated to it
1786      and then order them by decreasing use.  First exclude hard registers
1787      that are live in or across this insn.  */
1788 
1789   REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1790   REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1791   IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1792   IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793 
1794   /* Now find out which pseudos are allocated to it, and update
1795      hard_reg_n_uses.  */
1796   CLEAR_REG_SET (&pseudos_counted);
1797 
1798   EXECUTE_IF_SET_IN_REG_SET
1799     (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800     {
1801       count_pseudo (i);
1802     }
1803   EXECUTE_IF_SET_IN_REG_SET
1804     (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805     {
1806       count_pseudo (i);
1807     }
1808   CLEAR_REG_SET (&pseudos_counted);
1809 }
1810 
1811 /* Vector of reload-numbers showing the order in which the reloads should
1812    be processed.  */
1813 static short reload_order[MAX_RELOADS];
1814 
1815 /* This is used to keep track of the spill regs used in one insn.  */
1816 static HARD_REG_SET used_spill_regs_local;
1817 
1818 /* We decided to spill hard register SPILLED, which has a size of
1819    SPILLED_NREGS.  Determine how pseudo REG, which is live during the insn,
1820    is affected.  We will add it to SPILLED_PSEUDOS if necessary, and we will
1821    update SPILL_COST/SPILL_ADD_COST.  */
1822 
1823 static void
1824 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 {
1826   int freq = REG_FREQ (reg);
1827   int r = reg_renumber[reg];
1828   int nregs;
1829 
1830   /* Ignore spilled pseudo-registers which can be here only if IRA is used.  */
1831   if (ira_conflicts_p && r < 0)
1832     return;
1833 
1834   gcc_assert (r >= 0);
1835 
1836   nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837 
1838   if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1839       || spilled + spilled_nregs <= r || r + nregs <= spilled)
1840     return;
1841 
1842   SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843 
1844   spill_add_cost[r] -= freq;
1845   while (nregs-- > 0)
1846     {
1847       hard_regno_to_pseudo_regno[r + nregs] = -1;
1848       spill_cost[r + nregs] -= freq;
1849     }
1850 }
1851 
1852 /* Find reload register to use for reload number ORDER.  */
1853 
1854 static int
1855 find_reg (struct insn_chain *chain, int order)
1856 {
1857   int rnum = reload_order[order];
1858   struct reload *rl = rld + rnum;
1859   int best_cost = INT_MAX;
1860   int best_reg = -1;
1861   unsigned int i, j, n;
1862   int k;
1863   HARD_REG_SET not_usable;
1864   HARD_REG_SET used_by_other_reload;
1865   reg_set_iterator rsi;
1866   static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1867   static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868 
1869   COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1870   IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1871   IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872 
1873   CLEAR_HARD_REG_SET (used_by_other_reload);
1874   for (k = 0; k < order; k++)
1875     {
1876       int other = reload_order[k];
1877 
1878       if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1879 	for (j = 0; j < rld[other].nregs; j++)
1880 	  SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1881     }
1882 
1883   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884     {
1885 #ifdef REG_ALLOC_ORDER
1886       unsigned int regno = reg_alloc_order[i];
1887 #else
1888       unsigned int regno = i;
1889 #endif
1890 
1891       if (! TEST_HARD_REG_BIT (not_usable, regno)
1892 	  && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1893 	  && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 	{
1895 	  int this_cost = spill_cost[regno];
1896 	  int ok = 1;
1897 	  unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898 
1899 	  for (j = 1; j < this_nregs; j++)
1900 	    {
1901 	      this_cost += spill_add_cost[regno + j];
1902 	      if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1903 		  || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1904 		ok = 0;
1905 	    }
1906 	  if (! ok)
1907 	    continue;
1908 
1909 	  if (ira_conflicts_p)
1910 	    {
1911 	      /* Ask IRA to find a better pseudo-register for
1912 		 spilling.  */
1913 	      for (n = j = 0; j < this_nregs; j++)
1914 		{
1915 		  int r = hard_regno_to_pseudo_regno[regno + j];
1916 
1917 		  if (r < 0)
1918 		    continue;
1919 		  if (n == 0 || regno_pseudo_regs[n - 1] != r)
1920 		    regno_pseudo_regs[n++] = r;
1921 		}
1922 	      regno_pseudo_regs[n++] = -1;
1923 	      if (best_reg < 0
1924 		  || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1925 						      best_regno_pseudo_regs,
1926 						      rl->in, rl->out,
1927 						      chain->insn))
1928 		{
1929 		  best_reg = regno;
1930 		  for (j = 0;; j++)
1931 		    {
1932 		      best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1933 		      if (regno_pseudo_regs[j] < 0)
1934 			break;
1935 		    }
1936 		}
1937 	      continue;
1938 	    }
1939 
1940 	  if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1941 	    this_cost--;
1942 	  if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1943 	    this_cost--;
1944 	  if (this_cost < best_cost
1945 	      /* Among registers with equal cost, prefer caller-saved ones, or
1946 		 use REG_ALLOC_ORDER if it is defined.  */
1947 	      || (this_cost == best_cost
1948 #ifdef REG_ALLOC_ORDER
1949 		  && (inv_reg_alloc_order[regno]
1950 		      < inv_reg_alloc_order[best_reg])
1951 #else
1952 		  && call_used_regs[regno]
1953 		  && ! call_used_regs[best_reg]
1954 #endif
1955 		  ))
1956 	    {
1957 	      best_reg = regno;
1958 	      best_cost = this_cost;
1959 	    }
1960 	}
1961     }
1962   if (best_reg == -1)
1963     return 0;
1964 
1965   if (dump_file)
1966     fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967 
1968   rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1969   rl->regno = best_reg;
1970 
1971   EXECUTE_IF_SET_IN_REG_SET
1972     (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973     {
1974       count_spilled_pseudo (best_reg, rl->nregs, j);
1975     }
1976 
1977   EXECUTE_IF_SET_IN_REG_SET
1978     (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979     {
1980       count_spilled_pseudo (best_reg, rl->nregs, j);
1981     }
1982 
1983   for (i = 0; i < rl->nregs; i++)
1984     {
1985       gcc_assert (spill_cost[best_reg + i] == 0);
1986       gcc_assert (spill_add_cost[best_reg + i] == 0);
1987       gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1988       SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989     }
1990   return 1;
1991 }
1992 
1993 /* Find more reload regs to satisfy the remaining need of an insn, which
1994    is given by CHAIN.
1995    Do it by ascending class number, since otherwise a reg
1996    might be spilled for a big class and might fail to count
1997    for a smaller class even though it belongs to that class.  */
1998 
1999 static void
2000 find_reload_regs (struct insn_chain *chain)
2001 {
2002   int i;
2003 
2004   /* In order to be certain of getting the registers we need,
2005      we must sort the reloads into order of increasing register class.
2006      Then our grabbing of reload registers will parallel the process
2007      that provided the reload registers.  */
2008   for (i = 0; i < chain->n_reloads; i++)
2009     {
2010       /* Show whether this reload already has a hard reg.  */
2011       if (chain->rld[i].reg_rtx)
2012 	{
2013 	  int regno = REGNO (chain->rld[i].reg_rtx);
2014 	  chain->rld[i].regno = regno;
2015 	  chain->rld[i].nregs
2016 	    = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 	}
2018       else
2019 	chain->rld[i].regno = -1;
2020       reload_order[i] = i;
2021     }
2022 
2023   n_reloads = chain->n_reloads;
2024   memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025 
2026   CLEAR_HARD_REG_SET (used_spill_regs_local);
2027 
2028   if (dump_file)
2029     fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030 
2031   qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032 
2033   /* Compute the order of preference for hard registers to spill.  */
2034 
2035   order_regs_for_reload (chain);
2036 
2037   for (i = 0; i < n_reloads; i++)
2038     {
2039       int r = reload_order[i];
2040 
2041       /* Ignore reloads that got marked inoperative.  */
2042       if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2043 	  && ! rld[r].optional
2044 	  && rld[r].regno == -1)
2045 	if (! find_reg (chain, i))
2046 	  {
2047 	    if (dump_file)
2048 	      fprintf (dump_file, "reload failure for reload %d\n", r);
2049 	    spill_failure (chain->insn, rld[r].rclass);
2050 	    failure = 1;
2051 	    return;
2052 	  }
2053     }
2054 
2055   COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2056   IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057 
2058   memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2059 }
2060 
2061 static void
2062 select_reload_regs (void)
2063 {
2064   struct insn_chain *chain;
2065 
2066   /* Try to satisfy the needs for each insn.  */
2067   for (chain = insns_need_reload; chain != 0;
2068        chain = chain->next_need_reload)
2069     find_reload_regs (chain);
2070 }
2071 
2072 /* Delete all insns that were inserted by emit_caller_save_insns during
2073    this iteration.  */
2074 static void
2075 delete_caller_save_insns (void)
2076 {
2077   struct insn_chain *c = reload_insn_chain;
2078 
2079   while (c != 0)
2080     {
2081       while (c != 0 && c->is_caller_save_insn)
2082 	{
2083 	  struct insn_chain *next = c->next;
2084 	  rtx insn = c->insn;
2085 
2086 	  if (c == reload_insn_chain)
2087 	    reload_insn_chain = next;
2088 	  delete_insn (insn);
2089 
2090 	  if (next)
2091 	    next->prev = c->prev;
2092 	  if (c->prev)
2093 	    c->prev->next = next;
2094 	  c->next = unused_insn_chains;
2095 	  unused_insn_chains = c;
2096 	  c = next;
2097 	}
2098       if (c != 0)
2099 	c = c->next;
2100     }
2101 }
2102 
2103 /* Handle the failure to find a register to spill.
2104    INSN should be one of the insns which needed this particular spill reg.  */
2105 
2106 static void
2107 spill_failure (rtx insn, enum reg_class rclass)
2108 {
2109   if (asm_noperands (PATTERN (insn)) >= 0)
2110     error_for_asm (insn, "can%'t find a register in class %qs while "
2111 		   "reloading %<asm%>",
2112 		   reg_class_names[rclass]);
2113   else
2114     {
2115       error ("unable to find a register to spill in class %qs",
2116 	     reg_class_names[rclass]);
2117 
2118       if (dump_file)
2119 	{
2120 	  fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2121 	  debug_reload_to_stream (dump_file);
2122 	}
2123       fatal_insn ("this is the insn:", insn);
2124     }
2125 }
2126 
2127 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2128    data that is dead in INSN.  */
2129 
2130 static void
2131 delete_dead_insn (rtx insn)
2132 {
2133   rtx prev = prev_active_insn (insn);
2134   rtx prev_dest;
2135 
2136   /* If the previous insn sets a register that dies in our insn make
2137      a note that we want to run DCE immediately after reload.
2138 
2139      We used to delete the previous insn & recurse, but that's wrong for
2140      block local equivalences.  Instead of trying to figure out the exact
2141      circumstances where we can delete the potentially dead insns, just
2142      let DCE do the job.  */
2143   if (prev && GET_CODE (PATTERN (prev)) == SET
2144       && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145       && reg_mentioned_p (prev_dest, PATTERN (insn))
2146       && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147       && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148     need_dce = 1;
2149 
2150   SET_INSN_DELETED (insn);
2151 }
2152 
2153 /* Modify the home of pseudo-reg I.
2154    The new home is present in reg_renumber[I].
2155 
2156    FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157    or it may be -1, meaning there is none or it is not relevant.
2158    This is used so that all pseudos spilled from a given hard reg
2159    can share one stack slot.  */
2160 
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2163 {
2164   /* When outputting an inline function, this can happen
2165      for a reg that isn't actually used.  */
2166   if (regno_reg_rtx[i] == 0)
2167     return;
2168 
2169   /* If the reg got changed to a MEM at rtl-generation time,
2170      ignore it.  */
2171   if (!REG_P (regno_reg_rtx[i]))
2172     return;
2173 
2174   /* Modify the reg-rtx to contain the new hard reg
2175      number or else to contain its pseudo reg number.  */
2176   SET_REGNO (regno_reg_rtx[i],
2177 	     reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2178 
2179   /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180      allocate a stack slot for it.  */
2181 
2182   if (reg_renumber[i] < 0
2183       && REG_N_REFS (i) > 0
2184       && reg_equiv_constant (i) == 0
2185       && (reg_equiv_invariant (i) == 0
2186 	  || reg_equiv_init (i) == 0)
2187       && reg_equiv_memory_loc (i) == 0)
2188     {
2189       rtx x = NULL_RTX;
2190       enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191       unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192       unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193       unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194       unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195       int adjust = 0;
2196 
2197       something_was_spilled = true;
2198 
2199       if (ira_conflicts_p)
2200 	{
2201 	  /* Mark the spill for IRA.  */
2202 	  SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 	  if (!dont_share_p)
2204 	    x = ira_reuse_stack_slot (i, inherent_size, total_size);
2205 	}
2206 
2207       if (x)
2208 	;
2209 
2210       /* Each pseudo reg has an inherent size which comes from its own mode,
2211 	 and a total size which provides room for paradoxical subregs
2212 	 which refer to the pseudo reg in wider modes.
2213 
2214 	 We can use a slot already allocated if it provides both
2215 	 enough inherent space and enough total space.
2216 	 Otherwise, we allocate a new slot, making sure that it has no less
2217 	 inherent space, and no less total space, then the previous slot.  */
2218       else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2219 	{
2220 	  rtx stack_slot;
2221 
2222 	  /* No known place to spill from => no slot to reuse.  */
2223 	  x = assign_stack_local (mode, total_size,
2224 				  min_align > inherent_align
2225 				  || total_size > inherent_size ? -1 : 0);
2226 
2227 	  stack_slot = x;
2228 
2229 	  /* Cancel the big-endian correction done in assign_stack_local.
2230 	     Get the address of the beginning of the slot.  This is so we
2231 	     can do a big-endian correction unconditionally below.  */
2232 	  if (BYTES_BIG_ENDIAN)
2233 	    {
2234 	      adjust = inherent_size - total_size;
2235 	      if (adjust)
2236 		stack_slot
2237 		  = adjust_address_nv (x, mode_for_size (total_size
2238 						         * BITS_PER_UNIT,
2239 						         MODE_INT, 1),
2240 				       adjust);
2241 	    }
2242 
2243 	  if (! dont_share_p && ira_conflicts_p)
2244 	    /* Inform IRA about allocation a new stack slot.  */
2245 	    ira_mark_new_stack_slot (stack_slot, i, total_size);
2246 	}
2247 
2248       /* Reuse a stack slot if possible.  */
2249       else if (spill_stack_slot[from_reg] != 0
2250 	       && spill_stack_slot_width[from_reg] >= total_size
2251 	       && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 		   >= inherent_size)
2253 	       && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 	x = spill_stack_slot[from_reg];
2255 
2256       /* Allocate a bigger slot.  */
2257       else
2258 	{
2259 	  /* Compute maximum size needed, both for inherent size
2260 	     and for total size.  */
2261 	  rtx stack_slot;
2262 
2263 	  if (spill_stack_slot[from_reg])
2264 	    {
2265 	      if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 		  > inherent_size)
2267 		mode = GET_MODE (spill_stack_slot[from_reg]);
2268 	      if (spill_stack_slot_width[from_reg] > total_size)
2269 		total_size = spill_stack_slot_width[from_reg];
2270 	      if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 		min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2272 	    }
2273 
2274 	  /* Make a slot with that size.  */
2275 	  x = assign_stack_local (mode, total_size,
2276 				  min_align > inherent_align
2277 				  || total_size > inherent_size ? -1 : 0);
2278 	  stack_slot = x;
2279 
2280 	  /* Cancel the  big-endian correction done in assign_stack_local.
2281 	     Get the address of the beginning of the slot.  This is so we
2282 	     can do a big-endian correction unconditionally below.  */
2283 	  if (BYTES_BIG_ENDIAN)
2284 	    {
2285 	      adjust = GET_MODE_SIZE (mode) - total_size;
2286 	      if (adjust)
2287 		stack_slot
2288 		  = adjust_address_nv (x, mode_for_size (total_size
2289 							 * BITS_PER_UNIT,
2290 							 MODE_INT, 1),
2291 				       adjust);
2292 	    }
2293 
2294 	  spill_stack_slot[from_reg] = stack_slot;
2295 	  spill_stack_slot_width[from_reg] = total_size;
2296 	}
2297 
2298       /* On a big endian machine, the "address" of the slot
2299 	 is the address of the low part that fits its inherent mode.  */
2300       if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 	adjust += (total_size - inherent_size);
2302 
2303       /* If we have any adjustment to make, or if the stack slot is the
2304 	 wrong mode, make a new stack slot.  */
2305       x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2306 
2307       /* Set all of the memory attributes as appropriate for a spill.  */
2308       set_mem_attrs_for_spill (x);
2309 
2310       /* Save the stack slot for later.  */
2311       reg_equiv_memory_loc (i) = x;
2312     }
2313 }
2314 
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316    pseudo-reg number REGNO, accessed in MODE.  */
2317 
2318 static void
2319 mark_home_live_1 (int regno, enum machine_mode mode)
2320 {
2321   int i, lim;
2322 
2323   i = reg_renumber[regno];
2324   if (i < 0)
2325     return;
2326   lim = end_hard_regno (mode, i);
2327   while (i < lim)
2328     df_set_regs_ever_live(i++, true);
2329 }
2330 
2331 /* Mark the slots in regs_ever_live for the hard regs
2332    used by pseudo-reg number REGNO.  */
2333 
2334 void
2335 mark_home_live (int regno)
2336 {
2337   if (reg_renumber[regno] >= 0)
2338     mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2339 }
2340 
2341 /* This function handles the tracking of elimination offsets around branches.
2342 
2343    X is a piece of RTL being scanned.
2344 
2345    INSN is the insn that it came from, if any.
2346 
2347    INITIAL_P is nonzero if we are to set the offset to be the initial
2348    offset and zero if we are setting the offset of the label to be the
2349    current offset.  */
2350 
2351 static void
2352 set_label_offsets (rtx x, rtx insn, int initial_p)
2353 {
2354   enum rtx_code code = GET_CODE (x);
2355   rtx tem;
2356   unsigned int i;
2357   struct elim_table *p;
2358 
2359   switch (code)
2360     {
2361     case LABEL_REF:
2362       if (LABEL_REF_NONLOCAL_P (x))
2363 	return;
2364 
2365       x = XEXP (x, 0);
2366 
2367       /* ... fall through ...  */
2368 
2369     case CODE_LABEL:
2370       /* If we know nothing about this label, set the desired offsets.  Note
2371 	 that this sets the offset at a label to be the offset before a label
2372 	 if we don't know anything about the label.  This is not correct for
2373 	 the label after a BARRIER, but is the best guess we can make.  If
2374 	 we guessed wrong, we will suppress an elimination that might have
2375 	 been possible had we been able to guess correctly.  */
2376 
2377       if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2378 	{
2379 	  for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 	    offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 	      = (initial_p ? reg_eliminate[i].initial_offset
2382 		 : reg_eliminate[i].offset);
2383 	  offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2384 	}
2385 
2386       /* Otherwise, if this is the definition of a label and it is
2387 	 preceded by a BARRIER, set our offsets to the known offset of
2388 	 that label.  */
2389 
2390       else if (x == insn
2391 	       && (tem = prev_nonnote_insn (insn)) != 0
2392 	       && BARRIER_P (tem))
2393 	set_offsets_for_label (insn);
2394       else
2395 	/* If neither of the above cases is true, compare each offset
2396 	   with those previously recorded and suppress any eliminations
2397 	   where the offsets disagree.  */
2398 
2399 	for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 	  if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 	      != (initial_p ? reg_eliminate[i].initial_offset
2402 		  : reg_eliminate[i].offset))
2403 	    reg_eliminate[i].can_eliminate = 0;
2404 
2405       return;
2406 
2407     case JUMP_INSN:
2408       set_label_offsets (PATTERN (insn), insn, initial_p);
2409 
2410       /* ... fall through ...  */
2411 
2412     case INSN:
2413     case CALL_INSN:
2414       /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2415 	 to indirectly and hence must have all eliminations at their
2416 	 initial offsets.  */
2417       for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2418 	if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2419 	  set_label_offsets (XEXP (tem, 0), insn, 1);
2420       return;
2421 
2422     case PARALLEL:
2423     case ADDR_VEC:
2424     case ADDR_DIFF_VEC:
2425       /* Each of the labels in the parallel or address vector must be
2426 	 at their initial offsets.  We want the first field for PARALLEL
2427 	 and ADDR_VEC and the second field for ADDR_DIFF_VEC.  */
2428 
2429       for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2430 	set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2431 			   insn, initial_p);
2432       return;
2433 
2434     case SET:
2435       /* We only care about setting PC.  If the source is not RETURN,
2436 	 IF_THEN_ELSE, or a label, disable any eliminations not at
2437 	 their initial offsets.  Similarly if any arm of the IF_THEN_ELSE
2438 	 isn't one of those possibilities.  For branches to a label,
2439 	 call ourselves recursively.
2440 
2441 	 Note that this can disable elimination unnecessarily when we have
2442 	 a non-local goto since it will look like a non-constant jump to
2443 	 someplace in the current function.  This isn't a significant
2444 	 problem since such jumps will normally be when all elimination
2445 	 pairs are back to their initial offsets.  */
2446 
2447       if (SET_DEST (x) != pc_rtx)
2448 	return;
2449 
2450       switch (GET_CODE (SET_SRC (x)))
2451 	{
2452 	case PC:
2453 	case RETURN:
2454 	  return;
2455 
2456 	case LABEL_REF:
2457 	  set_label_offsets (SET_SRC (x), insn, initial_p);
2458 	  return;
2459 
2460 	case IF_THEN_ELSE:
2461 	  tem = XEXP (SET_SRC (x), 1);
2462 	  if (GET_CODE (tem) == LABEL_REF)
2463 	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2464 	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2465 	    break;
2466 
2467 	  tem = XEXP (SET_SRC (x), 2);
2468 	  if (GET_CODE (tem) == LABEL_REF)
2469 	    set_label_offsets (XEXP (tem, 0), insn, initial_p);
2470 	  else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2471 	    break;
2472 	  return;
2473 
2474 	default:
2475 	  break;
2476 	}
2477 
2478       /* If we reach here, all eliminations must be at their initial
2479 	 offset because we are doing a jump to a variable address.  */
2480       for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2481 	if (p->offset != p->initial_offset)
2482 	  p->can_eliminate = 0;
2483       break;
2484 
2485     default:
2486       break;
2487     }
2488 }
2489 
2490 /* Called through for_each_rtx, this function examines every reg that occurs
2491    in PX and adjusts the costs for its elimination which are gathered by IRA.
2492    DATA is the insn in which PX occurs.  We do not recurse into MEM
2493    expressions.  */
2494 
2495 static int
2496 note_reg_elim_costly (rtx *px, void *data)
2497 {
2498   rtx insn = (rtx)data;
2499   rtx x = *px;
2500 
2501   if (MEM_P (x))
2502     return -1;
2503 
2504   if (REG_P (x)
2505       && REGNO (x) >= FIRST_PSEUDO_REGISTER
2506       && reg_equiv_init (REGNO (x))
2507       && reg_equiv_invariant (REGNO (x)))
2508     {
2509       rtx t = reg_equiv_invariant (REGNO (x));
2510       rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2511       int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2512       int freq = REG_FREQ_FROM_BB (elim_bb);
2513 
2514       if (cost != 0)
2515 	ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2516     }
2517   return 0;
2518 }
2519 
2520 /* Scan X and replace any eliminable registers (such as fp) with a
2521    replacement (such as sp), plus an offset.
2522 
2523    MEM_MODE is the mode of an enclosing MEM.  We need this to know how
2524    much to adjust a register for, e.g., PRE_DEC.  Also, if we are inside a
2525    MEM, we are allowed to replace a sum of a register and the constant zero
2526    with the register, which we cannot do outside a MEM.  In addition, we need
2527    to record the fact that a register is referenced outside a MEM.
2528 
2529    If INSN is an insn, it is the insn containing X.  If we replace a REG
2530    in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2531    CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2532    the REG is being modified.
2533 
2534    Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2535    That's used when we eliminate in expressions stored in notes.
2536    This means, do not set ref_outside_mem even if the reference
2537    is outside of MEMs.
2538 
2539    If FOR_COSTS is true, we are being called before reload in order to
2540    estimate the costs of keeping registers with an equivalence unallocated.
2541 
2542    REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2543    replacements done assuming all offsets are at their initial values.  If
2544    they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2545    encounter, return the actual location so that find_reloads will do
2546    the proper thing.  */
2547 
2548 static rtx
2549 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2550 		  bool may_use_invariant, bool for_costs)
2551 {
2552   enum rtx_code code = GET_CODE (x);
2553   struct elim_table *ep;
2554   int regno;
2555   rtx new_rtx;
2556   int i, j;
2557   const char *fmt;
2558   int copied = 0;
2559 
2560   if (! current_function_decl)
2561     return x;
2562 
2563   switch (code)
2564     {
2565     CASE_CONST_ANY:
2566     case CONST:
2567     case SYMBOL_REF:
2568     case CODE_LABEL:
2569     case PC:
2570     case CC0:
2571     case ASM_INPUT:
2572     case ADDR_VEC:
2573     case ADDR_DIFF_VEC:
2574     case RETURN:
2575       return x;
2576 
2577     case REG:
2578       regno = REGNO (x);
2579 
2580       /* First handle the case where we encounter a bare register that
2581 	 is eliminable.  Replace it with a PLUS.  */
2582       if (regno < FIRST_PSEUDO_REGISTER)
2583 	{
2584 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 	       ep++)
2586 	    if (ep->from_rtx == x && ep->can_eliminate)
2587 	      return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2588 
2589 	}
2590       else if (reg_renumber && reg_renumber[regno] < 0
2591 	       && reg_equivs
2592 	       && reg_equiv_invariant (regno))
2593 	{
2594 	  if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 	    return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 			             mem_mode, insn, true, for_costs);
2597 	  /* There exists at least one use of REGNO that cannot be
2598 	     eliminated.  Prevent the defining insn from being deleted.  */
2599 	  reg_equiv_init (regno) = NULL_RTX;
2600 	  if (!for_costs)
2601 	    alter_reg (regno, -1, true);
2602 	}
2603       return x;
2604 
2605     /* You might think handling MINUS in a manner similar to PLUS is a
2606        good idea.  It is not.  It has been tried multiple times and every
2607        time the change has had to have been reverted.
2608 
2609        Other parts of reload know a PLUS is special (gen_reload for example)
2610        and require special code to handle code a reloaded PLUS operand.
2611 
2612        Also consider backends where the flags register is clobbered by a
2613        MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614        lea instruction comes to mind).  If we try to reload a MINUS, we
2615        may kill the flags register that was holding a useful value.
2616 
2617        So, please before trying to handle MINUS, consider reload as a
2618        whole instead of this little section as well as the backend issues.  */
2619     case PLUS:
2620       /* If this is the sum of an eliminable register and a constant, rework
2621 	 the sum.  */
2622       if (REG_P (XEXP (x, 0))
2623 	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 	  && CONSTANT_P (XEXP (x, 1)))
2625 	{
2626 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 	       ep++)
2628 	    if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 	      {
2630 		/* The only time we want to replace a PLUS with a REG (this
2631 		   occurs when the constant operand of the PLUS is the negative
2632 		   of the offset) is when we are inside a MEM.  We won't want
2633 		   to do so at other times because that would change the
2634 		   structure of the insn in a way that reload can't handle.
2635 		   We special-case the commonest situation in
2636 		   eliminate_regs_in_insn, so just replace a PLUS with a
2637 		   PLUS here, unless inside a MEM.  */
2638 		if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 		    && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 		  return ep->to_rtx;
2641 		else
2642 		  return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 				       plus_constant (Pmode, XEXP (x, 1),
2644 						      ep->previous_offset));
2645 	      }
2646 
2647 	  /* If the register is not eliminable, we are done since the other
2648 	     operand is a constant.  */
2649 	  return x;
2650 	}
2651 
2652       /* If this is part of an address, we want to bring any constant to the
2653 	 outermost PLUS.  We will do this by doing register replacement in
2654 	 our operands and seeing if a constant shows up in one of them.
2655 
2656 	 Note that there is no risk of modifying the structure of the insn,
2657 	 since we only get called for its operands, thus we are either
2658 	 modifying the address inside a MEM, or something like an address
2659 	 operand of a load-address insn.  */
2660 
2661       {
2662 	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 				     for_costs);
2664 	rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 				     for_costs);
2666 
2667 	if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 	  {
2669 	    /* If one side is a PLUS and the other side is a pseudo that
2670 	       didn't get a hard register but has a reg_equiv_constant,
2671 	       we must replace the constant here since it may no longer
2672 	       be in the position of any operand.  */
2673 	    if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 		&& REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 		&& reg_renumber[REGNO (new1)] < 0
2676 		&& reg_equivs
2677 		&& reg_equiv_constant (REGNO (new1)) != 0)
2678 	      new1 = reg_equiv_constant (REGNO (new1));
2679 	    else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 		     && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 		     && reg_renumber[REGNO (new0)] < 0
2682 		     && reg_equiv_constant (REGNO (new0)) != 0)
2683 	      new0 = reg_equiv_constant (REGNO (new0));
2684 
2685 	    new_rtx = form_sum (GET_MODE (x), new0, new1);
2686 
2687 	    /* As above, if we are not inside a MEM we do not want to
2688 	       turn a PLUS into something else.  We might try to do so here
2689 	       for an addition of 0 if we aren't optimizing.  */
2690 	    if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 	      return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 	    else
2693 	      return new_rtx;
2694 	  }
2695       }
2696       return x;
2697 
2698     case MULT:
2699       /* If this is the product of an eliminable register and a
2700 	 constant, apply the distribute law and move the constant out
2701 	 so that we have (plus (mult ..) ..).  This is needed in order
2702 	 to keep load-address insns valid.   This case is pathological.
2703 	 We ignore the possibility of overflow here.  */
2704       if (REG_P (XEXP (x, 0))
2705 	  && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 	  && CONST_INT_P (XEXP (x, 1)))
2707 	for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 	     ep++)
2709 	  if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 	    {
2711 	      if (! mem_mode
2712 		  /* Refs inside notes or in DEBUG_INSNs don't count for
2713 		     this purpose.  */
2714 		  && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 				      || GET_CODE (insn) == INSN_LIST
2716 				      || DEBUG_INSN_P (insn))))
2717 		ep->ref_outside_mem = 1;
2718 
2719 	      return
2720 		plus_constant (Pmode,
2721 			       gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2722 			       ep->previous_offset * INTVAL (XEXP (x, 1)));
2723 	    }
2724 
2725       /* ... fall through ...  */
2726 
2727     case CALL:
2728     case COMPARE:
2729     /* See comments before PLUS about handling MINUS.  */
2730     case MINUS:
2731     case DIV:      case UDIV:
2732     case MOD:      case UMOD:
2733     case AND:      case IOR:      case XOR:
2734     case ROTATERT: case ROTATE:
2735     case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2736     case NE:       case EQ:
2737     case GE:       case GT:       case GEU:    case GTU:
2738     case LE:       case LT:       case LEU:    case LTU:
2739       {
2740 	rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2741 				     for_costs);
2742 	rtx new1 = XEXP (x, 1)
2743 	  ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2744 			      for_costs) : 0;
2745 
2746 	if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2747 	  return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748       }
2749       return x;
2750 
2751     case EXPR_LIST:
2752       /* If we have something in XEXP (x, 0), the usual case, eliminate it.  */
2753       if (XEXP (x, 0))
2754 	{
2755 	  new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2756 				      for_costs);
2757 	  if (new_rtx != XEXP (x, 0))
2758 	    {
2759 	      /* If this is a REG_DEAD note, it is not valid anymore.
2760 		 Using the eliminated version could result in creating a
2761 		 REG_DEAD note for the stack or frame pointer.  */
2762 	      if (REG_NOTE_KIND (x) == REG_DEAD)
2763 		return (XEXP (x, 1)
2764 			? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2765 					    for_costs)
2766 			: NULL_RTX);
2767 
2768 	      x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2769 	    }
2770 	}
2771 
2772       /* ... fall through ...  */
2773 
2774     case INSN_LIST:
2775       /* Now do eliminations in the rest of the chain.  If this was
2776 	 an EXPR_LIST, this might result in allocating more memory than is
2777 	 strictly needed, but it simplifies the code.  */
2778       if (XEXP (x, 1))
2779 	{
2780 	  new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2781 				      for_costs);
2782 	  if (new_rtx != XEXP (x, 1))
2783 	    return
2784 	      gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 	}
2786       return x;
2787 
2788     case PRE_INC:
2789     case POST_INC:
2790     case PRE_DEC:
2791     case POST_DEC:
2792       /* We do not support elimination of a register that is modified.
2793 	 elimination_effects has already make sure that this does not
2794 	 happen.  */
2795       return x;
2796 
2797     case PRE_MODIFY:
2798     case POST_MODIFY:
2799       /* We do not support elimination of a register that is modified.
2800 	 elimination_effects has already make sure that this does not
2801 	 happen.  The only remaining case we need to consider here is
2802 	 that the increment value may be an eliminable register.  */
2803       if (GET_CODE (XEXP (x, 1)) == PLUS
2804 	  && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 	{
2806 	  rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2807 					  insn, true, for_costs);
2808 
2809 	  if (new_rtx != XEXP (XEXP (x, 1), 1))
2810 	    return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2811 				   gen_rtx_PLUS (GET_MODE (x),
2812 						 XEXP (x, 0), new_rtx));
2813 	}
2814       return x;
2815 
2816     case STRICT_LOW_PART:
2817     case NEG:          case NOT:
2818     case SIGN_EXTEND:  case ZERO_EXTEND:
2819     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2820     case FLOAT:        case FIX:
2821     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2822     case ABS:
2823     case SQRT:
2824     case FFS:
2825     case CLZ:
2826     case CTZ:
2827     case POPCOUNT:
2828     case PARITY:
2829     case BSWAP:
2830       new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2831 				  for_costs);
2832       if (new_rtx != XEXP (x, 0))
2833 	return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2834       return x;
2835 
2836     case SUBREG:
2837       /* Similar to above processing, but preserve SUBREG_BYTE.
2838 	 Convert (subreg (mem)) to (mem) if not paradoxical.
2839 	 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2840 	 pseudo didn't get a hard reg, we must replace this with the
2841 	 eliminated version of the memory location because push_reload
2842 	 may do the replacement in certain circumstances.  */
2843       if (REG_P (SUBREG_REG (x))
2844 	  && !paradoxical_subreg_p (x)
2845 	  && reg_equivs
2846 	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 	{
2848 	  new_rtx = SUBREG_REG (x);
2849 	}
2850       else
2851 	new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852 
2853       if (new_rtx != SUBREG_REG (x))
2854 	{
2855 	  int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 	  int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857 
2858 	  if (MEM_P (new_rtx)
2859 	      && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 		   /* On these machines, combine can create rtl of the form
2862 		      (set (subreg:m1 (reg:m2 R) 0) ...)
2863 		      where m1 < m2, and expects something interesting to
2864 		      happen to the entire word.  Moreover, it will use the
2865 		      (reg:m2 R) later, expecting all bits to be preserved.
2866 		      So if the number of words is the same, preserve the
2867 		      subreg so that push_reload can see it.  */
2868 		   && ! ((x_size - 1) / UNITS_PER_WORD
2869 			 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2871 		   )
2872 		  || x_size == new_size)
2873 	      )
2874 	    return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 	  else
2876 	    return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2877 	}
2878 
2879       return x;
2880 
2881     case MEM:
2882       /* Our only special processing is to pass the mode of the MEM to our
2883 	 recursive call and copy the flags.  While we are here, handle this
2884 	 case more efficiently.  */
2885 
2886       new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 				  for_costs);
2888       if (for_costs
2889 	  && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 	  && !memory_address_p (GET_MODE (x), new_rtx))
2891 	for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892 
2893       return replace_equiv_address_nv (x, new_rtx);
2894 
2895     case USE:
2896       /* Handle insn_list USE that a call to a pure function may generate.  */
2897       new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 				  for_costs);
2899       if (new_rtx != XEXP (x, 0))
2900 	return gen_rtx_USE (GET_MODE (x), new_rtx);
2901       return x;
2902 
2903     case CLOBBER:
2904     case ASM_OPERANDS:
2905       gcc_assert (insn && DEBUG_INSN_P (insn));
2906       break;
2907 
2908     case SET:
2909       gcc_unreachable ();
2910 
2911     default:
2912       break;
2913     }
2914 
2915   /* Process each of our operands recursively.  If any have changed, make a
2916      copy of the rtx.  */
2917   fmt = GET_RTX_FORMAT (code);
2918   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919     {
2920       if (*fmt == 'e')
2921 	{
2922 	  new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 				      for_costs);
2924 	  if (new_rtx != XEXP (x, i) && ! copied)
2925 	    {
2926 	      x = shallow_copy_rtx (x);
2927 	      copied = 1;
2928 	    }
2929 	  XEXP (x, i) = new_rtx;
2930 	}
2931       else if (*fmt == 'E')
2932 	{
2933 	  int copied_vec = 0;
2934 	  for (j = 0; j < XVECLEN (x, i); j++)
2935 	    {
2936 	      new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 					  for_costs);
2938 	      if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 		{
2940 		  rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 					     XVEC (x, i)->elem);
2942 		  if (! copied)
2943 		    {
2944 		      x = shallow_copy_rtx (x);
2945 		      copied = 1;
2946 		    }
2947 		  XVEC (x, i) = new_v;
2948 		  copied_vec = 1;
2949 		}
2950 	      XVECEXP (x, i, j) = new_rtx;
2951 	    }
2952 	}
2953     }
2954 
2955   return x;
2956 }
2957 
2958 rtx
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 {
2961   return eliminate_regs_1 (x, mem_mode, insn, false, false);
2962 }
2963 
2964 /* Scan rtx X for modifications of elimination target registers.  Update
2965    the table of eliminables to reflect the changed state.  MEM_MODE is
2966    the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM.  */
2967 
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 {
2971   enum rtx_code code = GET_CODE (x);
2972   struct elim_table *ep;
2973   int regno;
2974   int i, j;
2975   const char *fmt;
2976 
2977   switch (code)
2978     {
2979     CASE_CONST_ANY:
2980     case CONST:
2981     case SYMBOL_REF:
2982     case CODE_LABEL:
2983     case PC:
2984     case CC0:
2985     case ASM_INPUT:
2986     case ADDR_VEC:
2987     case ADDR_DIFF_VEC:
2988     case RETURN:
2989       return;
2990 
2991     case REG:
2992       regno = REGNO (x);
2993 
2994       /* First handle the case where we encounter a bare register that
2995 	 is eliminable.  Replace it with a PLUS.  */
2996       if (regno < FIRST_PSEUDO_REGISTER)
2997 	{
2998 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 	       ep++)
3000 	    if (ep->from_rtx == x && ep->can_eliminate)
3001 	      {
3002 		if (! mem_mode)
3003 		  ep->ref_outside_mem = 1;
3004 		return;
3005 	      }
3006 
3007 	}
3008       else if (reg_renumber[regno] < 0
3009 	       && reg_equivs
3010 	       && reg_equiv_constant (regno)
3011 	       && ! function_invariant_p (reg_equiv_constant (regno)))
3012 	elimination_effects (reg_equiv_constant (regno), mem_mode);
3013       return;
3014 
3015     case PRE_INC:
3016     case POST_INC:
3017     case PRE_DEC:
3018     case POST_DEC:
3019     case POST_MODIFY:
3020     case PRE_MODIFY:
3021       /* If we modify the source of an elimination rule, disable it.  */
3022       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3023 	if (ep->from_rtx == XEXP (x, 0))
3024 	  ep->can_eliminate = 0;
3025 
3026       /* If we modify the target of an elimination rule by adding a constant,
3027 	 update its offset.  If we modify the target in any other way, we'll
3028 	 have to disable the rule as well.  */
3029       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 	if (ep->to_rtx == XEXP (x, 0))
3031 	  {
3032 	    int size = GET_MODE_SIZE (mem_mode);
3033 
3034 	    /* If more bytes than MEM_MODE are pushed, account for them.  */
3035 #ifdef PUSH_ROUNDING
3036 	    if (ep->to_rtx == stack_pointer_rtx)
3037 	      size = PUSH_ROUNDING (size);
3038 #endif
3039 	    if (code == PRE_DEC || code == POST_DEC)
3040 	      ep->offset += size;
3041 	    else if (code == PRE_INC || code == POST_INC)
3042 	      ep->offset -= size;
3043 	    else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 	      {
3045 		if (GET_CODE (XEXP (x, 1)) == PLUS
3046 		    && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3047 		    && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3048 		  ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3049 		else
3050 		  ep->can_eliminate = 0;
3051 	      }
3052 	  }
3053 
3054       /* These two aren't unary operators.  */
3055       if (code == POST_MODIFY || code == PRE_MODIFY)
3056 	break;
3057 
3058       /* Fall through to generic unary operation case.  */
3059     case STRICT_LOW_PART:
3060     case NEG:          case NOT:
3061     case SIGN_EXTEND:  case ZERO_EXTEND:
3062     case TRUNCATE:     case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3063     case FLOAT:        case FIX:
3064     case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3065     case ABS:
3066     case SQRT:
3067     case FFS:
3068     case CLZ:
3069     case CTZ:
3070     case POPCOUNT:
3071     case PARITY:
3072     case BSWAP:
3073       elimination_effects (XEXP (x, 0), mem_mode);
3074       return;
3075 
3076     case SUBREG:
3077       if (REG_P (SUBREG_REG (x))
3078 	  && (GET_MODE_SIZE (GET_MODE (x))
3079 	      <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3080 	  && reg_equivs
3081 	  && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3082 	return;
3083 
3084       elimination_effects (SUBREG_REG (x), mem_mode);
3085       return;
3086 
3087     case USE:
3088       /* If using a register that is the source of an eliminate we still
3089 	 think can be performed, note it cannot be performed since we don't
3090 	 know how this register is used.  */
3091       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 	if (ep->from_rtx == XEXP (x, 0))
3093 	  ep->can_eliminate = 0;
3094 
3095       elimination_effects (XEXP (x, 0), mem_mode);
3096       return;
3097 
3098     case CLOBBER:
3099       /* If clobbering a register that is the replacement register for an
3100 	 elimination we still think can be performed, note that it cannot
3101 	 be performed.  Otherwise, we need not be concerned about it.  */
3102       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3103 	if (ep->to_rtx == XEXP (x, 0))
3104 	  ep->can_eliminate = 0;
3105 
3106       elimination_effects (XEXP (x, 0), mem_mode);
3107       return;
3108 
3109     case SET:
3110       /* Check for setting a register that we know about.  */
3111       if (REG_P (SET_DEST (x)))
3112 	{
3113 	  /* See if this is setting the replacement register for an
3114 	     elimination.
3115 
3116 	     If DEST is the hard frame pointer, we do nothing because we
3117 	     assume that all assignments to the frame pointer are for
3118 	     non-local gotos and are being done at a time when they are valid
3119 	     and do not disturb anything else.  Some machines want to
3120 	     eliminate a fake argument pointer (or even a fake frame pointer)
3121 	     with either the real frame or the stack pointer.  Assignments to
3122 	     the hard frame pointer must not prevent this elimination.  */
3123 
3124 	  for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 	       ep++)
3126 	    if (ep->to_rtx == SET_DEST (x)
3127 		&& SET_DEST (x) != hard_frame_pointer_rtx)
3128 	      {
3129 		/* If it is being incremented, adjust the offset.  Otherwise,
3130 		   this elimination can't be done.  */
3131 		rtx src = SET_SRC (x);
3132 
3133 		if (GET_CODE (src) == PLUS
3134 		    && XEXP (src, 0) == SET_DEST (x)
3135 		    && CONST_INT_P (XEXP (src, 1)))
3136 		  ep->offset -= INTVAL (XEXP (src, 1));
3137 		else
3138 		  ep->can_eliminate = 0;
3139 	      }
3140 	}
3141 
3142       elimination_effects (SET_DEST (x), VOIDmode);
3143       elimination_effects (SET_SRC (x), VOIDmode);
3144       return;
3145 
3146     case MEM:
3147       /* Our only special processing is to pass the mode of the MEM to our
3148 	 recursive call.  */
3149       elimination_effects (XEXP (x, 0), GET_MODE (x));
3150       return;
3151 
3152     default:
3153       break;
3154     }
3155 
3156   fmt = GET_RTX_FORMAT (code);
3157   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3158     {
3159       if (*fmt == 'e')
3160 	elimination_effects (XEXP (x, i), mem_mode);
3161       else if (*fmt == 'E')
3162 	for (j = 0; j < XVECLEN (x, i); j++)
3163 	  elimination_effects (XVECEXP (x, i, j), mem_mode);
3164     }
3165 }
3166 
3167 /* Descend through rtx X and verify that no references to eliminable registers
3168    remain.  If any do remain, mark the involved register as not
3169    eliminable.  */
3170 
3171 static void
3172 check_eliminable_occurrences (rtx x)
3173 {
3174   const char *fmt;
3175   int i;
3176   enum rtx_code code;
3177 
3178   if (x == 0)
3179     return;
3180 
3181   code = GET_CODE (x);
3182 
3183   if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3184     {
3185       struct elim_table *ep;
3186 
3187       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 	if (ep->from_rtx == x)
3189 	  ep->can_eliminate = 0;
3190       return;
3191     }
3192 
3193   fmt = GET_RTX_FORMAT (code);
3194   for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3195     {
3196       if (*fmt == 'e')
3197 	check_eliminable_occurrences (XEXP (x, i));
3198       else if (*fmt == 'E')
3199 	{
3200 	  int j;
3201 	  for (j = 0; j < XVECLEN (x, i); j++)
3202 	    check_eliminable_occurrences (XVECEXP (x, i, j));
3203 	}
3204     }
3205 }
3206 
3207 /* Scan INSN and eliminate all eliminable registers in it.
3208 
3209    If REPLACE is nonzero, do the replacement destructively.  Also
3210    delete the insn as dead it if it is setting an eliminable register.
3211 
3212    If REPLACE is zero, do all our allocations in reload_obstack.
3213 
3214    If no eliminations were done and this insn doesn't require any elimination
3215    processing (these are not identical conditions: it might be updating sp,
3216    but not referencing fp; this needs to be seen during reload_as_needed so
3217    that the offset between fp and sp can be taken into consideration), zero
3218    is returned.  Otherwise, 1 is returned.  */
3219 
3220 static int
3221 eliminate_regs_in_insn (rtx insn, int replace)
3222 {
3223   int icode = recog_memoized (insn);
3224   rtx old_body = PATTERN (insn);
3225   int insn_is_asm = asm_noperands (old_body) >= 0;
3226   rtx old_set = single_set (insn);
3227   rtx new_body;
3228   int val = 0;
3229   int i;
3230   rtx substed_operand[MAX_RECOG_OPERANDS];
3231   rtx orig_operand[MAX_RECOG_OPERANDS];
3232   struct elim_table *ep;
3233   rtx plus_src, plus_cst_src;
3234 
3235   if (! insn_is_asm && icode < 0)
3236     {
3237       gcc_assert (GET_CODE (PATTERN (insn)) == USE
3238 		  || GET_CODE (PATTERN (insn)) == CLOBBER
3239 		  || GET_CODE (PATTERN (insn)) == ADDR_VEC
3240 		  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3241 		  || GET_CODE (PATTERN (insn)) == ASM_INPUT
3242 		  || DEBUG_INSN_P (insn));
3243       if (DEBUG_INSN_P (insn))
3244 	INSN_VAR_LOCATION_LOC (insn)
3245 	  = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3246       return 0;
3247     }
3248 
3249   if (old_set != 0 && REG_P (SET_DEST (old_set))
3250       && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3251     {
3252       /* Check for setting an eliminable register.  */
3253       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3254 	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3255 	  {
3256 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3257 	    /* If this is setting the frame pointer register to the
3258 	       hardware frame pointer register and this is an elimination
3259 	       that will be done (tested above), this insn is really
3260 	       adjusting the frame pointer downward to compensate for
3261 	       the adjustment done before a nonlocal goto.  */
3262 	    if (ep->from == FRAME_POINTER_REGNUM
3263 		&& ep->to == HARD_FRAME_POINTER_REGNUM)
3264 	      {
3265 		rtx base = SET_SRC (old_set);
3266 		rtx base_insn = insn;
3267 		HOST_WIDE_INT offset = 0;
3268 
3269 		while (base != ep->to_rtx)
3270 		  {
3271 		    rtx prev_insn, prev_set;
3272 
3273 		    if (GET_CODE (base) == PLUS
3274 		        && CONST_INT_P (XEXP (base, 1)))
3275 		      {
3276 		        offset += INTVAL (XEXP (base, 1));
3277 		        base = XEXP (base, 0);
3278 		      }
3279 		    else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3280 			     && (prev_set = single_set (prev_insn)) != 0
3281 			     && rtx_equal_p (SET_DEST (prev_set), base))
3282 		      {
3283 		        base = SET_SRC (prev_set);
3284 		        base_insn = prev_insn;
3285 		      }
3286 		    else
3287 		      break;
3288 		  }
3289 
3290 		if (base == ep->to_rtx)
3291 		  {
3292 		    rtx src = plus_constant (Pmode, ep->to_rtx,
3293 					     offset - ep->offset);
3294 
3295 		    new_body = old_body;
3296 		    if (! replace)
3297 		      {
3298 			new_body = copy_insn (old_body);
3299 			if (REG_NOTES (insn))
3300 			  REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3301 		      }
3302 		    PATTERN (insn) = new_body;
3303 		    old_set = single_set (insn);
3304 
3305 		    /* First see if this insn remains valid when we
3306 		       make the change.  If not, keep the INSN_CODE
3307 		       the same and let reload fit it up.  */
3308 		    validate_change (insn, &SET_SRC (old_set), src, 1);
3309 		    validate_change (insn, &SET_DEST (old_set),
3310 				     ep->to_rtx, 1);
3311 		    if (! apply_change_group ())
3312 		      {
3313 			SET_SRC (old_set) = src;
3314 			SET_DEST (old_set) = ep->to_rtx;
3315 		      }
3316 
3317 		    val = 1;
3318 		    goto done;
3319 		  }
3320 	      }
3321 #endif
3322 
3323 	    /* In this case this insn isn't serving a useful purpose.  We
3324 	       will delete it in reload_as_needed once we know that this
3325 	       elimination is, in fact, being done.
3326 
3327 	       If REPLACE isn't set, we can't delete this insn, but needn't
3328 	       process it since it won't be used unless something changes.  */
3329 	    if (replace)
3330 	      {
3331 		delete_dead_insn (insn);
3332 		return 1;
3333 	      }
3334 	    val = 1;
3335 	    goto done;
3336 	  }
3337     }
3338 
3339   /* We allow one special case which happens to work on all machines we
3340      currently support: a single set with the source or a REG_EQUAL
3341      note being a PLUS of an eliminable register and a constant.  */
3342   plus_src = plus_cst_src = 0;
3343   if (old_set && REG_P (SET_DEST (old_set)))
3344     {
3345       if (GET_CODE (SET_SRC (old_set)) == PLUS)
3346 	plus_src = SET_SRC (old_set);
3347       /* First see if the source is of the form (plus (...) CST).  */
3348       if (plus_src
3349 	  && CONST_INT_P (XEXP (plus_src, 1)))
3350 	plus_cst_src = plus_src;
3351       else if (REG_P (SET_SRC (old_set))
3352 	       || plus_src)
3353 	{
3354 	  /* Otherwise, see if we have a REG_EQUAL note of the form
3355 	     (plus (...) CST).  */
3356 	  rtx links;
3357 	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3358 	    {
3359 	      if ((REG_NOTE_KIND (links) == REG_EQUAL
3360 		   || REG_NOTE_KIND (links) == REG_EQUIV)
3361 		  && GET_CODE (XEXP (links, 0)) == PLUS
3362 		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3363 		{
3364 		  plus_cst_src = XEXP (links, 0);
3365 		  break;
3366 		}
3367 	    }
3368 	}
3369 
3370       /* Check that the first operand of the PLUS is a hard reg or
3371 	 the lowpart subreg of one.  */
3372       if (plus_cst_src)
3373 	{
3374 	  rtx reg = XEXP (plus_cst_src, 0);
3375 	  if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3376 	    reg = SUBREG_REG (reg);
3377 
3378 	  if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3379 	    plus_cst_src = 0;
3380 	}
3381     }
3382   if (plus_cst_src)
3383     {
3384       rtx reg = XEXP (plus_cst_src, 0);
3385       HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3386 
3387       if (GET_CODE (reg) == SUBREG)
3388 	reg = SUBREG_REG (reg);
3389 
3390       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3391 	if (ep->from_rtx == reg && ep->can_eliminate)
3392 	  {
3393 	    rtx to_rtx = ep->to_rtx;
3394 	    offset += ep->offset;
3395 	    offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3396 
3397 	    if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3398 	      to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3399 				    to_rtx);
3400 	    /* If we have a nonzero offset, and the source is already
3401 	       a simple REG, the following transformation would
3402 	       increase the cost of the insn by replacing a simple REG
3403 	       with (plus (reg sp) CST).  So try only when we already
3404 	       had a PLUS before.  */
3405 	    if (offset == 0 || plus_src)
3406 	      {
3407 		rtx new_src = plus_constant (GET_MODE (to_rtx),
3408 					     to_rtx, offset);
3409 
3410 		new_body = old_body;
3411 		if (! replace)
3412 		  {
3413 		    new_body = copy_insn (old_body);
3414 		    if (REG_NOTES (insn))
3415 		      REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3416 		  }
3417 		PATTERN (insn) = new_body;
3418 		old_set = single_set (insn);
3419 
3420 		/* First see if this insn remains valid when we make the
3421 		   change.  If not, try to replace the whole pattern with
3422 		   a simple set (this may help if the original insn was a
3423 		   PARALLEL that was only recognized as single_set due to
3424 		   REG_UNUSED notes).  If this isn't valid either, keep
3425 		   the INSN_CODE the same and let reload fix it up.  */
3426 		if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3427 		  {
3428 		    rtx new_pat = gen_rtx_SET (VOIDmode,
3429 					       SET_DEST (old_set), new_src);
3430 
3431 		    if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3432 		      SET_SRC (old_set) = new_src;
3433 		  }
3434 	      }
3435 	    else
3436 	      break;
3437 
3438 	    val = 1;
3439 	    /* This can't have an effect on elimination offsets, so skip right
3440 	       to the end.  */
3441 	    goto done;
3442 	  }
3443     }
3444 
3445   /* Determine the effects of this insn on elimination offsets.  */
3446   elimination_effects (old_body, VOIDmode);
3447 
3448   /* Eliminate all eliminable registers occurring in operands that
3449      can be handled by reload.  */
3450   extract_insn (insn);
3451   for (i = 0; i < recog_data.n_operands; i++)
3452     {
3453       orig_operand[i] = recog_data.operand[i];
3454       substed_operand[i] = recog_data.operand[i];
3455 
3456       /* For an asm statement, every operand is eliminable.  */
3457       if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3458 	{
3459 	  bool is_set_src, in_plus;
3460 
3461 	  /* Check for setting a register that we know about.  */
3462 	  if (recog_data.operand_type[i] != OP_IN
3463 	      && REG_P (orig_operand[i]))
3464 	    {
3465 	      /* If we are assigning to a register that can be eliminated, it
3466 		 must be as part of a PARALLEL, since the code above handles
3467 		 single SETs.  We must indicate that we can no longer
3468 		 eliminate this reg.  */
3469 	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3470 		   ep++)
3471 		if (ep->from_rtx == orig_operand[i])
3472 		  ep->can_eliminate = 0;
3473 	    }
3474 
3475 	  /* Companion to the above plus substitution, we can allow
3476 	     invariants as the source of a plain move.  */
3477 	  is_set_src = false;
3478 	  if (old_set
3479 	      && recog_data.operand_loc[i] == &SET_SRC (old_set))
3480 	    is_set_src = true;
3481 	  in_plus = false;
3482 	  if (plus_src
3483 	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3484 		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3485 	    in_plus = true;
3486 
3487 	  substed_operand[i]
3488 	    = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3489 			        replace ? insn : NULL_RTX,
3490 				is_set_src || in_plus, false);
3491 	  if (substed_operand[i] != orig_operand[i])
3492 	    val = 1;
3493 	  /* Terminate the search in check_eliminable_occurrences at
3494 	     this point.  */
3495 	  *recog_data.operand_loc[i] = 0;
3496 
3497 	  /* If an output operand changed from a REG to a MEM and INSN is an
3498 	     insn, write a CLOBBER insn.  */
3499 	  if (recog_data.operand_type[i] != OP_IN
3500 	      && REG_P (orig_operand[i])
3501 	      && MEM_P (substed_operand[i])
3502 	      && replace)
3503 	    emit_insn_after (gen_clobber (orig_operand[i]), insn);
3504 	}
3505     }
3506 
3507   for (i = 0; i < recog_data.n_dups; i++)
3508     *recog_data.dup_loc[i]
3509       = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3510 
3511   /* If any eliminable remain, they aren't eliminable anymore.  */
3512   check_eliminable_occurrences (old_body);
3513 
3514   /* Substitute the operands; the new values are in the substed_operand
3515      array.  */
3516   for (i = 0; i < recog_data.n_operands; i++)
3517     *recog_data.operand_loc[i] = substed_operand[i];
3518   for (i = 0; i < recog_data.n_dups; i++)
3519     *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3520 
3521   /* If we are replacing a body that was a (set X (plus Y Z)), try to
3522      re-recognize the insn.  We do this in case we had a simple addition
3523      but now can do this as a load-address.  This saves an insn in this
3524      common case.
3525      If re-recognition fails, the old insn code number will still be used,
3526      and some register operands may have changed into PLUS expressions.
3527      These will be handled by find_reloads by loading them into a register
3528      again.  */
3529 
3530   if (val)
3531     {
3532       /* If we aren't replacing things permanently and we changed something,
3533 	 make another copy to ensure that all the RTL is new.  Otherwise
3534 	 things can go wrong if find_reload swaps commutative operands
3535 	 and one is inside RTL that has been copied while the other is not.  */
3536       new_body = old_body;
3537       if (! replace)
3538 	{
3539 	  new_body = copy_insn (old_body);
3540 	  if (REG_NOTES (insn))
3541 	    REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3542 	}
3543       PATTERN (insn) = new_body;
3544 
3545       /* If we had a move insn but now we don't, rerecognize it.  This will
3546 	 cause spurious re-recognition if the old move had a PARALLEL since
3547 	 the new one still will, but we can't call single_set without
3548 	 having put NEW_BODY into the insn and the re-recognition won't
3549 	 hurt in this rare case.  */
3550       /* ??? Why this huge if statement - why don't we just rerecognize the
3551 	 thing always?  */
3552       if (! insn_is_asm
3553 	  && old_set != 0
3554 	  && ((REG_P (SET_SRC (old_set))
3555 	       && (GET_CODE (new_body) != SET
3556 		   || !REG_P (SET_SRC (new_body))))
3557 	      /* If this was a load from or store to memory, compare
3558 		 the MEM in recog_data.operand to the one in the insn.
3559 		 If they are not equal, then rerecognize the insn.  */
3560 	      || (old_set != 0
3561 		  && ((MEM_P (SET_SRC (old_set))
3562 		       && SET_SRC (old_set) != recog_data.operand[1])
3563 		      || (MEM_P (SET_DEST (old_set))
3564 			  && SET_DEST (old_set) != recog_data.operand[0])))
3565 	      /* If this was an add insn before, rerecognize.  */
3566 	      || GET_CODE (SET_SRC (old_set)) == PLUS))
3567 	{
3568 	  int new_icode = recog (PATTERN (insn), insn, 0);
3569 	  if (new_icode >= 0)
3570 	    INSN_CODE (insn) = new_icode;
3571 	}
3572     }
3573 
3574   /* Restore the old body.  If there were any changes to it, we made a copy
3575      of it while the changes were still in place, so we'll correctly return
3576      a modified insn below.  */
3577   if (! replace)
3578     {
3579       /* Restore the old body.  */
3580       for (i = 0; i < recog_data.n_operands; i++)
3581 	/* Restoring a top-level match_parallel would clobber the new_body
3582 	   we installed in the insn.  */
3583 	if (recog_data.operand_loc[i] != &PATTERN (insn))
3584 	  *recog_data.operand_loc[i] = orig_operand[i];
3585       for (i = 0; i < recog_data.n_dups; i++)
3586 	*recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3587     }
3588 
3589   /* Update all elimination pairs to reflect the status after the current
3590      insn.  The changes we make were determined by the earlier call to
3591      elimination_effects.
3592 
3593      We also detect cases where register elimination cannot be done,
3594      namely, if a register would be both changed and referenced outside a MEM
3595      in the resulting insn since such an insn is often undefined and, even if
3596      not, we cannot know what meaning will be given to it.  Note that it is
3597      valid to have a register used in an address in an insn that changes it
3598      (presumably with a pre- or post-increment or decrement).
3599 
3600      If anything changes, return nonzero.  */
3601 
3602   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3603     {
3604       if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3605 	ep->can_eliminate = 0;
3606 
3607       ep->ref_outside_mem = 0;
3608 
3609       if (ep->previous_offset != ep->offset)
3610 	val = 1;
3611     }
3612 
3613  done:
3614   /* If we changed something, perform elimination in REG_NOTES.  This is
3615      needed even when REPLACE is zero because a REG_DEAD note might refer
3616      to a register that we eliminate and could cause a different number
3617      of spill registers to be needed in the final reload pass than in
3618      the pre-passes.  */
3619   if (val && REG_NOTES (insn) != 0)
3620     REG_NOTES (insn)
3621       = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3622 			  false);
3623 
3624   return val;
3625 }
3626 
3627 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3628    register allocator.  INSN is the instruction we need to examine, we perform
3629    eliminations in its operands and record cases where eliminating a reg with
3630    an invariant equivalence would add extra cost.  */
3631 
3632 static void
3633 elimination_costs_in_insn (rtx insn)
3634 {
3635   int icode = recog_memoized (insn);
3636   rtx old_body = PATTERN (insn);
3637   int insn_is_asm = asm_noperands (old_body) >= 0;
3638   rtx old_set = single_set (insn);
3639   int i;
3640   rtx orig_operand[MAX_RECOG_OPERANDS];
3641   rtx orig_dup[MAX_RECOG_OPERANDS];
3642   struct elim_table *ep;
3643   rtx plus_src, plus_cst_src;
3644   bool sets_reg_p;
3645 
3646   if (! insn_is_asm && icode < 0)
3647     {
3648       gcc_assert (GET_CODE (PATTERN (insn)) == USE
3649 		  || GET_CODE (PATTERN (insn)) == CLOBBER
3650 		  || GET_CODE (PATTERN (insn)) == ADDR_VEC
3651 		  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3652 		  || GET_CODE (PATTERN (insn)) == ASM_INPUT
3653 		  || DEBUG_INSN_P (insn));
3654       return;
3655     }
3656 
3657   if (old_set != 0 && REG_P (SET_DEST (old_set))
3658       && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3659     {
3660       /* Check for setting an eliminable register.  */
3661       for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3662 	if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3663 	  return;
3664     }
3665 
3666   /* We allow one special case which happens to work on all machines we
3667      currently support: a single set with the source or a REG_EQUAL
3668      note being a PLUS of an eliminable register and a constant.  */
3669   plus_src = plus_cst_src = 0;
3670   sets_reg_p = false;
3671   if (old_set && REG_P (SET_DEST (old_set)))
3672     {
3673       sets_reg_p = true;
3674       if (GET_CODE (SET_SRC (old_set)) == PLUS)
3675 	plus_src = SET_SRC (old_set);
3676       /* First see if the source is of the form (plus (...) CST).  */
3677       if (plus_src
3678 	  && CONST_INT_P (XEXP (plus_src, 1)))
3679 	plus_cst_src = plus_src;
3680       else if (REG_P (SET_SRC (old_set))
3681 	       || plus_src)
3682 	{
3683 	  /* Otherwise, see if we have a REG_EQUAL note of the form
3684 	     (plus (...) CST).  */
3685 	  rtx links;
3686 	  for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3687 	    {
3688 	      if ((REG_NOTE_KIND (links) == REG_EQUAL
3689 		   || REG_NOTE_KIND (links) == REG_EQUIV)
3690 		  && GET_CODE (XEXP (links, 0)) == PLUS
3691 		  && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3692 		{
3693 		  plus_cst_src = XEXP (links, 0);
3694 		  break;
3695 		}
3696 	    }
3697 	}
3698     }
3699 
3700   /* Determine the effects of this insn on elimination offsets.  */
3701   elimination_effects (old_body, VOIDmode);
3702 
3703   /* Eliminate all eliminable registers occurring in operands that
3704      can be handled by reload.  */
3705   extract_insn (insn);
3706   for (i = 0; i < recog_data.n_dups; i++)
3707     orig_dup[i] = *recog_data.dup_loc[i];
3708 
3709   for (i = 0; i < recog_data.n_operands; i++)
3710     {
3711       orig_operand[i] = recog_data.operand[i];
3712 
3713       /* For an asm statement, every operand is eliminable.  */
3714       if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3715 	{
3716 	  bool is_set_src, in_plus;
3717 
3718 	  /* Check for setting a register that we know about.  */
3719 	  if (recog_data.operand_type[i] != OP_IN
3720 	      && REG_P (orig_operand[i]))
3721 	    {
3722 	      /* If we are assigning to a register that can be eliminated, it
3723 		 must be as part of a PARALLEL, since the code above handles
3724 		 single SETs.  We must indicate that we can no longer
3725 		 eliminate this reg.  */
3726 	      for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3727 		   ep++)
3728 		if (ep->from_rtx == orig_operand[i])
3729 		  ep->can_eliminate = 0;
3730 	    }
3731 
3732 	  /* Companion to the above plus substitution, we can allow
3733 	     invariants as the source of a plain move.  */
3734 	  is_set_src = false;
3735 	  if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3736 	    is_set_src = true;
3737 	  if (is_set_src && !sets_reg_p)
3738 	    note_reg_elim_costly (&SET_SRC (old_set), insn);
3739 	  in_plus = false;
3740 	  if (plus_src && sets_reg_p
3741 	      && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3742 		  || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3743 	    in_plus = true;
3744 
3745 	  eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3746 			    NULL_RTX,
3747 			    is_set_src || in_plus, true);
3748 	  /* Terminate the search in check_eliminable_occurrences at
3749 	     this point.  */
3750 	  *recog_data.operand_loc[i] = 0;
3751 	}
3752     }
3753 
3754   for (i = 0; i < recog_data.n_dups; i++)
3755     *recog_data.dup_loc[i]
3756       = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3757 
3758   /* If any eliminable remain, they aren't eliminable anymore.  */
3759   check_eliminable_occurrences (old_body);
3760 
3761   /* Restore the old body.  */
3762   for (i = 0; i < recog_data.n_operands; i++)
3763     *recog_data.operand_loc[i] = orig_operand[i];
3764   for (i = 0; i < recog_data.n_dups; i++)
3765     *recog_data.dup_loc[i] = orig_dup[i];
3766 
3767   /* Update all elimination pairs to reflect the status after the current
3768      insn.  The changes we make were determined by the earlier call to
3769      elimination_effects.  */
3770 
3771   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3772     {
3773       if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3774 	ep->can_eliminate = 0;
3775 
3776       ep->ref_outside_mem = 0;
3777     }
3778 
3779   return;
3780 }
3781 
3782 /* Loop through all elimination pairs.
3783    Recalculate the number not at initial offset.
3784 
3785    Compute the maximum offset (minimum offset if the stack does not
3786    grow downward) for each elimination pair.  */
3787 
3788 static void
3789 update_eliminable_offsets (void)
3790 {
3791   struct elim_table *ep;
3792 
3793   num_not_at_initial_offset = 0;
3794   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3795     {
3796       ep->previous_offset = ep->offset;
3797       if (ep->can_eliminate && ep->offset != ep->initial_offset)
3798 	num_not_at_initial_offset++;
3799     }
3800 }
3801 
3802 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3803    replacement we currently believe is valid, mark it as not eliminable if X
3804    modifies DEST in any way other than by adding a constant integer to it.
3805 
3806    If DEST is the frame pointer, we do nothing because we assume that
3807    all assignments to the hard frame pointer are nonlocal gotos and are being
3808    done at a time when they are valid and do not disturb anything else.
3809    Some machines want to eliminate a fake argument pointer with either the
3810    frame or stack pointer.  Assignments to the hard frame pointer must not
3811    prevent this elimination.
3812 
3813    Called via note_stores from reload before starting its passes to scan
3814    the insns of the function.  */
3815 
3816 static void
3817 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3818 {
3819   unsigned int i;
3820 
3821   /* A SUBREG of a hard register here is just changing its mode.  We should
3822      not see a SUBREG of an eliminable hard register, but check just in
3823      case.  */
3824   if (GET_CODE (dest) == SUBREG)
3825     dest = SUBREG_REG (dest);
3826 
3827   if (dest == hard_frame_pointer_rtx)
3828     return;
3829 
3830   for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3831     if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3832 	&& (GET_CODE (x) != SET
3833 	    || GET_CODE (SET_SRC (x)) != PLUS
3834 	    || XEXP (SET_SRC (x), 0) != dest
3835 	    || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3836       {
3837 	reg_eliminate[i].can_eliminate_previous
3838 	  = reg_eliminate[i].can_eliminate = 0;
3839 	num_eliminable--;
3840       }
3841 }
3842 
3843 /* Verify that the initial elimination offsets did not change since the
3844    last call to set_initial_elim_offsets.  This is used to catch cases
3845    where something illegal happened during reload_as_needed that could
3846    cause incorrect code to be generated if we did not check for it.  */
3847 
3848 static bool
3849 verify_initial_elim_offsets (void)
3850 {
3851   HOST_WIDE_INT t;
3852 
3853   if (!num_eliminable)
3854     return true;
3855 
3856 #ifdef ELIMINABLE_REGS
3857   {
3858    struct elim_table *ep;
3859 
3860    for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3861      {
3862        INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3863        if (t != ep->initial_offset)
3864 	 return false;
3865      }
3866   }
3867 #else
3868   INITIAL_FRAME_POINTER_OFFSET (t);
3869   if (t != reg_eliminate[0].initial_offset)
3870     return false;
3871 #endif
3872 
3873   return true;
3874 }
3875 
3876 /* Reset all offsets on eliminable registers to their initial values.  */
3877 
3878 static void
3879 set_initial_elim_offsets (void)
3880 {
3881   struct elim_table *ep = reg_eliminate;
3882 
3883 #ifdef ELIMINABLE_REGS
3884   for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3885     {
3886       INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3887       ep->previous_offset = ep->offset = ep->initial_offset;
3888     }
3889 #else
3890   INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3891   ep->previous_offset = ep->offset = ep->initial_offset;
3892 #endif
3893 
3894   num_not_at_initial_offset = 0;
3895 }
3896 
3897 /* Subroutine of set_initial_label_offsets called via for_each_eh_label.  */
3898 
3899 static void
3900 set_initial_eh_label_offset (rtx label)
3901 {
3902   set_label_offsets (label, NULL_RTX, 1);
3903 }
3904 
3905 /* Initialize the known label offsets.
3906    Set a known offset for each forced label to be at the initial offset
3907    of each elimination.  We do this because we assume that all
3908    computed jumps occur from a location where each elimination is
3909    at its initial offset.
3910    For all other labels, show that we don't know the offsets.  */
3911 
3912 static void
3913 set_initial_label_offsets (void)
3914 {
3915   rtx x;
3916   memset (offsets_known_at, 0, num_labels);
3917 
3918   for (x = forced_labels; x; x = XEXP (x, 1))
3919     if (XEXP (x, 0))
3920       set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3921 
3922   for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3923     if (XEXP (x, 0))
3924       set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3925 
3926   for_each_eh_label (set_initial_eh_label_offset);
3927 }
3928 
3929 /* Set all elimination offsets to the known values for the code label given
3930    by INSN.  */
3931 
3932 static void
3933 set_offsets_for_label (rtx insn)
3934 {
3935   unsigned int i;
3936   int label_nr = CODE_LABEL_NUMBER (insn);
3937   struct elim_table *ep;
3938 
3939   num_not_at_initial_offset = 0;
3940   for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3941     {
3942       ep->offset = ep->previous_offset
3943 		 = offsets_at[label_nr - first_label_num][i];
3944       if (ep->can_eliminate && ep->offset != ep->initial_offset)
3945 	num_not_at_initial_offset++;
3946     }
3947 }
3948 
3949 /* See if anything that happened changes which eliminations are valid.
3950    For example, on the SPARC, whether or not the frame pointer can
3951    be eliminated can depend on what registers have been used.  We need
3952    not check some conditions again (such as flag_omit_frame_pointer)
3953    since they can't have changed.  */
3954 
3955 static void
3956 update_eliminables (HARD_REG_SET *pset)
3957 {
3958   int previous_frame_pointer_needed = frame_pointer_needed;
3959   struct elim_table *ep;
3960 
3961   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962     if ((ep->from == HARD_FRAME_POINTER_REGNUM
3963          && targetm.frame_pointer_required ())
3964 #ifdef ELIMINABLE_REGS
3965 	|| ! targetm.can_eliminate (ep->from, ep->to)
3966 #endif
3967 	)
3968       ep->can_eliminate = 0;
3969 
3970   /* Look for the case where we have discovered that we can't replace
3971      register A with register B and that means that we will now be
3972      trying to replace register A with register C.  This means we can
3973      no longer replace register C with register B and we need to disable
3974      such an elimination, if it exists.  This occurs often with A == ap,
3975      B == sp, and C == fp.  */
3976 
3977   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3978     {
3979       struct elim_table *op;
3980       int new_to = -1;
3981 
3982       if (! ep->can_eliminate && ep->can_eliminate_previous)
3983 	{
3984 	  /* Find the current elimination for ep->from, if there is a
3985 	     new one.  */
3986 	  for (op = reg_eliminate;
3987 	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3988 	    if (op->from == ep->from && op->can_eliminate)
3989 	      {
3990 		new_to = op->to;
3991 		break;
3992 	      }
3993 
3994 	  /* See if there is an elimination of NEW_TO -> EP->TO.  If so,
3995 	     disable it.  */
3996 	  for (op = reg_eliminate;
3997 	       op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3998 	    if (op->from == new_to && op->to == ep->to)
3999 	      op->can_eliminate = 0;
4000 	}
4001     }
4002 
4003   /* See if any registers that we thought we could eliminate the previous
4004      time are no longer eliminable.  If so, something has changed and we
4005      must spill the register.  Also, recompute the number of eliminable
4006      registers and see if the frame pointer is needed; it is if there is
4007      no elimination of the frame pointer that we can perform.  */
4008 
4009   frame_pointer_needed = 1;
4010   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4011     {
4012       if (ep->can_eliminate
4013 	  && ep->from == FRAME_POINTER_REGNUM
4014 	  && ep->to != HARD_FRAME_POINTER_REGNUM
4015 	  && (! SUPPORTS_STACK_ALIGNMENT
4016 	      || ! crtl->stack_realign_needed))
4017 	frame_pointer_needed = 0;
4018 
4019       if (! ep->can_eliminate && ep->can_eliminate_previous)
4020 	{
4021 	  ep->can_eliminate_previous = 0;
4022 	  SET_HARD_REG_BIT (*pset, ep->from);
4023 	  num_eliminable--;
4024 	}
4025     }
4026 
4027   /* If we didn't need a frame pointer last time, but we do now, spill
4028      the hard frame pointer.  */
4029   if (frame_pointer_needed && ! previous_frame_pointer_needed)
4030     SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4031 }
4032 
4033 /* Return true if X is used as the target register of an elimination.  */
4034 
4035 bool
4036 elimination_target_reg_p (rtx x)
4037 {
4038   struct elim_table *ep;
4039 
4040   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4041     if (ep->to_rtx == x && ep->can_eliminate)
4042       return true;
4043 
4044   return false;
4045 }
4046 
4047 /* Initialize the table of registers to eliminate.
4048    Pre-condition: global flag frame_pointer_needed has been set before
4049    calling this function.  */
4050 
4051 static void
4052 init_elim_table (void)
4053 {
4054   struct elim_table *ep;
4055 #ifdef ELIMINABLE_REGS
4056   const struct elim_table_1 *ep1;
4057 #endif
4058 
4059   if (!reg_eliminate)
4060     reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4061 
4062   num_eliminable = 0;
4063 
4064 #ifdef ELIMINABLE_REGS
4065   for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4066        ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4067     {
4068       ep->from = ep1->from;
4069       ep->to = ep1->to;
4070       ep->can_eliminate = ep->can_eliminate_previous
4071 	= (targetm.can_eliminate (ep->from, ep->to)
4072 	   && ! (ep->to == STACK_POINTER_REGNUM
4073 		 && frame_pointer_needed
4074 		 && (! SUPPORTS_STACK_ALIGNMENT
4075 		     || ! stack_realign_fp)));
4076     }
4077 #else
4078   reg_eliminate[0].from = reg_eliminate_1[0].from;
4079   reg_eliminate[0].to = reg_eliminate_1[0].to;
4080   reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4081     = ! frame_pointer_needed;
4082 #endif
4083 
4084   /* Count the number of eliminable registers and build the FROM and TO
4085      REG rtx's.  Note that code in gen_rtx_REG will cause, e.g.,
4086      gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4087      We depend on this.  */
4088   for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4089     {
4090       num_eliminable += ep->can_eliminate;
4091       ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4092       ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4093     }
4094 }
4095 
4096 /* Find all the pseudo registers that didn't get hard regs
4097    but do have known equivalent constants or memory slots.
4098    These include parameters (known equivalent to parameter slots)
4099    and cse'd or loop-moved constant memory addresses.
4100 
4101    Record constant equivalents in reg_equiv_constant
4102    so they will be substituted by find_reloads.
4103    Record memory equivalents in reg_mem_equiv so they can
4104    be substituted eventually by altering the REG-rtx's.  */
4105 
4106 static void
4107 init_eliminable_invariants (rtx first, bool do_subregs)
4108 {
4109   int i;
4110   rtx insn;
4111 
4112   grow_reg_equivs ();
4113   if (do_subregs)
4114     reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4115   else
4116     reg_max_ref_width = NULL;
4117 
4118   num_eliminable_invariants = 0;
4119 
4120   first_label_num = get_first_label_num ();
4121   num_labels = max_label_num () - first_label_num;
4122 
4123   /* Allocate the tables used to store offset information at labels.  */
4124   offsets_known_at = XNEWVEC (char, num_labels);
4125   offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4126 
4127 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4128    to.  If DO_SUBREGS is true, also find all paradoxical subregs and
4129    find largest such for each pseudo.  FIRST is the head of the insn
4130    list.  */
4131 
4132   for (insn = first; insn; insn = NEXT_INSN (insn))
4133     {
4134       rtx set = single_set (insn);
4135 
4136       /* We may introduce USEs that we want to remove at the end, so
4137 	 we'll mark them with QImode.  Make sure there are no
4138 	 previously-marked insns left by say regmove.  */
4139       if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4140 	  && GET_MODE (insn) != VOIDmode)
4141 	PUT_MODE (insn, VOIDmode);
4142 
4143       if (do_subregs && NONDEBUG_INSN_P (insn))
4144 	scan_paradoxical_subregs (PATTERN (insn));
4145 
4146       if (set != 0 && REG_P (SET_DEST (set)))
4147 	{
4148 	  rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4149 	  rtx x;
4150 
4151 	  if (! note)
4152 	    continue;
4153 
4154 	  i = REGNO (SET_DEST (set));
4155 	  x = XEXP (note, 0);
4156 
4157 	  if (i <= LAST_VIRTUAL_REGISTER)
4158 	    continue;
4159 
4160 	  /* If flag_pic and we have constant, verify it's legitimate.  */
4161 	  if (!CONSTANT_P (x)
4162 	      || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4163 	    {
4164 	      /* It can happen that a REG_EQUIV note contains a MEM
4165 		 that is not a legitimate memory operand.  As later
4166 		 stages of reload assume that all addresses found
4167 		 in the reg_equiv_* arrays were originally legitimate,
4168 		 we ignore such REG_EQUIV notes.  */
4169 	      if (memory_operand (x, VOIDmode))
4170 		{
4171 		  /* Always unshare the equivalence, so we can
4172 		     substitute into this insn without touching the
4173 		       equivalence.  */
4174 		  reg_equiv_memory_loc (i) = copy_rtx (x);
4175 		}
4176 	      else if (function_invariant_p (x))
4177 		{
4178 		  enum machine_mode mode;
4179 
4180 		  mode = GET_MODE (SET_DEST (set));
4181 		  if (GET_CODE (x) == PLUS)
4182 		    {
4183 		      /* This is PLUS of frame pointer and a constant,
4184 			 and might be shared.  Unshare it.  */
4185 		      reg_equiv_invariant (i) = copy_rtx (x);
4186 		      num_eliminable_invariants++;
4187 		    }
4188 		  else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4189 		    {
4190 		      reg_equiv_invariant (i) = x;
4191 		      num_eliminable_invariants++;
4192 		    }
4193 		  else if (targetm.legitimate_constant_p (mode, x))
4194 		    reg_equiv_constant (i) = x;
4195 		  else
4196 		    {
4197 		      reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4198 		      if (! reg_equiv_memory_loc (i))
4199 			reg_equiv_init (i) = NULL_RTX;
4200 		    }
4201 		}
4202 	      else
4203 		{
4204 		  reg_equiv_init (i) = NULL_RTX;
4205 		  continue;
4206 		}
4207 	    }
4208 	  else
4209 	    reg_equiv_init (i) = NULL_RTX;
4210 	}
4211     }
4212 
4213   if (dump_file)
4214     for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4215       if (reg_equiv_init (i))
4216 	{
4217 	  fprintf (dump_file, "init_insns for %u: ", i);
4218 	  print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4219 	  fprintf (dump_file, "\n");
4220 	}
4221 }
4222 
4223 /* Indicate that we no longer have known memory locations or constants.
4224    Free all data involved in tracking these.  */
4225 
4226 static void
4227 free_reg_equiv (void)
4228 {
4229   int i;
4230 
4231   free (offsets_known_at);
4232   free (offsets_at);
4233   offsets_at = 0;
4234   offsets_known_at = 0;
4235 
4236   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4237     if (reg_equiv_alt_mem_list (i))
4238       free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4239   vec_free (reg_equivs);
4240 }
4241 
4242 /* Kick all pseudos out of hard register REGNO.
4243 
4244    If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4245    because we found we can't eliminate some register.  In the case, no pseudos
4246    are allowed to be in the register, even if they are only in a block that
4247    doesn't require spill registers, unlike the case when we are spilling this
4248    hard reg to produce another spill register.
4249 
4250    Return nonzero if any pseudos needed to be kicked out.  */
4251 
4252 static void
4253 spill_hard_reg (unsigned int regno, int cant_eliminate)
4254 {
4255   int i;
4256 
4257   if (cant_eliminate)
4258     {
4259       SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4260       df_set_regs_ever_live (regno, true);
4261     }
4262 
4263   /* Spill every pseudo reg that was allocated to this reg
4264      or to something that overlaps this reg.  */
4265 
4266   for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4267     if (reg_renumber[i] >= 0
4268 	&& (unsigned int) reg_renumber[i] <= regno
4269 	&& end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4270       SET_REGNO_REG_SET (&spilled_pseudos, i);
4271 }
4272 
4273 /* After find_reload_regs has been run for all insn that need reloads,
4274    and/or spill_hard_regs was called, this function is used to actually
4275    spill pseudo registers and try to reallocate them.  It also sets up the
4276    spill_regs array for use by choose_reload_regs.  */
4277 
4278 static int
4279 finish_spills (int global)
4280 {
4281   struct insn_chain *chain;
4282   int something_changed = 0;
4283   unsigned i;
4284   reg_set_iterator rsi;
4285 
4286   /* Build the spill_regs array for the function.  */
4287   /* If there are some registers still to eliminate and one of the spill regs
4288      wasn't ever used before, additional stack space may have to be
4289      allocated to store this register.  Thus, we may have changed the offset
4290      between the stack and frame pointers, so mark that something has changed.
4291 
4292      One might think that we need only set VAL to 1 if this is a call-used
4293      register.  However, the set of registers that must be saved by the
4294      prologue is not identical to the call-used set.  For example, the
4295      register used by the call insn for the return PC is a call-used register,
4296      but must be saved by the prologue.  */
4297 
4298   n_spills = 0;
4299   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4300     if (TEST_HARD_REG_BIT (used_spill_regs, i))
4301       {
4302 	spill_reg_order[i] = n_spills;
4303 	spill_regs[n_spills++] = i;
4304 	if (num_eliminable && ! df_regs_ever_live_p (i))
4305 	  something_changed = 1;
4306 	df_set_regs_ever_live (i, true);
4307       }
4308     else
4309       spill_reg_order[i] = -1;
4310 
4311   EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4312     if (! ira_conflicts_p || reg_renumber[i] >= 0)
4313       {
4314 	/* Record the current hard register the pseudo is allocated to
4315 	   in pseudo_previous_regs so we avoid reallocating it to the
4316 	   same hard reg in a later pass.  */
4317 	gcc_assert (reg_renumber[i] >= 0);
4318 
4319 	SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4320 	/* Mark it as no longer having a hard register home.  */
4321 	reg_renumber[i] = -1;
4322 	if (ira_conflicts_p)
4323 	  /* Inform IRA about the change.  */
4324 	  ira_mark_allocation_change (i);
4325 	/* We will need to scan everything again.  */
4326 	something_changed = 1;
4327       }
4328 
4329   /* Retry global register allocation if possible.  */
4330   if (global && ira_conflicts_p)
4331     {
4332       unsigned int n;
4333 
4334       memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4335       /* For every insn that needs reloads, set the registers used as spill
4336 	 regs in pseudo_forbidden_regs for every pseudo live across the
4337 	 insn.  */
4338       for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4339 	{
4340 	  EXECUTE_IF_SET_IN_REG_SET
4341 	    (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4342 	    {
4343 	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4344 				chain->used_spill_regs);
4345 	    }
4346 	  EXECUTE_IF_SET_IN_REG_SET
4347 	    (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4348 	    {
4349 	      IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4350 				chain->used_spill_regs);
4351 	    }
4352 	}
4353 
4354       /* Retry allocating the pseudos spilled in IRA and the
4355 	 reload.  For each reg, merge the various reg sets that
4356 	 indicate which hard regs can't be used, and call
4357 	 ira_reassign_pseudos.  */
4358       for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4359 	if (reg_old_renumber[i] != reg_renumber[i])
4360 	  {
4361 	    if (reg_renumber[i] < 0)
4362 	      temp_pseudo_reg_arr[n++] = i;
4363 	    else
4364 	      CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4365 	  }
4366       if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4367 				bad_spill_regs_global,
4368 				pseudo_forbidden_regs, pseudo_previous_regs,
4369 				&spilled_pseudos))
4370 	something_changed = 1;
4371     }
4372   /* Fix up the register information in the insn chain.
4373      This involves deleting those of the spilled pseudos which did not get
4374      a new hard register home from the live_{before,after} sets.  */
4375   for (chain = reload_insn_chain; chain; chain = chain->next)
4376     {
4377       HARD_REG_SET used_by_pseudos;
4378       HARD_REG_SET used_by_pseudos2;
4379 
4380       if (! ira_conflicts_p)
4381 	{
4382 	  /* Don't do it for IRA because IRA and the reload still can
4383 	     assign hard registers to the spilled pseudos on next
4384 	     reload iterations.  */
4385 	  AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4386 	  AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4387 	}
4388       /* Mark any unallocated hard regs as available for spills.  That
4389 	 makes inheritance work somewhat better.  */
4390       if (chain->need_reload)
4391 	{
4392 	  REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4393 	  REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4394 	  IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4395 
4396 	  compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4397 	  compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4398 	  /* Value of chain->used_spill_regs from previous iteration
4399 	     may be not included in the value calculated here because
4400 	     of possible removing caller-saves insns (see function
4401 	     delete_caller_save_insns.  */
4402 	  COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4403 	  AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4404 	}
4405     }
4406 
4407   CLEAR_REG_SET (&changed_allocation_pseudos);
4408   /* Let alter_reg modify the reg rtx's for the modified pseudos.  */
4409   for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4410     {
4411       int regno = reg_renumber[i];
4412       if (reg_old_renumber[i] == regno)
4413 	continue;
4414 
4415       SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4416 
4417       alter_reg (i, reg_old_renumber[i], false);
4418       reg_old_renumber[i] = regno;
4419       if (dump_file)
4420 	{
4421 	  if (regno == -1)
4422 	    fprintf (dump_file, " Register %d now on stack.\n\n", i);
4423 	  else
4424 	    fprintf (dump_file, " Register %d now in %d.\n\n",
4425 		     i, reg_renumber[i]);
4426 	}
4427     }
4428 
4429   return something_changed;
4430 }
4431 
4432 /* Find all paradoxical subregs within X and update reg_max_ref_width.  */
4433 
4434 static void
4435 scan_paradoxical_subregs (rtx x)
4436 {
4437   int i;
4438   const char *fmt;
4439   enum rtx_code code = GET_CODE (x);
4440 
4441   switch (code)
4442     {
4443     case REG:
4444     case CONST:
4445     case SYMBOL_REF:
4446     case LABEL_REF:
4447     CASE_CONST_ANY:
4448     case CC0:
4449     case PC:
4450     case USE:
4451     case CLOBBER:
4452       return;
4453 
4454     case SUBREG:
4455       if (REG_P (SUBREG_REG (x))
4456 	  && (GET_MODE_SIZE (GET_MODE (x))
4457 	      > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4458 	{
4459 	  reg_max_ref_width[REGNO (SUBREG_REG (x))]
4460 	    = GET_MODE_SIZE (GET_MODE (x));
4461 	  mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4462 	}
4463       return;
4464 
4465     default:
4466       break;
4467     }
4468 
4469   fmt = GET_RTX_FORMAT (code);
4470   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4471     {
4472       if (fmt[i] == 'e')
4473 	scan_paradoxical_subregs (XEXP (x, i));
4474       else if (fmt[i] == 'E')
4475 	{
4476 	  int j;
4477 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4478 	    scan_paradoxical_subregs (XVECEXP (x, i, j));
4479 	}
4480     }
4481 }
4482 
4483 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4484    If *OP_PTR is a paradoxical subreg, try to remove that subreg
4485    and apply the corresponding narrowing subreg to *OTHER_PTR.
4486    Return true if the operands were changed, false otherwise.  */
4487 
4488 static bool
4489 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4490 {
4491   rtx op, inner, other, tem;
4492 
4493   op = *op_ptr;
4494   if (!paradoxical_subreg_p (op))
4495     return false;
4496   inner = SUBREG_REG (op);
4497 
4498   other = *other_ptr;
4499   tem = gen_lowpart_common (GET_MODE (inner), other);
4500   if (!tem)
4501     return false;
4502 
4503   /* If the lowpart operation turned a hard register into a subreg,
4504      rather than simplifying it to another hard register, then the
4505      mode change cannot be properly represented.  For example, OTHER
4506      might be valid in its current mode, but not in the new one.  */
4507   if (GET_CODE (tem) == SUBREG
4508       && REG_P (other)
4509       && HARD_REGISTER_P (other))
4510     return false;
4511 
4512   *op_ptr = inner;
4513   *other_ptr = tem;
4514   return true;
4515 }
4516 
4517 /* A subroutine of reload_as_needed.  If INSN has a REG_EH_REGION note,
4518    examine all of the reload insns between PREV and NEXT exclusive, and
4519    annotate all that may trap.  */
4520 
4521 static void
4522 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4523 {
4524   rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4525   if (note == NULL)
4526     return;
4527   if (!insn_could_throw_p (insn))
4528     remove_note (insn, note);
4529   copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4530 }
4531 
4532 /* Reload pseudo-registers into hard regs around each insn as needed.
4533    Additional register load insns are output before the insn that needs it
4534    and perhaps store insns after insns that modify the reloaded pseudo reg.
4535 
4536    reg_last_reload_reg and reg_reloaded_contents keep track of
4537    which registers are already available in reload registers.
4538    We update these for the reloads that we perform,
4539    as the insns are scanned.  */
4540 
4541 static void
4542 reload_as_needed (int live_known)
4543 {
4544   struct insn_chain *chain;
4545 #if defined (AUTO_INC_DEC)
4546   int i;
4547 #endif
4548   rtx x, marker;
4549 
4550   memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4551   memset (spill_reg_store, 0, sizeof spill_reg_store);
4552   reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4553   INIT_REG_SET (&reg_has_output_reload);
4554   CLEAR_HARD_REG_SET (reg_reloaded_valid);
4555   CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4556 
4557   set_initial_elim_offsets ();
4558 
4559   /* Generate a marker insn that we will move around.  */
4560   marker = emit_note (NOTE_INSN_DELETED);
4561   unlink_insn_chain (marker, marker);
4562 
4563   for (chain = reload_insn_chain; chain; chain = chain->next)
4564     {
4565       rtx prev = 0;
4566       rtx insn = chain->insn;
4567       rtx old_next = NEXT_INSN (insn);
4568 #ifdef AUTO_INC_DEC
4569       rtx old_prev = PREV_INSN (insn);
4570 #endif
4571 
4572       /* If we pass a label, copy the offsets from the label information
4573 	 into the current offsets of each elimination.  */
4574       if (LABEL_P (insn))
4575 	set_offsets_for_label (insn);
4576 
4577       else if (INSN_P (insn))
4578 	{
4579 	  regset_head regs_to_forget;
4580 	  INIT_REG_SET (&regs_to_forget);
4581 	  note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4582 
4583 	  /* If this is a USE and CLOBBER of a MEM, ensure that any
4584 	     references to eliminable registers have been removed.  */
4585 
4586 	  if ((GET_CODE (PATTERN (insn)) == USE
4587 	       || GET_CODE (PATTERN (insn)) == CLOBBER)
4588 	      && MEM_P (XEXP (PATTERN (insn), 0)))
4589 	    XEXP (XEXP (PATTERN (insn), 0), 0)
4590 	      = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4591 				GET_MODE (XEXP (PATTERN (insn), 0)),
4592 				NULL_RTX);
4593 
4594 	  /* If we need to do register elimination processing, do so.
4595 	     This might delete the insn, in which case we are done.  */
4596 	  if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4597 	    {
4598 	      eliminate_regs_in_insn (insn, 1);
4599 	      if (NOTE_P (insn))
4600 		{
4601 		  update_eliminable_offsets ();
4602 		  CLEAR_REG_SET (&regs_to_forget);
4603 		  continue;
4604 		}
4605 	    }
4606 
4607 	  /* If need_elim is nonzero but need_reload is zero, one might think
4608 	     that we could simply set n_reloads to 0.  However, find_reloads
4609 	     could have done some manipulation of the insn (such as swapping
4610 	     commutative operands), and these manipulations are lost during
4611 	     the first pass for every insn that needs register elimination.
4612 	     So the actions of find_reloads must be redone here.  */
4613 
4614 	  if (! chain->need_elim && ! chain->need_reload
4615 	      && ! chain->need_operand_change)
4616 	    n_reloads = 0;
4617 	  /* First find the pseudo regs that must be reloaded for this insn.
4618 	     This info is returned in the tables reload_... (see reload.h).
4619 	     Also modify the body of INSN by substituting RELOAD
4620 	     rtx's for those pseudo regs.  */
4621 	  else
4622 	    {
4623 	      CLEAR_REG_SET (&reg_has_output_reload);
4624 	      CLEAR_HARD_REG_SET (reg_is_output_reload);
4625 
4626 	      find_reloads (insn, 1, spill_indirect_levels, live_known,
4627 			    spill_reg_order);
4628 	    }
4629 
4630 	  if (n_reloads > 0)
4631 	    {
4632 	      rtx next = NEXT_INSN (insn);
4633 	      rtx p;
4634 
4635 	      /* ??? PREV can get deleted by reload inheritance.
4636 		 Work around this by emitting a marker note.  */
4637 	      prev = PREV_INSN (insn);
4638 	      reorder_insns_nobb (marker, marker, prev);
4639 
4640 	      /* Now compute which reload regs to reload them into.  Perhaps
4641 		 reusing reload regs from previous insns, or else output
4642 		 load insns to reload them.  Maybe output store insns too.
4643 		 Record the choices of reload reg in reload_reg_rtx.  */
4644 	      choose_reload_regs (chain);
4645 
4646 	      /* Generate the insns to reload operands into or out of
4647 		 their reload regs.  */
4648 	      emit_reload_insns (chain);
4649 
4650 	      /* Substitute the chosen reload regs from reload_reg_rtx
4651 		 into the insn's body (or perhaps into the bodies of other
4652 		 load and store insn that we just made for reloading
4653 		 and that we moved the structure into).  */
4654 	      subst_reloads (insn);
4655 
4656 	      prev = PREV_INSN (marker);
4657 	      unlink_insn_chain (marker, marker);
4658 
4659 	      /* Adjust the exception region notes for loads and stores.  */
4660 	      if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4661 		fixup_eh_region_note (insn, prev, next);
4662 
4663 	      /* Adjust the location of REG_ARGS_SIZE.  */
4664 	      p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4665 	      if (p)
4666 		{
4667 		  remove_note (insn, p);
4668 		  fixup_args_size_notes (prev, PREV_INSN (next),
4669 					 INTVAL (XEXP (p, 0)));
4670 		}
4671 
4672 	      /* If this was an ASM, make sure that all the reload insns
4673 		 we have generated are valid.  If not, give an error
4674 		 and delete them.  */
4675 	      if (asm_noperands (PATTERN (insn)) >= 0)
4676 		for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4677 		  if (p != insn && INSN_P (p)
4678 		      && GET_CODE (PATTERN (p)) != USE
4679 		      && (recog_memoized (p) < 0
4680 			  || (extract_insn (p), ! constrain_operands (1))))
4681 		    {
4682 		      error_for_asm (insn,
4683 				     "%<asm%> operand requires "
4684 				     "impossible reload");
4685 		      delete_insn (p);
4686 		    }
4687 	    }
4688 
4689 	  if (num_eliminable && chain->need_elim)
4690 	    update_eliminable_offsets ();
4691 
4692 	  /* Any previously reloaded spilled pseudo reg, stored in this insn,
4693 	     is no longer validly lying around to save a future reload.
4694 	     Note that this does not detect pseudos that were reloaded
4695 	     for this insn in order to be stored in
4696 	     (obeying register constraints).  That is correct; such reload
4697 	     registers ARE still valid.  */
4698 	  forget_marked_reloads (&regs_to_forget);
4699 	  CLEAR_REG_SET (&regs_to_forget);
4700 
4701 	  /* There may have been CLOBBER insns placed after INSN.  So scan
4702 	     between INSN and NEXT and use them to forget old reloads.  */
4703 	  for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4704 	    if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4705 	      note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4706 
4707 #ifdef AUTO_INC_DEC
4708 	  /* Likewise for regs altered by auto-increment in this insn.
4709 	     REG_INC notes have been changed by reloading:
4710 	     find_reloads_address_1 records substitutions for them,
4711 	     which have been performed by subst_reloads above.  */
4712 	  for (i = n_reloads - 1; i >= 0; i--)
4713 	    {
4714 	      rtx in_reg = rld[i].in_reg;
4715 	      if (in_reg)
4716 		{
4717 		  enum rtx_code code = GET_CODE (in_reg);
4718 		  /* PRE_INC / PRE_DEC will have the reload register ending up
4719 		     with the same value as the stack slot, but that doesn't
4720 		     hold true for POST_INC / POST_DEC.  Either we have to
4721 		     convert the memory access to a true POST_INC / POST_DEC,
4722 		     or we can't use the reload register for inheritance.  */
4723 		  if ((code == POST_INC || code == POST_DEC)
4724 		      && TEST_HARD_REG_BIT (reg_reloaded_valid,
4725 					    REGNO (rld[i].reg_rtx))
4726 		      /* Make sure it is the inc/dec pseudo, and not
4727 			 some other (e.g. output operand) pseudo.  */
4728 		      && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4729 			  == REGNO (XEXP (in_reg, 0))))
4730 
4731 		    {
4732 		      rtx reload_reg = rld[i].reg_rtx;
4733 		      enum machine_mode mode = GET_MODE (reload_reg);
4734 		      int n = 0;
4735 		      rtx p;
4736 
4737 		      for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4738 			{
4739 			  /* We really want to ignore REG_INC notes here, so
4740 			     use PATTERN (p) as argument to reg_set_p .  */
4741 			  if (reg_set_p (reload_reg, PATTERN (p)))
4742 			    break;
4743 			  n = count_occurrences (PATTERN (p), reload_reg, 0);
4744 			  if (! n)
4745 			    continue;
4746 			  if (n == 1)
4747 			    {
4748 			      rtx replace_reg
4749 				= gen_rtx_fmt_e (code, mode, reload_reg);
4750 
4751 			      validate_replace_rtx_group (reload_reg,
4752 							  replace_reg, p);
4753 			      n = verify_changes (0);
4754 
4755 			      /* We must also verify that the constraints
4756 				 are met after the replacement.  Make sure
4757 				 extract_insn is only called for an insn
4758 				 where the replacements were found to be
4759 				 valid so far. */
4760 			      if (n)
4761 				{
4762 				  extract_insn (p);
4763 				  n = constrain_operands (1);
4764 				}
4765 
4766 			      /* If the constraints were not met, then
4767 				 undo the replacement, else confirm it.  */
4768 			      if (!n)
4769 				cancel_changes (0);
4770 			      else
4771 				confirm_change_group ();
4772 			    }
4773 			  break;
4774 			}
4775 		      if (n == 1)
4776 			{
4777 			  add_reg_note (p, REG_INC, reload_reg);
4778 			  /* Mark this as having an output reload so that the
4779 			     REG_INC processing code below won't invalidate
4780 			     the reload for inheritance.  */
4781 			  SET_HARD_REG_BIT (reg_is_output_reload,
4782 					    REGNO (reload_reg));
4783 			  SET_REGNO_REG_SET (&reg_has_output_reload,
4784 					     REGNO (XEXP (in_reg, 0)));
4785 			}
4786 		      else
4787 			forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4788 					      NULL);
4789 		    }
4790 		  else if ((code == PRE_INC || code == PRE_DEC)
4791 			   && TEST_HARD_REG_BIT (reg_reloaded_valid,
4792 						 REGNO (rld[i].reg_rtx))
4793 			   /* Make sure it is the inc/dec pseudo, and not
4794 			      some other (e.g. output operand) pseudo.  */
4795 			   && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4796 			       == REGNO (XEXP (in_reg, 0))))
4797 		    {
4798 		      SET_HARD_REG_BIT (reg_is_output_reload,
4799 					REGNO (rld[i].reg_rtx));
4800 		      SET_REGNO_REG_SET (&reg_has_output_reload,
4801 					 REGNO (XEXP (in_reg, 0)));
4802 		    }
4803 		  else if (code == PRE_INC || code == PRE_DEC
4804 			   || code == POST_INC || code == POST_DEC)
4805 		    {
4806 		      int in_regno = REGNO (XEXP (in_reg, 0));
4807 
4808 		      if (reg_last_reload_reg[in_regno] != NULL_RTX)
4809 			{
4810 			  int in_hard_regno;
4811 			  bool forget_p = true;
4812 
4813 			  in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4814 			  if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4815 						 in_hard_regno))
4816 			    {
4817 			      for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4818 				   x != old_next;
4819 				   x = NEXT_INSN (x))
4820 				if (x == reg_reloaded_insn[in_hard_regno])
4821 				  {
4822 				    forget_p = false;
4823 				    break;
4824 				  }
4825 			    }
4826 			  /* If for some reasons, we didn't set up
4827 			     reg_last_reload_reg in this insn,
4828 			     invalidate inheritance from previous
4829 			     insns for the incremented/decremented
4830 			     register.  Such registers will be not in
4831 			     reg_has_output_reload.  Invalidate it
4832 			     also if the corresponding element in
4833 			     reg_reloaded_insn is also
4834 			     invalidated.  */
4835 			  if (forget_p)
4836 			    forget_old_reloads_1 (XEXP (in_reg, 0),
4837 						  NULL_RTX, NULL);
4838 			}
4839 		    }
4840 		}
4841 	    }
4842 	  /* If a pseudo that got a hard register is auto-incremented,
4843 	     we must purge records of copying it into pseudos without
4844 	     hard registers.  */
4845 	  for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4846 	    if (REG_NOTE_KIND (x) == REG_INC)
4847 	      {
4848 		/* See if this pseudo reg was reloaded in this insn.
4849 		   If so, its last-reload info is still valid
4850 		   because it is based on this insn's reload.  */
4851 		for (i = 0; i < n_reloads; i++)
4852 		  if (rld[i].out == XEXP (x, 0))
4853 		    break;
4854 
4855 		if (i == n_reloads)
4856 		  forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4857 	      }
4858 #endif
4859 	}
4860       /* A reload reg's contents are unknown after a label.  */
4861       if (LABEL_P (insn))
4862 	CLEAR_HARD_REG_SET (reg_reloaded_valid);
4863 
4864       /* Don't assume a reload reg is still good after a call insn
4865 	 if it is a call-used reg, or if it contains a value that will
4866          be partially clobbered by the call.  */
4867       else if (CALL_P (insn))
4868 	{
4869 	  AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4870 	  AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4871 
4872 	  /* If this is a call to a setjmp-type function, we must not
4873 	     reuse any reload reg contents across the call; that will
4874 	     just be clobbered by other uses of the register in later
4875 	     code, before the longjmp.  */
4876 	  if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4877 	    CLEAR_HARD_REG_SET (reg_reloaded_valid);
4878 	}
4879     }
4880 
4881   /* Clean up.  */
4882   free (reg_last_reload_reg);
4883   CLEAR_REG_SET (&reg_has_output_reload);
4884 }
4885 
4886 /* Discard all record of any value reloaded from X,
4887    or reloaded in X from someplace else;
4888    unless X is an output reload reg of the current insn.
4889 
4890    X may be a hard reg (the reload reg)
4891    or it may be a pseudo reg that was reloaded from.
4892 
4893    When DATA is non-NULL just mark the registers in regset
4894    to be forgotten later.  */
4895 
4896 static void
4897 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4898 		      void *data)
4899 {
4900   unsigned int regno;
4901   unsigned int nr;
4902   regset regs = (regset) data;
4903 
4904   /* note_stores does give us subregs of hard regs,
4905      subreg_regno_offset requires a hard reg.  */
4906   while (GET_CODE (x) == SUBREG)
4907     {
4908       /* We ignore the subreg offset when calculating the regno,
4909 	 because we are using the entire underlying hard register
4910 	 below.  */
4911       x = SUBREG_REG (x);
4912     }
4913 
4914   if (!REG_P (x))
4915     return;
4916 
4917   regno = REGNO (x);
4918 
4919   if (regno >= FIRST_PSEUDO_REGISTER)
4920     nr = 1;
4921   else
4922     {
4923       unsigned int i;
4924 
4925       nr = hard_regno_nregs[regno][GET_MODE (x)];
4926       /* Storing into a spilled-reg invalidates its contents.
4927 	 This can happen if a block-local pseudo is allocated to that reg
4928 	 and it wasn't spilled because this block's total need is 0.
4929 	 Then some insn might have an optional reload and use this reg.  */
4930       if (!regs)
4931 	for (i = 0; i < nr; i++)
4932 	  /* But don't do this if the reg actually serves as an output
4933 	     reload reg in the current instruction.  */
4934 	  if (n_reloads == 0
4935 	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4936 	    {
4937 	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4938 	      spill_reg_store[regno + i] = 0;
4939 	    }
4940     }
4941 
4942   if (regs)
4943     while (nr-- > 0)
4944       SET_REGNO_REG_SET (regs, regno + nr);
4945   else
4946     {
4947       /* Since value of X has changed,
4948 	 forget any value previously copied from it.  */
4949 
4950       while (nr-- > 0)
4951 	/* But don't forget a copy if this is the output reload
4952 	   that establishes the copy's validity.  */
4953 	if (n_reloads == 0
4954 	    || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4955 	  reg_last_reload_reg[regno + nr] = 0;
4956      }
4957 }
4958 
4959 /* Forget the reloads marked in regset by previous function.  */
4960 static void
4961 forget_marked_reloads (regset regs)
4962 {
4963   unsigned int reg;
4964   reg_set_iterator rsi;
4965   EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4966     {
4967       if (reg < FIRST_PSEUDO_REGISTER
4968 	  /* But don't do this if the reg actually serves as an output
4969 	     reload reg in the current instruction.  */
4970 	  && (n_reloads == 0
4971 	      || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4972 	  {
4973 	    CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4974 	    spill_reg_store[reg] = 0;
4975 	  }
4976       if (n_reloads == 0
4977 	  || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4978 	reg_last_reload_reg[reg] = 0;
4979     }
4980 }
4981 
4982 /* The following HARD_REG_SETs indicate when each hard register is
4983    used for a reload of various parts of the current insn.  */
4984 
4985 /* If reg is unavailable for all reloads.  */
4986 static HARD_REG_SET reload_reg_unavailable;
4987 /* If reg is in use as a reload reg for a RELOAD_OTHER reload.  */
4988 static HARD_REG_SET reload_reg_used;
4989 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I.  */
4990 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4991 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I.  */
4992 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4993 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I.  */
4994 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4995 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I.  */
4996 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4997 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I.  */
4998 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4999 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I.  */
5000 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5001 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload.  */
5002 static HARD_REG_SET reload_reg_used_in_op_addr;
5003 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload.  */
5004 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5005 /* If reg is in use for a RELOAD_FOR_INSN reload.  */
5006 static HARD_REG_SET reload_reg_used_in_insn;
5007 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload.  */
5008 static HARD_REG_SET reload_reg_used_in_other_addr;
5009 
5010 /* If reg is in use as a reload reg for any sort of reload.  */
5011 static HARD_REG_SET reload_reg_used_at_all;
5012 
5013 /* If reg is use as an inherited reload.  We just mark the first register
5014    in the group.  */
5015 static HARD_REG_SET reload_reg_used_for_inherit;
5016 
5017 /* Records which hard regs are used in any way, either as explicit use or
5018    by being allocated to a pseudo during any point of the current insn.  */
5019 static HARD_REG_SET reg_used_in_insn;
5020 
5021 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5022    TYPE. MODE is used to indicate how many consecutive regs are
5023    actually used.  */
5024 
5025 static void
5026 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5027 			enum machine_mode mode)
5028 {
5029   switch (type)
5030     {
5031     case RELOAD_OTHER:
5032       add_to_hard_reg_set (&reload_reg_used, mode, regno);
5033       break;
5034 
5035     case RELOAD_FOR_INPUT_ADDRESS:
5036       add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5037       break;
5038 
5039     case RELOAD_FOR_INPADDR_ADDRESS:
5040       add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5041       break;
5042 
5043     case RELOAD_FOR_OUTPUT_ADDRESS:
5044       add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5045       break;
5046 
5047     case RELOAD_FOR_OUTADDR_ADDRESS:
5048       add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5049       break;
5050 
5051     case RELOAD_FOR_OPERAND_ADDRESS:
5052       add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5053       break;
5054 
5055     case RELOAD_FOR_OPADDR_ADDR:
5056       add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5057       break;
5058 
5059     case RELOAD_FOR_OTHER_ADDRESS:
5060       add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5061       break;
5062 
5063     case RELOAD_FOR_INPUT:
5064       add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5065       break;
5066 
5067     case RELOAD_FOR_OUTPUT:
5068       add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5069       break;
5070 
5071     case RELOAD_FOR_INSN:
5072       add_to_hard_reg_set (&reload_reg_used_in_insn,  mode, regno);
5073       break;
5074     }
5075 
5076   add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5077 }
5078 
5079 /* Similarly, but show REGNO is no longer in use for a reload.  */
5080 
5081 static void
5082 clear_reload_reg_in_use (unsigned int regno, int opnum,
5083 			 enum reload_type type, enum machine_mode mode)
5084 {
5085   unsigned int nregs = hard_regno_nregs[regno][mode];
5086   unsigned int start_regno, end_regno, r;
5087   int i;
5088   /* A complication is that for some reload types, inheritance might
5089      allow multiple reloads of the same types to share a reload register.
5090      We set check_opnum if we have to check only reloads with the same
5091      operand number, and check_any if we have to check all reloads.  */
5092   int check_opnum = 0;
5093   int check_any = 0;
5094   HARD_REG_SET *used_in_set;
5095 
5096   switch (type)
5097     {
5098     case RELOAD_OTHER:
5099       used_in_set = &reload_reg_used;
5100       break;
5101 
5102     case RELOAD_FOR_INPUT_ADDRESS:
5103       used_in_set = &reload_reg_used_in_input_addr[opnum];
5104       break;
5105 
5106     case RELOAD_FOR_INPADDR_ADDRESS:
5107       check_opnum = 1;
5108       used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5109       break;
5110 
5111     case RELOAD_FOR_OUTPUT_ADDRESS:
5112       used_in_set = &reload_reg_used_in_output_addr[opnum];
5113       break;
5114 
5115     case RELOAD_FOR_OUTADDR_ADDRESS:
5116       check_opnum = 1;
5117       used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5118       break;
5119 
5120     case RELOAD_FOR_OPERAND_ADDRESS:
5121       used_in_set = &reload_reg_used_in_op_addr;
5122       break;
5123 
5124     case RELOAD_FOR_OPADDR_ADDR:
5125       check_any = 1;
5126       used_in_set = &reload_reg_used_in_op_addr_reload;
5127       break;
5128 
5129     case RELOAD_FOR_OTHER_ADDRESS:
5130       used_in_set = &reload_reg_used_in_other_addr;
5131       check_any = 1;
5132       break;
5133 
5134     case RELOAD_FOR_INPUT:
5135       used_in_set = &reload_reg_used_in_input[opnum];
5136       break;
5137 
5138     case RELOAD_FOR_OUTPUT:
5139       used_in_set = &reload_reg_used_in_output[opnum];
5140       break;
5141 
5142     case RELOAD_FOR_INSN:
5143       used_in_set = &reload_reg_used_in_insn;
5144       break;
5145     default:
5146       gcc_unreachable ();
5147     }
5148   /* We resolve conflicts with remaining reloads of the same type by
5149      excluding the intervals of reload registers by them from the
5150      interval of freed reload registers.  Since we only keep track of
5151      one set of interval bounds, we might have to exclude somewhat
5152      more than what would be necessary if we used a HARD_REG_SET here.
5153      But this should only happen very infrequently, so there should
5154      be no reason to worry about it.  */
5155 
5156   start_regno = regno;
5157   end_regno = regno + nregs;
5158   if (check_opnum || check_any)
5159     {
5160       for (i = n_reloads - 1; i >= 0; i--)
5161 	{
5162 	  if (rld[i].when_needed == type
5163 	      && (check_any || rld[i].opnum == opnum)
5164 	      && rld[i].reg_rtx)
5165 	    {
5166 	      unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5167 	      unsigned int conflict_end
5168 		= end_hard_regno (rld[i].mode, conflict_start);
5169 
5170 	      /* If there is an overlap with the first to-be-freed register,
5171 		 adjust the interval start.  */
5172 	      if (conflict_start <= start_regno && conflict_end > start_regno)
5173 		start_regno = conflict_end;
5174 	      /* Otherwise, if there is a conflict with one of the other
5175 		 to-be-freed registers, adjust the interval end.  */
5176 	      if (conflict_start > start_regno && conflict_start < end_regno)
5177 		end_regno = conflict_start;
5178 	    }
5179 	}
5180     }
5181 
5182   for (r = start_regno; r < end_regno; r++)
5183     CLEAR_HARD_REG_BIT (*used_in_set, r);
5184 }
5185 
5186 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5187    specified by OPNUM and TYPE.  */
5188 
5189 static int
5190 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5191 {
5192   int i;
5193 
5194   /* In use for a RELOAD_OTHER means it's not available for anything.  */
5195   if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5196       || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5197     return 0;
5198 
5199   switch (type)
5200     {
5201     case RELOAD_OTHER:
5202       /* In use for anything means we can't use it for RELOAD_OTHER.  */
5203       if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5204 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5205 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5206 	  || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5207 	return 0;
5208 
5209       for (i = 0; i < reload_n_operands; i++)
5210 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5211 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5212 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5213 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5214 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5215 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5216 	  return 0;
5217 
5218       return 1;
5219 
5220     case RELOAD_FOR_INPUT:
5221       if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5222 	  || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5223 	return 0;
5224 
5225       if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5226 	return 0;
5227 
5228       /* If it is used for some other input, can't use it.  */
5229       for (i = 0; i < reload_n_operands; i++)
5230 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5231 	  return 0;
5232 
5233       /* If it is used in a later operand's address, can't use it.  */
5234       for (i = opnum + 1; i < reload_n_operands; i++)
5235 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5236 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5237 	  return 0;
5238 
5239       return 1;
5240 
5241     case RELOAD_FOR_INPUT_ADDRESS:
5242       /* Can't use a register if it is used for an input address for this
5243 	 operand or used as an input in an earlier one.  */
5244       if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5245 	  || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5246 	return 0;
5247 
5248       for (i = 0; i < opnum; i++)
5249 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5250 	  return 0;
5251 
5252       return 1;
5253 
5254     case RELOAD_FOR_INPADDR_ADDRESS:
5255       /* Can't use a register if it is used for an input address
5256 	 for this operand or used as an input in an earlier
5257 	 one.  */
5258       if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5259 	return 0;
5260 
5261       for (i = 0; i < opnum; i++)
5262 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5263 	  return 0;
5264 
5265       return 1;
5266 
5267     case RELOAD_FOR_OUTPUT_ADDRESS:
5268       /* Can't use a register if it is used for an output address for this
5269 	 operand or used as an output in this or a later operand.  Note
5270 	 that multiple output operands are emitted in reverse order, so
5271 	 the conflicting ones are those with lower indices.  */
5272       if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5273 	return 0;
5274 
5275       for (i = 0; i <= opnum; i++)
5276 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5277 	  return 0;
5278 
5279       return 1;
5280 
5281     case RELOAD_FOR_OUTADDR_ADDRESS:
5282       /* Can't use a register if it is used for an output address
5283 	 for this operand or used as an output in this or a
5284 	 later operand.  Note that multiple output operands are
5285 	 emitted in reverse order, so the conflicting ones are
5286 	 those with lower indices.  */
5287       if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5288 	return 0;
5289 
5290       for (i = 0; i <= opnum; i++)
5291 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5292 	  return 0;
5293 
5294       return 1;
5295 
5296     case RELOAD_FOR_OPERAND_ADDRESS:
5297       for (i = 0; i < reload_n_operands; i++)
5298 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5299 	  return 0;
5300 
5301       return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5302 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5303 
5304     case RELOAD_FOR_OPADDR_ADDR:
5305       for (i = 0; i < reload_n_operands; i++)
5306 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5307 	  return 0;
5308 
5309       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5310 
5311     case RELOAD_FOR_OUTPUT:
5312       /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5313 	 outputs, or an operand address for this or an earlier output.
5314 	 Note that multiple output operands are emitted in reverse order,
5315 	 so the conflicting ones are those with higher indices.  */
5316       if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5317 	return 0;
5318 
5319       for (i = 0; i < reload_n_operands; i++)
5320 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5321 	  return 0;
5322 
5323       for (i = opnum; i < reload_n_operands; i++)
5324 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5325 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5326 	  return 0;
5327 
5328       return 1;
5329 
5330     case RELOAD_FOR_INSN:
5331       for (i = 0; i < reload_n_operands; i++)
5332 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5333 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5334 	  return 0;
5335 
5336       return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5337 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5338 
5339     case RELOAD_FOR_OTHER_ADDRESS:
5340       return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5341 
5342     default:
5343       gcc_unreachable ();
5344     }
5345 }
5346 
5347 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5348    the number RELOADNUM, is still available in REGNO at the end of the insn.
5349 
5350    We can assume that the reload reg was already tested for availability
5351    at the time it is needed, and we should not check this again,
5352    in case the reg has already been marked in use.  */
5353 
5354 static int
5355 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5356 {
5357   int opnum = rld[reloadnum].opnum;
5358   enum reload_type type = rld[reloadnum].when_needed;
5359   int i;
5360 
5361   /* See if there is a reload with the same type for this operand, using
5362      the same register. This case is not handled by the code below.  */
5363   for (i = reloadnum + 1; i < n_reloads; i++)
5364     {
5365       rtx reg;
5366       int nregs;
5367 
5368       if (rld[i].opnum != opnum || rld[i].when_needed != type)
5369 	continue;
5370       reg = rld[i].reg_rtx;
5371       if (reg == NULL_RTX)
5372 	continue;
5373       nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5374       if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5375 	return 0;
5376     }
5377 
5378   switch (type)
5379     {
5380     case RELOAD_OTHER:
5381       /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5382 	 its value must reach the end.  */
5383       return 1;
5384 
5385       /* If this use is for part of the insn,
5386 	 its value reaches if no subsequent part uses the same register.
5387 	 Just like the above function, don't try to do this with lots
5388 	 of fallthroughs.  */
5389 
5390     case RELOAD_FOR_OTHER_ADDRESS:
5391       /* Here we check for everything else, since these don't conflict
5392 	 with anything else and everything comes later.  */
5393 
5394       for (i = 0; i < reload_n_operands; i++)
5395 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5396 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5397 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5398 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5399 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5400 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5401 	  return 0;
5402 
5403       return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5404 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5405 	      && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5406 	      && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5407 
5408     case RELOAD_FOR_INPUT_ADDRESS:
5409     case RELOAD_FOR_INPADDR_ADDRESS:
5410       /* Similar, except that we check only for this and subsequent inputs
5411 	 and the address of only subsequent inputs and we do not need
5412 	 to check for RELOAD_OTHER objects since they are known not to
5413 	 conflict.  */
5414 
5415       for (i = opnum; i < reload_n_operands; i++)
5416 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5417 	  return 0;
5418 
5419       /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5420 	 could be killed if the register is also used by reload with type
5421 	 RELOAD_FOR_INPUT_ADDRESS, so check it.  */
5422       if (type == RELOAD_FOR_INPADDR_ADDRESS
5423 	  && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5424 	return 0;
5425 
5426       for (i = opnum + 1; i < reload_n_operands; i++)
5427 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5428 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5429 	  return 0;
5430 
5431       for (i = 0; i < reload_n_operands; i++)
5432 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5433 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5434 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5435 	  return 0;
5436 
5437       if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5438 	return 0;
5439 
5440       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5441 	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5442 	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5443 
5444     case RELOAD_FOR_INPUT:
5445       /* Similar to input address, except we start at the next operand for
5446 	 both input and input address and we do not check for
5447 	 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5448 	 would conflict.  */
5449 
5450       for (i = opnum + 1; i < reload_n_operands; i++)
5451 	if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5452 	    || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5453 	    || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5454 	  return 0;
5455 
5456       /* ... fall through ...  */
5457 
5458     case RELOAD_FOR_OPERAND_ADDRESS:
5459       /* Check outputs and their addresses.  */
5460 
5461       for (i = 0; i < reload_n_operands; i++)
5462 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5463 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5464 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5465 	  return 0;
5466 
5467       return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5468 
5469     case RELOAD_FOR_OPADDR_ADDR:
5470       for (i = 0; i < reload_n_operands; i++)
5471 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5472 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5473 	    || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5474 	  return 0;
5475 
5476       return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5477 	      && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5478 	      && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5479 
5480     case RELOAD_FOR_INSN:
5481       /* These conflict with other outputs with RELOAD_OTHER.  So
5482 	 we need only check for output addresses.  */
5483 
5484       opnum = reload_n_operands;
5485 
5486       /* ... fall through ...  */
5487 
5488     case RELOAD_FOR_OUTPUT:
5489     case RELOAD_FOR_OUTPUT_ADDRESS:
5490     case RELOAD_FOR_OUTADDR_ADDRESS:
5491       /* We already know these can't conflict with a later output.  So the
5492 	 only thing to check are later output addresses.
5493 	 Note that multiple output operands are emitted in reverse order,
5494 	 so the conflicting ones are those with lower indices.  */
5495       for (i = 0; i < opnum; i++)
5496 	if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5497 	    || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5498 	  return 0;
5499 
5500       /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5501 	 could be killed if the register is also used by reload with type
5502 	 RELOAD_FOR_OUTPUT_ADDRESS, so check it.  */
5503       if (type == RELOAD_FOR_OUTADDR_ADDRESS
5504 	  && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5505 	return 0;
5506 
5507       return 1;
5508 
5509     default:
5510       gcc_unreachable ();
5511     }
5512 }
5513 
5514 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5515    every register in REG.  */
5516 
5517 static bool
5518 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5519 {
5520   unsigned int i;
5521 
5522   for (i = REGNO (reg); i < END_REGNO (reg); i++)
5523     if (!reload_reg_reaches_end_p (i, reloadnum))
5524       return false;
5525   return true;
5526 }
5527 
5528 
5529 /*  Returns whether R1 and R2 are uniquely chained: the value of one
5530     is used by the other, and that value is not used by any other
5531     reload for this insn.  This is used to partially undo the decision
5532     made in find_reloads when in the case of multiple
5533     RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5534     RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5535     reloads.  This code tries to avoid the conflict created by that
5536     change.  It might be cleaner to explicitly keep track of which
5537     RELOAD_FOR_OPADDR_ADDR reload is associated with which
5538     RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5539     this after the fact. */
5540 static bool
5541 reloads_unique_chain_p (int r1, int r2)
5542 {
5543   int i;
5544 
5545   /* We only check input reloads.  */
5546   if (! rld[r1].in || ! rld[r2].in)
5547     return false;
5548 
5549   /* Avoid anything with output reloads.  */
5550   if (rld[r1].out || rld[r2].out)
5551     return false;
5552 
5553   /* "chained" means one reload is a component of the other reload,
5554      not the same as the other reload.  */
5555   if (rld[r1].opnum != rld[r2].opnum
5556       || rtx_equal_p (rld[r1].in, rld[r2].in)
5557       || rld[r1].optional || rld[r2].optional
5558       || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5559 	    || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5560     return false;
5561 
5562   for (i = 0; i < n_reloads; i ++)
5563     /* Look for input reloads that aren't our two */
5564     if (i != r1 && i != r2 && rld[i].in)
5565       {
5566 	/* If our reload is mentioned at all, it isn't a simple chain.  */
5567 	if (reg_mentioned_p (rld[r1].in, rld[i].in))
5568 	  return false;
5569       }
5570   return true;
5571 }
5572 
5573 /* The recursive function change all occurrences of WHAT in *WHERE
5574    to REPL.  */
5575 static void
5576 substitute (rtx *where, const_rtx what, rtx repl)
5577 {
5578   const char *fmt;
5579   int i;
5580   enum rtx_code code;
5581 
5582   if (*where == 0)
5583     return;
5584 
5585   if (*where == what || rtx_equal_p (*where, what))
5586     {
5587       /* Record the location of the changed rtx.  */
5588       substitute_stack.safe_push (where);
5589       *where = repl;
5590       return;
5591     }
5592 
5593   code = GET_CODE (*where);
5594   fmt = GET_RTX_FORMAT (code);
5595   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5596     {
5597       if (fmt[i] == 'E')
5598 	{
5599 	  int j;
5600 
5601 	  for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5602 	    substitute (&XVECEXP (*where, i, j), what, repl);
5603 	}
5604       else if (fmt[i] == 'e')
5605 	substitute (&XEXP (*where, i), what, repl);
5606     }
5607 }
5608 
5609 /* The function returns TRUE if chain of reload R1 and R2 (in any
5610    order) can be evaluated without usage of intermediate register for
5611    the reload containing another reload.  It is important to see
5612    gen_reload to understand what the function is trying to do.  As an
5613    example, let us have reload chain
5614 
5615       r2: const
5616       r1: <something> + const
5617 
5618    and reload R2 got reload reg HR.  The function returns true if
5619    there is a correct insn HR = HR + <something>.  Otherwise,
5620    gen_reload will use intermediate register (and this is the reload
5621    reg for R1) to reload <something>.
5622 
5623    We need this function to find a conflict for chain reloads.  In our
5624    example, if HR = HR + <something> is incorrect insn, then we cannot
5625    use HR as a reload register for R2.  If we do use it then we get a
5626    wrong code:
5627 
5628       HR = const
5629       HR = <something>
5630       HR = HR + HR
5631 
5632 */
5633 static bool
5634 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5635 {
5636   /* Assume other cases in gen_reload are not possible for
5637      chain reloads or do need an intermediate hard registers.  */
5638   bool result = true;
5639   int regno, n, code;
5640   rtx out, in, insn;
5641   rtx last = get_last_insn ();
5642 
5643   /* Make r2 a component of r1.  */
5644   if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5645     {
5646       n = r1;
5647       r1 = r2;
5648       r2 = n;
5649     }
5650   gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5651   regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5652   gcc_assert (regno >= 0);
5653   out = gen_rtx_REG (rld[r1].mode, regno);
5654   in = rld[r1].in;
5655   substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5656 
5657   /* If IN is a paradoxical SUBREG, remove it and try to put the
5658      opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
5659   strip_paradoxical_subreg (&in, &out);
5660 
5661   if (GET_CODE (in) == PLUS
5662       && (REG_P (XEXP (in, 0))
5663 	  || GET_CODE (XEXP (in, 0)) == SUBREG
5664 	  || MEM_P (XEXP (in, 0)))
5665       && (REG_P (XEXP (in, 1))
5666 	  || GET_CODE (XEXP (in, 1)) == SUBREG
5667 	  || CONSTANT_P (XEXP (in, 1))
5668 	  || MEM_P (XEXP (in, 1))))
5669     {
5670       insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5671       code = recog_memoized (insn);
5672       result = false;
5673 
5674       if (code >= 0)
5675 	{
5676 	  extract_insn (insn);
5677 	  /* We want constrain operands to treat this insn strictly in
5678 	     its validity determination, i.e., the way it would after
5679 	     reload has completed.  */
5680 	  result = constrain_operands (1);
5681 	}
5682 
5683       delete_insns_since (last);
5684     }
5685 
5686   /* Restore the original value at each changed address within R1.  */
5687   while (!substitute_stack.is_empty ())
5688     {
5689       rtx *where = substitute_stack.pop ();
5690       *where = rld[r2].in;
5691     }
5692 
5693   return result;
5694 }
5695 
5696 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5697    Return 0 otherwise.
5698 
5699    This function uses the same algorithm as reload_reg_free_p above.  */
5700 
5701 static int
5702 reloads_conflict (int r1, int r2)
5703 {
5704   enum reload_type r1_type = rld[r1].when_needed;
5705   enum reload_type r2_type = rld[r2].when_needed;
5706   int r1_opnum = rld[r1].opnum;
5707   int r2_opnum = rld[r2].opnum;
5708 
5709   /* RELOAD_OTHER conflicts with everything.  */
5710   if (r2_type == RELOAD_OTHER)
5711     return 1;
5712 
5713   /* Otherwise, check conflicts differently for each type.  */
5714 
5715   switch (r1_type)
5716     {
5717     case RELOAD_FOR_INPUT:
5718       return (r2_type == RELOAD_FOR_INSN
5719 	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5720 	      || r2_type == RELOAD_FOR_OPADDR_ADDR
5721 	      || r2_type == RELOAD_FOR_INPUT
5722 	      || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5723 		   || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5724 		  && r2_opnum > r1_opnum));
5725 
5726     case RELOAD_FOR_INPUT_ADDRESS:
5727       return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5728 	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5729 
5730     case RELOAD_FOR_INPADDR_ADDRESS:
5731       return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5732 	      || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5733 
5734     case RELOAD_FOR_OUTPUT_ADDRESS:
5735       return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5736 	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5737 
5738     case RELOAD_FOR_OUTADDR_ADDRESS:
5739       return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5740 	      || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5741 
5742     case RELOAD_FOR_OPERAND_ADDRESS:
5743       return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5744 	      || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5745 		  && (!reloads_unique_chain_p (r1, r2)
5746 		      || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5747 
5748     case RELOAD_FOR_OPADDR_ADDR:
5749       return (r2_type == RELOAD_FOR_INPUT
5750 	      || r2_type == RELOAD_FOR_OPADDR_ADDR);
5751 
5752     case RELOAD_FOR_OUTPUT:
5753       return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5754 	      || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5755 		   || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5756 		  && r2_opnum >= r1_opnum));
5757 
5758     case RELOAD_FOR_INSN:
5759       return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5760 	      || r2_type == RELOAD_FOR_INSN
5761 	      || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5762 
5763     case RELOAD_FOR_OTHER_ADDRESS:
5764       return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5765 
5766     case RELOAD_OTHER:
5767       return 1;
5768 
5769     default:
5770       gcc_unreachable ();
5771     }
5772 }
5773 
5774 /* Indexed by reload number, 1 if incoming value
5775    inherited from previous insns.  */
5776 static char reload_inherited[MAX_RELOADS];
5777 
5778 /* For an inherited reload, this is the insn the reload was inherited from,
5779    if we know it.  Otherwise, this is 0.  */
5780 static rtx reload_inheritance_insn[MAX_RELOADS];
5781 
5782 /* If nonzero, this is a place to get the value of the reload,
5783    rather than using reload_in.  */
5784 static rtx reload_override_in[MAX_RELOADS];
5785 
5786 /* For each reload, the hard register number of the register used,
5787    or -1 if we did not need a register for this reload.  */
5788 static int reload_spill_index[MAX_RELOADS];
5789 
5790 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode.  */
5791 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5792 
5793 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode.  */
5794 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5795 
5796 /* Subroutine of free_for_value_p, used to check a single register.
5797    START_REGNO is the starting regno of the full reload register
5798    (possibly comprising multiple hard registers) that we are considering.  */
5799 
5800 static int
5801 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5802 			     enum reload_type type, rtx value, rtx out,
5803 			     int reloadnum, int ignore_address_reloads)
5804 {
5805   int time1;
5806   /* Set if we see an input reload that must not share its reload register
5807      with any new earlyclobber, but might otherwise share the reload
5808      register with an output or input-output reload.  */
5809   int check_earlyclobber = 0;
5810   int i;
5811   int copy = 0;
5812 
5813   if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5814     return 0;
5815 
5816   if (out == const0_rtx)
5817     {
5818       copy = 1;
5819       out = NULL_RTX;
5820     }
5821 
5822   /* We use some pseudo 'time' value to check if the lifetimes of the
5823      new register use would overlap with the one of a previous reload
5824      that is not read-only or uses a different value.
5825      The 'time' used doesn't have to be linear in any shape or form, just
5826      monotonic.
5827      Some reload types use different 'buckets' for each operand.
5828      So there are MAX_RECOG_OPERANDS different time values for each
5829      such reload type.
5830      We compute TIME1 as the time when the register for the prospective
5831      new reload ceases to be live, and TIME2 for each existing
5832      reload as the time when that the reload register of that reload
5833      becomes live.
5834      Where there is little to be gained by exact lifetime calculations,
5835      we just make conservative assumptions, i.e. a longer lifetime;
5836      this is done in the 'default:' cases.  */
5837   switch (type)
5838     {
5839     case RELOAD_FOR_OTHER_ADDRESS:
5840       /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads.  */
5841       time1 = copy ? 0 : 1;
5842       break;
5843     case RELOAD_OTHER:
5844       time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5845       break;
5846       /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5847 	 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT.  By adding 0 / 1 / 2 ,
5848 	 respectively, to the time values for these, we get distinct time
5849 	 values.  To get distinct time values for each operand, we have to
5850 	 multiply opnum by at least three.  We round that up to four because
5851 	 multiply by four is often cheaper.  */
5852     case RELOAD_FOR_INPADDR_ADDRESS:
5853       time1 = opnum * 4 + 2;
5854       break;
5855     case RELOAD_FOR_INPUT_ADDRESS:
5856       time1 = opnum * 4 + 3;
5857       break;
5858     case RELOAD_FOR_INPUT:
5859       /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5860 	 executes (inclusive).  */
5861       time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5862       break;
5863     case RELOAD_FOR_OPADDR_ADDR:
5864       /* opnum * 4 + 4
5865 	 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5866       time1 = MAX_RECOG_OPERANDS * 4 + 1;
5867       break;
5868     case RELOAD_FOR_OPERAND_ADDRESS:
5869       /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5870 	 is executed.  */
5871       time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5872       break;
5873     case RELOAD_FOR_OUTADDR_ADDRESS:
5874       time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5875       break;
5876     case RELOAD_FOR_OUTPUT_ADDRESS:
5877       time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5878       break;
5879     default:
5880       time1 = MAX_RECOG_OPERANDS * 5 + 5;
5881     }
5882 
5883   for (i = 0; i < n_reloads; i++)
5884     {
5885       rtx reg = rld[i].reg_rtx;
5886       if (reg && REG_P (reg)
5887 	  && ((unsigned) regno - true_regnum (reg)
5888 	      <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5889 	  && i != reloadnum)
5890 	{
5891 	  rtx other_input = rld[i].in;
5892 
5893 	  /* If the other reload loads the same input value, that
5894 	     will not cause a conflict only if it's loading it into
5895 	     the same register.  */
5896 	  if (true_regnum (reg) != start_regno)
5897 	    other_input = NULL_RTX;
5898 	  if (! other_input || ! rtx_equal_p (other_input, value)
5899 	      || rld[i].out || out)
5900 	    {
5901 	      int time2;
5902 	      switch (rld[i].when_needed)
5903 		{
5904 		case RELOAD_FOR_OTHER_ADDRESS:
5905 		  time2 = 0;
5906 		  break;
5907 		case RELOAD_FOR_INPADDR_ADDRESS:
5908 		  /* find_reloads makes sure that a
5909 		     RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5910 		     by at most one - the first -
5911 		     RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS .  If the
5912 		     address reload is inherited, the address address reload
5913 		     goes away, so we can ignore this conflict.  */
5914 		  if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5915 		      && ignore_address_reloads
5916 		      /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5917 			 Then the address address is still needed to store
5918 			 back the new address.  */
5919 		      && ! rld[reloadnum].out)
5920 		    continue;
5921 		  /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5922 		     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5923 		     reloads go away.  */
5924 		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5925 		      && ignore_address_reloads
5926 		      /* Unless we are reloading an auto_inc expression.  */
5927 		      && ! rld[reloadnum].out)
5928 		    continue;
5929 		  time2 = rld[i].opnum * 4 + 2;
5930 		  break;
5931 		case RELOAD_FOR_INPUT_ADDRESS:
5932 		  if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5933 		      && ignore_address_reloads
5934 		      && ! rld[reloadnum].out)
5935 		    continue;
5936 		  time2 = rld[i].opnum * 4 + 3;
5937 		  break;
5938 		case RELOAD_FOR_INPUT:
5939 		  time2 = rld[i].opnum * 4 + 4;
5940 		  check_earlyclobber = 1;
5941 		  break;
5942 		  /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5943 		     == MAX_RECOG_OPERAND * 4  */
5944 		case RELOAD_FOR_OPADDR_ADDR:
5945 		  if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5946 		      && ignore_address_reloads
5947 		      && ! rld[reloadnum].out)
5948 		    continue;
5949 		  time2 = MAX_RECOG_OPERANDS * 4 + 1;
5950 		  break;
5951 		case RELOAD_FOR_OPERAND_ADDRESS:
5952 		  time2 = MAX_RECOG_OPERANDS * 4 + 2;
5953 		  check_earlyclobber = 1;
5954 		  break;
5955 		case RELOAD_FOR_INSN:
5956 		  time2 = MAX_RECOG_OPERANDS * 4 + 3;
5957 		  break;
5958 		case RELOAD_FOR_OUTPUT:
5959 		  /* All RELOAD_FOR_OUTPUT reloads become live just after the
5960 		     instruction is executed.  */
5961 		  time2 = MAX_RECOG_OPERANDS * 4 + 4;
5962 		  break;
5963 		  /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5964 		     the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5965 		     value.  */
5966 		case RELOAD_FOR_OUTADDR_ADDRESS:
5967 		  if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5968 		      && ignore_address_reloads
5969 		      && ! rld[reloadnum].out)
5970 		    continue;
5971 		  time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5972 		  break;
5973 		case RELOAD_FOR_OUTPUT_ADDRESS:
5974 		  time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5975 		  break;
5976 		case RELOAD_OTHER:
5977 		  /* If there is no conflict in the input part, handle this
5978 		     like an output reload.  */
5979 		  if (! rld[i].in || rtx_equal_p (other_input, value))
5980 		    {
5981 		      time2 = MAX_RECOG_OPERANDS * 4 + 4;
5982 		      /* Earlyclobbered outputs must conflict with inputs.  */
5983 		      if (earlyclobber_operand_p (rld[i].out))
5984 			time2 = MAX_RECOG_OPERANDS * 4 + 3;
5985 
5986 		      break;
5987 		    }
5988 		  time2 = 1;
5989 		  /* RELOAD_OTHER might be live beyond instruction execution,
5990 		     but this is not obvious when we set time2 = 1.  So check
5991 		     here if there might be a problem with the new reload
5992 		     clobbering the register used by the RELOAD_OTHER.  */
5993 		  if (out)
5994 		    return 0;
5995 		  break;
5996 		default:
5997 		  return 0;
5998 		}
5999 	      if ((time1 >= time2
6000 		   && (! rld[i].in || rld[i].out
6001 		       || ! rtx_equal_p (other_input, value)))
6002 		  || (out && rld[reloadnum].out_reg
6003 		      && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6004 		return 0;
6005 	    }
6006 	}
6007     }
6008 
6009   /* Earlyclobbered outputs must conflict with inputs.  */
6010   if (check_earlyclobber && out && earlyclobber_operand_p (out))
6011     return 0;
6012 
6013   return 1;
6014 }
6015 
6016 /* Return 1 if the value in reload reg REGNO, as used by a reload
6017    needed for the part of the insn specified by OPNUM and TYPE,
6018    may be used to load VALUE into it.
6019 
6020    MODE is the mode in which the register is used, this is needed to
6021    determine how many hard regs to test.
6022 
6023    Other read-only reloads with the same value do not conflict
6024    unless OUT is nonzero and these other reloads have to live while
6025    output reloads live.
6026    If OUT is CONST0_RTX, this is a special case: it means that the
6027    test should not be for using register REGNO as reload register, but
6028    for copying from register REGNO into the reload register.
6029 
6030    RELOADNUM is the number of the reload we want to load this value for;
6031    a reload does not conflict with itself.
6032 
6033    When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6034    reloads that load an address for the very reload we are considering.
6035 
6036    The caller has to make sure that there is no conflict with the return
6037    register.  */
6038 
6039 static int
6040 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6041 		  enum reload_type type, rtx value, rtx out, int reloadnum,
6042 		  int ignore_address_reloads)
6043 {
6044   int nregs = hard_regno_nregs[regno][mode];
6045   while (nregs-- > 0)
6046     if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6047 				       value, out, reloadnum,
6048 				       ignore_address_reloads))
6049       return 0;
6050   return 1;
6051 }
6052 
6053 /* Return nonzero if the rtx X is invariant over the current function.  */
6054 /* ??? Actually, the places where we use this expect exactly what is
6055    tested here, and not everything that is function invariant.  In
6056    particular, the frame pointer and arg pointer are special cased;
6057    pic_offset_table_rtx is not, and we must not spill these things to
6058    memory.  */
6059 
6060 int
6061 function_invariant_p (const_rtx x)
6062 {
6063   if (CONSTANT_P (x))
6064     return 1;
6065   if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6066     return 1;
6067   if (GET_CODE (x) == PLUS
6068       && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6069       && GET_CODE (XEXP (x, 1)) == CONST_INT)
6070     return 1;
6071   return 0;
6072 }
6073 
6074 /* Determine whether the reload reg X overlaps any rtx'es used for
6075    overriding inheritance.  Return nonzero if so.  */
6076 
6077 static int
6078 conflicts_with_override (rtx x)
6079 {
6080   int i;
6081   for (i = 0; i < n_reloads; i++)
6082     if (reload_override_in[i]
6083 	&& reg_overlap_mentioned_p (x, reload_override_in[i]))
6084       return 1;
6085   return 0;
6086 }
6087 
6088 /* Give an error message saying we failed to find a reload for INSN,
6089    and clear out reload R.  */
6090 static void
6091 failed_reload (rtx insn, int r)
6092 {
6093   if (asm_noperands (PATTERN (insn)) < 0)
6094     /* It's the compiler's fault.  */
6095     fatal_insn ("could not find a spill register", insn);
6096 
6097   /* It's the user's fault; the operand's mode and constraint
6098      don't match.  Disable this reload so we don't crash in final.  */
6099   error_for_asm (insn,
6100 		 "%<asm%> operand constraint incompatible with operand size");
6101   rld[r].in = 0;
6102   rld[r].out = 0;
6103   rld[r].reg_rtx = 0;
6104   rld[r].optional = 1;
6105   rld[r].secondary_p = 1;
6106 }
6107 
6108 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6109    for reload R.  If it's valid, get an rtx for it.  Return nonzero if
6110    successful.  */
6111 static int
6112 set_reload_reg (int i, int r)
6113 {
6114   /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6115      parameter.  */
6116   int regno ATTRIBUTE_UNUSED;
6117   rtx reg = spill_reg_rtx[i];
6118 
6119   if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6120     spill_reg_rtx[i] = reg
6121       = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6122 
6123   regno = true_regnum (reg);
6124 
6125   /* Detect when the reload reg can't hold the reload mode.
6126      This used to be one `if', but Sequent compiler can't handle that.  */
6127   if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6128     {
6129       enum machine_mode test_mode = VOIDmode;
6130       if (rld[r].in)
6131 	test_mode = GET_MODE (rld[r].in);
6132       /* If rld[r].in has VOIDmode, it means we will load it
6133 	 in whatever mode the reload reg has: to wit, rld[r].mode.
6134 	 We have already tested that for validity.  */
6135       /* Aside from that, we need to test that the expressions
6136 	 to reload from or into have modes which are valid for this
6137 	 reload register.  Otherwise the reload insns would be invalid.  */
6138       if (! (rld[r].in != 0 && test_mode != VOIDmode
6139 	     && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6140 	if (! (rld[r].out != 0
6141 	       && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6142 	  {
6143 	    /* The reg is OK.  */
6144 	    last_spill_reg = i;
6145 
6146 	    /* Mark as in use for this insn the reload regs we use
6147 	       for this.  */
6148 	    mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6149 				    rld[r].when_needed, rld[r].mode);
6150 
6151 	    rld[r].reg_rtx = reg;
6152 	    reload_spill_index[r] = spill_regs[i];
6153 	    return 1;
6154 	  }
6155     }
6156   return 0;
6157 }
6158 
6159 /* Find a spill register to use as a reload register for reload R.
6160    LAST_RELOAD is nonzero if this is the last reload for the insn being
6161    processed.
6162 
6163    Set rld[R].reg_rtx to the register allocated.
6164 
6165    We return 1 if successful, or 0 if we couldn't find a spill reg and
6166    we didn't change anything.  */
6167 
6168 static int
6169 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6170 		     int last_reload)
6171 {
6172   int i, pass, count;
6173 
6174   /* If we put this reload ahead, thinking it is a group,
6175      then insist on finding a group.  Otherwise we can grab a
6176      reg that some other reload needs.
6177      (That can happen when we have a 68000 DATA_OR_FP_REG
6178      which is a group of data regs or one fp reg.)
6179      We need not be so restrictive if there are no more reloads
6180      for this insn.
6181 
6182      ??? Really it would be nicer to have smarter handling
6183      for that kind of reg class, where a problem like this is normal.
6184      Perhaps those classes should be avoided for reloading
6185      by use of more alternatives.  */
6186 
6187   int force_group = rld[r].nregs > 1 && ! last_reload;
6188 
6189   /* If we want a single register and haven't yet found one,
6190      take any reg in the right class and not in use.
6191      If we want a consecutive group, here is where we look for it.
6192 
6193      We use three passes so we can first look for reload regs to
6194      reuse, which are already in use for other reloads in this insn,
6195      and only then use additional registers which are not "bad", then
6196      finally any register.
6197 
6198      I think that maximizing reuse is needed to make sure we don't
6199      run out of reload regs.  Suppose we have three reloads, and
6200      reloads A and B can share regs.  These need two regs.
6201      Suppose A and B are given different regs.
6202      That leaves none for C.  */
6203   for (pass = 0; pass < 3; pass++)
6204     {
6205       /* I is the index in spill_regs.
6206 	 We advance it round-robin between insns to use all spill regs
6207 	 equally, so that inherited reloads have a chance
6208 	 of leapfrogging each other.  */
6209 
6210       i = last_spill_reg;
6211 
6212       for (count = 0; count < n_spills; count++)
6213 	{
6214 	  int rclass = (int) rld[r].rclass;
6215 	  int regnum;
6216 
6217 	  i++;
6218 	  if (i >= n_spills)
6219 	    i -= n_spills;
6220 	  regnum = spill_regs[i];
6221 
6222 	  if ((reload_reg_free_p (regnum, rld[r].opnum,
6223 				  rld[r].when_needed)
6224 	       || (rld[r].in
6225 		   /* We check reload_reg_used to make sure we
6226 		      don't clobber the return register.  */
6227 		   && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6228 		   && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6229 					rld[r].when_needed, rld[r].in,
6230 					rld[r].out, r, 1)))
6231 	      && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6232 	      && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6233 	      /* Look first for regs to share, then for unshared.  But
6234 		 don't share regs used for inherited reloads; they are
6235 		 the ones we want to preserve.  */
6236 	      && (pass
6237 		  || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6238 					 regnum)
6239 		      && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6240 					      regnum))))
6241 	    {
6242 	      int nr = hard_regno_nregs[regnum][rld[r].mode];
6243 
6244 	      /* During the second pass we want to avoid reload registers
6245 		 which are "bad" for this reload.  */
6246 	      if (pass == 1
6247 		  && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6248 		continue;
6249 
6250 	      /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6251 		 (on 68000) got us two FP regs.  If NR is 1,
6252 		 we would reject both of them.  */
6253 	      if (force_group)
6254 		nr = rld[r].nregs;
6255 	      /* If we need only one reg, we have already won.  */
6256 	      if (nr == 1)
6257 		{
6258 		  /* But reject a single reg if we demand a group.  */
6259 		  if (force_group)
6260 		    continue;
6261 		  break;
6262 		}
6263 	      /* Otherwise check that as many consecutive regs as we need
6264 		 are available here.  */
6265 	      while (nr > 1)
6266 		{
6267 		  int regno = regnum + nr - 1;
6268 		  if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6269 			&& spill_reg_order[regno] >= 0
6270 			&& reload_reg_free_p (regno, rld[r].opnum,
6271 					      rld[r].when_needed)))
6272 		    break;
6273 		  nr--;
6274 		}
6275 	      if (nr == 1)
6276 		break;
6277 	    }
6278 	}
6279 
6280       /* If we found something on the current pass, omit later passes.  */
6281       if (count < n_spills)
6282 	break;
6283     }
6284 
6285   /* We should have found a spill register by now.  */
6286   if (count >= n_spills)
6287     return 0;
6288 
6289   /* I is the index in SPILL_REG_RTX of the reload register we are to
6290      allocate.  Get an rtx for it and find its register number.  */
6291 
6292   return set_reload_reg (i, r);
6293 }
6294 
6295 /* Initialize all the tables needed to allocate reload registers.
6296    CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6297    is the array we use to restore the reg_rtx field for every reload.  */
6298 
6299 static void
6300 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6301 {
6302   int i;
6303 
6304   for (i = 0; i < n_reloads; i++)
6305     rld[i].reg_rtx = save_reload_reg_rtx[i];
6306 
6307   memset (reload_inherited, 0, MAX_RELOADS);
6308   memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6309   memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6310 
6311   CLEAR_HARD_REG_SET (reload_reg_used);
6312   CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6313   CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6314   CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6315   CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6316   CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6317 
6318   CLEAR_HARD_REG_SET (reg_used_in_insn);
6319   {
6320     HARD_REG_SET tmp;
6321     REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6322     IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6323     REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6324     IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6325     compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6326     compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6327   }
6328 
6329   for (i = 0; i < reload_n_operands; i++)
6330     {
6331       CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6332       CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6333       CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6334       CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6335       CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6336       CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6337     }
6338 
6339   COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6340 
6341   CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6342 
6343   for (i = 0; i < n_reloads; i++)
6344     /* If we have already decided to use a certain register,
6345        don't use it in another way.  */
6346     if (rld[i].reg_rtx)
6347       mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6348 			      rld[i].when_needed, rld[i].mode);
6349 }
6350 
6351 #ifdef SECONDARY_MEMORY_NEEDED
6352 /* If X is not a subreg, return it unmodified.  If it is a subreg,
6353    look up whether we made a replacement for the SUBREG_REG.  Return
6354    either the replacement or the SUBREG_REG.  */
6355 
6356 static rtx
6357 replaced_subreg (rtx x)
6358 {
6359   if (GET_CODE (x) == SUBREG)
6360     return find_replacement (&SUBREG_REG (x));
6361   return x;
6362 }
6363 #endif
6364 
6365 /* Assign hard reg targets for the pseudo-registers we must reload
6366    into hard regs for this insn.
6367    Also output the instructions to copy them in and out of the hard regs.
6368 
6369    For machines with register classes, we are responsible for
6370    finding a reload reg in the proper class.  */
6371 
6372 static void
6373 choose_reload_regs (struct insn_chain *chain)
6374 {
6375   rtx insn = chain->insn;
6376   int i, j;
6377   unsigned int max_group_size = 1;
6378   enum reg_class group_class = NO_REGS;
6379   int pass, win, inheritance;
6380 
6381   rtx save_reload_reg_rtx[MAX_RELOADS];
6382 
6383   /* In order to be certain of getting the registers we need,
6384      we must sort the reloads into order of increasing register class.
6385      Then our grabbing of reload registers will parallel the process
6386      that provided the reload registers.
6387 
6388      Also note whether any of the reloads wants a consecutive group of regs.
6389      If so, record the maximum size of the group desired and what
6390      register class contains all the groups needed by this insn.  */
6391 
6392   for (j = 0; j < n_reloads; j++)
6393     {
6394       reload_order[j] = j;
6395       if (rld[j].reg_rtx != NULL_RTX)
6396 	{
6397 	  gcc_assert (REG_P (rld[j].reg_rtx)
6398 		      && HARD_REGISTER_P (rld[j].reg_rtx));
6399 	  reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6400 	}
6401       else
6402 	reload_spill_index[j] = -1;
6403 
6404       if (rld[j].nregs > 1)
6405 	{
6406 	  max_group_size = MAX (rld[j].nregs, max_group_size);
6407 	  group_class
6408 	    = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6409 	}
6410 
6411       save_reload_reg_rtx[j] = rld[j].reg_rtx;
6412     }
6413 
6414   if (n_reloads > 1)
6415     qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6416 
6417   /* If -O, try first with inheritance, then turning it off.
6418      If not -O, don't do inheritance.
6419      Using inheritance when not optimizing leads to paradoxes
6420      with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6421      because one side of the comparison might be inherited.  */
6422   win = 0;
6423   for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6424     {
6425       choose_reload_regs_init (chain, save_reload_reg_rtx);
6426 
6427       /* Process the reloads in order of preference just found.
6428 	 Beyond this point, subregs can be found in reload_reg_rtx.
6429 
6430 	 This used to look for an existing reloaded home for all of the
6431 	 reloads, and only then perform any new reloads.  But that could lose
6432 	 if the reloads were done out of reg-class order because a later
6433 	 reload with a looser constraint might have an old home in a register
6434 	 needed by an earlier reload with a tighter constraint.
6435 
6436 	 To solve this, we make two passes over the reloads, in the order
6437 	 described above.  In the first pass we try to inherit a reload
6438 	 from a previous insn.  If there is a later reload that needs a
6439 	 class that is a proper subset of the class being processed, we must
6440 	 also allocate a spill register during the first pass.
6441 
6442 	 Then make a second pass over the reloads to allocate any reloads
6443 	 that haven't been given registers yet.  */
6444 
6445       for (j = 0; j < n_reloads; j++)
6446 	{
6447 	  int r = reload_order[j];
6448 	  rtx search_equiv = NULL_RTX;
6449 
6450 	  /* Ignore reloads that got marked inoperative.  */
6451 	  if (rld[r].out == 0 && rld[r].in == 0
6452 	      && ! rld[r].secondary_p)
6453 	    continue;
6454 
6455 	  /* If find_reloads chose to use reload_in or reload_out as a reload
6456 	     register, we don't need to chose one.  Otherwise, try even if it
6457 	     found one since we might save an insn if we find the value lying
6458 	     around.
6459 	     Try also when reload_in is a pseudo without a hard reg.  */
6460 	  if (rld[r].in != 0 && rld[r].reg_rtx != 0
6461 	      && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6462 		  || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6463 		      && !MEM_P (rld[r].in)
6464 		      && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6465 	    continue;
6466 
6467 #if 0 /* No longer needed for correct operation.
6468 	 It might give better code, or might not; worth an experiment?  */
6469 	  /* If this is an optional reload, we can't inherit from earlier insns
6470 	     until we are sure that any non-optional reloads have been allocated.
6471 	     The following code takes advantage of the fact that optional reloads
6472 	     are at the end of reload_order.  */
6473 	  if (rld[r].optional != 0)
6474 	    for (i = 0; i < j; i++)
6475 	      if ((rld[reload_order[i]].out != 0
6476 		   || rld[reload_order[i]].in != 0
6477 		   || rld[reload_order[i]].secondary_p)
6478 		  && ! rld[reload_order[i]].optional
6479 		  && rld[reload_order[i]].reg_rtx == 0)
6480 		allocate_reload_reg (chain, reload_order[i], 0);
6481 #endif
6482 
6483 	  /* First see if this pseudo is already available as reloaded
6484 	     for a previous insn.  We cannot try to inherit for reloads
6485 	     that are smaller than the maximum number of registers needed
6486 	     for groups unless the register we would allocate cannot be used
6487 	     for the groups.
6488 
6489 	     We could check here to see if this is a secondary reload for
6490 	     an object that is already in a register of the desired class.
6491 	     This would avoid the need for the secondary reload register.
6492 	     But this is complex because we can't easily determine what
6493 	     objects might want to be loaded via this reload.  So let a
6494 	     register be allocated here.  In `emit_reload_insns' we suppress
6495 	     one of the loads in the case described above.  */
6496 
6497 	  if (inheritance)
6498 	    {
6499 	      int byte = 0;
6500 	      int regno = -1;
6501 	      enum machine_mode mode = VOIDmode;
6502 
6503 	      if (rld[r].in == 0)
6504 		;
6505 	      else if (REG_P (rld[r].in))
6506 		{
6507 		  regno = REGNO (rld[r].in);
6508 		  mode = GET_MODE (rld[r].in);
6509 		}
6510 	      else if (REG_P (rld[r].in_reg))
6511 		{
6512 		  regno = REGNO (rld[r].in_reg);
6513 		  mode = GET_MODE (rld[r].in_reg);
6514 		}
6515 	      else if (GET_CODE (rld[r].in_reg) == SUBREG
6516 		       && REG_P (SUBREG_REG (rld[r].in_reg)))
6517 		{
6518 		  regno = REGNO (SUBREG_REG (rld[r].in_reg));
6519 		  if (regno < FIRST_PSEUDO_REGISTER)
6520 		    regno = subreg_regno (rld[r].in_reg);
6521 		  else
6522 		    byte = SUBREG_BYTE (rld[r].in_reg);
6523 		  mode = GET_MODE (rld[r].in_reg);
6524 		}
6525 #ifdef AUTO_INC_DEC
6526 	      else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6527 		       && REG_P (XEXP (rld[r].in_reg, 0)))
6528 		{
6529 		  regno = REGNO (XEXP (rld[r].in_reg, 0));
6530 		  mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6531 		  rld[r].out = rld[r].in;
6532 		}
6533 #endif
6534 #if 0
6535 	      /* This won't work, since REGNO can be a pseudo reg number.
6536 		 Also, it takes much more hair to keep track of all the things
6537 		 that can invalidate an inherited reload of part of a pseudoreg.  */
6538 	      else if (GET_CODE (rld[r].in) == SUBREG
6539 		       && REG_P (SUBREG_REG (rld[r].in)))
6540 		regno = subreg_regno (rld[r].in);
6541 #endif
6542 
6543 	      if (regno >= 0
6544 		  && reg_last_reload_reg[regno] != 0
6545 		  && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6546 		      >= GET_MODE_SIZE (mode) + byte)
6547 #ifdef CANNOT_CHANGE_MODE_CLASS
6548 		  /* Verify that the register it's in can be used in
6549 		     mode MODE.  */
6550 		  && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6551 						GET_MODE (reg_last_reload_reg[regno]),
6552 						mode)
6553 #endif
6554 		  )
6555 		{
6556 		  enum reg_class rclass = rld[r].rclass, last_class;
6557 		  rtx last_reg = reg_last_reload_reg[regno];
6558 
6559 		  i = REGNO (last_reg);
6560 		  i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6561 		  last_class = REGNO_REG_CLASS (i);
6562 
6563 		  if (reg_reloaded_contents[i] == regno
6564 		      && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6565 		      && HARD_REGNO_MODE_OK (i, rld[r].mode)
6566 		      && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6567 			  /* Even if we can't use this register as a reload
6568 			     register, we might use it for reload_override_in,
6569 			     if copying it to the desired class is cheap
6570 			     enough.  */
6571 			  || ((register_move_cost (mode, last_class, rclass)
6572 			       < memory_move_cost (mode, rclass, true))
6573 			      && (secondary_reload_class (1, rclass, mode,
6574 							  last_reg)
6575 				  == NO_REGS)
6576 #ifdef SECONDARY_MEMORY_NEEDED
6577 			      && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6578 							    mode)
6579 #endif
6580 			      ))
6581 
6582 		      && (rld[r].nregs == max_group_size
6583 			  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6584 						  i))
6585 		      && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6586 					   rld[r].when_needed, rld[r].in,
6587 					   const0_rtx, r, 1))
6588 		    {
6589 		      /* If a group is needed, verify that all the subsequent
6590 			 registers still have their values intact.  */
6591 		      int nr = hard_regno_nregs[i][rld[r].mode];
6592 		      int k;
6593 
6594 		      for (k = 1; k < nr; k++)
6595 			if (reg_reloaded_contents[i + k] != regno
6596 			    || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6597 			  break;
6598 
6599 		      if (k == nr)
6600 			{
6601 			  int i1;
6602 			  int bad_for_class;
6603 
6604 			  last_reg = (GET_MODE (last_reg) == mode
6605 				      ? last_reg : gen_rtx_REG (mode, i));
6606 
6607 			  bad_for_class = 0;
6608 			  for (k = 0; k < nr; k++)
6609 			    bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6610 								  i+k);
6611 
6612 			  /* We found a register that contains the
6613 			     value we need.  If this register is the
6614 			     same as an `earlyclobber' operand of the
6615 			     current insn, just mark it as a place to
6616 			     reload from since we can't use it as the
6617 			     reload register itself.  */
6618 
6619 			  for (i1 = 0; i1 < n_earlyclobbers; i1++)
6620 			    if (reg_overlap_mentioned_for_reload_p
6621 				(reg_last_reload_reg[regno],
6622 				 reload_earlyclobbers[i1]))
6623 			      break;
6624 
6625 			  if (i1 != n_earlyclobbers
6626 			      || ! (free_for_value_p (i, rld[r].mode,
6627 						      rld[r].opnum,
6628 						      rld[r].when_needed, rld[r].in,
6629 						      rld[r].out, r, 1))
6630 			      /* Don't use it if we'd clobber a pseudo reg.  */
6631 			      || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6632 				  && rld[r].out
6633 				  && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6634 			      /* Don't clobber the frame pointer.  */
6635 			      || (i == HARD_FRAME_POINTER_REGNUM
6636 				  && frame_pointer_needed
6637 				  && rld[r].out)
6638 			      /* Don't really use the inherited spill reg
6639 				 if we need it wider than we've got it.  */
6640 			      || (GET_MODE_SIZE (rld[r].mode)
6641 				  > GET_MODE_SIZE (mode))
6642 			      || bad_for_class
6643 
6644 			      /* If find_reloads chose reload_out as reload
6645 				 register, stay with it - that leaves the
6646 				 inherited register for subsequent reloads.  */
6647 			      || (rld[r].out && rld[r].reg_rtx
6648 				  && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6649 			    {
6650 			      if (! rld[r].optional)
6651 				{
6652 				  reload_override_in[r] = last_reg;
6653 				  reload_inheritance_insn[r]
6654 				    = reg_reloaded_insn[i];
6655 				}
6656 			    }
6657 			  else
6658 			    {
6659 			      int k;
6660 			      /* We can use this as a reload reg.  */
6661 			      /* Mark the register as in use for this part of
6662 				 the insn.  */
6663 			      mark_reload_reg_in_use (i,
6664 						      rld[r].opnum,
6665 						      rld[r].when_needed,
6666 						      rld[r].mode);
6667 			      rld[r].reg_rtx = last_reg;
6668 			      reload_inherited[r] = 1;
6669 			      reload_inheritance_insn[r]
6670 				= reg_reloaded_insn[i];
6671 			      reload_spill_index[r] = i;
6672 			      for (k = 0; k < nr; k++)
6673 				SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6674 						  i + k);
6675 			    }
6676 			}
6677 		    }
6678 		}
6679 	    }
6680 
6681 	  /* Here's another way to see if the value is already lying around.  */
6682 	  if (inheritance
6683 	      && rld[r].in != 0
6684 	      && ! reload_inherited[r]
6685 	      && rld[r].out == 0
6686 	      && (CONSTANT_P (rld[r].in)
6687 		  || GET_CODE (rld[r].in) == PLUS
6688 		  || REG_P (rld[r].in)
6689 		  || MEM_P (rld[r].in))
6690 	      && (rld[r].nregs == max_group_size
6691 		  || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6692 	    search_equiv = rld[r].in;
6693 
6694 	  if (search_equiv)
6695 	    {
6696 	      rtx equiv
6697 		= find_equiv_reg (search_equiv, insn, rld[r].rclass,
6698 				  -1, NULL, 0, rld[r].mode);
6699 	      int regno = 0;
6700 
6701 	      if (equiv != 0)
6702 		{
6703 		  if (REG_P (equiv))
6704 		    regno = REGNO (equiv);
6705 		  else
6706 		    {
6707 		      /* This must be a SUBREG of a hard register.
6708 			 Make a new REG since this might be used in an
6709 			 address and not all machines support SUBREGs
6710 			 there.  */
6711 		      gcc_assert (GET_CODE (equiv) == SUBREG);
6712 		      regno = subreg_regno (equiv);
6713 		      equiv = gen_rtx_REG (rld[r].mode, regno);
6714 		      /* If we choose EQUIV as the reload register, but the
6715 			 loop below decides to cancel the inheritance, we'll
6716 			 end up reloading EQUIV in rld[r].mode, not the mode
6717 			 it had originally.  That isn't safe when EQUIV isn't
6718 			 available as a spill register since its value might
6719 			 still be live at this point.  */
6720 		      for (i = regno; i < regno + (int) rld[r].nregs; i++)
6721 			if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6722 			  equiv = 0;
6723 		    }
6724 		}
6725 
6726 	      /* If we found a spill reg, reject it unless it is free
6727 		 and of the desired class.  */
6728 	      if (equiv != 0)
6729 		{
6730 		  int regs_used = 0;
6731 		  int bad_for_class = 0;
6732 		  int max_regno = regno + rld[r].nregs;
6733 
6734 		  for (i = regno; i < max_regno; i++)
6735 		    {
6736 		      regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6737 						      i);
6738 		      bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6739 							   i);
6740 		    }
6741 
6742 		  if ((regs_used
6743 		       && ! free_for_value_p (regno, rld[r].mode,
6744 					      rld[r].opnum, rld[r].when_needed,
6745 					      rld[r].in, rld[r].out, r, 1))
6746 		      || bad_for_class)
6747 		    equiv = 0;
6748 		}
6749 
6750 	      if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6751 		equiv = 0;
6752 
6753 	      /* We found a register that contains the value we need.
6754 		 If this register is the same as an `earlyclobber' operand
6755 		 of the current insn, just mark it as a place to reload from
6756 		 since we can't use it as the reload register itself.  */
6757 
6758 	      if (equiv != 0)
6759 		for (i = 0; i < n_earlyclobbers; i++)
6760 		  if (reg_overlap_mentioned_for_reload_p (equiv,
6761 							  reload_earlyclobbers[i]))
6762 		    {
6763 		      if (! rld[r].optional)
6764 			reload_override_in[r] = equiv;
6765 		      equiv = 0;
6766 		      break;
6767 		    }
6768 
6769 	      /* If the equiv register we have found is explicitly clobbered
6770 		 in the current insn, it depends on the reload type if we
6771 		 can use it, use it for reload_override_in, or not at all.
6772 		 In particular, we then can't use EQUIV for a
6773 		 RELOAD_FOR_OUTPUT_ADDRESS reload.  */
6774 
6775 	      if (equiv != 0)
6776 		{
6777 		  if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6778 		    switch (rld[r].when_needed)
6779 		      {
6780 		      case RELOAD_FOR_OTHER_ADDRESS:
6781 		      case RELOAD_FOR_INPADDR_ADDRESS:
6782 		      case RELOAD_FOR_INPUT_ADDRESS:
6783 		      case RELOAD_FOR_OPADDR_ADDR:
6784 			break;
6785 		      case RELOAD_OTHER:
6786 		      case RELOAD_FOR_INPUT:
6787 		      case RELOAD_FOR_OPERAND_ADDRESS:
6788 			if (! rld[r].optional)
6789 			  reload_override_in[r] = equiv;
6790 			/* Fall through.  */
6791 		      default:
6792 			equiv = 0;
6793 			break;
6794 		      }
6795 		  else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6796 		    switch (rld[r].when_needed)
6797 		      {
6798 		      case RELOAD_FOR_OTHER_ADDRESS:
6799 		      case RELOAD_FOR_INPADDR_ADDRESS:
6800 		      case RELOAD_FOR_INPUT_ADDRESS:
6801 		      case RELOAD_FOR_OPADDR_ADDR:
6802 		      case RELOAD_FOR_OPERAND_ADDRESS:
6803 		      case RELOAD_FOR_INPUT:
6804 			break;
6805 		      case RELOAD_OTHER:
6806 			if (! rld[r].optional)
6807 			  reload_override_in[r] = equiv;
6808 			/* Fall through.  */
6809 		      default:
6810 			equiv = 0;
6811 			break;
6812 		      }
6813 		}
6814 
6815 	      /* If we found an equivalent reg, say no code need be generated
6816 		 to load it, and use it as our reload reg.  */
6817 	      if (equiv != 0
6818 		  && (regno != HARD_FRAME_POINTER_REGNUM
6819 		      || !frame_pointer_needed))
6820 		{
6821 		  int nr = hard_regno_nregs[regno][rld[r].mode];
6822 		  int k;
6823 		  rld[r].reg_rtx = equiv;
6824 		  reload_spill_index[r] = regno;
6825 		  reload_inherited[r] = 1;
6826 
6827 		  /* If reg_reloaded_valid is not set for this register,
6828 		     there might be a stale spill_reg_store lying around.
6829 		     We must clear it, since otherwise emit_reload_insns
6830 		     might delete the store.  */
6831 		  if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6832 		    spill_reg_store[regno] = NULL_RTX;
6833 		  /* If any of the hard registers in EQUIV are spill
6834 		     registers, mark them as in use for this insn.  */
6835 		  for (k = 0; k < nr; k++)
6836 		    {
6837 		      i = spill_reg_order[regno + k];
6838 		      if (i >= 0)
6839 			{
6840 			  mark_reload_reg_in_use (regno, rld[r].opnum,
6841 						  rld[r].when_needed,
6842 						  rld[r].mode);
6843 			  SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6844 					    regno + k);
6845 			}
6846 		    }
6847 		}
6848 	    }
6849 
6850 	  /* If we found a register to use already, or if this is an optional
6851 	     reload, we are done.  */
6852 	  if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6853 	    continue;
6854 
6855 #if 0
6856 	  /* No longer needed for correct operation.  Might or might
6857 	     not give better code on the average.  Want to experiment?  */
6858 
6859 	  /* See if there is a later reload that has a class different from our
6860 	     class that intersects our class or that requires less register
6861 	     than our reload.  If so, we must allocate a register to this
6862 	     reload now, since that reload might inherit a previous reload
6863 	     and take the only available register in our class.  Don't do this
6864 	     for optional reloads since they will force all previous reloads
6865 	     to be allocated.  Also don't do this for reloads that have been
6866 	     turned off.  */
6867 
6868 	  for (i = j + 1; i < n_reloads; i++)
6869 	    {
6870 	      int s = reload_order[i];
6871 
6872 	      if ((rld[s].in == 0 && rld[s].out == 0
6873 		   && ! rld[s].secondary_p)
6874 		  || rld[s].optional)
6875 		continue;
6876 
6877 	      if ((rld[s].rclass != rld[r].rclass
6878 		   && reg_classes_intersect_p (rld[r].rclass,
6879 					       rld[s].rclass))
6880 		  || rld[s].nregs < rld[r].nregs)
6881 		break;
6882 	    }
6883 
6884 	  if (i == n_reloads)
6885 	    continue;
6886 
6887 	  allocate_reload_reg (chain, r, j == n_reloads - 1);
6888 #endif
6889 	}
6890 
6891       /* Now allocate reload registers for anything non-optional that
6892 	 didn't get one yet.  */
6893       for (j = 0; j < n_reloads; j++)
6894 	{
6895 	  int r = reload_order[j];
6896 
6897 	  /* Ignore reloads that got marked inoperative.  */
6898 	  if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6899 	    continue;
6900 
6901 	  /* Skip reloads that already have a register allocated or are
6902 	     optional.  */
6903 	  if (rld[r].reg_rtx != 0 || rld[r].optional)
6904 	    continue;
6905 
6906 	  if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6907 	    break;
6908 	}
6909 
6910       /* If that loop got all the way, we have won.  */
6911       if (j == n_reloads)
6912 	{
6913 	  win = 1;
6914 	  break;
6915 	}
6916 
6917       /* Loop around and try without any inheritance.  */
6918     }
6919 
6920   if (! win)
6921     {
6922       /* First undo everything done by the failed attempt
6923 	 to allocate with inheritance.  */
6924       choose_reload_regs_init (chain, save_reload_reg_rtx);
6925 
6926       /* Some sanity tests to verify that the reloads found in the first
6927 	 pass are identical to the ones we have now.  */
6928       gcc_assert (chain->n_reloads == n_reloads);
6929 
6930       for (i = 0; i < n_reloads; i++)
6931 	{
6932 	  if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6933 	    continue;
6934 	  gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6935 	  for (j = 0; j < n_spills; j++)
6936 	    if (spill_regs[j] == chain->rld[i].regno)
6937 	      if (! set_reload_reg (j, i))
6938 		failed_reload (chain->insn, i);
6939 	}
6940     }
6941 
6942   /* If we thought we could inherit a reload, because it seemed that
6943      nothing else wanted the same reload register earlier in the insn,
6944      verify that assumption, now that all reloads have been assigned.
6945      Likewise for reloads where reload_override_in has been set.  */
6946 
6947   /* If doing expensive optimizations, do one preliminary pass that doesn't
6948      cancel any inheritance, but removes reloads that have been needed only
6949      for reloads that we know can be inherited.  */
6950   for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6951     {
6952       for (j = 0; j < n_reloads; j++)
6953 	{
6954 	  int r = reload_order[j];
6955 	  rtx check_reg;
6956 #ifdef SECONDARY_MEMORY_NEEDED
6957 	  rtx tem;
6958 #endif
6959 	  if (reload_inherited[r] && rld[r].reg_rtx)
6960 	    check_reg = rld[r].reg_rtx;
6961 	  else if (reload_override_in[r]
6962 		   && (REG_P (reload_override_in[r])
6963 		       || GET_CODE (reload_override_in[r]) == SUBREG))
6964 	    check_reg = reload_override_in[r];
6965 	  else
6966 	    continue;
6967 	  if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6968 				  rld[r].opnum, rld[r].when_needed, rld[r].in,
6969 				  (reload_inherited[r]
6970 				   ? rld[r].out : const0_rtx),
6971 				  r, 1))
6972 	    {
6973 	      if (pass)
6974 		continue;
6975 	      reload_inherited[r] = 0;
6976 	      reload_override_in[r] = 0;
6977 	    }
6978 	  /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6979 	     reload_override_in, then we do not need its related
6980 	     RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6981 	     likewise for other reload types.
6982 	     We handle this by removing a reload when its only replacement
6983 	     is mentioned in reload_in of the reload we are going to inherit.
6984 	     A special case are auto_inc expressions; even if the input is
6985 	     inherited, we still need the address for the output.  We can
6986 	     recognize them because they have RELOAD_OUT set to RELOAD_IN.
6987 	     If we succeeded removing some reload and we are doing a preliminary
6988 	     pass just to remove such reloads, make another pass, since the
6989 	     removal of one reload might allow us to inherit another one.  */
6990 	  else if (rld[r].in
6991 		   && rld[r].out != rld[r].in
6992 		   && remove_address_replacements (rld[r].in))
6993 	    {
6994 	      if (pass)
6995 	        pass = 2;
6996 	    }
6997 #ifdef SECONDARY_MEMORY_NEEDED
6998 	  /* If we needed a memory location for the reload, we also have to
6999 	     remove its related reloads.  */
7000 	  else if (rld[r].in
7001 		   && rld[r].out != rld[r].in
7002 		   && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7003 		   && REGNO (tem) < FIRST_PSEUDO_REGISTER
7004 		   && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7005 					       rld[r].rclass, rld[r].inmode)
7006 		   && remove_address_replacements
7007 		      (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7008 					  rld[r].when_needed)))
7009 	    {
7010 	      if (pass)
7011 	        pass = 2;
7012 	    }
7013 #endif
7014 	}
7015     }
7016 
7017   /* Now that reload_override_in is known valid,
7018      actually override reload_in.  */
7019   for (j = 0; j < n_reloads; j++)
7020     if (reload_override_in[j])
7021       rld[j].in = reload_override_in[j];
7022 
7023   /* If this reload won't be done because it has been canceled or is
7024      optional and not inherited, clear reload_reg_rtx so other
7025      routines (such as subst_reloads) don't get confused.  */
7026   for (j = 0; j < n_reloads; j++)
7027     if (rld[j].reg_rtx != 0
7028 	&& ((rld[j].optional && ! reload_inherited[j])
7029 	    || (rld[j].in == 0 && rld[j].out == 0
7030 		&& ! rld[j].secondary_p)))
7031       {
7032 	int regno = true_regnum (rld[j].reg_rtx);
7033 
7034 	if (spill_reg_order[regno] >= 0)
7035 	  clear_reload_reg_in_use (regno, rld[j].opnum,
7036 				   rld[j].when_needed, rld[j].mode);
7037 	rld[j].reg_rtx = 0;
7038 	reload_spill_index[j] = -1;
7039       }
7040 
7041   /* Record which pseudos and which spill regs have output reloads.  */
7042   for (j = 0; j < n_reloads; j++)
7043     {
7044       int r = reload_order[j];
7045 
7046       i = reload_spill_index[r];
7047 
7048       /* I is nonneg if this reload uses a register.
7049 	 If rld[r].reg_rtx is 0, this is an optional reload
7050 	 that we opted to ignore.  */
7051       if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7052 	  && rld[r].reg_rtx != 0)
7053 	{
7054 	  int nregno = REGNO (rld[r].out_reg);
7055 	  int nr = 1;
7056 
7057 	  if (nregno < FIRST_PSEUDO_REGISTER)
7058 	    nr = hard_regno_nregs[nregno][rld[r].mode];
7059 
7060 	  while (--nr >= 0)
7061 	    SET_REGNO_REG_SET (&reg_has_output_reload,
7062 			       nregno + nr);
7063 
7064 	  if (i >= 0)
7065 	    add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7066 
7067 	  gcc_assert (rld[r].when_needed == RELOAD_OTHER
7068 		      || rld[r].when_needed == RELOAD_FOR_OUTPUT
7069 		      || rld[r].when_needed == RELOAD_FOR_INSN);
7070 	}
7071     }
7072 }
7073 
7074 /* Deallocate the reload register for reload R.  This is called from
7075    remove_address_replacements.  */
7076 
7077 void
7078 deallocate_reload_reg (int r)
7079 {
7080   int regno;
7081 
7082   if (! rld[r].reg_rtx)
7083     return;
7084   regno = true_regnum (rld[r].reg_rtx);
7085   rld[r].reg_rtx = 0;
7086   if (spill_reg_order[regno] >= 0)
7087     clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7088 			     rld[r].mode);
7089   reload_spill_index[r] = -1;
7090 }
7091 
7092 /* These arrays are filled by emit_reload_insns and its subroutines.  */
7093 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7094 static rtx other_input_address_reload_insns = 0;
7095 static rtx other_input_reload_insns = 0;
7096 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7097 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7098 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7099 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7100 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7101 static rtx operand_reload_insns = 0;
7102 static rtx other_operand_reload_insns = 0;
7103 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7104 
7105 /* Values to be put in spill_reg_store are put here first.  Instructions
7106    must only be placed here if the associated reload register reaches
7107    the end of the instruction's reload sequence.  */
7108 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7109 static HARD_REG_SET reg_reloaded_died;
7110 
7111 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7112    of class NEW_CLASS with mode NEW_MODE.  Or alternatively, if alt_reload_reg
7113    is nonzero, if that is suitable.  On success, change *RELOAD_REG to the
7114    adjusted register, and return true.  Otherwise, return false.  */
7115 static bool
7116 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7117 			    enum reg_class new_class,
7118 			    enum machine_mode new_mode)
7119 
7120 {
7121   rtx reg;
7122 
7123   for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7124     {
7125       unsigned regno = REGNO (reg);
7126 
7127       if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7128 	continue;
7129       if (GET_MODE (reg) != new_mode)
7130 	{
7131 	  if (!HARD_REGNO_MODE_OK (regno, new_mode))
7132 	    continue;
7133 	  if (hard_regno_nregs[regno][new_mode]
7134 	      > hard_regno_nregs[regno][GET_MODE (reg)])
7135 	    continue;
7136 	  reg = reload_adjust_reg_for_mode (reg, new_mode);
7137 	}
7138       *reload_reg = reg;
7139       return true;
7140     }
7141   return false;
7142 }
7143 
7144 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7145    pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7146    nonzero, if that is suitable.  On success, change *RELOAD_REG to the
7147    adjusted register, and return true.  Otherwise, return false.  */
7148 static bool
7149 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7150 			     enum insn_code icode)
7151 
7152 {
7153   enum reg_class new_class = scratch_reload_class (icode);
7154   enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7155 
7156   return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7157 				     new_class, new_mode);
7158 }
7159 
7160 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7161    has the number J.  OLD contains the value to be used as input.  */
7162 
7163 static void
7164 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7165 			 rtx old, int j)
7166 {
7167   rtx insn = chain->insn;
7168   rtx reloadreg;
7169   rtx oldequiv_reg = 0;
7170   rtx oldequiv = 0;
7171   int special = 0;
7172   enum machine_mode mode;
7173   rtx *where;
7174 
7175   /* delete_output_reload is only invoked properly if old contains
7176      the original pseudo register.  Since this is replaced with a
7177      hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7178      find the pseudo in RELOAD_IN_REG.  */
7179   if (reload_override_in[j]
7180       && REG_P (rl->in_reg))
7181     {
7182       oldequiv = old;
7183       old = rl->in_reg;
7184     }
7185   if (oldequiv == 0)
7186     oldequiv = old;
7187   else if (REG_P (oldequiv))
7188     oldequiv_reg = oldequiv;
7189   else if (GET_CODE (oldequiv) == SUBREG)
7190     oldequiv_reg = SUBREG_REG (oldequiv);
7191 
7192   reloadreg = reload_reg_rtx_for_input[j];
7193   mode = GET_MODE (reloadreg);
7194 
7195   /* If we are reloading from a register that was recently stored in
7196      with an output-reload, see if we can prove there was
7197      actually no need to store the old value in it.  */
7198 
7199   if (optimize && REG_P (oldequiv)
7200       && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7201       && spill_reg_store[REGNO (oldequiv)]
7202       && REG_P (old)
7203       && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7204 	  || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7205 			  rl->out_reg)))
7206     delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7207 
7208   /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7209      OLDEQUIV.  */
7210 
7211   while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7212     oldequiv = SUBREG_REG (oldequiv);
7213   if (GET_MODE (oldequiv) != VOIDmode
7214       && mode != GET_MODE (oldequiv))
7215     oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7216 
7217   /* Switch to the right place to emit the reload insns.  */
7218   switch (rl->when_needed)
7219     {
7220     case RELOAD_OTHER:
7221       where = &other_input_reload_insns;
7222       break;
7223     case RELOAD_FOR_INPUT:
7224       where = &input_reload_insns[rl->opnum];
7225       break;
7226     case RELOAD_FOR_INPUT_ADDRESS:
7227       where = &input_address_reload_insns[rl->opnum];
7228       break;
7229     case RELOAD_FOR_INPADDR_ADDRESS:
7230       where = &inpaddr_address_reload_insns[rl->opnum];
7231       break;
7232     case RELOAD_FOR_OUTPUT_ADDRESS:
7233       where = &output_address_reload_insns[rl->opnum];
7234       break;
7235     case RELOAD_FOR_OUTADDR_ADDRESS:
7236       where = &outaddr_address_reload_insns[rl->opnum];
7237       break;
7238     case RELOAD_FOR_OPERAND_ADDRESS:
7239       where = &operand_reload_insns;
7240       break;
7241     case RELOAD_FOR_OPADDR_ADDR:
7242       where = &other_operand_reload_insns;
7243       break;
7244     case RELOAD_FOR_OTHER_ADDRESS:
7245       where = &other_input_address_reload_insns;
7246       break;
7247     default:
7248       gcc_unreachable ();
7249     }
7250 
7251   push_to_sequence (*where);
7252 
7253   /* Auto-increment addresses must be reloaded in a special way.  */
7254   if (rl->out && ! rl->out_reg)
7255     {
7256       /* We are not going to bother supporting the case where a
7257 	 incremented register can't be copied directly from
7258 	 OLDEQUIV since this seems highly unlikely.  */
7259       gcc_assert (rl->secondary_in_reload < 0);
7260 
7261       if (reload_inherited[j])
7262 	oldequiv = reloadreg;
7263 
7264       old = XEXP (rl->in_reg, 0);
7265 
7266       /* Prevent normal processing of this reload.  */
7267       special = 1;
7268       /* Output a special code sequence for this case.  */
7269       inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7270     }
7271 
7272   /* If we are reloading a pseudo-register that was set by the previous
7273      insn, see if we can get rid of that pseudo-register entirely
7274      by redirecting the previous insn into our reload register.  */
7275 
7276   else if (optimize && REG_P (old)
7277 	   && REGNO (old) >= FIRST_PSEUDO_REGISTER
7278 	   && dead_or_set_p (insn, old)
7279 	   /* This is unsafe if some other reload
7280 	      uses the same reg first.  */
7281 	   && ! conflicts_with_override (reloadreg)
7282 	   && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7283 				rl->when_needed, old, rl->out, j, 0))
7284     {
7285       rtx temp = PREV_INSN (insn);
7286       while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7287 	temp = PREV_INSN (temp);
7288       if (temp
7289 	  && NONJUMP_INSN_P (temp)
7290 	  && GET_CODE (PATTERN (temp)) == SET
7291 	  && SET_DEST (PATTERN (temp)) == old
7292 	  /* Make sure we can access insn_operand_constraint.  */
7293 	  && asm_noperands (PATTERN (temp)) < 0
7294 	  /* This is unsafe if operand occurs more than once in current
7295 	     insn.  Perhaps some occurrences aren't reloaded.  */
7296 	  && count_occurrences (PATTERN (insn), old, 0) == 1)
7297 	{
7298 	  rtx old = SET_DEST (PATTERN (temp));
7299 	  /* Store into the reload register instead of the pseudo.  */
7300 	  SET_DEST (PATTERN (temp)) = reloadreg;
7301 
7302 	  /* Verify that resulting insn is valid.  */
7303 	  extract_insn (temp);
7304 	  if (constrain_operands (1))
7305 	    {
7306 	      /* If the previous insn is an output reload, the source is
7307 		 a reload register, and its spill_reg_store entry will
7308 		 contain the previous destination.  This is now
7309 		 invalid.  */
7310 	      if (REG_P (SET_SRC (PATTERN (temp)))
7311 		  && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7312 		{
7313 		  spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7314 		  spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7315 		}
7316 
7317 	      /* If these are the only uses of the pseudo reg,
7318 		 pretend for GDB it lives in the reload reg we used.  */
7319 	      if (REG_N_DEATHS (REGNO (old)) == 1
7320 		  && REG_N_SETS (REGNO (old)) == 1)
7321 		{
7322 		  reg_renumber[REGNO (old)] = REGNO (reloadreg);
7323 		  if (ira_conflicts_p)
7324 		    /* Inform IRA about the change.  */
7325 		    ira_mark_allocation_change (REGNO (old));
7326 		  alter_reg (REGNO (old), -1, false);
7327 		}
7328 	      special = 1;
7329 
7330 	      /* Adjust any debug insns between temp and insn.  */
7331 	      while ((temp = NEXT_INSN (temp)) != insn)
7332 		if (DEBUG_INSN_P (temp))
7333 		  replace_rtx (PATTERN (temp), old, reloadreg);
7334 		else
7335 		  gcc_assert (NOTE_P (temp));
7336 	    }
7337 	  else
7338 	    {
7339 	      SET_DEST (PATTERN (temp)) = old;
7340 	    }
7341 	}
7342     }
7343 
7344   /* We can't do that, so output an insn to load RELOADREG.  */
7345 
7346   /* If we have a secondary reload, pick up the secondary register
7347      and icode, if any.  If OLDEQUIV and OLD are different or
7348      if this is an in-out reload, recompute whether or not we
7349      still need a secondary register and what the icode should
7350      be.  If we still need a secondary register and the class or
7351      icode is different, go back to reloading from OLD if using
7352      OLDEQUIV means that we got the wrong type of register.  We
7353      cannot have different class or icode due to an in-out reload
7354      because we don't make such reloads when both the input and
7355      output need secondary reload registers.  */
7356 
7357   if (! special && rl->secondary_in_reload >= 0)
7358     {
7359       rtx second_reload_reg = 0;
7360       rtx third_reload_reg = 0;
7361       int secondary_reload = rl->secondary_in_reload;
7362       rtx real_oldequiv = oldequiv;
7363       rtx real_old = old;
7364       rtx tmp;
7365       enum insn_code icode;
7366       enum insn_code tertiary_icode = CODE_FOR_nothing;
7367 
7368       /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7369 	 and similarly for OLD.
7370 	 See comments in get_secondary_reload in reload.c.  */
7371       /* If it is a pseudo that cannot be replaced with its
7372 	 equivalent MEM, we must fall back to reload_in, which
7373 	 will have all the necessary substitutions registered.
7374 	 Likewise for a pseudo that can't be replaced with its
7375 	 equivalent constant.
7376 
7377 	 Take extra care for subregs of such pseudos.  Note that
7378 	 we cannot use reg_equiv_mem in this case because it is
7379 	 not in the right mode.  */
7380 
7381       tmp = oldequiv;
7382       if (GET_CODE (tmp) == SUBREG)
7383 	tmp = SUBREG_REG (tmp);
7384       if (REG_P (tmp)
7385 	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7386 	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7387 	      || reg_equiv_constant (REGNO (tmp)) != 0))
7388 	{
7389 	  if (! reg_equiv_mem (REGNO (tmp))
7390 	      || num_not_at_initial_offset
7391 	      || GET_CODE (oldequiv) == SUBREG)
7392 	    real_oldequiv = rl->in;
7393 	  else
7394 	    real_oldequiv = reg_equiv_mem (REGNO (tmp));
7395 	}
7396 
7397       tmp = old;
7398       if (GET_CODE (tmp) == SUBREG)
7399 	tmp = SUBREG_REG (tmp);
7400       if (REG_P (tmp)
7401 	  && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7402 	  && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7403 	      || reg_equiv_constant (REGNO (tmp)) != 0))
7404 	{
7405 	  if (! reg_equiv_mem (REGNO (tmp))
7406 	      || num_not_at_initial_offset
7407 	      || GET_CODE (old) == SUBREG)
7408 	    real_old = rl->in;
7409 	  else
7410 	    real_old = reg_equiv_mem (REGNO (tmp));
7411 	}
7412 
7413       second_reload_reg = rld[secondary_reload].reg_rtx;
7414       if (rld[secondary_reload].secondary_in_reload >= 0)
7415 	{
7416 	  int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7417 
7418 	  third_reload_reg = rld[tertiary_reload].reg_rtx;
7419 	  tertiary_icode = rld[secondary_reload].secondary_in_icode;
7420 	  /* We'd have to add more code for quartary reloads.  */
7421 	  gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7422 	}
7423       icode = rl->secondary_in_icode;
7424 
7425       if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7426 	  || (rl->in != 0 && rl->out != 0))
7427 	{
7428 	  secondary_reload_info sri, sri2;
7429 	  enum reg_class new_class, new_t_class;
7430 
7431 	  sri.icode = CODE_FOR_nothing;
7432 	  sri.prev_sri = NULL;
7433 	  new_class
7434 	    = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7435 							 rl->rclass, mode,
7436 							 &sri);
7437 
7438 	  if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7439 	    second_reload_reg = 0;
7440 	  else if (new_class == NO_REGS)
7441 	    {
7442 	      if (reload_adjust_reg_for_icode (&second_reload_reg,
7443 					       third_reload_reg,
7444 					       (enum insn_code) sri.icode))
7445 		{
7446 		  icode = (enum insn_code) sri.icode;
7447 		  third_reload_reg = 0;
7448 		}
7449 	      else
7450 		{
7451 		  oldequiv = old;
7452 		  real_oldequiv = real_old;
7453 		}
7454 	    }
7455 	  else if (sri.icode != CODE_FOR_nothing)
7456 	    /* We currently lack a way to express this in reloads.  */
7457 	    gcc_unreachable ();
7458 	  else
7459 	    {
7460 	      sri2.icode = CODE_FOR_nothing;
7461 	      sri2.prev_sri = &sri;
7462 	      new_t_class
7463 		= (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7464 							     new_class, mode,
7465 							     &sri);
7466 	      if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7467 		{
7468 		  if (reload_adjust_reg_for_temp (&second_reload_reg,
7469 						  third_reload_reg,
7470 						  new_class, mode))
7471 		    {
7472 		      third_reload_reg = 0;
7473 		      tertiary_icode = (enum insn_code) sri2.icode;
7474 		    }
7475 		  else
7476 		    {
7477 		      oldequiv = old;
7478 		      real_oldequiv = real_old;
7479 		    }
7480 		}
7481 	      else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7482 		{
7483 		  rtx intermediate = second_reload_reg;
7484 
7485 		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
7486 						  new_class, mode)
7487 		      && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7488 						      ((enum insn_code)
7489 						       sri2.icode)))
7490 		    {
7491 		      second_reload_reg = intermediate;
7492 		      tertiary_icode = (enum insn_code) sri2.icode;
7493 		    }
7494 		  else
7495 		    {
7496 		      oldequiv = old;
7497 		      real_oldequiv = real_old;
7498 		    }
7499 		}
7500 	      else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7501 		{
7502 		  rtx intermediate = second_reload_reg;
7503 
7504 		  if (reload_adjust_reg_for_temp (&intermediate, NULL,
7505 						  new_class, mode)
7506 		      && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7507 						      new_t_class, mode))
7508 		    {
7509 		      second_reload_reg = intermediate;
7510 		      tertiary_icode = (enum insn_code) sri2.icode;
7511 		    }
7512 		  else
7513 		    {
7514 		      oldequiv = old;
7515 		      real_oldequiv = real_old;
7516 		    }
7517 		}
7518 	      else
7519 		{
7520 		  /* This could be handled more intelligently too.  */
7521 		  oldequiv = old;
7522 		  real_oldequiv = real_old;
7523 		}
7524 	    }
7525 	}
7526 
7527       /* If we still need a secondary reload register, check
7528 	 to see if it is being used as a scratch or intermediate
7529 	 register and generate code appropriately.  If we need
7530 	 a scratch register, use REAL_OLDEQUIV since the form of
7531 	 the insn may depend on the actual address if it is
7532 	 a MEM.  */
7533 
7534       if (second_reload_reg)
7535 	{
7536 	  if (icode != CODE_FOR_nothing)
7537 	    {
7538 	      /* We'd have to add extra code to handle this case.  */
7539 	      gcc_assert (!third_reload_reg);
7540 
7541 	      emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7542 					  second_reload_reg));
7543 	      special = 1;
7544 	    }
7545 	  else
7546 	    {
7547 	      /* See if we need a scratch register to load the
7548 		 intermediate register (a tertiary reload).  */
7549 	      if (tertiary_icode != CODE_FOR_nothing)
7550 		{
7551 		  emit_insn ((GEN_FCN (tertiary_icode)
7552 			      (second_reload_reg, real_oldequiv,
7553 			       third_reload_reg)));
7554 		}
7555 	      else if (third_reload_reg)
7556 		{
7557 		  gen_reload (third_reload_reg, real_oldequiv,
7558 			      rl->opnum,
7559 			      rl->when_needed);
7560 		  gen_reload (second_reload_reg, third_reload_reg,
7561 			      rl->opnum,
7562 			      rl->when_needed);
7563 		}
7564 	      else
7565 		gen_reload (second_reload_reg, real_oldequiv,
7566 			    rl->opnum,
7567 			    rl->when_needed);
7568 
7569 	      oldequiv = second_reload_reg;
7570 	    }
7571 	}
7572     }
7573 
7574   if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7575     {
7576       rtx real_oldequiv = oldequiv;
7577 
7578       if ((REG_P (oldequiv)
7579 	   && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7580 	   && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7581 	       || reg_equiv_constant (REGNO (oldequiv)) != 0))
7582 	  || (GET_CODE (oldequiv) == SUBREG
7583 	      && REG_P (SUBREG_REG (oldequiv))
7584 	      && (REGNO (SUBREG_REG (oldequiv))
7585 		  >= FIRST_PSEUDO_REGISTER)
7586 	      && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7587 		  || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7588 	  || (CONSTANT_P (oldequiv)
7589 	      && (targetm.preferred_reload_class (oldequiv,
7590 						  REGNO_REG_CLASS (REGNO (reloadreg)))
7591 		  == NO_REGS)))
7592 	real_oldequiv = rl->in;
7593       gen_reload (reloadreg, real_oldequiv, rl->opnum,
7594 		  rl->when_needed);
7595     }
7596 
7597   if (cfun->can_throw_non_call_exceptions)
7598     copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7599 
7600   /* End this sequence.  */
7601   *where = get_insns ();
7602   end_sequence ();
7603 
7604   /* Update reload_override_in so that delete_address_reloads_1
7605      can see the actual register usage.  */
7606   if (oldequiv_reg)
7607     reload_override_in[j] = oldequiv;
7608 }
7609 
7610 /* Generate insns to for the output reload RL, which is for the insn described
7611    by CHAIN and has the number J.  */
7612 static void
7613 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7614 			  int j)
7615 {
7616   rtx reloadreg;
7617   rtx insn = chain->insn;
7618   int special = 0;
7619   rtx old = rl->out;
7620   enum machine_mode mode;
7621   rtx p;
7622   rtx rl_reg_rtx;
7623 
7624   if (rl->when_needed == RELOAD_OTHER)
7625     start_sequence ();
7626   else
7627     push_to_sequence (output_reload_insns[rl->opnum]);
7628 
7629   rl_reg_rtx = reload_reg_rtx_for_output[j];
7630   mode = GET_MODE (rl_reg_rtx);
7631 
7632   reloadreg = rl_reg_rtx;
7633 
7634   /* If we need two reload regs, set RELOADREG to the intermediate
7635      one, since it will be stored into OLD.  We might need a secondary
7636      register only for an input reload, so check again here.  */
7637 
7638   if (rl->secondary_out_reload >= 0)
7639     {
7640       rtx real_old = old;
7641       int secondary_reload = rl->secondary_out_reload;
7642       int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7643 
7644       if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7645 	  && reg_equiv_mem (REGNO (old)) != 0)
7646 	real_old = reg_equiv_mem (REGNO (old));
7647 
7648       if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7649 	{
7650 	  rtx second_reloadreg = reloadreg;
7651 	  reloadreg = rld[secondary_reload].reg_rtx;
7652 
7653 	  /* See if RELOADREG is to be used as a scratch register
7654 	     or as an intermediate register.  */
7655 	  if (rl->secondary_out_icode != CODE_FOR_nothing)
7656 	    {
7657 	      /* We'd have to add extra code to handle this case.  */
7658 	      gcc_assert (tertiary_reload < 0);
7659 
7660 	      emit_insn ((GEN_FCN (rl->secondary_out_icode)
7661 			  (real_old, second_reloadreg, reloadreg)));
7662 	      special = 1;
7663 	    }
7664 	  else
7665 	    {
7666 	      /* See if we need both a scratch and intermediate reload
7667 		 register.  */
7668 
7669 	      enum insn_code tertiary_icode
7670 		= rld[secondary_reload].secondary_out_icode;
7671 
7672 	      /* We'd have to add more code for quartary reloads.  */
7673 	      gcc_assert (tertiary_reload < 0
7674 			  || rld[tertiary_reload].secondary_out_reload < 0);
7675 
7676 	      if (GET_MODE (reloadreg) != mode)
7677 		reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7678 
7679 	      if (tertiary_icode != CODE_FOR_nothing)
7680 		{
7681 		  rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7682 
7683 		  /* Copy primary reload reg to secondary reload reg.
7684 		     (Note that these have been swapped above, then
7685 		     secondary reload reg to OLD using our insn.)  */
7686 
7687 		  /* If REAL_OLD is a paradoxical SUBREG, remove it
7688 		     and try to put the opposite SUBREG on
7689 		     RELOADREG.  */
7690 		  strip_paradoxical_subreg (&real_old, &reloadreg);
7691 
7692 		  gen_reload (reloadreg, second_reloadreg,
7693 			      rl->opnum, rl->when_needed);
7694 		  emit_insn ((GEN_FCN (tertiary_icode)
7695 			      (real_old, reloadreg, third_reloadreg)));
7696 		  special = 1;
7697 		}
7698 
7699 	      else
7700 		{
7701 		  /* Copy between the reload regs here and then to
7702 		     OUT later.  */
7703 
7704 		  gen_reload (reloadreg, second_reloadreg,
7705 			      rl->opnum, rl->when_needed);
7706 		  if (tertiary_reload >= 0)
7707 		    {
7708 		      rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7709 
7710 		      gen_reload (third_reloadreg, reloadreg,
7711 				  rl->opnum, rl->when_needed);
7712 		      reloadreg = third_reloadreg;
7713 		    }
7714 		}
7715 	    }
7716 	}
7717     }
7718 
7719   /* Output the last reload insn.  */
7720   if (! special)
7721     {
7722       rtx set;
7723 
7724       /* Don't output the last reload if OLD is not the dest of
7725 	 INSN and is in the src and is clobbered by INSN.  */
7726       if (! flag_expensive_optimizations
7727 	  || !REG_P (old)
7728 	  || !(set = single_set (insn))
7729 	  || rtx_equal_p (old, SET_DEST (set))
7730 	  || !reg_mentioned_p (old, SET_SRC (set))
7731 	  || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7732 	       && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7733 	gen_reload (old, reloadreg, rl->opnum,
7734 		    rl->when_needed);
7735     }
7736 
7737   /* Look at all insns we emitted, just to be safe.  */
7738   for (p = get_insns (); p; p = NEXT_INSN (p))
7739     if (INSN_P (p))
7740       {
7741 	rtx pat = PATTERN (p);
7742 
7743 	/* If this output reload doesn't come from a spill reg,
7744 	   clear any memory of reloaded copies of the pseudo reg.
7745 	   If this output reload comes from a spill reg,
7746 	   reg_has_output_reload will make this do nothing.  */
7747 	note_stores (pat, forget_old_reloads_1, NULL);
7748 
7749 	if (reg_mentioned_p (rl_reg_rtx, pat))
7750 	  {
7751 	    rtx set = single_set (insn);
7752 	    if (reload_spill_index[j] < 0
7753 		&& set
7754 		&& SET_SRC (set) == rl_reg_rtx)
7755 	      {
7756 		int src = REGNO (SET_SRC (set));
7757 
7758 		reload_spill_index[j] = src;
7759 		SET_HARD_REG_BIT (reg_is_output_reload, src);
7760 		if (find_regno_note (insn, REG_DEAD, src))
7761 		  SET_HARD_REG_BIT (reg_reloaded_died, src);
7762 	      }
7763 	    if (HARD_REGISTER_P (rl_reg_rtx))
7764 	      {
7765 		int s = rl->secondary_out_reload;
7766 		set = single_set (p);
7767 		/* If this reload copies only to the secondary reload
7768 		   register, the secondary reload does the actual
7769 		   store.  */
7770 		if (s >= 0 && set == NULL_RTX)
7771 		  /* We can't tell what function the secondary reload
7772 		     has and where the actual store to the pseudo is
7773 		     made; leave new_spill_reg_store alone.  */
7774 		  ;
7775 		else if (s >= 0
7776 			 && SET_SRC (set) == rl_reg_rtx
7777 			 && SET_DEST (set) == rld[s].reg_rtx)
7778 		  {
7779 		    /* Usually the next instruction will be the
7780 		       secondary reload insn;  if we can confirm
7781 		       that it is, setting new_spill_reg_store to
7782 		       that insn will allow an extra optimization.  */
7783 		    rtx s_reg = rld[s].reg_rtx;
7784 		    rtx next = NEXT_INSN (p);
7785 		    rld[s].out = rl->out;
7786 		    rld[s].out_reg = rl->out_reg;
7787 		    set = single_set (next);
7788 		    if (set && SET_SRC (set) == s_reg
7789 			&& reload_reg_rtx_reaches_end_p (s_reg, s))
7790 		      {
7791 			SET_HARD_REG_BIT (reg_is_output_reload,
7792 					  REGNO (s_reg));
7793 			new_spill_reg_store[REGNO (s_reg)] = next;
7794 		      }
7795 		  }
7796 		else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7797 		  new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7798 	      }
7799 	  }
7800       }
7801 
7802   if (rl->when_needed == RELOAD_OTHER)
7803     {
7804       emit_insn (other_output_reload_insns[rl->opnum]);
7805       other_output_reload_insns[rl->opnum] = get_insns ();
7806     }
7807   else
7808     output_reload_insns[rl->opnum] = get_insns ();
7809 
7810   if (cfun->can_throw_non_call_exceptions)
7811     copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7812 
7813   end_sequence ();
7814 }
7815 
7816 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7817    and has the number J.  */
7818 static void
7819 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7820 {
7821   rtx insn = chain->insn;
7822   rtx old = (rl->in && MEM_P (rl->in)
7823 	     ? rl->in_reg : rl->in);
7824   rtx reg_rtx = rl->reg_rtx;
7825 
7826   if (old && reg_rtx)
7827     {
7828       enum machine_mode mode;
7829 
7830       /* Determine the mode to reload in.
7831 	 This is very tricky because we have three to choose from.
7832 	 There is the mode the insn operand wants (rl->inmode).
7833 	 There is the mode of the reload register RELOADREG.
7834 	 There is the intrinsic mode of the operand, which we could find
7835 	 by stripping some SUBREGs.
7836 	 It turns out that RELOADREG's mode is irrelevant:
7837 	 we can change that arbitrarily.
7838 
7839 	 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7840 	 then the reload reg may not support QImode moves, so use SImode.
7841 	 If foo is in memory due to spilling a pseudo reg, this is safe,
7842 	 because the QImode value is in the least significant part of a
7843 	 slot big enough for a SImode.  If foo is some other sort of
7844 	 memory reference, then it is impossible to reload this case,
7845 	 so previous passes had better make sure this never happens.
7846 
7847 	 Then consider a one-word union which has SImode and one of its
7848 	 members is a float, being fetched as (SUBREG:SF union:SI).
7849 	 We must fetch that as SFmode because we could be loading into
7850 	 a float-only register.  In this case OLD's mode is correct.
7851 
7852 	 Consider an immediate integer: it has VOIDmode.  Here we need
7853 	 to get a mode from something else.
7854 
7855 	 In some cases, there is a fourth mode, the operand's
7856 	 containing mode.  If the insn specifies a containing mode for
7857 	 this operand, it overrides all others.
7858 
7859 	 I am not sure whether the algorithm here is always right,
7860 	 but it does the right things in those cases.  */
7861 
7862       mode = GET_MODE (old);
7863       if (mode == VOIDmode)
7864 	mode = rl->inmode;
7865 
7866       /* We cannot use gen_lowpart_common since it can do the wrong thing
7867 	 when REG_RTX has a multi-word mode.  Note that REG_RTX must
7868 	 always be a REG here.  */
7869       if (GET_MODE (reg_rtx) != mode)
7870 	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7871     }
7872   reload_reg_rtx_for_input[j] = reg_rtx;
7873 
7874   if (old != 0
7875       /* AUTO_INC reloads need to be handled even if inherited.  We got an
7876 	 AUTO_INC reload if reload_out is set but reload_out_reg isn't.  */
7877       && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7878       && ! rtx_equal_p (reg_rtx, old)
7879       && reg_rtx != 0)
7880     emit_input_reload_insns (chain, rld + j, old, j);
7881 
7882   /* When inheriting a wider reload, we have a MEM in rl->in,
7883      e.g. inheriting a SImode output reload for
7884      (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10)))  */
7885   if (optimize && reload_inherited[j] && rl->in
7886       && MEM_P (rl->in)
7887       && MEM_P (rl->in_reg)
7888       && reload_spill_index[j] >= 0
7889       && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7890     rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7891 
7892   /* If we are reloading a register that was recently stored in with an
7893      output-reload, see if we can prove there was
7894      actually no need to store the old value in it.  */
7895 
7896   if (optimize
7897       && (reload_inherited[j] || reload_override_in[j])
7898       && reg_rtx
7899       && REG_P (reg_rtx)
7900       && spill_reg_store[REGNO (reg_rtx)] != 0
7901 #if 0
7902       /* There doesn't seem to be any reason to restrict this to pseudos
7903 	 and doing so loses in the case where we are copying from a
7904 	 register of the wrong class.  */
7905       && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7906 #endif
7907       /* The insn might have already some references to stackslots
7908 	 replaced by MEMs, while reload_out_reg still names the
7909 	 original pseudo.  */
7910       && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7911 	  || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7912     delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7913 }
7914 
7915 /* Do output reloading for reload RL, which is for the insn described by
7916    CHAIN and has the number J.
7917    ??? At some point we need to support handling output reloads of
7918    JUMP_INSNs or insns that set cc0.  */
7919 static void
7920 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7921 {
7922   rtx note, old;
7923   rtx insn = chain->insn;
7924   /* If this is an output reload that stores something that is
7925      not loaded in this same reload, see if we can eliminate a previous
7926      store.  */
7927   rtx pseudo = rl->out_reg;
7928   rtx reg_rtx = rl->reg_rtx;
7929 
7930   if (rl->out && reg_rtx)
7931     {
7932       enum machine_mode mode;
7933 
7934       /* Determine the mode to reload in.
7935 	 See comments above (for input reloading).  */
7936       mode = GET_MODE (rl->out);
7937       if (mode == VOIDmode)
7938 	{
7939 	  /* VOIDmode should never happen for an output.  */
7940 	  if (asm_noperands (PATTERN (insn)) < 0)
7941 	    /* It's the compiler's fault.  */
7942 	    fatal_insn ("VOIDmode on an output", insn);
7943 	  error_for_asm (insn, "output operand is constant in %<asm%>");
7944 	  /* Prevent crash--use something we know is valid.  */
7945 	  mode = word_mode;
7946 	  rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7947 	}
7948       if (GET_MODE (reg_rtx) != mode)
7949 	reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7950     }
7951   reload_reg_rtx_for_output[j] = reg_rtx;
7952 
7953   if (pseudo
7954       && optimize
7955       && REG_P (pseudo)
7956       && ! rtx_equal_p (rl->in_reg, pseudo)
7957       && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7958       && reg_last_reload_reg[REGNO (pseudo)])
7959     {
7960       int pseudo_no = REGNO (pseudo);
7961       int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7962 
7963       /* We don't need to test full validity of last_regno for
7964 	 inherit here; we only want to know if the store actually
7965 	 matches the pseudo.  */
7966       if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7967 	  && reg_reloaded_contents[last_regno] == pseudo_no
7968 	  && spill_reg_store[last_regno]
7969 	  && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7970 	delete_output_reload (insn, j, last_regno, reg_rtx);
7971     }
7972 
7973   old = rl->out_reg;
7974   if (old == 0
7975       || reg_rtx == 0
7976       || rtx_equal_p (old, reg_rtx))
7977     return;
7978 
7979   /* An output operand that dies right away does need a reload,
7980      but need not be copied from it.  Show the new location in the
7981      REG_UNUSED note.  */
7982   if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7983       && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7984     {
7985       XEXP (note, 0) = reg_rtx;
7986       return;
7987     }
7988   /* Likewise for a SUBREG of an operand that dies.  */
7989   else if (GET_CODE (old) == SUBREG
7990 	   && REG_P (SUBREG_REG (old))
7991 	   && 0 != (note = find_reg_note (insn, REG_UNUSED,
7992 					  SUBREG_REG (old))))
7993     {
7994       XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7995       return;
7996     }
7997   else if (GET_CODE (old) == SCRATCH)
7998     /* If we aren't optimizing, there won't be a REG_UNUSED note,
7999        but we don't want to make an output reload.  */
8000     return;
8001 
8002   /* If is a JUMP_INSN, we can't support output reloads yet.  */
8003   gcc_assert (NONJUMP_INSN_P (insn));
8004 
8005   emit_output_reload_insns (chain, rld + j, j);
8006 }
8007 
8008 /* A reload copies values of MODE from register SRC to register DEST.
8009    Return true if it can be treated for inheritance purposes like a
8010    group of reloads, each one reloading a single hard register.  The
8011    caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8012    occupy the same number of hard registers.  */
8013 
8014 static bool
8015 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8016 		     int src ATTRIBUTE_UNUSED,
8017 		     enum machine_mode mode ATTRIBUTE_UNUSED)
8018 {
8019 #ifdef CANNOT_CHANGE_MODE_CLASS
8020   return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8021 	  && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8022 #else
8023   return true;
8024 #endif
8025 }
8026 
8027 /* Output insns to reload values in and out of the chosen reload regs.  */
8028 
8029 static void
8030 emit_reload_insns (struct insn_chain *chain)
8031 {
8032   rtx insn = chain->insn;
8033 
8034   int j;
8035 
8036   CLEAR_HARD_REG_SET (reg_reloaded_died);
8037 
8038   for (j = 0; j < reload_n_operands; j++)
8039     input_reload_insns[j] = input_address_reload_insns[j]
8040       = inpaddr_address_reload_insns[j]
8041       = output_reload_insns[j] = output_address_reload_insns[j]
8042       = outaddr_address_reload_insns[j]
8043       = other_output_reload_insns[j] = 0;
8044   other_input_address_reload_insns = 0;
8045   other_input_reload_insns = 0;
8046   operand_reload_insns = 0;
8047   other_operand_reload_insns = 0;
8048 
8049   /* Dump reloads into the dump file.  */
8050   if (dump_file)
8051     {
8052       fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8053       debug_reload_to_stream (dump_file);
8054     }
8055 
8056   for (j = 0; j < n_reloads; j++)
8057     if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8058       {
8059 	unsigned int i;
8060 
8061 	for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8062 	  new_spill_reg_store[i] = 0;
8063       }
8064 
8065   /* Now output the instructions to copy the data into and out of the
8066      reload registers.  Do these in the order that the reloads were reported,
8067      since reloads of base and index registers precede reloads of operands
8068      and the operands may need the base and index registers reloaded.  */
8069 
8070   for (j = 0; j < n_reloads; j++)
8071     {
8072       do_input_reload (chain, rld + j, j);
8073       do_output_reload (chain, rld + j, j);
8074     }
8075 
8076   /* Now write all the insns we made for reloads in the order expected by
8077      the allocation functions.  Prior to the insn being reloaded, we write
8078      the following reloads:
8079 
8080      RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8081 
8082      RELOAD_OTHER reloads.
8083 
8084      For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8085      by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8086      RELOAD_FOR_INPUT reload for the operand.
8087 
8088      RELOAD_FOR_OPADDR_ADDRS reloads.
8089 
8090      RELOAD_FOR_OPERAND_ADDRESS reloads.
8091 
8092      After the insn being reloaded, we write the following:
8093 
8094      For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8095      by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8096      RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8097      reloads for the operand.  The RELOAD_OTHER output reloads are
8098      output in descending order by reload number.  */
8099 
8100   emit_insn_before (other_input_address_reload_insns, insn);
8101   emit_insn_before (other_input_reload_insns, insn);
8102 
8103   for (j = 0; j < reload_n_operands; j++)
8104     {
8105       emit_insn_before (inpaddr_address_reload_insns[j], insn);
8106       emit_insn_before (input_address_reload_insns[j], insn);
8107       emit_insn_before (input_reload_insns[j], insn);
8108     }
8109 
8110   emit_insn_before (other_operand_reload_insns, insn);
8111   emit_insn_before (operand_reload_insns, insn);
8112 
8113   for (j = 0; j < reload_n_operands; j++)
8114     {
8115       rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8116       x = emit_insn_after (output_address_reload_insns[j], x);
8117       x = emit_insn_after (output_reload_insns[j], x);
8118       emit_insn_after (other_output_reload_insns[j], x);
8119     }
8120 
8121   /* For all the spill regs newly reloaded in this instruction,
8122      record what they were reloaded from, so subsequent instructions
8123      can inherit the reloads.
8124 
8125      Update spill_reg_store for the reloads of this insn.
8126      Copy the elements that were updated in the loop above.  */
8127 
8128   for (j = 0; j < n_reloads; j++)
8129     {
8130       int r = reload_order[j];
8131       int i = reload_spill_index[r];
8132 
8133       /* If this is a non-inherited input reload from a pseudo, we must
8134 	 clear any memory of a previous store to the same pseudo.  Only do
8135 	 something if there will not be an output reload for the pseudo
8136 	 being reloaded.  */
8137       if (rld[r].in_reg != 0
8138 	  && ! (reload_inherited[r] || reload_override_in[r]))
8139 	{
8140 	  rtx reg = rld[r].in_reg;
8141 
8142 	  if (GET_CODE (reg) == SUBREG)
8143 	    reg = SUBREG_REG (reg);
8144 
8145 	  if (REG_P (reg)
8146 	      && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8147 	      && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8148 	    {
8149 	      int nregno = REGNO (reg);
8150 
8151 	      if (reg_last_reload_reg[nregno])
8152 		{
8153 		  int last_regno = REGNO (reg_last_reload_reg[nregno]);
8154 
8155 		  if (reg_reloaded_contents[last_regno] == nregno)
8156 		    spill_reg_store[last_regno] = 0;
8157 		}
8158 	    }
8159 	}
8160 
8161       /* I is nonneg if this reload used a register.
8162 	 If rld[r].reg_rtx is 0, this is an optional reload
8163 	 that we opted to ignore.  */
8164 
8165       if (i >= 0 && rld[r].reg_rtx != 0)
8166 	{
8167 	  int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8168 	  int k;
8169 
8170 	  /* For a multi register reload, we need to check if all or part
8171 	     of the value lives to the end.  */
8172 	  for (k = 0; k < nr; k++)
8173 	    if (reload_reg_reaches_end_p (i + k, r))
8174 	      CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8175 
8176 	  /* Maybe the spill reg contains a copy of reload_out.  */
8177 	  if (rld[r].out != 0
8178 	      && (REG_P (rld[r].out)
8179 		  || (rld[r].out_reg
8180 		      ? REG_P (rld[r].out_reg)
8181 		      /* The reload value is an auto-modification of
8182 			 some kind.  For PRE_INC, POST_INC, PRE_DEC
8183 			 and POST_DEC, we record an equivalence
8184 			 between the reload register and the operand
8185 			 on the optimistic assumption that we can make
8186 			 the equivalence hold.  reload_as_needed must
8187 			 then either make it hold or invalidate the
8188 			 equivalence.
8189 
8190 			 PRE_MODIFY and POST_MODIFY addresses are reloaded
8191 			 somewhat differently, and allowing them here leads
8192 			 to problems.  */
8193 		      : (GET_CODE (rld[r].out) != POST_MODIFY
8194 			 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8195 	    {
8196 	      rtx reg;
8197 
8198 	      reg = reload_reg_rtx_for_output[r];
8199 	      if (reload_reg_rtx_reaches_end_p (reg, r))
8200 		{
8201 		  enum machine_mode mode = GET_MODE (reg);
8202 		  int regno = REGNO (reg);
8203 		  int nregs = hard_regno_nregs[regno][mode];
8204 		  rtx out = (REG_P (rld[r].out)
8205 			     ? rld[r].out
8206 			     : rld[r].out_reg
8207 			     ? rld[r].out_reg
8208 /* AUTO_INC */		     : XEXP (rld[r].in_reg, 0));
8209 		  int out_regno = REGNO (out);
8210 		  int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8211 				   : hard_regno_nregs[out_regno][mode]);
8212 		  bool piecemeal;
8213 
8214 		  spill_reg_store[regno] = new_spill_reg_store[regno];
8215 		  spill_reg_stored_to[regno] = out;
8216 		  reg_last_reload_reg[out_regno] = reg;
8217 
8218 		  piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8219 			       && nregs == out_nregs
8220 			       && inherit_piecemeal_p (out_regno, regno, mode));
8221 
8222 		  /* If OUT_REGNO is a hard register, it may occupy more than
8223 		     one register.  If it does, say what is in the
8224 		     rest of the registers assuming that both registers
8225 		     agree on how many words the object takes.  If not,
8226 		     invalidate the subsequent registers.  */
8227 
8228 		  if (HARD_REGISTER_NUM_P (out_regno))
8229 		    for (k = 1; k < out_nregs; k++)
8230 		      reg_last_reload_reg[out_regno + k]
8231 			= (piecemeal ? regno_reg_rtx[regno + k] : 0);
8232 
8233 		  /* Now do the inverse operation.  */
8234 		  for (k = 0; k < nregs; k++)
8235 		    {
8236 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8237 		      reg_reloaded_contents[regno + k]
8238 			= (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8239 			   ? out_regno
8240 			   : out_regno + k);
8241 		      reg_reloaded_insn[regno + k] = insn;
8242 		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8243 		      if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8244 			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8245 					  regno + k);
8246 		      else
8247 			CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8248 					    regno + k);
8249 		    }
8250 		}
8251 	    }
8252 	  /* Maybe the spill reg contains a copy of reload_in.  Only do
8253 	     something if there will not be an output reload for
8254 	     the register being reloaded.  */
8255 	  else if (rld[r].out_reg == 0
8256 		   && rld[r].in != 0
8257 		   && ((REG_P (rld[r].in)
8258 			&& !HARD_REGISTER_P (rld[r].in)
8259 			&& !REGNO_REG_SET_P (&reg_has_output_reload,
8260 					     REGNO (rld[r].in)))
8261 		       || (REG_P (rld[r].in_reg)
8262 			   && !REGNO_REG_SET_P (&reg_has_output_reload,
8263 						REGNO (rld[r].in_reg))))
8264 		   && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8265 	    {
8266 	      rtx reg;
8267 
8268 	      reg = reload_reg_rtx_for_input[r];
8269 	      if (reload_reg_rtx_reaches_end_p (reg, r))
8270 		{
8271 		  enum machine_mode mode;
8272 		  int regno;
8273 		  int nregs;
8274 		  int in_regno;
8275 		  int in_nregs;
8276 		  rtx in;
8277 		  bool piecemeal;
8278 
8279 		  mode = GET_MODE (reg);
8280 		  regno = REGNO (reg);
8281 		  nregs = hard_regno_nregs[regno][mode];
8282 		  if (REG_P (rld[r].in)
8283 		      && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8284 		    in = rld[r].in;
8285 		  else if (REG_P (rld[r].in_reg))
8286 		    in = rld[r].in_reg;
8287 		  else
8288 		    in = XEXP (rld[r].in_reg, 0);
8289 		  in_regno = REGNO (in);
8290 
8291 		  in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8292 			      : hard_regno_nregs[in_regno][mode]);
8293 
8294 		  reg_last_reload_reg[in_regno] = reg;
8295 
8296 		  piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8297 			       && nregs == in_nregs
8298 			       && inherit_piecemeal_p (regno, in_regno, mode));
8299 
8300 		  if (HARD_REGISTER_NUM_P (in_regno))
8301 		    for (k = 1; k < in_nregs; k++)
8302 		      reg_last_reload_reg[in_regno + k]
8303 			= (piecemeal ? regno_reg_rtx[regno + k] : 0);
8304 
8305 		  /* Unless we inherited this reload, show we haven't
8306 		     recently done a store.
8307 		     Previous stores of inherited auto_inc expressions
8308 		     also have to be discarded.  */
8309 		  if (! reload_inherited[r]
8310 		      || (rld[r].out && ! rld[r].out_reg))
8311 		    spill_reg_store[regno] = 0;
8312 
8313 		  for (k = 0; k < nregs; k++)
8314 		    {
8315 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8316 		      reg_reloaded_contents[regno + k]
8317 			= (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8318 			   ? in_regno
8319 			   : in_regno + k);
8320 		      reg_reloaded_insn[regno + k] = insn;
8321 		      SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8322 		      if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8323 			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8324 					  regno + k);
8325 		      else
8326 			CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8327 					    regno + k);
8328 		    }
8329 		}
8330 	    }
8331 	}
8332 
8333       /* The following if-statement was #if 0'd in 1.34 (or before...).
8334 	 It's reenabled in 1.35 because supposedly nothing else
8335 	 deals with this problem.  */
8336 
8337       /* If a register gets output-reloaded from a non-spill register,
8338 	 that invalidates any previous reloaded copy of it.
8339 	 But forget_old_reloads_1 won't get to see it, because
8340 	 it thinks only about the original insn.  So invalidate it here.
8341 	 Also do the same thing for RELOAD_OTHER constraints where the
8342 	 output is discarded.  */
8343       if (i < 0
8344 	  && ((rld[r].out != 0
8345 	       && (REG_P (rld[r].out)
8346 		   || (MEM_P (rld[r].out)
8347 		       && REG_P (rld[r].out_reg))))
8348 	      || (rld[r].out == 0 && rld[r].out_reg
8349 		  && REG_P (rld[r].out_reg))))
8350 	{
8351 	  rtx out = ((rld[r].out && REG_P (rld[r].out))
8352 		     ? rld[r].out : rld[r].out_reg);
8353 	  int out_regno = REGNO (out);
8354 	  enum machine_mode mode = GET_MODE (out);
8355 
8356 	  /* REG_RTX is now set or clobbered by the main instruction.
8357 	     As the comment above explains, forget_old_reloads_1 only
8358 	     sees the original instruction, and there is no guarantee
8359 	     that the original instruction also clobbered REG_RTX.
8360 	     For example, if find_reloads sees that the input side of
8361 	     a matched operand pair dies in this instruction, it may
8362 	     use the input register as the reload register.
8363 
8364 	     Calling forget_old_reloads_1 is a waste of effort if
8365 	     REG_RTX is also the output register.
8366 
8367 	     If we know that REG_RTX holds the value of a pseudo
8368 	     register, the code after the call will record that fact.  */
8369 	  if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8370 	    forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8371 
8372 	  if (!HARD_REGISTER_NUM_P (out_regno))
8373 	    {
8374 	      rtx src_reg, store_insn = NULL_RTX;
8375 
8376 	      reg_last_reload_reg[out_regno] = 0;
8377 
8378 	      /* If we can find a hard register that is stored, record
8379 		 the storing insn so that we may delete this insn with
8380 		 delete_output_reload.  */
8381 	      src_reg = reload_reg_rtx_for_output[r];
8382 
8383 	      if (src_reg)
8384 		{
8385 		  if (reload_reg_rtx_reaches_end_p (src_reg, r))
8386 		    store_insn = new_spill_reg_store[REGNO (src_reg)];
8387 		  else
8388 		    src_reg = NULL_RTX;
8389 		}
8390 	      else
8391 		{
8392 		  /* If this is an optional reload, try to find the
8393 		     source reg from an input reload.  */
8394 		  rtx set = single_set (insn);
8395 		  if (set && SET_DEST (set) == rld[r].out)
8396 		    {
8397 		      int k;
8398 
8399 		      src_reg = SET_SRC (set);
8400 		      store_insn = insn;
8401 		      for (k = 0; k < n_reloads; k++)
8402 			{
8403 			  if (rld[k].in == src_reg)
8404 			    {
8405 			      src_reg = reload_reg_rtx_for_input[k];
8406 			      break;
8407 			    }
8408 			}
8409 		    }
8410 		}
8411 	      if (src_reg && REG_P (src_reg)
8412 		  && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8413 		{
8414 		  int src_regno, src_nregs, k;
8415 		  rtx note;
8416 
8417 		  gcc_assert (GET_MODE (src_reg) == mode);
8418 		  src_regno = REGNO (src_reg);
8419 		  src_nregs = hard_regno_nregs[src_regno][mode];
8420 		  /* The place where to find a death note varies with
8421 		     PRESERVE_DEATH_INFO_REGNO_P .  The condition is not
8422 		     necessarily checked exactly in the code that moves
8423 		     notes, so just check both locations.  */
8424 		  note = find_regno_note (insn, REG_DEAD, src_regno);
8425 		  if (! note && store_insn)
8426 		    note = find_regno_note (store_insn, REG_DEAD, src_regno);
8427 		  for (k = 0; k < src_nregs; k++)
8428 		    {
8429 		      spill_reg_store[src_regno + k] = store_insn;
8430 		      spill_reg_stored_to[src_regno + k] = out;
8431 		      reg_reloaded_contents[src_regno + k] = out_regno;
8432 		      reg_reloaded_insn[src_regno + k] = store_insn;
8433 		      CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8434 		      SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8435 		      if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8436 							  mode))
8437 			SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8438 					  src_regno + k);
8439 		      else
8440 			CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8441 					    src_regno + k);
8442 		      SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8443 		      if (note)
8444 			SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8445 		      else
8446 			CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8447 		    }
8448 		  reg_last_reload_reg[out_regno] = src_reg;
8449 		  /* We have to set reg_has_output_reload here, or else
8450 		     forget_old_reloads_1 will clear reg_last_reload_reg
8451 		     right away.  */
8452 		  SET_REGNO_REG_SET (&reg_has_output_reload,
8453 				     out_regno);
8454 		}
8455 	    }
8456 	  else
8457 	    {
8458 	      int k, out_nregs = hard_regno_nregs[out_regno][mode];
8459 
8460 	      for (k = 0; k < out_nregs; k++)
8461 		reg_last_reload_reg[out_regno + k] = 0;
8462 	    }
8463 	}
8464     }
8465   IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8466 }
8467 
8468 /* Go through the motions to emit INSN and test if it is strictly valid.
8469    Return the emitted insn if valid, else return NULL.  */
8470 
8471 static rtx
8472 emit_insn_if_valid_for_reload (rtx insn)
8473 {
8474   rtx last = get_last_insn ();
8475   int code;
8476 
8477   insn = emit_insn (insn);
8478   code = recog_memoized (insn);
8479 
8480   if (code >= 0)
8481     {
8482       extract_insn (insn);
8483       /* We want constrain operands to treat this insn strictly in its
8484 	 validity determination, i.e., the way it would after reload has
8485 	 completed.  */
8486       if (constrain_operands (1))
8487 	return insn;
8488     }
8489 
8490   delete_insns_since (last);
8491   return NULL;
8492 }
8493 
8494 /* Emit code to perform a reload from IN (which may be a reload register) to
8495    OUT (which may also be a reload register).  IN or OUT is from operand
8496    OPNUM with reload type TYPE.
8497 
8498    Returns first insn emitted.  */
8499 
8500 static rtx
8501 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8502 {
8503   rtx last = get_last_insn ();
8504   rtx tem;
8505 #ifdef SECONDARY_MEMORY_NEEDED
8506   rtx tem1, tem2;
8507 #endif
8508 
8509   /* If IN is a paradoxical SUBREG, remove it and try to put the
8510      opposite SUBREG on OUT.  Likewise for a paradoxical SUBREG on OUT.  */
8511   if (!strip_paradoxical_subreg (&in, &out))
8512     strip_paradoxical_subreg (&out, &in);
8513 
8514   /* How to do this reload can get quite tricky.  Normally, we are being
8515      asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8516      register that didn't get a hard register.  In that case we can just
8517      call emit_move_insn.
8518 
8519      We can also be asked to reload a PLUS that adds a register or a MEM to
8520      another register, constant or MEM.  This can occur during frame pointer
8521      elimination and while reloading addresses.  This case is handled by
8522      trying to emit a single insn to perform the add.  If it is not valid,
8523      we use a two insn sequence.
8524 
8525      Or we can be asked to reload an unary operand that was a fragment of
8526      an addressing mode, into a register.  If it isn't recognized as-is,
8527      we try making the unop operand and the reload-register the same:
8528      (set reg:X (unop:X expr:Y))
8529      -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8530 
8531      Finally, we could be called to handle an 'o' constraint by putting
8532      an address into a register.  In that case, we first try to do this
8533      with a named pattern of "reload_load_address".  If no such pattern
8534      exists, we just emit a SET insn and hope for the best (it will normally
8535      be valid on machines that use 'o').
8536 
8537      This entire process is made complex because reload will never
8538      process the insns we generate here and so we must ensure that
8539      they will fit their constraints and also by the fact that parts of
8540      IN might be being reloaded separately and replaced with spill registers.
8541      Because of this, we are, in some sense, just guessing the right approach
8542      here.  The one listed above seems to work.
8543 
8544      ??? At some point, this whole thing needs to be rethought.  */
8545 
8546   if (GET_CODE (in) == PLUS
8547       && (REG_P (XEXP (in, 0))
8548 	  || GET_CODE (XEXP (in, 0)) == SUBREG
8549 	  || MEM_P (XEXP (in, 0)))
8550       && (REG_P (XEXP (in, 1))
8551 	  || GET_CODE (XEXP (in, 1)) == SUBREG
8552 	  || CONSTANT_P (XEXP (in, 1))
8553 	  || MEM_P (XEXP (in, 1))))
8554     {
8555       /* We need to compute the sum of a register or a MEM and another
8556 	 register, constant, or MEM, and put it into the reload
8557 	 register.  The best possible way of doing this is if the machine
8558 	 has a three-operand ADD insn that accepts the required operands.
8559 
8560 	 The simplest approach is to try to generate such an insn and see if it
8561 	 is recognized and matches its constraints.  If so, it can be used.
8562 
8563 	 It might be better not to actually emit the insn unless it is valid,
8564 	 but we need to pass the insn as an operand to `recog' and
8565 	 `extract_insn' and it is simpler to emit and then delete the insn if
8566 	 not valid than to dummy things up.  */
8567 
8568       rtx op0, op1, tem, insn;
8569       enum insn_code code;
8570 
8571       op0 = find_replacement (&XEXP (in, 0));
8572       op1 = find_replacement (&XEXP (in, 1));
8573 
8574       /* Since constraint checking is strict, commutativity won't be
8575 	 checked, so we need to do that here to avoid spurious failure
8576 	 if the add instruction is two-address and the second operand
8577 	 of the add is the same as the reload reg, which is frequently
8578 	 the case.  If the insn would be A = B + A, rearrange it so
8579 	 it will be A = A + B as constrain_operands expects.  */
8580 
8581       if (REG_P (XEXP (in, 1))
8582 	  && REGNO (out) == REGNO (XEXP (in, 1)))
8583 	tem = op0, op0 = op1, op1 = tem;
8584 
8585       if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8586 	in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8587 
8588       insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8589       if (insn)
8590 	return insn;
8591 
8592       /* If that failed, we must use a conservative two-insn sequence.
8593 
8594 	 Use a move to copy one operand into the reload register.  Prefer
8595 	 to reload a constant, MEM or pseudo since the move patterns can
8596 	 handle an arbitrary operand.  If OP1 is not a constant, MEM or
8597 	 pseudo and OP1 is not a valid operand for an add instruction, then
8598 	 reload OP1.
8599 
8600 	 After reloading one of the operands into the reload register, add
8601 	 the reload register to the output register.
8602 
8603 	 If there is another way to do this for a specific machine, a
8604 	 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8605 	 we emit below.  */
8606 
8607       code = optab_handler (add_optab, GET_MODE (out));
8608 
8609       if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8610 	  || (REG_P (op1)
8611 	      && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8612 	  || (code != CODE_FOR_nothing
8613 	      && !insn_operand_matches (code, 2, op1)))
8614 	tem = op0, op0 = op1, op1 = tem;
8615 
8616       gen_reload (out, op0, opnum, type);
8617 
8618       /* If OP0 and OP1 are the same, we can use OUT for OP1.
8619 	 This fixes a problem on the 32K where the stack pointer cannot
8620 	 be used as an operand of an add insn.  */
8621 
8622       if (rtx_equal_p (op0, op1))
8623 	op1 = out;
8624 
8625       insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8626       if (insn)
8627 	{
8628 	  /* Add a REG_EQUIV note so that find_equiv_reg can find it.  */
8629 	  set_dst_reg_note (insn, REG_EQUIV, in, out);
8630 	  return insn;
8631 	}
8632 
8633       /* If that failed, copy the address register to the reload register.
8634 	 Then add the constant to the reload register.  */
8635 
8636       gcc_assert (!reg_overlap_mentioned_p (out, op0));
8637       gen_reload (out, op1, opnum, type);
8638       insn = emit_insn (gen_add2_insn (out, op0));
8639       set_dst_reg_note (insn, REG_EQUIV, in, out);
8640     }
8641 
8642 #ifdef SECONDARY_MEMORY_NEEDED
8643   /* If we need a memory location to do the move, do it that way.  */
8644   else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8645 	    (REG_P (tem1) && REG_P (tem2)))
8646 	   && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8647 	   && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8648 	   && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8649 				       REGNO_REG_CLASS (REGNO (tem2)),
8650 				       GET_MODE (out)))
8651     {
8652       /* Get the memory to use and rewrite both registers to its mode.  */
8653       rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8654 
8655       if (GET_MODE (loc) != GET_MODE (out))
8656 	out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8657 
8658       if (GET_MODE (loc) != GET_MODE (in))
8659 	in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8660 
8661       gen_reload (loc, in, opnum, type);
8662       gen_reload (out, loc, opnum, type);
8663     }
8664 #endif
8665   else if (REG_P (out) && UNARY_P (in))
8666     {
8667       rtx insn;
8668       rtx op1;
8669       rtx out_moded;
8670       rtx set;
8671 
8672       op1 = find_replacement (&XEXP (in, 0));
8673       if (op1 != XEXP (in, 0))
8674 	in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8675 
8676       /* First, try a plain SET.  */
8677       set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8678       if (set)
8679 	return set;
8680 
8681       /* If that failed, move the inner operand to the reload
8682 	 register, and try the same unop with the inner expression
8683 	 replaced with the reload register.  */
8684 
8685       if (GET_MODE (op1) != GET_MODE (out))
8686 	out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8687       else
8688 	out_moded = out;
8689 
8690       gen_reload (out_moded, op1, opnum, type);
8691 
8692       insn
8693 	= gen_rtx_SET (VOIDmode, out,
8694 		       gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8695 				      out_moded));
8696       insn = emit_insn_if_valid_for_reload (insn);
8697       if (insn)
8698 	{
8699 	  set_unique_reg_note (insn, REG_EQUIV, in);
8700 	  return insn;
8701 	}
8702 
8703       fatal_insn ("failure trying to reload:", set);
8704     }
8705   /* If IN is a simple operand, use gen_move_insn.  */
8706   else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8707     {
8708       tem = emit_insn (gen_move_insn (out, in));
8709       /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note.  */
8710       mark_jump_label (in, tem, 0);
8711     }
8712 
8713 #ifdef HAVE_reload_load_address
8714   else if (HAVE_reload_load_address)
8715     emit_insn (gen_reload_load_address (out, in));
8716 #endif
8717 
8718   /* Otherwise, just write (set OUT IN) and hope for the best.  */
8719   else
8720     emit_insn (gen_rtx_SET (VOIDmode, out, in));
8721 
8722   /* Return the first insn emitted.
8723      We can not just return get_last_insn, because there may have
8724      been multiple instructions emitted.  Also note that gen_move_insn may
8725      emit more than one insn itself, so we can not assume that there is one
8726      insn emitted per emit_insn_before call.  */
8727 
8728   return last ? NEXT_INSN (last) : get_insns ();
8729 }
8730 
8731 /* Delete a previously made output-reload whose result we now believe
8732    is not needed.  First we double-check.
8733 
8734    INSN is the insn now being processed.
8735    LAST_RELOAD_REG is the hard register number for which we want to delete
8736    the last output reload.
8737    J is the reload-number that originally used REG.  The caller has made
8738    certain that reload J doesn't use REG any longer for input.
8739    NEW_RELOAD_REG is reload register that reload J is using for REG.  */
8740 
8741 static void
8742 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8743 {
8744   rtx output_reload_insn = spill_reg_store[last_reload_reg];
8745   rtx reg = spill_reg_stored_to[last_reload_reg];
8746   int k;
8747   int n_occurrences;
8748   int n_inherited = 0;
8749   rtx i1;
8750   rtx substed;
8751   unsigned regno;
8752   int nregs;
8753 
8754   /* It is possible that this reload has been only used to set another reload
8755      we eliminated earlier and thus deleted this instruction too.  */
8756   if (INSN_DELETED_P (output_reload_insn))
8757     return;
8758 
8759   /* Get the raw pseudo-register referred to.  */
8760 
8761   while (GET_CODE (reg) == SUBREG)
8762     reg = SUBREG_REG (reg);
8763   substed = reg_equiv_memory_loc (REGNO (reg));
8764 
8765   /* This is unsafe if the operand occurs more often in the current
8766      insn than it is inherited.  */
8767   for (k = n_reloads - 1; k >= 0; k--)
8768     {
8769       rtx reg2 = rld[k].in;
8770       if (! reg2)
8771 	continue;
8772       if (MEM_P (reg2) || reload_override_in[k])
8773 	reg2 = rld[k].in_reg;
8774 #ifdef AUTO_INC_DEC
8775       if (rld[k].out && ! rld[k].out_reg)
8776 	reg2 = XEXP (rld[k].in_reg, 0);
8777 #endif
8778       while (GET_CODE (reg2) == SUBREG)
8779 	reg2 = SUBREG_REG (reg2);
8780       if (rtx_equal_p (reg2, reg))
8781 	{
8782 	  if (reload_inherited[k] || reload_override_in[k] || k == j)
8783 	    n_inherited++;
8784 	  else
8785 	    return;
8786 	}
8787     }
8788   n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8789   if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8790     n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8791 					reg, 0);
8792   if (substed)
8793     n_occurrences += count_occurrences (PATTERN (insn),
8794 					eliminate_regs (substed, VOIDmode,
8795 							NULL_RTX), 0);
8796   for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8797     {
8798       gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8799       n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8800     }
8801   if (n_occurrences > n_inherited)
8802     return;
8803 
8804   regno = REGNO (reg);
8805   if (regno >= FIRST_PSEUDO_REGISTER)
8806     nregs = 1;
8807   else
8808     nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8809 
8810   /* If the pseudo-reg we are reloading is no longer referenced
8811      anywhere between the store into it and here,
8812      and we're within the same basic block, then the value can only
8813      pass through the reload reg and end up here.
8814      Otherwise, give up--return.  */
8815   for (i1 = NEXT_INSN (output_reload_insn);
8816        i1 != insn; i1 = NEXT_INSN (i1))
8817     {
8818       if (NOTE_INSN_BASIC_BLOCK_P (i1))
8819 	return;
8820       if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8821 	  && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8822 	{
8823 	  /* If this is USE in front of INSN, we only have to check that
8824 	     there are no more references than accounted for by inheritance.  */
8825 	  while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8826 	    {
8827 	      n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8828 	      i1 = NEXT_INSN (i1);
8829 	    }
8830 	  if (n_occurrences <= n_inherited && i1 == insn)
8831 	    break;
8832 	  return;
8833 	}
8834     }
8835 
8836   /* We will be deleting the insn.  Remove the spill reg information.  */
8837   for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8838     {
8839       spill_reg_store[last_reload_reg + k] = 0;
8840       spill_reg_stored_to[last_reload_reg + k] = 0;
8841     }
8842 
8843   /* The caller has already checked that REG dies or is set in INSN.
8844      It has also checked that we are optimizing, and thus some
8845      inaccuracies in the debugging information are acceptable.
8846      So we could just delete output_reload_insn.  But in some cases
8847      we can improve the debugging information without sacrificing
8848      optimization - maybe even improving the code: See if the pseudo
8849      reg has been completely replaced with reload regs.  If so, delete
8850      the store insn and forget we had a stack slot for the pseudo.  */
8851   if (rld[j].out != rld[j].in
8852       && REG_N_DEATHS (REGNO (reg)) == 1
8853       && REG_N_SETS (REGNO (reg)) == 1
8854       && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8855       && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8856     {
8857       rtx i2;
8858 
8859       /* We know that it was used only between here and the beginning of
8860 	 the current basic block.  (We also know that the last use before
8861 	 INSN was the output reload we are thinking of deleting, but never
8862 	 mind that.)  Search that range; see if any ref remains.  */
8863       for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8864 	{
8865 	  rtx set = single_set (i2);
8866 
8867 	  /* Uses which just store in the pseudo don't count,
8868 	     since if they are the only uses, they are dead.  */
8869 	  if (set != 0 && SET_DEST (set) == reg)
8870 	    continue;
8871 	  if (LABEL_P (i2)
8872 	      || JUMP_P (i2))
8873 	    break;
8874 	  if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8875 	      && reg_mentioned_p (reg, PATTERN (i2)))
8876 	    {
8877 	      /* Some other ref remains; just delete the output reload we
8878 		 know to be dead.  */
8879 	      delete_address_reloads (output_reload_insn, insn);
8880 	      delete_insn (output_reload_insn);
8881 	      return;
8882 	    }
8883 	}
8884 
8885       /* Delete the now-dead stores into this pseudo.  Note that this
8886 	 loop also takes care of deleting output_reload_insn.  */
8887       for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8888 	{
8889 	  rtx set = single_set (i2);
8890 
8891 	  if (set != 0 && SET_DEST (set) == reg)
8892 	    {
8893 	      delete_address_reloads (i2, insn);
8894 	      delete_insn (i2);
8895 	    }
8896 	  if (LABEL_P (i2)
8897 	      || JUMP_P (i2))
8898 	    break;
8899 	}
8900 
8901       /* For the debugging info, say the pseudo lives in this reload reg.  */
8902       reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8903       if (ira_conflicts_p)
8904 	/* Inform IRA about the change.  */
8905 	ira_mark_allocation_change (REGNO (reg));
8906       alter_reg (REGNO (reg), -1, false);
8907     }
8908   else
8909     {
8910       delete_address_reloads (output_reload_insn, insn);
8911       delete_insn (output_reload_insn);
8912     }
8913 }
8914 
8915 /* We are going to delete DEAD_INSN.  Recursively delete loads of
8916    reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8917    CURRENT_INSN is being reloaded, so we have to check its reloads too.  */
8918 static void
8919 delete_address_reloads (rtx dead_insn, rtx current_insn)
8920 {
8921   rtx set = single_set (dead_insn);
8922   rtx set2, dst, prev, next;
8923   if (set)
8924     {
8925       rtx dst = SET_DEST (set);
8926       if (MEM_P (dst))
8927 	delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8928     }
8929   /* If we deleted the store from a reloaded post_{in,de}c expression,
8930      we can delete the matching adds.  */
8931   prev = PREV_INSN (dead_insn);
8932   next = NEXT_INSN (dead_insn);
8933   if (! prev || ! next)
8934     return;
8935   set = single_set (next);
8936   set2 = single_set (prev);
8937   if (! set || ! set2
8938       || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8939       || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8940       || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8941     return;
8942   dst = SET_DEST (set);
8943   if (! rtx_equal_p (dst, SET_DEST (set2))
8944       || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8945       || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8946       || (INTVAL (XEXP (SET_SRC (set), 1))
8947 	  != -INTVAL (XEXP (SET_SRC (set2), 1))))
8948     return;
8949   delete_related_insns (prev);
8950   delete_related_insns (next);
8951 }
8952 
8953 /* Subfunction of delete_address_reloads: process registers found in X.  */
8954 static void
8955 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8956 {
8957   rtx prev, set, dst, i2;
8958   int i, j;
8959   enum rtx_code code = GET_CODE (x);
8960 
8961   if (code != REG)
8962     {
8963       const char *fmt = GET_RTX_FORMAT (code);
8964       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8965 	{
8966 	  if (fmt[i] == 'e')
8967 	    delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8968 	  else if (fmt[i] == 'E')
8969 	    {
8970 	      for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8971 		delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8972 					  current_insn);
8973 	    }
8974 	}
8975       return;
8976     }
8977 
8978   if (spill_reg_order[REGNO (x)] < 0)
8979     return;
8980 
8981   /* Scan backwards for the insn that sets x.  This might be a way back due
8982      to inheritance.  */
8983   for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8984     {
8985       code = GET_CODE (prev);
8986       if (code == CODE_LABEL || code == JUMP_INSN)
8987 	return;
8988       if (!INSN_P (prev))
8989 	continue;
8990       if (reg_set_p (x, PATTERN (prev)))
8991 	break;
8992       if (reg_referenced_p (x, PATTERN (prev)))
8993 	return;
8994     }
8995   if (! prev || INSN_UID (prev) < reload_first_uid)
8996     return;
8997   /* Check that PREV only sets the reload register.  */
8998   set = single_set (prev);
8999   if (! set)
9000     return;
9001   dst = SET_DEST (set);
9002   if (!REG_P (dst)
9003       || ! rtx_equal_p (dst, x))
9004     return;
9005   if (! reg_set_p (dst, PATTERN (dead_insn)))
9006     {
9007       /* Check if DST was used in a later insn -
9008 	 it might have been inherited.  */
9009       for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9010 	{
9011 	  if (LABEL_P (i2))
9012 	    break;
9013 	  if (! INSN_P (i2))
9014 	    continue;
9015 	  if (reg_referenced_p (dst, PATTERN (i2)))
9016 	    {
9017 	      /* If there is a reference to the register in the current insn,
9018 		 it might be loaded in a non-inherited reload.  If no other
9019 		 reload uses it, that means the register is set before
9020 		 referenced.  */
9021 	      if (i2 == current_insn)
9022 		{
9023 		  for (j = n_reloads - 1; j >= 0; j--)
9024 		    if ((rld[j].reg_rtx == dst && reload_inherited[j])
9025 			|| reload_override_in[j] == dst)
9026 		      return;
9027 		  for (j = n_reloads - 1; j >= 0; j--)
9028 		    if (rld[j].in && rld[j].reg_rtx == dst)
9029 		      break;
9030 		  if (j >= 0)
9031 		    break;
9032 		}
9033 	      return;
9034 	    }
9035 	  if (JUMP_P (i2))
9036 	    break;
9037 	  /* If DST is still live at CURRENT_INSN, check if it is used for
9038 	     any reload.  Note that even if CURRENT_INSN sets DST, we still
9039 	     have to check the reloads.  */
9040 	  if (i2 == current_insn)
9041 	    {
9042 	      for (j = n_reloads - 1; j >= 0; j--)
9043 		if ((rld[j].reg_rtx == dst && reload_inherited[j])
9044 		    || reload_override_in[j] == dst)
9045 		  return;
9046 	      /* ??? We can't finish the loop here, because dst might be
9047 		 allocated to a pseudo in this block if no reload in this
9048 		 block needs any of the classes containing DST - see
9049 		 spill_hard_reg.  There is no easy way to tell this, so we
9050 		 have to scan till the end of the basic block.  */
9051 	    }
9052 	  if (reg_set_p (dst, PATTERN (i2)))
9053 	    break;
9054 	}
9055     }
9056   delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9057   reg_reloaded_contents[REGNO (dst)] = -1;
9058   delete_insn (prev);
9059 }
9060 
9061 /* Output reload-insns to reload VALUE into RELOADREG.
9062    VALUE is an autoincrement or autodecrement RTX whose operand
9063    is a register or memory location;
9064    so reloading involves incrementing that location.
9065    IN is either identical to VALUE, or some cheaper place to reload from.
9066 
9067    INC_AMOUNT is the number to increment or decrement by (always positive).
9068    This cannot be deduced from VALUE.  */
9069 
9070 static void
9071 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9072 {
9073   /* REG or MEM to be copied and incremented.  */
9074   rtx incloc = find_replacement (&XEXP (value, 0));
9075   /* Nonzero if increment after copying.  */
9076   int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9077 	      || GET_CODE (value) == POST_MODIFY);
9078   rtx last;
9079   rtx inc;
9080   rtx add_insn;
9081   int code;
9082   rtx real_in = in == value ? incloc : in;
9083 
9084   /* No hard register is equivalent to this register after
9085      inc/dec operation.  If REG_LAST_RELOAD_REG were nonzero,
9086      we could inc/dec that register as well (maybe even using it for
9087      the source), but I'm not sure it's worth worrying about.  */
9088   if (REG_P (incloc))
9089     reg_last_reload_reg[REGNO (incloc)] = 0;
9090 
9091   if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9092     {
9093       gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9094       inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9095     }
9096   else
9097     {
9098       if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9099 	inc_amount = -inc_amount;
9100 
9101       inc = GEN_INT (inc_amount);
9102     }
9103 
9104   /* If this is post-increment, first copy the location to the reload reg.  */
9105   if (post && real_in != reloadreg)
9106     emit_insn (gen_move_insn (reloadreg, real_in));
9107 
9108   if (in == value)
9109     {
9110       /* See if we can directly increment INCLOC.  Use a method similar to
9111 	 that in gen_reload.  */
9112 
9113       last = get_last_insn ();
9114       add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9115 					 gen_rtx_PLUS (GET_MODE (incloc),
9116 						       incloc, inc)));
9117 
9118       code = recog_memoized (add_insn);
9119       if (code >= 0)
9120 	{
9121 	  extract_insn (add_insn);
9122 	  if (constrain_operands (1))
9123 	    {
9124 	      /* If this is a pre-increment and we have incremented the value
9125 		 where it lives, copy the incremented value to RELOADREG to
9126 		 be used as an address.  */
9127 
9128 	      if (! post)
9129 		emit_insn (gen_move_insn (reloadreg, incloc));
9130 	      return;
9131 	    }
9132 	}
9133       delete_insns_since (last);
9134     }
9135 
9136   /* If couldn't do the increment directly, must increment in RELOADREG.
9137      The way we do this depends on whether this is pre- or post-increment.
9138      For pre-increment, copy INCLOC to the reload register, increment it
9139      there, then save back.  */
9140 
9141   if (! post)
9142     {
9143       if (in != reloadreg)
9144 	emit_insn (gen_move_insn (reloadreg, real_in));
9145       emit_insn (gen_add2_insn (reloadreg, inc));
9146       emit_insn (gen_move_insn (incloc, reloadreg));
9147     }
9148   else
9149     {
9150       /* Postincrement.
9151 	 Because this might be a jump insn or a compare, and because RELOADREG
9152 	 may not be available after the insn in an input reload, we must do
9153 	 the incrementation before the insn being reloaded for.
9154 
9155 	 We have already copied IN to RELOADREG.  Increment the copy in
9156 	 RELOADREG, save that back, then decrement RELOADREG so it has
9157 	 the original value.  */
9158 
9159       emit_insn (gen_add2_insn (reloadreg, inc));
9160       emit_insn (gen_move_insn (incloc, reloadreg));
9161       if (CONST_INT_P (inc))
9162 	emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9163       else
9164 	emit_insn (gen_sub2_insn (reloadreg, inc));
9165     }
9166 }
9167 
9168 #ifdef AUTO_INC_DEC
9169 static void
9170 add_auto_inc_notes (rtx insn, rtx x)
9171 {
9172   enum rtx_code code = GET_CODE (x);
9173   const char *fmt;
9174   int i, j;
9175 
9176   if (code == MEM && auto_inc_p (XEXP (x, 0)))
9177     {
9178       add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9179       return;
9180     }
9181 
9182   /* Scan all the operand sub-expressions.  */
9183   fmt = GET_RTX_FORMAT (code);
9184   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9185     {
9186       if (fmt[i] == 'e')
9187 	add_auto_inc_notes (insn, XEXP (x, i));
9188       else if (fmt[i] == 'E')
9189 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9190 	  add_auto_inc_notes (insn, XVECEXP (x, i, j));
9191     }
9192 }
9193 #endif
9194