xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reload.c (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987-2020 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains subroutines used only from the file reload1.c.
21    It knows how to scan one insn for operands and values
22    that need to be copied into registers to make valid code.
23    It also finds other operands and values which are valid
24    but for which equivalent values in registers exist and
25    ought to be used instead.
26 
27    Before processing the first insn of the function, call `init_reload'.
28    init_reload actually has to be called earlier anyway.
29 
30    To scan an insn, call `find_reloads'.  This does two things:
31    1. sets up tables describing which values must be reloaded
32    for this insn, and what kind of hard regs they must be reloaded into;
33    2. optionally record the locations where those values appear in
34    the data, so they can be replaced properly later.
35    This is done only if the second arg to `find_reloads' is nonzero.
36 
37    The third arg to `find_reloads' specifies the number of levels
38    of indirect addressing supported by the machine.  If it is zero,
39    indirect addressing is not valid.  If it is one, (MEM (REG n))
40    is valid even if (REG n) did not get a hard register; if it is two,
41    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42    hard register, and similarly for higher values.
43 
44    Then you must choose the hard regs to reload those pseudo regs into,
45    and generate appropriate load insns before this insn and perhaps
46    also store insns after this insn.  Set up the array `reload_reg_rtx'
47    to contain the REG rtx's for the registers you used.  In some
48    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49    for certain reloads.  Then that tells you which register to use,
50    so you do not need to allocate one.  But you still do need to add extra
51    instructions to copy the value into and out of that register.
52 
53    Finally you must call `subst_reloads' to substitute the reload reg rtx's
54    into the locations already recorded.
55 
56 NOTE SIDE EFFECTS:
57 
58    find_reloads can alter the operands of the instruction it is called on.
59 
60    1. Two operands of any sort may be interchanged, if they are in a
61    commutative instruction.
62    This happens only if find_reloads thinks the instruction will compile
63    better that way.
64 
65    2. Pseudo-registers that are equivalent to constants are replaced
66    with those constants if they are not in hard registers.
67 
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
71 
72 Using a reload register for several reloads in one insn:
73 
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
77 
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
81 
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload.  */
85 
86 #define REG_OK_STRICT
87 
88 /* We do not enable this with CHECKING_P, since it is awfully slow.  */
89 #undef DEBUG_RELOAD
90 
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "backend.h"
95 #include "target.h"
96 #include "rtl.h"
97 #include "tree.h"
98 #include "df.h"
99 #include "memmodel.h"
100 #include "tm_p.h"
101 #include "optabs.h"
102 #include "regs.h"
103 #include "ira.h"
104 #include "recog.h"
105 #include "rtl-error.h"
106 #include "reload.h"
107 #include "addresses.h"
108 #include "function-abi.h"
109 
110 /* True if X is a constant that can be forced into the constant pool.
111    MODE is the mode of the operand, or VOIDmode if not known.  */
112 #define CONST_POOL_OK_P(MODE, X)		\
113   ((MODE) != VOIDmode				\
114    && CONSTANT_P (X)				\
115    && GET_CODE (X) != HIGH			\
116    && !targetm.cannot_force_const_mem (MODE, X))
117 
118 /* True if C is a non-empty register class that has too few registers
119    to be safely used as a reload target class.  */
120 
121 static inline bool
122 small_register_class_p (reg_class_t rclass)
123 {
124   return (reg_class_size [(int) rclass] == 1
125 	  || (reg_class_size [(int) rclass] >= 1
126 	      && targetm.class_likely_spilled_p (rclass)));
127 }
128 
129 
130 /* All reloads of the current insn are recorded here.  See reload.h for
131    comments.  */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
134 
135 /* All the "earlyclobber" operands of the current insn
136    are recorded here.  */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 
140 int reload_n_operands;
141 
142 /* Replacing reloads.
143 
144    If `replace_reloads' is nonzero, then as each reload is recorded
145    an entry is made for it in the table `replacements'.
146    Then later `subst_reloads' can look through that table and
147    perform all the replacements needed.  */
148 
149 /* Nonzero means record the places to replace.  */
150 static int replace_reloads;
151 
152 /* Each replacement is recorded with a structure like this.  */
153 struct replacement
154 {
155   rtx *where;			/* Location to store in */
156   int what;			/* which reload this is for */
157   machine_mode mode;	/* mode it must have */
158 };
159 
160 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
161 
162 /* Number of replacements currently recorded.  */
163 static int n_replacements;
164 
165 /* Used to track what is modified by an operand.  */
166 struct decomposition
167 {
168   int reg_flag;		/* Nonzero if referencing a register.  */
169   int safe;		/* Nonzero if this can't conflict with anything.  */
170   rtx base;		/* Base address for MEM.  */
171   poly_int64_pod start;	/* Starting offset or register number.  */
172   poly_int64_pod end;	/* Ending offset or register number.  */
173 };
174 
175 /* Save MEMs needed to copy from one class of registers to another.  One MEM
176    is used per mode, but normally only one or two modes are ever used.
177 
178    We keep two versions, before and after register elimination.  The one
179    after register elimination is record separately for each operand.  This
180    is done in case the address is not valid to be sure that we separately
181    reload each.  */
182 
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 
187 /* The instruction we are doing reloads for;
188    so we can test whether a register dies in it.  */
189 static rtx_insn *this_insn;
190 
191 /* Nonzero if this instruction is a user-specified asm with operands.  */
192 static int this_insn_is_asm;
193 
194 /* If hard_regs_live_known is nonzero,
195    we can tell which hard regs are currently live,
196    at least enough to succeed in choosing dummy reloads.  */
197 static int hard_regs_live_known;
198 
199 /* Indexed by hard reg number,
200    element is nonnegative if hard reg has been spilled.
201    This vector is passed to `find_reloads' as an argument
202    and is not changed here.  */
203 static short *static_reload_reg_p;
204 
205 /* Set to 1 in subst_reg_equivs if it changes anything.  */
206 static int subst_reg_equivs_changed;
207 
208 /* On return from push_reload, holds the reload-number for the OUT
209    operand, which can be different for that from the input operand.  */
210 static int output_reloadnum;
211 
212   /* Compare two RTX's.  */
213 #define MATCHES(x, y) \
214  (x == y || (x != 0 && (REG_P (x)				\
215 			? REG_P (y) && REGNO (x) == REGNO (y)	\
216 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
217 
218   /* Indicates if two reloads purposes are for similar enough things that we
219      can merge their reloads.  */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
222    || ((when1) == (when2) && (op1) == (op2))		\
223    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
225        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
226    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
227        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 
229   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231   ((when1) != (when2)					\
232    || ! ((op1) == (op2)					\
233 	 || (when1) == RELOAD_FOR_INPUT			\
234 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
235 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 
237   /* If we are going to reload an address, compute the reload type to
238      use.  */
239 #define ADDR_TYPE(type)					\
240   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
241    ? RELOAD_FOR_INPADDR_ADDRESS				\
242    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
243       ? RELOAD_FOR_OUTADDR_ADDRESS			\
244       : (type)))
245 
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 				  machine_mode, enum reload_type,
248 				  enum insn_code *, secondary_reload_info *);
249 static enum reg_class find_valid_class (machine_mode, machine_mode,
250 					int, unsigned int);
251 static void push_replacement (rtx *, int, machine_mode);
252 static void dup_replacements (rtx *, rtx *);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx *, rtx, enum reg_class,
255 				 enum reload_type, int, int);
256 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
257 			      machine_mode, reg_class_t, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
259 static struct decomposition decompose (rtx);
260 static int immune_p (rtx, rtx, struct decomposition);
261 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
262 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
263 				rtx_insn *, int *);
264 static rtx make_memloc (rtx, int);
265 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
266 					      addr_space_t, rtx *);
267 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
268 				 int, enum reload_type, int, rtx_insn *);
269 static rtx subst_reg_equivs (rtx, rtx_insn *);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx_insn *, int, int);
272 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
273 				   enum rtx_code, enum rtx_code, rtx *,
274 				   int, enum reload_type,int, rtx_insn *);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 				       machine_mode, int,
277 				       enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
279 					int, rtx_insn *, int *);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static poly_int64 find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 					 rtx, rtx *);
285 
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
287    list yet.  */
288 
289 static void
290 push_reg_equiv_alt_mem (int regno, rtx mem)
291 {
292   rtx it;
293 
294   for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
295     if (rtx_equal_p (XEXP (it, 0), mem))
296       return;
297 
298   reg_equiv_alt_mem_list (regno)
299     = alloc_EXPR_LIST (REG_EQUIV, mem,
300 		       reg_equiv_alt_mem_list (regno));
301 }
302 
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304    nonzero) or storing (if IN_P is zero) X to or from a reload register of
305    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
306    are needed, push them.
307 
308    Return the reload number of the secondary reload we made, or -1 if
309    we didn't need one.  *PICODE is set to the insn_code to use if we do
310    need a secondary reload.  */
311 
312 static int
313 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
314 		       enum reg_class reload_class,
315 		       machine_mode reload_mode, enum reload_type type,
316 		       enum insn_code *picode, secondary_reload_info *prev_sri)
317 {
318   enum reg_class rclass = NO_REGS;
319   enum reg_class scratch_class;
320   machine_mode mode = reload_mode;
321   enum insn_code icode = CODE_FOR_nothing;
322   enum insn_code t_icode = CODE_FOR_nothing;
323   enum reload_type secondary_type;
324   int s_reload, t_reload = -1;
325   const char *scratch_constraint;
326   secondary_reload_info sri;
327 
328   if (type == RELOAD_FOR_INPUT_ADDRESS
329       || type == RELOAD_FOR_OUTPUT_ADDRESS
330       || type == RELOAD_FOR_INPADDR_ADDRESS
331       || type == RELOAD_FOR_OUTADDR_ADDRESS)
332     secondary_type = type;
333   else
334     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
335 
336   *picode = CODE_FOR_nothing;
337 
338   /* If X is a paradoxical SUBREG, use the inner value to determine both the
339      mode and object being reloaded.  */
340   if (paradoxical_subreg_p (x))
341     {
342       x = SUBREG_REG (x);
343       reload_mode = GET_MODE (x);
344     }
345 
346   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347      is still a pseudo-register by now, it *must* have an equivalent MEM
348      but we don't want to assume that), use that equivalent when seeing if
349      a secondary reload is needed since whether or not a reload is needed
350      might be sensitive to the form of the MEM.  */
351 
352   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
353       && reg_equiv_mem (REGNO (x)))
354     x = reg_equiv_mem (REGNO (x));
355 
356   sri.icode = CODE_FOR_nothing;
357   sri.prev_sri = prev_sri;
358   rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
359 						      reload_mode, &sri);
360   icode = (enum insn_code) sri.icode;
361 
362   /* If we don't need any secondary registers, done.  */
363   if (rclass == NO_REGS && icode == CODE_FOR_nothing)
364     return -1;
365 
366   if (rclass != NO_REGS)
367     t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
368 				      reload_mode, type, &t_icode, &sri);
369 
370   /* If we will be using an insn, the secondary reload is for a
371      scratch register.  */
372 
373   if (icode != CODE_FOR_nothing)
374     {
375       /* If IN_P is nonzero, the reload register will be the output in
376 	 operand 0.  If IN_P is zero, the reload register will be the input
377 	 in operand 1.  Outputs should have an initial "=", which we must
378 	 skip.  */
379 
380       /* ??? It would be useful to be able to handle only two, or more than
381 	 three, operands, but for now we can only handle the case of having
382 	 exactly three: output, input and one temp/scratch.  */
383       gcc_assert (insn_data[(int) icode].n_operands == 3);
384 
385       /* ??? We currently have no way to represent a reload that needs
386 	 an icode to reload from an intermediate tertiary reload register.
387 	 We should probably have a new field in struct reload to tag a
388 	 chain of scratch operand reloads onto.   */
389       gcc_assert (rclass == NO_REGS);
390 
391       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
392       gcc_assert (*scratch_constraint == '=');
393       scratch_constraint++;
394       if (*scratch_constraint == '&')
395 	scratch_constraint++;
396       scratch_class = (reg_class_for_constraint
397 		       (lookup_constraint (scratch_constraint)));
398 
399       rclass = scratch_class;
400       mode = insn_data[(int) icode].operand[2].mode;
401     }
402 
403   /* This case isn't valid, so fail.  Reload is allowed to use the same
404      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405      in the case of a secondary register, we actually need two different
406      registers for correct code.  We fail here to prevent the possibility of
407      silently generating incorrect code later.
408 
409      The convention is that secondary input reloads are valid only if the
410      secondary_class is different from class.  If you have such a case, you
411      cannot use secondary reloads, you must work around the problem some
412      other way.
413 
414      Allow this when a reload_in/out pattern is being used.  I.e. assume
415      that the generated code handles this case.  */
416 
417   gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
418 	      || t_icode != CODE_FOR_nothing);
419 
420   /* See if we can reuse an existing secondary reload.  */
421   for (s_reload = 0; s_reload < n_reloads; s_reload++)
422     if (rld[s_reload].secondary_p
423 	&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
424 	    || reg_class_subset_p (rld[s_reload].rclass, rclass))
425 	&& ((in_p && rld[s_reload].inmode == mode)
426 	    || (! in_p && rld[s_reload].outmode == mode))
427 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
428 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
429 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
430 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
431 	&& (small_register_class_p (rclass)
432 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
433 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
434 			     opnum, rld[s_reload].opnum))
435       {
436 	if (in_p)
437 	  rld[s_reload].inmode = mode;
438 	if (! in_p)
439 	  rld[s_reload].outmode = mode;
440 
441 	if (reg_class_subset_p (rclass, rld[s_reload].rclass))
442 	  rld[s_reload].rclass = rclass;
443 
444 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
445 	rld[s_reload].optional &= optional;
446 	rld[s_reload].secondary_p = 1;
447 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
448 			    opnum, rld[s_reload].opnum))
449 	  rld[s_reload].when_needed = RELOAD_OTHER;
450 
451 	break;
452       }
453 
454   if (s_reload == n_reloads)
455     {
456       /* If we need a memory location to copy between the two reload regs,
457 	 set it up now.  Note that we do the input case before making
458 	 the reload and the output case after.  This is due to the
459 	 way reloads are output.  */
460 
461       if (in_p && icode == CODE_FOR_nothing
462 	  && targetm.secondary_memory_needed (mode, rclass, reload_class))
463 	{
464 	  get_secondary_mem (x, reload_mode, opnum, type);
465 
466 	  /* We may have just added new reloads.  Make sure we add
467 	     the new reload at the end.  */
468 	  s_reload = n_reloads;
469 	}
470 
471       /* We need to make a new secondary reload for this register class.  */
472       rld[s_reload].in = rld[s_reload].out = 0;
473       rld[s_reload].rclass = rclass;
474 
475       rld[s_reload].inmode = in_p ? mode : VOIDmode;
476       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
477       rld[s_reload].reg_rtx = 0;
478       rld[s_reload].optional = optional;
479       rld[s_reload].inc = 0;
480       /* Maybe we could combine these, but it seems too tricky.  */
481       rld[s_reload].nocombine = 1;
482       rld[s_reload].in_reg = 0;
483       rld[s_reload].out_reg = 0;
484       rld[s_reload].opnum = opnum;
485       rld[s_reload].when_needed = secondary_type;
486       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
487       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
488       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
489       rld[s_reload].secondary_out_icode
490 	= ! in_p ? t_icode : CODE_FOR_nothing;
491       rld[s_reload].secondary_p = 1;
492 
493       n_reloads++;
494 
495       if (! in_p && icode == CODE_FOR_nothing
496 	  && targetm.secondary_memory_needed (mode, reload_class, rclass))
497 	get_secondary_mem (x, mode, opnum, type);
498     }
499 
500   *picode = icode;
501   return s_reload;
502 }
503 
504 /* If a secondary reload is needed, return its class.  If both an intermediate
505    register and a scratch register is needed, we return the class of the
506    intermediate register.  */
507 reg_class_t
508 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
509 			rtx x)
510 {
511   enum insn_code icode;
512   secondary_reload_info sri;
513 
514   sri.icode = CODE_FOR_nothing;
515   sri.prev_sri = NULL;
516   rclass
517     = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
518   icode = (enum insn_code) sri.icode;
519 
520   /* If there are no secondary reloads at all, we return NO_REGS.
521      If an intermediate register is needed, we return its class.  */
522   if (icode == CODE_FOR_nothing || rclass != NO_REGS)
523     return rclass;
524 
525   /* No intermediate register is needed, but we have a special reload
526      pattern, which we assume for now needs a scratch register.  */
527   return scratch_reload_class (icode);
528 }
529 
530 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
531    three operands, verify that operand 2 is an output operand, and return
532    its register class.
533    ??? We'd like to be able to handle any pattern with at least 2 operands,
534    for zero or more scratch registers, but that needs more infrastructure.  */
535 enum reg_class
536 scratch_reload_class (enum insn_code icode)
537 {
538   const char *scratch_constraint;
539   enum reg_class rclass;
540 
541   gcc_assert (insn_data[(int) icode].n_operands == 3);
542   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
543   gcc_assert (*scratch_constraint == '=');
544   scratch_constraint++;
545   if (*scratch_constraint == '&')
546     scratch_constraint++;
547   rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
548   gcc_assert (rclass != NO_REGS);
549   return rclass;
550 }
551 
552 /* Return a memory location that will be used to copy X in mode MODE.
553    If we haven't already made a location for this mode in this insn,
554    call find_reloads_address on the location being returned.  */
555 
556 rtx
557 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
558 		   int opnum, enum reload_type type)
559 {
560   rtx loc;
561   int mem_valid;
562 
563   /* By default, if MODE is narrower than a word, widen it to a word.
564      This is required because most machines that require these memory
565      locations do not support short load and stores from all registers
566      (e.g., FP registers).  */
567 
568   mode = targetm.secondary_memory_needed_mode (mode);
569 
570   /* If we already have made a MEM for this operand in MODE, return it.  */
571   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572     return secondary_memlocs_elim[(int) mode][opnum];
573 
574   /* If this is the first time we've tried to get a MEM for this mode,
575      allocate a new one.  `something_changed' in reload will get set
576      by noticing that the frame size has changed.  */
577 
578   if (secondary_memlocs[(int) mode] == 0)
579     {
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583       secondary_memlocs[(int) mode]
584 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
586     }
587 
588   /* Get a version of the address doing any eliminations needed.  If that
589      didn't give us a new MEM, make a new one if it isn't valid.  */
590 
591   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592   mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
593 						  MEM_ADDR_SPACE (loc));
594 
595   if (! mem_valid && loc == secondary_memlocs[(int) mode])
596     loc = copy_rtx (loc);
597 
598   /* The only time the call below will do anything is if the stack
599      offset is too large.  In that case IND_LEVELS doesn't matter, so we
600      can just pass a zero.  Adjust the type to be the address of the
601      corresponding object.  If the address was valid, save the eliminated
602      address.  If it wasn't valid, we need to make a reload each time, so
603      don't save it.  */
604 
605   if (! mem_valid)
606     {
607       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
608 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
609 	       : RELOAD_OTHER);
610 
611       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
612 			    opnum, type, 0, 0);
613     }
614 
615   secondary_memlocs_elim[(int) mode][opnum] = loc;
616   if (secondary_memlocs_elim_used <= (int)mode)
617     secondary_memlocs_elim_used = (int)mode + 1;
618   return loc;
619 }
620 
621 /* Clear any secondary memory locations we've made.  */
622 
623 void
624 clear_secondary_mem (void)
625 {
626   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 }
628 
629 
630 /* Find the largest class which has at least one register valid in
631    mode INNER, and which for every such register, that register number
632    plus N is also valid in OUTER (if in range) and is cheap to move
633    into REGNO.  Such a class must exist.  */
634 
635 static enum reg_class
636 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
637 		  machine_mode inner ATTRIBUTE_UNUSED, int n,
638 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
639 {
640   int best_cost = -1;
641   int rclass;
642   int regno;
643   enum reg_class best_class = NO_REGS;
644   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645   unsigned int best_size = 0;
646   int cost;
647 
648   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
649     {
650       int bad = 0;
651       int good = 0;
652       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 	if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
654 	  {
655 	    if (targetm.hard_regno_mode_ok (regno, inner))
656 	      {
657 		good = 1;
658 		if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
659 		    && !targetm.hard_regno_mode_ok (regno + n, outer))
660 		  bad = 1;
661 	      }
662 	  }
663 
664       if (bad || !good)
665 	continue;
666       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
667 
668       if ((reg_class_size[rclass] > best_size
669 	   && (best_cost < 0 || best_cost >= cost))
670 	  || best_cost > cost)
671 	{
672 	  best_class = (enum reg_class) rclass;
673 	  best_size = reg_class_size[rclass];
674 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
675 					  dest_class);
676 	}
677     }
678 
679   gcc_assert (best_size != 0);
680 
681   return best_class;
682 }
683 
684 /* We are trying to reload a subreg of something that is not a register.
685    Find the largest class which contains only registers valid in
686    mode MODE.  OUTER is the mode of the subreg, DEST_CLASS the class in
687    which we would eventually like to obtain the object.  */
688 
689 static enum reg_class
690 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
691 		    machine_mode mode ATTRIBUTE_UNUSED,
692 		    enum reg_class dest_class ATTRIBUTE_UNUSED)
693 {
694   int best_cost = -1;
695   int rclass;
696   int regno;
697   enum reg_class best_class = NO_REGS;
698   unsigned int best_size = 0;
699   int cost;
700 
701   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
702     {
703       unsigned int computed_rclass_size = 0;
704 
705       for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
706         {
707           if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
708 	      && targetm.hard_regno_mode_ok (regno, mode))
709             computed_rclass_size++;
710         }
711 
712       cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
713 
714       if ((computed_rclass_size > best_size
715 	   && (best_cost < 0 || best_cost >= cost))
716 	  || best_cost > cost)
717 	{
718 	  best_class = (enum reg_class) rclass;
719 	  best_size = computed_rclass_size;
720 	  best_cost = register_move_cost (outer, (enum reg_class) rclass,
721 					  dest_class);
722 	}
723     }
724 
725   gcc_assert (best_size != 0);
726 
727 #ifdef LIMIT_RELOAD_CLASS
728   best_class = LIMIT_RELOAD_CLASS (mode, best_class);
729 #endif
730   return best_class;
731 }
732 
733 /* Return the number of a previously made reload that can be combined with
734    a new one, or n_reloads if none of the existing reloads can be used.
735    OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736    push_reload, they determine the kind of the new reload that we try to
737    combine.  P_IN points to the corresponding value of IN, which can be
738    modified by this function.
739    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
740 
741 static int
742 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
743 		      enum reload_type type, int opnum, int dont_share)
744 {
745   rtx in = *p_in;
746   int i;
747   /* We can't merge two reloads if the output of either one is
748      earlyclobbered.  */
749 
750   if (earlyclobber_operand_p (out))
751     return n_reloads;
752 
753   /* We can use an existing reload if the class is right
754      and at least one of IN and OUT is a match
755      and the other is at worst neutral.
756      (A zero compared against anything is neutral.)
757 
758      For targets with small register classes, don't use existing reloads
759      unless they are for the same thing since that can cause us to need
760      more reload registers than we otherwise would.  */
761 
762   for (i = 0; i < n_reloads; i++)
763     if ((reg_class_subset_p (rclass, rld[i].rclass)
764 	 || reg_class_subset_p (rld[i].rclass, rclass))
765 	/* If the existing reload has a register, it must fit our class.  */
766 	&& (rld[i].reg_rtx == 0
767 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
768 				  true_regnum (rld[i].reg_rtx)))
769 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
770 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
771 	    || (out != 0 && MATCHES (rld[i].out, out)
772 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
773 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
774 	&& (small_register_class_p (rclass)
775 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
776 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
777       return i;
778 
779   /* Reloading a plain reg for input can match a reload to postincrement
780      that reg, since the postincrement's value is the right value.
781      Likewise, it can match a preincrement reload, since we regard
782      the preincrementation as happening before any ref in this insn
783      to that register.  */
784   for (i = 0; i < n_reloads; i++)
785     if ((reg_class_subset_p (rclass, rld[i].rclass)
786 	 || reg_class_subset_p (rld[i].rclass, rclass))
787 	/* If the existing reload has a register, it must fit our
788 	   class.  */
789 	&& (rld[i].reg_rtx == 0
790 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
791 				  true_regnum (rld[i].reg_rtx)))
792 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
793 	&& ((REG_P (in)
794 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
795 	     && MATCHES (XEXP (rld[i].in, 0), in))
796 	    || (REG_P (rld[i].in)
797 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
798 		&& MATCHES (XEXP (in, 0), rld[i].in)))
799 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
800 	&& (small_register_class_p (rclass)
801 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
802 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
803 			     opnum, rld[i].opnum))
804       {
805 	/* Make sure reload_in ultimately has the increment,
806 	   not the plain register.  */
807 	if (REG_P (in))
808 	  *p_in = rld[i].in;
809 	return i;
810       }
811   return n_reloads;
812 }
813 
814 /* Return true if:
815 
816    (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817        of a multiword value; and
818 
819    (b) the number of *words* in REG does not match the number of *registers*
820        in REG.  */
821 
822 static bool
823 complex_word_subreg_p (machine_mode outer_mode, rtx reg)
824 {
825   machine_mode inner_mode = GET_MODE (reg);
826   poly_uint64 reg_words = REG_NREGS (reg) * UNITS_PER_WORD;
827   return (known_le (GET_MODE_SIZE (outer_mode), UNITS_PER_WORD)
828 	  && maybe_gt (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
829 	  && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode),
830 					  reg_words, UNITS_PER_WORD));
831 }
832 
833 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834    expression.  MODE is the mode that X will be used in.  OUTPUT is true if
835    the function is invoked for the output part of an enclosing reload.  */
836 
837 static bool
838 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
839 {
840   rtx inner;
841   int regno;
842 
843   /* Only SUBREGs are problematical.  */
844   if (GET_CODE (x) != SUBREG)
845     return false;
846 
847   inner = SUBREG_REG (x);
848 
849   /* If INNER is a constant or PLUS, then INNER will need reloading.  */
850   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
851     return true;
852 
853   /* If INNER is not a register, then INNER will not need reloading.  */
854   if (!REG_P (inner))
855     return false;
856 
857   regno = REGNO (inner);
858 
859   /* If INNER is not a hard register, then INNER will not need reloading
860      unless it's a mode dependent memory reference.  */
861   if (regno >= FIRST_PSEUDO_REGISTER)
862     return !output
863 	   && reg_equiv_mem (regno) != 0
864 	   && mode_dependent_address_p (XEXP (reg_equiv_mem (regno), 0),
865 					MEM_ADDR_SPACE (reg_equiv_mem (regno)));
866 
867   /* If INNER is not ok for MODE, then INNER will need reloading.  */
868   if (!targetm.hard_regno_mode_ok (subreg_regno (x), mode))
869     return true;
870 
871   /* If this is for an output, and the outer part is a word or smaller,
872      INNER is larger than a word and the number of registers in INNER is
873      not the same as the number of words in INNER, then INNER will need
874      reloading (with an in-out reload).  */
875   return output && complex_word_subreg_p (mode, inner);
876 }
877 
878 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
879    requiring an extra reload register.  The caller has already found that
880    IN contains some reference to REGNO, so check that we can produce the
881    new value in a single step.  E.g. if we have
882    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
883    instruction that adds one to a register, this should succeed.
884    However, if we have something like
885    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
886    needs to be loaded into a register first, we need a separate reload
887    register.
888    Such PLUS reloads are generated by find_reload_address_part.
889    The out-of-range PLUS expressions are usually introduced in the instruction
890    patterns by register elimination and substituting pseudos without a home
891    by their function-invariant equivalences.  */
892 static int
893 can_reload_into (rtx in, int regno, machine_mode mode)
894 {
895   rtx dst;
896   rtx_insn *test_insn;
897   int r = 0;
898   struct recog_data_d save_recog_data;
899 
900   /* For matching constraints, we often get notional input reloads where
901      we want to use the original register as the reload register.  I.e.
902      technically this is a non-optional input-output reload, but IN is
903      already a valid register, and has been chosen as the reload register.
904      Speed this up, since it trivially works.  */
905   if (REG_P (in))
906     return 1;
907 
908   /* To test MEMs properly, we'd have to take into account all the reloads
909      that are already scheduled, which can become quite complicated.
910      And since we've already handled address reloads for this MEM, it
911      should always succeed anyway.  */
912   if (MEM_P (in))
913     return 1;
914 
915   /* If we can make a simple SET insn that does the job, everything should
916      be fine.  */
917   dst =  gen_rtx_REG (mode, regno);
918   test_insn = make_insn_raw (gen_rtx_SET (dst, in));
919   save_recog_data = recog_data;
920   if (recog_memoized (test_insn) >= 0)
921     {
922       extract_insn (test_insn);
923       r = constrain_operands (1, get_enabled_alternatives (test_insn));
924     }
925   recog_data = save_recog_data;
926   return r;
927 }
928 
929 /* Record one reload that needs to be performed.
930    IN is an rtx saying where the data are to be found before this instruction.
931    OUT says where they must be stored after the instruction.
932    (IN is zero for data not read, and OUT is zero for data not written.)
933    INLOC and OUTLOC point to the places in the instructions where
934    IN and OUT were found.
935    If IN and OUT are both nonzero, it means the same register must be used
936    to reload both IN and OUT.
937 
938    RCLASS is a register class required for the reloaded data.
939    INMODE is the machine mode that the instruction requires
940    for the reg that replaces IN and OUTMODE is likewise for OUT.
941 
942    If IN is zero, then OUT's location and mode should be passed as
943    INLOC and INMODE.
944 
945    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
946 
947    OPTIONAL nonzero means this reload does not need to be performed:
948    it can be discarded if that is more convenient.
949 
950    OPNUM and TYPE say what the purpose of this reload is.
951 
952    The return value is the reload-number for this reload.
953 
954    If both IN and OUT are nonzero, in some rare cases we might
955    want to make two separate reloads.  (Actually we never do this now.)
956    Therefore, the reload-number for OUT is stored in
957    output_reloadnum when we return; the return value applies to IN.
958    Usually (presently always), when IN and OUT are nonzero,
959    the two reload-numbers are equal, but the caller should be careful to
960    distinguish them.  */
961 
962 int
963 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
964 	     enum reg_class rclass, machine_mode inmode,
965 	     machine_mode outmode, int strict_low, int optional,
966 	     int opnum, enum reload_type type)
967 {
968   int i;
969   int dont_share = 0;
970   int dont_remove_subreg = 0;
971 #ifdef LIMIT_RELOAD_CLASS
972   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
973 #endif
974   int secondary_in_reload = -1, secondary_out_reload = -1;
975   enum insn_code secondary_in_icode = CODE_FOR_nothing;
976   enum insn_code secondary_out_icode = CODE_FOR_nothing;
977   enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
978   subreg_in_class = NO_REGS;
979 
980   /* INMODE and/or OUTMODE could be VOIDmode if no mode
981      has been specified for the operand.  In that case,
982      use the operand's mode as the mode to reload.  */
983   if (inmode == VOIDmode && in != 0)
984     inmode = GET_MODE (in);
985   if (outmode == VOIDmode && out != 0)
986     outmode = GET_MODE (out);
987 
988   /* If find_reloads and friends until now missed to replace a pseudo
989      with a constant of reg_equiv_constant something went wrong
990      beforehand.
991      Note that it can't simply be done here if we missed it earlier
992      since the constant might need to be pushed into the literal pool
993      and the resulting memref would probably need further
994      reloading.  */
995   if (in != 0 && REG_P (in))
996     {
997       int regno = REGNO (in);
998 
999       gcc_assert (regno < FIRST_PSEUDO_REGISTER
1000 		  || reg_renumber[regno] >= 0
1001 		  || reg_equiv_constant (regno) == NULL_RTX);
1002     }
1003 
1004   /* reg_equiv_constant only contains constants which are obviously
1005      not appropriate as destination.  So if we would need to replace
1006      the destination pseudo with a constant we are in real
1007      trouble.  */
1008   if (out != 0 && REG_P (out))
1009     {
1010       int regno = REGNO (out);
1011 
1012       gcc_assert (regno < FIRST_PSEUDO_REGISTER
1013 		  || reg_renumber[regno] >= 0
1014 		  || reg_equiv_constant (regno) == NULL_RTX);
1015     }
1016 
1017   /* If we have a read-write operand with an address side-effect,
1018      change either IN or OUT so the side-effect happens only once.  */
1019   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1020     switch (GET_CODE (XEXP (in, 0)))
1021       {
1022       case POST_INC: case POST_DEC:   case POST_MODIFY:
1023 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1024 	break;
1025 
1026       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1027 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1028 	break;
1029 
1030       default:
1031 	break;
1032       }
1033 
1034   /* If we are reloading a (SUBREG constant ...), really reload just the
1035      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
1036      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1037      a pseudo and hence will become a MEM) with M1 wider than M2 and the
1038      register is a pseudo, also reload the inside expression.
1039      For machines that extend byte loads, do this for any SUBREG of a pseudo
1040      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1041      M2 is an integral mode that gets extended when loaded.
1042      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1043      where either M1 is not valid for R or M2 is wider than a word but we
1044      only need one register to store an M2-sized quantity in R.
1045      (However, if OUT is nonzero, we need to reload the reg *and*
1046      the subreg, so do nothing here, and let following statement handle it.)
1047 
1048      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1049      we can't handle it here because CONST_INT does not indicate a mode.
1050 
1051      Similarly, we must reload the inside expression if we have a
1052      STRICT_LOW_PART (presumably, in == out in this case).
1053 
1054      Also reload the inner expression if it does not require a secondary
1055      reload but the SUBREG does.
1056 
1057      Finally, reload the inner expression if it is a register that is in
1058      the class whose registers cannot be referenced in a different size
1059      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
1060      cannot reload just the inside since we might end up with the wrong
1061      register class.  But if it is inside a STRICT_LOW_PART, we have
1062      no choice, so we hope we do get the right register class there.  */
1063 
1064   scalar_int_mode inner_mode;
1065   if (in != 0 && GET_CODE (in) == SUBREG
1066       && (subreg_lowpart_p (in) || strict_low)
1067       && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (in)),
1068 					inmode, rclass)
1069       && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (in))]
1070       && (CONSTANT_P (SUBREG_REG (in))
1071 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1072 	  || strict_low
1073 	  || (((REG_P (SUBREG_REG (in))
1074 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1075 	       || MEM_P (SUBREG_REG (in)))
1076 	      && (paradoxical_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1077 		  || (known_le (GET_MODE_SIZE (inmode), UNITS_PER_WORD)
1078 		      && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (in)),
1079 						 &inner_mode)
1080 		      && GET_MODE_SIZE (inner_mode) <= UNITS_PER_WORD
1081 		      && paradoxical_subreg_p (inmode, inner_mode)
1082 		      && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)
1083 		  || (WORD_REGISTER_OPERATIONS
1084 		      && partial_subreg_p (inmode, GET_MODE (SUBREG_REG (in)))
1085 		      && (known_equal_after_align_down
1086 			  (GET_MODE_SIZE (inmode) - 1,
1087 			   GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1,
1088 			   UNITS_PER_WORD)))))
1089 	  || (REG_P (SUBREG_REG (in))
1090 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1091 	      /* The case where out is nonzero
1092 		 is handled differently in the following statement.  */
1093 	      && (out == 0 || subreg_lowpart_p (in))
1094 	      && (complex_word_subreg_p (inmode, SUBREG_REG (in))
1095 		  || !targetm.hard_regno_mode_ok (subreg_regno (in), inmode)))
1096 	  || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1097 	      && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1098 					  SUBREG_REG (in))
1099 		  == NO_REGS))
1100 	  || (REG_P (SUBREG_REG (in))
1101 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1102 	      && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in)),
1103 					 GET_MODE (SUBREG_REG (in)), inmode))))
1104     {
1105 #ifdef LIMIT_RELOAD_CLASS
1106       in_subreg_loc = inloc;
1107 #endif
1108       inloc = &SUBREG_REG (in);
1109       in = *inloc;
1110 
1111       if (!WORD_REGISTER_OPERATIONS
1112 	  && LOAD_EXTEND_OP (GET_MODE (in)) == UNKNOWN
1113 	  && MEM_P (in))
1114 	/* This is supposed to happen only for paradoxical subregs made by
1115 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1116 	gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in)),
1117 			      GET_MODE_SIZE (inmode)));
1118 
1119       inmode = GET_MODE (in);
1120     }
1121 
1122   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1123      where M1 is not valid for R if it was not handled by the code above.
1124 
1125      Similar issue for (SUBREG constant ...) if it was not handled by the
1126      code above.  This can happen if SUBREG_BYTE != 0.
1127 
1128      However, we must reload the inner reg *as well as* the subreg in
1129      that case.  */
1130 
1131   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1132     {
1133       if (REG_P (SUBREG_REG (in)) && HARD_REGISTER_P (SUBREG_REG (in)))
1134 	subreg_in_class
1135 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1136 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1137 						   GET_MODE (SUBREG_REG (in)),
1138 						   SUBREG_BYTE (in),
1139 						   GET_MODE (in)),
1140 			      REGNO (SUBREG_REG (in)));
1141 #if 1 // XXXMRG
1142       else if (REG_P (SUBREG_REG (in))
1143                || GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1144 #else
1145       else if (CONSTANT_P (SUBREG_REG (in))
1146                || GET_CODE (SUBREG_REG (in)) == PLUS)
1147 #endif
1148 	subreg_in_class = find_valid_class_1 (inmode,
1149 					      GET_MODE (SUBREG_REG (in)),
1150 					      rclass);
1151 
1152       /* This relies on the fact that emit_reload_insns outputs the
1153 	 instructions for input reloads of type RELOAD_OTHER in the same
1154 	 order as the reloads.  Thus if the outer reload is also of type
1155 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1156 	 output before the outer reload.  */
1157       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1158 		   subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1159       dont_remove_subreg = 1;
1160     }
1161 
1162   /* Similarly for paradoxical and problematical SUBREGs on the output.
1163      Note that there is no reason we need worry about the previous value
1164      of SUBREG_REG (out); even if wider than out, storing in a subreg is
1165      entitled to clobber it all (except in the case of a word mode subreg
1166      or of a STRICT_LOW_PART, in that latter case the constraint should
1167      label it input-output.)  */
1168   if (out != 0 && GET_CODE (out) == SUBREG
1169       && (subreg_lowpart_p (out) || strict_low)
1170       && targetm.can_change_mode_class (GET_MODE (SUBREG_REG (out)),
1171 					outmode, rclass)
1172       && contains_allocatable_reg_of_mode[rclass][GET_MODE (SUBREG_REG (out))]
1173       && (CONSTANT_P (SUBREG_REG (out))
1174 	  || strict_low
1175 	  || (((REG_P (SUBREG_REG (out))
1176 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1177 	       || MEM_P (SUBREG_REG (out)))
1178 	      && (paradoxical_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1179 		  || (WORD_REGISTER_OPERATIONS
1180 		      && partial_subreg_p (outmode, GET_MODE (SUBREG_REG (out)))
1181 		      && (known_equal_after_align_down
1182 			  (GET_MODE_SIZE (outmode) - 1,
1183 			   GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1,
1184 			   UNITS_PER_WORD)))))
1185 	  || (REG_P (SUBREG_REG (out))
1186 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1187 	      /* The case of a word mode subreg
1188 		 is handled differently in the following statement.  */
1189 	      && ! (known_le (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1190 		    && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))),
1191 				 UNITS_PER_WORD))
1192 	      && !targetm.hard_regno_mode_ok (subreg_regno (out), outmode))
1193 	  || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1194 	      && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1195 					  SUBREG_REG (out))
1196 		  == NO_REGS))
1197 	  || (REG_P (SUBREG_REG (out))
1198 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1199 	      && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1200 					 GET_MODE (SUBREG_REG (out)),
1201 					 outmode))))
1202     {
1203 #ifdef LIMIT_RELOAD_CLASS
1204       out_subreg_loc = outloc;
1205 #endif
1206       outloc = &SUBREG_REG (out);
1207       out = *outloc;
1208       gcc_assert (WORD_REGISTER_OPERATIONS || !MEM_P (out)
1209 		  || known_le (GET_MODE_SIZE (GET_MODE (out)),
1210 			       GET_MODE_SIZE (outmode)));
1211       outmode = GET_MODE (out);
1212     }
1213 
1214   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1215      where either M1 is not valid for R or M2 is wider than a word but we
1216      only need one register to store an M2-sized quantity in R.
1217 
1218      However, we must reload the inner reg *as well as* the subreg in
1219      that case and the inner reg is an in-out reload.  */
1220 
1221   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1222     {
1223       enum reg_class in_out_class
1224 	= find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1225 			    subreg_regno_offset (REGNO (SUBREG_REG (out)),
1226 						 GET_MODE (SUBREG_REG (out)),
1227 						 SUBREG_BYTE (out),
1228 						 GET_MODE (out)),
1229 			    REGNO (SUBREG_REG (out)));
1230 
1231       /* This relies on the fact that emit_reload_insns outputs the
1232 	 instructions for output reloads of type RELOAD_OTHER in reverse
1233 	 order of the reloads.  Thus if the outer reload is also of type
1234 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1235 	 output after the outer reload.  */
1236       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1237 		   &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1238 		   0, 0, opnum, RELOAD_OTHER);
1239       dont_remove_subreg = 1;
1240     }
1241 
1242   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1243   if (in != 0 && out != 0 && MEM_P (out)
1244       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1245       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1246     dont_share = 1;
1247 
1248   /* If IN is a SUBREG of a hard register, make a new REG.  This
1249      simplifies some of the cases below.  */
1250 
1251   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1252       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1253       && ! dont_remove_subreg)
1254     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1255 
1256   /* Similarly for OUT.  */
1257   if (out != 0 && GET_CODE (out) == SUBREG
1258       && REG_P (SUBREG_REG (out))
1259       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1260       && ! dont_remove_subreg)
1261     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1262 
1263   /* Narrow down the class of register wanted if that is
1264      desirable on this machine for efficiency.  */
1265   {
1266     reg_class_t preferred_class = rclass;
1267 
1268     if (in != 0)
1269       preferred_class = targetm.preferred_reload_class (in, rclass);
1270 
1271     /* Output reloads may need analogous treatment, different in detail.  */
1272     if (out != 0)
1273       preferred_class
1274 	= targetm.preferred_output_reload_class (out, preferred_class);
1275 
1276     /* Discard what the target said if we cannot do it.  */
1277     if (preferred_class != NO_REGS
1278 	|| (optional && type == RELOAD_FOR_OUTPUT))
1279       rclass = (enum reg_class) preferred_class;
1280   }
1281 
1282   /* Make sure we use a class that can handle the actual pseudo
1283      inside any subreg.  For example, on the 386, QImode regs
1284      can appear within SImode subregs.  Although GENERAL_REGS
1285      can handle SImode, QImode needs a smaller class.  */
1286 #ifdef LIMIT_RELOAD_CLASS
1287   if (in_subreg_loc)
1288     rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1289   else if (in != 0 && GET_CODE (in) == SUBREG)
1290     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1291 
1292   if (out_subreg_loc)
1293     rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1294   if (out != 0 && GET_CODE (out) == SUBREG)
1295     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1296 #endif
1297 
1298   /* Verify that this class is at least possible for the mode that
1299      is specified.  */
1300   if (this_insn_is_asm)
1301     {
1302       machine_mode mode;
1303       if (paradoxical_subreg_p (inmode, outmode))
1304 	mode = inmode;
1305       else
1306 	mode = outmode;
1307       if (mode == VOIDmode)
1308 	{
1309 	  error_for_asm (this_insn, "cannot reload integer constant "
1310 			 "operand in %<asm%>");
1311 	  mode = word_mode;
1312 	  if (in != 0)
1313 	    inmode = word_mode;
1314 	  if (out != 0)
1315 	    outmode = word_mode;
1316 	}
1317       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1318 	if (targetm.hard_regno_mode_ok (i, mode)
1319 	    && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1320 	  break;
1321       if (i == FIRST_PSEUDO_REGISTER)
1322 	{
1323 	  error_for_asm (this_insn, "impossible register constraint "
1324 			 "in %<asm%>");
1325 	  /* Avoid further trouble with this insn.  */
1326 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1327 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1328 	     sanity check on i386 for:
1329 	     void foo(long double d)
1330 	     {
1331 	       asm("" :: "a" (d));
1332 	     }
1333 	     Returning zero here ought to be safe as we take care in
1334 	     find_reloads to not process the reloads when instruction was
1335 	     replaced by USE.  */
1336 
1337 	  return 0;
1338 	}
1339     }
1340 
1341   /* Optional output reloads are always OK even if we have no register class,
1342      since the function of these reloads is only to have spill_reg_store etc.
1343      set, so that the storing insn can be deleted later.  */
1344   gcc_assert (rclass != NO_REGS
1345 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1346 
1347   i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1348 
1349   if (i == n_reloads)
1350     {
1351       /* See if we need a secondary reload register to move between CLASS
1352 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1353 	 needed for each of them if so.  */
1354 
1355       if (in != 0)
1356 	secondary_in_reload
1357 	  = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1358 				   &secondary_in_icode, NULL);
1359       if (out != 0 && GET_CODE (out) != SCRATCH)
1360 	secondary_out_reload
1361 	  = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1362 				   type, &secondary_out_icode, NULL);
1363 
1364       /* We found no existing reload suitable for re-use.
1365 	 So add an additional reload.  */
1366 
1367       if (subreg_in_class == NO_REGS
1368 	  && in != 0
1369 	  && (REG_P (in)
1370 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1371 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1372 	subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1373       /* If a memory location is needed for the copy, make one.  */
1374       if (subreg_in_class != NO_REGS
1375 	  && targetm.secondary_memory_needed (inmode, subreg_in_class, rclass))
1376 	get_secondary_mem (in, inmode, opnum, type);
1377 
1378       i = n_reloads;
1379       rld[i].in = in;
1380       rld[i].out = out;
1381       rld[i].rclass = rclass;
1382       rld[i].inmode = inmode;
1383       rld[i].outmode = outmode;
1384       rld[i].reg_rtx = 0;
1385       rld[i].optional = optional;
1386       rld[i].inc = 0;
1387       rld[i].nocombine = 0;
1388       rld[i].in_reg = inloc ? *inloc : 0;
1389       rld[i].out_reg = outloc ? *outloc : 0;
1390       rld[i].opnum = opnum;
1391       rld[i].when_needed = type;
1392       rld[i].secondary_in_reload = secondary_in_reload;
1393       rld[i].secondary_out_reload = secondary_out_reload;
1394       rld[i].secondary_in_icode = secondary_in_icode;
1395       rld[i].secondary_out_icode = secondary_out_icode;
1396       rld[i].secondary_p = 0;
1397 
1398       n_reloads++;
1399 
1400       if (out != 0
1401           && (REG_P (out)
1402 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1403 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1404 	  && (targetm.secondary_memory_needed
1405 	      (outmode, rclass, REGNO_REG_CLASS (reg_or_subregno (out)))))
1406 	get_secondary_mem (out, outmode, opnum, type);
1407     }
1408   else
1409     {
1410       /* We are reusing an existing reload,
1411 	 but we may have additional information for it.
1412 	 For example, we may now have both IN and OUT
1413 	 while the old one may have just one of them.  */
1414 
1415       /* The modes can be different.  If they are, we want to reload in
1416 	 the larger mode, so that the value is valid for both modes.  */
1417       if (inmode != VOIDmode
1418 	  && partial_subreg_p (rld[i].inmode, inmode))
1419 	rld[i].inmode = inmode;
1420       if (outmode != VOIDmode
1421 	  && partial_subreg_p (rld[i].outmode, outmode))
1422 	rld[i].outmode = outmode;
1423       if (in != 0)
1424 	{
1425 	  rtx in_reg = inloc ? *inloc : 0;
1426 	  /* If we merge reloads for two distinct rtl expressions that
1427 	     are identical in content, there might be duplicate address
1428 	     reloads.  Remove the extra set now, so that if we later find
1429 	     that we can inherit this reload, we can get rid of the
1430 	     address reloads altogether.
1431 
1432 	     Do not do this if both reloads are optional since the result
1433 	     would be an optional reload which could potentially leave
1434 	     unresolved address replacements.
1435 
1436 	     It is not sufficient to call transfer_replacements since
1437 	     choose_reload_regs will remove the replacements for address
1438 	     reloads of inherited reloads which results in the same
1439 	     problem.  */
1440 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1441 	      && ! (rld[i].optional && optional))
1442 	    {
1443 	      /* We must keep the address reload with the lower operand
1444 		 number alive.  */
1445 	      if (opnum > rld[i].opnum)
1446 		{
1447 		  remove_address_replacements (in);
1448 		  in = rld[i].in;
1449 		  in_reg = rld[i].in_reg;
1450 		}
1451 	      else
1452 		remove_address_replacements (rld[i].in);
1453 	    }
1454 	  /* When emitting reloads we don't necessarily look at the in-
1455 	     and outmode, but also directly at the operands (in and out).
1456 	     So we can't simply overwrite them with whatever we have found
1457 	     for this (to-be-merged) reload, we have to "merge" that too.
1458 	     Reusing another reload already verified that we deal with the
1459 	     same operands, just possibly in different modes.  So we
1460 	     overwrite the operands only when the new mode is larger.
1461 	     See also PR33613.  */
1462 	  if (!rld[i].in
1463 	      || partial_subreg_p (GET_MODE (rld[i].in), GET_MODE (in)))
1464 	    rld[i].in = in;
1465 	  if (!rld[i].in_reg
1466 	      || (in_reg
1467 		  && partial_subreg_p (GET_MODE (rld[i].in_reg),
1468 				       GET_MODE (in_reg))))
1469 	    rld[i].in_reg = in_reg;
1470 	}
1471       if (out != 0)
1472 	{
1473 	  if (!rld[i].out
1474 	      || (out
1475 		  && partial_subreg_p (GET_MODE (rld[i].out),
1476 				       GET_MODE (out))))
1477 	    rld[i].out = out;
1478 	  if (outloc
1479 	      && (!rld[i].out_reg
1480 		  || partial_subreg_p (GET_MODE (rld[i].out_reg),
1481 				       GET_MODE (*outloc))))
1482 	    rld[i].out_reg = *outloc;
1483 	}
1484       if (reg_class_subset_p (rclass, rld[i].rclass))
1485 	rld[i].rclass = rclass;
1486       rld[i].optional &= optional;
1487       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1488 			  opnum, rld[i].opnum))
1489 	rld[i].when_needed = RELOAD_OTHER;
1490       rld[i].opnum = MIN (rld[i].opnum, opnum);
1491     }
1492 
1493   /* If the ostensible rtx being reloaded differs from the rtx found
1494      in the location to substitute, this reload is not safe to combine
1495      because we cannot reliably tell whether it appears in the insn.  */
1496 
1497   if (in != 0 && in != *inloc)
1498     rld[i].nocombine = 1;
1499 
1500 #if 0
1501   /* This was replaced by changes in find_reloads_address_1 and the new
1502      function inc_for_reload, which go with a new meaning of reload_inc.  */
1503 
1504   /* If this is an IN/OUT reload in an insn that sets the CC,
1505      it must be for an autoincrement.  It doesn't work to store
1506      the incremented value after the insn because that would clobber the CC.
1507      So we must do the increment of the value reloaded from,
1508      increment it, store it back, then decrement again.  */
1509   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1510     {
1511       out = 0;
1512       rld[i].out = 0;
1513       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1514       /* If we did not find a nonzero amount-to-increment-by,
1515 	 that contradicts the belief that IN is being incremented
1516 	 in an address in this insn.  */
1517       gcc_assert (rld[i].inc != 0);
1518     }
1519 #endif
1520 
1521   /* If we will replace IN and OUT with the reload-reg,
1522      record where they are located so that substitution need
1523      not do a tree walk.  */
1524 
1525   if (replace_reloads)
1526     {
1527       if (inloc != 0)
1528 	{
1529 	  struct replacement *r = &replacements[n_replacements++];
1530 	  r->what = i;
1531 	  r->where = inloc;
1532 	  r->mode = inmode;
1533 	}
1534       if (outloc != 0 && outloc != inloc)
1535 	{
1536 	  struct replacement *r = &replacements[n_replacements++];
1537 	  r->what = i;
1538 	  r->where = outloc;
1539 	  r->mode = outmode;
1540 	}
1541     }
1542 
1543   /* If this reload is just being introduced and it has both
1544      an incoming quantity and an outgoing quantity that are
1545      supposed to be made to match, see if either one of the two
1546      can serve as the place to reload into.
1547 
1548      If one of them is acceptable, set rld[i].reg_rtx
1549      to that one.  */
1550 
1551   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1552     {
1553       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1554 					  inmode, outmode,
1555 					  rld[i].rclass, i,
1556 					  earlyclobber_operand_p (out));
1557 
1558       /* If the outgoing register already contains the same value
1559 	 as the incoming one, we can dispense with loading it.
1560 	 The easiest way to tell the caller that is to give a phony
1561 	 value for the incoming operand (same as outgoing one).  */
1562       if (rld[i].reg_rtx == out
1563 	  && (REG_P (in) || CONSTANT_P (in))
1564 	  && find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1565 			     static_reload_reg_p, i, inmode) != 0)
1566 	rld[i].in = out;
1567     }
1568 
1569   /* If this is an input reload and the operand contains a register that
1570      dies in this insn and is used nowhere else, see if it is the right class
1571      to be used for this reload.  Use it if so.  (This occurs most commonly
1572      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1573      this if it is also an output reload that mentions the register unless
1574      the output is a SUBREG that clobbers an entire register.
1575 
1576      Note that the operand might be one of the spill regs, if it is a
1577      pseudo reg and we are in a block where spilling has not taken place.
1578      But if there is no spilling in this block, that is OK.
1579      An explicitly used hard reg cannot be a spill reg.  */
1580 
1581   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1582     {
1583       rtx note;
1584       int regno;
1585       machine_mode rel_mode = inmode;
1586 
1587       if (out && partial_subreg_p (rel_mode, outmode))
1588 	rel_mode = outmode;
1589 
1590       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1591 	if (REG_NOTE_KIND (note) == REG_DEAD
1592 	    && REG_P (XEXP (note, 0))
1593 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1594 	    && reg_mentioned_p (XEXP (note, 0), in)
1595 	    /* Check that a former pseudo is valid; see find_dummy_reload.  */
1596 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1597 		|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1598 				    ORIGINAL_REGNO (XEXP (note, 0)))
1599 		    && REG_NREGS (XEXP (note, 0)) == 1))
1600 	    && ! refers_to_regno_for_reload_p (regno,
1601 					       end_hard_regno (rel_mode,
1602 							       regno),
1603 					       PATTERN (this_insn), inloc)
1604 	    && ! find_reg_fusage (this_insn, USE, XEXP (note, 0))
1605 	    /* If this is also an output reload, IN cannot be used as
1606 	       the reload register if it is set in this insn unless IN
1607 	       is also OUT.  */
1608 	    && (out == 0 || in == out
1609 		|| ! hard_reg_set_here_p (regno,
1610 					  end_hard_regno (rel_mode, regno),
1611 					  PATTERN (this_insn)))
1612 	    /* ??? Why is this code so different from the previous?
1613 	       Is there any simple coherent way to describe the two together?
1614 	       What's going on here.  */
1615 	    && (in != out
1616 		|| (GET_CODE (in) == SUBREG
1617 		    && (known_equal_after_align_up
1618 			(GET_MODE_SIZE (GET_MODE (in)),
1619 			 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))),
1620 			 UNITS_PER_WORD))))
1621 	    /* Make sure the operand fits in the reg that dies.  */
1622 	    && known_le (GET_MODE_SIZE (rel_mode),
1623 			 GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1624 	    && targetm.hard_regno_mode_ok (regno, inmode)
1625 	    && targetm.hard_regno_mode_ok (regno, outmode))
1626 	  {
1627 	    unsigned int offs;
1628 	    unsigned int nregs = MAX (hard_regno_nregs (regno, inmode),
1629 				      hard_regno_nregs (regno, outmode));
1630 
1631 	    for (offs = 0; offs < nregs; offs++)
1632 	      if (fixed_regs[regno + offs]
1633 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1634 					  regno + offs))
1635 		break;
1636 
1637 	    if (offs == nregs
1638 		&& (! (refers_to_regno_for_reload_p
1639 		       (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1640 		    || can_reload_into (in, regno, inmode)))
1641 	      {
1642 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1643 		break;
1644 	      }
1645 	  }
1646     }
1647 
1648   if (out)
1649     output_reloadnum = i;
1650 
1651   return i;
1652 }
1653 
1654 /* Record an additional place we must replace a value
1655    for which we have already recorded a reload.
1656    RELOADNUM is the value returned by push_reload
1657    when the reload was recorded.
1658    This is used in insn patterns that use match_dup.  */
1659 
1660 static void
1661 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1662 {
1663   if (replace_reloads)
1664     {
1665       struct replacement *r = &replacements[n_replacements++];
1666       r->what = reloadnum;
1667       r->where = loc;
1668       r->mode = mode;
1669     }
1670 }
1671 
1672 /* Duplicate any replacement we have recorded to apply at
1673    location ORIG_LOC to also be performed at DUP_LOC.
1674    This is used in insn patterns that use match_dup.  */
1675 
1676 static void
1677 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1678 {
1679   int i, n = n_replacements;
1680 
1681   for (i = 0; i < n; i++)
1682     {
1683       struct replacement *r = &replacements[i];
1684       if (r->where == orig_loc)
1685 	push_replacement (dup_loc, r->what, r->mode);
1686     }
1687 }
1688 
1689 /* Transfer all replacements that used to be in reload FROM to be in
1690    reload TO.  */
1691 
1692 void
1693 transfer_replacements (int to, int from)
1694 {
1695   int i;
1696 
1697   for (i = 0; i < n_replacements; i++)
1698     if (replacements[i].what == from)
1699       replacements[i].what = to;
1700 }
1701 
1702 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1703    or a subpart of it.  If we have any replacements registered for IN_RTX,
1704    cancel the reloads that were supposed to load them.
1705    Return nonzero if we canceled any reloads.  */
1706 int
1707 remove_address_replacements (rtx in_rtx)
1708 {
1709   int i, j;
1710   char reload_flags[MAX_RELOADS];
1711   int something_changed = 0;
1712 
1713   memset (reload_flags, 0, sizeof reload_flags);
1714   for (i = 0, j = 0; i < n_replacements; i++)
1715     {
1716       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1717 	reload_flags[replacements[i].what] |= 1;
1718       else
1719 	{
1720 	  replacements[j++] = replacements[i];
1721 	  reload_flags[replacements[i].what] |= 2;
1722 	}
1723     }
1724   /* Note that the following store must be done before the recursive calls.  */
1725   n_replacements = j;
1726 
1727   for (i = n_reloads - 1; i >= 0; i--)
1728     {
1729       if (reload_flags[i] == 1)
1730 	{
1731 	  deallocate_reload_reg (i);
1732 	  remove_address_replacements (rld[i].in);
1733 	  rld[i].in = 0;
1734 	  something_changed = 1;
1735 	}
1736     }
1737   return something_changed;
1738 }
1739 
1740 /* If there is only one output reload, and it is not for an earlyclobber
1741    operand, try to combine it with a (logically unrelated) input reload
1742    to reduce the number of reload registers needed.
1743 
1744    This is safe if the input reload does not appear in
1745    the value being output-reloaded, because this implies
1746    it is not needed any more once the original insn completes.
1747 
1748    If that doesn't work, see we can use any of the registers that
1749    die in this insn as a reload register.  We can if it is of the right
1750    class and does not appear in the value being output-reloaded.  */
1751 
1752 static void
1753 combine_reloads (void)
1754 {
1755   int i, regno;
1756   int output_reload = -1;
1757   int secondary_out = -1;
1758   rtx note;
1759 
1760   /* Find the output reload; return unless there is exactly one
1761      and that one is mandatory.  */
1762 
1763   for (i = 0; i < n_reloads; i++)
1764     if (rld[i].out != 0)
1765       {
1766 	if (output_reload >= 0)
1767 	  return;
1768 	output_reload = i;
1769       }
1770 
1771   if (output_reload < 0 || rld[output_reload].optional)
1772     return;
1773 
1774   /* An input-output reload isn't combinable.  */
1775 
1776   if (rld[output_reload].in != 0)
1777     return;
1778 
1779   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1780   if (earlyclobber_operand_p (rld[output_reload].out))
1781     return;
1782 
1783   /* If there is a reload for part of the address of this operand, we would
1784      need to change it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1785      its life to the point where doing this combine would not lower the
1786      number of spill registers needed.  */
1787   for (i = 0; i < n_reloads; i++)
1788     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1789 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1790 	&& rld[i].opnum == rld[output_reload].opnum)
1791       return;
1792 
1793   /* Check each input reload; can we combine it?  */
1794 
1795   for (i = 0; i < n_reloads; i++)
1796     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1797 	/* Life span of this reload must not extend past main insn.  */
1798 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1799 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1800 	&& rld[i].when_needed != RELOAD_OTHER
1801 	&& (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1802 	    == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1803 				       [(int) rld[output_reload].outmode])
1804 	&& known_eq (rld[i].inc, 0)
1805 	&& rld[i].reg_rtx == 0
1806 	/* Don't combine two reloads with different secondary
1807 	   memory locations.  */
1808 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1809 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1810 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1811 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1812 	&& (targetm.small_register_classes_for_mode_p (VOIDmode)
1813 	    ? (rld[i].rclass == rld[output_reload].rclass)
1814 	    : (reg_class_subset_p (rld[i].rclass,
1815 				   rld[output_reload].rclass)
1816 	       || reg_class_subset_p (rld[output_reload].rclass,
1817 				      rld[i].rclass)))
1818 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1819 	    /* Args reversed because the first arg seems to be
1820 	       the one that we imagine being modified
1821 	       while the second is the one that might be affected.  */
1822 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1823 						      rld[i].in)
1824 		/* However, if the input is a register that appears inside
1825 		   the output, then we also can't share.
1826 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1827 		   If the same reload reg is used for both reg 69 and the
1828 		   result to be stored in memory, then that result
1829 		   will clobber the address of the memory ref.  */
1830 		&& ! (REG_P (rld[i].in)
1831 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1832 							     rld[output_reload].out))))
1833 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1834 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1835 	&& (reg_class_size[(int) rld[i].rclass]
1836 	    || targetm.small_register_classes_for_mode_p (VOIDmode))
1837 	/* We will allow making things slightly worse by combining an
1838 	   input and an output, but no worse than that.  */
1839 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1840 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1841       {
1842 	int j;
1843 
1844 	/* We have found a reload to combine with!  */
1845 	rld[i].out = rld[output_reload].out;
1846 	rld[i].out_reg = rld[output_reload].out_reg;
1847 	rld[i].outmode = rld[output_reload].outmode;
1848 	/* Mark the old output reload as inoperative.  */
1849 	rld[output_reload].out = 0;
1850 	/* The combined reload is needed for the entire insn.  */
1851 	rld[i].when_needed = RELOAD_OTHER;
1852 	/* If the output reload had a secondary reload, copy it.  */
1853 	if (rld[output_reload].secondary_out_reload != -1)
1854 	  {
1855 	    rld[i].secondary_out_reload
1856 	      = rld[output_reload].secondary_out_reload;
1857 	    rld[i].secondary_out_icode
1858 	      = rld[output_reload].secondary_out_icode;
1859 	  }
1860 
1861 	/* Copy any secondary MEM.  */
1862 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1863 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1864 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1865 	/* If required, minimize the register class.  */
1866 	if (reg_class_subset_p (rld[output_reload].rclass,
1867 				rld[i].rclass))
1868 	  rld[i].rclass = rld[output_reload].rclass;
1869 
1870 	/* Transfer all replacements from the old reload to the combined.  */
1871 	for (j = 0; j < n_replacements; j++)
1872 	  if (replacements[j].what == output_reload)
1873 	    replacements[j].what = i;
1874 
1875 	return;
1876       }
1877 
1878   /* If this insn has only one operand that is modified or written (assumed
1879      to be the first),  it must be the one corresponding to this reload.  It
1880      is safe to use anything that dies in this insn for that output provided
1881      that it does not occur in the output (we already know it isn't an
1882      earlyclobber.  If this is an asm insn, give up.  */
1883 
1884   if (INSN_CODE (this_insn) == -1)
1885     return;
1886 
1887   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1888     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1889 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1890       return;
1891 
1892   /* See if some hard register that dies in this insn and is not used in
1893      the output is the right class.  Only works if the register we pick
1894      up can fully hold our output reload.  */
1895   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1896     if (REG_NOTE_KIND (note) == REG_DEAD
1897 	&& REG_P (XEXP (note, 0))
1898 	&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1899 						rld[output_reload].out)
1900 	&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1901 	&& targetm.hard_regno_mode_ok (regno, rld[output_reload].outmode)
1902 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1903 			      regno)
1904 	&& (hard_regno_nregs (regno, rld[output_reload].outmode)
1905 	    <= REG_NREGS (XEXP (note, 0)))
1906 	/* Ensure that a secondary or tertiary reload for this output
1907 	   won't want this register.  */
1908 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1909 	    || (!(TEST_HARD_REG_BIT
1910 		  (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1911 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1912 		    || !(TEST_HARD_REG_BIT
1913 			 (reg_class_contents[(int) rld[secondary_out].rclass],
1914 			  regno)))))
1915 	&& !fixed_regs[regno]
1916 	/* Check that a former pseudo is valid; see find_dummy_reload.  */
1917 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1918 	    || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1919 			       ORIGINAL_REGNO (XEXP (note, 0)))
1920 		&& REG_NREGS (XEXP (note, 0)) == 1)))
1921       {
1922 	rld[output_reload].reg_rtx
1923 	  = gen_rtx_REG (rld[output_reload].outmode, regno);
1924 	return;
1925       }
1926 }
1927 
1928 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1929    See if one of IN and OUT is a register that may be used;
1930    this is desirable since a spill-register won't be needed.
1931    If so, return the register rtx that proves acceptable.
1932 
1933    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1934    RCLASS is the register class required for the reload.
1935 
1936    If FOR_REAL is >= 0, it is the number of the reload,
1937    and in some cases when it can be discovered that OUT doesn't need
1938    to be computed, clear out rld[FOR_REAL].out.
1939 
1940    If FOR_REAL is -1, this should not be done, because this call
1941    is just to see if a register can be found, not to find and install it.
1942 
1943    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1944    puts an additional constraint on being able to use IN for OUT since
1945    IN must not appear elsewhere in the insn (it is assumed that IN itself
1946    is safe from the earlyclobber).  */
1947 
1948 static rtx
1949 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1950 		   machine_mode inmode, machine_mode outmode,
1951 		   reg_class_t rclass, int for_real, int earlyclobber)
1952 {
1953   rtx in = real_in;
1954   rtx out = real_out;
1955   int in_offset = 0;
1956   int out_offset = 0;
1957   rtx value = 0;
1958 
1959   /* If operands exceed a word, we can't use either of them
1960      unless they have the same size.  */
1961   if (maybe_ne (GET_MODE_SIZE (outmode), GET_MODE_SIZE (inmode))
1962       && (maybe_gt (GET_MODE_SIZE (outmode), UNITS_PER_WORD)
1963 	  || maybe_gt (GET_MODE_SIZE (inmode), UNITS_PER_WORD)))
1964     return 0;
1965 
1966   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1967      respectively refers to a hard register.  */
1968 
1969   /* Find the inside of any subregs.  */
1970   while (GET_CODE (out) == SUBREG)
1971     {
1972       if (REG_P (SUBREG_REG (out))
1973 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1974 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1975 					   GET_MODE (SUBREG_REG (out)),
1976 					   SUBREG_BYTE (out),
1977 					   GET_MODE (out));
1978       out = SUBREG_REG (out);
1979     }
1980   while (GET_CODE (in) == SUBREG)
1981     {
1982       if (REG_P (SUBREG_REG (in))
1983 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1984 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1985 					  GET_MODE (SUBREG_REG (in)),
1986 					  SUBREG_BYTE (in),
1987 					  GET_MODE (in));
1988       in = SUBREG_REG (in);
1989     }
1990 
1991   /* Narrow down the reg class, the same way push_reload will;
1992      otherwise we might find a dummy now, but push_reload won't.  */
1993   {
1994     reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
1995     if (preferred_class != NO_REGS)
1996       rclass = (enum reg_class) preferred_class;
1997   }
1998 
1999   /* See if OUT will do.  */
2000   if (REG_P (out)
2001       && REGNO (out) < FIRST_PSEUDO_REGISTER)
2002     {
2003       unsigned int regno = REGNO (out) + out_offset;
2004       unsigned int nwords = hard_regno_nregs (regno, outmode);
2005       rtx saved_rtx;
2006 
2007       /* When we consider whether the insn uses OUT,
2008 	 ignore references within IN.  They don't prevent us
2009 	 from copying IN into OUT, because those refs would
2010 	 move into the insn that reloads IN.
2011 
2012 	 However, we only ignore IN in its role as this reload.
2013 	 If the insn uses IN elsewhere and it contains OUT,
2014 	 that counts.  We can't be sure it's the "same" operand
2015 	 so it might not go through this reload.
2016 
2017          We also need to avoid using OUT if it, or part of it, is a
2018          fixed register.  Modifying such registers, even transiently,
2019          may have undefined effects on the machine, such as modifying
2020          the stack pointer.  */
2021       saved_rtx = *inloc;
2022       *inloc = const0_rtx;
2023 
2024       if (regno < FIRST_PSEUDO_REGISTER
2025 	  && targetm.hard_regno_mode_ok (regno, outmode)
2026 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2027 					     PATTERN (this_insn), outloc))
2028 	{
2029 	  unsigned int i;
2030 
2031 	  for (i = 0; i < nwords; i++)
2032 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2033 				     regno + i)
2034 		|| fixed_regs[regno + i])
2035 	      break;
2036 
2037 	  if (i == nwords)
2038 	    {
2039 	      if (REG_P (real_out))
2040 		value = real_out;
2041 	      else
2042 		value = gen_rtx_REG (outmode, regno);
2043 	    }
2044 	}
2045 
2046       *inloc = saved_rtx;
2047     }
2048 
2049   /* Consider using IN if OUT was not acceptable
2050      or if OUT dies in this insn (like the quotient in a divmod insn).
2051      We can't use IN unless it is dies in this insn,
2052      which means we must know accurately which hard regs are live.
2053      Also, the result can't go in IN if IN is used within OUT,
2054      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
2055   if (hard_regs_live_known
2056       && REG_P (in)
2057       && REGNO (in) < FIRST_PSEUDO_REGISTER
2058       && (value == 0
2059 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
2060       && find_reg_note (this_insn, REG_DEAD, real_in)
2061       && !fixed_regs[REGNO (in)]
2062       && targetm.hard_regno_mode_ok (REGNO (in),
2063 				     /* The only case where out and real_out
2064 					might have different modes is where
2065 					real_out is a subreg, and in that
2066 					case, out has a real mode.  */
2067 				     (GET_MODE (out) != VOIDmode
2068 				      ? GET_MODE (out) : outmode))
2069       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2070 	  /* However only do this if we can be sure that this input
2071 	     operand doesn't correspond with an uninitialized pseudo.
2072 	     global can assign some hardreg to it that is the same as
2073 	     the one assigned to a different, also live pseudo (as it
2074 	     can ignore the conflict).  We must never introduce writes
2075 	     to such hardregs, as they would clobber the other live
2076 	     pseudo.  See PR 20973.  */
2077 	  || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2078 			     ORIGINAL_REGNO (in))
2079 	      /* Similarly, only do this if we can be sure that the death
2080 		 note is still valid.  global can assign some hardreg to
2081 		 the pseudo referenced in the note and simultaneously a
2082 		 subword of this hardreg to a different, also live pseudo,
2083 		 because only another subword of the hardreg is actually
2084 		 used in the insn.  This cannot happen if the pseudo has
2085 		 been assigned exactly one hardreg.  See PR 33732.  */
2086 	      && REG_NREGS (in) == 1)))
2087     {
2088       unsigned int regno = REGNO (in) + in_offset;
2089       unsigned int nwords = hard_regno_nregs (regno, inmode);
2090 
2091       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2092 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2093 				    PATTERN (this_insn))
2094 	  && (! earlyclobber
2095 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2096 						 PATTERN (this_insn), inloc)))
2097 	{
2098 	  unsigned int i;
2099 
2100 	  for (i = 0; i < nwords; i++)
2101 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2102 				     regno + i))
2103 	      break;
2104 
2105 	  if (i == nwords)
2106 	    {
2107 	      /* If we were going to use OUT as the reload reg
2108 		 and changed our mind, it means OUT is a dummy that
2109 		 dies here.  So don't bother copying value to it.  */
2110 	      if (for_real >= 0 && value == real_out)
2111 		rld[for_real].out = 0;
2112 	      if (REG_P (real_in))
2113 		value = real_in;
2114 	      else
2115 		value = gen_rtx_REG (inmode, regno);
2116 	    }
2117 	}
2118     }
2119 
2120   return value;
2121 }
2122 
2123 /* This page contains subroutines used mainly for determining
2124    whether the IN or an OUT of a reload can serve as the
2125    reload register.  */
2126 
2127 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2128 
2129 int
2130 earlyclobber_operand_p (rtx x)
2131 {
2132   int i;
2133 
2134   for (i = 0; i < n_earlyclobbers; i++)
2135     if (reload_earlyclobbers[i] == x)
2136       return 1;
2137 
2138   return 0;
2139 }
2140 
2141 /* Return 1 if expression X alters a hard reg in the range
2142    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2143    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2144    X should be the body of an instruction.  */
2145 
2146 static int
2147 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2148 {
2149   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2150     {
2151       rtx op0 = SET_DEST (x);
2152 
2153       while (GET_CODE (op0) == SUBREG)
2154 	op0 = SUBREG_REG (op0);
2155       if (REG_P (op0))
2156 	{
2157 	  unsigned int r = REGNO (op0);
2158 
2159 	  /* See if this reg overlaps range under consideration.  */
2160 	  if (r < end_regno
2161 	      && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2162 	    return 1;
2163 	}
2164     }
2165   else if (GET_CODE (x) == PARALLEL)
2166     {
2167       int i = XVECLEN (x, 0) - 1;
2168 
2169       for (; i >= 0; i--)
2170 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2171 	  return 1;
2172     }
2173 
2174   return 0;
2175 }
2176 
2177 /* Return 1 if ADDR is a valid memory address for mode MODE
2178    in address space AS, and check that each pseudo reg has the
2179    proper kind of hard reg.  */
2180 
2181 int
2182 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2183 				    rtx addr, addr_space_t as)
2184 {
2185 #ifdef GO_IF_LEGITIMATE_ADDRESS
2186   gcc_assert (ADDR_SPACE_GENERIC_P (as));
2187   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2188   return 0;
2189 
2190  win:
2191   return 1;
2192 #else
2193   return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2194 #endif
2195 }
2196 
2197 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2198    if they are the same hard reg, and has special hacks for
2199    autoincrement and autodecrement.
2200    This is specifically intended for find_reloads to use
2201    in determining whether two operands match.
2202    X is the operand whose number is the lower of the two.
2203 
2204    The value is 2 if Y contains a pre-increment that matches
2205    a non-incrementing address in X.  */
2206 
2207 /* ??? To be completely correct, we should arrange to pass
2208    for X the output operand and for Y the input operand.
2209    For now, we assume that the output operand has the lower number
2210    because that is natural in (SET output (... input ...)).  */
2211 
2212 int
2213 operands_match_p (rtx x, rtx y)
2214 {
2215   int i;
2216   RTX_CODE code = GET_CODE (x);
2217   const char *fmt;
2218   int success_2;
2219 
2220   if (x == y)
2221     return 1;
2222   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2223       && (REG_P (y) || (GET_CODE (y) == SUBREG
2224 				  && REG_P (SUBREG_REG (y)))))
2225     {
2226       int j;
2227 
2228       if (code == SUBREG)
2229 	{
2230 	  i = REGNO (SUBREG_REG (x));
2231 	  if (i >= FIRST_PSEUDO_REGISTER)
2232 	    goto slow;
2233 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2234 				    GET_MODE (SUBREG_REG (x)),
2235 				    SUBREG_BYTE (x),
2236 				    GET_MODE (x));
2237 	}
2238       else
2239 	i = REGNO (x);
2240 
2241       if (GET_CODE (y) == SUBREG)
2242 	{
2243 	  j = REGNO (SUBREG_REG (y));
2244 	  if (j >= FIRST_PSEUDO_REGISTER)
2245 	    goto slow;
2246 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2247 				    GET_MODE (SUBREG_REG (y)),
2248 				    SUBREG_BYTE (y),
2249 				    GET_MODE (y));
2250 	}
2251       else
2252 	j = REGNO (y);
2253 
2254       /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2255 	 multiple hard register group of scalar integer registers, so that
2256 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2257 	 register.  */
2258       scalar_int_mode xmode;
2259       if (REG_WORDS_BIG_ENDIAN
2260 	  && is_a <scalar_int_mode> (GET_MODE (x), &xmode)
2261 	  && GET_MODE_SIZE (xmode) > UNITS_PER_WORD
2262 	  && i < FIRST_PSEUDO_REGISTER)
2263 	i += hard_regno_nregs (i, xmode) - 1;
2264       scalar_int_mode ymode;
2265       if (REG_WORDS_BIG_ENDIAN
2266 	  && is_a <scalar_int_mode> (GET_MODE (y), &ymode)
2267 	  && GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2268 	  && j < FIRST_PSEUDO_REGISTER)
2269 	j += hard_regno_nregs (j, ymode) - 1;
2270 
2271       return i == j;
2272     }
2273   /* If two operands must match, because they are really a single
2274      operand of an assembler insn, then two postincrements are invalid
2275      because the assembler insn would increment only once.
2276      On the other hand, a postincrement matches ordinary indexing
2277      if the postincrement is the output operand.  */
2278   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2279     return operands_match_p (XEXP (x, 0), y);
2280   /* Two preincrements are invalid
2281      because the assembler insn would increment only once.
2282      On the other hand, a preincrement matches ordinary indexing
2283      if the preincrement is the input operand.
2284      In this case, return 2, since some callers need to do special
2285      things when this happens.  */
2286   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2287       || GET_CODE (y) == PRE_MODIFY)
2288     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2289 
2290  slow:
2291 
2292   /* Now we have disposed of all the cases in which different rtx codes
2293      can match.  */
2294   if (code != GET_CODE (y))
2295     return 0;
2296 
2297   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2298   if (GET_MODE (x) != GET_MODE (y))
2299     return 0;
2300 
2301   /* MEMs referring to different address space are not equivalent.  */
2302   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2303     return 0;
2304 
2305   switch (code)
2306     {
2307     CASE_CONST_UNIQUE:
2308       return 0;
2309 
2310     case CONST_VECTOR:
2311       if (!same_vector_encodings_p (x, y))
2312 	return false;
2313       break;
2314 
2315     case LABEL_REF:
2316       return label_ref_label (x) == label_ref_label (y);
2317     case SYMBOL_REF:
2318       return XSTR (x, 0) == XSTR (y, 0);
2319 
2320     default:
2321       break;
2322     }
2323 
2324   /* Compare the elements.  If any pair of corresponding elements
2325      fail to match, return 0 for the whole things.  */
2326 
2327   success_2 = 0;
2328   fmt = GET_RTX_FORMAT (code);
2329   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2330     {
2331       int val, j;
2332       switch (fmt[i])
2333 	{
2334 	case 'w':
2335 	  if (XWINT (x, i) != XWINT (y, i))
2336 	    return 0;
2337 	  break;
2338 
2339 	case 'i':
2340 	  if (XINT (x, i) != XINT (y, i))
2341 	    return 0;
2342 	  break;
2343 
2344 	case 'p':
2345 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2346 	    return 0;
2347 	  break;
2348 
2349 	case 'e':
2350 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2351 	  if (val == 0)
2352 	    return 0;
2353 	  /* If any subexpression returns 2,
2354 	     we should return 2 if we are successful.  */
2355 	  if (val == 2)
2356 	    success_2 = 1;
2357 	  break;
2358 
2359 	case '0':
2360 	  break;
2361 
2362 	case 'E':
2363 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2364 	    return 0;
2365 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2366 	    {
2367 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2368 	      if (val == 0)
2369 		return 0;
2370 	      if (val == 2)
2371 		success_2 = 1;
2372 	    }
2373 	  break;
2374 
2375 	  /* It is believed that rtx's at this level will never
2376 	     contain anything but integers and other rtx's,
2377 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2378 	default:
2379 	  gcc_unreachable ();
2380 	}
2381     }
2382   return 1 + success_2;
2383 }
2384 
2385 /* Describe the range of registers or memory referenced by X.
2386    If X is a register, set REG_FLAG and put the first register
2387    number into START and the last plus one into END.
2388    If X is a memory reference, put a base address into BASE
2389    and a range of integer offsets into START and END.
2390    If X is pushing on the stack, we can assume it causes no trouble,
2391    so we set the SAFE field.  */
2392 
2393 static struct decomposition
2394 decompose (rtx x)
2395 {
2396   struct decomposition val;
2397   int all_const = 0, regno;
2398 
2399   memset (&val, 0, sizeof (val));
2400 
2401   switch (GET_CODE (x))
2402     {
2403     case MEM:
2404       {
2405 	rtx base = NULL_RTX, offset = 0;
2406 	rtx addr = XEXP (x, 0);
2407 
2408 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2409 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2410 	  {
2411 	    val.base = XEXP (addr, 0);
2412 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2413 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2414 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2415 	    return val;
2416 	  }
2417 
2418 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2419 	  {
2420 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2421 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2422 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2423 	      {
2424 		val.base  = XEXP (addr, 0);
2425 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2426 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2427 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2428 		return val;
2429 	      }
2430 	  }
2431 
2432 	if (GET_CODE (addr) == CONST)
2433 	  {
2434 	    addr = XEXP (addr, 0);
2435 	    all_const = 1;
2436 	  }
2437 	if (GET_CODE (addr) == PLUS)
2438 	  {
2439 	    if (CONSTANT_P (XEXP (addr, 0)))
2440 	      {
2441 		base = XEXP (addr, 1);
2442 		offset = XEXP (addr, 0);
2443 	      }
2444 	    else if (CONSTANT_P (XEXP (addr, 1)))
2445 	      {
2446 		base = XEXP (addr, 0);
2447 		offset = XEXP (addr, 1);
2448 	      }
2449 	  }
2450 
2451 	if (offset == 0)
2452 	  {
2453 	    base = addr;
2454 	    offset = const0_rtx;
2455 	  }
2456 	if (GET_CODE (offset) == CONST)
2457 	  offset = XEXP (offset, 0);
2458 	if (GET_CODE (offset) == PLUS)
2459 	  {
2460 	    if (CONST_INT_P (XEXP (offset, 0)))
2461 	      {
2462 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2463 		offset = XEXP (offset, 0);
2464 	      }
2465 	    else if (CONST_INT_P (XEXP (offset, 1)))
2466 	      {
2467 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2468 		offset = XEXP (offset, 1);
2469 	      }
2470 	    else
2471 	      {
2472 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2473 		offset = const0_rtx;
2474 	      }
2475 	  }
2476 	else if (!CONST_INT_P (offset))
2477 	  {
2478 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2479 	    offset = const0_rtx;
2480 	  }
2481 
2482 	if (all_const && GET_CODE (base) == PLUS)
2483 	  base = gen_rtx_CONST (GET_MODE (base), base);
2484 
2485 	gcc_assert (CONST_INT_P (offset));
2486 
2487 	val.start = INTVAL (offset);
2488 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2489 	val.base = base;
2490       }
2491       break;
2492 
2493     case REG:
2494       val.reg_flag = 1;
2495       regno = true_regnum (x);
2496       if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2497 	{
2498 	  /* A pseudo with no hard reg.  */
2499 	  val.start = REGNO (x);
2500 	  val.end = val.start + 1;
2501 	}
2502       else
2503 	{
2504 	  /* A hard reg.  */
2505 	  val.start = regno;
2506 	  val.end = end_hard_regno (GET_MODE (x), regno);
2507 	}
2508       break;
2509 
2510     case SUBREG:
2511       if (!REG_P (SUBREG_REG (x)))
2512 	/* This could be more precise, but it's good enough.  */
2513 	return decompose (SUBREG_REG (x));
2514       regno = true_regnum (x);
2515       if (regno < 0 || regno >= FIRST_PSEUDO_REGISTER)
2516 	return decompose (SUBREG_REG (x));
2517 
2518       /* A hard reg.  */
2519       val.reg_flag = 1;
2520       val.start = regno;
2521       val.end = regno + subreg_nregs (x);
2522       break;
2523 
2524     case SCRATCH:
2525       /* This hasn't been assigned yet, so it can't conflict yet.  */
2526       val.safe = 1;
2527       break;
2528 
2529     default:
2530       gcc_assert (CONSTANT_P (x));
2531       val.safe = 1;
2532       break;
2533     }
2534   return val;
2535 }
2536 
2537 /* Return 1 if altering Y will not modify the value of X.
2538    Y is also described by YDATA, which should be decompose (Y).  */
2539 
2540 static int
2541 immune_p (rtx x, rtx y, struct decomposition ydata)
2542 {
2543   struct decomposition xdata;
2544 
2545   if (ydata.reg_flag)
2546     /* In this case the decomposition structure contains register
2547        numbers rather than byte offsets.  */
2548     return !refers_to_regno_for_reload_p (ydata.start.to_constant (),
2549 					  ydata.end.to_constant (),
2550 					  x, (rtx *) 0);
2551   if (ydata.safe)
2552     return 1;
2553 
2554   gcc_assert (MEM_P (y));
2555   /* If Y is memory and X is not, Y can't affect X.  */
2556   if (!MEM_P (x))
2557     return 1;
2558 
2559   xdata = decompose (x);
2560 
2561   if (! rtx_equal_p (xdata.base, ydata.base))
2562     {
2563       /* If bases are distinct symbolic constants, there is no overlap.  */
2564       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2565 	return 1;
2566       /* Constants and stack slots never overlap.  */
2567       if (CONSTANT_P (xdata.base)
2568 	  && (ydata.base == frame_pointer_rtx
2569 	      || ydata.base == hard_frame_pointer_rtx
2570 	      || ydata.base == stack_pointer_rtx))
2571 	return 1;
2572       if (CONSTANT_P (ydata.base)
2573 	  && (xdata.base == frame_pointer_rtx
2574 	      || xdata.base == hard_frame_pointer_rtx
2575 	      || xdata.base == stack_pointer_rtx))
2576 	return 1;
2577       /* If either base is variable, we don't know anything.  */
2578       return 0;
2579     }
2580 
2581   return known_ge (xdata.start, ydata.end) || known_ge (ydata.start, xdata.end);
2582 }
2583 
2584 /* Similar, but calls decompose.  */
2585 
2586 int
2587 safe_from_earlyclobber (rtx op, rtx clobber)
2588 {
2589   struct decomposition early_data;
2590 
2591   early_data = decompose (clobber);
2592   return immune_p (op, clobber, early_data);
2593 }
2594 
2595 /* Main entry point of this file: search the body of INSN
2596    for values that need reloading and record them with push_reload.
2597    REPLACE nonzero means record also where the values occur
2598    so that subst_reloads can be used.
2599 
2600    IND_LEVELS says how many levels of indirection are supported by this
2601    machine; a value of zero means that a memory reference is not a valid
2602    memory address.
2603 
2604    LIVE_KNOWN says we have valid information about which hard
2605    regs are live at each point in the program; this is true when
2606    we are called from global_alloc but false when stupid register
2607    allocation has been done.
2608 
2609    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2610    which is nonnegative if the reg has been commandeered for reloading into.
2611    It is copied into STATIC_RELOAD_REG_P and referenced from there
2612    by various subroutines.
2613 
2614    Return TRUE if some operands need to be changed, because of swapping
2615    commutative operands, reg_equiv_address substitution, or whatever.  */
2616 
2617 int
2618 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2619 	      short *reload_reg_p)
2620 {
2621   int insn_code_number;
2622   int i, j;
2623   int noperands;
2624   /* These start out as the constraints for the insn
2625      and they are chewed up as we consider alternatives.  */
2626   const char *constraints[MAX_RECOG_OPERANDS];
2627   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2628      a register.  */
2629   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2630   char pref_or_nothing[MAX_RECOG_OPERANDS];
2631   /* Nonzero for a MEM operand whose entire address needs a reload.
2632      May be -1 to indicate the entire address may or may not need a reload.  */
2633   int address_reloaded[MAX_RECOG_OPERANDS];
2634   /* Nonzero for an address operand that needs to be completely reloaded.
2635      May be -1 to indicate the entire operand may or may not need a reload.  */
2636   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2637   /* Value of enum reload_type to use for operand.  */
2638   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2639   /* Value of enum reload_type to use within address of operand.  */
2640   enum reload_type address_type[MAX_RECOG_OPERANDS];
2641   /* Save the usage of each operand.  */
2642   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2643   int no_input_reloads = 0, no_output_reloads = 0;
2644   int n_alternatives;
2645   reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2646   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2647   char this_alternative_win[MAX_RECOG_OPERANDS];
2648   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2649   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2650   int this_alternative_matches[MAX_RECOG_OPERANDS];
2651   reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2652   int this_alternative_number;
2653   int goal_alternative_number = 0;
2654   int operand_reloadnum[MAX_RECOG_OPERANDS];
2655   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2656   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2657   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2658   char goal_alternative_win[MAX_RECOG_OPERANDS];
2659   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2660   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2661   int goal_alternative_swapped;
2662   int best;
2663   int commutative;
2664   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2665   rtx substed_operand[MAX_RECOG_OPERANDS];
2666   rtx body = PATTERN (insn);
2667   rtx set = single_set (insn);
2668   int goal_earlyclobber = 0, this_earlyclobber;
2669   machine_mode operand_mode[MAX_RECOG_OPERANDS];
2670   int retval = 0;
2671 
2672   this_insn = insn;
2673   n_reloads = 0;
2674   n_replacements = 0;
2675   n_earlyclobbers = 0;
2676   replace_reloads = replace;
2677   hard_regs_live_known = live_known;
2678   static_reload_reg_p = reload_reg_p;
2679 
2680   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2681      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2682      to have any input reloads.  */
2683   if (JUMP_P (insn) || CALL_P (insn))
2684     no_output_reloads = 1;
2685 
2686   if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (insn)))
2687     no_input_reloads = 1;
2688   if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (insn)))
2689     no_output_reloads = 1;
2690 
2691   /* The eliminated forms of any secondary memory locations are per-insn, so
2692      clear them out here.  */
2693 
2694   if (secondary_memlocs_elim_used)
2695     {
2696       memset (secondary_memlocs_elim, 0,
2697 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2698       secondary_memlocs_elim_used = 0;
2699     }
2700 
2701   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2702      is cheap to move between them.  If it is not, there may not be an insn
2703      to do the copy, so we may need a reload.  */
2704   if (GET_CODE (body) == SET
2705       && REG_P (SET_DEST (body))
2706       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2707       && REG_P (SET_SRC (body))
2708       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2709       && register_move_cost (GET_MODE (SET_SRC (body)),
2710 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2711 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2712     return 0;
2713 
2714   extract_insn (insn);
2715 
2716   noperands = reload_n_operands = recog_data.n_operands;
2717   n_alternatives = recog_data.n_alternatives;
2718 
2719   /* Just return "no reloads" if insn has no operands with constraints.  */
2720   if (noperands == 0 || n_alternatives == 0)
2721     return 0;
2722 
2723   insn_code_number = INSN_CODE (insn);
2724   this_insn_is_asm = insn_code_number < 0;
2725 
2726   memcpy (operand_mode, recog_data.operand_mode,
2727 	  noperands * sizeof (machine_mode));
2728   memcpy (constraints, recog_data.constraints,
2729 	  noperands * sizeof (const char *));
2730 
2731   commutative = -1;
2732 
2733   /* If we will need to know, later, whether some pair of operands
2734      are the same, we must compare them now and save the result.
2735      Reloading the base and index registers will clobber them
2736      and afterward they will fail to match.  */
2737 
2738   for (i = 0; i < noperands; i++)
2739     {
2740       const char *p;
2741       int c;
2742       char *end;
2743 
2744       substed_operand[i] = recog_data.operand[i];
2745       p = constraints[i];
2746 
2747       modified[i] = RELOAD_READ;
2748 
2749       /* Scan this operand's constraint to see if it is an output operand,
2750 	 an in-out operand, is commutative, or should match another.  */
2751 
2752       while ((c = *p))
2753 	{
2754 	  p += CONSTRAINT_LEN (c, p);
2755 	  switch (c)
2756 	    {
2757 	    case '=':
2758 	      modified[i] = RELOAD_WRITE;
2759 	      break;
2760 	    case '+':
2761 	      modified[i] = RELOAD_READ_WRITE;
2762 	      break;
2763 	    case '%':
2764 	      {
2765 		/* The last operand should not be marked commutative.  */
2766 		gcc_assert (i != noperands - 1);
2767 
2768 		/* We currently only support one commutative pair of
2769 		   operands.  Some existing asm code currently uses more
2770 		   than one pair.  Previously, that would usually work,
2771 		   but sometimes it would crash the compiler.  We
2772 		   continue supporting that case as well as we can by
2773 		   silently ignoring all but the first pair.  In the
2774 		   future we may handle it correctly.  */
2775 		if (commutative < 0)
2776 		  commutative = i;
2777 		else
2778 		  gcc_assert (this_insn_is_asm);
2779 	      }
2780 	      break;
2781 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2782 	       of locale support we don't want.  */
2783 	    case '0': case '1': case '2': case '3': case '4':
2784 	    case '5': case '6': case '7': case '8': case '9':
2785 	      {
2786 		c = strtoul (p - 1, &end, 10);
2787 		p = end;
2788 
2789 		operands_match[c][i]
2790 		  = operands_match_p (recog_data.operand[c],
2791 				      recog_data.operand[i]);
2792 
2793 		/* An operand may not match itself.  */
2794 		gcc_assert (c != i);
2795 
2796 		/* If C can be commuted with C+1, and C might need to match I,
2797 		   then C+1 might also need to match I.  */
2798 		if (commutative >= 0)
2799 		  {
2800 		    if (c == commutative || c == commutative + 1)
2801 		      {
2802 			int other = c + (c == commutative ? 1 : -1);
2803 			operands_match[other][i]
2804 			  = operands_match_p (recog_data.operand[other],
2805 					      recog_data.operand[i]);
2806 		      }
2807 		    if (i == commutative || i == commutative + 1)
2808 		      {
2809 			int other = i + (i == commutative ? 1 : -1);
2810 			operands_match[c][other]
2811 			  = operands_match_p (recog_data.operand[c],
2812 					      recog_data.operand[other]);
2813 		      }
2814 		    /* Note that C is supposed to be less than I.
2815 		       No need to consider altering both C and I because in
2816 		       that case we would alter one into the other.  */
2817 		  }
2818 	      }
2819 	    }
2820 	}
2821     }
2822 
2823   /* Examine each operand that is a memory reference or memory address
2824      and reload parts of the addresses into index registers.
2825      Also here any references to pseudo regs that didn't get hard regs
2826      but are equivalent to constants get replaced in the insn itself
2827      with those constants.  Nobody will ever see them again.
2828 
2829      Finally, set up the preferred classes of each operand.  */
2830 
2831   for (i = 0; i < noperands; i++)
2832     {
2833       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2834 
2835       address_reloaded[i] = 0;
2836       address_operand_reloaded[i] = 0;
2837       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2838 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2839 			 : RELOAD_OTHER);
2840       address_type[i]
2841 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2842 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2843 	   : RELOAD_OTHER);
2844 
2845       if (*constraints[i] == 0)
2846 	/* Ignore things like match_operator operands.  */
2847 	;
2848       else if (insn_extra_address_constraint
2849 	       (lookup_constraint (constraints[i])))
2850 	{
2851 	  address_operand_reloaded[i]
2852 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2853 				    recog_data.operand[i],
2854 				    recog_data.operand_loc[i],
2855 				    i, operand_type[i], ind_levels, insn);
2856 
2857 	  /* If we now have a simple operand where we used to have a
2858 	     PLUS or MULT, re-recognize and try again.  */
2859 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2860 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2861 	      && (GET_CODE (recog_data.operand[i]) == MULT
2862 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2863 	    {
2864 	      INSN_CODE (insn) = -1;
2865 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2866 				     reload_reg_p);
2867 	      return retval;
2868 	    }
2869 
2870 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2871 	  substed_operand[i] = recog_data.operand[i];
2872 
2873 	  /* Address operands are reloaded in their existing mode,
2874 	     no matter what is specified in the machine description.  */
2875 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2876 
2877 	  /* If the address is a single CONST_INT pick address mode
2878 	     instead otherwise we will later not know in which mode
2879 	     the reload should be performed.  */
2880 	  if (operand_mode[i] == VOIDmode)
2881 	    operand_mode[i] = Pmode;
2882 
2883 	}
2884       else if (code == MEM)
2885 	{
2886 	  address_reloaded[i]
2887 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2888 				    recog_data.operand_loc[i],
2889 				    XEXP (recog_data.operand[i], 0),
2890 				    &XEXP (recog_data.operand[i], 0),
2891 				    i, address_type[i], ind_levels, insn);
2892 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2893 	  substed_operand[i] = recog_data.operand[i];
2894 	}
2895       else if (code == SUBREG)
2896 	{
2897 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2898 	  rtx op
2899 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2900 				   ind_levels,
2901 				   set != 0
2902 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2903 				   insn,
2904 				   &address_reloaded[i]);
2905 
2906 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2907 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2908 	     note in front so that we might inherit a previous, possibly
2909 	     wider reload.  */
2910 
2911 	  if (replace
2912 	      && MEM_P (op)
2913 	      && REG_P (reg)
2914 	      && known_ge (GET_MODE_SIZE (GET_MODE (reg)),
2915 			   GET_MODE_SIZE (GET_MODE (op)))
2916 	      && reg_equiv_constant (REGNO (reg)) == 0)
2917 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2918 						   insn),
2919 				 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2920 
2921 	  substed_operand[i] = recog_data.operand[i] = op;
2922 	}
2923       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2924 	/* We can get a PLUS as an "operand" as a result of register
2925 	   elimination.  See eliminate_regs and gen_reload.  We handle
2926 	   a unary operator by reloading the operand.  */
2927 	substed_operand[i] = recog_data.operand[i]
2928 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2929 				 ind_levels, 0, insn,
2930 				 &address_reloaded[i]);
2931       else if (code == REG)
2932 	{
2933 	  /* This is equivalent to calling find_reloads_toplev.
2934 	     The code is duplicated for speed.
2935 	     When we find a pseudo always equivalent to a constant,
2936 	     we replace it by the constant.  We must be sure, however,
2937 	     that we don't try to replace it in the insn in which it
2938 	     is being set.  */
2939 	  int regno = REGNO (recog_data.operand[i]);
2940 	  if (reg_equiv_constant (regno) != 0
2941 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2942 	    {
2943 	      /* Record the existing mode so that the check if constants are
2944 		 allowed will work when operand_mode isn't specified.  */
2945 
2946 	      if (operand_mode[i] == VOIDmode)
2947 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2948 
2949 	      substed_operand[i] = recog_data.operand[i]
2950 		= reg_equiv_constant (regno);
2951 	    }
2952 	  if (reg_equiv_memory_loc (regno) != 0
2953 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2954 	    /* We need not give a valid is_set_dest argument since the case
2955 	       of a constant equivalence was checked above.  */
2956 	    substed_operand[i] = recog_data.operand[i]
2957 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2958 				     ind_levels, 0, insn,
2959 				     &address_reloaded[i]);
2960 	}
2961       /* If the operand is still a register (we didn't replace it with an
2962 	 equivalent), get the preferred class to reload it into.  */
2963       code = GET_CODE (recog_data.operand[i]);
2964       preferred_class[i]
2965 	= ((code == REG && REGNO (recog_data.operand[i])
2966 	    >= FIRST_PSEUDO_REGISTER)
2967 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2968 	   : NO_REGS);
2969       pref_or_nothing[i]
2970 	= (code == REG
2971 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2972 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2973     }
2974 
2975   /* If this is simply a copy from operand 1 to operand 0, merge the
2976      preferred classes for the operands.  */
2977   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2978       && recog_data.operand[1] == SET_SRC (set))
2979     {
2980       preferred_class[0] = preferred_class[1]
2981 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2982       pref_or_nothing[0] |= pref_or_nothing[1];
2983       pref_or_nothing[1] |= pref_or_nothing[0];
2984     }
2985 
2986   /* Now see what we need for pseudo-regs that didn't get hard regs
2987      or got the wrong kind of hard reg.  For this, we must consider
2988      all the operands together against the register constraints.  */
2989 
2990   best = MAX_RECOG_OPERANDS * 2 + 600;
2991 
2992   goal_alternative_swapped = 0;
2993 
2994   /* The constraints are made of several alternatives.
2995      Each operand's constraint looks like foo,bar,... with commas
2996      separating the alternatives.  The first alternatives for all
2997      operands go together, the second alternatives go together, etc.
2998 
2999      First loop over alternatives.  */
3000 
3001   alternative_mask enabled = get_enabled_alternatives (insn);
3002   for (this_alternative_number = 0;
3003        this_alternative_number < n_alternatives;
3004        this_alternative_number++)
3005     {
3006       int swapped;
3007 
3008       if (!TEST_BIT (enabled, this_alternative_number))
3009 	{
3010 	  int i;
3011 
3012 	  for (i = 0; i < recog_data.n_operands; i++)
3013 	    constraints[i] = skip_alternative (constraints[i]);
3014 
3015 	  continue;
3016 	}
3017 
3018       /* If insn is commutative (it's safe to exchange a certain pair
3019 	 of operands) then we need to try each alternative twice, the
3020 	 second time matching those two operands as if we had
3021 	 exchanged them.  To do this, really exchange them in
3022 	 operands.  */
3023       for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3024 	{
3025 	  /* Loop over operands for one constraint alternative.  */
3026 	  /* LOSERS counts those that don't fit this alternative
3027 	     and would require loading.  */
3028 	  int losers = 0;
3029 	  /* BAD is set to 1 if it some operand can't fit this alternative
3030 	     even after reloading.  */
3031 	  int bad = 0;
3032 	  /* REJECT is a count of how undesirable this alternative says it is
3033 	     if any reloading is required.  If the alternative matches exactly
3034 	     then REJECT is ignored, but otherwise it gets this much
3035 	     counted against it in addition to the reloading needed.  Each
3036 	     ? counts three times here since we want the disparaging caused by
3037 	     a bad register class to only count 1/3 as much.  */
3038 	  int reject = 0;
3039 
3040 	  if (swapped)
3041 	    {
3042 	      recog_data.operand[commutative] = substed_operand[commutative + 1];
3043 	      recog_data.operand[commutative + 1] = substed_operand[commutative];
3044 	      /* Swap the duplicates too.  */
3045 	      for (i = 0; i < recog_data.n_dups; i++)
3046 		if (recog_data.dup_num[i] == commutative
3047 		    || recog_data.dup_num[i] == commutative + 1)
3048 		  *recog_data.dup_loc[i]
3049 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3050 
3051 	      std::swap (preferred_class[commutative],
3052 			 preferred_class[commutative + 1]);
3053 	      std::swap (pref_or_nothing[commutative],
3054 			 pref_or_nothing[commutative + 1]);
3055 	      std::swap (address_reloaded[commutative],
3056 			 address_reloaded[commutative + 1]);
3057 	    }
3058 
3059 	  this_earlyclobber = 0;
3060 
3061 	  for (i = 0; i < noperands; i++)
3062 	    {
3063 	      const char *p = constraints[i];
3064 	      char *end;
3065 	      int len;
3066 	      int win = 0;
3067 	      int did_match = 0;
3068 	      /* 0 => this operand can be reloaded somehow for this alternative.  */
3069 	      int badop = 1;
3070 	      /* 0 => this operand can be reloaded if the alternative allows regs.  */
3071 	      int winreg = 0;
3072 	      int c;
3073 	      int m;
3074 	      rtx operand = recog_data.operand[i];
3075 	      int offset = 0;
3076 	      /* Nonzero means this is a MEM that must be reloaded into a reg
3077 		 regardless of what the constraint says.  */
3078 	      int force_reload = 0;
3079 	      int offmemok = 0;
3080 	      /* Nonzero if a constant forced into memory would be OK for this
3081 		 operand.  */
3082 	      int constmemok = 0;
3083 	      int earlyclobber = 0;
3084 	      enum constraint_num cn;
3085 	      enum reg_class cl;
3086 
3087 	      /* If the predicate accepts a unary operator, it means that
3088 		 we need to reload the operand, but do not do this for
3089 		 match_operator and friends.  */
3090 	      if (UNARY_P (operand) && *p != 0)
3091 		operand = XEXP (operand, 0);
3092 
3093 	      /* If the operand is a SUBREG, extract
3094 		 the REG or MEM (or maybe even a constant) within.
3095 		 (Constants can occur as a result of reg_equiv_constant.)  */
3096 
3097 	      while (GET_CODE (operand) == SUBREG)
3098 		{
3099 		  /* Offset only matters when operand is a REG and
3100 		     it is a hard reg.  This is because it is passed
3101 		     to reg_fits_class_p if it is a REG and all pseudos
3102 		     return 0 from that function.  */
3103 		  if (REG_P (SUBREG_REG (operand))
3104 		      && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3105 		    {
3106 		      if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3107 						 GET_MODE (SUBREG_REG (operand)),
3108 						 SUBREG_BYTE (operand),
3109 						 GET_MODE (operand)) < 0)
3110 			force_reload = 1;
3111 		      offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3112 						     GET_MODE (SUBREG_REG (operand)),
3113 						     SUBREG_BYTE (operand),
3114 						     GET_MODE (operand));
3115 		    }
3116 		  operand = SUBREG_REG (operand);
3117 		  /* Force reload if this is a constant or PLUS or if there may
3118 		     be a problem accessing OPERAND in the outer mode.  */
3119 		  scalar_int_mode inner_mode;
3120 		  if (CONSTANT_P (operand)
3121 		      || GET_CODE (operand) == PLUS
3122 		      /* We must force a reload of paradoxical SUBREGs
3123 			 of a MEM because the alignment of the inner value
3124 			 may not be enough to do the outer reference.  On
3125 			 big-endian machines, it may also reference outside
3126 			 the object.
3127 
3128 			 On machines that extend byte operations and we have a
3129 			 SUBREG where both the inner and outer modes are no wider
3130 			 than a word and the inner mode is narrower, is integral,
3131 			 and gets extended when loaded from memory, combine.c has
3132 			 made assumptions about the behavior of the machine in such
3133 			 register access.  If the data is, in fact, in memory we
3134 			 must always load using the size assumed to be in the
3135 			 register and let the insn do the different-sized
3136 			 accesses.
3137 
3138 			 This is doubly true if WORD_REGISTER_OPERATIONS.  In
3139 			 this case eliminate_regs has left non-paradoxical
3140 			 subregs for push_reload to see.  Make sure it does
3141 			 by forcing the reload.
3142 
3143 			 ??? When is it right at this stage to have a subreg
3144 			 of a mem that is _not_ to be handled specially?  IMO
3145 			 those should have been reduced to just a mem.  */
3146 		      || ((MEM_P (operand)
3147 			   || (REG_P (operand)
3148 			       && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3149 			  && (WORD_REGISTER_OPERATIONS
3150 			      || (((maybe_lt
3151 				    (GET_MODE_BITSIZE (GET_MODE (operand)),
3152 				     BIGGEST_ALIGNMENT))
3153 				   && (paradoxical_subreg_p
3154 				       (operand_mode[i], GET_MODE (operand)))))
3155 			      || BYTES_BIG_ENDIAN
3156 			      || (known_le (GET_MODE_SIZE (operand_mode[i]),
3157 					    UNITS_PER_WORD)
3158 				  && (is_a <scalar_int_mode>
3159 				      (GET_MODE (operand), &inner_mode))
3160 				  && (GET_MODE_SIZE (inner_mode)
3161 				      <= UNITS_PER_WORD)
3162 				  && paradoxical_subreg_p (operand_mode[i],
3163 							   inner_mode)
3164 				  && LOAD_EXTEND_OP (inner_mode) != UNKNOWN)))
3165 		      )
3166 		    force_reload = 1;
3167 		}
3168 
3169 	      this_alternative[i] = NO_REGS;
3170 	      this_alternative_win[i] = 0;
3171 	      this_alternative_match_win[i] = 0;
3172 	      this_alternative_offmemok[i] = 0;
3173 	      this_alternative_earlyclobber[i] = 0;
3174 	      this_alternative_matches[i] = -1;
3175 
3176 	      /* An empty constraint or empty alternative
3177 		 allows anything which matched the pattern.  */
3178 	      if (*p == 0 || *p == ',')
3179 		win = 1, badop = 0;
3180 
3181 	      /* Scan this alternative's specs for this operand;
3182 		 set WIN if the operand fits any letter in this alternative.
3183 		 Otherwise, clear BADOP if this operand could
3184 		 fit some letter after reloads,
3185 		 or set WINREG if this operand could fit after reloads
3186 		 provided the constraint allows some registers.  */
3187 
3188 	      do
3189 		switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3190 		  {
3191 		  case '\0':
3192 		    len = 0;
3193 		    break;
3194 		  case ',':
3195 		    c = '\0';
3196 		    break;
3197 
3198 		  case '?':
3199 		    reject += 6;
3200 		    break;
3201 
3202 		  case '!':
3203 		    reject = 600;
3204 		    break;
3205 
3206 		  case '#':
3207 		    /* Ignore rest of this alternative as far as
3208 		       reloading is concerned.  */
3209 		    do
3210 		      p++;
3211 		    while (*p && *p != ',');
3212 		    len = 0;
3213 		    break;
3214 
3215 		  case '0':  case '1':  case '2':  case '3':  case '4':
3216 		  case '5':  case '6':  case '7':  case '8':  case '9':
3217 		    m = strtoul (p, &end, 10);
3218 		    p = end;
3219 		    len = 0;
3220 
3221 		    this_alternative_matches[i] = m;
3222 		    /* We are supposed to match a previous operand.
3223 		       If we do, we win if that one did.
3224 		       If we do not, count both of the operands as losers.
3225 		       (This is too conservative, since most of the time
3226 		       only a single reload insn will be needed to make
3227 		       the two operands win.  As a result, this alternative
3228 		       may be rejected when it is actually desirable.)  */
3229 		    if ((swapped && (m != commutative || i != commutative + 1))
3230 			/* If we are matching as if two operands were swapped,
3231 			   also pretend that operands_match had been computed
3232 			   with swapped.
3233 			   But if I is the second of those and C is the first,
3234 			   don't exchange them, because operands_match is valid
3235 			   only on one side of its diagonal.  */
3236 			? (operands_match
3237 			   [(m == commutative || m == commutative + 1)
3238 			    ? 2 * commutative + 1 - m : m]
3239 			   [(i == commutative || i == commutative + 1)
3240 			    ? 2 * commutative + 1 - i : i])
3241 			: operands_match[m][i])
3242 		      {
3243 			/* If we are matching a non-offsettable address where an
3244 			   offsettable address was expected, then we must reject
3245 			   this combination, because we can't reload it.  */
3246 			if (this_alternative_offmemok[m]
3247 			    && MEM_P (recog_data.operand[m])
3248 			    && this_alternative[m] == NO_REGS
3249 			    && ! this_alternative_win[m])
3250 			  bad = 1;
3251 
3252 			did_match = this_alternative_win[m];
3253 		      }
3254 		    else
3255 		      {
3256 			/* Operands don't match.  */
3257 			rtx value;
3258 			int loc1, loc2;
3259 			/* Retroactively mark the operand we had to match
3260 			   as a loser, if it wasn't already.  */
3261 			if (this_alternative_win[m])
3262 			  losers++;
3263 			this_alternative_win[m] = 0;
3264 			if (this_alternative[m] == NO_REGS)
3265 			  bad = 1;
3266 			/* But count the pair only once in the total badness of
3267 			   this alternative, if the pair can be a dummy reload.
3268 			   The pointers in operand_loc are not swapped; swap
3269 			   them by hand if necessary.  */
3270 			if (swapped && i == commutative)
3271 			  loc1 = commutative + 1;
3272 			else if (swapped && i == commutative + 1)
3273 			  loc1 = commutative;
3274 			else
3275 			  loc1 = i;
3276 			if (swapped && m == commutative)
3277 			  loc2 = commutative + 1;
3278 			else if (swapped && m == commutative + 1)
3279 			  loc2 = commutative;
3280 			else
3281 			  loc2 = m;
3282 			value
3283 			  = find_dummy_reload (recog_data.operand[i],
3284 					       recog_data.operand[m],
3285 					       recog_data.operand_loc[loc1],
3286 					       recog_data.operand_loc[loc2],
3287 					       operand_mode[i], operand_mode[m],
3288 					       this_alternative[m], -1,
3289 					       this_alternative_earlyclobber[m]);
3290 
3291 			if (value != 0)
3292 			  losers--;
3293 		      }
3294 		    /* This can be fixed with reloads if the operand
3295 		       we are supposed to match can be fixed with reloads.  */
3296 		    badop = 0;
3297 		    this_alternative[i] = this_alternative[m];
3298 
3299 		    /* If we have to reload this operand and some previous
3300 		       operand also had to match the same thing as this
3301 		       operand, we don't know how to do that.  So reject this
3302 		       alternative.  */
3303 		    if (! did_match || force_reload)
3304 		      for (j = 0; j < i; j++)
3305 			if (this_alternative_matches[j]
3306 			    == this_alternative_matches[i])
3307 			  {
3308 			    badop = 1;
3309 			    break;
3310 			  }
3311 		    break;
3312 
3313 		  case 'p':
3314 		    /* All necessary reloads for an address_operand
3315 		       were handled in find_reloads_address.  */
3316 		    this_alternative[i]
3317 		      = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3318 					ADDRESS, SCRATCH);
3319 		    win = 1;
3320 		    badop = 0;
3321 		    break;
3322 
3323 		  case TARGET_MEM_CONSTRAINT:
3324 		    if (force_reload)
3325 		      break;
3326 		    if (MEM_P (operand)
3327 			|| (REG_P (operand)
3328 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3329 			    && reg_renumber[REGNO (operand)] < 0))
3330 		      win = 1;
3331 		    if (CONST_POOL_OK_P (operand_mode[i], operand))
3332 		      badop = 0;
3333 		    constmemok = 1;
3334 		    break;
3335 
3336 		  case '<':
3337 		    if (MEM_P (operand)
3338 			&& ! address_reloaded[i]
3339 			&& (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3340 			    || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3341 		      win = 1;
3342 		    break;
3343 
3344 		  case '>':
3345 		    if (MEM_P (operand)
3346 			&& ! address_reloaded[i]
3347 			&& (GET_CODE (XEXP (operand, 0)) == PRE_INC
3348 			    || GET_CODE (XEXP (operand, 0)) == POST_INC))
3349 		      win = 1;
3350 		    break;
3351 
3352 		    /* Memory operand whose address is not offsettable.  */
3353 		  case 'V':
3354 		    if (force_reload)
3355 		      break;
3356 		    if (MEM_P (operand)
3357 			&& ! (ind_levels ? offsettable_memref_p (operand)
3358 			      : offsettable_nonstrict_memref_p (operand))
3359 			/* Certain mem addresses will become offsettable
3360 			   after they themselves are reloaded.  This is important;
3361 			   we don't want our own handling of unoffsettables
3362 			   to override the handling of reg_equiv_address.  */
3363 			&& !(REG_P (XEXP (operand, 0))
3364 			     && (ind_levels == 0
3365 				 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3366 		      win = 1;
3367 		    break;
3368 
3369 		    /* Memory operand whose address is offsettable.  */
3370 		  case 'o':
3371 		    if (force_reload)
3372 		      break;
3373 		    if ((MEM_P (operand)
3374 			 /* If IND_LEVELS, find_reloads_address won't reload a
3375 			    pseudo that didn't get a hard reg, so we have to
3376 			    reject that case.  */
3377 			 && ((ind_levels ? offsettable_memref_p (operand)
3378 			      : offsettable_nonstrict_memref_p (operand))
3379 			     /* A reloaded address is offsettable because it is now
3380 				just a simple register indirect.  */
3381 			     || address_reloaded[i] == 1))
3382 			|| (REG_P (operand)
3383 			    && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3384 			    && reg_renumber[REGNO (operand)] < 0
3385 			    /* If reg_equiv_address is nonzero, we will be
3386 			       loading it into a register; hence it will be
3387 			       offsettable, but we cannot say that reg_equiv_mem
3388 			       is offsettable without checking.  */
3389 			    && ((reg_equiv_mem (REGNO (operand)) != 0
3390 				 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3391 				|| (reg_equiv_address (REGNO (operand)) != 0))))
3392 		      win = 1;
3393 		    if (CONST_POOL_OK_P (operand_mode[i], operand)
3394 			|| MEM_P (operand))
3395 		      badop = 0;
3396 		    constmemok = 1;
3397 		    offmemok = 1;
3398 		    break;
3399 
3400 		  case '&':
3401 		    /* Output operand that is stored before the need for the
3402 		       input operands (and their index registers) is over.  */
3403 		    earlyclobber = 1, this_earlyclobber = 1;
3404 		    break;
3405 
3406 		  case 'X':
3407 		    force_reload = 0;
3408 		    win = 1;
3409 		    break;
3410 
3411 		  case 'g':
3412 		    if (! force_reload
3413 			/* A PLUS is never a valid operand, but reload can make
3414 			   it from a register when eliminating registers.  */
3415 			&& GET_CODE (operand) != PLUS
3416 			/* A SCRATCH is not a valid operand.  */
3417 			&& GET_CODE (operand) != SCRATCH
3418 			&& (! CONSTANT_P (operand)
3419 			    || ! flag_pic
3420 			    || LEGITIMATE_PIC_OPERAND_P (operand))
3421 			&& (GENERAL_REGS == ALL_REGS
3422 			    || !REG_P (operand)
3423 			    || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3424 				&& reg_renumber[REGNO (operand)] < 0)))
3425 		      win = 1;
3426 		    cl = GENERAL_REGS;
3427 		    goto reg;
3428 
3429 		  default:
3430 		    cn = lookup_constraint (p);
3431 		    switch (get_constraint_type (cn))
3432 		      {
3433 		      case CT_REGISTER:
3434 			cl = reg_class_for_constraint (cn);
3435 			if (cl != NO_REGS)
3436 			  goto reg;
3437 			break;
3438 
3439 		      case CT_CONST_INT:
3440 			if (CONST_INT_P (operand)
3441 			    && (insn_const_int_ok_for_constraint
3442 				(INTVAL (operand), cn)))
3443 			  win = true;
3444 			break;
3445 
3446 		      case CT_MEMORY:
3447 			if (force_reload)
3448 			  break;
3449 			if (constraint_satisfied_p (operand, cn))
3450 			  win = 1;
3451 			/* If the address was already reloaded,
3452 			   we win as well.  */
3453 			else if (MEM_P (operand) && address_reloaded[i] == 1)
3454 			  win = 1;
3455 			/* Likewise if the address will be reloaded because
3456 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3457 			   we have to check.  */
3458 			else if (REG_P (operand)
3459 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3460 				 && reg_renumber[REGNO (operand)] < 0
3461 				 && ((reg_equiv_mem (REGNO (operand)) != 0
3462 				      && (constraint_satisfied_p
3463 					  (reg_equiv_mem (REGNO (operand)),
3464 					   cn)))
3465 				     || (reg_equiv_address (REGNO (operand))
3466 					 != 0)))
3467 			  win = 1;
3468 
3469 			/* If we didn't already win, we can reload
3470 			   constants via force_const_mem, and other
3471 			   MEMs by reloading the address like for 'o'.  */
3472 			if (CONST_POOL_OK_P (operand_mode[i], operand)
3473 			    || MEM_P (operand))
3474 			  badop = 0;
3475 			constmemok = 1;
3476 			offmemok = 1;
3477 			break;
3478 
3479 		      case CT_SPECIAL_MEMORY:
3480 			if (force_reload)
3481 			  break;
3482 			if (constraint_satisfied_p (operand, cn))
3483 			  win = 1;
3484 			/* Likewise if the address will be reloaded because
3485 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3486 			   we have to check.  */
3487 			else if (REG_P (operand)
3488 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3489 				 && reg_renumber[REGNO (operand)] < 0
3490 				 && reg_equiv_mem (REGNO (operand)) != 0
3491 				 && (constraint_satisfied_p
3492 				     (reg_equiv_mem (REGNO (operand)), cn)))
3493 			  win = 1;
3494 			break;
3495 
3496 		      case CT_ADDRESS:
3497 			if (constraint_satisfied_p (operand, cn))
3498 			  win = 1;
3499 
3500 			/* If we didn't already win, we can reload
3501 			   the address into a base register.  */
3502 			this_alternative[i]
3503 			  = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3504 					    ADDRESS, SCRATCH);
3505 			badop = 0;
3506 			break;
3507 
3508 		      case CT_FIXED_FORM:
3509 			if (constraint_satisfied_p (operand, cn))
3510 			  win = 1;
3511 			break;
3512 		      }
3513 		    break;
3514 
3515 		  reg:
3516 		    this_alternative[i]
3517 		      = reg_class_subunion[this_alternative[i]][cl];
3518 		    if (GET_MODE (operand) == BLKmode)
3519 		      break;
3520 		    winreg = 1;
3521 		    if (REG_P (operand)
3522 			&& reg_fits_class_p (operand, this_alternative[i],
3523   			             offset, GET_MODE (recog_data.operand[i])))
3524 		      win = 1;
3525 		    break;
3526 		  }
3527 	      while ((p += len), c);
3528 
3529 	      if (swapped == (commutative >= 0 ? 1 : 0))
3530 		constraints[i] = p;
3531 
3532 	      /* If this operand could be handled with a reg,
3533 		 and some reg is allowed, then this operand can be handled.  */
3534 	      if (winreg && this_alternative[i] != NO_REGS
3535 		  && (win || !class_only_fixed_regs[this_alternative[i]]))
3536 		badop = 0;
3537 
3538 	      /* Record which operands fit this alternative.  */
3539 	      this_alternative_earlyclobber[i] = earlyclobber;
3540 	      if (win && ! force_reload)
3541 		this_alternative_win[i] = 1;
3542 	      else if (did_match && ! force_reload)
3543 		this_alternative_match_win[i] = 1;
3544 	      else
3545 		{
3546 		  int const_to_mem = 0;
3547 
3548 		  this_alternative_offmemok[i] = offmemok;
3549 		  losers++;
3550 		  if (badop)
3551 		    bad = 1;
3552 		  /* Alternative loses if it has no regs for a reg operand.  */
3553 		  if (REG_P (operand)
3554 		      && this_alternative[i] == NO_REGS
3555 		      && this_alternative_matches[i] < 0)
3556 		    bad = 1;
3557 
3558 		  /* If this is a constant that is reloaded into the desired
3559 		     class by copying it to memory first, count that as another
3560 		     reload.  This is consistent with other code and is
3561 		     required to avoid choosing another alternative when
3562 		     the constant is moved into memory by this function on
3563 		     an early reload pass.  Note that the test here is
3564 		     precisely the same as in the code below that calls
3565 		     force_const_mem.  */
3566 		  if (CONST_POOL_OK_P (operand_mode[i], operand)
3567 		      && ((targetm.preferred_reload_class (operand,
3568 							   this_alternative[i])
3569 			   == NO_REGS)
3570 			  || no_input_reloads))
3571 		    {
3572 		      const_to_mem = 1;
3573 		      if (this_alternative[i] != NO_REGS)
3574 			losers++;
3575 		    }
3576 
3577 		  /* Alternative loses if it requires a type of reload not
3578 		     permitted for this insn.  We can always reload SCRATCH
3579 		     and objects with a REG_UNUSED note.  */
3580 		  if (GET_CODE (operand) != SCRATCH
3581 		      && modified[i] != RELOAD_READ && no_output_reloads
3582 		      && ! find_reg_note (insn, REG_UNUSED, operand))
3583 		    bad = 1;
3584 		  else if (modified[i] != RELOAD_WRITE && no_input_reloads
3585 			   && ! const_to_mem)
3586 		    bad = 1;
3587 
3588 		  /* If we can't reload this value at all, reject this
3589 		     alternative.  Note that we could also lose due to
3590 		     LIMIT_RELOAD_CLASS, but we don't check that
3591 		     here.  */
3592 
3593 		  if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3594 		    {
3595 		      if (targetm.preferred_reload_class (operand,
3596 							  this_alternative[i])
3597 			  == NO_REGS)
3598 			reject = 600;
3599 
3600 		      if (operand_type[i] == RELOAD_FOR_OUTPUT
3601 			  && (targetm.preferred_output_reload_class (operand,
3602 							    this_alternative[i])
3603 			      == NO_REGS))
3604 			reject = 600;
3605 		    }
3606 
3607 		  /* We prefer to reload pseudos over reloading other things,
3608 		     since such reloads may be able to be eliminated later.
3609 		     If we are reloading a SCRATCH, we won't be generating any
3610 		     insns, just using a register, so it is also preferred.
3611 		     So bump REJECT in other cases.  Don't do this in the
3612 		     case where we are forcing a constant into memory and
3613 		     it will then win since we don't want to have a different
3614 		     alternative match then.  */
3615 		  if (! (REG_P (operand)
3616 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3617 		      && GET_CODE (operand) != SCRATCH
3618 		      && ! (const_to_mem && constmemok))
3619 		    reject += 2;
3620 
3621 		  /* Input reloads can be inherited more often than output
3622 		     reloads can be removed, so penalize output reloads.  */
3623 		  if (operand_type[i] != RELOAD_FOR_INPUT
3624 		      && GET_CODE (operand) != SCRATCH)
3625 		    reject++;
3626 		}
3627 
3628 	      /* If this operand is a pseudo register that didn't get
3629 		 a hard reg and this alternative accepts some
3630 		 register, see if the class that we want is a subset
3631 		 of the preferred class for this register.  If not,
3632 		 but it intersects that class, use the preferred class
3633 		 instead.  If it does not intersect the preferred
3634 		 class, show that usage of this alternative should be
3635 		 discouraged; it will be discouraged more still if the
3636 		 register is `preferred or nothing'.  We do this
3637 		 because it increases the chance of reusing our spill
3638 		 register in a later insn and avoiding a pair of
3639 		 memory stores and loads.
3640 
3641 		 Don't bother with this if this alternative will
3642 		 accept this operand.
3643 
3644 		 Don't do this for a multiword operand, since it is
3645 		 only a small win and has the risk of requiring more
3646 		 spill registers, which could cause a large loss.
3647 
3648 		 Don't do this if the preferred class has only one
3649 		 register because we might otherwise exhaust the
3650 		 class.  */
3651 
3652 	      if (! win && ! did_match
3653 		  && this_alternative[i] != NO_REGS
3654 		  && known_le (GET_MODE_SIZE (operand_mode[i]), UNITS_PER_WORD)
3655 		  && reg_class_size [(int) preferred_class[i]] > 0
3656 		  && ! small_register_class_p (preferred_class[i]))
3657 		{
3658 		  if (! reg_class_subset_p (this_alternative[i],
3659 					    preferred_class[i]))
3660 		    {
3661 		      /* Since we don't have a way of forming the intersection,
3662 			 we just do something special if the preferred class
3663 			 is a subset of the class we have; that's the most
3664 			 common case anyway.  */
3665 		      if (reg_class_subset_p (preferred_class[i],
3666 					      this_alternative[i]))
3667 			this_alternative[i] = preferred_class[i];
3668 		      else
3669 			reject += (2 + 2 * pref_or_nothing[i]);
3670 		    }
3671 		}
3672 	    }
3673 
3674 	  /* Now see if any output operands that are marked "earlyclobber"
3675 	     in this alternative conflict with any input operands
3676 	     or any memory addresses.  */
3677 
3678 	  for (i = 0; i < noperands; i++)
3679 	    if (this_alternative_earlyclobber[i]
3680 		&& (this_alternative_win[i] || this_alternative_match_win[i]))
3681 	      {
3682 		struct decomposition early_data;
3683 
3684 		early_data = decompose (recog_data.operand[i]);
3685 
3686 		gcc_assert (modified[i] != RELOAD_READ);
3687 
3688 		if (this_alternative[i] == NO_REGS)
3689 		  {
3690 		    this_alternative_earlyclobber[i] = 0;
3691 		    gcc_assert (this_insn_is_asm);
3692 		    error_for_asm (this_insn,
3693 			      "%<&%> constraint used with no register class");
3694 		  }
3695 
3696 		for (j = 0; j < noperands; j++)
3697 		  /* Is this an input operand or a memory ref?  */
3698 		  if ((MEM_P (recog_data.operand[j])
3699 		       || modified[j] != RELOAD_WRITE)
3700 		      && j != i
3701 		      /* Ignore things like match_operator operands.  */
3702 		      && !recog_data.is_operator[j]
3703 		      /* Don't count an input operand that is constrained to match
3704 			 the early clobber operand.  */
3705 		      && ! (this_alternative_matches[j] == i
3706 			    && rtx_equal_p (recog_data.operand[i],
3707 					    recog_data.operand[j]))
3708 		      /* Is it altered by storing the earlyclobber operand?  */
3709 		      && !immune_p (recog_data.operand[j], recog_data.operand[i],
3710 				    early_data))
3711 		    {
3712 		      /* If the output is in a non-empty few-regs class,
3713 			 it's costly to reload it, so reload the input instead.  */
3714 		      if (small_register_class_p (this_alternative[i])
3715 			  && (REG_P (recog_data.operand[j])
3716 			      || GET_CODE (recog_data.operand[j]) == SUBREG))
3717 			{
3718 			  losers++;
3719 			  this_alternative_win[j] = 0;
3720 			  this_alternative_match_win[j] = 0;
3721 			}
3722 		      else
3723 			break;
3724 		    }
3725 		/* If an earlyclobber operand conflicts with something,
3726 		   it must be reloaded, so request this and count the cost.  */
3727 		if (j != noperands)
3728 		  {
3729 		    losers++;
3730 		    this_alternative_win[i] = 0;
3731 		    this_alternative_match_win[j] = 0;
3732 		    for (j = 0; j < noperands; j++)
3733 		      if (this_alternative_matches[j] == i
3734 			  && this_alternative_match_win[j])
3735 			{
3736 			  this_alternative_win[j] = 0;
3737 			  this_alternative_match_win[j] = 0;
3738 			  losers++;
3739 			}
3740 		  }
3741 	      }
3742 
3743 	  /* If one alternative accepts all the operands, no reload required,
3744 	     choose that alternative; don't consider the remaining ones.  */
3745 	  if (losers == 0)
3746 	    {
3747 	      /* Unswap these so that they are never swapped at `finish'.  */
3748 	      if (swapped)
3749 		{
3750 		  recog_data.operand[commutative] = substed_operand[commutative];
3751 		  recog_data.operand[commutative + 1]
3752 		    = substed_operand[commutative + 1];
3753 		}
3754 	      for (i = 0; i < noperands; i++)
3755 		{
3756 		  goal_alternative_win[i] = this_alternative_win[i];
3757 		  goal_alternative_match_win[i] = this_alternative_match_win[i];
3758 		  goal_alternative[i] = this_alternative[i];
3759 		  goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3760 		  goal_alternative_matches[i] = this_alternative_matches[i];
3761 		  goal_alternative_earlyclobber[i]
3762 		    = this_alternative_earlyclobber[i];
3763 		}
3764 	      goal_alternative_number = this_alternative_number;
3765 	      goal_alternative_swapped = swapped;
3766 	      goal_earlyclobber = this_earlyclobber;
3767 	      goto finish;
3768 	    }
3769 
3770 	  /* REJECT, set by the ! and ? constraint characters and when a register
3771 	     would be reloaded into a non-preferred class, discourages the use of
3772 	     this alternative for a reload goal.  REJECT is incremented by six
3773 	     for each ? and two for each non-preferred class.  */
3774 	  losers = losers * 6 + reject;
3775 
3776 	  /* If this alternative can be made to work by reloading,
3777 	     and it needs less reloading than the others checked so far,
3778 	     record it as the chosen goal for reloading.  */
3779 	  if (! bad)
3780 	    {
3781 	      if (best > losers)
3782 		{
3783 		  for (i = 0; i < noperands; i++)
3784 		    {
3785 		      goal_alternative[i] = this_alternative[i];
3786 		      goal_alternative_win[i] = this_alternative_win[i];
3787 		      goal_alternative_match_win[i]
3788 			= this_alternative_match_win[i];
3789 		      goal_alternative_offmemok[i]
3790 			= this_alternative_offmemok[i];
3791 		      goal_alternative_matches[i] = this_alternative_matches[i];
3792 		      goal_alternative_earlyclobber[i]
3793 			= this_alternative_earlyclobber[i];
3794 		    }
3795 		  goal_alternative_swapped = swapped;
3796 		  best = losers;
3797 		  goal_alternative_number = this_alternative_number;
3798 		  goal_earlyclobber = this_earlyclobber;
3799 		}
3800 	    }
3801 
3802 	  if (swapped)
3803 	    {
3804 	      /* If the commutative operands have been swapped, swap
3805 		 them back in order to check the next alternative.  */
3806 	      recog_data.operand[commutative] = substed_operand[commutative];
3807 	      recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3808 	      /* Unswap the duplicates too.  */
3809 	      for (i = 0; i < recog_data.n_dups; i++)
3810 		if (recog_data.dup_num[i] == commutative
3811 		    || recog_data.dup_num[i] == commutative + 1)
3812 		  *recog_data.dup_loc[i]
3813 		    = recog_data.operand[(int) recog_data.dup_num[i]];
3814 
3815 	      /* Unswap the operand related information as well.  */
3816 	      std::swap (preferred_class[commutative],
3817 			 preferred_class[commutative + 1]);
3818 	      std::swap (pref_or_nothing[commutative],
3819 			 pref_or_nothing[commutative + 1]);
3820 	      std::swap (address_reloaded[commutative],
3821 			 address_reloaded[commutative + 1]);
3822 	    }
3823 	}
3824     }
3825 
3826   /* The operands don't meet the constraints.
3827      goal_alternative describes the alternative
3828      that we could reach by reloading the fewest operands.
3829      Reload so as to fit it.  */
3830 
3831   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3832     {
3833       /* No alternative works with reloads??  */
3834       if (insn_code_number >= 0)
3835 	fatal_insn ("unable to generate reloads for:", insn);
3836       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3837       /* Avoid further trouble with this insn.  */
3838       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3839       n_reloads = 0;
3840       return 0;
3841     }
3842 
3843   /* Jump to `finish' from above if all operands are valid already.
3844      In that case, goal_alternative_win is all 1.  */
3845  finish:
3846 
3847   /* Right now, for any pair of operands I and J that are required to match,
3848      with I < J,
3849      goal_alternative_matches[J] is I.
3850      Set up goal_alternative_matched as the inverse function:
3851      goal_alternative_matched[I] = J.  */
3852 
3853   for (i = 0; i < noperands; i++)
3854     goal_alternative_matched[i] = -1;
3855 
3856   for (i = 0; i < noperands; i++)
3857     if (! goal_alternative_win[i]
3858 	&& goal_alternative_matches[i] >= 0)
3859       goal_alternative_matched[goal_alternative_matches[i]] = i;
3860 
3861   for (i = 0; i < noperands; i++)
3862     goal_alternative_win[i] |= goal_alternative_match_win[i];
3863 
3864   /* If the best alternative is with operands 1 and 2 swapped,
3865      consider them swapped before reporting the reloads.  Update the
3866      operand numbers of any reloads already pushed.  */
3867 
3868   if (goal_alternative_swapped)
3869     {
3870       std::swap (substed_operand[commutative],
3871 		 substed_operand[commutative + 1]);
3872       std::swap (recog_data.operand[commutative],
3873 		 recog_data.operand[commutative + 1]);
3874       std::swap (*recog_data.operand_loc[commutative],
3875 		 *recog_data.operand_loc[commutative + 1]);
3876 
3877       for (i = 0; i < recog_data.n_dups; i++)
3878 	if (recog_data.dup_num[i] == commutative
3879 	    || recog_data.dup_num[i] == commutative + 1)
3880 	  *recog_data.dup_loc[i]
3881 	    = recog_data.operand[(int) recog_data.dup_num[i]];
3882 
3883       for (i = 0; i < n_reloads; i++)
3884 	{
3885 	  if (rld[i].opnum == commutative)
3886 	    rld[i].opnum = commutative + 1;
3887 	  else if (rld[i].opnum == commutative + 1)
3888 	    rld[i].opnum = commutative;
3889 	}
3890     }
3891 
3892   for (i = 0; i < noperands; i++)
3893     {
3894       operand_reloadnum[i] = -1;
3895 
3896       /* If this is an earlyclobber operand, we need to widen the scope.
3897 	 The reload must remain valid from the start of the insn being
3898 	 reloaded until after the operand is stored into its destination.
3899 	 We approximate this with RELOAD_OTHER even though we know that we
3900 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3901 
3902 	 One special case that is worth checking is when we have an
3903 	 output that is earlyclobber but isn't used past the insn (typically
3904 	 a SCRATCH).  In this case, we only need have the reload live
3905 	 through the insn itself, but not for any of our input or output
3906 	 reloads.
3907 	 But we must not accidentally narrow the scope of an existing
3908 	 RELOAD_OTHER reload - leave these alone.
3909 
3910 	 In any case, anything needed to address this operand can remain
3911 	 however they were previously categorized.  */
3912 
3913       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3914 	operand_type[i]
3915 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3916 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3917     }
3918 
3919   /* Any constants that aren't allowed and can't be reloaded
3920      into registers are here changed into memory references.  */
3921   for (i = 0; i < noperands; i++)
3922     if (! goal_alternative_win[i])
3923       {
3924 	rtx op = recog_data.operand[i];
3925 	rtx subreg = NULL_RTX;
3926 	rtx plus = NULL_RTX;
3927 	machine_mode mode = operand_mode[i];
3928 
3929 	/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3930 	   push_reload so we have to let them pass here.  */
3931 	if (GET_CODE (op) == SUBREG)
3932 	  {
3933 	    subreg = op;
3934 	    op = SUBREG_REG (op);
3935 	    mode = GET_MODE (op);
3936 	  }
3937 
3938 	if (GET_CODE (op) == PLUS)
3939 	  {
3940 	    plus = op;
3941 	    op = XEXP (op, 1);
3942 	  }
3943 
3944 	if (CONST_POOL_OK_P (mode, op)
3945 	    && ((targetm.preferred_reload_class (op, goal_alternative[i])
3946 		 == NO_REGS)
3947 		|| no_input_reloads))
3948 	  {
3949 	    int this_address_reloaded;
3950 	    rtx tem = force_const_mem (mode, op);
3951 
3952 	    /* If we stripped a SUBREG or a PLUS above add it back.  */
3953 	    if (plus != NULL_RTX)
3954 	      tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3955 
3956 	    if (subreg != NULL_RTX)
3957 	      tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3958 
3959 	    this_address_reloaded = 0;
3960 	    substed_operand[i] = recog_data.operand[i]
3961 	      = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3962 				     0, insn, &this_address_reloaded);
3963 
3964 	    /* If the alternative accepts constant pool refs directly
3965 	       there will be no reload needed at all.  */
3966 	    if (plus == NULL_RTX
3967 		&& subreg == NULL_RTX
3968 		&& alternative_allows_const_pool_ref (this_address_reloaded != 1
3969 						      ? substed_operand[i]
3970 						      : NULL,
3971 						      recog_data.constraints[i],
3972 						      goal_alternative_number))
3973 	      goal_alternative_win[i] = 1;
3974 	  }
3975       }
3976 
3977   /* Record the values of the earlyclobber operands for the caller.  */
3978   if (goal_earlyclobber)
3979     for (i = 0; i < noperands; i++)
3980       if (goal_alternative_earlyclobber[i])
3981 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3982 
3983   /* Now record reloads for all the operands that need them.  */
3984   for (i = 0; i < noperands; i++)
3985     if (! goal_alternative_win[i])
3986       {
3987 	/* Operands that match previous ones have already been handled.  */
3988 	if (goal_alternative_matches[i] >= 0)
3989 	  ;
3990 	/* Handle an operand with a nonoffsettable address
3991 	   appearing where an offsettable address will do
3992 	   by reloading the address into a base register.
3993 
3994 	   ??? We can also do this when the operand is a register and
3995 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3996 	   so we don't bother with it.  It may not be worth doing.  */
3997 	else if (goal_alternative_matched[i] == -1
3998 		 && goal_alternative_offmemok[i]
3999 		 && MEM_P (recog_data.operand[i]))
4000 	  {
4001 	    /* If the address to be reloaded is a VOIDmode constant,
4002 	       use the default address mode as mode of the reload register,
4003 	       as would have been done by find_reloads_address.  */
4004 	    addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4005 	    machine_mode address_mode;
4006 
4007 	    address_mode = get_address_mode (recog_data.operand[i]);
4008 	    operand_reloadnum[i]
4009 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4010 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4011 			     base_reg_class (VOIDmode, as, MEM, SCRATCH),
4012 			     address_mode,
4013 			     VOIDmode, 0, 0, i, RELOAD_OTHER);
4014 	    rld[operand_reloadnum[i]].inc
4015 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4016 
4017 	    /* If this operand is an output, we will have made any
4018 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4019 	       now we are treating part of the operand as an input, so
4020 	       we must change these to RELOAD_FOR_OTHER_ADDRESS.  */
4021 
4022 	    if (modified[i] == RELOAD_WRITE)
4023 	      {
4024 		for (j = 0; j < n_reloads; j++)
4025 		  {
4026 		    if (rld[j].opnum == i)
4027 		      {
4028 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4029 			  rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4030 			else if (rld[j].when_needed
4031 				 == RELOAD_FOR_OUTADDR_ADDRESS)
4032 			  rld[j].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4033 		      }
4034 		  }
4035 	      }
4036 	  }
4037 	else if (goal_alternative_matched[i] == -1)
4038 	  {
4039 	    operand_reloadnum[i]
4040 	      = push_reload ((modified[i] != RELOAD_WRITE
4041 			      ? recog_data.operand[i] : 0),
4042 			     (modified[i] != RELOAD_READ
4043 			      ? recog_data.operand[i] : 0),
4044 			     (modified[i] != RELOAD_WRITE
4045 			      ? recog_data.operand_loc[i] : 0),
4046 			     (modified[i] != RELOAD_READ
4047 			      ? recog_data.operand_loc[i] : 0),
4048 			     (enum reg_class) goal_alternative[i],
4049 			     (modified[i] == RELOAD_WRITE
4050 			      ? VOIDmode : operand_mode[i]),
4051 			     (modified[i] == RELOAD_READ
4052 			      ? VOIDmode : operand_mode[i]),
4053 			     (insn_code_number < 0 ? 0
4054 			      : insn_data[insn_code_number].operand[i].strict_low),
4055 			     0, i, operand_type[i]);
4056 	  }
4057 	/* In a matching pair of operands, one must be input only
4058 	   and the other must be output only.
4059 	   Pass the input operand as IN and the other as OUT.  */
4060 	else if (modified[i] == RELOAD_READ
4061 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4062 	  {
4063 	    operand_reloadnum[i]
4064 	      = push_reload (recog_data.operand[i],
4065 			     recog_data.operand[goal_alternative_matched[i]],
4066 			     recog_data.operand_loc[i],
4067 			     recog_data.operand_loc[goal_alternative_matched[i]],
4068 			     (enum reg_class) goal_alternative[i],
4069 			     operand_mode[i],
4070 			     operand_mode[goal_alternative_matched[i]],
4071 			     0, 0, i, RELOAD_OTHER);
4072 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4073 	  }
4074 	else if (modified[i] == RELOAD_WRITE
4075 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4076 	  {
4077 	    operand_reloadnum[goal_alternative_matched[i]]
4078 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
4079 			     recog_data.operand[i],
4080 			     recog_data.operand_loc[goal_alternative_matched[i]],
4081 			     recog_data.operand_loc[i],
4082 			     (enum reg_class) goal_alternative[i],
4083 			     operand_mode[goal_alternative_matched[i]],
4084 			     operand_mode[i],
4085 			     0, 0, i, RELOAD_OTHER);
4086 	    operand_reloadnum[i] = output_reloadnum;
4087 	  }
4088 	else
4089 	  {
4090 	    gcc_assert (insn_code_number < 0);
4091 	    error_for_asm (insn, "inconsistent operand constraints "
4092 			   "in an %<asm%>");
4093 	    /* Avoid further trouble with this insn.  */
4094 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4095 	    n_reloads = 0;
4096 	    return 0;
4097 	  }
4098       }
4099     else if (goal_alternative_matched[i] < 0
4100 	     && goal_alternative_matches[i] < 0
4101 	     && address_operand_reloaded[i] != 1
4102 	     && optimize)
4103       {
4104 	/* For each non-matching operand that's a MEM or a pseudo-register
4105 	   that didn't get a hard register, make an optional reload.
4106 	   This may get done even if the insn needs no reloads otherwise.  */
4107 
4108 	rtx operand = recog_data.operand[i];
4109 
4110 	while (GET_CODE (operand) == SUBREG)
4111 	  operand = SUBREG_REG (operand);
4112 	if ((MEM_P (operand)
4113 	     || (REG_P (operand)
4114 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4115 	    /* If this is only for an output, the optional reload would not
4116 	       actually cause us to use a register now, just note that
4117 	       something is stored here.  */
4118 	    && (goal_alternative[i] != NO_REGS
4119 		|| modified[i] == RELOAD_WRITE)
4120 	    && ! no_input_reloads
4121 	    /* An optional output reload might allow to delete INSN later.
4122 	       We mustn't make in-out reloads on insns that are not permitted
4123 	       output reloads.
4124 	       If this is an asm, we can't delete it; we must not even call
4125 	       push_reload for an optional output reload in this case,
4126 	       because we can't be sure that the constraint allows a register,
4127 	       and push_reload verifies the constraints for asms.  */
4128 	    && (modified[i] == RELOAD_READ
4129 		|| (! no_output_reloads && ! this_insn_is_asm)))
4130 	  operand_reloadnum[i]
4131 	    = push_reload ((modified[i] != RELOAD_WRITE
4132 			    ? recog_data.operand[i] : 0),
4133 			   (modified[i] != RELOAD_READ
4134 			    ? recog_data.operand[i] : 0),
4135 			   (modified[i] != RELOAD_WRITE
4136 			    ? recog_data.operand_loc[i] : 0),
4137 			   (modified[i] != RELOAD_READ
4138 			    ? recog_data.operand_loc[i] : 0),
4139 			   (enum reg_class) goal_alternative[i],
4140 			   (modified[i] == RELOAD_WRITE
4141 			    ? VOIDmode : operand_mode[i]),
4142 			   (modified[i] == RELOAD_READ
4143 			    ? VOIDmode : operand_mode[i]),
4144 			   (insn_code_number < 0 ? 0
4145 			    : insn_data[insn_code_number].operand[i].strict_low),
4146 			   1, i, operand_type[i]);
4147 	/* If a memory reference remains (either as a MEM or a pseudo that
4148 	   did not get a hard register), yet we can't make an optional
4149 	   reload, check if this is actually a pseudo register reference;
4150 	   we then need to emit a USE and/or a CLOBBER so that reload
4151 	   inheritance will do the right thing.  */
4152 	else if (replace
4153 		 && (MEM_P (operand)
4154 		     || (REG_P (operand)
4155 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4156 			 && reg_renumber [REGNO (operand)] < 0)))
4157 	  {
4158 	    operand = *recog_data.operand_loc[i];
4159 
4160 	    while (GET_CODE (operand) == SUBREG)
4161 	      operand = SUBREG_REG (operand);
4162 	    if (REG_P (operand))
4163 	      {
4164 		if (modified[i] != RELOAD_WRITE)
4165 		  /* We mark the USE with QImode so that we recognize
4166 		     it as one that can be safely deleted at the end
4167 		     of reload.  */
4168 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4169 					      insn), QImode);
4170 		if (modified[i] != RELOAD_READ)
4171 		  emit_insn_after (gen_clobber (operand), insn);
4172 	      }
4173 	  }
4174       }
4175     else if (goal_alternative_matches[i] >= 0
4176 	     && goal_alternative_win[goal_alternative_matches[i]]
4177 	     && modified[i] == RELOAD_READ
4178 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4179 	     && ! no_input_reloads && ! no_output_reloads
4180 	     && optimize)
4181       {
4182 	/* Similarly, make an optional reload for a pair of matching
4183 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4184 
4185 	rtx operand = recog_data.operand[i];
4186 
4187 	while (GET_CODE (operand) == SUBREG)
4188 	  operand = SUBREG_REG (operand);
4189 	if ((MEM_P (operand)
4190 	     || (REG_P (operand)
4191 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4192 	    && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4193 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4194 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4195 			   recog_data.operand[i],
4196 			   recog_data.operand_loc[goal_alternative_matches[i]],
4197 			   recog_data.operand_loc[i],
4198 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4199 			   operand_mode[goal_alternative_matches[i]],
4200 			   operand_mode[i],
4201 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4202       }
4203 
4204   /* Perform whatever substitutions on the operands we are supposed
4205      to make due to commutativity or replacement of registers
4206      with equivalent constants or memory slots.  */
4207 
4208   for (i = 0; i < noperands; i++)
4209     {
4210       /* We only do this on the last pass through reload, because it is
4211 	 possible for some data (like reg_equiv_address) to be changed during
4212 	 later passes.  Moreover, we lose the opportunity to get a useful
4213 	 reload_{in,out}_reg when we do these replacements.  */
4214 
4215       if (replace)
4216 	{
4217 	  rtx substitution = substed_operand[i];
4218 
4219 	  *recog_data.operand_loc[i] = substitution;
4220 
4221 	  /* If we're replacing an operand with a LABEL_REF, we need to
4222 	     make sure that there's a REG_LABEL_OPERAND note attached to
4223 	     this instruction.  */
4224 	  if (GET_CODE (substitution) == LABEL_REF
4225 	      && !find_reg_note (insn, REG_LABEL_OPERAND,
4226 				 label_ref_label (substitution))
4227 	      /* For a JUMP_P, if it was a branch target it must have
4228 		 already been recorded as such.  */
4229 	      && (!JUMP_P (insn)
4230 		  || !label_is_jump_target_p (label_ref_label (substitution),
4231 					      insn)))
4232 	    {
4233 	      add_reg_note (insn, REG_LABEL_OPERAND,
4234 			    label_ref_label (substitution));
4235 	      if (LABEL_P (label_ref_label (substitution)))
4236 		++LABEL_NUSES (label_ref_label (substitution));
4237 	    }
4238 
4239 	}
4240       else
4241 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4242     }
4243 
4244   /* If this insn pattern contains any MATCH_DUP's, make sure that
4245      they will be substituted if the operands they match are substituted.
4246      Also do now any substitutions we already did on the operands.
4247 
4248      Don't do this if we aren't making replacements because we might be
4249      propagating things allocated by frame pointer elimination into places
4250      it doesn't expect.  */
4251 
4252   if (insn_code_number >= 0 && replace)
4253     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4254       {
4255 	int opno = recog_data.dup_num[i];
4256 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4257 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4258       }
4259 
4260 #if 0
4261   /* This loses because reloading of prior insns can invalidate the equivalence
4262      (or at least find_equiv_reg isn't smart enough to find it any more),
4263      causing this insn to need more reload regs than it needed before.
4264      It may be too late to make the reload regs available.
4265      Now this optimization is done safely in choose_reload_regs.  */
4266 
4267   /* For each reload of a reg into some other class of reg,
4268      search for an existing equivalent reg (same value now) in the right class.
4269      We can use it as long as we don't need to change its contents.  */
4270   for (i = 0; i < n_reloads; i++)
4271     if (rld[i].reg_rtx == 0
4272 	&& rld[i].in != 0
4273 	&& REG_P (rld[i].in)
4274 	&& rld[i].out == 0)
4275       {
4276 	rld[i].reg_rtx
4277 	  = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4278 			    static_reload_reg_p, 0, rld[i].inmode);
4279 	/* Prevent generation of insn to load the value
4280 	   because the one we found already has the value.  */
4281 	if (rld[i].reg_rtx)
4282 	  rld[i].in = rld[i].reg_rtx;
4283       }
4284 #endif
4285 
4286   /* If we detected error and replaced asm instruction by USE, forget about the
4287      reloads.  */
4288   if (GET_CODE (PATTERN (insn)) == USE
4289       && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4290     n_reloads = 0;
4291 
4292   /* Perhaps an output reload can be combined with another
4293      to reduce needs by one.  */
4294   if (!goal_earlyclobber)
4295     combine_reloads ();
4296 
4297   /* If we have a pair of reloads for parts of an address, they are reloading
4298      the same object, the operands themselves were not reloaded, and they
4299      are for two operands that are supposed to match, merge the reloads and
4300      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4301 
4302   for (i = 0; i < n_reloads; i++)
4303     {
4304       int k;
4305 
4306       for (j = i + 1; j < n_reloads; j++)
4307 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4308 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4309 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4310 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4311 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4312 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4313 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4314 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4315 	    && rtx_equal_p (rld[i].in, rld[j].in)
4316 	    && (operand_reloadnum[rld[i].opnum] < 0
4317 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4318 	    && (operand_reloadnum[rld[j].opnum] < 0
4319 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4320 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4321 		|| (goal_alternative_matches[rld[j].opnum]
4322 		    == rld[i].opnum)))
4323 	  {
4324 	    for (k = 0; k < n_replacements; k++)
4325 	      if (replacements[k].what == j)
4326 		replacements[k].what = i;
4327 
4328 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4329 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4330 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4331 	    else
4332 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4333 	    rld[j].in = 0;
4334 	  }
4335     }
4336 
4337   /* Scan all the reloads and update their type.
4338      If a reload is for the address of an operand and we didn't reload
4339      that operand, change the type.  Similarly, change the operand number
4340      of a reload when two operands match.  If a reload is optional, treat it
4341      as though the operand isn't reloaded.
4342 
4343      ??? This latter case is somewhat odd because if we do the optional
4344      reload, it means the object is hanging around.  Thus we need only
4345      do the address reload if the optional reload was NOT done.
4346 
4347      Change secondary reloads to be the address type of their operand, not
4348      the normal type.
4349 
4350      If an operand's reload is now RELOAD_OTHER, change any
4351      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4352      RELOAD_FOR_OTHER_ADDRESS.  */
4353 
4354   for (i = 0; i < n_reloads; i++)
4355     {
4356       if (rld[i].secondary_p
4357 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4358 	rld[i].when_needed = address_type[rld[i].opnum];
4359 
4360       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4361 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4362 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4363 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4364 	  && (operand_reloadnum[rld[i].opnum] < 0
4365 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4366 	{
4367 	  /* If we have a secondary reload to go along with this reload,
4368 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4369 
4370 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4371 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4372 	      && rld[i].secondary_in_reload != -1)
4373 	    {
4374 	      int secondary_in_reload = rld[i].secondary_in_reload;
4375 
4376 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4377 
4378 	      /* If there's a tertiary reload we have to change it also.  */
4379 	      if (secondary_in_reload > 0
4380 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4381 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4382 		  = RELOAD_FOR_OPADDR_ADDR;
4383 	    }
4384 
4385 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4386 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4387 	      && rld[i].secondary_out_reload != -1)
4388 	    {
4389 	      int secondary_out_reload = rld[i].secondary_out_reload;
4390 
4391 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4392 
4393 	      /* If there's a tertiary reload we have to change it also.  */
4394 	      if (secondary_out_reload
4395 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4396 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4397 		  = RELOAD_FOR_OPADDR_ADDR;
4398 	    }
4399 
4400 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4401 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4402 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4403 	  else
4404 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4405 	}
4406 
4407       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4408 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4409 	  && operand_reloadnum[rld[i].opnum] >= 0
4410 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4411 	      == RELOAD_OTHER))
4412 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4413 
4414       if (goal_alternative_matches[rld[i].opnum] >= 0)
4415 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4416     }
4417 
4418   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4419      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4420      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4421 
4422      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4423      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4424      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4425      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4426      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4427      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4428      This is complicated by the fact that a single operand can have more
4429      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4430      choose_reload_regs without affecting code quality, and cases that
4431      actually fail are extremely rare, so it turns out to be better to fix
4432      the problem here by not generating cases that choose_reload_regs will
4433      fail for.  */
4434   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4435      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4436      a single operand.
4437      We can reduce the register pressure by exploiting that a
4438      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4439      does not conflict with any of them, if it is only used for the first of
4440      the RELOAD_FOR_X_ADDRESS reloads.  */
4441   {
4442     int first_op_addr_num = -2;
4443     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4444     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4445     int need_change = 0;
4446     /* We use last_op_addr_reload and the contents of the above arrays
4447        first as flags - -2 means no instance encountered, -1 means exactly
4448        one instance encountered.
4449        If more than one instance has been encountered, we store the reload
4450        number of the first reload of the kind in question; reload numbers
4451        are known to be non-negative.  */
4452     for (i = 0; i < noperands; i++)
4453       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4454     for (i = n_reloads - 1; i >= 0; i--)
4455       {
4456 	switch (rld[i].when_needed)
4457 	  {
4458 	  case RELOAD_FOR_OPERAND_ADDRESS:
4459 	    if (++first_op_addr_num >= 0)
4460 	      {
4461 		first_op_addr_num = i;
4462 		need_change = 1;
4463 	      }
4464 	    break;
4465 	  case RELOAD_FOR_INPUT_ADDRESS:
4466 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4467 	      {
4468 		first_inpaddr_num[rld[i].opnum] = i;
4469 		need_change = 1;
4470 	      }
4471 	    break;
4472 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4473 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4474 	      {
4475 		first_outpaddr_num[rld[i].opnum] = i;
4476 		need_change = 1;
4477 	      }
4478 	    break;
4479 	  default:
4480 	    break;
4481 	  }
4482       }
4483 
4484     if (need_change)
4485       {
4486 	for (i = 0; i < n_reloads; i++)
4487 	  {
4488 	    int first_num;
4489 	    enum reload_type type;
4490 
4491 	    switch (rld[i].when_needed)
4492 	      {
4493 	      case RELOAD_FOR_OPADDR_ADDR:
4494 		first_num = first_op_addr_num;
4495 		type = RELOAD_FOR_OPERAND_ADDRESS;
4496 		break;
4497 	      case RELOAD_FOR_INPADDR_ADDRESS:
4498 		first_num = first_inpaddr_num[rld[i].opnum];
4499 		type = RELOAD_FOR_INPUT_ADDRESS;
4500 		break;
4501 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4502 		first_num = first_outpaddr_num[rld[i].opnum];
4503 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4504 		break;
4505 	      default:
4506 		continue;
4507 	      }
4508 	    if (first_num < 0)
4509 	      continue;
4510 	    else if (i > first_num)
4511 	      rld[i].when_needed = type;
4512 	    else
4513 	      {
4514 		/* Check if the only TYPE reload that uses reload I is
4515 		   reload FIRST_NUM.  */
4516 		for (j = n_reloads - 1; j > first_num; j--)
4517 		  {
4518 		    if (rld[j].when_needed == type
4519 			&& (rld[i].secondary_p
4520 			    ? rld[j].secondary_in_reload == i
4521 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4522 		      {
4523 			rld[i].when_needed = type;
4524 			break;
4525 		      }
4526 		  }
4527 	      }
4528 	  }
4529       }
4530   }
4531 
4532   /* See if we have any reloads that are now allowed to be merged
4533      because we've changed when the reload is needed to
4534      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4535      check for the most common cases.  */
4536 
4537   for (i = 0; i < n_reloads; i++)
4538     if (rld[i].in != 0 && rld[i].out == 0
4539 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4540 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4541 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4542       for (j = 0; j < n_reloads; j++)
4543 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4544 	    && rld[j].when_needed == rld[i].when_needed
4545 	    && MATCHES (rld[i].in, rld[j].in)
4546 	    && rld[i].rclass == rld[j].rclass
4547 	    && !rld[i].nocombine && !rld[j].nocombine
4548 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4549 	  {
4550 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4551 	    transfer_replacements (i, j);
4552 	    rld[j].in = 0;
4553 	  }
4554 
4555   /* If we made any reloads for addresses, see if they violate a
4556      "no input reloads" requirement for this insn.  But loads that we
4557      do after the insn (such as for output addresses) are fine.  */
4558   if (HAVE_cc0 && no_input_reloads)
4559     for (i = 0; i < n_reloads; i++)
4560       gcc_assert (rld[i].in == 0
4561 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4562 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4563 
4564   /* Compute reload_mode and reload_nregs.  */
4565   for (i = 0; i < n_reloads; i++)
4566     {
4567       rld[i].mode = rld[i].inmode;
4568       if (rld[i].mode == VOIDmode
4569 	  || partial_subreg_p (rld[i].mode, rld[i].outmode))
4570 	rld[i].mode = rld[i].outmode;
4571 
4572       rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4573     }
4574 
4575   /* Special case a simple move with an input reload and a
4576      destination of a hard reg, if the hard reg is ok, use it.  */
4577   for (i = 0; i < n_reloads; i++)
4578     if (rld[i].when_needed == RELOAD_FOR_INPUT
4579 	&& GET_CODE (PATTERN (insn)) == SET
4580 	&& REG_P (SET_DEST (PATTERN (insn)))
4581 	&& (SET_SRC (PATTERN (insn)) == rld[i].in
4582 	    || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4583 	&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4584       {
4585 	rtx dest = SET_DEST (PATTERN (insn));
4586 	unsigned int regno = REGNO (dest);
4587 
4588 	if (regno < FIRST_PSEUDO_REGISTER
4589 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4590 	    && targetm.hard_regno_mode_ok (regno, rld[i].mode))
4591 	  {
4592 	    int nr = hard_regno_nregs (regno, rld[i].mode);
4593 	    int ok = 1, nri;
4594 
4595 	    for (nri = 1; nri < nr; nri ++)
4596 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4597 		{
4598 		  ok = 0;
4599 		  break;
4600 		}
4601 
4602 	    if (ok)
4603 	      rld[i].reg_rtx = dest;
4604 	  }
4605       }
4606 
4607   return retval;
4608 }
4609 
4610 /* Return true if alternative number ALTNUM in constraint-string
4611    CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4612    MEM gives the reference if its address hasn't been fully reloaded,
4613    otherwise it is NULL.  */
4614 
4615 static bool
4616 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4617 				   const char *constraint, int altnum)
4618 {
4619   int c;
4620 
4621   /* Skip alternatives before the one requested.  */
4622   while (altnum > 0)
4623     {
4624       while (*constraint++ != ',')
4625 	;
4626       altnum--;
4627     }
4628   /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4629      If one of them is present, this alternative accepts the result of
4630      passing a constant-pool reference through find_reloads_toplev.
4631 
4632      The same is true of extra memory constraints if the address
4633      was reloaded into a register.  However, the target may elect
4634      to disallow the original constant address, forcing it to be
4635      reloaded into a register instead.  */
4636   for (; (c = *constraint) && c != ',' && c != '#';
4637        constraint += CONSTRAINT_LEN (c, constraint))
4638     {
4639       enum constraint_num cn = lookup_constraint (constraint);
4640       if (insn_extra_memory_constraint (cn)
4641 	  && (mem == NULL || constraint_satisfied_p (mem, cn)))
4642 	return true;
4643     }
4644   return false;
4645 }
4646 
4647 /* Scan X for memory references and scan the addresses for reloading.
4648    Also checks for references to "constant" regs that we want to eliminate
4649    and replaces them with the values they stand for.
4650    We may alter X destructively if it contains a reference to such.
4651    If X is just a constant reg, we return the equivalent value
4652    instead of X.
4653 
4654    IND_LEVELS says how many levels of indirect addressing this machine
4655    supports.
4656 
4657    OPNUM and TYPE identify the purpose of the reload.
4658 
4659    IS_SET_DEST is true if X is the destination of a SET, which is not
4660    appropriate to be replaced by a constant.
4661 
4662    INSN, if nonzero, is the insn in which we do the reload.  It is used
4663    to determine if we may generate output reloads, and where to put USEs
4664    for pseudos that we have to replace with stack slots.
4665 
4666    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4667    result of find_reloads_address.  */
4668 
4669 static rtx
4670 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4671 		     int ind_levels, int is_set_dest, rtx_insn *insn,
4672 		     int *address_reloaded)
4673 {
4674   RTX_CODE code = GET_CODE (x);
4675 
4676   const char *fmt = GET_RTX_FORMAT (code);
4677   int i;
4678   int copied;
4679 
4680   if (code == REG)
4681     {
4682       /* This code is duplicated for speed in find_reloads.  */
4683       int regno = REGNO (x);
4684       if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4685 	x = reg_equiv_constant (regno);
4686 #if 0
4687       /*  This creates (subreg (mem...)) which would cause an unnecessary
4688 	  reload of the mem.  */
4689       else if (reg_equiv_mem (regno) != 0)
4690 	x = reg_equiv_mem (regno);
4691 #endif
4692       else if (reg_equiv_memory_loc (regno)
4693 	       && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4694 	{
4695 	  rtx mem = make_memloc (x, regno);
4696 	  if (reg_equiv_address (regno)
4697 	      || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4698 	    {
4699 	      /* If this is not a toplevel operand, find_reloads doesn't see
4700 		 this substitution.  We have to emit a USE of the pseudo so
4701 		 that delete_output_reload can see it.  */
4702 	      if (replace_reloads && recog_data.operand[opnum] != x)
4703 		/* We mark the USE with QImode so that we recognize it
4704 		   as one that can be safely deleted at the end of
4705 		   reload.  */
4706 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4707 			  QImode);
4708 	      x = mem;
4709 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4710 					opnum, type, ind_levels, insn);
4711 	      if (!rtx_equal_p (x, mem))
4712 		push_reg_equiv_alt_mem (regno, x);
4713 	      if (address_reloaded)
4714 		*address_reloaded = i;
4715 	    }
4716 	}
4717       return x;
4718     }
4719   if (code == MEM)
4720     {
4721       rtx tem = x;
4722 
4723       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4724 				opnum, type, ind_levels, insn);
4725       if (address_reloaded)
4726 	*address_reloaded = i;
4727 
4728       return tem;
4729     }
4730 
4731   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4732     {
4733       /* Check for SUBREG containing a REG that's equivalent to a
4734 	 constant.  If the constant has a known value, truncate it
4735 	 right now.  Similarly if we are extracting a single-word of a
4736 	 multi-word constant.  If the constant is symbolic, allow it
4737 	 to be substituted normally.  push_reload will strip the
4738 	 subreg later.  The constant must not be VOIDmode, because we
4739 	 will lose the mode of the register (this should never happen
4740 	 because one of the cases above should handle it).  */
4741 
4742       int regno = REGNO (SUBREG_REG (x));
4743       rtx tem;
4744 
4745       if (regno >= FIRST_PSEUDO_REGISTER
4746 	  && reg_renumber[regno] < 0
4747 	  && reg_equiv_constant (regno) != 0)
4748 	{
4749 	  tem =
4750 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4751 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4752 	  gcc_assert (tem);
4753 	  if (CONSTANT_P (tem)
4754 	      && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4755 	    {
4756 	      tem = force_const_mem (GET_MODE (x), tem);
4757 	      i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4758 					&XEXP (tem, 0), opnum, type,
4759 					ind_levels, insn);
4760 	      if (address_reloaded)
4761 		*address_reloaded = i;
4762 	    }
4763 	  return tem;
4764 	}
4765 
4766       /* If the subreg contains a reg that will be converted to a mem,
4767 	 attempt to convert the whole subreg to a (narrower or wider)
4768 	 memory reference instead.  If this succeeds, we're done --
4769 	 otherwise fall through to check whether the inner reg still
4770 	 needs address reloads anyway.  */
4771 
4772       if (regno >= FIRST_PSEUDO_REGISTER
4773 	  && reg_equiv_memory_loc (regno) != 0)
4774 	{
4775 	  tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4776 					     insn, address_reloaded);
4777 	  if (tem)
4778 	    return tem;
4779 	}
4780     }
4781 
4782   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4783     {
4784       if (fmt[i] == 'e')
4785 	{
4786 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4787 					      ind_levels, is_set_dest, insn,
4788 					      address_reloaded);
4789 	  /* If we have replaced a reg with it's equivalent memory loc -
4790 	     that can still be handled here e.g. if it's in a paradoxical
4791 	     subreg - we must make the change in a copy, rather than using
4792 	     a destructive change.  This way, find_reloads can still elect
4793 	     not to do the change.  */
4794 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4795 	    {
4796 	      x = shallow_copy_rtx (x);
4797 	      copied = 1;
4798 	    }
4799 	  XEXP (x, i) = new_part;
4800 	}
4801     }
4802   return x;
4803 }
4804 
4805 /* Return a mem ref for the memory equivalent of reg REGNO.
4806    This mem ref is not shared with anything.  */
4807 
4808 static rtx
4809 make_memloc (rtx ad, int regno)
4810 {
4811   /* We must rerun eliminate_regs, in case the elimination
4812      offsets have changed.  */
4813   rtx tem
4814     = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4815 	    0);
4816 
4817   /* If TEM might contain a pseudo, we must copy it to avoid
4818      modifying it when we do the substitution for the reload.  */
4819   if (rtx_varies_p (tem, 0))
4820     tem = copy_rtx (tem);
4821 
4822   tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4823   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4824 
4825   /* Copy the result if it's still the same as the equivalence, to avoid
4826      modifying it when we do the substitution for the reload.  */
4827   if (tem == reg_equiv_memory_loc (regno))
4828     tem = copy_rtx (tem);
4829   return tem;
4830 }
4831 
4832 /* Returns true if AD could be turned into a valid memory reference
4833    to mode MODE in address space AS by reloading the part pointed to
4834    by PART into a register.  */
4835 
4836 static int
4837 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4838 				   addr_space_t as, rtx *part)
4839 {
4840   int retv;
4841   rtx tem = *part;
4842   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4843 
4844   *part = reg;
4845   retv = memory_address_addr_space_p (mode, ad, as);
4846   *part = tem;
4847 
4848   return retv;
4849 }
4850 
4851 /* Record all reloads needed for handling memory address AD
4852    which appears in *LOC in a memory reference to mode MODE
4853    which itself is found in location  *MEMREFLOC.
4854    Note that we take shortcuts assuming that no multi-reg machine mode
4855    occurs as part of an address.
4856 
4857    OPNUM and TYPE specify the purpose of this reload.
4858 
4859    IND_LEVELS says how many levels of indirect addressing this machine
4860    supports.
4861 
4862    INSN, if nonzero, is the insn in which we do the reload.  It is used
4863    to determine if we may generate output reloads, and where to put USEs
4864    for pseudos that we have to replace with stack slots.
4865 
4866    Value is one if this address is reloaded or replaced as a whole; it is
4867    zero if the top level of this address was not reloaded or replaced, and
4868    it is -1 if it may or may not have been reloaded or replaced.
4869 
4870    Note that there is no verification that the address will be valid after
4871    this routine does its work.  Instead, we rely on the fact that the address
4872    was valid when reload started.  So we need only undo things that reload
4873    could have broken.  These are wrong register types, pseudos not allocated
4874    to a hard register, and frame pointer elimination.  */
4875 
4876 static int
4877 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4878 		      rtx *loc, int opnum, enum reload_type type,
4879 		      int ind_levels, rtx_insn *insn)
4880 {
4881   addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4882 			     : ADDR_SPACE_GENERIC;
4883   int regno;
4884   int removed_and = 0;
4885   int op_index;
4886   rtx tem;
4887 
4888   /* If the address is a register, see if it is a legitimate address and
4889      reload if not.  We first handle the cases where we need not reload
4890      or where we must reload in a non-standard way.  */
4891 
4892   if (REG_P (ad))
4893     {
4894       regno = REGNO (ad);
4895 
4896       if (reg_equiv_constant (regno) != 0)
4897 	{
4898 	  find_reloads_address_part (reg_equiv_constant (regno), loc,
4899 				     base_reg_class (mode, as, MEM, SCRATCH),
4900 				     GET_MODE (ad), opnum, type, ind_levels);
4901 	  return 1;
4902 	}
4903 
4904       tem = reg_equiv_memory_loc (regno);
4905       if (tem != 0)
4906 	{
4907 	  if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4908 	    {
4909 	      tem = make_memloc (ad, regno);
4910 	      if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4911 							XEXP (tem, 0),
4912 							MEM_ADDR_SPACE (tem)))
4913 		{
4914 		  rtx orig = tem;
4915 
4916 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4917 					&XEXP (tem, 0), opnum,
4918 					ADDR_TYPE (type), ind_levels, insn);
4919 		  if (!rtx_equal_p (tem, orig))
4920 		    push_reg_equiv_alt_mem (regno, tem);
4921 		}
4922 	      /* We can avoid a reload if the register's equivalent memory
4923 		 expression is valid as an indirect memory address.
4924 		 But not all addresses are valid in a mem used as an indirect
4925 		 address: only reg or reg+constant.  */
4926 
4927 	      if (ind_levels > 0
4928 		  && strict_memory_address_addr_space_p (mode, tem, as)
4929 		  && (REG_P (XEXP (tem, 0))
4930 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4931 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4932 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4933 		{
4934 		  /* TEM is not the same as what we'll be replacing the
4935 		     pseudo with after reload, put a USE in front of INSN
4936 		     in the final reload pass.  */
4937 		  if (replace_reloads
4938 		      && num_not_at_initial_offset
4939 		      && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4940 		    {
4941 		      *loc = tem;
4942 		      /* We mark the USE with QImode so that we
4943 			 recognize it as one that can be safely
4944 			 deleted at the end of reload.  */
4945 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4946 						  insn), QImode);
4947 
4948 		      /* This doesn't really count as replacing the address
4949 			 as a whole, since it is still a memory access.  */
4950 		    }
4951 		  return 0;
4952 		}
4953 	      ad = tem;
4954 	    }
4955 	}
4956 
4957       /* The only remaining case where we can avoid a reload is if this is a
4958 	 hard register that is valid as a base register and which is not the
4959 	 subject of a CLOBBER in this insn.  */
4960 
4961       else if (regno < FIRST_PSEUDO_REGISTER
4962 	       && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4963 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4964 	return 0;
4965 
4966       /* If we do not have one of the cases above, we must do the reload.  */
4967       push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4968 		   base_reg_class (mode, as, MEM, SCRATCH),
4969 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4970       return 1;
4971     }
4972 
4973   if (strict_memory_address_addr_space_p (mode, ad, as))
4974     {
4975       /* The address appears valid, so reloads are not needed.
4976 	 But the address may contain an eliminable register.
4977 	 This can happen because a machine with indirect addressing
4978 	 may consider a pseudo register by itself a valid address even when
4979 	 it has failed to get a hard reg.
4980 	 So do a tree-walk to find and eliminate all such regs.  */
4981 
4982       /* But first quickly dispose of a common case.  */
4983       if (GET_CODE (ad) == PLUS
4984 	  && CONST_INT_P (XEXP (ad, 1))
4985 	  && REG_P (XEXP (ad, 0))
4986 	  && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4987 	return 0;
4988 
4989       subst_reg_equivs_changed = 0;
4990       *loc = subst_reg_equivs (ad, insn);
4991 
4992       if (! subst_reg_equivs_changed)
4993 	return 0;
4994 
4995       /* Check result for validity after substitution.  */
4996       if (strict_memory_address_addr_space_p (mode, ad, as))
4997 	return 0;
4998     }
4999 
5000 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5001   do
5002     {
5003       if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5004 	{
5005 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5006 				     ind_levels, win);
5007 	}
5008       break;
5009     win:
5010       *memrefloc = copy_rtx (*memrefloc);
5011       XEXP (*memrefloc, 0) = ad;
5012       move_replacements (&ad, &XEXP (*memrefloc, 0));
5013       return -1;
5014     }
5015   while (0);
5016 #endif
5017 
5018   /* The address is not valid.  We have to figure out why.  First see if
5019      we have an outer AND and remove it if so.  Then analyze what's inside.  */
5020 
5021   if (GET_CODE (ad) == AND)
5022     {
5023       removed_and = 1;
5024       loc = &XEXP (ad, 0);
5025       ad = *loc;
5026     }
5027 
5028   /* One possibility for why the address is invalid is that it is itself
5029      a MEM.  This can happen when the frame pointer is being eliminated, a
5030      pseudo is not allocated to a hard register, and the offset between the
5031      frame and stack pointers is not its initial value.  In that case the
5032      pseudo will have been replaced by a MEM referring to the
5033      stack pointer.  */
5034   if (MEM_P (ad))
5035     {
5036       /* First ensure that the address in this MEM is valid.  Then, unless
5037 	 indirect addresses are valid, reload the MEM into a register.  */
5038       tem = ad;
5039       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5040 			    opnum, ADDR_TYPE (type),
5041 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
5042 
5043       /* If tem was changed, then we must create a new memory reference to
5044 	 hold it and store it back into memrefloc.  */
5045       if (tem != ad && memrefloc)
5046 	{
5047 	  *memrefloc = copy_rtx (*memrefloc);
5048 	  copy_replacements (tem, XEXP (*memrefloc, 0));
5049 	  loc = &XEXP (*memrefloc, 0);
5050 	  if (removed_and)
5051 	    loc = &XEXP (*loc, 0);
5052 	}
5053 
5054       /* Check similar cases as for indirect addresses as above except
5055 	 that we can allow pseudos and a MEM since they should have been
5056 	 taken care of above.  */
5057 
5058       if (ind_levels == 0
5059 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5060 	  || MEM_P (XEXP (tem, 0))
5061 	  || ! (REG_P (XEXP (tem, 0))
5062 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
5063 		    && REG_P (XEXP (XEXP (tem, 0), 0))
5064 		    && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5065 	{
5066 	  /* Must use TEM here, not AD, since it is the one that will
5067 	     have any subexpressions reloaded, if needed.  */
5068 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5069 		       base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5070 		       VOIDmode, 0,
5071 		       0, opnum, type);
5072 	  return ! removed_and;
5073 	}
5074       else
5075 	return 0;
5076     }
5077 
5078   /* If we have address of a stack slot but it's not valid because the
5079      displacement is too large, compute the sum in a register.
5080      Handle all base registers here, not just fp/ap/sp, because on some
5081      targets (namely SH) we can also get too large displacements from
5082      big-endian corrections.  */
5083   else if (GET_CODE (ad) == PLUS
5084 	   && REG_P (XEXP (ad, 0))
5085 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5086 	   && CONST_INT_P (XEXP (ad, 1))
5087 	   && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5088 				    CONST_INT)
5089 	       /* Similarly, if we were to reload the base register and the
5090 		  mem+offset address is still invalid, then we want to reload
5091 		  the whole address, not just the base register.  */
5092 	       || ! maybe_memory_address_addr_space_p
5093 		     (mode, ad, as, &(XEXP (ad, 0)))))
5094 
5095     {
5096       /* Unshare the MEM rtx so we can safely alter it.  */
5097       if (memrefloc)
5098 	{
5099 	  *memrefloc = copy_rtx (*memrefloc);
5100 	  loc = &XEXP (*memrefloc, 0);
5101 	  if (removed_and)
5102 	    loc = &XEXP (*loc, 0);
5103 	}
5104 
5105       if (double_reg_address_ok[mode]
5106 	  && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5107 				  PLUS, CONST_INT))
5108 	{
5109 	  /* Unshare the sum as well.  */
5110 	  *loc = ad = copy_rtx (ad);
5111 
5112 	  /* Reload the displacement into an index reg.
5113 	     We assume the frame pointer or arg pointer is a base reg.  */
5114 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5115 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
5116 				     type, ind_levels);
5117 	  return 0;
5118 	}
5119       else
5120 	{
5121 	  /* If the sum of two regs is not necessarily valid,
5122 	     reload the sum into a base reg.
5123 	     That will at least work.  */
5124 	  find_reloads_address_part (ad, loc,
5125 				     base_reg_class (mode, as, MEM, SCRATCH),
5126 				     GET_MODE (ad), opnum, type, ind_levels);
5127 	}
5128       return ! removed_and;
5129     }
5130 
5131   /* If we have an indexed stack slot, there are three possible reasons why
5132      it might be invalid: The index might need to be reloaded, the address
5133      might have been made by frame pointer elimination and hence have a
5134      constant out of range, or both reasons might apply.
5135 
5136      We can easily check for an index needing reload, but even if that is the
5137      case, we might also have an invalid constant.  To avoid making the
5138      conservative assumption and requiring two reloads, we see if this address
5139      is valid when not interpreted strictly.  If it is, the only problem is
5140      that the index needs a reload and find_reloads_address_1 will take care
5141      of it.
5142 
5143      Handle all base registers here, not just fp/ap/sp, because on some
5144      targets (namely SPARC) we can also get invalid addresses from preventive
5145      subreg big-endian corrections made by find_reloads_toplev.  We
5146      can also get expressions involving LO_SUM (rather than PLUS) from
5147      find_reloads_subreg_address.
5148 
5149      If we decide to do something, it must be that `double_reg_address_ok'
5150      is true.  We generate a reload of the base register + constant and
5151      rework the sum so that the reload register will be added to the index.
5152      This is safe because we know the address isn't shared.
5153 
5154      We check for the base register as both the first and second operand of
5155      the innermost PLUS and/or LO_SUM.  */
5156 
5157   for (op_index = 0; op_index < 2; ++op_index)
5158     {
5159       rtx operand, addend;
5160       enum rtx_code inner_code;
5161 
5162       if (GET_CODE (ad) != PLUS)
5163 	  continue;
5164 
5165       inner_code = GET_CODE (XEXP (ad, 0));
5166       if (!(GET_CODE (ad) == PLUS
5167 	    && CONST_INT_P (XEXP (ad, 1))
5168 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5169 	continue;
5170 
5171       operand = XEXP (XEXP (ad, 0), op_index);
5172       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5173 	continue;
5174 
5175       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5176 
5177       if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5178 				GET_CODE (addend))
5179 	   || operand == frame_pointer_rtx
5180 	   || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5181 	       && operand == hard_frame_pointer_rtx)
5182 	   || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5183 	       && operand == arg_pointer_rtx)
5184 	   || operand == stack_pointer_rtx)
5185 	  && ! maybe_memory_address_addr_space_p
5186 		(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5187 	{
5188 	  rtx offset_reg;
5189 	  enum reg_class cls;
5190 
5191 	  offset_reg = plus_constant (GET_MODE (ad), operand,
5192 				      INTVAL (XEXP (ad, 1)));
5193 
5194 	  /* Form the adjusted address.  */
5195 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5196 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5197 			       op_index == 0 ? offset_reg : addend,
5198 			       op_index == 0 ? addend : offset_reg);
5199 	  else
5200 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5201 				 op_index == 0 ? offset_reg : addend,
5202 				 op_index == 0 ? addend : offset_reg);
5203 	  *loc = ad;
5204 
5205 	  cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5206 	  find_reloads_address_part (XEXP (ad, op_index),
5207 				     &XEXP (ad, op_index), cls,
5208 				     GET_MODE (ad), opnum, type, ind_levels);
5209 	  find_reloads_address_1 (mode, as,
5210 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5211 				  GET_CODE (XEXP (ad, op_index)),
5212 				  &XEXP (ad, 1 - op_index), opnum,
5213 				  type, 0, insn);
5214 
5215 	  return 0;
5216 	}
5217     }
5218 
5219   /* See if address becomes valid when an eliminable register
5220      in a sum is replaced.  */
5221 
5222   tem = ad;
5223   if (GET_CODE (ad) == PLUS)
5224     tem = subst_indexed_address (ad);
5225   if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5226     {
5227       /* Ok, we win that way.  Replace any additional eliminable
5228 	 registers.  */
5229 
5230       subst_reg_equivs_changed = 0;
5231       tem = subst_reg_equivs (tem, insn);
5232 
5233       /* Make sure that didn't make the address invalid again.  */
5234 
5235       if (! subst_reg_equivs_changed
5236 	  || strict_memory_address_addr_space_p (mode, tem, as))
5237 	{
5238 	  *loc = tem;
5239 	  return 0;
5240 	}
5241     }
5242 
5243   /* If constants aren't valid addresses, reload the constant address
5244      into a register.  */
5245   if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5246     {
5247       machine_mode address_mode = GET_MODE (ad);
5248       if (address_mode == VOIDmode)
5249 	address_mode = targetm.addr_space.address_mode (as);
5250 
5251       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5252 	 Unshare it so we can safely alter it.  */
5253       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5254 	  && CONSTANT_POOL_ADDRESS_P (ad))
5255 	{
5256 	  *memrefloc = copy_rtx (*memrefloc);
5257 	  loc = &XEXP (*memrefloc, 0);
5258 	  if (removed_and)
5259 	    loc = &XEXP (*loc, 0);
5260 	}
5261 
5262       find_reloads_address_part (ad, loc,
5263 				 base_reg_class (mode, as, MEM, SCRATCH),
5264 				 address_mode, opnum, type, ind_levels);
5265       return ! removed_and;
5266     }
5267 
5268   return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5269 				 opnum, type, ind_levels, insn);
5270 }
5271 
5272 /* Find all pseudo regs appearing in AD
5273    that are eliminable in favor of equivalent values
5274    and do not have hard regs; replace them by their equivalents.
5275    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5276    front of it for pseudos that we have to replace with stack slots.  */
5277 
5278 static rtx
5279 subst_reg_equivs (rtx ad, rtx_insn *insn)
5280 {
5281   RTX_CODE code = GET_CODE (ad);
5282   int i;
5283   const char *fmt;
5284 
5285   switch (code)
5286     {
5287     case HIGH:
5288     case CONST:
5289     CASE_CONST_ANY:
5290     case SYMBOL_REF:
5291     case LABEL_REF:
5292     case PC:
5293     case CC0:
5294       return ad;
5295 
5296     case REG:
5297       {
5298 	int regno = REGNO (ad);
5299 
5300 	if (reg_equiv_constant (regno) != 0)
5301 	  {
5302 	    subst_reg_equivs_changed = 1;
5303 	    return reg_equiv_constant (regno);
5304 	  }
5305 	if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5306 	  {
5307 	    rtx mem = make_memloc (ad, regno);
5308 	    if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5309 	      {
5310 		subst_reg_equivs_changed = 1;
5311 		/* We mark the USE with QImode so that we recognize it
5312 		   as one that can be safely deleted at the end of
5313 		   reload.  */
5314 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5315 			  QImode);
5316 		return mem;
5317 	      }
5318 	  }
5319       }
5320       return ad;
5321 
5322     case PLUS:
5323       /* Quickly dispose of a common case.  */
5324       if (XEXP (ad, 0) == frame_pointer_rtx
5325 	  && CONST_INT_P (XEXP (ad, 1)))
5326 	return ad;
5327       break;
5328 
5329     default:
5330       break;
5331     }
5332 
5333   fmt = GET_RTX_FORMAT (code);
5334   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5335     if (fmt[i] == 'e')
5336       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5337   return ad;
5338 }
5339 
5340 /* Compute the sum of X and Y, making canonicalizations assumed in an
5341    address, namely: sum constant integers, surround the sum of two
5342    constants with a CONST, put the constant as the second operand, and
5343    group the constant on the outermost sum.
5344 
5345    This routine assumes both inputs are already in canonical form.  */
5346 
5347 rtx
5348 form_sum (machine_mode mode, rtx x, rtx y)
5349 {
5350   rtx tem;
5351 
5352   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5353   gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5354 
5355   if (CONST_INT_P (x))
5356     return plus_constant (mode, y, INTVAL (x));
5357   else if (CONST_INT_P (y))
5358     return plus_constant (mode, x, INTVAL (y));
5359   else if (CONSTANT_P (x))
5360     tem = x, x = y, y = tem;
5361 
5362   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5363     return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5364 
5365   /* Note that if the operands of Y are specified in the opposite
5366      order in the recursive calls below, infinite recursion will occur.  */
5367   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5368     return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5369 
5370   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5371      constant will have been placed second.  */
5372   if (CONSTANT_P (x) && CONSTANT_P (y))
5373     {
5374       if (GET_CODE (x) == CONST)
5375 	x = XEXP (x, 0);
5376       if (GET_CODE (y) == CONST)
5377 	y = XEXP (y, 0);
5378 
5379       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5380     }
5381 
5382   return gen_rtx_PLUS (mode, x, y);
5383 }
5384 
5385 /* If ADDR is a sum containing a pseudo register that should be
5386    replaced with a constant (from reg_equiv_constant),
5387    return the result of doing so, and also apply the associative
5388    law so that the result is more likely to be a valid address.
5389    (But it is not guaranteed to be one.)
5390 
5391    Note that at most one register is replaced, even if more are
5392    replaceable.  Also, we try to put the result into a canonical form
5393    so it is more likely to be a valid address.
5394 
5395    In all other cases, return ADDR.  */
5396 
5397 static rtx
5398 subst_indexed_address (rtx addr)
5399 {
5400   rtx op0 = 0, op1 = 0, op2 = 0;
5401   rtx tem;
5402   int regno;
5403 
5404   if (GET_CODE (addr) == PLUS)
5405     {
5406       /* Try to find a register to replace.  */
5407       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5408       if (REG_P (op0)
5409 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5410 	  && reg_renumber[regno] < 0
5411 	  && reg_equiv_constant (regno) != 0)
5412 	op0 = reg_equiv_constant (regno);
5413       else if (REG_P (op1)
5414 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5415 	       && reg_renumber[regno] < 0
5416 	       && reg_equiv_constant (regno) != 0)
5417 	op1 = reg_equiv_constant (regno);
5418       else if (GET_CODE (op0) == PLUS
5419 	       && (tem = subst_indexed_address (op0)) != op0)
5420 	op0 = tem;
5421       else if (GET_CODE (op1) == PLUS
5422 	       && (tem = subst_indexed_address (op1)) != op1)
5423 	op1 = tem;
5424       else
5425 	return addr;
5426 
5427       /* Pick out up to three things to add.  */
5428       if (GET_CODE (op1) == PLUS)
5429 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5430       else if (GET_CODE (op0) == PLUS)
5431 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5432 
5433       /* Compute the sum.  */
5434       if (op2 != 0)
5435 	op1 = form_sum (GET_MODE (addr), op1, op2);
5436       if (op1 != 0)
5437 	op0 = form_sum (GET_MODE (addr), op0, op1);
5438 
5439       return op0;
5440     }
5441   return addr;
5442 }
5443 
5444 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5445    notes for the instruction which refer to REGNO the to refer
5446    to the reload number.
5447 
5448    INSN is the insn for which any REG_INC notes need updating.
5449 
5450    REGNO is the register number which has been reloaded.
5451 
5452    RELOADNUM is the reload number.  */
5453 
5454 static void
5455 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5456 		       int reloadnum ATTRIBUTE_UNUSED)
5457 {
5458   if (!AUTO_INC_DEC)
5459     return;
5460 
5461   for (rtx link = REG_NOTES (insn); link; link = XEXP (link, 1))
5462     if (REG_NOTE_KIND (link) == REG_INC
5463         && (int) REGNO (XEXP (link, 0)) == regno)
5464       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5465 }
5466 
5467 /* Record the pseudo registers we must reload into hard registers in a
5468    subexpression of a would-be memory address, X referring to a value
5469    in mode MODE.  (This function is not called if the address we find
5470    is strictly valid.)
5471 
5472    CONTEXT = 1 means we are considering regs as index regs,
5473    = 0 means we are considering them as base regs.
5474    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5475    or an autoinc code.
5476    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5477    is the code of the index part of the address.  Otherwise, pass SCRATCH
5478    for this argument.
5479    OPNUM and TYPE specify the purpose of any reloads made.
5480 
5481    IND_LEVELS says how many levels of indirect addressing are
5482    supported at this point in the address.
5483 
5484    INSN, if nonzero, is the insn in which we do the reload.  It is used
5485    to determine if we may generate output reloads.
5486 
5487    We return nonzero if X, as a whole, is reloaded or replaced.  */
5488 
5489 /* Note that we take shortcuts assuming that no multi-reg machine mode
5490    occurs as part of an address.
5491    Also, this is not fully machine-customizable; it works for machines
5492    such as VAXen and 68000's and 32000's, but other possible machines
5493    could have addressing modes that this does not handle right.
5494    If you add push_reload calls here, you need to make sure gen_reload
5495    handles those cases gracefully.  */
5496 
5497 static int
5498 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5499 			rtx x, int context,
5500 			enum rtx_code outer_code, enum rtx_code index_code,
5501 			rtx *loc, int opnum, enum reload_type type,
5502 			int ind_levels, rtx_insn *insn)
5503 {
5504 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX)	\
5505   ((CONTEXT) == 0							\
5506    ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX)		\
5507    : REGNO_OK_FOR_INDEX_P (REGNO))
5508 
5509   enum reg_class context_reg_class;
5510   RTX_CODE code = GET_CODE (x);
5511   bool reloaded_inner_of_autoinc = false;
5512 
5513   if (context == 1)
5514     context_reg_class = INDEX_REG_CLASS;
5515   else
5516     context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5517 
5518   switch (code)
5519     {
5520     case PLUS:
5521       {
5522 	rtx orig_op0 = XEXP (x, 0);
5523 	rtx orig_op1 = XEXP (x, 1);
5524 	RTX_CODE code0 = GET_CODE (orig_op0);
5525 	RTX_CODE code1 = GET_CODE (orig_op1);
5526 	rtx op0 = orig_op0;
5527 	rtx op1 = orig_op1;
5528 
5529 	if (GET_CODE (op0) == SUBREG)
5530 	  {
5531 	    op0 = SUBREG_REG (op0);
5532 	    code0 = GET_CODE (op0);
5533 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5534 	      op0 = gen_rtx_REG (word_mode,
5535 				 (REGNO (op0) +
5536 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5537 						       GET_MODE (SUBREG_REG (orig_op0)),
5538 						       SUBREG_BYTE (orig_op0),
5539 						       GET_MODE (orig_op0))));
5540 	  }
5541 
5542 	if (GET_CODE (op1) == SUBREG)
5543 	  {
5544 	    op1 = SUBREG_REG (op1);
5545 	    code1 = GET_CODE (op1);
5546 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5547 	      /* ??? Why is this given op1's mode and above for
5548 		 ??? op0 SUBREGs we use word_mode?  */
5549 	      op1 = gen_rtx_REG (GET_MODE (op1),
5550 				 (REGNO (op1) +
5551 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5552 						       GET_MODE (SUBREG_REG (orig_op1)),
5553 						       SUBREG_BYTE (orig_op1),
5554 						       GET_MODE (orig_op1))));
5555 	  }
5556 	/* Plus in the index register may be created only as a result of
5557 	   register rematerialization for expression like &localvar*4.  Reload it.
5558 	   It may be possible to combine the displacement on the outer level,
5559 	   but it is probably not worthwhile to do so.  */
5560 	if (context == 1)
5561 	  {
5562 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5563 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5564 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5565 			 context_reg_class,
5566 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5567 	    return 1;
5568 	  }
5569 
5570 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5571 	    || code0 == ZERO_EXTEND || code1 == MEM)
5572 	  {
5573 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5574 				    &XEXP (x, 0), opnum, type, ind_levels,
5575 				    insn);
5576 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5577 				    &XEXP (x, 1), opnum, type, ind_levels,
5578 				    insn);
5579 	  }
5580 
5581 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5582 		 || code1 == ZERO_EXTEND || code0 == MEM)
5583 	  {
5584 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5585 				    &XEXP (x, 0), opnum, type, ind_levels,
5586 				    insn);
5587 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5588 				    &XEXP (x, 1), opnum, type, ind_levels,
5589 				    insn);
5590 	  }
5591 
5592 	else if (code0 == CONST_INT || code0 == CONST
5593 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5594 	  find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5595 				  &XEXP (x, 1), opnum, type, ind_levels,
5596 				  insn);
5597 
5598 	else if (code1 == CONST_INT || code1 == CONST
5599 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5600 	  find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5601 				  &XEXP (x, 0), opnum, type, ind_levels,
5602 				  insn);
5603 
5604 	else if (code0 == REG && code1 == REG)
5605 	  {
5606 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5607 		&& regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5608 	      return 0;
5609 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5610 		     && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5611 	      return 0;
5612 	    else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5613 	      find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5614 				      &XEXP (x, 1), opnum, type, ind_levels,
5615 				      insn);
5616 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5617 	      find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5618 				      &XEXP (x, 0), opnum, type, ind_levels,
5619 				      insn);
5620 	    else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5621 	      find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5622 				      &XEXP (x, 0), opnum, type, ind_levels,
5623 				      insn);
5624 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5625 	      find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5626 				      &XEXP (x, 1), opnum, type, ind_levels,
5627 				      insn);
5628 	    else
5629 	      {
5630 		find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5631 					&XEXP (x, 0), opnum, type, ind_levels,
5632 					insn);
5633 		find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5634 					&XEXP (x, 1), opnum, type, ind_levels,
5635 					insn);
5636 	      }
5637 	  }
5638 
5639 	else if (code0 == REG)
5640 	  {
5641 	    find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5642 				    &XEXP (x, 0), opnum, type, ind_levels,
5643 				    insn);
5644 	    find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5645 				    &XEXP (x, 1), opnum, type, ind_levels,
5646 				    insn);
5647 	  }
5648 
5649 	else if (code1 == REG)
5650 	  {
5651 	    find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5652 				    &XEXP (x, 1), opnum, type, ind_levels,
5653 				    insn);
5654 	    find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5655 				    &XEXP (x, 0), opnum, type, ind_levels,
5656 				    insn);
5657 	  }
5658       }
5659 
5660       return 0;
5661 
5662     case POST_MODIFY:
5663     case PRE_MODIFY:
5664       {
5665 	rtx op0 = XEXP (x, 0);
5666 	rtx op1 = XEXP (x, 1);
5667 	enum rtx_code index_code;
5668 	int regno;
5669 	int reloadnum;
5670 
5671 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5672 	  return 0;
5673 
5674 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5675 	   where a base register is {inc,dec}remented by the contents
5676 	   of another register or by a constant value.  Thus, these
5677 	   operands must match.  */
5678 	gcc_assert (op0 == XEXP (op1, 0));
5679 
5680 	/* Require index register (or constant).  Let's just handle the
5681 	   register case in the meantime... If the target allows
5682 	   auto-modify by a constant then we could try replacing a pseudo
5683 	   register with its equivalent constant where applicable.
5684 
5685 	   We also handle the case where the register was eliminated
5686 	   resulting in a PLUS subexpression.
5687 
5688 	   If we later decide to reload the whole PRE_MODIFY or
5689 	   POST_MODIFY, inc_for_reload might clobber the reload register
5690 	   before reading the index.  The index register might therefore
5691 	   need to live longer than a TYPE reload normally would, so be
5692 	   conservative and class it as RELOAD_OTHER.  */
5693 	if ((REG_P (XEXP (op1, 1))
5694 	     && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5695 	    || GET_CODE (XEXP (op1, 1)) == PLUS)
5696 	  find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5697 				  &XEXP (op1, 1), opnum, RELOAD_OTHER,
5698 				  ind_levels, insn);
5699 
5700 	gcc_assert (REG_P (XEXP (op1, 0)));
5701 
5702 	regno = REGNO (XEXP (op1, 0));
5703 	index_code = GET_CODE (XEXP (op1, 1));
5704 
5705 	/* A register that is incremented cannot be constant!  */
5706 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5707 		    || reg_equiv_constant (regno) == 0);
5708 
5709 	/* Handle a register that is equivalent to a memory location
5710 	    which cannot be addressed directly.  */
5711 	if (reg_equiv_memory_loc (regno) != 0
5712 	    && (reg_equiv_address (regno) != 0
5713 		|| num_not_at_initial_offset))
5714 	  {
5715 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5716 
5717 	    if (reg_equiv_address (regno)
5718 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5719 	      {
5720 		rtx orig = tem;
5721 
5722 		/* First reload the memory location's address.
5723 		    We can't use ADDR_TYPE (type) here, because we need to
5724 		    write back the value after reading it, hence we actually
5725 		    need two registers.  */
5726 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5727 				      &XEXP (tem, 0), opnum,
5728 				      RELOAD_OTHER,
5729 				      ind_levels, insn);
5730 
5731 		if (!rtx_equal_p (tem, orig))
5732 		  push_reg_equiv_alt_mem (regno, tem);
5733 
5734 		/* Then reload the memory location into a base
5735 		   register.  */
5736 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5737 					 &XEXP (op1, 0),
5738 					 base_reg_class (mode, as,
5739 							 code, index_code),
5740 					 GET_MODE (x), GET_MODE (x), 0,
5741 					 0, opnum, RELOAD_OTHER);
5742 
5743 		update_auto_inc_notes (this_insn, regno, reloadnum);
5744 		return 0;
5745 	      }
5746 	  }
5747 
5748 	if (reg_renumber[regno] >= 0)
5749 	  regno = reg_renumber[regno];
5750 
5751 	/* We require a base register here...  */
5752 	if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5753 	  {
5754 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5755 				     &XEXP (op1, 0), &XEXP (x, 0),
5756 				     base_reg_class (mode, as,
5757 						     code, index_code),
5758 				     GET_MODE (x), GET_MODE (x), 0, 0,
5759 				     opnum, RELOAD_OTHER);
5760 
5761 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5762 	    return 0;
5763 	  }
5764       }
5765       return 0;
5766 
5767     case POST_INC:
5768     case POST_DEC:
5769     case PRE_INC:
5770     case PRE_DEC:
5771       if (REG_P (XEXP (x, 0)))
5772 	{
5773 	  int regno = REGNO (XEXP (x, 0));
5774 	  int value = 0;
5775 	  rtx x_orig = x;
5776 
5777 	  /* A register that is incremented cannot be constant!  */
5778 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5779 		      || reg_equiv_constant (regno) == 0);
5780 
5781 	  /* Handle a register that is equivalent to a memory location
5782 	     which cannot be addressed directly.  */
5783 	  if (reg_equiv_memory_loc (regno) != 0
5784 	      && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5785 	    {
5786 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5787 	      if (reg_equiv_address (regno)
5788 		  || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5789 		{
5790 		  rtx orig = tem;
5791 
5792 		  /* First reload the memory location's address.
5793 		     We can't use ADDR_TYPE (type) here, because we need to
5794 		     write back the value after reading it, hence we actually
5795 		     need two registers.  */
5796 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5797 					&XEXP (tem, 0), opnum, type,
5798 					ind_levels, insn);
5799 		  reloaded_inner_of_autoinc = true;
5800 		  if (!rtx_equal_p (tem, orig))
5801 		    push_reg_equiv_alt_mem (regno, tem);
5802 		  /* Put this inside a new increment-expression.  */
5803 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5804 		  /* Proceed to reload that, as if it contained a register.  */
5805 		}
5806 	    }
5807 
5808 	  /* If we have a hard register that is ok in this incdec context,
5809 	     don't make a reload.  If the register isn't nice enough for
5810 	     autoincdec, we can reload it.  But, if an autoincrement of a
5811 	     register that we here verified as playing nice, still outside
5812 	     isn't "valid", it must be that no autoincrement is "valid".
5813 	     If that is true and something made an autoincrement anyway,
5814 	     this must be a special context where one is allowed.
5815 	     (For example, a "push" instruction.)
5816 	     We can't improve this address, so leave it alone.  */
5817 
5818 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5819 	     and record how much to increment by.  */
5820 
5821 	  if (reg_renumber[regno] >= 0)
5822 	    regno = reg_renumber[regno];
5823 	  if (regno >= FIRST_PSEUDO_REGISTER
5824 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5825 				      index_code))
5826 	    {
5827 	      int reloadnum;
5828 
5829 	      /* If we can output the register afterwards, do so, this
5830 		 saves the extra update.
5831 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5832 		 CALL_INSN - and it does not set CC0.
5833 		 But don't do this if we cannot directly address the
5834 		 memory location, since this will make it harder to
5835 		 reuse address reloads, and increases register pressure.
5836 		 Also don't do this if we can probably update x directly.  */
5837 	      rtx equiv = (MEM_P (XEXP (x, 0))
5838 			   ? XEXP (x, 0)
5839 			   : reg_equiv_mem (regno));
5840 	      enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5841 	      if (insn && NONJUMP_INSN_P (insn)
5842 #if HAVE_cc0
5843 		  && ! sets_cc0_p (PATTERN (insn))
5844 #endif
5845 		  && (regno < FIRST_PSEUDO_REGISTER
5846 		      || (equiv
5847 			  && memory_operand (equiv, GET_MODE (equiv))
5848 			  && ! (icode != CODE_FOR_nothing
5849 				&& insn_operand_matches (icode, 0, equiv)
5850 				&& insn_operand_matches (icode, 1, equiv))))
5851 		  /* Using RELOAD_OTHER means we emit this and the reload we
5852 		     made earlier in the wrong order.  */
5853 		  && !reloaded_inner_of_autoinc)
5854 		{
5855 		  /* We use the original pseudo for loc, so that
5856 		     emit_reload_insns() knows which pseudo this
5857 		     reload refers to and updates the pseudo rtx, not
5858 		     its equivalent memory location, as well as the
5859 		     corresponding entry in reg_last_reload_reg.  */
5860 		  loc = &XEXP (x_orig, 0);
5861 		  x = XEXP (x, 0);
5862 		  reloadnum
5863 		    = push_reload (x, x, loc, loc,
5864 				   context_reg_class,
5865 				   GET_MODE (x), GET_MODE (x), 0, 0,
5866 				   opnum, RELOAD_OTHER);
5867 		}
5868 	      else
5869 		{
5870 		  reloadnum
5871 		    = push_reload (x, x, loc, (rtx*) 0,
5872 				   context_reg_class,
5873 				   GET_MODE (x), GET_MODE (x), 0, 0,
5874 				   opnum, type);
5875 		  rld[reloadnum].inc
5876 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5877 
5878 		  value = 1;
5879 		}
5880 
5881 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5882 				     reloadnum);
5883 	    }
5884 	  return value;
5885 	}
5886       return 0;
5887 
5888     case TRUNCATE:
5889     case SIGN_EXTEND:
5890     case ZERO_EXTEND:
5891       /* Look for parts to reload in the inner expression and reload them
5892 	 too, in addition to this operation.  Reloading all inner parts in
5893 	 addition to this one shouldn't be necessary, but at this point,
5894 	 we don't know if we can possibly omit any part that *can* be
5895 	 reloaded.  Targets that are better off reloading just either part
5896 	 (or perhaps even a different part of an outer expression), should
5897 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5898       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5899 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5900 			      type, ind_levels, insn);
5901       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5902 		   context_reg_class,
5903 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5904       return 1;
5905 
5906     case MEM:
5907       /* This is probably the result of a substitution, by eliminate_regs, of
5908 	 an equivalent address for a pseudo that was not allocated to a hard
5909 	 register.  Verify that the specified address is valid and reload it
5910 	 into a register.
5911 
5912 	 Since we know we are going to reload this item, don't decrement for
5913 	 the indirection level.
5914 
5915 	 Note that this is actually conservative:  it would be slightly more
5916 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5917 	 reload1.c here.  */
5918 
5919       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5920 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5921       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5922 		   context_reg_class,
5923 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5924       return 1;
5925 
5926     case REG:
5927       {
5928 	int regno = REGNO (x);
5929 
5930 	if (reg_equiv_constant (regno) != 0)
5931 	  {
5932 	    find_reloads_address_part (reg_equiv_constant (regno), loc,
5933 				       context_reg_class,
5934 				       GET_MODE (x), opnum, type, ind_levels);
5935 	    return 1;
5936 	  }
5937 
5938 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5939 	 that feeds this insn.  */
5940 	if (reg_equiv_mem (regno) != 0)
5941 	  {
5942 	    push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5943 			 context_reg_class,
5944 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5945 	    return 1;
5946 	  }
5947 #endif
5948 
5949 	if (reg_equiv_memory_loc (regno)
5950 	    && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5951 	  {
5952 	    rtx tem = make_memloc (x, regno);
5953 	    if (reg_equiv_address (regno) != 0
5954 		|| ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5955 	      {
5956 		x = tem;
5957 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5958 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5959 				      ind_levels, insn);
5960 		if (!rtx_equal_p (x, tem))
5961 		  push_reg_equiv_alt_mem (regno, x);
5962 	      }
5963 	  }
5964 
5965 	if (reg_renumber[regno] >= 0)
5966 	  regno = reg_renumber[regno];
5967 
5968 	if (regno >= FIRST_PSEUDO_REGISTER
5969 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5970 				    index_code))
5971 	  {
5972 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5973 			 context_reg_class,
5974 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5975 	    return 1;
5976 	  }
5977 
5978 	/* If a register appearing in an address is the subject of a CLOBBER
5979 	   in this insn, reload it into some other register to be safe.
5980 	   The CLOBBER is supposed to make the register unavailable
5981 	   from before this insn to after it.  */
5982 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5983 	  {
5984 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5985 			 context_reg_class,
5986 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5987 	    return 1;
5988 	  }
5989       }
5990       return 0;
5991 
5992     case SUBREG:
5993       if (REG_P (SUBREG_REG (x)))
5994 	{
5995 	  /* If this is a SUBREG of a hard register and the resulting register
5996 	     is of the wrong class, reload the whole SUBREG.  This avoids
5997 	     needless copies if SUBREG_REG is multi-word.  */
5998 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5999 	    {
6000 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6001 
6002 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6003 				       index_code))
6004 		{
6005 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
6006 			       context_reg_class,
6007 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6008 		  return 1;
6009 		}
6010 	    }
6011 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6012 	     is larger than the class size, then reload the whole SUBREG.  */
6013 	  else
6014 	    {
6015 	      enum reg_class rclass = context_reg_class;
6016 	      if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6017 		  > reg_class_size[(int) rclass])
6018 		{
6019 		  /* If the inner register will be replaced by a memory
6020 		     reference, we can do this only if we can replace the
6021 		     whole subreg by a (narrower) memory reference.  If
6022 		     this is not possible, fall through and reload just
6023 		     the inner register (including address reloads).  */
6024 		  if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6025 		    {
6026 		      rtx tem = find_reloads_subreg_address (x, opnum,
6027 							     ADDR_TYPE (type),
6028 							     ind_levels, insn,
6029 							     NULL);
6030 		      if (tem)
6031 			{
6032 			  push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6033 				       GET_MODE (tem), VOIDmode, 0, 0,
6034 				       opnum, type);
6035 			  return 1;
6036 			}
6037 		    }
6038 		  else
6039 		    {
6040 		      push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6041 				   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6042 		      return 1;
6043 		    }
6044 		}
6045 	    }
6046 	}
6047       break;
6048 
6049     default:
6050       break;
6051     }
6052 
6053   {
6054     const char *fmt = GET_RTX_FORMAT (code);
6055     int i;
6056 
6057     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6058       {
6059 	if (fmt[i] == 'e')
6060 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6061 	     we get here.  */
6062 	  find_reloads_address_1 (mode, as, XEXP (x, i), context,
6063 				  code, SCRATCH, &XEXP (x, i),
6064 				  opnum, type, ind_levels, insn);
6065       }
6066   }
6067 
6068 #undef REG_OK_FOR_CONTEXT
6069   return 0;
6070 }
6071 
6072 /* X, which is found at *LOC, is a part of an address that needs to be
6073    reloaded into a register of class RCLASS.  If X is a constant, or if
6074    X is a PLUS that contains a constant, check that the constant is a
6075    legitimate operand and that we are supposed to be able to load
6076    it into the register.
6077 
6078    If not, force the constant into memory and reload the MEM instead.
6079 
6080    MODE is the mode to use, in case X is an integer constant.
6081 
6082    OPNUM and TYPE describe the purpose of any reloads made.
6083 
6084    IND_LEVELS says how many levels of indirect addressing this machine
6085    supports.  */
6086 
6087 static void
6088 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6089 			   machine_mode mode, int opnum,
6090 			   enum reload_type type, int ind_levels)
6091 {
6092   if (CONSTANT_P (x)
6093       && (!targetm.legitimate_constant_p (mode, x)
6094 	  || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6095     {
6096       x = force_const_mem (mode, x);
6097       find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6098 			    opnum, type, ind_levels, 0);
6099     }
6100 
6101   else if (GET_CODE (x) == PLUS
6102 	   && CONSTANT_P (XEXP (x, 1))
6103 	   && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6104 	       || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6105 		   == NO_REGS))
6106     {
6107       rtx tem;
6108 
6109       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6110       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6111       find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6112 			    opnum, type, ind_levels, 0);
6113     }
6114 
6115   push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6116 	       mode, VOIDmode, 0, 0, opnum, type);
6117 }
6118 
6119 /* X, a subreg of a pseudo, is a part of an address that needs to be
6120    reloaded, and the pseusdo is equivalent to a memory location.
6121 
6122    Attempt to replace the whole subreg by a (possibly narrower or wider)
6123    memory reference.  If this is possible, return this new memory
6124    reference, and push all required address reloads.  Otherwise,
6125    return NULL.
6126 
6127    OPNUM and TYPE identify the purpose of the reload.
6128 
6129    IND_LEVELS says how many levels of indirect addressing are
6130    supported at this point in the address.
6131 
6132    INSN, if nonzero, is the insn in which we do the reload.  It is used
6133    to determine where to put USEs for pseudos that we have to replace with
6134    stack slots.  */
6135 
6136 static rtx
6137 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6138 			     int ind_levels, rtx_insn *insn,
6139 			     int *address_reloaded)
6140 {
6141   machine_mode outer_mode = GET_MODE (x);
6142   machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6143   int regno = REGNO (SUBREG_REG (x));
6144   int reloaded = 0;
6145   rtx tem, orig;
6146   poly_int64 offset;
6147 
6148   gcc_assert (reg_equiv_memory_loc (regno) != 0);
6149 
6150   /* We cannot replace the subreg with a modified memory reference if:
6151 
6152      - we have a paradoxical subreg that implicitly acts as a zero or
6153        sign extension operation due to LOAD_EXTEND_OP;
6154 
6155      - we have a subreg that is implicitly supposed to act on the full
6156        register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6157 
6158      - the address of the equivalent memory location is mode-dependent;  or
6159 
6160      - we have a paradoxical subreg and the resulting memory is not
6161        sufficiently aligned to allow access in the wider mode.
6162 
6163     In addition, we choose not to perform the replacement for *any*
6164     paradoxical subreg, even if it were possible in principle.  This
6165     is to avoid generating wider memory references than necessary.
6166 
6167     This corresponds to how previous versions of reload used to handle
6168     paradoxical subregs where no address reload was required.  */
6169 
6170   if (paradoxical_subreg_p (x))
6171     return NULL;
6172 
6173   if (WORD_REGISTER_OPERATIONS
6174       && partial_subreg_p (outer_mode, inner_mode)
6175       && known_equal_after_align_down (GET_MODE_SIZE (outer_mode) - 1,
6176 				       GET_MODE_SIZE (inner_mode) - 1,
6177 				       UNITS_PER_WORD))
6178     return NULL;
6179 
6180   /* Since we don't attempt to handle paradoxical subregs, we can just
6181      call into simplify_subreg, which will handle all remaining checks
6182      for us.  */
6183   orig = make_memloc (SUBREG_REG (x), regno);
6184   offset = SUBREG_BYTE (x);
6185   tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6186   if (!tem || !MEM_P (tem))
6187     return NULL;
6188 
6189   /* Now push all required address reloads, if any.  */
6190   reloaded = find_reloads_address (GET_MODE (tem), &tem,
6191 				   XEXP (tem, 0), &XEXP (tem, 0),
6192 				   opnum, type, ind_levels, insn);
6193   /* ??? Do we need to handle nonzero offsets somehow?  */
6194   if (known_eq (offset, 0) && !rtx_equal_p (tem, orig))
6195     push_reg_equiv_alt_mem (regno, tem);
6196 
6197   /* For some processors an address may be valid in the original mode but
6198      not in a smaller mode.  For example, ARM accepts a scaled index register
6199      in SImode but not in HImode.  Note that this is only a problem if the
6200      address in reg_equiv_mem is already invalid in the new mode; other
6201      cases would be fixed by find_reloads_address as usual.
6202 
6203      ??? We attempt to handle such cases here by doing an additional reload
6204      of the full address after the usual processing by find_reloads_address.
6205      Note that this may not work in the general case, but it seems to cover
6206      the cases where this situation currently occurs.  A more general fix
6207      might be to reload the *value* instead of the address, but this would
6208      not be expected by the callers of this routine as-is.
6209 
6210      If find_reloads_address already completed replaced the address, there
6211      is nothing further to do.  */
6212   if (reloaded == 0
6213       && reg_equiv_mem (regno) != 0
6214       && !strict_memory_address_addr_space_p
6215 		(GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6216 		 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6217     {
6218       push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6219 		   base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6220 				   MEM, SCRATCH),
6221 		   GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6222       reloaded = 1;
6223     }
6224 
6225   /* If this is not a toplevel operand, find_reloads doesn't see this
6226      substitution.  We have to emit a USE of the pseudo so that
6227      delete_output_reload can see it.  */
6228   if (replace_reloads && recog_data.operand[opnum] != x)
6229     /* We mark the USE with QImode so that we recognize it as one that
6230        can be safely deleted at the end of reload.  */
6231     PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6232 	      QImode);
6233 
6234   if (address_reloaded)
6235     *address_reloaded = reloaded;
6236 
6237   return tem;
6238 }
6239 
6240 /* Substitute into the current INSN the registers into which we have reloaded
6241    the things that need reloading.  The array `replacements'
6242    contains the locations of all pointers that must be changed
6243    and says what to replace them with.
6244 
6245    Return the rtx that X translates into; usually X, but modified.  */
6246 
6247 void
6248 subst_reloads (rtx_insn *insn)
6249 {
6250   int i;
6251 
6252   for (i = 0; i < n_replacements; i++)
6253     {
6254       struct replacement *r = &replacements[i];
6255       rtx reloadreg = rld[r->what].reg_rtx;
6256       if (reloadreg)
6257 	{
6258 #ifdef DEBUG_RELOAD
6259 	  /* This checking takes a very long time on some platforms
6260 	     causing the gcc.c-torture/compile/limits-fnargs.c test
6261 	     to time out during testing.  See PR 31850.
6262 
6263 	     Internal consistency test.  Check that we don't modify
6264 	     anything in the equivalence arrays.  Whenever something from
6265 	     those arrays needs to be reloaded, it must be unshared before
6266 	     being substituted into; the equivalence must not be modified.
6267 	     Otherwise, if the equivalence is used after that, it will
6268 	     have been modified, and the thing substituted (probably a
6269 	     register) is likely overwritten and not a usable equivalence.  */
6270 	  int check_regno;
6271 
6272 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6273 	    {
6274 #define CHECK_MODF(ARRAY)						\
6275 	      gcc_assert (!(*reg_equivs)[check_regno].ARRAY		\
6276 			  || !loc_mentioned_in_p (r->where,		\
6277 						  (*reg_equivs)[check_regno].ARRAY))
6278 
6279 	      CHECK_MODF (constant);
6280 	      CHECK_MODF (memory_loc);
6281 	      CHECK_MODF (address);
6282 	      CHECK_MODF (mem);
6283 #undef CHECK_MODF
6284 	    }
6285 #endif /* DEBUG_RELOAD */
6286 
6287 	  /* If we're replacing a LABEL_REF with a register, there must
6288 	     already be an indication (to e.g. flow) which label this
6289 	     register refers to.  */
6290 	  gcc_assert (GET_CODE (*r->where) != LABEL_REF
6291 		      || !JUMP_P (insn)
6292 		      || find_reg_note (insn,
6293 					REG_LABEL_OPERAND,
6294 					XEXP (*r->where, 0))
6295 		      || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6296 
6297 	  /* Encapsulate RELOADREG so its machine mode matches what
6298 	     used to be there.  Note that gen_lowpart_common will
6299 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6300 	     will always be a REG here.  */
6301 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6302 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6303 
6304 	  *r->where = reloadreg;
6305 	}
6306       /* If reload got no reg and isn't optional, something's wrong.  */
6307       else
6308 	gcc_assert (rld[r->what].optional);
6309     }
6310 }
6311 
6312 /* Make a copy of any replacements being done into X and move those
6313    copies to locations in Y, a copy of X.  */
6314 
6315 void
6316 copy_replacements (rtx x, rtx y)
6317 {
6318   copy_replacements_1 (&x, &y, n_replacements);
6319 }
6320 
6321 static void
6322 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6323 {
6324   int i, j;
6325   rtx x, y;
6326   struct replacement *r;
6327   enum rtx_code code;
6328   const char *fmt;
6329 
6330   for (j = 0; j < orig_replacements; j++)
6331     if (replacements[j].where == px)
6332       {
6333 	r = &replacements[n_replacements++];
6334 	r->where = py;
6335 	r->what = replacements[j].what;
6336 	r->mode = replacements[j].mode;
6337       }
6338 
6339   x = *px;
6340   y = *py;
6341   code = GET_CODE (x);
6342   fmt = GET_RTX_FORMAT (code);
6343 
6344   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6345     {
6346       if (fmt[i] == 'e')
6347 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6348       else if (fmt[i] == 'E')
6349 	for (j = XVECLEN (x, i); --j >= 0; )
6350 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6351 			       orig_replacements);
6352     }
6353 }
6354 
6355 /* Change any replacements being done to *X to be done to *Y.  */
6356 
6357 void
6358 move_replacements (rtx *x, rtx *y)
6359 {
6360   int i;
6361 
6362   for (i = 0; i < n_replacements; i++)
6363     if (replacements[i].where == x)
6364       replacements[i].where = y;
6365 }
6366 
6367 /* If LOC was scheduled to be replaced by something, return the replacement.
6368    Otherwise, return *LOC.  */
6369 
6370 rtx
6371 find_replacement (rtx *loc)
6372 {
6373   struct replacement *r;
6374 
6375   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6376     {
6377       rtx reloadreg = rld[r->what].reg_rtx;
6378 
6379       if (reloadreg && r->where == loc)
6380 	{
6381 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6382 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6383 
6384 	  return reloadreg;
6385 	}
6386       else if (reloadreg && GET_CODE (*loc) == SUBREG
6387 	       && r->where == &SUBREG_REG (*loc))
6388 	{
6389 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6390 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6391 
6392 	  return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6393 				      GET_MODE (SUBREG_REG (*loc)),
6394 				      SUBREG_BYTE (*loc));
6395 	}
6396     }
6397 
6398   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6399      what's inside and make a new rtl if so.  */
6400   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6401       || GET_CODE (*loc) == MULT)
6402     {
6403       rtx x = find_replacement (&XEXP (*loc, 0));
6404       rtx y = find_replacement (&XEXP (*loc, 1));
6405 
6406       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6407 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6408     }
6409 
6410   return *loc;
6411 }
6412 
6413 /* Return nonzero if register in range [REGNO, ENDREGNO)
6414    appears either explicitly or implicitly in X
6415    other than being stored into (except for earlyclobber operands).
6416 
6417    References contained within the substructure at LOC do not count.
6418    LOC may be zero, meaning don't ignore anything.
6419 
6420    This is similar to refers_to_regno_p in rtlanal.c except that we
6421    look at equivalences for pseudos that didn't get hard registers.  */
6422 
6423 static int
6424 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6425 			      rtx x, rtx *loc)
6426 {
6427   int i;
6428   unsigned int r;
6429   RTX_CODE code;
6430   const char *fmt;
6431 
6432   if (x == 0)
6433     return 0;
6434 
6435  repeat:
6436   code = GET_CODE (x);
6437 
6438   switch (code)
6439     {
6440     case REG:
6441       r = REGNO (x);
6442 
6443       /* If this is a pseudo, a hard register must not have been allocated.
6444 	 X must therefore either be a constant or be in memory.  */
6445       if (r >= FIRST_PSEUDO_REGISTER)
6446 	{
6447 	  if (reg_equiv_memory_loc (r))
6448 	    return refers_to_regno_for_reload_p (regno, endregno,
6449 						 reg_equiv_memory_loc (r),
6450 						 (rtx*) 0);
6451 
6452 	  gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6453 	  return 0;
6454 	}
6455 
6456       return endregno > r && regno < END_REGNO (x);
6457 
6458     case SUBREG:
6459       /* If this is a SUBREG of a hard reg, we can see exactly which
6460 	 registers are being modified.  Otherwise, handle normally.  */
6461       if (REG_P (SUBREG_REG (x))
6462 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6463 	{
6464 	  unsigned int inner_regno = subreg_regno (x);
6465 	  unsigned int inner_endregno
6466 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6467 			     ? subreg_nregs (x) : 1);
6468 
6469 	  return endregno > inner_regno && regno < inner_endregno;
6470 	}
6471       break;
6472 
6473     case CLOBBER:
6474     case SET:
6475       if (&SET_DEST (x) != loc
6476 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6477 	     a pseudo but not for hard registers since we can
6478 	     treat each word individually.  */
6479 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6480 	       && loc != &SUBREG_REG (SET_DEST (x))
6481 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6482 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6483 	       && refers_to_regno_for_reload_p (regno, endregno,
6484 						SUBREG_REG (SET_DEST (x)),
6485 						loc))
6486 	      /* If the output is an earlyclobber operand, this is
6487 		 a conflict.  */
6488 	      || ((!REG_P (SET_DEST (x))
6489 		   || earlyclobber_operand_p (SET_DEST (x)))
6490 		  && refers_to_regno_for_reload_p (regno, endregno,
6491 						   SET_DEST (x), loc))))
6492 	return 1;
6493 
6494       if (code == CLOBBER || loc == &SET_SRC (x))
6495 	return 0;
6496       x = SET_SRC (x);
6497       goto repeat;
6498 
6499     default:
6500       break;
6501     }
6502 
6503   /* X does not match, so try its subexpressions.  */
6504 
6505   fmt = GET_RTX_FORMAT (code);
6506   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6507     {
6508       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6509 	{
6510 	  if (i == 0)
6511 	    {
6512 	      x = XEXP (x, 0);
6513 	      goto repeat;
6514 	    }
6515 	  else
6516 	    if (refers_to_regno_for_reload_p (regno, endregno,
6517 					      XEXP (x, i), loc))
6518 	      return 1;
6519 	}
6520       else if (fmt[i] == 'E')
6521 	{
6522 	  int j;
6523 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6524 	    if (loc != &XVECEXP (x, i, j)
6525 		&& refers_to_regno_for_reload_p (regno, endregno,
6526 						 XVECEXP (x, i, j), loc))
6527 	      return 1;
6528 	}
6529     }
6530   return 0;
6531 }
6532 
6533 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6534    we check if any register number in X conflicts with the relevant register
6535    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6536    contains a MEM (we don't bother checking for memory addresses that can't
6537    conflict because we expect this to be a rare case.
6538 
6539    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6540    that we look at equivalences for pseudos that didn't get hard registers.  */
6541 
6542 int
6543 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6544 {
6545   int regno, endregno;
6546 
6547   /* Overly conservative.  */
6548   if (GET_CODE (x) == STRICT_LOW_PART
6549       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6550     x = XEXP (x, 0);
6551 
6552   /* If either argument is a constant, then modifying X cannot affect IN.  */
6553   if (CONSTANT_P (x) || CONSTANT_P (in))
6554     return 0;
6555   else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6556     return refers_to_mem_for_reload_p (in);
6557   else if (GET_CODE (x) == SUBREG)
6558     {
6559       regno = REGNO (SUBREG_REG (x));
6560       if (regno < FIRST_PSEUDO_REGISTER)
6561 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6562 				      GET_MODE (SUBREG_REG (x)),
6563 				      SUBREG_BYTE (x),
6564 				      GET_MODE (x));
6565       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6566 			  ? subreg_nregs (x) : 1);
6567 
6568       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6569     }
6570   else if (REG_P (x))
6571     {
6572       regno = REGNO (x);
6573 
6574       /* If this is a pseudo, it must not have been assigned a hard register.
6575 	 Therefore, it must either be in memory or be a constant.  */
6576 
6577       if (regno >= FIRST_PSEUDO_REGISTER)
6578 	{
6579 	  if (reg_equiv_memory_loc (regno))
6580 	    return refers_to_mem_for_reload_p (in);
6581 	  gcc_assert (reg_equiv_constant (regno));
6582 	  return 0;
6583 	}
6584 
6585       endregno = END_REGNO (x);
6586 
6587       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6588     }
6589   else if (MEM_P (x))
6590     return refers_to_mem_for_reload_p (in);
6591   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6592 	   || GET_CODE (x) == CC0)
6593     return reg_mentioned_p (x, in);
6594   else
6595     {
6596       gcc_assert (GET_CODE (x) == PLUS);
6597 
6598       /* We actually want to know if X is mentioned somewhere inside IN.
6599 	 We must not say that (plus (sp) (const_int 124)) is in
6600 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6601 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6602 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6603       while (MEM_P (in))
6604 	in = XEXP (in, 0);
6605       if (REG_P (in))
6606 	return 0;
6607       else if (GET_CODE (in) == PLUS)
6608 	return (rtx_equal_p (x, in)
6609 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6610 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6611       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6612 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6613     }
6614 
6615   gcc_unreachable ();
6616 }
6617 
6618 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6619    registers.  */
6620 
6621 static int
6622 refers_to_mem_for_reload_p (rtx x)
6623 {
6624   const char *fmt;
6625   int i;
6626 
6627   if (MEM_P (x))
6628     return 1;
6629 
6630   if (REG_P (x))
6631     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6632 	    && reg_equiv_memory_loc (REGNO (x)));
6633 
6634   fmt = GET_RTX_FORMAT (GET_CODE (x));
6635   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6636     if (fmt[i] == 'e'
6637 	&& (MEM_P (XEXP (x, i))
6638 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6639       return 1;
6640 
6641   return 0;
6642 }
6643 
6644 /* Check the insns before INSN to see if there is a suitable register
6645    containing the same value as GOAL.
6646    If OTHER is -1, look for a register in class RCLASS.
6647    Otherwise, just see if register number OTHER shares GOAL's value.
6648 
6649    Return an rtx for the register found, or zero if none is found.
6650 
6651    If RELOAD_REG_P is (short *)1,
6652    we reject any hard reg that appears in reload_reg_rtx
6653    because such a hard reg is also needed coming into this insn.
6654 
6655    If RELOAD_REG_P is any other nonzero value,
6656    it is a vector indexed by hard reg number
6657    and we reject any hard reg whose element in the vector is nonnegative
6658    as well as any that appears in reload_reg_rtx.
6659 
6660    If GOAL is zero, then GOALREG is a register number; we look
6661    for an equivalent for that register.
6662 
6663    MODE is the machine mode of the value we want an equivalence for.
6664    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6665 
6666    This function is used by jump.c as well as in the reload pass.
6667 
6668    If GOAL is the sum of the stack pointer and a constant, we treat it
6669    as if it were a constant except that sp is required to be unchanging.  */
6670 
6671 rtx
6672 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6673 		short *reload_reg_p, int goalreg, machine_mode mode)
6674 {
6675   rtx_insn *p = insn;
6676   rtx goaltry, valtry, value;
6677   rtx_insn *where;
6678   rtx pat;
6679   int regno = -1;
6680   int valueno;
6681   int goal_mem = 0;
6682   int goal_const = 0;
6683   int goal_mem_addr_varies = 0;
6684   int need_stable_sp = 0;
6685   int nregs;
6686   int valuenregs;
6687   int num = 0;
6688 
6689   if (goal == 0)
6690     regno = goalreg;
6691   else if (REG_P (goal))
6692     regno = REGNO (goal);
6693   else if (MEM_P (goal))
6694     {
6695       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6696       if (MEM_VOLATILE_P (goal))
6697 	return 0;
6698       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6699 	return 0;
6700       /* An address with side effects must be reexecuted.  */
6701       switch (code)
6702 	{
6703 	case POST_INC:
6704 	case PRE_INC:
6705 	case POST_DEC:
6706 	case PRE_DEC:
6707 	case POST_MODIFY:
6708 	case PRE_MODIFY:
6709 	  return 0;
6710 	default:
6711 	  break;
6712 	}
6713       goal_mem = 1;
6714     }
6715   else if (CONSTANT_P (goal))
6716     goal_const = 1;
6717   else if (GET_CODE (goal) == PLUS
6718 	   && XEXP (goal, 0) == stack_pointer_rtx
6719 	   && CONSTANT_P (XEXP (goal, 1)))
6720     goal_const = need_stable_sp = 1;
6721   else if (GET_CODE (goal) == PLUS
6722 	   && XEXP (goal, 0) == frame_pointer_rtx
6723 	   && CONSTANT_P (XEXP (goal, 1)))
6724     goal_const = 1;
6725   else
6726     return 0;
6727 
6728   num = 0;
6729   /* Scan insns back from INSN, looking for one that copies
6730      a value into or out of GOAL.
6731      Stop and give up if we reach a label.  */
6732 
6733   while (1)
6734     {
6735       p = PREV_INSN (p);
6736       if (p && DEBUG_INSN_P (p))
6737 	continue;
6738       num++;
6739       if (p == 0 || LABEL_P (p)
6740 	  || num > param_max_reload_search_insns)
6741 	return 0;
6742 
6743       /* Don't reuse register contents from before a setjmp-type
6744 	 function call; on the second return (from the longjmp) it
6745 	 might have been clobbered by a later reuse.  It doesn't
6746 	 seem worthwhile to actually go and see if it is actually
6747 	 reused even if that information would be readily available;
6748 	 just don't reuse it across the setjmp call.  */
6749       if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6750 	return 0;
6751 
6752       if (NONJUMP_INSN_P (p)
6753 	  /* If we don't want spill regs ...  */
6754 	  && (! (reload_reg_p != 0
6755 		 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6756 	      /* ... then ignore insns introduced by reload; they aren't
6757 		 useful and can cause results in reload_as_needed to be
6758 		 different from what they were when calculating the need for
6759 		 spills.  If we notice an input-reload insn here, we will
6760 		 reject it below, but it might hide a usable equivalent.
6761 		 That makes bad code.  It may even fail: perhaps no reg was
6762 		 spilled for this insn because it was assumed we would find
6763 		 that equivalent.  */
6764 	      || INSN_UID (p) < reload_first_uid))
6765 	{
6766 	  rtx tem;
6767 	  pat = single_set (p);
6768 
6769 	  /* First check for something that sets some reg equal to GOAL.  */
6770 	  if (pat != 0
6771 	      && ((regno >= 0
6772 		   && true_regnum (SET_SRC (pat)) == regno
6773 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6774 		  ||
6775 		  (regno >= 0
6776 		   && true_regnum (SET_DEST (pat)) == regno
6777 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6778 		  ||
6779 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6780 		   /* When looking for stack pointer + const,
6781 		      make sure we don't use a stack adjust.  */
6782 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6783 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6784 		  || (goal_mem
6785 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6786 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6787 		  || (goal_mem
6788 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6789 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6790 		  /* If we are looking for a constant,
6791 		     and something equivalent to that constant was copied
6792 		     into a reg, we can use that reg.  */
6793 		  || (goal_const && REG_NOTES (p) != 0
6794 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6795 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6796 			   && (valueno
6797 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6798 			  || (REG_P (SET_DEST (pat))
6799 			      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6800 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6801 			      && CONST_INT_P (goal)
6802 			      && (goaltry = operand_subword (XEXP (tem, 0), 0,
6803 							     0, VOIDmode)) != 0
6804 			      && rtx_equal_p (goal, goaltry)
6805 			      && (valtry
6806 				  = operand_subword (SET_DEST (pat), 0, 0,
6807 						     VOIDmode))
6808 			      && (valueno = true_regnum (valtry)) >= 0)))
6809 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6810 							  NULL_RTX))
6811 		      && REG_P (SET_DEST (pat))
6812 		      && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6813 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6814 		      && CONST_INT_P (goal)
6815 		      && (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6816 						     VOIDmode)) != 0
6817 		      && rtx_equal_p (goal, goaltry)
6818 		      && (valtry
6819 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6820 		      && (valueno = true_regnum (valtry)) >= 0)))
6821 	    {
6822 	      if (other >= 0)
6823 		{
6824 		  if (valueno != other)
6825 		    continue;
6826 		}
6827 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6828 		continue;
6829 	      else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6830 					  mode, valueno))
6831 		continue;
6832 	      value = valtry;
6833 	      where = p;
6834 	      break;
6835 	    }
6836 	}
6837     }
6838 
6839   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6840      (or copying VALUE into GOAL, if GOAL is also a register).
6841      Now verify that VALUE is really valid.  */
6842 
6843   /* VALUENO is the register number of VALUE; a hard register.  */
6844 
6845   /* Don't try to re-use something that is killed in this insn.  We want
6846      to be able to trust REG_UNUSED notes.  */
6847   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6848     return 0;
6849 
6850   /* If we propose to get the value from the stack pointer or if GOAL is
6851      a MEM based on the stack pointer, we need a stable SP.  */
6852   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6853       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6854 							  goal)))
6855     need_stable_sp = 1;
6856 
6857   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6858   if (GET_MODE (value) != mode)
6859     return 0;
6860 
6861   /* Reject VALUE if it was loaded from GOAL
6862      and is also a register that appears in the address of GOAL.  */
6863 
6864   if (goal_mem && value == SET_DEST (single_set (where))
6865       && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6866 				       goal, (rtx*) 0))
6867     return 0;
6868 
6869   /* Reject registers that overlap GOAL.  */
6870 
6871   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6872     nregs = hard_regno_nregs (regno, mode);
6873   else
6874     nregs = 1;
6875   valuenregs = hard_regno_nregs (valueno, mode);
6876 
6877   if (!goal_mem && !goal_const
6878       && regno + nregs > valueno && regno < valueno + valuenregs)
6879     return 0;
6880 
6881   /* Reject VALUE if it is one of the regs reserved for reloads.
6882      Reload1 knows how to reuse them anyway, and it would get
6883      confused if we allocated one without its knowledge.
6884      (Now that insns introduced by reload are ignored above,
6885      this case shouldn't happen, but I'm not positive.)  */
6886 
6887   if (reload_reg_p != 0 && reload_reg_p != (short *) HOST_WIDE_INT_1)
6888     {
6889       int i;
6890       for (i = 0; i < valuenregs; ++i)
6891 	if (reload_reg_p[valueno + i] >= 0)
6892 	  return 0;
6893     }
6894 
6895   /* Reject VALUE if it is a register being used for an input reload
6896      even if it is not one of those reserved.  */
6897 
6898   if (reload_reg_p != 0)
6899     {
6900       int i;
6901       for (i = 0; i < n_reloads; i++)
6902 	if (rld[i].reg_rtx != 0
6903 	    && rld[i].in
6904 	    && (int) REGNO (rld[i].reg_rtx) < valueno + valuenregs
6905 	    && (int) END_REGNO (rld[i].reg_rtx) > valueno)
6906 	  return 0;
6907     }
6908 
6909   if (goal_mem)
6910     /* We must treat frame pointer as varying here,
6911        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6912     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6913 
6914   /* Now verify that the values of GOAL and VALUE remain unaltered
6915      until INSN is reached.  */
6916 
6917   p = insn;
6918   while (1)
6919     {
6920       p = PREV_INSN (p);
6921       if (p == where)
6922 	return value;
6923 
6924       /* Don't trust the conversion past a function call
6925 	 if either of the two is in a call-clobbered register, or memory.  */
6926       if (CALL_P (p))
6927 	{
6928 	  if (goal_mem || need_stable_sp)
6929 	    return 0;
6930 
6931 	  function_abi callee_abi = insn_callee_abi (p);
6932 	  if (regno >= 0
6933 	      && regno < FIRST_PSEUDO_REGISTER
6934 	      && callee_abi.clobbers_reg_p (mode, regno))
6935 	    return 0;
6936 
6937 	  if (valueno >= 0
6938 	      && valueno < FIRST_PSEUDO_REGISTER
6939 	      && callee_abi.clobbers_reg_p (mode, valueno))
6940 	    return 0;
6941 	}
6942 
6943       if (INSN_P (p))
6944 	{
6945 	  pat = PATTERN (p);
6946 
6947 	  /* Watch out for unspec_volatile, and volatile asms.  */
6948 	  if (volatile_insn_p (pat))
6949 	    return 0;
6950 
6951 	  /* If this insn P stores in either GOAL or VALUE, return 0.
6952 	     If GOAL is a memory ref and this insn writes memory, return 0.
6953 	     If GOAL is a memory ref and its address is not constant,
6954 	     and this insn P changes a register used in GOAL, return 0.  */
6955 
6956 	  if (GET_CODE (pat) == COND_EXEC)
6957 	    pat = COND_EXEC_CODE (pat);
6958 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6959 	    {
6960 	      rtx dest = SET_DEST (pat);
6961 	      while (GET_CODE (dest) == SUBREG
6962 		     || GET_CODE (dest) == ZERO_EXTRACT
6963 		     || GET_CODE (dest) == STRICT_LOW_PART)
6964 		dest = XEXP (dest, 0);
6965 	      if (REG_P (dest))
6966 		{
6967 		  int xregno = REGNO (dest);
6968 		  int end_xregno = END_REGNO (dest);
6969 		  if (xregno < regno + nregs && end_xregno > regno)
6970 		    return 0;
6971 		  if (xregno < valueno + valuenregs
6972 		      && end_xregno > valueno)
6973 		    return 0;
6974 		  if (goal_mem_addr_varies
6975 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
6976 		    return 0;
6977 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6978 		    return 0;
6979 		}
6980 	      else if (goal_mem && MEM_P (dest)
6981 		       && ! push_operand (dest, GET_MODE (dest)))
6982 		return 0;
6983 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6984 		       && reg_equiv_memory_loc (regno) != 0)
6985 		return 0;
6986 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6987 		return 0;
6988 	    }
6989 	  else if (GET_CODE (pat) == PARALLEL)
6990 	    {
6991 	      int i;
6992 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6993 		{
6994 		  rtx v1 = XVECEXP (pat, 0, i);
6995 		  if (GET_CODE (v1) == COND_EXEC)
6996 		    v1 = COND_EXEC_CODE (v1);
6997 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6998 		    {
6999 		      rtx dest = SET_DEST (v1);
7000 		      while (GET_CODE (dest) == SUBREG
7001 			     || GET_CODE (dest) == ZERO_EXTRACT
7002 			     || GET_CODE (dest) == STRICT_LOW_PART)
7003 			dest = XEXP (dest, 0);
7004 		      if (REG_P (dest))
7005 			{
7006 			  int xregno = REGNO (dest);
7007 			  int end_xregno = END_REGNO (dest);
7008 			  if (xregno < regno + nregs
7009 			      && end_xregno > regno)
7010 			    return 0;
7011 			  if (xregno < valueno + valuenregs
7012 			      && end_xregno > valueno)
7013 			    return 0;
7014 			  if (goal_mem_addr_varies
7015 			      && reg_overlap_mentioned_for_reload_p (dest,
7016 								     goal))
7017 			    return 0;
7018 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7019 			    return 0;
7020 			}
7021 		      else if (goal_mem && MEM_P (dest)
7022 			       && ! push_operand (dest, GET_MODE (dest)))
7023 			return 0;
7024 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7025 			       && reg_equiv_memory_loc (regno) != 0)
7026 			return 0;
7027 		      else if (need_stable_sp
7028 			       && push_operand (dest, GET_MODE (dest)))
7029 			return 0;
7030 		    }
7031 		}
7032 	    }
7033 
7034 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7035 	    {
7036 	      rtx link;
7037 
7038 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7039 		   link = XEXP (link, 1))
7040 		{
7041 		  pat = XEXP (link, 0);
7042 		  if (GET_CODE (pat) == CLOBBER)
7043 		    {
7044 		      rtx dest = SET_DEST (pat);
7045 
7046 		      if (REG_P (dest))
7047 			{
7048 			  int xregno = REGNO (dest);
7049 			  int end_xregno = END_REGNO (dest);
7050 
7051 			  if (xregno < regno + nregs
7052 			      && end_xregno > regno)
7053 			    return 0;
7054 			  else if (xregno < valueno + valuenregs
7055 				   && end_xregno > valueno)
7056 			    return 0;
7057 			  else if (goal_mem_addr_varies
7058 				   && reg_overlap_mentioned_for_reload_p (dest,
7059 								     goal))
7060 			    return 0;
7061 			}
7062 
7063 		      else if (goal_mem && MEM_P (dest)
7064 			       && ! push_operand (dest, GET_MODE (dest)))
7065 			return 0;
7066 		      else if (need_stable_sp
7067 			       && push_operand (dest, GET_MODE (dest)))
7068 			return 0;
7069 		    }
7070 		}
7071 	    }
7072 
7073 #if AUTO_INC_DEC
7074 	  /* If this insn auto-increments or auto-decrements
7075 	     either regno or valueno, return 0 now.
7076 	     If GOAL is a memory ref and its address is not constant,
7077 	     and this insn P increments a register used in GOAL, return 0.  */
7078 	  {
7079 	    rtx link;
7080 
7081 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7082 	      if (REG_NOTE_KIND (link) == REG_INC
7083 		  && REG_P (XEXP (link, 0)))
7084 		{
7085 		  int incno = REGNO (XEXP (link, 0));
7086 		  if (incno < regno + nregs && incno >= regno)
7087 		    return 0;
7088 		  if (incno < valueno + valuenregs && incno >= valueno)
7089 		    return 0;
7090 		  if (goal_mem_addr_varies
7091 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7092 							     goal))
7093 		    return 0;
7094 		}
7095 	  }
7096 #endif
7097 	}
7098     }
7099 }
7100 
7101 /* Find a place where INCED appears in an increment or decrement operator
7102    within X, and return the amount INCED is incremented or decremented by.
7103    The value is always positive.  */
7104 
7105 static poly_int64
7106 find_inc_amount (rtx x, rtx inced)
7107 {
7108   enum rtx_code code = GET_CODE (x);
7109   const char *fmt;
7110   int i;
7111 
7112   if (code == MEM)
7113     {
7114       rtx addr = XEXP (x, 0);
7115       if ((GET_CODE (addr) == PRE_DEC
7116 	   || GET_CODE (addr) == POST_DEC
7117 	   || GET_CODE (addr) == PRE_INC
7118 	   || GET_CODE (addr) == POST_INC)
7119 	  && XEXP (addr, 0) == inced)
7120 	return GET_MODE_SIZE (GET_MODE (x));
7121       else if ((GET_CODE (addr) == PRE_MODIFY
7122 		|| GET_CODE (addr) == POST_MODIFY)
7123 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7124 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7125 	       && XEXP (addr, 0) == inced
7126 	       && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7127 	{
7128 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7129 	  return i < 0 ? -i : i;
7130 	}
7131     }
7132 
7133   fmt = GET_RTX_FORMAT (code);
7134   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7135     {
7136       if (fmt[i] == 'e')
7137 	{
7138 	  poly_int64 tem = find_inc_amount (XEXP (x, i), inced);
7139 	  if (maybe_ne (tem, 0))
7140 	    return tem;
7141 	}
7142       if (fmt[i] == 'E')
7143 	{
7144 	  int j;
7145 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7146 	    {
7147 	      poly_int64 tem = find_inc_amount (XVECEXP (x, i, j), inced);
7148 	      if (maybe_ne (tem, 0))
7149 		return tem;
7150 	    }
7151 	}
7152     }
7153 
7154   return 0;
7155 }
7156 
7157 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7158    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7159 
7160 static int
7161 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7162 			   rtx insn)
7163 {
7164   rtx link;
7165 
7166   if (!AUTO_INC_DEC)
7167     return 0;
7168 
7169   gcc_assert (insn);
7170 
7171   if (! INSN_P (insn))
7172     return 0;
7173 
7174   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7175     if (REG_NOTE_KIND (link) == REG_INC)
7176       {
7177 	unsigned int test = (int) REGNO (XEXP (link, 0));
7178 	if (test >= regno && test < endregno)
7179 	  return 1;
7180       }
7181   return 0;
7182 }
7183 
7184 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7185    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7186    REG_INC.  REGNO must refer to a hard register.  */
7187 
7188 int
7189 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7190 		   int sets)
7191 {
7192   /* regno must be a hard register.  */
7193   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7194 
7195   unsigned int endregno = end_hard_regno (mode, regno);
7196 
7197   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7198        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7199       && REG_P (XEXP (PATTERN (insn), 0)))
7200     {
7201       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7202 
7203       return test >= regno && test < endregno;
7204     }
7205 
7206   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7207     return 1;
7208 
7209   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7210     {
7211       int i = XVECLEN (PATTERN (insn), 0) - 1;
7212 
7213       for (; i >= 0; i--)
7214 	{
7215 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7216 	  if ((GET_CODE (elt) == CLOBBER
7217 	       || (sets == 1 && GET_CODE (elt) == SET))
7218 	      && REG_P (XEXP (elt, 0)))
7219 	    {
7220 	      unsigned int test = REGNO (XEXP (elt, 0));
7221 
7222 	      if (test >= regno && test < endregno)
7223 		return 1;
7224 	    }
7225 	  if (sets == 2
7226 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7227 	    return 1;
7228 	}
7229     }
7230 
7231   return 0;
7232 }
7233 
7234 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7235 rtx
7236 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7237 {
7238   int regno;
7239 
7240   if (GET_MODE (reloadreg) == mode)
7241     return reloadreg;
7242 
7243   regno = REGNO (reloadreg);
7244 
7245   if (REG_WORDS_BIG_ENDIAN)
7246     regno += ((int) REG_NREGS (reloadreg)
7247 	      - (int) hard_regno_nregs (regno, mode));
7248 
7249   return gen_rtx_REG (mode, regno);
7250 }
7251 
7252 static const char *const reload_when_needed_name[] =
7253 {
7254   "RELOAD_FOR_INPUT",
7255   "RELOAD_FOR_OUTPUT",
7256   "RELOAD_FOR_INSN",
7257   "RELOAD_FOR_INPUT_ADDRESS",
7258   "RELOAD_FOR_INPADDR_ADDRESS",
7259   "RELOAD_FOR_OUTPUT_ADDRESS",
7260   "RELOAD_FOR_OUTADDR_ADDRESS",
7261   "RELOAD_FOR_OPERAND_ADDRESS",
7262   "RELOAD_FOR_OPADDR_ADDR",
7263   "RELOAD_OTHER",
7264   "RELOAD_FOR_OTHER_ADDRESS"
7265 };
7266 
7267 /* These functions are used to print the variables set by 'find_reloads' */
7268 
7269 DEBUG_FUNCTION void
7270 debug_reload_to_stream (FILE *f)
7271 {
7272   int r;
7273   const char *prefix;
7274 
7275   if (! f)
7276     f = stderr;
7277   for (r = 0; r < n_reloads; r++)
7278     {
7279       fprintf (f, "Reload %d: ", r);
7280 
7281       if (rld[r].in != 0)
7282 	{
7283 	  fprintf (f, "reload_in (%s) = ",
7284 		   GET_MODE_NAME (rld[r].inmode));
7285 	  print_inline_rtx (f, rld[r].in, 24);
7286 	  fprintf (f, "\n\t");
7287 	}
7288 
7289       if (rld[r].out != 0)
7290 	{
7291 	  fprintf (f, "reload_out (%s) = ",
7292 		   GET_MODE_NAME (rld[r].outmode));
7293 	  print_inline_rtx (f, rld[r].out, 24);
7294 	  fprintf (f, "\n\t");
7295 	}
7296 
7297       fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7298 
7299       fprintf (f, "%s (opnum = %d)",
7300 	       reload_when_needed_name[(int) rld[r].when_needed],
7301 	       rld[r].opnum);
7302 
7303       if (rld[r].optional)
7304 	fprintf (f, ", optional");
7305 
7306       if (rld[r].nongroup)
7307 	fprintf (f, ", nongroup");
7308 
7309       if (maybe_ne (rld[r].inc, 0))
7310 	{
7311 	  fprintf (f, ", inc by ");
7312 	  print_dec (rld[r].inc, f, SIGNED);
7313 	}
7314 
7315       if (rld[r].nocombine)
7316 	fprintf (f, ", can't combine");
7317 
7318       if (rld[r].secondary_p)
7319 	fprintf (f, ", secondary_reload_p");
7320 
7321       if (rld[r].in_reg != 0)
7322 	{
7323 	  fprintf (f, "\n\treload_in_reg: ");
7324 	  print_inline_rtx (f, rld[r].in_reg, 24);
7325 	}
7326 
7327       if (rld[r].out_reg != 0)
7328 	{
7329 	  fprintf (f, "\n\treload_out_reg: ");
7330 	  print_inline_rtx (f, rld[r].out_reg, 24);
7331 	}
7332 
7333       if (rld[r].reg_rtx != 0)
7334 	{
7335 	  fprintf (f, "\n\treload_reg_rtx: ");
7336 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7337 	}
7338 
7339       prefix = "\n\t";
7340       if (rld[r].secondary_in_reload != -1)
7341 	{
7342 	  fprintf (f, "%ssecondary_in_reload = %d",
7343 		   prefix, rld[r].secondary_in_reload);
7344 	  prefix = ", ";
7345 	}
7346 
7347       if (rld[r].secondary_out_reload != -1)
7348 	fprintf (f, "%ssecondary_out_reload = %d\n",
7349 		 prefix, rld[r].secondary_out_reload);
7350 
7351       prefix = "\n\t";
7352       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7353 	{
7354 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7355 		   insn_data[rld[r].secondary_in_icode].name);
7356 	  prefix = ", ";
7357 	}
7358 
7359       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7360 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7361 		 insn_data[rld[r].secondary_out_icode].name);
7362 
7363       fprintf (f, "\n");
7364     }
7365 }
7366 
7367 DEBUG_FUNCTION void
7368 debug_reload (void)
7369 {
7370   debug_reload_to_stream (stderr);
7371 }
7372