xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reload.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2    Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4    Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This file contains subroutines used only from the file reload1.c.
23    It knows how to scan one insn for operands and values
24    that need to be copied into registers to make valid code.
25    It also finds other operands and values which are valid
26    but for which equivalent values in registers exist and
27    ought to be used instead.
28 
29    Before processing the first insn of the function, call `init_reload'.
30    init_reload actually has to be called earlier anyway.
31 
32    To scan an insn, call `find_reloads'.  This does two things:
33    1. sets up tables describing which values must be reloaded
34    for this insn, and what kind of hard regs they must be reloaded into;
35    2. optionally record the locations where those values appear in
36    the data, so they can be replaced properly later.
37    This is done only if the second arg to `find_reloads' is nonzero.
38 
39    The third arg to `find_reloads' specifies the number of levels
40    of indirect addressing supported by the machine.  If it is zero,
41    indirect addressing is not valid.  If it is one, (MEM (REG n))
42    is valid even if (REG n) did not get a hard register; if it is two,
43    (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44    hard register, and similarly for higher values.
45 
46    Then you must choose the hard regs to reload those pseudo regs into,
47    and generate appropriate load insns before this insn and perhaps
48    also store insns after this insn.  Set up the array `reload_reg_rtx'
49    to contain the REG rtx's for the registers you used.  In some
50    cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51    for certain reloads.  Then that tells you which register to use,
52    so you do not need to allocate one.  But you still do need to add extra
53    instructions to copy the value into and out of that register.
54 
55    Finally you must call `subst_reloads' to substitute the reload reg rtx's
56    into the locations already recorded.
57 
58 NOTE SIDE EFFECTS:
59 
60    find_reloads can alter the operands of the instruction it is called on.
61 
62    1. Two operands of any sort may be interchanged, if they are in a
63    commutative instruction.
64    This happens only if find_reloads thinks the instruction will compile
65    better that way.
66 
67    2. Pseudo-registers that are equivalent to constants are replaced
68    with those constants if they are not in hard registers.
69 
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
73 
74 Using a reload register for several reloads in one insn:
75 
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
79 
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
83 
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload.  */
87 
88 #define REG_OK_STRICT
89 
90 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow.  */
91 #undef DEBUG_RELOAD
92 
93 #include "config.h"
94 #include "system.h"
95 #include "coretypes.h"
96 #include "tm.h"
97 #include "rtl.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "expr.h"
101 #include "optabs.h"
102 #include "recog.h"
103 #include "reload.h"
104 #include "regs.h"
105 #include "addresses.h"
106 #include "hard-reg-set.h"
107 #include "flags.h"
108 #include "real.h"
109 #include "output.h"
110 #include "function.h"
111 #include "toplev.h"
112 #include "params.h"
113 #include "target.h"
114 #include "df.h"
115 #include "ira.h"
116 
117 /* True if X is a constant that can be forced into the constant pool.  */
118 #define CONST_POOL_OK_P(X)			\
119   (CONSTANT_P (X)				\
120    && GET_CODE (X) != HIGH			\
121    && !targetm.cannot_force_const_mem (X))
122 
123 /* True if C is a non-empty register class that has too few registers
124    to be safely used as a reload target class.  */
125 #define SMALL_REGISTER_CLASS_P(C) \
126   (reg_class_size [(C)] == 1 \
127    || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
128 
129 
130 /* All reloads of the current insn are recorded here.  See reload.h for
131    comments.  */
132 int n_reloads;
133 struct reload rld[MAX_RELOADS];
134 
135 /* All the "earlyclobber" operands of the current insn
136    are recorded here.  */
137 int n_earlyclobbers;
138 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
139 
140 int reload_n_operands;
141 
142 /* Replacing reloads.
143 
144    If `replace_reloads' is nonzero, then as each reload is recorded
145    an entry is made for it in the table `replacements'.
146    Then later `subst_reloads' can look through that table and
147    perform all the replacements needed.  */
148 
149 /* Nonzero means record the places to replace.  */
150 static int replace_reloads;
151 
152 /* Each replacement is recorded with a structure like this.  */
153 struct replacement
154 {
155   rtx *where;			/* Location to store in */
156   rtx *subreg_loc;		/* Location of SUBREG if WHERE is inside
157 				   a SUBREG; 0 otherwise.  */
158   int what;			/* which reload this is for */
159   enum machine_mode mode;	/* mode it must have */
160 };
161 
162 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
163 
164 /* Number of replacements currently recorded.  */
165 static int n_replacements;
166 
167 /* Used to track what is modified by an operand.  */
168 struct decomposition
169 {
170   int reg_flag;		/* Nonzero if referencing a register.  */
171   int safe;		/* Nonzero if this can't conflict with anything.  */
172   rtx base;		/* Base address for MEM.  */
173   HOST_WIDE_INT start;	/* Starting offset or register number.  */
174   HOST_WIDE_INT end;	/* Ending offset or register number.  */
175 };
176 
177 #ifdef SECONDARY_MEMORY_NEEDED
178 
179 /* Save MEMs needed to copy from one class of registers to another.  One MEM
180    is used per mode, but normally only one or two modes are ever used.
181 
182    We keep two versions, before and after register elimination.  The one
183    after register elimination is record separately for each operand.  This
184    is done in case the address is not valid to be sure that we separately
185    reload each.  */
186 
187 static rtx secondary_memlocs[NUM_MACHINE_MODES];
188 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
189 static int secondary_memlocs_elim_used = 0;
190 #endif
191 
192 /* The instruction we are doing reloads for;
193    so we can test whether a register dies in it.  */
194 static rtx this_insn;
195 
196 /* Nonzero if this instruction is a user-specified asm with operands.  */
197 static int this_insn_is_asm;
198 
199 /* If hard_regs_live_known is nonzero,
200    we can tell which hard regs are currently live,
201    at least enough to succeed in choosing dummy reloads.  */
202 static int hard_regs_live_known;
203 
204 /* Indexed by hard reg number,
205    element is nonnegative if hard reg has been spilled.
206    This vector is passed to `find_reloads' as an argument
207    and is not changed here.  */
208 static short *static_reload_reg_p;
209 
210 /* Set to 1 in subst_reg_equivs if it changes anything.  */
211 static int subst_reg_equivs_changed;
212 
213 /* On return from push_reload, holds the reload-number for the OUT
214    operand, which can be different for that from the input operand.  */
215 static int output_reloadnum;
216 
217   /* Compare two RTX's.  */
218 #define MATCHES(x, y) \
219  (x == y || (x != 0 && (REG_P (x)				\
220 			? REG_P (y) && REGNO (x) == REGNO (y)	\
221 			: rtx_equal_p (x, y) && ! side_effects_p (x))))
222 
223   /* Indicates if two reloads purposes are for similar enough things that we
224      can merge their reloads.  */
225 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
226   ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER	\
227    || ((when1) == (when2) && (op1) == (op2))		\
228    || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
229    || ((when1) == RELOAD_FOR_OPERAND_ADDRESS		\
230        && (when2) == RELOAD_FOR_OPERAND_ADDRESS)	\
231    || ((when1) == RELOAD_FOR_OTHER_ADDRESS		\
232        && (when2) == RELOAD_FOR_OTHER_ADDRESS))
233 
234   /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged.  */
235 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
236   ((when1) != (when2)					\
237    || ! ((op1) == (op2)					\
238 	 || (when1) == RELOAD_FOR_INPUT			\
239 	 || (when1) == RELOAD_FOR_OPERAND_ADDRESS	\
240 	 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
241 
242   /* If we are going to reload an address, compute the reload type to
243      use.  */
244 #define ADDR_TYPE(type)					\
245   ((type) == RELOAD_FOR_INPUT_ADDRESS			\
246    ? RELOAD_FOR_INPADDR_ADDRESS				\
247    : ((type) == RELOAD_FOR_OUTPUT_ADDRESS		\
248       ? RELOAD_FOR_OUTADDR_ADDRESS			\
249       : (type)))
250 
251 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
252 				  enum machine_mode, enum reload_type,
253 				  enum insn_code *, secondary_reload_info *);
254 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
255 					int, unsigned int);
256 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
257 static void push_replacement (rtx *, int, enum machine_mode);
258 static void dup_replacements (rtx *, rtx *);
259 static void combine_reloads (void);
260 static int find_reusable_reload (rtx *, rtx, enum reg_class,
261 				 enum reload_type, int, int);
262 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
263 			      enum machine_mode, enum reg_class, int, int);
264 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
265 static struct decomposition decompose (rtx);
266 static int immune_p (rtx, rtx, struct decomposition);
267 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
268 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
269 				int *);
270 static rtx make_memloc (rtx, int);
271 static int maybe_memory_address_addr_space_p (enum machine_mode, rtx,
272 					      addr_space_t, rtx *);
273 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
274 				 int, enum reload_type, int, rtx);
275 static rtx subst_reg_equivs (rtx, rtx);
276 static rtx subst_indexed_address (rtx);
277 static void update_auto_inc_notes (rtx, int, int);
278 static int find_reloads_address_1 (enum machine_mode, rtx, int,
279 				   enum rtx_code, enum rtx_code, rtx *,
280 				   int, enum reload_type,int, rtx);
281 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
282 				       enum machine_mode, int,
283 				       enum reload_type, int);
284 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
285 					int, rtx);
286 static void copy_replacements_1 (rtx *, rtx *, int);
287 static int find_inc_amount (rtx, rtx);
288 static int refers_to_mem_for_reload_p (rtx);
289 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
290 					 rtx, rtx *);
291 
292 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
293    list yet.  */
294 
295 static void
296 push_reg_equiv_alt_mem (int regno, rtx mem)
297 {
298   rtx it;
299 
300   for (it = reg_equiv_alt_mem_list [regno]; it; it = XEXP (it, 1))
301     if (rtx_equal_p (XEXP (it, 0), mem))
302       return;
303 
304   reg_equiv_alt_mem_list [regno]
305     = alloc_EXPR_LIST (REG_EQUIV, mem,
306 		       reg_equiv_alt_mem_list [regno]);
307 }
308 
309 /* Determine if any secondary reloads are needed for loading (if IN_P is
310    nonzero) or storing (if IN_P is zero) X to or from a reload register of
311    register class RELOAD_CLASS in mode RELOAD_MODE.  If secondary reloads
312    are needed, push them.
313 
314    Return the reload number of the secondary reload we made, or -1 if
315    we didn't need one.  *PICODE is set to the insn_code to use if we do
316    need a secondary reload.  */
317 
318 static int
319 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
320 		       enum reg_class reload_class,
321 		       enum machine_mode reload_mode, enum reload_type type,
322 		       enum insn_code *picode, secondary_reload_info *prev_sri)
323 {
324   enum reg_class rclass = NO_REGS;
325   enum reg_class scratch_class;
326   enum machine_mode mode = reload_mode;
327   enum insn_code icode = CODE_FOR_nothing;
328   enum insn_code t_icode = CODE_FOR_nothing;
329   enum reload_type secondary_type;
330   int s_reload, t_reload = -1;
331   const char *scratch_constraint;
332   char letter;
333   secondary_reload_info sri;
334 
335   if (type == RELOAD_FOR_INPUT_ADDRESS
336       || type == RELOAD_FOR_OUTPUT_ADDRESS
337       || type == RELOAD_FOR_INPADDR_ADDRESS
338       || type == RELOAD_FOR_OUTADDR_ADDRESS)
339     secondary_type = type;
340   else
341     secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
342 
343   *picode = CODE_FOR_nothing;
344 
345   /* If X is a paradoxical SUBREG, use the inner value to determine both the
346      mode and object being reloaded.  */
347   if (GET_CODE (x) == SUBREG
348       && (GET_MODE_SIZE (GET_MODE (x))
349 	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
350     {
351       x = SUBREG_REG (x);
352       reload_mode = GET_MODE (x);
353     }
354 
355   /* If X is a pseudo-register that has an equivalent MEM (actually, if it
356      is still a pseudo-register by now, it *must* have an equivalent MEM
357      but we don't want to assume that), use that equivalent when seeing if
358      a secondary reload is needed since whether or not a reload is needed
359      might be sensitive to the form of the MEM.  */
360 
361   if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
362       && reg_equiv_mem[REGNO (x)] != 0)
363     x = reg_equiv_mem[REGNO (x)];
364 
365   sri.icode = CODE_FOR_nothing;
366   sri.prev_sri = prev_sri;
367   rclass = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
368   icode = (enum insn_code) sri.icode;
369 
370   /* If we don't need any secondary registers, done.  */
371   if (rclass == NO_REGS && icode == CODE_FOR_nothing)
372     return -1;
373 
374   if (rclass != NO_REGS)
375     t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
376 				      reload_mode, type, &t_icode, &sri);
377 
378   /* If we will be using an insn, the secondary reload is for a
379      scratch register.  */
380 
381   if (icode != CODE_FOR_nothing)
382     {
383       /* If IN_P is nonzero, the reload register will be the output in
384 	 operand 0.  If IN_P is zero, the reload register will be the input
385 	 in operand 1.  Outputs should have an initial "=", which we must
386 	 skip.  */
387 
388       /* ??? It would be useful to be able to handle only two, or more than
389 	 three, operands, but for now we can only handle the case of having
390 	 exactly three: output, input and one temp/scratch.  */
391       gcc_assert (insn_data[(int) icode].n_operands == 3);
392 
393       /* ??? We currently have no way to represent a reload that needs
394 	 an icode to reload from an intermediate tertiary reload register.
395 	 We should probably have a new field in struct reload to tag a
396 	 chain of scratch operand reloads onto.   */
397       gcc_assert (rclass == NO_REGS);
398 
399       scratch_constraint = insn_data[(int) icode].operand[2].constraint;
400       gcc_assert (*scratch_constraint == '=');
401       scratch_constraint++;
402       if (*scratch_constraint == '&')
403 	scratch_constraint++;
404       letter = *scratch_constraint;
405       scratch_class = (letter == 'r' ? GENERAL_REGS
406 		       : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
407 						   scratch_constraint));
408 
409       rclass = scratch_class;
410       mode = insn_data[(int) icode].operand[2].mode;
411     }
412 
413   /* This case isn't valid, so fail.  Reload is allowed to use the same
414      register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415      in the case of a secondary register, we actually need two different
416      registers for correct code.  We fail here to prevent the possibility of
417      silently generating incorrect code later.
418 
419      The convention is that secondary input reloads are valid only if the
420      secondary_class is different from class.  If you have such a case, you
421      can not use secondary reloads, you must work around the problem some
422      other way.
423 
424      Allow this when a reload_in/out pattern is being used.  I.e. assume
425      that the generated code handles this case.  */
426 
427   gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
428 	      || t_icode != CODE_FOR_nothing);
429 
430   /* See if we can reuse an existing secondary reload.  */
431   for (s_reload = 0; s_reload < n_reloads; s_reload++)
432     if (rld[s_reload].secondary_p
433 	&& (reg_class_subset_p (rclass, rld[s_reload].rclass)
434 	    || reg_class_subset_p (rld[s_reload].rclass, rclass))
435 	&& ((in_p && rld[s_reload].inmode == mode)
436 	    || (! in_p && rld[s_reload].outmode == mode))
437 	&& ((in_p && rld[s_reload].secondary_in_reload == t_reload)
438 	    || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
439 	&& ((in_p && rld[s_reload].secondary_in_icode == t_icode)
440 	    || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
441 	&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
442 	&& MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
443 			     opnum, rld[s_reload].opnum))
444       {
445 	if (in_p)
446 	  rld[s_reload].inmode = mode;
447 	if (! in_p)
448 	  rld[s_reload].outmode = mode;
449 
450 	if (reg_class_subset_p (rclass, rld[s_reload].rclass))
451 	  rld[s_reload].rclass = rclass;
452 
453 	rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
454 	rld[s_reload].optional &= optional;
455 	rld[s_reload].secondary_p = 1;
456 	if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
457 			    opnum, rld[s_reload].opnum))
458 	  rld[s_reload].when_needed = RELOAD_OTHER;
459 
460 	break;
461       }
462 
463   if (s_reload == n_reloads)
464     {
465 #ifdef SECONDARY_MEMORY_NEEDED
466       /* If we need a memory location to copy between the two reload regs,
467 	 set it up now.  Note that we do the input case before making
468 	 the reload and the output case after.  This is due to the
469 	 way reloads are output.  */
470 
471       if (in_p && icode == CODE_FOR_nothing
472 	  && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
473 	{
474 	  get_secondary_mem (x, reload_mode, opnum, type);
475 
476 	  /* We may have just added new reloads.  Make sure we add
477 	     the new reload at the end.  */
478 	  s_reload = n_reloads;
479 	}
480 #endif
481 
482       /* We need to make a new secondary reload for this register class.  */
483       rld[s_reload].in = rld[s_reload].out = 0;
484       rld[s_reload].rclass = rclass;
485 
486       rld[s_reload].inmode = in_p ? mode : VOIDmode;
487       rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
488       rld[s_reload].reg_rtx = 0;
489       rld[s_reload].optional = optional;
490       rld[s_reload].inc = 0;
491       /* Maybe we could combine these, but it seems too tricky.  */
492       rld[s_reload].nocombine = 1;
493       rld[s_reload].in_reg = 0;
494       rld[s_reload].out_reg = 0;
495       rld[s_reload].opnum = opnum;
496       rld[s_reload].when_needed = secondary_type;
497       rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
498       rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
499       rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
500       rld[s_reload].secondary_out_icode
501 	= ! in_p ? t_icode : CODE_FOR_nothing;
502       rld[s_reload].secondary_p = 1;
503 
504       n_reloads++;
505 
506 #ifdef SECONDARY_MEMORY_NEEDED
507       if (! in_p && icode == CODE_FOR_nothing
508 	  && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
509 	get_secondary_mem (x, mode, opnum, type);
510 #endif
511     }
512 
513   *picode = icode;
514   return s_reload;
515 }
516 
517 /* If a secondary reload is needed, return its class.  If both an intermediate
518    register and a scratch register is needed, we return the class of the
519    intermediate register.  */
520 enum reg_class
521 secondary_reload_class (bool in_p, enum reg_class rclass,
522 			enum machine_mode mode, rtx x)
523 {
524   enum insn_code icode;
525   secondary_reload_info sri;
526 
527   sri.icode = CODE_FOR_nothing;
528   sri.prev_sri = NULL;
529   rclass = targetm.secondary_reload (in_p, x, rclass, mode, &sri);
530   icode = (enum insn_code) sri.icode;
531 
532   /* If there are no secondary reloads at all, we return NO_REGS.
533      If an intermediate register is needed, we return its class.  */
534   if (icode == CODE_FOR_nothing || rclass != NO_REGS)
535     return rclass;
536 
537   /* No intermediate register is needed, but we have a special reload
538      pattern, which we assume for now needs a scratch register.  */
539   return scratch_reload_class (icode);
540 }
541 
542 /* ICODE is the insn_code of a reload pattern.  Check that it has exactly
543    three operands, verify that operand 2 is an output operand, and return
544    its register class.
545    ??? We'd like to be able to handle any pattern with at least 2 operands,
546    for zero or more scratch registers, but that needs more infrastructure.  */
547 enum reg_class
548 scratch_reload_class (enum insn_code icode)
549 {
550   const char *scratch_constraint;
551   char scratch_letter;
552   enum reg_class rclass;
553 
554   gcc_assert (insn_data[(int) icode].n_operands == 3);
555   scratch_constraint = insn_data[(int) icode].operand[2].constraint;
556   gcc_assert (*scratch_constraint == '=');
557   scratch_constraint++;
558   if (*scratch_constraint == '&')
559     scratch_constraint++;
560   scratch_letter = *scratch_constraint;
561   if (scratch_letter == 'r')
562     return GENERAL_REGS;
563   rclass = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
564 				     scratch_constraint);
565   gcc_assert (rclass != NO_REGS);
566   return rclass;
567 }
568 
569 #ifdef SECONDARY_MEMORY_NEEDED
570 
571 /* Return a memory location that will be used to copy X in mode MODE.
572    If we haven't already made a location for this mode in this insn,
573    call find_reloads_address on the location being returned.  */
574 
575 rtx
576 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
577 		   int opnum, enum reload_type type)
578 {
579   rtx loc;
580   int mem_valid;
581 
582   /* By default, if MODE is narrower than a word, widen it to a word.
583      This is required because most machines that require these memory
584      locations do not support short load and stores from all registers
585      (e.g., FP registers).  */
586 
587 #ifdef SECONDARY_MEMORY_NEEDED_MODE
588   mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
589 #else
590   if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
591     mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
592 #endif
593 
594   /* If we already have made a MEM for this operand in MODE, return it.  */
595   if (secondary_memlocs_elim[(int) mode][opnum] != 0)
596     return secondary_memlocs_elim[(int) mode][opnum];
597 
598   /* If this is the first time we've tried to get a MEM for this mode,
599      allocate a new one.  `something_changed' in reload will get set
600      by noticing that the frame size has changed.  */
601 
602   if (secondary_memlocs[(int) mode] == 0)
603     {
604 #ifdef SECONDARY_MEMORY_NEEDED_RTX
605       secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
606 #else
607       secondary_memlocs[(int) mode]
608 	= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
609 #endif
610     }
611 
612   /* Get a version of the address doing any eliminations needed.  If that
613      didn't give us a new MEM, make a new one if it isn't valid.  */
614 
615   loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
616   mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
617 						  MEM_ADDR_SPACE (loc));
618 
619   if (! mem_valid && loc == secondary_memlocs[(int) mode])
620     loc = copy_rtx (loc);
621 
622   /* The only time the call below will do anything is if the stack
623      offset is too large.  In that case IND_LEVELS doesn't matter, so we
624      can just pass a zero.  Adjust the type to be the address of the
625      corresponding object.  If the address was valid, save the eliminated
626      address.  If it wasn't valid, we need to make a reload each time, so
627      don't save it.  */
628 
629   if (! mem_valid)
630     {
631       type =  (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
632 	       : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
633 	       : RELOAD_OTHER);
634 
635       find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
636 			    opnum, type, 0, 0);
637     }
638 
639   secondary_memlocs_elim[(int) mode][opnum] = loc;
640   if (secondary_memlocs_elim_used <= (int)mode)
641     secondary_memlocs_elim_used = (int)mode + 1;
642   return loc;
643 }
644 
645 /* Clear any secondary memory locations we've made.  */
646 
647 void
648 clear_secondary_mem (void)
649 {
650   memset (secondary_memlocs, 0, sizeof secondary_memlocs);
651 }
652 #endif /* SECONDARY_MEMORY_NEEDED */
653 
654 
655 /* Find the largest class which has at least one register valid in
656    mode INNER, and which for every such register, that register number
657    plus N is also valid in OUTER (if in range) and is cheap to move
658    into REGNO.  Such a class must exist.  */
659 
660 static enum reg_class
661 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
662 		  enum machine_mode inner ATTRIBUTE_UNUSED, int n,
663 		  unsigned int dest_regno ATTRIBUTE_UNUSED)
664 {
665   int best_cost = -1;
666   int rclass;
667   int regno;
668   enum reg_class best_class = NO_REGS;
669   enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
670   unsigned int best_size = 0;
671   int cost;
672 
673   for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
674     {
675       int bad = 0;
676       int good = 0;
677       for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
678 	if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
679 	  {
680 	    if (HARD_REGNO_MODE_OK (regno, inner))
681 	      {
682 		good = 1;
683 		if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
684 		    || ! HARD_REGNO_MODE_OK (regno + n, outer))
685 		  bad = 1;
686 	      }
687 	  }
688 
689       if (bad || !good)
690 	continue;
691       cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass, dest_class);
692 
693       if ((reg_class_size[rclass] > best_size
694 	   && (best_cost < 0 || best_cost >= cost))
695 	  || best_cost > cost)
696 	{
697 	  best_class = (enum reg_class) rclass;
698 	  best_size = reg_class_size[rclass];
699 	  best_cost = REGISTER_MOVE_COST (outer, (enum reg_class) rclass,
700 					  dest_class);
701 	}
702     }
703 
704   gcc_assert (best_size != 0);
705 
706   return best_class;
707 }
708 
709 /* Return the number of a previously made reload that can be combined with
710    a new one, or n_reloads if none of the existing reloads can be used.
711    OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
712    push_reload, they determine the kind of the new reload that we try to
713    combine.  P_IN points to the corresponding value of IN, which can be
714    modified by this function.
715    DONT_SHARE is nonzero if we can't share any input-only reload for IN.  */
716 
717 static int
718 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
719 		      enum reload_type type, int opnum, int dont_share)
720 {
721   rtx in = *p_in;
722   int i;
723   /* We can't merge two reloads if the output of either one is
724      earlyclobbered.  */
725 
726   if (earlyclobber_operand_p (out))
727     return n_reloads;
728 
729   /* We can use an existing reload if the class is right
730      and at least one of IN and OUT is a match
731      and the other is at worst neutral.
732      (A zero compared against anything is neutral.)
733 
734      If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
735      for the same thing since that can cause us to need more reload registers
736      than we otherwise would.  */
737 
738   for (i = 0; i < n_reloads; i++)
739     if ((reg_class_subset_p (rclass, rld[i].rclass)
740 	 || reg_class_subset_p (rld[i].rclass, rclass))
741 	/* If the existing reload has a register, it must fit our class.  */
742 	&& (rld[i].reg_rtx == 0
743 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
744 				  true_regnum (rld[i].reg_rtx)))
745 	&& ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
746 	     && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
747 	    || (out != 0 && MATCHES (rld[i].out, out)
748 		&& (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
749 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
750 	&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
751 	&& MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
752       return i;
753 
754   /* Reloading a plain reg for input can match a reload to postincrement
755      that reg, since the postincrement's value is the right value.
756      Likewise, it can match a preincrement reload, since we regard
757      the preincrementation as happening before any ref in this insn
758      to that register.  */
759   for (i = 0; i < n_reloads; i++)
760     if ((reg_class_subset_p (rclass, rld[i].rclass)
761 	 || reg_class_subset_p (rld[i].rclass, rclass))
762 	/* If the existing reload has a register, it must fit our
763 	   class.  */
764 	&& (rld[i].reg_rtx == 0
765 	    || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
766 				  true_regnum (rld[i].reg_rtx)))
767 	&& out == 0 && rld[i].out == 0 && rld[i].in != 0
768 	&& ((REG_P (in)
769 	     && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
770 	     && MATCHES (XEXP (rld[i].in, 0), in))
771 	    || (REG_P (rld[i].in)
772 		&& GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
773 		&& MATCHES (XEXP (in, 0), rld[i].in)))
774 	&& (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
775 	&& (SMALL_REGISTER_CLASS_P (rclass) || SMALL_REGISTER_CLASSES)
776 	&& MERGABLE_RELOADS (type, rld[i].when_needed,
777 			     opnum, rld[i].opnum))
778       {
779 	/* Make sure reload_in ultimately has the increment,
780 	   not the plain register.  */
781 	if (REG_P (in))
782 	  *p_in = rld[i].in;
783 	return i;
784       }
785   return n_reloads;
786 }
787 
788 /* Return nonzero if X is a SUBREG which will require reloading of its
789    SUBREG_REG expression.  */
790 
791 static int
792 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
793 {
794   rtx inner;
795 
796   /* Only SUBREGs are problematical.  */
797   if (GET_CODE (x) != SUBREG)
798     return 0;
799 
800   inner = SUBREG_REG (x);
801 
802   /* If INNER is a constant or PLUS, then INNER must be reloaded.  */
803   if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
804     return 1;
805 
806   /* If INNER is not a hard register, then INNER will not need to
807      be reloaded.  */
808   if (!REG_P (inner)
809       || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
810     return 0;
811 
812   /* If INNER is not ok for MODE, then INNER will need reloading.  */
813   if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
814     return 1;
815 
816   /* If the outer part is a word or smaller, INNER larger than a
817      word and the number of regs for INNER is not the same as the
818      number of words in INNER, then INNER will need reloading.  */
819   return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
820 	  && output
821 	  && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
822 	  && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
823 	      != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
824 }
825 
826 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
827    requiring an extra reload register.  The caller has already found that
828    IN contains some reference to REGNO, so check that we can produce the
829    new value in a single step.  E.g. if we have
830    (set (reg r13) (plus (reg r13) (const int 1))), and there is an
831    instruction that adds one to a register, this should succeed.
832    However, if we have something like
833    (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
834    needs to be loaded into a register first, we need a separate reload
835    register.
836    Such PLUS reloads are generated by find_reload_address_part.
837    The out-of-range PLUS expressions are usually introduced in the instruction
838    patterns by register elimination and substituting pseudos without a home
839    by their function-invariant equivalences.  */
840 static int
841 can_reload_into (rtx in, int regno, enum machine_mode mode)
842 {
843   rtx dst, test_insn;
844   int r = 0;
845   struct recog_data save_recog_data;
846 
847   /* For matching constraints, we often get notional input reloads where
848      we want to use the original register as the reload register.  I.e.
849      technically this is a non-optional input-output reload, but IN is
850      already a valid register, and has been chosen as the reload register.
851      Speed this up, since it trivially works.  */
852   if (REG_P (in))
853     return 1;
854 
855   /* To test MEMs properly, we'd have to take into account all the reloads
856      that are already scheduled, which can become quite complicated.
857      And since we've already handled address reloads for this MEM, it
858      should always succeed anyway.  */
859   if (MEM_P (in))
860     return 1;
861 
862   /* If we can make a simple SET insn that does the job, everything should
863      be fine.  */
864   dst =  gen_rtx_REG (mode, regno);
865   test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
866   save_recog_data = recog_data;
867   if (recog_memoized (test_insn) >= 0)
868     {
869       extract_insn (test_insn);
870       r = constrain_operands (1);
871     }
872   recog_data = save_recog_data;
873   return r;
874 }
875 
876 /* Record one reload that needs to be performed.
877    IN is an rtx saying where the data are to be found before this instruction.
878    OUT says where they must be stored after the instruction.
879    (IN is zero for data not read, and OUT is zero for data not written.)
880    INLOC and OUTLOC point to the places in the instructions where
881    IN and OUT were found.
882    If IN and OUT are both nonzero, it means the same register must be used
883    to reload both IN and OUT.
884 
885    RCLASS is a register class required for the reloaded data.
886    INMODE is the machine mode that the instruction requires
887    for the reg that replaces IN and OUTMODE is likewise for OUT.
888 
889    If IN is zero, then OUT's location and mode should be passed as
890    INLOC and INMODE.
891 
892    STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
893 
894    OPTIONAL nonzero means this reload does not need to be performed:
895    it can be discarded if that is more convenient.
896 
897    OPNUM and TYPE say what the purpose of this reload is.
898 
899    The return value is the reload-number for this reload.
900 
901    If both IN and OUT are nonzero, in some rare cases we might
902    want to make two separate reloads.  (Actually we never do this now.)
903    Therefore, the reload-number for OUT is stored in
904    output_reloadnum when we return; the return value applies to IN.
905    Usually (presently always), when IN and OUT are nonzero,
906    the two reload-numbers are equal, but the caller should be careful to
907    distinguish them.  */
908 
909 int
910 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
911 	     enum reg_class rclass, enum machine_mode inmode,
912 	     enum machine_mode outmode, int strict_low, int optional,
913 	     int opnum, enum reload_type type)
914 {
915   int i;
916   int dont_share = 0;
917   int dont_remove_subreg = 0;
918   rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
919   int secondary_in_reload = -1, secondary_out_reload = -1;
920   enum insn_code secondary_in_icode = CODE_FOR_nothing;
921   enum insn_code secondary_out_icode = CODE_FOR_nothing;
922 
923   /* INMODE and/or OUTMODE could be VOIDmode if no mode
924      has been specified for the operand.  In that case,
925      use the operand's mode as the mode to reload.  */
926   if (inmode == VOIDmode && in != 0)
927     inmode = GET_MODE (in);
928   if (outmode == VOIDmode && out != 0)
929     outmode = GET_MODE (out);
930 
931   /* If find_reloads and friends until now missed to replace a pseudo
932      with a constant of reg_equiv_constant something went wrong
933      beforehand.
934      Note that it can't simply be done here if we missed it earlier
935      since the constant might need to be pushed into the literal pool
936      and the resulting memref would probably need further
937      reloading.  */
938   if (in != 0 && REG_P (in))
939     {
940       int regno = REGNO (in);
941 
942       gcc_assert (regno < FIRST_PSEUDO_REGISTER
943 		  || reg_renumber[regno] >= 0
944 		  || reg_equiv_constant[regno] == NULL_RTX);
945     }
946 
947   /* reg_equiv_constant only contains constants which are obviously
948      not appropriate as destination.  So if we would need to replace
949      the destination pseudo with a constant we are in real
950      trouble.  */
951   if (out != 0 && REG_P (out))
952     {
953       int regno = REGNO (out);
954 
955       gcc_assert (regno < FIRST_PSEUDO_REGISTER
956 		  || reg_renumber[regno] >= 0
957 		  || reg_equiv_constant[regno] == NULL_RTX);
958     }
959 
960   /* If we have a read-write operand with an address side-effect,
961      change either IN or OUT so the side-effect happens only once.  */
962   if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
963     switch (GET_CODE (XEXP (in, 0)))
964       {
965       case POST_INC: case POST_DEC:   case POST_MODIFY:
966 	in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
967 	break;
968 
969       case PRE_INC: case PRE_DEC: case PRE_MODIFY:
970 	out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
971 	break;
972 
973       default:
974 	break;
975       }
976 
977   /* If we are reloading a (SUBREG constant ...), really reload just the
978      inside expression in its own mode.  Similarly for (SUBREG (PLUS ...)).
979      If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
980      a pseudo and hence will become a MEM) with M1 wider than M2 and the
981      register is a pseudo, also reload the inside expression.
982      For machines that extend byte loads, do this for any SUBREG of a pseudo
983      where both M1 and M2 are a word or smaller, M1 is wider than M2, and
984      M2 is an integral mode that gets extended when loaded.
985      Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
986      either M1 is not valid for R or M2 is wider than a word but we only
987      need one word to store an M2-sized quantity in R.
988      (However, if OUT is nonzero, we need to reload the reg *and*
989      the subreg, so do nothing here, and let following statement handle it.)
990 
991      Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
992      we can't handle it here because CONST_INT does not indicate a mode.
993 
994      Similarly, we must reload the inside expression if we have a
995      STRICT_LOW_PART (presumably, in == out in this case).
996 
997      Also reload the inner expression if it does not require a secondary
998      reload but the SUBREG does.
999 
1000      Finally, reload the inner expression if it is a register that is in
1001      the class whose registers cannot be referenced in a different size
1002      and M1 is not the same size as M2.  If subreg_lowpart_p is false, we
1003      cannot reload just the inside since we might end up with the wrong
1004      register class.  But if it is inside a STRICT_LOW_PART, we have
1005      no choice, so we hope we do get the right register class there.  */
1006 
1007   if (in != 0 && GET_CODE (in) == SUBREG
1008       && (subreg_lowpart_p (in) || strict_low)
1009 #ifdef CANNOT_CHANGE_MODE_CLASS
1010       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1011 #endif
1012       && (CONSTANT_P (SUBREG_REG (in))
1013 	  || GET_CODE (SUBREG_REG (in)) == PLUS
1014 	  || strict_low
1015 	  || (((REG_P (SUBREG_REG (in))
1016 		&& REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1017 	       || MEM_P (SUBREG_REG (in)))
1018 	      && ((GET_MODE_SIZE (inmode)
1019 		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1020 #ifdef LOAD_EXTEND_OP
1021 		  || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1022 		      && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1023 			  <= UNITS_PER_WORD)
1024 		      && (GET_MODE_SIZE (inmode)
1025 			  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1026 		      && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1027 		      && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1028 #endif
1029 #ifdef WORD_REGISTER_OPERATIONS
1030 		  || ((GET_MODE_SIZE (inmode)
1031 		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1032 		      && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1033 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1034 			   / UNITS_PER_WORD)))
1035 #endif
1036 		  ))
1037 	  || (REG_P (SUBREG_REG (in))
1038 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1039 	      /* The case where out is nonzero
1040 		 is handled differently in the following statement.  */
1041 	      && (out == 0 || subreg_lowpart_p (in))
1042 	      && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1043 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1044 		       > UNITS_PER_WORD)
1045 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1046 			/ UNITS_PER_WORD)
1047 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1048 						[GET_MODE (SUBREG_REG (in))]))
1049 		  || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1050 	  || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1051 	      && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1052 					  SUBREG_REG (in))
1053 		  == NO_REGS))
1054 #ifdef CANNOT_CHANGE_MODE_CLASS
1055 	  || (REG_P (SUBREG_REG (in))
1056 	      && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1057 	      && REG_CANNOT_CHANGE_MODE_P
1058 	      (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1059 #endif
1060 	  ))
1061     {
1062       in_subreg_loc = inloc;
1063       inloc = &SUBREG_REG (in);
1064       in = *inloc;
1065 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1066       if (MEM_P (in))
1067 	/* This is supposed to happen only for paradoxical subregs made by
1068 	   combine.c.  (SUBREG (MEM)) isn't supposed to occur other ways.  */
1069 	gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1070 #endif
1071       inmode = GET_MODE (in);
1072     }
1073 
1074   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1075      either M1 is not valid for R or M2 is wider than a word but we only
1076      need one word to store an M2-sized quantity in R.
1077 
1078      However, we must reload the inner reg *as well as* the subreg in
1079      that case.  */
1080 
1081   /* Similar issue for (SUBREG constant ...) if it was not handled by the
1082      code above.  This can happen if SUBREG_BYTE != 0.  */
1083 
1084   if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1085     {
1086       enum reg_class in_class = rclass;
1087 
1088       if (REG_P (SUBREG_REG (in)))
1089 	in_class
1090 	  = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1091 			      subreg_regno_offset (REGNO (SUBREG_REG (in)),
1092 						   GET_MODE (SUBREG_REG (in)),
1093 						   SUBREG_BYTE (in),
1094 						   GET_MODE (in)),
1095 			      REGNO (SUBREG_REG (in)));
1096 
1097       /* This relies on the fact that emit_reload_insns outputs the
1098 	 instructions for input reloads of type RELOAD_OTHER in the same
1099 	 order as the reloads.  Thus if the outer reload is also of type
1100 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1101 	 output before the outer reload.  */
1102       push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1103 		   in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1104       dont_remove_subreg = 1;
1105     }
1106 
1107   /* Similarly for paradoxical and problematical SUBREGs on the output.
1108      Note that there is no reason we need worry about the previous value
1109      of SUBREG_REG (out); even if wider than out,
1110      storing in a subreg is entitled to clobber it all
1111      (except in the case of STRICT_LOW_PART,
1112      and in that case the constraint should label it input-output.)  */
1113   if (out != 0 && GET_CODE (out) == SUBREG
1114       && (subreg_lowpart_p (out) || strict_low)
1115 #ifdef CANNOT_CHANGE_MODE_CLASS
1116       && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1117 #endif
1118       && (CONSTANT_P (SUBREG_REG (out))
1119 	  || strict_low
1120 	  || (((REG_P (SUBREG_REG (out))
1121 		&& REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1122 	       || MEM_P (SUBREG_REG (out)))
1123 	      && ((GET_MODE_SIZE (outmode)
1124 		   > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1125 #ifdef WORD_REGISTER_OPERATIONS
1126 		  || ((GET_MODE_SIZE (outmode)
1127 		       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1128 		      && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1129 			  ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1130 			   / UNITS_PER_WORD)))
1131 #endif
1132 		  ))
1133 	  || (REG_P (SUBREG_REG (out))
1134 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1135 	      && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1136 		   && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1137 		       > UNITS_PER_WORD)
1138 		   && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1139 			/ UNITS_PER_WORD)
1140 		       != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1141 						[GET_MODE (SUBREG_REG (out))]))
1142 		  || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1143 	  || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1144 	      && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1145 					  SUBREG_REG (out))
1146 		  == NO_REGS))
1147 #ifdef CANNOT_CHANGE_MODE_CLASS
1148 	  || (REG_P (SUBREG_REG (out))
1149 	      && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1150 	      && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1151 					   GET_MODE (SUBREG_REG (out)),
1152 					   outmode))
1153 #endif
1154 	  ))
1155     {
1156       out_subreg_loc = outloc;
1157       outloc = &SUBREG_REG (out);
1158       out = *outloc;
1159 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1160       gcc_assert (!MEM_P (out)
1161 		  || GET_MODE_SIZE (GET_MODE (out))
1162 		     <= GET_MODE_SIZE (outmode));
1163 #endif
1164       outmode = GET_MODE (out);
1165     }
1166 
1167   /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1168      either M1 is not valid for R or M2 is wider than a word but we only
1169      need one word to store an M2-sized quantity in R.
1170 
1171      However, we must reload the inner reg *as well as* the subreg in
1172      that case.  In this case, the inner reg is an in-out reload.  */
1173 
1174   if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1175     {
1176       /* This relies on the fact that emit_reload_insns outputs the
1177 	 instructions for output reloads of type RELOAD_OTHER in reverse
1178 	 order of the reloads.  Thus if the outer reload is also of type
1179 	 RELOAD_OTHER, we are guaranteed that this inner reload will be
1180 	 output after the outer reload.  */
1181       dont_remove_subreg = 1;
1182       push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1183 		   &SUBREG_REG (out),
1184 		   find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1185 				     subreg_regno_offset (REGNO (SUBREG_REG (out)),
1186 							  GET_MODE (SUBREG_REG (out)),
1187 							  SUBREG_BYTE (out),
1188 							  GET_MODE (out)),
1189 				     REGNO (SUBREG_REG (out))),
1190 		   VOIDmode, VOIDmode, 0, 0,
1191 		   opnum, RELOAD_OTHER);
1192     }
1193 
1194   /* If IN appears in OUT, we can't share any input-only reload for IN.  */
1195   if (in != 0 && out != 0 && MEM_P (out)
1196       && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1197       && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1198     dont_share = 1;
1199 
1200   /* If IN is a SUBREG of a hard register, make a new REG.  This
1201      simplifies some of the cases below.  */
1202 
1203   if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1204       && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1205       && ! dont_remove_subreg)
1206     in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1207 
1208   /* Similarly for OUT.  */
1209   if (out != 0 && GET_CODE (out) == SUBREG
1210       && REG_P (SUBREG_REG (out))
1211       && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1212       && ! dont_remove_subreg)
1213     out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1214 
1215   /* Narrow down the class of register wanted if that is
1216      desirable on this machine for efficiency.  */
1217   {
1218     enum reg_class preferred_class = rclass;
1219 
1220     if (in != 0)
1221       preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1222 
1223   /* Output reloads may need analogous treatment, different in detail.  */
1224 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1225     if (out != 0)
1226       preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1227 #endif
1228 
1229     /* Discard what the target said if we cannot do it.  */
1230     if (preferred_class != NO_REGS
1231 	|| (optional && type == RELOAD_FOR_OUTPUT))
1232       rclass = preferred_class;
1233   }
1234 
1235   /* Make sure we use a class that can handle the actual pseudo
1236      inside any subreg.  For example, on the 386, QImode regs
1237      can appear within SImode subregs.  Although GENERAL_REGS
1238      can handle SImode, QImode needs a smaller class.  */
1239 #ifdef LIMIT_RELOAD_CLASS
1240   if (in_subreg_loc)
1241     rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1242   else if (in != 0 && GET_CODE (in) == SUBREG)
1243     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1244 
1245   if (out_subreg_loc)
1246     rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1247   if (out != 0 && GET_CODE (out) == SUBREG)
1248     rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1249 #endif
1250 
1251   /* Verify that this class is at least possible for the mode that
1252      is specified.  */
1253   if (this_insn_is_asm)
1254     {
1255       enum machine_mode mode;
1256       if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1257 	mode = inmode;
1258       else
1259 	mode = outmode;
1260       if (mode == VOIDmode)
1261 	{
1262 	  error_for_asm (this_insn, "cannot reload integer constant "
1263 			 "operand in %<asm%>");
1264 	  mode = word_mode;
1265 	  if (in != 0)
1266 	    inmode = word_mode;
1267 	  if (out != 0)
1268 	    outmode = word_mode;
1269 	}
1270       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1271 	if (HARD_REGNO_MODE_OK (i, mode)
1272 	    && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1273 	  break;
1274       if (i == FIRST_PSEUDO_REGISTER)
1275 	{
1276 	  error_for_asm (this_insn, "impossible register constraint "
1277 			 "in %<asm%>");
1278 	  /* Avoid further trouble with this insn.  */
1279 	  PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1280 	  /* We used to continue here setting class to ALL_REGS, but it triggers
1281 	     sanity check on i386 for:
1282 	     void foo(long double d)
1283 	     {
1284 	       asm("" :: "a" (d));
1285 	     }
1286 	     Returning zero here ought to be safe as we take care in
1287 	     find_reloads to not process the reloads when instruction was
1288 	     replaced by USE.  */
1289 
1290 	  return 0;
1291 	}
1292     }
1293 
1294   /* Optional output reloads are always OK even if we have no register class,
1295      since the function of these reloads is only to have spill_reg_store etc.
1296      set, so that the storing insn can be deleted later.  */
1297   gcc_assert (rclass != NO_REGS
1298 	      || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1299 
1300   i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1301 
1302   if (i == n_reloads)
1303     {
1304       /* See if we need a secondary reload register to move between CLASS
1305 	 and IN or CLASS and OUT.  Get the icode and push any required reloads
1306 	 needed for each of them if so.  */
1307 
1308       if (in != 0)
1309 	secondary_in_reload
1310 	  = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1311 				   &secondary_in_icode, NULL);
1312       if (out != 0 && GET_CODE (out) != SCRATCH)
1313 	secondary_out_reload
1314 	  = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1315 				   type, &secondary_out_icode, NULL);
1316 
1317       /* We found no existing reload suitable for re-use.
1318 	 So add an additional reload.  */
1319 
1320 #ifdef SECONDARY_MEMORY_NEEDED
1321       /* If a memory location is needed for the copy, make one.  */
1322       if (in != 0
1323 	  && (REG_P (in)
1324 	      || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1325 	  && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1326 	  && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1327 				      rclass, inmode))
1328 	get_secondary_mem (in, inmode, opnum, type);
1329 #endif
1330 
1331       i = n_reloads;
1332       rld[i].in = in;
1333       rld[i].out = out;
1334       rld[i].rclass = rclass;
1335       rld[i].inmode = inmode;
1336       rld[i].outmode = outmode;
1337       rld[i].reg_rtx = 0;
1338       rld[i].optional = optional;
1339       rld[i].inc = 0;
1340       rld[i].nocombine = 0;
1341       rld[i].in_reg = inloc ? *inloc : 0;
1342       rld[i].out_reg = outloc ? *outloc : 0;
1343       rld[i].opnum = opnum;
1344       rld[i].when_needed = type;
1345       rld[i].secondary_in_reload = secondary_in_reload;
1346       rld[i].secondary_out_reload = secondary_out_reload;
1347       rld[i].secondary_in_icode = secondary_in_icode;
1348       rld[i].secondary_out_icode = secondary_out_icode;
1349       rld[i].secondary_p = 0;
1350 
1351       n_reloads++;
1352 
1353 #ifdef SECONDARY_MEMORY_NEEDED
1354       if (out != 0
1355           && (REG_P (out)
1356 	      || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1357 	  && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1358 	  && SECONDARY_MEMORY_NEEDED (rclass,
1359 				      REGNO_REG_CLASS (reg_or_subregno (out)),
1360 				      outmode))
1361 	get_secondary_mem (out, outmode, opnum, type);
1362 #endif
1363     }
1364   else
1365     {
1366       /* We are reusing an existing reload,
1367 	 but we may have additional information for it.
1368 	 For example, we may now have both IN and OUT
1369 	 while the old one may have just one of them.  */
1370 
1371       /* The modes can be different.  If they are, we want to reload in
1372 	 the larger mode, so that the value is valid for both modes.  */
1373       if (inmode != VOIDmode
1374 	  && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1375 	rld[i].inmode = inmode;
1376       if (outmode != VOIDmode
1377 	  && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1378 	rld[i].outmode = outmode;
1379       if (in != 0)
1380 	{
1381 	  rtx in_reg = inloc ? *inloc : 0;
1382 	  /* If we merge reloads for two distinct rtl expressions that
1383 	     are identical in content, there might be duplicate address
1384 	     reloads.  Remove the extra set now, so that if we later find
1385 	     that we can inherit this reload, we can get rid of the
1386 	     address reloads altogether.
1387 
1388 	     Do not do this if both reloads are optional since the result
1389 	     would be an optional reload which could potentially leave
1390 	     unresolved address replacements.
1391 
1392 	     It is not sufficient to call transfer_replacements since
1393 	     choose_reload_regs will remove the replacements for address
1394 	     reloads of inherited reloads which results in the same
1395 	     problem.  */
1396 	  if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1397 	      && ! (rld[i].optional && optional))
1398 	    {
1399 	      /* We must keep the address reload with the lower operand
1400 		 number alive.  */
1401 	      if (opnum > rld[i].opnum)
1402 		{
1403 		  remove_address_replacements (in);
1404 		  in = rld[i].in;
1405 		  in_reg = rld[i].in_reg;
1406 		}
1407 	      else
1408 		remove_address_replacements (rld[i].in);
1409 	    }
1410 	  /* When emitting reloads we don't necessarily look at the in-
1411 	     and outmode, but also directly at the operands (in and out).
1412 	     So we can't simply overwrite them with whatever we have found
1413 	     for this (to-be-merged) reload, we have to "merge" that too.
1414 	     Reusing another reload already verified that we deal with the
1415 	     same operands, just possibly in different modes.  So we
1416 	     overwrite the operands only when the new mode is larger.
1417 	     See also PR33613.  */
1418 	  if (!rld[i].in
1419 	      || GET_MODE_SIZE (GET_MODE (in))
1420 	           > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1421 	    rld[i].in = in;
1422 	  if (!rld[i].in_reg
1423 	      || (in_reg
1424 		  && GET_MODE_SIZE (GET_MODE (in_reg))
1425 	             > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1426 	    rld[i].in_reg = in_reg;
1427 	}
1428       if (out != 0)
1429 	{
1430 	  if (!rld[i].out
1431 	      || (out
1432 		  && GET_MODE_SIZE (GET_MODE (out))
1433 	             > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1434 	    rld[i].out = out;
1435 	  if (outloc
1436 	      && (!rld[i].out_reg
1437 		  || GET_MODE_SIZE (GET_MODE (*outloc))
1438 		     > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1439 	    rld[i].out_reg = *outloc;
1440 	}
1441       if (reg_class_subset_p (rclass, rld[i].rclass))
1442 	rld[i].rclass = rclass;
1443       rld[i].optional &= optional;
1444       if (MERGE_TO_OTHER (type, rld[i].when_needed,
1445 			  opnum, rld[i].opnum))
1446 	rld[i].when_needed = RELOAD_OTHER;
1447       rld[i].opnum = MIN (rld[i].opnum, opnum);
1448     }
1449 
1450   /* If the ostensible rtx being reloaded differs from the rtx found
1451      in the location to substitute, this reload is not safe to combine
1452      because we cannot reliably tell whether it appears in the insn.  */
1453 
1454   if (in != 0 && in != *inloc)
1455     rld[i].nocombine = 1;
1456 
1457 #if 0
1458   /* This was replaced by changes in find_reloads_address_1 and the new
1459      function inc_for_reload, which go with a new meaning of reload_inc.  */
1460 
1461   /* If this is an IN/OUT reload in an insn that sets the CC,
1462      it must be for an autoincrement.  It doesn't work to store
1463      the incremented value after the insn because that would clobber the CC.
1464      So we must do the increment of the value reloaded from,
1465      increment it, store it back, then decrement again.  */
1466   if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1467     {
1468       out = 0;
1469       rld[i].out = 0;
1470       rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1471       /* If we did not find a nonzero amount-to-increment-by,
1472 	 that contradicts the belief that IN is being incremented
1473 	 in an address in this insn.  */
1474       gcc_assert (rld[i].inc != 0);
1475     }
1476 #endif
1477 
1478   /* If we will replace IN and OUT with the reload-reg,
1479      record where they are located so that substitution need
1480      not do a tree walk.  */
1481 
1482   if (replace_reloads)
1483     {
1484       if (inloc != 0)
1485 	{
1486 	  struct replacement *r = &replacements[n_replacements++];
1487 	  r->what = i;
1488 	  r->subreg_loc = in_subreg_loc;
1489 	  r->where = inloc;
1490 	  r->mode = inmode;
1491 	}
1492       if (outloc != 0 && outloc != inloc)
1493 	{
1494 	  struct replacement *r = &replacements[n_replacements++];
1495 	  r->what = i;
1496 	  r->where = outloc;
1497 	  r->subreg_loc = out_subreg_loc;
1498 	  r->mode = outmode;
1499 	}
1500     }
1501 
1502   /* If this reload is just being introduced and it has both
1503      an incoming quantity and an outgoing quantity that are
1504      supposed to be made to match, see if either one of the two
1505      can serve as the place to reload into.
1506 
1507      If one of them is acceptable, set rld[i].reg_rtx
1508      to that one.  */
1509 
1510   if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1511     {
1512       rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1513 					  inmode, outmode,
1514 					  rld[i].rclass, i,
1515 					  earlyclobber_operand_p (out));
1516 
1517       /* If the outgoing register already contains the same value
1518 	 as the incoming one, we can dispense with loading it.
1519 	 The easiest way to tell the caller that is to give a phony
1520 	 value for the incoming operand (same as outgoing one).  */
1521       if (rld[i].reg_rtx == out
1522 	  && (REG_P (in) || CONSTANT_P (in))
1523 	  && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1524 				  static_reload_reg_p, i, inmode))
1525 	rld[i].in = out;
1526     }
1527 
1528   /* If this is an input reload and the operand contains a register that
1529      dies in this insn and is used nowhere else, see if it is the right class
1530      to be used for this reload.  Use it if so.  (This occurs most commonly
1531      in the case of paradoxical SUBREGs and in-out reloads).  We cannot do
1532      this if it is also an output reload that mentions the register unless
1533      the output is a SUBREG that clobbers an entire register.
1534 
1535      Note that the operand might be one of the spill regs, if it is a
1536      pseudo reg and we are in a block where spilling has not taken place.
1537      But if there is no spilling in this block, that is OK.
1538      An explicitly used hard reg cannot be a spill reg.  */
1539 
1540   if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1541     {
1542       rtx note;
1543       int regno;
1544       enum machine_mode rel_mode = inmode;
1545 
1546       if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1547 	rel_mode = outmode;
1548 
1549       for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1550 	if (REG_NOTE_KIND (note) == REG_DEAD
1551 	    && REG_P (XEXP (note, 0))
1552 	    && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1553 	    && reg_mentioned_p (XEXP (note, 0), in)
1554 	    /* Check that a former pseudo is valid; see find_dummy_reload.  */
1555 	    && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1556 		|| (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1557 				    ORIGINAL_REGNO (XEXP (note, 0)))
1558 		    && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1559 	    && ! refers_to_regno_for_reload_p (regno,
1560 					       end_hard_regno (rel_mode,
1561 							       regno),
1562 					       PATTERN (this_insn), inloc)
1563 	    /* If this is also an output reload, IN cannot be used as
1564 	       the reload register if it is set in this insn unless IN
1565 	       is also OUT.  */
1566 	    && (out == 0 || in == out
1567 		|| ! hard_reg_set_here_p (regno,
1568 					  end_hard_regno (rel_mode, regno),
1569 					  PATTERN (this_insn)))
1570 	    /* ??? Why is this code so different from the previous?
1571 	       Is there any simple coherent way to describe the two together?
1572 	       What's going on here.  */
1573 	    && (in != out
1574 		|| (GET_CODE (in) == SUBREG
1575 		    && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1576 			 / UNITS_PER_WORD)
1577 			== ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1578 			     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1579 	    /* Make sure the operand fits in the reg that dies.  */
1580 	    && (GET_MODE_SIZE (rel_mode)
1581 		<= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1582 	    && HARD_REGNO_MODE_OK (regno, inmode)
1583 	    && HARD_REGNO_MODE_OK (regno, outmode))
1584 	  {
1585 	    unsigned int offs;
1586 	    unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1587 				      hard_regno_nregs[regno][outmode]);
1588 
1589 	    for (offs = 0; offs < nregs; offs++)
1590 	      if (fixed_regs[regno + offs]
1591 		  || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1592 					  regno + offs))
1593 		break;
1594 
1595 	    if (offs == nregs
1596 		&& (! (refers_to_regno_for_reload_p
1597 		       (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1598 		    || can_reload_into (in, regno, inmode)))
1599 	      {
1600 		rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1601 		break;
1602 	      }
1603 	  }
1604     }
1605 
1606   if (out)
1607     output_reloadnum = i;
1608 
1609   return i;
1610 }
1611 
1612 /* Record an additional place we must replace a value
1613    for which we have already recorded a reload.
1614    RELOADNUM is the value returned by push_reload
1615    when the reload was recorded.
1616    This is used in insn patterns that use match_dup.  */
1617 
1618 static void
1619 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1620 {
1621   if (replace_reloads)
1622     {
1623       struct replacement *r = &replacements[n_replacements++];
1624       r->what = reloadnum;
1625       r->where = loc;
1626       r->subreg_loc = 0;
1627       r->mode = mode;
1628     }
1629 }
1630 
1631 /* Duplicate any replacement we have recorded to apply at
1632    location ORIG_LOC to also be performed at DUP_LOC.
1633    This is used in insn patterns that use match_dup.  */
1634 
1635 static void
1636 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1637 {
1638   int i, n = n_replacements;
1639 
1640   for (i = 0; i < n; i++)
1641     {
1642       struct replacement *r = &replacements[i];
1643       if (r->where == orig_loc)
1644 	push_replacement (dup_loc, r->what, r->mode);
1645     }
1646 }
1647 
1648 /* Transfer all replacements that used to be in reload FROM to be in
1649    reload TO.  */
1650 
1651 void
1652 transfer_replacements (int to, int from)
1653 {
1654   int i;
1655 
1656   for (i = 0; i < n_replacements; i++)
1657     if (replacements[i].what == from)
1658       replacements[i].what = to;
1659 }
1660 
1661 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1662    or a subpart of it.  If we have any replacements registered for IN_RTX,
1663    cancel the reloads that were supposed to load them.
1664    Return nonzero if we canceled any reloads.  */
1665 int
1666 remove_address_replacements (rtx in_rtx)
1667 {
1668   int i, j;
1669   char reload_flags[MAX_RELOADS];
1670   int something_changed = 0;
1671 
1672   memset (reload_flags, 0, sizeof reload_flags);
1673   for (i = 0, j = 0; i < n_replacements; i++)
1674     {
1675       if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1676 	reload_flags[replacements[i].what] |= 1;
1677       else
1678 	{
1679 	  replacements[j++] = replacements[i];
1680 	  reload_flags[replacements[i].what] |= 2;
1681 	}
1682     }
1683   /* Note that the following store must be done before the recursive calls.  */
1684   n_replacements = j;
1685 
1686   for (i = n_reloads - 1; i >= 0; i--)
1687     {
1688       if (reload_flags[i] == 1)
1689 	{
1690 	  deallocate_reload_reg (i);
1691 	  remove_address_replacements (rld[i].in);
1692 	  rld[i].in = 0;
1693 	  something_changed = 1;
1694 	}
1695     }
1696   return something_changed;
1697 }
1698 
1699 /* If there is only one output reload, and it is not for an earlyclobber
1700    operand, try to combine it with a (logically unrelated) input reload
1701    to reduce the number of reload registers needed.
1702 
1703    This is safe if the input reload does not appear in
1704    the value being output-reloaded, because this implies
1705    it is not needed any more once the original insn completes.
1706 
1707    If that doesn't work, see we can use any of the registers that
1708    die in this insn as a reload register.  We can if it is of the right
1709    class and does not appear in the value being output-reloaded.  */
1710 
1711 static void
1712 combine_reloads (void)
1713 {
1714   int i, regno;
1715   int output_reload = -1;
1716   int secondary_out = -1;
1717   rtx note;
1718 
1719   /* Find the output reload; return unless there is exactly one
1720      and that one is mandatory.  */
1721 
1722   for (i = 0; i < n_reloads; i++)
1723     if (rld[i].out != 0)
1724       {
1725 	if (output_reload >= 0)
1726 	  return;
1727 	output_reload = i;
1728       }
1729 
1730   if (output_reload < 0 || rld[output_reload].optional)
1731     return;
1732 
1733   /* An input-output reload isn't combinable.  */
1734 
1735   if (rld[output_reload].in != 0)
1736     return;
1737 
1738   /* If this reload is for an earlyclobber operand, we can't do anything.  */
1739   if (earlyclobber_operand_p (rld[output_reload].out))
1740     return;
1741 
1742   /* If there is a reload for part of the address of this operand, we would
1743      need to change it to RELOAD_FOR_OTHER_ADDRESS.  But that would extend
1744      its life to the point where doing this combine would not lower the
1745      number of spill registers needed.  */
1746   for (i = 0; i < n_reloads; i++)
1747     if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1748 	 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1749 	&& rld[i].opnum == rld[output_reload].opnum)
1750       return;
1751 
1752   /* Check each input reload; can we combine it?  */
1753 
1754   for (i = 0; i < n_reloads; i++)
1755     if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1756 	/* Life span of this reload must not extend past main insn.  */
1757 	&& rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1758 	&& rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1759 	&& rld[i].when_needed != RELOAD_OTHER
1760 	&& (CLASS_MAX_NREGS (rld[i].rclass, rld[i].inmode)
1761 	    == CLASS_MAX_NREGS (rld[output_reload].rclass,
1762 				rld[output_reload].outmode))
1763 	&& rld[i].inc == 0
1764 	&& rld[i].reg_rtx == 0
1765 #ifdef SECONDARY_MEMORY_NEEDED
1766 	/* Don't combine two reloads with different secondary
1767 	   memory locations.  */
1768 	&& (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1769 	    || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1770 	    || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1771 			    secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1772 #endif
1773 	&& (SMALL_REGISTER_CLASSES
1774 	    ? (rld[i].rclass == rld[output_reload].rclass)
1775 	    : (reg_class_subset_p (rld[i].rclass,
1776 				   rld[output_reload].rclass)
1777 	       || reg_class_subset_p (rld[output_reload].rclass,
1778 				      rld[i].rclass)))
1779 	&& (MATCHES (rld[i].in, rld[output_reload].out)
1780 	    /* Args reversed because the first arg seems to be
1781 	       the one that we imagine being modified
1782 	       while the second is the one that might be affected.  */
1783 	    || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1784 						      rld[i].in)
1785 		/* However, if the input is a register that appears inside
1786 		   the output, then we also can't share.
1787 		   Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1788 		   If the same reload reg is used for both reg 69 and the
1789 		   result to be stored in memory, then that result
1790 		   will clobber the address of the memory ref.  */
1791 		&& ! (REG_P (rld[i].in)
1792 		      && reg_overlap_mentioned_for_reload_p (rld[i].in,
1793 							     rld[output_reload].out))))
1794 	&& ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1795 					 rld[i].when_needed != RELOAD_FOR_INPUT)
1796 	&& (reg_class_size[(int) rld[i].rclass]
1797 	    || SMALL_REGISTER_CLASSES)
1798 	/* We will allow making things slightly worse by combining an
1799 	   input and an output, but no worse than that.  */
1800 	&& (rld[i].when_needed == RELOAD_FOR_INPUT
1801 	    || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1802       {
1803 	int j;
1804 
1805 	/* We have found a reload to combine with!  */
1806 	rld[i].out = rld[output_reload].out;
1807 	rld[i].out_reg = rld[output_reload].out_reg;
1808 	rld[i].outmode = rld[output_reload].outmode;
1809 	/* Mark the old output reload as inoperative.  */
1810 	rld[output_reload].out = 0;
1811 	/* The combined reload is needed for the entire insn.  */
1812 	rld[i].when_needed = RELOAD_OTHER;
1813 	/* If the output reload had a secondary reload, copy it.  */
1814 	if (rld[output_reload].secondary_out_reload != -1)
1815 	  {
1816 	    rld[i].secondary_out_reload
1817 	      = rld[output_reload].secondary_out_reload;
1818 	    rld[i].secondary_out_icode
1819 	      = rld[output_reload].secondary_out_icode;
1820 	  }
1821 
1822 #ifdef SECONDARY_MEMORY_NEEDED
1823 	/* Copy any secondary MEM.  */
1824 	if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1825 	  secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1826 	    = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1827 #endif
1828 	/* If required, minimize the register class.  */
1829 	if (reg_class_subset_p (rld[output_reload].rclass,
1830 				rld[i].rclass))
1831 	  rld[i].rclass = rld[output_reload].rclass;
1832 
1833 	/* Transfer all replacements from the old reload to the combined.  */
1834 	for (j = 0; j < n_replacements; j++)
1835 	  if (replacements[j].what == output_reload)
1836 	    replacements[j].what = i;
1837 
1838 	return;
1839       }
1840 
1841   /* If this insn has only one operand that is modified or written (assumed
1842      to be the first),  it must be the one corresponding to this reload.  It
1843      is safe to use anything that dies in this insn for that output provided
1844      that it does not occur in the output (we already know it isn't an
1845      earlyclobber.  If this is an asm insn, give up.  */
1846 
1847   if (INSN_CODE (this_insn) == -1)
1848     return;
1849 
1850   for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1851     if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1852 	|| insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1853       return;
1854 
1855   /* See if some hard register that dies in this insn and is not used in
1856      the output is the right class.  Only works if the register we pick
1857      up can fully hold our output reload.  */
1858   for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1859     if (REG_NOTE_KIND (note) == REG_DEAD
1860 	&& REG_P (XEXP (note, 0))
1861 	&& !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1862 						rld[output_reload].out)
1863 	&& (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1864 	&& HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1865 	&& TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1866 			      regno)
1867 	&& (hard_regno_nregs[regno][rld[output_reload].outmode]
1868 	    <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1869 	/* Ensure that a secondary or tertiary reload for this output
1870 	   won't want this register.  */
1871 	&& ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1872 	    || (!(TEST_HARD_REG_BIT
1873 		  (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1874 		&& ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1875 		    || !(TEST_HARD_REG_BIT
1876 			 (reg_class_contents[(int) rld[secondary_out].rclass],
1877 			  regno)))))
1878 	&& !fixed_regs[regno]
1879 	/* Check that a former pseudo is valid; see find_dummy_reload.  */
1880 	&& (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1881 	    || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
1882 			       ORIGINAL_REGNO (XEXP (note, 0)))
1883 		&& hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1884       {
1885 	rld[output_reload].reg_rtx
1886 	  = gen_rtx_REG (rld[output_reload].outmode, regno);
1887 	return;
1888       }
1889 }
1890 
1891 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1892    See if one of IN and OUT is a register that may be used;
1893    this is desirable since a spill-register won't be needed.
1894    If so, return the register rtx that proves acceptable.
1895 
1896    INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1897    RCLASS is the register class required for the reload.
1898 
1899    If FOR_REAL is >= 0, it is the number of the reload,
1900    and in some cases when it can be discovered that OUT doesn't need
1901    to be computed, clear out rld[FOR_REAL].out.
1902 
1903    If FOR_REAL is -1, this should not be done, because this call
1904    is just to see if a register can be found, not to find and install it.
1905 
1906    EARLYCLOBBER is nonzero if OUT is an earlyclobber operand.  This
1907    puts an additional constraint on being able to use IN for OUT since
1908    IN must not appear elsewhere in the insn (it is assumed that IN itself
1909    is safe from the earlyclobber).  */
1910 
1911 static rtx
1912 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1913 		   enum machine_mode inmode, enum machine_mode outmode,
1914 		   enum reg_class rclass, int for_real, int earlyclobber)
1915 {
1916   rtx in = real_in;
1917   rtx out = real_out;
1918   int in_offset = 0;
1919   int out_offset = 0;
1920   rtx value = 0;
1921 
1922   /* If operands exceed a word, we can't use either of them
1923      unless they have the same size.  */
1924   if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1925       && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1926 	  || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1927     return 0;
1928 
1929   /* Note that {in,out}_offset are needed only when 'in' or 'out'
1930      respectively refers to a hard register.  */
1931 
1932   /* Find the inside of any subregs.  */
1933   while (GET_CODE (out) == SUBREG)
1934     {
1935       if (REG_P (SUBREG_REG (out))
1936 	  && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1937 	out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1938 					   GET_MODE (SUBREG_REG (out)),
1939 					   SUBREG_BYTE (out),
1940 					   GET_MODE (out));
1941       out = SUBREG_REG (out);
1942     }
1943   while (GET_CODE (in) == SUBREG)
1944     {
1945       if (REG_P (SUBREG_REG (in))
1946 	  && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1947 	in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1948 					  GET_MODE (SUBREG_REG (in)),
1949 					  SUBREG_BYTE (in),
1950 					  GET_MODE (in));
1951       in = SUBREG_REG (in);
1952     }
1953 
1954   /* Narrow down the reg class, the same way push_reload will;
1955      otherwise we might find a dummy now, but push_reload won't.  */
1956   {
1957     enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, rclass);
1958     if (preferred_class != NO_REGS)
1959       rclass = preferred_class;
1960   }
1961 
1962   /* See if OUT will do.  */
1963   if (REG_P (out)
1964       && REGNO (out) < FIRST_PSEUDO_REGISTER)
1965     {
1966       unsigned int regno = REGNO (out) + out_offset;
1967       unsigned int nwords = hard_regno_nregs[regno][outmode];
1968       rtx saved_rtx;
1969 
1970       /* When we consider whether the insn uses OUT,
1971 	 ignore references within IN.  They don't prevent us
1972 	 from copying IN into OUT, because those refs would
1973 	 move into the insn that reloads IN.
1974 
1975 	 However, we only ignore IN in its role as this reload.
1976 	 If the insn uses IN elsewhere and it contains OUT,
1977 	 that counts.  We can't be sure it's the "same" operand
1978 	 so it might not go through this reload.  */
1979       saved_rtx = *inloc;
1980       *inloc = const0_rtx;
1981 
1982       if (regno < FIRST_PSEUDO_REGISTER
1983 	  && HARD_REGNO_MODE_OK (regno, outmode)
1984 	  && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1985 					     PATTERN (this_insn), outloc))
1986 	{
1987 	  unsigned int i;
1988 
1989 	  for (i = 0; i < nwords; i++)
1990 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1991 				     regno + i))
1992 	      break;
1993 
1994 	  if (i == nwords)
1995 	    {
1996 	      if (REG_P (real_out))
1997 		value = real_out;
1998 	      else
1999 		value = gen_rtx_REG (outmode, regno);
2000 	    }
2001 	}
2002 
2003       *inloc = saved_rtx;
2004     }
2005 
2006   /* Consider using IN if OUT was not acceptable
2007      or if OUT dies in this insn (like the quotient in a divmod insn).
2008      We can't use IN unless it is dies in this insn,
2009      which means we must know accurately which hard regs are live.
2010      Also, the result can't go in IN if IN is used within OUT,
2011      or if OUT is an earlyclobber and IN appears elsewhere in the insn.  */
2012   if (hard_regs_live_known
2013       && REG_P (in)
2014       && REGNO (in) < FIRST_PSEUDO_REGISTER
2015       && (value == 0
2016 	  || find_reg_note (this_insn, REG_UNUSED, real_out))
2017       && find_reg_note (this_insn, REG_DEAD, real_in)
2018       && !fixed_regs[REGNO (in)]
2019       && HARD_REGNO_MODE_OK (REGNO (in),
2020 			     /* The only case where out and real_out might
2021 				have different modes is where real_out
2022 				is a subreg, and in that case, out
2023 				has a real mode.  */
2024 			     (GET_MODE (out) != VOIDmode
2025 			      ? GET_MODE (out) : outmode))
2026       && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2027 	  /* However only do this if we can be sure that this input
2028 	     operand doesn't correspond with an uninitialized pseudo.
2029 	     global can assign some hardreg to it that is the same as
2030 	     the one assigned to a different, also live pseudo (as it
2031 	     can ignore the conflict).  We must never introduce writes
2032 	     to such hardregs, as they would clobber the other live
2033 	     pseudo.  See PR 20973.  */
2034           || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR),
2035 			     ORIGINAL_REGNO (in))
2036 	      /* Similarly, only do this if we can be sure that the death
2037 		 note is still valid.  global can assign some hardreg to
2038 		 the pseudo referenced in the note and simultaneously a
2039 		 subword of this hardreg to a different, also live pseudo,
2040 		 because only another subword of the hardreg is actually
2041 		 used in the insn.  This cannot happen if the pseudo has
2042 		 been assigned exactly one hardreg.  See PR 33732.  */
2043 	      && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2044     {
2045       unsigned int regno = REGNO (in) + in_offset;
2046       unsigned int nwords = hard_regno_nregs[regno][inmode];
2047 
2048       if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2049 	  && ! hard_reg_set_here_p (regno, regno + nwords,
2050 				    PATTERN (this_insn))
2051 	  && (! earlyclobber
2052 	      || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2053 						 PATTERN (this_insn), inloc)))
2054 	{
2055 	  unsigned int i;
2056 
2057 	  for (i = 0; i < nwords; i++)
2058 	    if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2059 				     regno + i))
2060 	      break;
2061 
2062 	  if (i == nwords)
2063 	    {
2064 	      /* If we were going to use OUT as the reload reg
2065 		 and changed our mind, it means OUT is a dummy that
2066 		 dies here.  So don't bother copying value to it.  */
2067 	      if (for_real >= 0 && value == real_out)
2068 		rld[for_real].out = 0;
2069 	      if (REG_P (real_in))
2070 		value = real_in;
2071 	      else
2072 		value = gen_rtx_REG (inmode, regno);
2073 	    }
2074 	}
2075     }
2076 
2077   return value;
2078 }
2079 
2080 /* This page contains subroutines used mainly for determining
2081    whether the IN or an OUT of a reload can serve as the
2082    reload register.  */
2083 
2084 /* Return 1 if X is an operand of an insn that is being earlyclobbered.  */
2085 
2086 int
2087 earlyclobber_operand_p (rtx x)
2088 {
2089   int i;
2090 
2091   for (i = 0; i < n_earlyclobbers; i++)
2092     if (reload_earlyclobbers[i] == x)
2093       return 1;
2094 
2095   return 0;
2096 }
2097 
2098 /* Return 1 if expression X alters a hard reg in the range
2099    from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2100    either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2101    X should be the body of an instruction.  */
2102 
2103 static int
2104 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2105 {
2106   if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2107     {
2108       rtx op0 = SET_DEST (x);
2109 
2110       while (GET_CODE (op0) == SUBREG)
2111 	op0 = SUBREG_REG (op0);
2112       if (REG_P (op0))
2113 	{
2114 	  unsigned int r = REGNO (op0);
2115 
2116 	  /* See if this reg overlaps range under consideration.  */
2117 	  if (r < end_regno
2118 	      && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2119 	    return 1;
2120 	}
2121     }
2122   else if (GET_CODE (x) == PARALLEL)
2123     {
2124       int i = XVECLEN (x, 0) - 1;
2125 
2126       for (; i >= 0; i--)
2127 	if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2128 	  return 1;
2129     }
2130 
2131   return 0;
2132 }
2133 
2134 /* Return 1 if ADDR is a valid memory address for mode MODE
2135    in address space AS, and check that each pseudo reg has the
2136    proper kind of hard reg.  */
2137 
2138 int
2139 strict_memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2140 				    rtx addr, addr_space_t as)
2141 {
2142 #ifdef GO_IF_LEGITIMATE_ADDRESS
2143   gcc_assert (ADDR_SPACE_GENERIC_P (as));
2144   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2145   return 0;
2146 
2147  win:
2148   return 1;
2149 #else
2150   return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2151 #endif
2152 }
2153 
2154 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2155    if they are the same hard reg, and has special hacks for
2156    autoincrement and autodecrement.
2157    This is specifically intended for find_reloads to use
2158    in determining whether two operands match.
2159    X is the operand whose number is the lower of the two.
2160 
2161    The value is 2 if Y contains a pre-increment that matches
2162    a non-incrementing address in X.  */
2163 
2164 /* ??? To be completely correct, we should arrange to pass
2165    for X the output operand and for Y the input operand.
2166    For now, we assume that the output operand has the lower number
2167    because that is natural in (SET output (... input ...)).  */
2168 
2169 int
2170 operands_match_p (rtx x, rtx y)
2171 {
2172   int i;
2173   RTX_CODE code = GET_CODE (x);
2174   const char *fmt;
2175   int success_2;
2176 
2177   if (x == y)
2178     return 1;
2179   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2180       && (REG_P (y) || (GET_CODE (y) == SUBREG
2181 				  && REG_P (SUBREG_REG (y)))))
2182     {
2183       int j;
2184 
2185       if (code == SUBREG)
2186 	{
2187 	  i = REGNO (SUBREG_REG (x));
2188 	  if (i >= FIRST_PSEUDO_REGISTER)
2189 	    goto slow;
2190 	  i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2191 				    GET_MODE (SUBREG_REG (x)),
2192 				    SUBREG_BYTE (x),
2193 				    GET_MODE (x));
2194 	}
2195       else
2196 	i = REGNO (x);
2197 
2198       if (GET_CODE (y) == SUBREG)
2199 	{
2200 	  j = REGNO (SUBREG_REG (y));
2201 	  if (j >= FIRST_PSEUDO_REGISTER)
2202 	    goto slow;
2203 	  j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2204 				    GET_MODE (SUBREG_REG (y)),
2205 				    SUBREG_BYTE (y),
2206 				    GET_MODE (y));
2207 	}
2208       else
2209 	j = REGNO (y);
2210 
2211       /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2212 	 multiple hard register group of scalar integer registers, so that
2213 	 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2214 	 register.  */
2215       if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2216 	  && SCALAR_INT_MODE_P (GET_MODE (x))
2217 	  && i < FIRST_PSEUDO_REGISTER)
2218 	i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2219       if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2220 	  && SCALAR_INT_MODE_P (GET_MODE (y))
2221 	  && j < FIRST_PSEUDO_REGISTER)
2222 	j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2223 
2224       return i == j;
2225     }
2226   /* If two operands must match, because they are really a single
2227      operand of an assembler insn, then two postincrements are invalid
2228      because the assembler insn would increment only once.
2229      On the other hand, a postincrement matches ordinary indexing
2230      if the postincrement is the output operand.  */
2231   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2232     return operands_match_p (XEXP (x, 0), y);
2233   /* Two preincrements are invalid
2234      because the assembler insn would increment only once.
2235      On the other hand, a preincrement matches ordinary indexing
2236      if the preincrement is the input operand.
2237      In this case, return 2, since some callers need to do special
2238      things when this happens.  */
2239   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2240       || GET_CODE (y) == PRE_MODIFY)
2241     return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2242 
2243  slow:
2244 
2245   /* Now we have disposed of all the cases in which different rtx codes
2246      can match.  */
2247   if (code != GET_CODE (y))
2248     return 0;
2249 
2250   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
2251   if (GET_MODE (x) != GET_MODE (y))
2252     return 0;
2253 
2254   /* MEMs refering to different address space are not equivalent.  */
2255   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2256     return 0;
2257 
2258   switch (code)
2259     {
2260     case CONST_INT:
2261     case CONST_DOUBLE:
2262     case CONST_FIXED:
2263       return 0;
2264 
2265     case LABEL_REF:
2266       return XEXP (x, 0) == XEXP (y, 0);
2267     case SYMBOL_REF:
2268       return XSTR (x, 0) == XSTR (y, 0);
2269 
2270     default:
2271       break;
2272     }
2273 
2274   /* Compare the elements.  If any pair of corresponding elements
2275      fail to match, return 0 for the whole things.  */
2276 
2277   success_2 = 0;
2278   fmt = GET_RTX_FORMAT (code);
2279   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2280     {
2281       int val, j;
2282       switch (fmt[i])
2283 	{
2284 	case 'w':
2285 	  if (XWINT (x, i) != XWINT (y, i))
2286 	    return 0;
2287 	  break;
2288 
2289 	case 'i':
2290 	  if (XINT (x, i) != XINT (y, i))
2291 	    return 0;
2292 	  break;
2293 
2294 	case 'e':
2295 	  val = operands_match_p (XEXP (x, i), XEXP (y, i));
2296 	  if (val == 0)
2297 	    return 0;
2298 	  /* If any subexpression returns 2,
2299 	     we should return 2 if we are successful.  */
2300 	  if (val == 2)
2301 	    success_2 = 1;
2302 	  break;
2303 
2304 	case '0':
2305 	  break;
2306 
2307 	case 'E':
2308 	  if (XVECLEN (x, i) != XVECLEN (y, i))
2309 	    return 0;
2310 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2311 	    {
2312 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2313 	      if (val == 0)
2314 		return 0;
2315 	      if (val == 2)
2316 		success_2 = 1;
2317 	    }
2318 	  break;
2319 
2320 	  /* It is believed that rtx's at this level will never
2321 	     contain anything but integers and other rtx's,
2322 	     except for within LABEL_REFs and SYMBOL_REFs.  */
2323 	default:
2324 	  gcc_unreachable ();
2325 	}
2326     }
2327   return 1 + success_2;
2328 }
2329 
2330 /* Describe the range of registers or memory referenced by X.
2331    If X is a register, set REG_FLAG and put the first register
2332    number into START and the last plus one into END.
2333    If X is a memory reference, put a base address into BASE
2334    and a range of integer offsets into START and END.
2335    If X is pushing on the stack, we can assume it causes no trouble,
2336    so we set the SAFE field.  */
2337 
2338 static struct decomposition
2339 decompose (rtx x)
2340 {
2341   struct decomposition val;
2342   int all_const = 0;
2343 
2344   memset (&val, 0, sizeof (val));
2345 
2346   switch (GET_CODE (x))
2347     {
2348     case MEM:
2349       {
2350 	rtx base = NULL_RTX, offset = 0;
2351 	rtx addr = XEXP (x, 0);
2352 
2353 	if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2354 	    || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2355 	  {
2356 	    val.base = XEXP (addr, 0);
2357 	    val.start = -GET_MODE_SIZE (GET_MODE (x));
2358 	    val.end = GET_MODE_SIZE (GET_MODE (x));
2359 	    val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2360 	    return val;
2361 	  }
2362 
2363 	if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2364 	  {
2365 	    if (GET_CODE (XEXP (addr, 1)) == PLUS
2366 		&& XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2367 		&& CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2368 	      {
2369 		val.base  = XEXP (addr, 0);
2370 		val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2371 		val.end   = INTVAL (XEXP (XEXP (addr, 1), 1));
2372 		val.safe  = REGNO (val.base) == STACK_POINTER_REGNUM;
2373 		return val;
2374 	      }
2375 	  }
2376 
2377 	if (GET_CODE (addr) == CONST)
2378 	  {
2379 	    addr = XEXP (addr, 0);
2380 	    all_const = 1;
2381 	  }
2382 	if (GET_CODE (addr) == PLUS)
2383 	  {
2384 	    if (CONSTANT_P (XEXP (addr, 0)))
2385 	      {
2386 		base = XEXP (addr, 1);
2387 		offset = XEXP (addr, 0);
2388 	      }
2389 	    else if (CONSTANT_P (XEXP (addr, 1)))
2390 	      {
2391 		base = XEXP (addr, 0);
2392 		offset = XEXP (addr, 1);
2393 	      }
2394 	  }
2395 
2396 	if (offset == 0)
2397 	  {
2398 	    base = addr;
2399 	    offset = const0_rtx;
2400 	  }
2401 	if (GET_CODE (offset) == CONST)
2402 	  offset = XEXP (offset, 0);
2403 	if (GET_CODE (offset) == PLUS)
2404 	  {
2405 	    if (CONST_INT_P (XEXP (offset, 0)))
2406 	      {
2407 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2408 		offset = XEXP (offset, 0);
2409 	      }
2410 	    else if (CONST_INT_P (XEXP (offset, 1)))
2411 	      {
2412 		base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2413 		offset = XEXP (offset, 1);
2414 	      }
2415 	    else
2416 	      {
2417 		base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2418 		offset = const0_rtx;
2419 	      }
2420 	  }
2421 	else if (!CONST_INT_P (offset))
2422 	  {
2423 	    base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2424 	    offset = const0_rtx;
2425 	  }
2426 
2427 	if (all_const && GET_CODE (base) == PLUS)
2428 	  base = gen_rtx_CONST (GET_MODE (base), base);
2429 
2430 	gcc_assert (CONST_INT_P (offset));
2431 
2432 	val.start = INTVAL (offset);
2433 	val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2434 	val.base = base;
2435       }
2436       break;
2437 
2438     case REG:
2439       val.reg_flag = 1;
2440       val.start = true_regnum (x);
2441       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2442 	{
2443 	  /* A pseudo with no hard reg.  */
2444 	  val.start = REGNO (x);
2445 	  val.end = val.start + 1;
2446 	}
2447       else
2448 	/* A hard reg.  */
2449 	val.end = end_hard_regno (GET_MODE (x), val.start);
2450       break;
2451 
2452     case SUBREG:
2453       if (!REG_P (SUBREG_REG (x)))
2454 	/* This could be more precise, but it's good enough.  */
2455 	return decompose (SUBREG_REG (x));
2456       val.reg_flag = 1;
2457       val.start = true_regnum (x);
2458       if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2459 	return decompose (SUBREG_REG (x));
2460       else
2461 	/* A hard reg.  */
2462 	val.end = val.start + subreg_nregs (x);
2463       break;
2464 
2465     case SCRATCH:
2466       /* This hasn't been assigned yet, so it can't conflict yet.  */
2467       val.safe = 1;
2468       break;
2469 
2470     default:
2471       gcc_assert (CONSTANT_P (x));
2472       val.safe = 1;
2473       break;
2474     }
2475   return val;
2476 }
2477 
2478 /* Return 1 if altering Y will not modify the value of X.
2479    Y is also described by YDATA, which should be decompose (Y).  */
2480 
2481 static int
2482 immune_p (rtx x, rtx y, struct decomposition ydata)
2483 {
2484   struct decomposition xdata;
2485 
2486   if (ydata.reg_flag)
2487     return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2488   if (ydata.safe)
2489     return 1;
2490 
2491   gcc_assert (MEM_P (y));
2492   /* If Y is memory and X is not, Y can't affect X.  */
2493   if (!MEM_P (x))
2494     return 1;
2495 
2496   xdata = decompose (x);
2497 
2498   if (! rtx_equal_p (xdata.base, ydata.base))
2499     {
2500       /* If bases are distinct symbolic constants, there is no overlap.  */
2501       if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2502 	return 1;
2503       /* Constants and stack slots never overlap.  */
2504       if (CONSTANT_P (xdata.base)
2505 	  && (ydata.base == frame_pointer_rtx
2506 	      || ydata.base == hard_frame_pointer_rtx
2507 	      || ydata.base == stack_pointer_rtx))
2508 	return 1;
2509       if (CONSTANT_P (ydata.base)
2510 	  && (xdata.base == frame_pointer_rtx
2511 	      || xdata.base == hard_frame_pointer_rtx
2512 	      || xdata.base == stack_pointer_rtx))
2513 	return 1;
2514       /* If either base is variable, we don't know anything.  */
2515       return 0;
2516     }
2517 
2518   return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2519 }
2520 
2521 /* Similar, but calls decompose.  */
2522 
2523 int
2524 safe_from_earlyclobber (rtx op, rtx clobber)
2525 {
2526   struct decomposition early_data;
2527 
2528   early_data = decompose (clobber);
2529   return immune_p (op, clobber, early_data);
2530 }
2531 
2532 /* Main entry point of this file: search the body of INSN
2533    for values that need reloading and record them with push_reload.
2534    REPLACE nonzero means record also where the values occur
2535    so that subst_reloads can be used.
2536 
2537    IND_LEVELS says how many levels of indirection are supported by this
2538    machine; a value of zero means that a memory reference is not a valid
2539    memory address.
2540 
2541    LIVE_KNOWN says we have valid information about which hard
2542    regs are live at each point in the program; this is true when
2543    we are called from global_alloc but false when stupid register
2544    allocation has been done.
2545 
2546    RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2547    which is nonnegative if the reg has been commandeered for reloading into.
2548    It is copied into STATIC_RELOAD_REG_P and referenced from there
2549    by various subroutines.
2550 
2551    Return TRUE if some operands need to be changed, because of swapping
2552    commutative operands, reg_equiv_address substitution, or whatever.  */
2553 
2554 int
2555 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2556 	      short *reload_reg_p)
2557 {
2558   int insn_code_number;
2559   int i, j;
2560   int noperands;
2561   /* These start out as the constraints for the insn
2562      and they are chewed up as we consider alternatives.  */
2563   const char *constraints[MAX_RECOG_OPERANDS];
2564   /* These are the preferred classes for an operand, or NO_REGS if it isn't
2565      a register.  */
2566   enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2567   char pref_or_nothing[MAX_RECOG_OPERANDS];
2568   /* Nonzero for a MEM operand whose entire address needs a reload.
2569      May be -1 to indicate the entire address may or may not need a reload.  */
2570   int address_reloaded[MAX_RECOG_OPERANDS];
2571   /* Nonzero for an address operand that needs to be completely reloaded.
2572      May be -1 to indicate the entire operand may or may not need a reload.  */
2573   int address_operand_reloaded[MAX_RECOG_OPERANDS];
2574   /* Value of enum reload_type to use for operand.  */
2575   enum reload_type operand_type[MAX_RECOG_OPERANDS];
2576   /* Value of enum reload_type to use within address of operand.  */
2577   enum reload_type address_type[MAX_RECOG_OPERANDS];
2578   /* Save the usage of each operand.  */
2579   enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2580   int no_input_reloads = 0, no_output_reloads = 0;
2581   int n_alternatives;
2582   enum reg_class this_alternative[MAX_RECOG_OPERANDS];
2583   char this_alternative_match_win[MAX_RECOG_OPERANDS];
2584   char this_alternative_win[MAX_RECOG_OPERANDS];
2585   char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2586   char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2587   int this_alternative_matches[MAX_RECOG_OPERANDS];
2588   int swapped;
2589   int goal_alternative[MAX_RECOG_OPERANDS];
2590   int this_alternative_number;
2591   int goal_alternative_number = 0;
2592   int operand_reloadnum[MAX_RECOG_OPERANDS];
2593   int goal_alternative_matches[MAX_RECOG_OPERANDS];
2594   int goal_alternative_matched[MAX_RECOG_OPERANDS];
2595   char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2596   char goal_alternative_win[MAX_RECOG_OPERANDS];
2597   char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2598   char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2599   int goal_alternative_swapped;
2600   int best;
2601   int best_small_class_operands_num;
2602   int commutative;
2603   char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2604   rtx substed_operand[MAX_RECOG_OPERANDS];
2605   rtx body = PATTERN (insn);
2606   rtx set = single_set (insn);
2607   int goal_earlyclobber = 0, this_earlyclobber;
2608   enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2609   int retval = 0;
2610 
2611   this_insn = insn;
2612   n_reloads = 0;
2613   n_replacements = 0;
2614   n_earlyclobbers = 0;
2615   replace_reloads = replace;
2616   hard_regs_live_known = live_known;
2617   static_reload_reg_p = reload_reg_p;
2618 
2619   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2620      neither are insns that SET cc0.  Insns that use CC0 are not allowed
2621      to have any input reloads.  */
2622   if (JUMP_P (insn) || CALL_P (insn))
2623     no_output_reloads = 1;
2624 
2625 #ifdef HAVE_cc0
2626   if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2627     no_input_reloads = 1;
2628   if (reg_set_p (cc0_rtx, PATTERN (insn)))
2629     no_output_reloads = 1;
2630 #endif
2631 
2632 #ifdef SECONDARY_MEMORY_NEEDED
2633   /* The eliminated forms of any secondary memory locations are per-insn, so
2634      clear them out here.  */
2635 
2636   if (secondary_memlocs_elim_used)
2637     {
2638       memset (secondary_memlocs_elim, 0,
2639 	      sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2640       secondary_memlocs_elim_used = 0;
2641     }
2642 #endif
2643 
2644   /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2645      is cheap to move between them.  If it is not, there may not be an insn
2646      to do the copy, so we may need a reload.  */
2647   if (GET_CODE (body) == SET
2648       && REG_P (SET_DEST (body))
2649       && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2650       && REG_P (SET_SRC (body))
2651       && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2652       && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2653 			     REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2654 			     REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2655     return 0;
2656 
2657   extract_insn (insn);
2658 
2659   noperands = reload_n_operands = recog_data.n_operands;
2660   n_alternatives = recog_data.n_alternatives;
2661 
2662   /* Just return "no reloads" if insn has no operands with constraints.  */
2663   if (noperands == 0 || n_alternatives == 0)
2664     return 0;
2665 
2666   insn_code_number = INSN_CODE (insn);
2667   this_insn_is_asm = insn_code_number < 0;
2668 
2669   memcpy (operand_mode, recog_data.operand_mode,
2670 	  noperands * sizeof (enum machine_mode));
2671   memcpy (constraints, recog_data.constraints,
2672 	  noperands * sizeof (const char *));
2673 
2674   commutative = -1;
2675 
2676   /* If we will need to know, later, whether some pair of operands
2677      are the same, we must compare them now and save the result.
2678      Reloading the base and index registers will clobber them
2679      and afterward they will fail to match.  */
2680 
2681   for (i = 0; i < noperands; i++)
2682     {
2683       const char *p;
2684       int c;
2685       char *end;
2686 
2687       substed_operand[i] = recog_data.operand[i];
2688       p = constraints[i];
2689 
2690       modified[i] = RELOAD_READ;
2691 
2692       /* Scan this operand's constraint to see if it is an output operand,
2693 	 an in-out operand, is commutative, or should match another.  */
2694 
2695       while ((c = *p))
2696 	{
2697 	  p += CONSTRAINT_LEN (c, p);
2698 	  switch (c)
2699 	    {
2700 	    case '=':
2701 	      modified[i] = RELOAD_WRITE;
2702 	      break;
2703 	    case '+':
2704 	      modified[i] = RELOAD_READ_WRITE;
2705 	      break;
2706 	    case '%':
2707 	      {
2708 		/* The last operand should not be marked commutative.  */
2709 		gcc_assert (i != noperands - 1);
2710 
2711 		/* We currently only support one commutative pair of
2712 		   operands.  Some existing asm code currently uses more
2713 		   than one pair.  Previously, that would usually work,
2714 		   but sometimes it would crash the compiler.  We
2715 		   continue supporting that case as well as we can by
2716 		   silently ignoring all but the first pair.  In the
2717 		   future we may handle it correctly.  */
2718 		if (commutative < 0)
2719 		  commutative = i;
2720 		else
2721 		  gcc_assert (this_insn_is_asm);
2722 	      }
2723 	      break;
2724 	    /* Use of ISDIGIT is tempting here, but it may get expensive because
2725 	       of locale support we don't want.  */
2726 	    case '0': case '1': case '2': case '3': case '4':
2727 	    case '5': case '6': case '7': case '8': case '9':
2728 	      {
2729 		c = strtoul (p - 1, &end, 10);
2730 		p = end;
2731 
2732 		operands_match[c][i]
2733 		  = operands_match_p (recog_data.operand[c],
2734 				      recog_data.operand[i]);
2735 
2736 		/* An operand may not match itself.  */
2737 		gcc_assert (c != i);
2738 
2739 		/* If C can be commuted with C+1, and C might need to match I,
2740 		   then C+1 might also need to match I.  */
2741 		if (commutative >= 0)
2742 		  {
2743 		    if (c == commutative || c == commutative + 1)
2744 		      {
2745 			int other = c + (c == commutative ? 1 : -1);
2746 			operands_match[other][i]
2747 			  = operands_match_p (recog_data.operand[other],
2748 					      recog_data.operand[i]);
2749 		      }
2750 		    if (i == commutative || i == commutative + 1)
2751 		      {
2752 			int other = i + (i == commutative ? 1 : -1);
2753 			operands_match[c][other]
2754 			  = operands_match_p (recog_data.operand[c],
2755 					      recog_data.operand[other]);
2756 		      }
2757 		    /* Note that C is supposed to be less than I.
2758 		       No need to consider altering both C and I because in
2759 		       that case we would alter one into the other.  */
2760 		  }
2761 	      }
2762 	    }
2763 	}
2764     }
2765 
2766   /* Examine each operand that is a memory reference or memory address
2767      and reload parts of the addresses into index registers.
2768      Also here any references to pseudo regs that didn't get hard regs
2769      but are equivalent to constants get replaced in the insn itself
2770      with those constants.  Nobody will ever see them again.
2771 
2772      Finally, set up the preferred classes of each operand.  */
2773 
2774   for (i = 0; i < noperands; i++)
2775     {
2776       RTX_CODE code = GET_CODE (recog_data.operand[i]);
2777 
2778       address_reloaded[i] = 0;
2779       address_operand_reloaded[i] = 0;
2780       operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2781 			 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2782 			 : RELOAD_OTHER);
2783       address_type[i]
2784 	= (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2785 	   : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2786 	   : RELOAD_OTHER);
2787 
2788       if (*constraints[i] == 0)
2789 	/* Ignore things like match_operator operands.  */
2790 	;
2791       else if (constraints[i][0] == 'p'
2792 	       || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2793 	{
2794 	  address_operand_reloaded[i]
2795 	    = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2796 				    recog_data.operand[i],
2797 				    recog_data.operand_loc[i],
2798 				    i, operand_type[i], ind_levels, insn);
2799 
2800 	  /* If we now have a simple operand where we used to have a
2801 	     PLUS or MULT, re-recognize and try again.  */
2802 	  if ((OBJECT_P (*recog_data.operand_loc[i])
2803 	       || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2804 	      && (GET_CODE (recog_data.operand[i]) == MULT
2805 		  || GET_CODE (recog_data.operand[i]) == PLUS))
2806 	    {
2807 	      INSN_CODE (insn) = -1;
2808 	      retval = find_reloads (insn, replace, ind_levels, live_known,
2809 				     reload_reg_p);
2810 	      return retval;
2811 	    }
2812 
2813 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2814 	  substed_operand[i] = recog_data.operand[i];
2815 
2816 	  /* Address operands are reloaded in their existing mode,
2817 	     no matter what is specified in the machine description.  */
2818 	  operand_mode[i] = GET_MODE (recog_data.operand[i]);
2819 	}
2820       else if (code == MEM)
2821 	{
2822 	  address_reloaded[i]
2823 	    = find_reloads_address (GET_MODE (recog_data.operand[i]),
2824 				    recog_data.operand_loc[i],
2825 				    XEXP (recog_data.operand[i], 0),
2826 				    &XEXP (recog_data.operand[i], 0),
2827 				    i, address_type[i], ind_levels, insn);
2828 	  recog_data.operand[i] = *recog_data.operand_loc[i];
2829 	  substed_operand[i] = recog_data.operand[i];
2830 	}
2831       else if (code == SUBREG)
2832 	{
2833 	  rtx reg = SUBREG_REG (recog_data.operand[i]);
2834 	  rtx op
2835 	    = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2836 				   ind_levels,
2837 				   set != 0
2838 				   && &SET_DEST (set) == recog_data.operand_loc[i],
2839 				   insn,
2840 				   &address_reloaded[i]);
2841 
2842 	  /* If we made a MEM to load (a part of) the stackslot of a pseudo
2843 	     that didn't get a hard register, emit a USE with a REG_EQUAL
2844 	     note in front so that we might inherit a previous, possibly
2845 	     wider reload.  */
2846 
2847 	  if (replace
2848 	      && MEM_P (op)
2849 	      && REG_P (reg)
2850 	      && (GET_MODE_SIZE (GET_MODE (reg))
2851 		  >= GET_MODE_SIZE (GET_MODE (op)))
2852 	      && reg_equiv_constant[REGNO (reg)] == 0)
2853 	    set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2854 						   insn),
2855 				 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2856 
2857 	  substed_operand[i] = recog_data.operand[i] = op;
2858 	}
2859       else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2860 	/* We can get a PLUS as an "operand" as a result of register
2861 	   elimination.  See eliminate_regs and gen_reload.  We handle
2862 	   a unary operator by reloading the operand.  */
2863 	substed_operand[i] = recog_data.operand[i]
2864 	  = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2865 				 ind_levels, 0, insn,
2866 				 &address_reloaded[i]);
2867       else if (code == REG)
2868 	{
2869 	  /* This is equivalent to calling find_reloads_toplev.
2870 	     The code is duplicated for speed.
2871 	     When we find a pseudo always equivalent to a constant,
2872 	     we replace it by the constant.  We must be sure, however,
2873 	     that we don't try to replace it in the insn in which it
2874 	     is being set.  */
2875 	  int regno = REGNO (recog_data.operand[i]);
2876 	  if (reg_equiv_constant[regno] != 0
2877 	      && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2878 	    {
2879 	      /* Record the existing mode so that the check if constants are
2880 		 allowed will work when operand_mode isn't specified.  */
2881 
2882 	      if (operand_mode[i] == VOIDmode)
2883 		operand_mode[i] = GET_MODE (recog_data.operand[i]);
2884 
2885 	      substed_operand[i] = recog_data.operand[i]
2886 		= reg_equiv_constant[regno];
2887 	    }
2888 	  if (reg_equiv_memory_loc[regno] != 0
2889 	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2890 	    /* We need not give a valid is_set_dest argument since the case
2891 	       of a constant equivalence was checked above.  */
2892 	    substed_operand[i] = recog_data.operand[i]
2893 	      = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2894 				     ind_levels, 0, insn,
2895 				     &address_reloaded[i]);
2896 	}
2897       /* If the operand is still a register (we didn't replace it with an
2898 	 equivalent), get the preferred class to reload it into.  */
2899       code = GET_CODE (recog_data.operand[i]);
2900       preferred_class[i]
2901 	= ((code == REG && REGNO (recog_data.operand[i])
2902 	    >= FIRST_PSEUDO_REGISTER)
2903 	   ? reg_preferred_class (REGNO (recog_data.operand[i]))
2904 	   : NO_REGS);
2905       pref_or_nothing[i]
2906 	= (code == REG
2907 	   && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2908 	   && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2909     }
2910 
2911   /* If this is simply a copy from operand 1 to operand 0, merge the
2912      preferred classes for the operands.  */
2913   if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2914       && recog_data.operand[1] == SET_SRC (set))
2915     {
2916       preferred_class[0] = preferred_class[1]
2917 	= reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2918       pref_or_nothing[0] |= pref_or_nothing[1];
2919       pref_or_nothing[1] |= pref_or_nothing[0];
2920     }
2921 
2922   /* Now see what we need for pseudo-regs that didn't get hard regs
2923      or got the wrong kind of hard reg.  For this, we must consider
2924      all the operands together against the register constraints.  */
2925 
2926   best = MAX_RECOG_OPERANDS * 2 + 600;
2927   best_small_class_operands_num = 0;
2928 
2929   swapped = 0;
2930   goal_alternative_swapped = 0;
2931  try_swapped:
2932 
2933   /* The constraints are made of several alternatives.
2934      Each operand's constraint looks like foo,bar,... with commas
2935      separating the alternatives.  The first alternatives for all
2936      operands go together, the second alternatives go together, etc.
2937 
2938      First loop over alternatives.  */
2939 
2940   for (this_alternative_number = 0;
2941        this_alternative_number < n_alternatives;
2942        this_alternative_number++)
2943     {
2944       /* Loop over operands for one constraint alternative.  */
2945       /* LOSERS counts those that don't fit this alternative
2946 	 and would require loading.  */
2947       int losers = 0;
2948       /* BAD is set to 1 if it some operand can't fit this alternative
2949 	 even after reloading.  */
2950       int bad = 0;
2951       /* REJECT is a count of how undesirable this alternative says it is
2952 	 if any reloading is required.  If the alternative matches exactly
2953 	 then REJECT is ignored, but otherwise it gets this much
2954 	 counted against it in addition to the reloading needed.  Each
2955 	 ? counts three times here since we want the disparaging caused by
2956 	 a bad register class to only count 1/3 as much.  */
2957       int reject = 0;
2958 
2959       if (!recog_data.alternative_enabled_p[this_alternative_number])
2960 	{
2961 	  int i;
2962 
2963 	  for (i = 0; i < recog_data.n_operands; i++)
2964 	    constraints[i] = skip_alternative (constraints[i]);
2965 
2966 	  continue;
2967 	}
2968 
2969       this_earlyclobber = 0;
2970 
2971       for (i = 0; i < noperands; i++)
2972 	{
2973 	  const char *p = constraints[i];
2974 	  char *end;
2975 	  int len;
2976 	  int win = 0;
2977 	  int did_match = 0;
2978 	  /* 0 => this operand can be reloaded somehow for this alternative.  */
2979 	  int badop = 1;
2980 	  /* 0 => this operand can be reloaded if the alternative allows regs.  */
2981 	  int winreg = 0;
2982 	  int c;
2983 	  int m;
2984 	  rtx operand = recog_data.operand[i];
2985 	  int offset = 0;
2986 	  /* Nonzero means this is a MEM that must be reloaded into a reg
2987 	     regardless of what the constraint says.  */
2988 	  int force_reload = 0;
2989 	  int offmemok = 0;
2990 	  /* Nonzero if a constant forced into memory would be OK for this
2991 	     operand.  */
2992 	  int constmemok = 0;
2993 	  int earlyclobber = 0;
2994 
2995 	  /* If the predicate accepts a unary operator, it means that
2996 	     we need to reload the operand, but do not do this for
2997 	     match_operator and friends.  */
2998 	  if (UNARY_P (operand) && *p != 0)
2999 	    operand = XEXP (operand, 0);
3000 
3001 	  /* If the operand is a SUBREG, extract
3002 	     the REG or MEM (or maybe even a constant) within.
3003 	     (Constants can occur as a result of reg_equiv_constant.)  */
3004 
3005 	  while (GET_CODE (operand) == SUBREG)
3006 	    {
3007 	      /* Offset only matters when operand is a REG and
3008 		 it is a hard reg.  This is because it is passed
3009 		 to reg_fits_class_p if it is a REG and all pseudos
3010 		 return 0 from that function.  */
3011 	      if (REG_P (SUBREG_REG (operand))
3012 		  && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3013 		{
3014 		  if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3015 					     GET_MODE (SUBREG_REG (operand)),
3016 					     SUBREG_BYTE (operand),
3017 					     GET_MODE (operand)) < 0)
3018 		    force_reload = 1;
3019 		  offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3020 						 GET_MODE (SUBREG_REG (operand)),
3021 						 SUBREG_BYTE (operand),
3022 						 GET_MODE (operand));
3023 		}
3024 	      operand = SUBREG_REG (operand);
3025 	      /* Force reload if this is a constant or PLUS or if there may
3026 		 be a problem accessing OPERAND in the outer mode.  */
3027 	      if (CONSTANT_P (operand)
3028 		  || GET_CODE (operand) == PLUS
3029 		  /* We must force a reload of paradoxical SUBREGs
3030 		     of a MEM because the alignment of the inner value
3031 		     may not be enough to do the outer reference.  On
3032 		     big-endian machines, it may also reference outside
3033 		     the object.
3034 
3035 		     On machines that extend byte operations and we have a
3036 		     SUBREG where both the inner and outer modes are no wider
3037 		     than a word and the inner mode is narrower, is integral,
3038 		     and gets extended when loaded from memory, combine.c has
3039 		     made assumptions about the behavior of the machine in such
3040 		     register access.  If the data is, in fact, in memory we
3041 		     must always load using the size assumed to be in the
3042 		     register and let the insn do the different-sized
3043 		     accesses.
3044 
3045 		     This is doubly true if WORD_REGISTER_OPERATIONS.  In
3046 		     this case eliminate_regs has left non-paradoxical
3047 		     subregs for push_reload to see.  Make sure it does
3048 		     by forcing the reload.
3049 
3050 		     ??? When is it right at this stage to have a subreg
3051 		     of a mem that is _not_ to be handled specially?  IMO
3052 		     those should have been reduced to just a mem.  */
3053 		  || ((MEM_P (operand)
3054 		       || (REG_P (operand)
3055 			   && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3056 #ifndef WORD_REGISTER_OPERATIONS
3057 		      && (((GET_MODE_BITSIZE (GET_MODE (operand))
3058 			    < BIGGEST_ALIGNMENT)
3059 			   && (GET_MODE_SIZE (operand_mode[i])
3060 			       > GET_MODE_SIZE (GET_MODE (operand))))
3061 			  || BYTES_BIG_ENDIAN
3062 #ifdef LOAD_EXTEND_OP
3063 			  || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3064 			      && (GET_MODE_SIZE (GET_MODE (operand))
3065 				  <= UNITS_PER_WORD)
3066 			      && (GET_MODE_SIZE (operand_mode[i])
3067 				  > GET_MODE_SIZE (GET_MODE (operand)))
3068 			      && INTEGRAL_MODE_P (GET_MODE (operand))
3069 			      && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3070 #endif
3071 			  )
3072 #endif
3073 		      )
3074 		  )
3075 		force_reload = 1;
3076 	    }
3077 
3078 	  this_alternative[i] = NO_REGS;
3079 	  this_alternative_win[i] = 0;
3080 	  this_alternative_match_win[i] = 0;
3081 	  this_alternative_offmemok[i] = 0;
3082 	  this_alternative_earlyclobber[i] = 0;
3083 	  this_alternative_matches[i] = -1;
3084 
3085 	  /* An empty constraint or empty alternative
3086 	     allows anything which matched the pattern.  */
3087 	  if (*p == 0 || *p == ',')
3088 	    win = 1, badop = 0;
3089 
3090 	  /* Scan this alternative's specs for this operand;
3091 	     set WIN if the operand fits any letter in this alternative.
3092 	     Otherwise, clear BADOP if this operand could
3093 	     fit some letter after reloads,
3094 	     or set WINREG if this operand could fit after reloads
3095 	     provided the constraint allows some registers.  */
3096 
3097 	  do
3098 	    switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3099 	      {
3100 	      case '\0':
3101 		len = 0;
3102 		break;
3103 	      case ',':
3104 		c = '\0';
3105 		break;
3106 
3107 	      case '=':  case '+':  case '*':
3108 		break;
3109 
3110 	      case '%':
3111 		/* We only support one commutative marker, the first
3112 		   one.  We already set commutative above.  */
3113 		break;
3114 
3115 	      case '?':
3116 		reject += 6;
3117 		break;
3118 
3119 	      case '!':
3120 		reject = 600;
3121 		break;
3122 
3123 	      case '#':
3124 		/* Ignore rest of this alternative as far as
3125 		   reloading is concerned.  */
3126 		do
3127 		  p++;
3128 		while (*p && *p != ',');
3129 		len = 0;
3130 		break;
3131 
3132 	      case '0':  case '1':  case '2':  case '3':  case '4':
3133 	      case '5':  case '6':  case '7':  case '8':  case '9':
3134 		m = strtoul (p, &end, 10);
3135 		p = end;
3136 		len = 0;
3137 
3138 		this_alternative_matches[i] = m;
3139 		/* We are supposed to match a previous operand.
3140 		   If we do, we win if that one did.
3141 		   If we do not, count both of the operands as losers.
3142 		   (This is too conservative, since most of the time
3143 		   only a single reload insn will be needed to make
3144 		   the two operands win.  As a result, this alternative
3145 		   may be rejected when it is actually desirable.)  */
3146 		if ((swapped && (m != commutative || i != commutative + 1))
3147 		    /* If we are matching as if two operands were swapped,
3148 		       also pretend that operands_match had been computed
3149 		       with swapped.
3150 		       But if I is the second of those and C is the first,
3151 		       don't exchange them, because operands_match is valid
3152 		       only on one side of its diagonal.  */
3153 		    ? (operands_match
3154 		       [(m == commutative || m == commutative + 1)
3155 		       ? 2 * commutative + 1 - m : m]
3156 		       [(i == commutative || i == commutative + 1)
3157 		       ? 2 * commutative + 1 - i : i])
3158 		    : operands_match[m][i])
3159 		  {
3160 		    /* If we are matching a non-offsettable address where an
3161 		       offsettable address was expected, then we must reject
3162 		       this combination, because we can't reload it.  */
3163 		    if (this_alternative_offmemok[m]
3164 			&& MEM_P (recog_data.operand[m])
3165 			&& this_alternative[m] == NO_REGS
3166 			&& ! this_alternative_win[m])
3167 		      bad = 1;
3168 
3169 		    did_match = this_alternative_win[m];
3170 		  }
3171 		else
3172 		  {
3173 		    /* Operands don't match.  */
3174 		    rtx value;
3175 		    int loc1, loc2;
3176 		    /* Retroactively mark the operand we had to match
3177 		       as a loser, if it wasn't already.  */
3178 		    if (this_alternative_win[m])
3179 		      losers++;
3180 		    this_alternative_win[m] = 0;
3181 		    if (this_alternative[m] == NO_REGS)
3182 		      bad = 1;
3183 		    /* But count the pair only once in the total badness of
3184 		       this alternative, if the pair can be a dummy reload.
3185 		       The pointers in operand_loc are not swapped; swap
3186 		       them by hand if necessary.  */
3187 		    if (swapped && i == commutative)
3188 		      loc1 = commutative + 1;
3189 		    else if (swapped && i == commutative + 1)
3190 		      loc1 = commutative;
3191 		    else
3192 		      loc1 = i;
3193 		    if (swapped && m == commutative)
3194 		      loc2 = commutative + 1;
3195 		    else if (swapped && m == commutative + 1)
3196 		      loc2 = commutative;
3197 		    else
3198 		      loc2 = m;
3199 		    value
3200 		      = find_dummy_reload (recog_data.operand[i],
3201 					   recog_data.operand[m],
3202 					   recog_data.operand_loc[loc1],
3203 					   recog_data.operand_loc[loc2],
3204 					   operand_mode[i], operand_mode[m],
3205 					   this_alternative[m], -1,
3206 					   this_alternative_earlyclobber[m]);
3207 
3208 		    if (value != 0)
3209 		      losers--;
3210 		  }
3211 		/* This can be fixed with reloads if the operand
3212 		   we are supposed to match can be fixed with reloads.  */
3213 		badop = 0;
3214 		this_alternative[i] = this_alternative[m];
3215 
3216 		/* If we have to reload this operand and some previous
3217 		   operand also had to match the same thing as this
3218 		   operand, we don't know how to do that.  So reject this
3219 		   alternative.  */
3220 		if (! did_match || force_reload)
3221 		  for (j = 0; j < i; j++)
3222 		    if (this_alternative_matches[j]
3223 			== this_alternative_matches[i])
3224 		      badop = 1;
3225 		break;
3226 
3227 	      case 'p':
3228 		/* All necessary reloads for an address_operand
3229 		   were handled in find_reloads_address.  */
3230 		this_alternative[i] = base_reg_class (VOIDmode, ADDRESS,
3231 						      SCRATCH);
3232 		win = 1;
3233 		badop = 0;
3234 		break;
3235 
3236 	      case TARGET_MEM_CONSTRAINT:
3237 		if (force_reload)
3238 		  break;
3239 		if (MEM_P (operand)
3240 		    || (REG_P (operand)
3241 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3242 			&& reg_renumber[REGNO (operand)] < 0))
3243 		  win = 1;
3244 		if (CONST_POOL_OK_P (operand))
3245 		  badop = 0;
3246 		constmemok = 1;
3247 		break;
3248 
3249 	      case '<':
3250 		if (MEM_P (operand)
3251 		    && ! address_reloaded[i]
3252 		    && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3253 			|| GET_CODE (XEXP (operand, 0)) == POST_DEC))
3254 		  win = 1;
3255 		break;
3256 
3257 	      case '>':
3258 		if (MEM_P (operand)
3259 		    && ! address_reloaded[i]
3260 		    && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3261 			|| GET_CODE (XEXP (operand, 0)) == POST_INC))
3262 		  win = 1;
3263 		break;
3264 
3265 		/* Memory operand whose address is not offsettable.  */
3266 	      case 'V':
3267 		if (force_reload)
3268 		  break;
3269 		if (MEM_P (operand)
3270 		    && ! (ind_levels ? offsettable_memref_p (operand)
3271 			  : offsettable_nonstrict_memref_p (operand))
3272 		    /* Certain mem addresses will become offsettable
3273 		       after they themselves are reloaded.  This is important;
3274 		       we don't want our own handling of unoffsettables
3275 		       to override the handling of reg_equiv_address.  */
3276 		    && !(REG_P (XEXP (operand, 0))
3277 			 && (ind_levels == 0
3278 			     || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3279 		  win = 1;
3280 		break;
3281 
3282 		/* Memory operand whose address is offsettable.  */
3283 	      case 'o':
3284 		if (force_reload)
3285 		  break;
3286 		if ((MEM_P (operand)
3287 		     /* If IND_LEVELS, find_reloads_address won't reload a
3288 			pseudo that didn't get a hard reg, so we have to
3289 			reject that case.  */
3290 		     && ((ind_levels ? offsettable_memref_p (operand)
3291 			  : offsettable_nonstrict_memref_p (operand))
3292 			 /* A reloaded address is offsettable because it is now
3293 			    just a simple register indirect.  */
3294 			 || address_reloaded[i] == 1))
3295 		    || (REG_P (operand)
3296 			&& REGNO (operand) >= FIRST_PSEUDO_REGISTER
3297 			&& reg_renumber[REGNO (operand)] < 0
3298 			/* If reg_equiv_address is nonzero, we will be
3299 			   loading it into a register; hence it will be
3300 			   offsettable, but we cannot say that reg_equiv_mem
3301 			   is offsettable without checking.  */
3302 			&& ((reg_equiv_mem[REGNO (operand)] != 0
3303 			     && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3304 			    || (reg_equiv_address[REGNO (operand)] != 0))))
3305 		  win = 1;
3306 		if (CONST_POOL_OK_P (operand)
3307 		    || MEM_P (operand))
3308 		  badop = 0;
3309 		constmemok = 1;
3310 		offmemok = 1;
3311 		break;
3312 
3313 	      case '&':
3314 		/* Output operand that is stored before the need for the
3315 		   input operands (and their index registers) is over.  */
3316 		earlyclobber = 1, this_earlyclobber = 1;
3317 		break;
3318 
3319 	      case 'E':
3320 	      case 'F':
3321 		if (GET_CODE (operand) == CONST_DOUBLE
3322 		    || (GET_CODE (operand) == CONST_VECTOR
3323 			&& (GET_MODE_CLASS (GET_MODE (operand))
3324 			    == MODE_VECTOR_FLOAT)))
3325 		  win = 1;
3326 		break;
3327 
3328 	      case 'G':
3329 	      case 'H':
3330 		if (GET_CODE (operand) == CONST_DOUBLE
3331 		    && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3332 		  win = 1;
3333 		break;
3334 
3335 	      case 's':
3336 		if (CONST_INT_P (operand)
3337 		    || (GET_CODE (operand) == CONST_DOUBLE
3338 			&& GET_MODE (operand) == VOIDmode))
3339 		  break;
3340 	      case 'i':
3341 		if (CONSTANT_P (operand)
3342 		    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3343 		  win = 1;
3344 		break;
3345 
3346 	      case 'n':
3347 		if (CONST_INT_P (operand)
3348 		    || (GET_CODE (operand) == CONST_DOUBLE
3349 			&& GET_MODE (operand) == VOIDmode))
3350 		  win = 1;
3351 		break;
3352 
3353 	      case 'I':
3354 	      case 'J':
3355 	      case 'K':
3356 	      case 'L':
3357 	      case 'M':
3358 	      case 'N':
3359 	      case 'O':
3360 	      case 'P':
3361 		if (CONST_INT_P (operand)
3362 		    && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3363 		  win = 1;
3364 		break;
3365 
3366 	      case 'X':
3367 		force_reload = 0;
3368 		win = 1;
3369 		break;
3370 
3371 	      case 'g':
3372 		if (! force_reload
3373 		    /* A PLUS is never a valid operand, but reload can make
3374 		       it from a register when eliminating registers.  */
3375 		    && GET_CODE (operand) != PLUS
3376 		    /* A SCRATCH is not a valid operand.  */
3377 		    && GET_CODE (operand) != SCRATCH
3378 		    && (! CONSTANT_P (operand)
3379 			|| ! flag_pic
3380 			|| LEGITIMATE_PIC_OPERAND_P (operand))
3381 		    && (GENERAL_REGS == ALL_REGS
3382 			|| !REG_P (operand)
3383 			|| (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3384 			    && reg_renumber[REGNO (operand)] < 0)))
3385 		  win = 1;
3386 		/* Drop through into 'r' case.  */
3387 
3388 	      case 'r':
3389 		this_alternative[i]
3390 		  = reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3391 		goto reg;
3392 
3393 	      default:
3394 		if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3395 		  {
3396 #ifdef EXTRA_CONSTRAINT_STR
3397 		    if (EXTRA_MEMORY_CONSTRAINT (c, p))
3398 		      {
3399 			if (force_reload)
3400 			  break;
3401 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3402 		          win = 1;
3403 			/* If the address was already reloaded,
3404 			   we win as well.  */
3405 			else if (MEM_P (operand)
3406 				 && address_reloaded[i] == 1)
3407 			  win = 1;
3408 			/* Likewise if the address will be reloaded because
3409 			   reg_equiv_address is nonzero.  For reg_equiv_mem
3410 			   we have to check.  */
3411 		        else if (REG_P (operand)
3412 				 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3413 				 && reg_renumber[REGNO (operand)] < 0
3414 				 && ((reg_equiv_mem[REGNO (operand)] != 0
3415 				      && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3416 				     || (reg_equiv_address[REGNO (operand)] != 0)))
3417 			  win = 1;
3418 
3419 			/* If we didn't already win, we can reload
3420 			   constants via force_const_mem, and other
3421 			   MEMs by reloading the address like for 'o'.  */
3422 			if (CONST_POOL_OK_P (operand)
3423 			    || MEM_P (operand))
3424 			  badop = 0;
3425 			constmemok = 1;
3426 			offmemok = 1;
3427 			break;
3428 		      }
3429 		    if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3430 		      {
3431 		        if (EXTRA_CONSTRAINT_STR (operand, c, p))
3432 		          win = 1;
3433 
3434 			/* If we didn't already win, we can reload
3435 			   the address into a base register.  */
3436 			this_alternative[i] = base_reg_class (VOIDmode,
3437 							      ADDRESS,
3438 							      SCRATCH);
3439 			badop = 0;
3440 			break;
3441 		      }
3442 
3443 		    if (EXTRA_CONSTRAINT_STR (operand, c, p))
3444 		      win = 1;
3445 #endif
3446 		    break;
3447 		  }
3448 
3449 		this_alternative[i]
3450 		  = (reg_class_subunion
3451 		     [this_alternative[i]]
3452 		     [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3453 	      reg:
3454 		if (GET_MODE (operand) == BLKmode)
3455 		  break;
3456 		winreg = 1;
3457 		if (REG_P (operand)
3458 		    && reg_fits_class_p (operand, this_alternative[i],
3459 					 offset, GET_MODE (recog_data.operand[i])))
3460 		  win = 1;
3461 		break;
3462 	      }
3463 	  while ((p += len), c);
3464 
3465 	  constraints[i] = p;
3466 
3467 	  /* If this operand could be handled with a reg,
3468 	     and some reg is allowed, then this operand can be handled.  */
3469 	  if (winreg && this_alternative[i] != NO_REGS)
3470 	    badop = 0;
3471 
3472 	  /* Record which operands fit this alternative.  */
3473 	  this_alternative_earlyclobber[i] = earlyclobber;
3474 	  if (win && ! force_reload)
3475 	    this_alternative_win[i] = 1;
3476 	  else if (did_match && ! force_reload)
3477 	    this_alternative_match_win[i] = 1;
3478 	  else
3479 	    {
3480 	      int const_to_mem = 0;
3481 
3482 	      this_alternative_offmemok[i] = offmemok;
3483 	      losers++;
3484 	      if (badop)
3485 		bad = 1;
3486 	      /* Alternative loses if it has no regs for a reg operand.  */
3487 	      if (REG_P (operand)
3488 		  && this_alternative[i] == NO_REGS
3489 		  && this_alternative_matches[i] < 0)
3490 		bad = 1;
3491 
3492 	      /* If this is a constant that is reloaded into the desired
3493 		 class by copying it to memory first, count that as another
3494 		 reload.  This is consistent with other code and is
3495 		 required to avoid choosing another alternative when
3496 		 the constant is moved into memory by this function on
3497 		 an early reload pass.  Note that the test here is
3498 		 precisely the same as in the code below that calls
3499 		 force_const_mem.  */
3500 	      if (CONST_POOL_OK_P (operand)
3501 		  && ((PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3502 		       == NO_REGS)
3503 		      || no_input_reloads)
3504 		  && operand_mode[i] != VOIDmode)
3505 		{
3506 		  const_to_mem = 1;
3507 		  if (this_alternative[i] != NO_REGS)
3508 		    losers++;
3509 		}
3510 
3511 	      /* Alternative loses if it requires a type of reload not
3512 		 permitted for this insn.  We can always reload SCRATCH
3513 		 and objects with a REG_UNUSED note.  */
3514 	      if (GET_CODE (operand) != SCRATCH
3515 		       && modified[i] != RELOAD_READ && no_output_reloads
3516 		       && ! find_reg_note (insn, REG_UNUSED, operand))
3517 		bad = 1;
3518 	      else if (modified[i] != RELOAD_WRITE && no_input_reloads
3519 		       && ! const_to_mem)
3520 		bad = 1;
3521 
3522 	      /* If we can't reload this value at all, reject this
3523 		 alternative.  Note that we could also lose due to
3524 		 LIMIT_RELOAD_CLASS, but we don't check that
3525 		 here.  */
3526 
3527 	      if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3528 		{
3529 		  if (PREFERRED_RELOAD_CLASS (operand, this_alternative[i])
3530 		      == NO_REGS)
3531 		    reject = 600;
3532 
3533 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3534 		  if (operand_type[i] == RELOAD_FOR_OUTPUT
3535 		      && (PREFERRED_OUTPUT_RELOAD_CLASS (operand,
3536 							this_alternative[i])
3537 			  == NO_REGS))
3538 		    reject = 600;
3539 #endif
3540 		}
3541 
3542 	      /* We prefer to reload pseudos over reloading other things,
3543 		 since such reloads may be able to be eliminated later.
3544 		 If we are reloading a SCRATCH, we won't be generating any
3545 		 insns, just using a register, so it is also preferred.
3546 		 So bump REJECT in other cases.  Don't do this in the
3547 		 case where we are forcing a constant into memory and
3548 		 it will then win since we don't want to have a different
3549 		 alternative match then.  */
3550 	      if (! (REG_P (operand)
3551 		     && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3552 		  && GET_CODE (operand) != SCRATCH
3553 		  && ! (const_to_mem && constmemok))
3554 		reject += 2;
3555 
3556 	      /* Input reloads can be inherited more often than output
3557 		 reloads can be removed, so penalize output reloads.  */
3558 	      if (operand_type[i] != RELOAD_FOR_INPUT
3559 		  && GET_CODE (operand) != SCRATCH)
3560 		reject++;
3561 	    }
3562 
3563 	  /* If this operand is a pseudo register that didn't get a hard
3564 	     reg and this alternative accepts some register, see if the
3565 	     class that we want is a subset of the preferred class for this
3566 	     register.  If not, but it intersects that class, use the
3567 	     preferred class instead.  If it does not intersect the preferred
3568 	     class, show that usage of this alternative should be discouraged;
3569 	     it will be discouraged more still if the register is `preferred
3570 	     or nothing'.  We do this because it increases the chance of
3571 	     reusing our spill register in a later insn and avoiding a pair
3572 	     of memory stores and loads.
3573 
3574 	     Don't bother with this if this alternative will accept this
3575 	     operand.
3576 
3577 	     Don't do this for a multiword operand, since it is only a
3578 	     small win and has the risk of requiring more spill registers,
3579 	     which could cause a large loss.
3580 
3581 	     Don't do this if the preferred class has only one register
3582 	     because we might otherwise exhaust the class.  */
3583 
3584 	  if (! win && ! did_match
3585 	      && this_alternative[i] != NO_REGS
3586 	      && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3587 	      && reg_class_size [(int) preferred_class[i]] > 0
3588 	      && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3589 	    {
3590 	      if (! reg_class_subset_p (this_alternative[i],
3591 					preferred_class[i]))
3592 		{
3593 		  /* Since we don't have a way of forming the intersection,
3594 		     we just do something special if the preferred class
3595 		     is a subset of the class we have; that's the most
3596 		     common case anyway.  */
3597 		  if (reg_class_subset_p (preferred_class[i],
3598 					  this_alternative[i]))
3599 		    this_alternative[i] = preferred_class[i];
3600 		  else
3601 		    reject += (2 + 2 * pref_or_nothing[i]);
3602 		}
3603 	    }
3604 	}
3605 
3606       /* Now see if any output operands that are marked "earlyclobber"
3607 	 in this alternative conflict with any input operands
3608 	 or any memory addresses.  */
3609 
3610       for (i = 0; i < noperands; i++)
3611 	if (this_alternative_earlyclobber[i]
3612 	    && (this_alternative_win[i] || this_alternative_match_win[i]))
3613 	  {
3614 	    struct decomposition early_data;
3615 
3616 	    early_data = decompose (recog_data.operand[i]);
3617 
3618 	    gcc_assert (modified[i] != RELOAD_READ);
3619 
3620 	    if (this_alternative[i] == NO_REGS)
3621 	      {
3622 		this_alternative_earlyclobber[i] = 0;
3623 		gcc_assert (this_insn_is_asm);
3624 		error_for_asm (this_insn,
3625 			       "%<&%> constraint used with no register class");
3626 	      }
3627 
3628 	    for (j = 0; j < noperands; j++)
3629 	      /* Is this an input operand or a memory ref?  */
3630 	      if ((MEM_P (recog_data.operand[j])
3631 		   || modified[j] != RELOAD_WRITE)
3632 		  && j != i
3633 		  /* Ignore things like match_operator operands.  */
3634 		  && *recog_data.constraints[j] != 0
3635 		  /* Don't count an input operand that is constrained to match
3636 		     the early clobber operand.  */
3637 		  && ! (this_alternative_matches[j] == i
3638 			&& rtx_equal_p (recog_data.operand[i],
3639 					recog_data.operand[j]))
3640 		  /* Is it altered by storing the earlyclobber operand?  */
3641 		  && !immune_p (recog_data.operand[j], recog_data.operand[i],
3642 				early_data))
3643 		{
3644 		  /* If the output is in a non-empty few-regs class,
3645 		     it's costly to reload it, so reload the input instead.  */
3646 		  if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3647 		      && (REG_P (recog_data.operand[j])
3648 			  || GET_CODE (recog_data.operand[j]) == SUBREG))
3649 		    {
3650 		      losers++;
3651 		      this_alternative_win[j] = 0;
3652 		      this_alternative_match_win[j] = 0;
3653 		    }
3654 		  else
3655 		    break;
3656 		}
3657 	    /* If an earlyclobber operand conflicts with something,
3658 	       it must be reloaded, so request this and count the cost.  */
3659 	    if (j != noperands)
3660 	      {
3661 		losers++;
3662 		this_alternative_win[i] = 0;
3663 		this_alternative_match_win[j] = 0;
3664 		for (j = 0; j < noperands; j++)
3665 		  if (this_alternative_matches[j] == i
3666 		      && this_alternative_match_win[j])
3667 		    {
3668 		      this_alternative_win[j] = 0;
3669 		      this_alternative_match_win[j] = 0;
3670 		      losers++;
3671 		    }
3672 	      }
3673 	  }
3674 
3675       /* If one alternative accepts all the operands, no reload required,
3676 	 choose that alternative; don't consider the remaining ones.  */
3677       if (losers == 0)
3678 	{
3679 	  /* Unswap these so that they are never swapped at `finish'.  */
3680 	  if (commutative >= 0)
3681 	    {
3682 	      recog_data.operand[commutative] = substed_operand[commutative];
3683 	      recog_data.operand[commutative + 1]
3684 		= substed_operand[commutative + 1];
3685 	    }
3686 	  for (i = 0; i < noperands; i++)
3687 	    {
3688 	      goal_alternative_win[i] = this_alternative_win[i];
3689 	      goal_alternative_match_win[i] = this_alternative_match_win[i];
3690 	      goal_alternative[i] = this_alternative[i];
3691 	      goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3692 	      goal_alternative_matches[i] = this_alternative_matches[i];
3693 	      goal_alternative_earlyclobber[i]
3694 		= this_alternative_earlyclobber[i];
3695 	    }
3696 	  goal_alternative_number = this_alternative_number;
3697 	  goal_alternative_swapped = swapped;
3698 	  goal_earlyclobber = this_earlyclobber;
3699 	  goto finish;
3700 	}
3701 
3702       /* REJECT, set by the ! and ? constraint characters and when a register
3703 	 would be reloaded into a non-preferred class, discourages the use of
3704 	 this alternative for a reload goal.  REJECT is incremented by six
3705 	 for each ? and two for each non-preferred class.  */
3706       losers = losers * 6 + reject;
3707 
3708       /* If this alternative can be made to work by reloading,
3709 	 and it needs less reloading than the others checked so far,
3710 	 record it as the chosen goal for reloading.  */
3711       if (! bad)
3712 	{
3713 	  bool change_p = false;
3714 	  int small_class_operands_num = 0;
3715 
3716 	  if (best >= losers)
3717 	    {
3718 	      for (i = 0; i < noperands; i++)
3719 		small_class_operands_num
3720 		  += SMALL_REGISTER_CLASS_P (this_alternative[i]) ? 1 : 0;
3721 	      if (best > losers
3722 		  || (best == losers
3723 		      /* If the cost of the reloads is the same,
3724 			 prefer alternative which requires minimal
3725 			 number of small register classes for the
3726 			 operands.  This improves chances of reloads
3727 			 for insn requiring small register
3728 			 classes.  */
3729 		      && (small_class_operands_num
3730 			  < best_small_class_operands_num)))
3731 		change_p = true;
3732 	    }
3733 	  if (change_p)
3734 	    {
3735 	      for (i = 0; i < noperands; i++)
3736 		{
3737 		  goal_alternative[i] = this_alternative[i];
3738 		  goal_alternative_win[i] = this_alternative_win[i];
3739 		  goal_alternative_match_win[i]
3740 		    = this_alternative_match_win[i];
3741 		  goal_alternative_offmemok[i]
3742 		    = this_alternative_offmemok[i];
3743 		  goal_alternative_matches[i] = this_alternative_matches[i];
3744 		  goal_alternative_earlyclobber[i]
3745 		    = this_alternative_earlyclobber[i];
3746 		}
3747 	      goal_alternative_swapped = swapped;
3748 	      best = losers;
3749 	      best_small_class_operands_num = small_class_operands_num;
3750 	      goal_alternative_number = this_alternative_number;
3751 	      goal_earlyclobber = this_earlyclobber;
3752 	    }
3753 	}
3754     }
3755 
3756   /* If insn is commutative (it's safe to exchange a certain pair of operands)
3757      then we need to try each alternative twice,
3758      the second time matching those two operands
3759      as if we had exchanged them.
3760      To do this, really exchange them in operands.
3761 
3762      If we have just tried the alternatives the second time,
3763      return operands to normal and drop through.  */
3764 
3765   if (commutative >= 0)
3766     {
3767       swapped = !swapped;
3768       if (swapped)
3769 	{
3770 	  enum reg_class tclass;
3771 	  int t;
3772 
3773 	  recog_data.operand[commutative] = substed_operand[commutative + 1];
3774 	  recog_data.operand[commutative + 1] = substed_operand[commutative];
3775 	  /* Swap the duplicates too.  */
3776 	  for (i = 0; i < recog_data.n_dups; i++)
3777 	    if (recog_data.dup_num[i] == commutative
3778 		|| recog_data.dup_num[i] == commutative + 1)
3779 	      *recog_data.dup_loc[i]
3780 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3781 
3782 	  tclass = preferred_class[commutative];
3783 	  preferred_class[commutative] = preferred_class[commutative + 1];
3784 	  preferred_class[commutative + 1] = tclass;
3785 
3786 	  t = pref_or_nothing[commutative];
3787 	  pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3788 	  pref_or_nothing[commutative + 1] = t;
3789 
3790 	  t = address_reloaded[commutative];
3791 	  address_reloaded[commutative] = address_reloaded[commutative + 1];
3792 	  address_reloaded[commutative + 1] = t;
3793 
3794 	  memcpy (constraints, recog_data.constraints,
3795 		  noperands * sizeof (const char *));
3796 	  goto try_swapped;
3797 	}
3798       else
3799 	{
3800 	  recog_data.operand[commutative] = substed_operand[commutative];
3801 	  recog_data.operand[commutative + 1]
3802 	    = substed_operand[commutative + 1];
3803 	  /* Unswap the duplicates too.  */
3804 	  for (i = 0; i < recog_data.n_dups; i++)
3805 	    if (recog_data.dup_num[i] == commutative
3806 		|| recog_data.dup_num[i] == commutative + 1)
3807 	      *recog_data.dup_loc[i]
3808 		 = recog_data.operand[(int) recog_data.dup_num[i]];
3809 	}
3810     }
3811 
3812   /* The operands don't meet the constraints.
3813      goal_alternative describes the alternative
3814      that we could reach by reloading the fewest operands.
3815      Reload so as to fit it.  */
3816 
3817   if (best == MAX_RECOG_OPERANDS * 2 + 600)
3818     {
3819       /* No alternative works with reloads??  */
3820       if (insn_code_number >= 0)
3821 	fatal_insn ("unable to generate reloads for:", insn);
3822       error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3823       /* Avoid further trouble with this insn.  */
3824       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3825       n_reloads = 0;
3826       return 0;
3827     }
3828 
3829   /* Jump to `finish' from above if all operands are valid already.
3830      In that case, goal_alternative_win is all 1.  */
3831  finish:
3832 
3833   /* Right now, for any pair of operands I and J that are required to match,
3834      with I < J,
3835      goal_alternative_matches[J] is I.
3836      Set up goal_alternative_matched as the inverse function:
3837      goal_alternative_matched[I] = J.  */
3838 
3839   for (i = 0; i < noperands; i++)
3840     goal_alternative_matched[i] = -1;
3841 
3842   for (i = 0; i < noperands; i++)
3843     if (! goal_alternative_win[i]
3844 	&& goal_alternative_matches[i] >= 0)
3845       goal_alternative_matched[goal_alternative_matches[i]] = i;
3846 
3847   for (i = 0; i < noperands; i++)
3848     goal_alternative_win[i] |= goal_alternative_match_win[i];
3849 
3850   /* If the best alternative is with operands 1 and 2 swapped,
3851      consider them swapped before reporting the reloads.  Update the
3852      operand numbers of any reloads already pushed.  */
3853 
3854   if (goal_alternative_swapped)
3855     {
3856       rtx tem;
3857 
3858       tem = substed_operand[commutative];
3859       substed_operand[commutative] = substed_operand[commutative + 1];
3860       substed_operand[commutative + 1] = tem;
3861       tem = recog_data.operand[commutative];
3862       recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3863       recog_data.operand[commutative + 1] = tem;
3864       tem = *recog_data.operand_loc[commutative];
3865       *recog_data.operand_loc[commutative]
3866 	= *recog_data.operand_loc[commutative + 1];
3867       *recog_data.operand_loc[commutative + 1] = tem;
3868 
3869       for (i = 0; i < n_reloads; i++)
3870 	{
3871 	  if (rld[i].opnum == commutative)
3872 	    rld[i].opnum = commutative + 1;
3873 	  else if (rld[i].opnum == commutative + 1)
3874 	    rld[i].opnum = commutative;
3875 	}
3876     }
3877 
3878   for (i = 0; i < noperands; i++)
3879     {
3880       operand_reloadnum[i] = -1;
3881 
3882       /* If this is an earlyclobber operand, we need to widen the scope.
3883 	 The reload must remain valid from the start of the insn being
3884 	 reloaded until after the operand is stored into its destination.
3885 	 We approximate this with RELOAD_OTHER even though we know that we
3886 	 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3887 
3888 	 One special case that is worth checking is when we have an
3889 	 output that is earlyclobber but isn't used past the insn (typically
3890 	 a SCRATCH).  In this case, we only need have the reload live
3891 	 through the insn itself, but not for any of our input or output
3892 	 reloads.
3893 	 But we must not accidentally narrow the scope of an existing
3894 	 RELOAD_OTHER reload - leave these alone.
3895 
3896 	 In any case, anything needed to address this operand can remain
3897 	 however they were previously categorized.  */
3898 
3899       if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3900 	operand_type[i]
3901 	  = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3902 	     ? RELOAD_FOR_INSN : RELOAD_OTHER);
3903     }
3904 
3905   /* Any constants that aren't allowed and can't be reloaded
3906      into registers are here changed into memory references.  */
3907   for (i = 0; i < noperands; i++)
3908     if (! goal_alternative_win[i])
3909       {
3910 	rtx op = recog_data.operand[i];
3911 	rtx subreg = NULL_RTX;
3912 	rtx plus = NULL_RTX;
3913 	enum machine_mode mode = operand_mode[i];
3914 
3915 	/* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3916 	   push_reload so we have to let them pass here.  */
3917 	if (GET_CODE (op) == SUBREG)
3918 	  {
3919 	    subreg = op;
3920 	    op = SUBREG_REG (op);
3921 	    mode = GET_MODE (op);
3922 	  }
3923 
3924 	if (GET_CODE (op) == PLUS)
3925 	  {
3926 	    plus = op;
3927 	    op = XEXP (op, 1);
3928 	  }
3929 
3930 	if (CONST_POOL_OK_P (op)
3931 	    && ((PREFERRED_RELOAD_CLASS (op,
3932 					 (enum reg_class) goal_alternative[i])
3933 		 == NO_REGS)
3934 		|| no_input_reloads)
3935 	    && mode != VOIDmode)
3936 	  {
3937 	    int this_address_reloaded;
3938 	    rtx tem = force_const_mem (mode, op);
3939 
3940 	    /* If we stripped a SUBREG or a PLUS above add it back.  */
3941 	    if (plus != NULL_RTX)
3942 	      tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3943 
3944 	    if (subreg != NULL_RTX)
3945 	      tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3946 
3947 	    this_address_reloaded = 0;
3948 	    substed_operand[i] = recog_data.operand[i]
3949 	      = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3950 				     0, insn, &this_address_reloaded);
3951 
3952 	    /* If the alternative accepts constant pool refs directly
3953 	       there will be no reload needed at all.  */
3954 	    if (plus == NULL_RTX
3955 		&& subreg == NULL_RTX
3956 		&& alternative_allows_const_pool_ref (this_address_reloaded == 0
3957 						      ? substed_operand[i]
3958 						      : NULL,
3959 						      recog_data.constraints[i],
3960 						      goal_alternative_number))
3961 	      goal_alternative_win[i] = 1;
3962 	  }
3963       }
3964 
3965   /* Record the values of the earlyclobber operands for the caller.  */
3966   if (goal_earlyclobber)
3967     for (i = 0; i < noperands; i++)
3968       if (goal_alternative_earlyclobber[i])
3969 	reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3970 
3971   /* Now record reloads for all the operands that need them.  */
3972   for (i = 0; i < noperands; i++)
3973     if (! goal_alternative_win[i])
3974       {
3975 	/* Operands that match previous ones have already been handled.  */
3976 	if (goal_alternative_matches[i] >= 0)
3977 	  ;
3978 	/* Handle an operand with a nonoffsettable address
3979 	   appearing where an offsettable address will do
3980 	   by reloading the address into a base register.
3981 
3982 	   ??? We can also do this when the operand is a register and
3983 	   reg_equiv_mem is not offsettable, but this is a bit tricky,
3984 	   so we don't bother with it.  It may not be worth doing.  */
3985 	else if (goal_alternative_matched[i] == -1
3986 		 && goal_alternative_offmemok[i]
3987 		 && MEM_P (recog_data.operand[i]))
3988 	  {
3989 	    /* If the address to be reloaded is a VOIDmode constant,
3990 	       use the default address mode as mode of the reload register,
3991 	       as would have been done by find_reloads_address.  */
3992 	    enum machine_mode address_mode;
3993 	    address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3994 	    if (address_mode == VOIDmode)
3995 	      {
3996 		addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
3997 		address_mode = targetm.addr_space.address_mode (as);
3998 	      }
3999 
4000 	    operand_reloadnum[i]
4001 	      = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4002 			     &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4003 			     base_reg_class (VOIDmode, MEM, SCRATCH),
4004 			     address_mode,
4005 			     VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4006 	    rld[operand_reloadnum[i]].inc
4007 	      = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4008 
4009 	    /* If this operand is an output, we will have made any
4010 	       reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4011 	       now we are treating part of the operand as an input, so
4012 	       we must change these to RELOAD_FOR_INPUT_ADDRESS.  */
4013 
4014 	    if (modified[i] == RELOAD_WRITE)
4015 	      {
4016 		for (j = 0; j < n_reloads; j++)
4017 		  {
4018 		    if (rld[j].opnum == i)
4019 		      {
4020 			if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4021 			  rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4022 			else if (rld[j].when_needed
4023 				 == RELOAD_FOR_OUTADDR_ADDRESS)
4024 			  rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4025 		      }
4026 		  }
4027 	      }
4028 	  }
4029 	else if (goal_alternative_matched[i] == -1)
4030 	  {
4031 	    operand_reloadnum[i]
4032 	      = push_reload ((modified[i] != RELOAD_WRITE
4033 			      ? recog_data.operand[i] : 0),
4034 			     (modified[i] != RELOAD_READ
4035 			      ? recog_data.operand[i] : 0),
4036 			     (modified[i] != RELOAD_WRITE
4037 			      ? recog_data.operand_loc[i] : 0),
4038 			     (modified[i] != RELOAD_READ
4039 			      ? recog_data.operand_loc[i] : 0),
4040 			     (enum reg_class) goal_alternative[i],
4041 			     (modified[i] == RELOAD_WRITE
4042 			      ? VOIDmode : operand_mode[i]),
4043 			     (modified[i] == RELOAD_READ
4044 			      ? VOIDmode : operand_mode[i]),
4045 			     (insn_code_number < 0 ? 0
4046 			      : insn_data[insn_code_number].operand[i].strict_low),
4047 			     0, i, operand_type[i]);
4048 	  }
4049 	/* In a matching pair of operands, one must be input only
4050 	   and the other must be output only.
4051 	   Pass the input operand as IN and the other as OUT.  */
4052 	else if (modified[i] == RELOAD_READ
4053 		 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4054 	  {
4055 	    operand_reloadnum[i]
4056 	      = push_reload (recog_data.operand[i],
4057 			     recog_data.operand[goal_alternative_matched[i]],
4058 			     recog_data.operand_loc[i],
4059 			     recog_data.operand_loc[goal_alternative_matched[i]],
4060 			     (enum reg_class) goal_alternative[i],
4061 			     operand_mode[i],
4062 			     operand_mode[goal_alternative_matched[i]],
4063 			     0, 0, i, RELOAD_OTHER);
4064 	    operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4065 	  }
4066 	else if (modified[i] == RELOAD_WRITE
4067 		 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4068 	  {
4069 	    operand_reloadnum[goal_alternative_matched[i]]
4070 	      = push_reload (recog_data.operand[goal_alternative_matched[i]],
4071 			     recog_data.operand[i],
4072 			     recog_data.operand_loc[goal_alternative_matched[i]],
4073 			     recog_data.operand_loc[i],
4074 			     (enum reg_class) goal_alternative[i],
4075 			     operand_mode[goal_alternative_matched[i]],
4076 			     operand_mode[i],
4077 			     0, 0, i, RELOAD_OTHER);
4078 	    operand_reloadnum[i] = output_reloadnum;
4079 	  }
4080 	else
4081 	  {
4082 	    gcc_assert (insn_code_number < 0);
4083 	    error_for_asm (insn, "inconsistent operand constraints "
4084 			   "in an %<asm%>");
4085 	    /* Avoid further trouble with this insn.  */
4086 	    PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4087 	    n_reloads = 0;
4088 	    return 0;
4089 	  }
4090       }
4091     else if (goal_alternative_matched[i] < 0
4092 	     && goal_alternative_matches[i] < 0
4093 	     && address_operand_reloaded[i] != 1
4094 	     && optimize)
4095       {
4096 	/* For each non-matching operand that's a MEM or a pseudo-register
4097 	   that didn't get a hard register, make an optional reload.
4098 	   This may get done even if the insn needs no reloads otherwise.  */
4099 
4100 	rtx operand = recog_data.operand[i];
4101 
4102 	while (GET_CODE (operand) == SUBREG)
4103 	  operand = SUBREG_REG (operand);
4104 	if ((MEM_P (operand)
4105 	     || (REG_P (operand)
4106 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4107 	    /* If this is only for an output, the optional reload would not
4108 	       actually cause us to use a register now, just note that
4109 	       something is stored here.  */
4110 	    && ((enum reg_class) goal_alternative[i] != NO_REGS
4111 		|| modified[i] == RELOAD_WRITE)
4112 	    && ! no_input_reloads
4113 	    /* An optional output reload might allow to delete INSN later.
4114 	       We mustn't make in-out reloads on insns that are not permitted
4115 	       output reloads.
4116 	       If this is an asm, we can't delete it; we must not even call
4117 	       push_reload for an optional output reload in this case,
4118 	       because we can't be sure that the constraint allows a register,
4119 	       and push_reload verifies the constraints for asms.  */
4120 	    && (modified[i] == RELOAD_READ
4121 		|| (! no_output_reloads && ! this_insn_is_asm)))
4122 	  operand_reloadnum[i]
4123 	    = push_reload ((modified[i] != RELOAD_WRITE
4124 			    ? recog_data.operand[i] : 0),
4125 			   (modified[i] != RELOAD_READ
4126 			    ? recog_data.operand[i] : 0),
4127 			   (modified[i] != RELOAD_WRITE
4128 			    ? recog_data.operand_loc[i] : 0),
4129 			   (modified[i] != RELOAD_READ
4130 			    ? recog_data.operand_loc[i] : 0),
4131 			   (enum reg_class) goal_alternative[i],
4132 			   (modified[i] == RELOAD_WRITE
4133 			    ? VOIDmode : operand_mode[i]),
4134 			   (modified[i] == RELOAD_READ
4135 			    ? VOIDmode : operand_mode[i]),
4136 			   (insn_code_number < 0 ? 0
4137 			    : insn_data[insn_code_number].operand[i].strict_low),
4138 			   1, i, operand_type[i]);
4139 	/* If a memory reference remains (either as a MEM or a pseudo that
4140 	   did not get a hard register), yet we can't make an optional
4141 	   reload, check if this is actually a pseudo register reference;
4142 	   we then need to emit a USE and/or a CLOBBER so that reload
4143 	   inheritance will do the right thing.  */
4144 	else if (replace
4145 		 && (MEM_P (operand)
4146 		     || (REG_P (operand)
4147 			 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4148 			 && reg_renumber [REGNO (operand)] < 0)))
4149 	  {
4150 	    operand = *recog_data.operand_loc[i];
4151 
4152 	    while (GET_CODE (operand) == SUBREG)
4153 	      operand = SUBREG_REG (operand);
4154 	    if (REG_P (operand))
4155 	      {
4156 		if (modified[i] != RELOAD_WRITE)
4157 		  /* We mark the USE with QImode so that we recognize
4158 		     it as one that can be safely deleted at the end
4159 		     of reload.  */
4160 		  PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4161 					      insn), QImode);
4162 		if (modified[i] != RELOAD_READ)
4163 		  emit_insn_after (gen_clobber (operand), insn);
4164 	      }
4165 	  }
4166       }
4167     else if (goal_alternative_matches[i] >= 0
4168 	     && goal_alternative_win[goal_alternative_matches[i]]
4169 	     && modified[i] == RELOAD_READ
4170 	     && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4171 	     && ! no_input_reloads && ! no_output_reloads
4172 	     && optimize)
4173       {
4174 	/* Similarly, make an optional reload for a pair of matching
4175 	   objects that are in MEM or a pseudo that didn't get a hard reg.  */
4176 
4177 	rtx operand = recog_data.operand[i];
4178 
4179 	while (GET_CODE (operand) == SUBREG)
4180 	  operand = SUBREG_REG (operand);
4181 	if ((MEM_P (operand)
4182 	     || (REG_P (operand)
4183 		 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4184 	    && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4185 		!= NO_REGS))
4186 	  operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4187 	    = push_reload (recog_data.operand[goal_alternative_matches[i]],
4188 			   recog_data.operand[i],
4189 			   recog_data.operand_loc[goal_alternative_matches[i]],
4190 			   recog_data.operand_loc[i],
4191 			   (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4192 			   operand_mode[goal_alternative_matches[i]],
4193 			   operand_mode[i],
4194 			   0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4195       }
4196 
4197   /* Perform whatever substitutions on the operands we are supposed
4198      to make due to commutativity or replacement of registers
4199      with equivalent constants or memory slots.  */
4200 
4201   for (i = 0; i < noperands; i++)
4202     {
4203       /* We only do this on the last pass through reload, because it is
4204 	 possible for some data (like reg_equiv_address) to be changed during
4205 	 later passes.  Moreover, we lose the opportunity to get a useful
4206 	 reload_{in,out}_reg when we do these replacements.  */
4207 
4208       if (replace)
4209 	{
4210 	  rtx substitution = substed_operand[i];
4211 
4212 	  *recog_data.operand_loc[i] = substitution;
4213 
4214 	  /* If we're replacing an operand with a LABEL_REF, we need to
4215 	     make sure that there's a REG_LABEL_OPERAND note attached to
4216 	     this instruction.  */
4217 	  if (GET_CODE (substitution) == LABEL_REF
4218 	      && !find_reg_note (insn, REG_LABEL_OPERAND,
4219 				 XEXP (substitution, 0))
4220 	      /* For a JUMP_P, if it was a branch target it must have
4221 		 already been recorded as such.  */
4222 	      && (!JUMP_P (insn)
4223 		  || !label_is_jump_target_p (XEXP (substitution, 0),
4224 					      insn)))
4225 	    add_reg_note (insn, REG_LABEL_OPERAND, XEXP (substitution, 0));
4226 	}
4227       else
4228 	retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4229     }
4230 
4231   /* If this insn pattern contains any MATCH_DUP's, make sure that
4232      they will be substituted if the operands they match are substituted.
4233      Also do now any substitutions we already did on the operands.
4234 
4235      Don't do this if we aren't making replacements because we might be
4236      propagating things allocated by frame pointer elimination into places
4237      it doesn't expect.  */
4238 
4239   if (insn_code_number >= 0 && replace)
4240     for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4241       {
4242 	int opno = recog_data.dup_num[i];
4243 	*recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4244 	dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4245       }
4246 
4247 #if 0
4248   /* This loses because reloading of prior insns can invalidate the equivalence
4249      (or at least find_equiv_reg isn't smart enough to find it any more),
4250      causing this insn to need more reload regs than it needed before.
4251      It may be too late to make the reload regs available.
4252      Now this optimization is done safely in choose_reload_regs.  */
4253 
4254   /* For each reload of a reg into some other class of reg,
4255      search for an existing equivalent reg (same value now) in the right class.
4256      We can use it as long as we don't need to change its contents.  */
4257   for (i = 0; i < n_reloads; i++)
4258     if (rld[i].reg_rtx == 0
4259 	&& rld[i].in != 0
4260 	&& REG_P (rld[i].in)
4261 	&& rld[i].out == 0)
4262       {
4263 	rld[i].reg_rtx
4264 	  = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4265 			    static_reload_reg_p, 0, rld[i].inmode);
4266 	/* Prevent generation of insn to load the value
4267 	   because the one we found already has the value.  */
4268 	if (rld[i].reg_rtx)
4269 	  rld[i].in = rld[i].reg_rtx;
4270       }
4271 #endif
4272 
4273   /* If we detected error and replaced asm instruction by USE, forget about the
4274      reloads.  */
4275   if (GET_CODE (PATTERN (insn)) == USE
4276       && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4277     n_reloads = 0;
4278 
4279   /* Perhaps an output reload can be combined with another
4280      to reduce needs by one.  */
4281   if (!goal_earlyclobber)
4282     combine_reloads ();
4283 
4284   /* If we have a pair of reloads for parts of an address, they are reloading
4285      the same object, the operands themselves were not reloaded, and they
4286      are for two operands that are supposed to match, merge the reloads and
4287      change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS.  */
4288 
4289   for (i = 0; i < n_reloads; i++)
4290     {
4291       int k;
4292 
4293       for (j = i + 1; j < n_reloads; j++)
4294 	if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4295 	     || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4296 	     || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4297 	     || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4298 	    && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4299 		|| rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4300 		|| rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4301 		|| rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4302 	    && rtx_equal_p (rld[i].in, rld[j].in)
4303 	    && (operand_reloadnum[rld[i].opnum] < 0
4304 		|| rld[operand_reloadnum[rld[i].opnum]].optional)
4305 	    && (operand_reloadnum[rld[j].opnum] < 0
4306 		|| rld[operand_reloadnum[rld[j].opnum]].optional)
4307 	    && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4308 		|| (goal_alternative_matches[rld[j].opnum]
4309 		    == rld[i].opnum)))
4310 	  {
4311 	    for (k = 0; k < n_replacements; k++)
4312 	      if (replacements[k].what == j)
4313 		replacements[k].what = i;
4314 
4315 	    if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4316 		|| rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4317 	      rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4318 	    else
4319 	      rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4320 	    rld[j].in = 0;
4321 	  }
4322     }
4323 
4324   /* Scan all the reloads and update their type.
4325      If a reload is for the address of an operand and we didn't reload
4326      that operand, change the type.  Similarly, change the operand number
4327      of a reload when two operands match.  If a reload is optional, treat it
4328      as though the operand isn't reloaded.
4329 
4330      ??? This latter case is somewhat odd because if we do the optional
4331      reload, it means the object is hanging around.  Thus we need only
4332      do the address reload if the optional reload was NOT done.
4333 
4334      Change secondary reloads to be the address type of their operand, not
4335      the normal type.
4336 
4337      If an operand's reload is now RELOAD_OTHER, change any
4338      RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4339      RELOAD_FOR_OTHER_ADDRESS.  */
4340 
4341   for (i = 0; i < n_reloads; i++)
4342     {
4343       if (rld[i].secondary_p
4344 	  && rld[i].when_needed == operand_type[rld[i].opnum])
4345 	rld[i].when_needed = address_type[rld[i].opnum];
4346 
4347       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4348 	   || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4349 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4350 	   || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4351 	  && (operand_reloadnum[rld[i].opnum] < 0
4352 	      || rld[operand_reloadnum[rld[i].opnum]].optional))
4353 	{
4354 	  /* If we have a secondary reload to go along with this reload,
4355 	     change its type to RELOAD_FOR_OPADDR_ADDR.  */
4356 
4357 	  if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4358 	       || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4359 	      && rld[i].secondary_in_reload != -1)
4360 	    {
4361 	      int secondary_in_reload = rld[i].secondary_in_reload;
4362 
4363 	      rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4364 
4365 	      /* If there's a tertiary reload we have to change it also.  */
4366 	      if (secondary_in_reload > 0
4367 		  && rld[secondary_in_reload].secondary_in_reload != -1)
4368 		rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4369 		  = RELOAD_FOR_OPADDR_ADDR;
4370 	    }
4371 
4372 	  if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4373 	       || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4374 	      && rld[i].secondary_out_reload != -1)
4375 	    {
4376 	      int secondary_out_reload = rld[i].secondary_out_reload;
4377 
4378 	      rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4379 
4380 	      /* If there's a tertiary reload we have to change it also.  */
4381 	      if (secondary_out_reload
4382 		  && rld[secondary_out_reload].secondary_out_reload != -1)
4383 		rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4384 		  = RELOAD_FOR_OPADDR_ADDR;
4385 	    }
4386 
4387 	  if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4388 	      || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4389 	    rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4390 	  else
4391 	    rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4392 	}
4393 
4394       if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4395 	   || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4396 	  && operand_reloadnum[rld[i].opnum] >= 0
4397 	  && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4398 	      == RELOAD_OTHER))
4399 	rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4400 
4401       if (goal_alternative_matches[rld[i].opnum] >= 0)
4402 	rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4403     }
4404 
4405   /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4406      If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4407      reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4408 
4409      choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4410      conflict with RELOAD_FOR_OPERAND_ADDRESS reloads.  This is true for a
4411      single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4412      However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4413      then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4414      RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4415      This is complicated by the fact that a single operand can have more
4416      than one RELOAD_FOR_OPERAND_ADDRESS reload.  It is very difficult to fix
4417      choose_reload_regs without affecting code quality, and cases that
4418      actually fail are extremely rare, so it turns out to be better to fix
4419      the problem here by not generating cases that choose_reload_regs will
4420      fail for.  */
4421   /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4422      RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4423      a single operand.
4424      We can reduce the register pressure by exploiting that a
4425      RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4426      does not conflict with any of them, if it is only used for the first of
4427      the RELOAD_FOR_X_ADDRESS reloads.  */
4428   {
4429     int first_op_addr_num = -2;
4430     int first_inpaddr_num[MAX_RECOG_OPERANDS];
4431     int first_outpaddr_num[MAX_RECOG_OPERANDS];
4432     int need_change = 0;
4433     /* We use last_op_addr_reload and the contents of the above arrays
4434        first as flags - -2 means no instance encountered, -1 means exactly
4435        one instance encountered.
4436        If more than one instance has been encountered, we store the reload
4437        number of the first reload of the kind in question; reload numbers
4438        are known to be non-negative.  */
4439     for (i = 0; i < noperands; i++)
4440       first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4441     for (i = n_reloads - 1; i >= 0; i--)
4442       {
4443 	switch (rld[i].when_needed)
4444 	  {
4445 	  case RELOAD_FOR_OPERAND_ADDRESS:
4446 	    if (++first_op_addr_num >= 0)
4447 	      {
4448 		first_op_addr_num = i;
4449 		need_change = 1;
4450 	      }
4451 	    break;
4452 	  case RELOAD_FOR_INPUT_ADDRESS:
4453 	    if (++first_inpaddr_num[rld[i].opnum] >= 0)
4454 	      {
4455 		first_inpaddr_num[rld[i].opnum] = i;
4456 		need_change = 1;
4457 	      }
4458 	    break;
4459 	  case RELOAD_FOR_OUTPUT_ADDRESS:
4460 	    if (++first_outpaddr_num[rld[i].opnum] >= 0)
4461 	      {
4462 		first_outpaddr_num[rld[i].opnum] = i;
4463 		need_change = 1;
4464 	      }
4465 	    break;
4466 	  default:
4467 	    break;
4468 	  }
4469       }
4470 
4471     if (need_change)
4472       {
4473 	for (i = 0; i < n_reloads; i++)
4474 	  {
4475 	    int first_num;
4476 	    enum reload_type type;
4477 
4478 	    switch (rld[i].when_needed)
4479 	      {
4480 	      case RELOAD_FOR_OPADDR_ADDR:
4481 		first_num = first_op_addr_num;
4482 		type = RELOAD_FOR_OPERAND_ADDRESS;
4483 		break;
4484 	      case RELOAD_FOR_INPADDR_ADDRESS:
4485 		first_num = first_inpaddr_num[rld[i].opnum];
4486 		type = RELOAD_FOR_INPUT_ADDRESS;
4487 		break;
4488 	      case RELOAD_FOR_OUTADDR_ADDRESS:
4489 		first_num = first_outpaddr_num[rld[i].opnum];
4490 		type = RELOAD_FOR_OUTPUT_ADDRESS;
4491 		break;
4492 	      default:
4493 		continue;
4494 	      }
4495 	    if (first_num < 0)
4496 	      continue;
4497 	    else if (i > first_num)
4498 	      rld[i].when_needed = type;
4499 	    else
4500 	      {
4501 		/* Check if the only TYPE reload that uses reload I is
4502 		   reload FIRST_NUM.  */
4503 		for (j = n_reloads - 1; j > first_num; j--)
4504 		  {
4505 		    if (rld[j].when_needed == type
4506 			&& (rld[i].secondary_p
4507 			    ? rld[j].secondary_in_reload == i
4508 			    : reg_mentioned_p (rld[i].in, rld[j].in)))
4509 		      {
4510 			rld[i].when_needed = type;
4511 			break;
4512 		      }
4513 		  }
4514 	      }
4515 	  }
4516       }
4517   }
4518 
4519   /* See if we have any reloads that are now allowed to be merged
4520      because we've changed when the reload is needed to
4521      RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS.  Only
4522      check for the most common cases.  */
4523 
4524   for (i = 0; i < n_reloads; i++)
4525     if (rld[i].in != 0 && rld[i].out == 0
4526 	&& (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4527 	    || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4528 	    || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4529       for (j = 0; j < n_reloads; j++)
4530 	if (i != j && rld[j].in != 0 && rld[j].out == 0
4531 	    && rld[j].when_needed == rld[i].when_needed
4532 	    && MATCHES (rld[i].in, rld[j].in)
4533 	    && rld[i].rclass == rld[j].rclass
4534 	    && !rld[i].nocombine && !rld[j].nocombine
4535 	    && rld[i].reg_rtx == rld[j].reg_rtx)
4536 	  {
4537 	    rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4538 	    transfer_replacements (i, j);
4539 	    rld[j].in = 0;
4540 	  }
4541 
4542 #ifdef HAVE_cc0
4543   /* If we made any reloads for addresses, see if they violate a
4544      "no input reloads" requirement for this insn.  But loads that we
4545      do after the insn (such as for output addresses) are fine.  */
4546   if (no_input_reloads)
4547     for (i = 0; i < n_reloads; i++)
4548       gcc_assert (rld[i].in == 0
4549 		  || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4550 		  || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4551 #endif
4552 
4553   /* Compute reload_mode and reload_nregs.  */
4554   for (i = 0; i < n_reloads; i++)
4555     {
4556       rld[i].mode
4557 	= (rld[i].inmode == VOIDmode
4558 	   || (GET_MODE_SIZE (rld[i].outmode)
4559 	       > GET_MODE_SIZE (rld[i].inmode)))
4560 	  ? rld[i].outmode : rld[i].inmode;
4561 
4562       rld[i].nregs = CLASS_MAX_NREGS (rld[i].rclass, rld[i].mode);
4563     }
4564 
4565   /* Special case a simple move with an input reload and a
4566      destination of a hard reg, if the hard reg is ok, use it.  */
4567   for (i = 0; i < n_reloads; i++)
4568     if (rld[i].when_needed == RELOAD_FOR_INPUT
4569 	&& GET_CODE (PATTERN (insn)) == SET
4570 	&& REG_P (SET_DEST (PATTERN (insn)))
4571 	&& (SET_SRC (PATTERN (insn)) == rld[i].in
4572 	    || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4573 	&& !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4574       {
4575 	rtx dest = SET_DEST (PATTERN (insn));
4576 	unsigned int regno = REGNO (dest);
4577 
4578 	if (regno < FIRST_PSEUDO_REGISTER
4579 	    && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4580 	    && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4581 	  {
4582 	    int nr = hard_regno_nregs[regno][rld[i].mode];
4583 	    int ok = 1, nri;
4584 
4585 	    for (nri = 1; nri < nr; nri ++)
4586 	      if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4587 		ok = 0;
4588 
4589 	    if (ok)
4590 	      rld[i].reg_rtx = dest;
4591 	  }
4592       }
4593 
4594   return retval;
4595 }
4596 
4597 /* Return true if alternative number ALTNUM in constraint-string
4598    CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4599    MEM gives the reference if it didn't need any reloads, otherwise it
4600    is null.  */
4601 
4602 static bool
4603 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4604 				   const char *constraint, int altnum)
4605 {
4606   int c;
4607 
4608   /* Skip alternatives before the one requested.  */
4609   while (altnum > 0)
4610     {
4611       while (*constraint++ != ',');
4612       altnum--;
4613     }
4614   /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4615      If one of them is present, this alternative accepts the result of
4616      passing a constant-pool reference through find_reloads_toplev.
4617 
4618      The same is true of extra memory constraints if the address
4619      was reloaded into a register.  However, the target may elect
4620      to disallow the original constant address, forcing it to be
4621      reloaded into a register instead.  */
4622   for (; (c = *constraint) && c != ',' && c != '#';
4623        constraint += CONSTRAINT_LEN (c, constraint))
4624     {
4625       if (c == TARGET_MEM_CONSTRAINT || c == 'o')
4626 	return true;
4627 #ifdef EXTRA_CONSTRAINT_STR
4628       if (EXTRA_MEMORY_CONSTRAINT (c, constraint)
4629 	  && (mem == NULL || EXTRA_CONSTRAINT_STR (mem, c, constraint)))
4630 	return true;
4631 #endif
4632     }
4633   return false;
4634 }
4635 
4636 /* Scan X for memory references and scan the addresses for reloading.
4637    Also checks for references to "constant" regs that we want to eliminate
4638    and replaces them with the values they stand for.
4639    We may alter X destructively if it contains a reference to such.
4640    If X is just a constant reg, we return the equivalent value
4641    instead of X.
4642 
4643    IND_LEVELS says how many levels of indirect addressing this machine
4644    supports.
4645 
4646    OPNUM and TYPE identify the purpose of the reload.
4647 
4648    IS_SET_DEST is true if X is the destination of a SET, which is not
4649    appropriate to be replaced by a constant.
4650 
4651    INSN, if nonzero, is the insn in which we do the reload.  It is used
4652    to determine if we may generate output reloads, and where to put USEs
4653    for pseudos that we have to replace with stack slots.
4654 
4655    ADDRESS_RELOADED.  If nonzero, is a pointer to where we put the
4656    result of find_reloads_address.  */
4657 
4658 static rtx
4659 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4660 		     int ind_levels, int is_set_dest, rtx insn,
4661 		     int *address_reloaded)
4662 {
4663   RTX_CODE code = GET_CODE (x);
4664 
4665   const char *fmt = GET_RTX_FORMAT (code);
4666   int i;
4667   int copied;
4668 
4669   if (code == REG)
4670     {
4671       /* This code is duplicated for speed in find_reloads.  */
4672       int regno = REGNO (x);
4673       if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4674 	x = reg_equiv_constant[regno];
4675 #if 0
4676       /*  This creates (subreg (mem...)) which would cause an unnecessary
4677 	  reload of the mem.  */
4678       else if (reg_equiv_mem[regno] != 0)
4679 	x = reg_equiv_mem[regno];
4680 #endif
4681       else if (reg_equiv_memory_loc[regno]
4682 	       && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4683 	{
4684 	  rtx mem = make_memloc (x, regno);
4685 	  if (reg_equiv_address[regno]
4686 	      || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4687 	    {
4688 	      /* If this is not a toplevel operand, find_reloads doesn't see
4689 		 this substitution.  We have to emit a USE of the pseudo so
4690 		 that delete_output_reload can see it.  */
4691 	      if (replace_reloads && recog_data.operand[opnum] != x)
4692 		/* We mark the USE with QImode so that we recognize it
4693 		   as one that can be safely deleted at the end of
4694 		   reload.  */
4695 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4696 			  QImode);
4697 	      x = mem;
4698 	      i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4699 					opnum, type, ind_levels, insn);
4700 	      if (!rtx_equal_p (x, mem))
4701 		push_reg_equiv_alt_mem (regno, x);
4702 	      if (address_reloaded)
4703 		*address_reloaded = i;
4704 	    }
4705 	}
4706       return x;
4707     }
4708   if (code == MEM)
4709     {
4710       rtx tem = x;
4711 
4712       i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4713 				opnum, type, ind_levels, insn);
4714       if (address_reloaded)
4715 	*address_reloaded = i;
4716 
4717       return tem;
4718     }
4719 
4720   if (code == SUBREG && REG_P (SUBREG_REG (x)))
4721     {
4722       /* Check for SUBREG containing a REG that's equivalent to a
4723 	 constant.  If the constant has a known value, truncate it
4724 	 right now.  Similarly if we are extracting a single-word of a
4725 	 multi-word constant.  If the constant is symbolic, allow it
4726 	 to be substituted normally.  push_reload will strip the
4727 	 subreg later.  The constant must not be VOIDmode, because we
4728 	 will lose the mode of the register (this should never happen
4729 	 because one of the cases above should handle it).  */
4730 
4731       int regno = REGNO (SUBREG_REG (x));
4732       rtx tem;
4733 
4734       if (regno >= FIRST_PSEUDO_REGISTER
4735 	  && reg_renumber[regno] < 0
4736 	  && reg_equiv_constant[regno] != 0)
4737 	{
4738 	  tem =
4739 	    simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4740 				 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4741 	  gcc_assert (tem);
4742 	  if (CONSTANT_P (tem) && !LEGITIMATE_CONSTANT_P (tem))
4743 	    {
4744 	      tem = force_const_mem (GET_MODE (x), tem);
4745 	      i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4746 					&XEXP (tem, 0), opnum, type,
4747 					ind_levels, insn);
4748 	      if (address_reloaded)
4749 		*address_reloaded = i;
4750 	    }
4751 	  return tem;
4752 	}
4753 
4754       /* If the subreg contains a reg that will be converted to a mem,
4755 	 convert the subreg to a narrower memref now.
4756 	 Otherwise, we would get (subreg (mem ...) ...),
4757 	 which would force reload of the mem.
4758 
4759 	 We also need to do this if there is an equivalent MEM that is
4760 	 not offsettable.  In that case, alter_subreg would produce an
4761 	 invalid address on big-endian machines.
4762 
4763 	 For machines that extend byte loads, we must not reload using
4764 	 a wider mode if we have a paradoxical SUBREG.  find_reloads will
4765 	 force a reload in that case.  So we should not do anything here.  */
4766 
4767       if (regno >= FIRST_PSEUDO_REGISTER
4768 #ifdef LOAD_EXTEND_OP
4769 	       && (GET_MODE_SIZE (GET_MODE (x))
4770 		   <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4771 #endif
4772 	       && (reg_equiv_address[regno] != 0
4773 		   || (reg_equiv_mem[regno] != 0
4774 		       && (! strict_memory_address_addr_space_p
4775 			       (GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
4776 				MEM_ADDR_SPACE (reg_equiv_mem[regno]))
4777 			   || ! offsettable_memref_p (reg_equiv_mem[regno])
4778 			   || num_not_at_initial_offset))))
4779 	x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4780 					 insn);
4781     }
4782 
4783   for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4784     {
4785       if (fmt[i] == 'e')
4786 	{
4787 	  rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4788 					      ind_levels, is_set_dest, insn,
4789 					      address_reloaded);
4790 	  /* If we have replaced a reg with it's equivalent memory loc -
4791 	     that can still be handled here e.g. if it's in a paradoxical
4792 	     subreg - we must make the change in a copy, rather than using
4793 	     a destructive change.  This way, find_reloads can still elect
4794 	     not to do the change.  */
4795 	  if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4796 	    {
4797 	      x = shallow_copy_rtx (x);
4798 	      copied = 1;
4799 	    }
4800 	  XEXP (x, i) = new_part;
4801 	}
4802     }
4803   return x;
4804 }
4805 
4806 /* Return a mem ref for the memory equivalent of reg REGNO.
4807    This mem ref is not shared with anything.  */
4808 
4809 static rtx
4810 make_memloc (rtx ad, int regno)
4811 {
4812   /* We must rerun eliminate_regs, in case the elimination
4813      offsets have changed.  */
4814   rtx tem
4815     = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], VOIDmode, NULL_RTX),
4816 	    0);
4817 
4818   /* If TEM might contain a pseudo, we must copy it to avoid
4819      modifying it when we do the substitution for the reload.  */
4820   if (rtx_varies_p (tem, 0))
4821     tem = copy_rtx (tem);
4822 
4823   tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4824   tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4825 
4826   /* Copy the result if it's still the same as the equivalence, to avoid
4827      modifying it when we do the substitution for the reload.  */
4828   if (tem == reg_equiv_memory_loc[regno])
4829     tem = copy_rtx (tem);
4830   return tem;
4831 }
4832 
4833 /* Returns true if AD could be turned into a valid memory reference
4834    to mode MODE in address space AS by reloading the part pointed to
4835    by PART into a register.  */
4836 
4837 static int
4838 maybe_memory_address_addr_space_p (enum machine_mode mode, rtx ad,
4839 				   addr_space_t as, rtx *part)
4840 {
4841   int retv;
4842   rtx tem = *part;
4843   rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4844 
4845   *part = reg;
4846   retv = memory_address_addr_space_p (mode, ad, as);
4847   *part = tem;
4848 
4849   return retv;
4850 }
4851 
4852 /* Record all reloads needed for handling memory address AD
4853    which appears in *LOC in a memory reference to mode MODE
4854    which itself is found in location  *MEMREFLOC.
4855    Note that we take shortcuts assuming that no multi-reg machine mode
4856    occurs as part of an address.
4857 
4858    OPNUM and TYPE specify the purpose of this reload.
4859 
4860    IND_LEVELS says how many levels of indirect addressing this machine
4861    supports.
4862 
4863    INSN, if nonzero, is the insn in which we do the reload.  It is used
4864    to determine if we may generate output reloads, and where to put USEs
4865    for pseudos that we have to replace with stack slots.
4866 
4867    Value is one if this address is reloaded or replaced as a whole; it is
4868    zero if the top level of this address was not reloaded or replaced, and
4869    it is -1 if it may or may not have been reloaded or replaced.
4870 
4871    Note that there is no verification that the address will be valid after
4872    this routine does its work.  Instead, we rely on the fact that the address
4873    was valid when reload started.  So we need only undo things that reload
4874    could have broken.  These are wrong register types, pseudos not allocated
4875    to a hard register, and frame pointer elimination.  */
4876 
4877 static int
4878 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4879 		      rtx *loc, int opnum, enum reload_type type,
4880 		      int ind_levels, rtx insn)
4881 {
4882   addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4883 			     : ADDR_SPACE_GENERIC;
4884   int regno;
4885   int removed_and = 0;
4886   int op_index;
4887   rtx tem;
4888 
4889   /* If the address is a register, see if it is a legitimate address and
4890      reload if not.  We first handle the cases where we need not reload
4891      or where we must reload in a non-standard way.  */
4892 
4893   if (REG_P (ad))
4894     {
4895       regno = REGNO (ad);
4896 
4897       if (reg_equiv_constant[regno] != 0)
4898 	{
4899 	  find_reloads_address_part (reg_equiv_constant[regno], loc,
4900 				     base_reg_class (mode, MEM, SCRATCH),
4901 				     GET_MODE (ad), opnum, type, ind_levels);
4902 	  return 1;
4903 	}
4904 
4905       tem = reg_equiv_memory_loc[regno];
4906       if (tem != 0)
4907 	{
4908 	  if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4909 	    {
4910 	      tem = make_memloc (ad, regno);
4911 	      if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4912 							XEXP (tem, 0),
4913 							MEM_ADDR_SPACE (tem)))
4914 		{
4915 		  rtx orig = tem;
4916 
4917 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4918 					&XEXP (tem, 0), opnum,
4919 					ADDR_TYPE (type), ind_levels, insn);
4920 		  if (!rtx_equal_p (tem, orig))
4921 		    push_reg_equiv_alt_mem (regno, tem);
4922 		}
4923 	      /* We can avoid a reload if the register's equivalent memory
4924 		 expression is valid as an indirect memory address.
4925 		 But not all addresses are valid in a mem used as an indirect
4926 		 address: only reg or reg+constant.  */
4927 
4928 	      if (ind_levels > 0
4929 		  && strict_memory_address_addr_space_p (mode, tem, as)
4930 		  && (REG_P (XEXP (tem, 0))
4931 		      || (GET_CODE (XEXP (tem, 0)) == PLUS
4932 			  && REG_P (XEXP (XEXP (tem, 0), 0))
4933 			  && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4934 		{
4935 		  /* TEM is not the same as what we'll be replacing the
4936 		     pseudo with after reload, put a USE in front of INSN
4937 		     in the final reload pass.  */
4938 		  if (replace_reloads
4939 		      && num_not_at_initial_offset
4940 		      && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4941 		    {
4942 		      *loc = tem;
4943 		      /* We mark the USE with QImode so that we
4944 			 recognize it as one that can be safely
4945 			 deleted at the end of reload.  */
4946 		      PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4947 						  insn), QImode);
4948 
4949 		      /* This doesn't really count as replacing the address
4950 			 as a whole, since it is still a memory access.  */
4951 		    }
4952 		  return 0;
4953 		}
4954 	      ad = tem;
4955 	    }
4956 	}
4957 
4958       /* The only remaining case where we can avoid a reload is if this is a
4959 	 hard register that is valid as a base register and which is not the
4960 	 subject of a CLOBBER in this insn.  */
4961 
4962       else if (regno < FIRST_PSEUDO_REGISTER
4963 	       && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4964 	       && ! regno_clobbered_p (regno, this_insn, mode, 0))
4965 	return 0;
4966 
4967       /* If we do not have one of the cases above, we must do the reload.  */
4968       push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4969 		   GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4970       return 1;
4971     }
4972 
4973   if (strict_memory_address_addr_space_p (mode, ad, as))
4974     {
4975       /* The address appears valid, so reloads are not needed.
4976 	 But the address may contain an eliminable register.
4977 	 This can happen because a machine with indirect addressing
4978 	 may consider a pseudo register by itself a valid address even when
4979 	 it has failed to get a hard reg.
4980 	 So do a tree-walk to find and eliminate all such regs.  */
4981 
4982       /* But first quickly dispose of a common case.  */
4983       if (GET_CODE (ad) == PLUS
4984 	  && CONST_INT_P (XEXP (ad, 1))
4985 	  && REG_P (XEXP (ad, 0))
4986 	  && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4987 	return 0;
4988 
4989       subst_reg_equivs_changed = 0;
4990       *loc = subst_reg_equivs (ad, insn);
4991 
4992       if (! subst_reg_equivs_changed)
4993 	return 0;
4994 
4995       /* Check result for validity after substitution.  */
4996       if (strict_memory_address_addr_space_p (mode, ad, as))
4997 	return 0;
4998     }
4999 
5000 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5001   do
5002     {
5003       if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5004 	{
5005 	  LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5006 				     ind_levels, win);
5007 	}
5008       break;
5009     win:
5010       *memrefloc = copy_rtx (*memrefloc);
5011       XEXP (*memrefloc, 0) = ad;
5012       move_replacements (&ad, &XEXP (*memrefloc, 0));
5013       return -1;
5014     }
5015   while (0);
5016 #endif
5017 
5018   /* The address is not valid.  We have to figure out why.  First see if
5019      we have an outer AND and remove it if so.  Then analyze what's inside.  */
5020 
5021   if (GET_CODE (ad) == AND)
5022     {
5023       removed_and = 1;
5024       loc = &XEXP (ad, 0);
5025       ad = *loc;
5026     }
5027 
5028   /* One possibility for why the address is invalid is that it is itself
5029      a MEM.  This can happen when the frame pointer is being eliminated, a
5030      pseudo is not allocated to a hard register, and the offset between the
5031      frame and stack pointers is not its initial value.  In that case the
5032      pseudo will have been replaced by a MEM referring to the
5033      stack pointer.  */
5034   if (MEM_P (ad))
5035     {
5036       /* First ensure that the address in this MEM is valid.  Then, unless
5037 	 indirect addresses are valid, reload the MEM into a register.  */
5038       tem = ad;
5039       find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5040 			    opnum, ADDR_TYPE (type),
5041 			    ind_levels == 0 ? 0 : ind_levels - 1, insn);
5042 
5043       /* If tem was changed, then we must create a new memory reference to
5044 	 hold it and store it back into memrefloc.  */
5045       if (tem != ad && memrefloc)
5046 	{
5047 	  *memrefloc = copy_rtx (*memrefloc);
5048 	  copy_replacements (tem, XEXP (*memrefloc, 0));
5049 	  loc = &XEXP (*memrefloc, 0);
5050 	  if (removed_and)
5051 	    loc = &XEXP (*loc, 0);
5052 	}
5053 
5054       /* Check similar cases as for indirect addresses as above except
5055 	 that we can allow pseudos and a MEM since they should have been
5056 	 taken care of above.  */
5057 
5058       if (ind_levels == 0
5059 	  || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5060 	  || MEM_P (XEXP (tem, 0))
5061 	  || ! (REG_P (XEXP (tem, 0))
5062 		|| (GET_CODE (XEXP (tem, 0)) == PLUS
5063 		    && REG_P (XEXP (XEXP (tem, 0), 0))
5064 		    && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5065 	{
5066 	  /* Must use TEM here, not AD, since it is the one that will
5067 	     have any subexpressions reloaded, if needed.  */
5068 	  push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5069 		       base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
5070 		       VOIDmode, 0,
5071 		       0, opnum, type);
5072 	  return ! removed_and;
5073 	}
5074       else
5075 	return 0;
5076     }
5077 
5078   /* If we have address of a stack slot but it's not valid because the
5079      displacement is too large, compute the sum in a register.
5080      Handle all base registers here, not just fp/ap/sp, because on some
5081      targets (namely SH) we can also get too large displacements from
5082      big-endian corrections.  */
5083   else if (GET_CODE (ad) == PLUS
5084 	   && REG_P (XEXP (ad, 0))
5085 	   && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5086 	   && CONST_INT_P (XEXP (ad, 1))
5087 	   && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
5088 				   CONST_INT))
5089 
5090     {
5091       /* Unshare the MEM rtx so we can safely alter it.  */
5092       if (memrefloc)
5093 	{
5094 	  *memrefloc = copy_rtx (*memrefloc);
5095 	  loc = &XEXP (*memrefloc, 0);
5096 	  if (removed_and)
5097 	    loc = &XEXP (*loc, 0);
5098 	}
5099 
5100       if (double_reg_address_ok)
5101 	{
5102 	  /* Unshare the sum as well.  */
5103 	  *loc = ad = copy_rtx (ad);
5104 
5105 	  /* Reload the displacement into an index reg.
5106 	     We assume the frame pointer or arg pointer is a base reg.  */
5107 	  find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5108 				     INDEX_REG_CLASS, GET_MODE (ad), opnum,
5109 				     type, ind_levels);
5110 	  return 0;
5111 	}
5112       else
5113 	{
5114 	  /* If the sum of two regs is not necessarily valid,
5115 	     reload the sum into a base reg.
5116 	     That will at least work.  */
5117 	  find_reloads_address_part (ad, loc,
5118 				     base_reg_class (mode, MEM, SCRATCH),
5119 				     GET_MODE (ad), opnum, type, ind_levels);
5120 	}
5121       return ! removed_and;
5122     }
5123 
5124   /* If we have an indexed stack slot, there are three possible reasons why
5125      it might be invalid: The index might need to be reloaded, the address
5126      might have been made by frame pointer elimination and hence have a
5127      constant out of range, or both reasons might apply.
5128 
5129      We can easily check for an index needing reload, but even if that is the
5130      case, we might also have an invalid constant.  To avoid making the
5131      conservative assumption and requiring two reloads, we see if this address
5132      is valid when not interpreted strictly.  If it is, the only problem is
5133      that the index needs a reload and find_reloads_address_1 will take care
5134      of it.
5135 
5136      Handle all base registers here, not just fp/ap/sp, because on some
5137      targets (namely SPARC) we can also get invalid addresses from preventive
5138      subreg big-endian corrections made by find_reloads_toplev.  We
5139      can also get expressions involving LO_SUM (rather than PLUS) from
5140      find_reloads_subreg_address.
5141 
5142      If we decide to do something, it must be that `double_reg_address_ok'
5143      is true.  We generate a reload of the base register + constant and
5144      rework the sum so that the reload register will be added to the index.
5145      This is safe because we know the address isn't shared.
5146 
5147      We check for the base register as both the first and second operand of
5148      the innermost PLUS and/or LO_SUM.  */
5149 
5150   for (op_index = 0; op_index < 2; ++op_index)
5151     {
5152       rtx operand, addend;
5153       enum rtx_code inner_code;
5154 
5155       if (GET_CODE (ad) != PLUS)
5156 	  continue;
5157 
5158       inner_code = GET_CODE (XEXP (ad, 0));
5159       if (!(GET_CODE (ad) == PLUS
5160 	    && CONST_INT_P (XEXP (ad, 1))
5161 	    && (inner_code == PLUS || inner_code == LO_SUM)))
5162 	continue;
5163 
5164       operand = XEXP (XEXP (ad, 0), op_index);
5165       if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5166 	continue;
5167 
5168       addend = XEXP (XEXP (ad, 0), 1 - op_index);
5169 
5170       if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
5171 				GET_CODE (addend))
5172 	   || operand == frame_pointer_rtx
5173 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5174 	   || operand == hard_frame_pointer_rtx
5175 #endif
5176 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5177 	   || operand == arg_pointer_rtx
5178 #endif
5179 	   || operand == stack_pointer_rtx)
5180 	  && ! maybe_memory_address_addr_space_p
5181 		(mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5182 	{
5183 	  rtx offset_reg;
5184 	  enum reg_class cls;
5185 
5186 	  offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5187 
5188 	  /* Form the adjusted address.  */
5189 	  if (GET_CODE (XEXP (ad, 0)) == PLUS)
5190 	    ad = gen_rtx_PLUS (GET_MODE (ad),
5191 			       op_index == 0 ? offset_reg : addend,
5192 			       op_index == 0 ? addend : offset_reg);
5193 	  else
5194 	    ad = gen_rtx_LO_SUM (GET_MODE (ad),
5195 				 op_index == 0 ? offset_reg : addend,
5196 				 op_index == 0 ? addend : offset_reg);
5197 	  *loc = ad;
5198 
5199 	  cls = base_reg_class (mode, MEM, GET_CODE (addend));
5200 	  find_reloads_address_part (XEXP (ad, op_index),
5201 				     &XEXP (ad, op_index), cls,
5202 				     GET_MODE (ad), opnum, type, ind_levels);
5203 	  find_reloads_address_1 (mode,
5204 				  XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5205 				  GET_CODE (XEXP (ad, op_index)),
5206 				  &XEXP (ad, 1 - op_index), opnum,
5207 				  type, 0, insn);
5208 
5209 	  return 0;
5210 	}
5211     }
5212 
5213   /* See if address becomes valid when an eliminable register
5214      in a sum is replaced.  */
5215 
5216   tem = ad;
5217   if (GET_CODE (ad) == PLUS)
5218     tem = subst_indexed_address (ad);
5219   if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5220     {
5221       /* Ok, we win that way.  Replace any additional eliminable
5222 	 registers.  */
5223 
5224       subst_reg_equivs_changed = 0;
5225       tem = subst_reg_equivs (tem, insn);
5226 
5227       /* Make sure that didn't make the address invalid again.  */
5228 
5229       if (! subst_reg_equivs_changed
5230 	  || strict_memory_address_addr_space_p (mode, tem, as))
5231 	{
5232 	  *loc = tem;
5233 	  return 0;
5234 	}
5235     }
5236 
5237   /* If constants aren't valid addresses, reload the constant address
5238      into a register.  */
5239   if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5240     {
5241       enum machine_mode address_mode = GET_MODE (ad);
5242       if (address_mode == VOIDmode)
5243 	address_mode = targetm.addr_space.address_mode (as);
5244 
5245       /* If AD is an address in the constant pool, the MEM rtx may be shared.
5246 	 Unshare it so we can safely alter it.  */
5247       if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5248 	  && CONSTANT_POOL_ADDRESS_P (ad))
5249 	{
5250 	  *memrefloc = copy_rtx (*memrefloc);
5251 	  loc = &XEXP (*memrefloc, 0);
5252 	  if (removed_and)
5253 	    loc = &XEXP (*loc, 0);
5254 	}
5255 
5256       find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5257 				 address_mode, opnum, type, ind_levels);
5258       return ! removed_and;
5259     }
5260 
5261   return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5262 				 ind_levels, insn);
5263 }
5264 
5265 /* Find all pseudo regs appearing in AD
5266    that are eliminable in favor of equivalent values
5267    and do not have hard regs; replace them by their equivalents.
5268    INSN, if nonzero, is the insn in which we do the reload.  We put USEs in
5269    front of it for pseudos that we have to replace with stack slots.  */
5270 
5271 static rtx
5272 subst_reg_equivs (rtx ad, rtx insn)
5273 {
5274   RTX_CODE code = GET_CODE (ad);
5275   int i;
5276   const char *fmt;
5277 
5278   switch (code)
5279     {
5280     case HIGH:
5281     case CONST_INT:
5282     case CONST:
5283     case CONST_DOUBLE:
5284     case CONST_FIXED:
5285     case CONST_VECTOR:
5286     case SYMBOL_REF:
5287     case LABEL_REF:
5288     case PC:
5289     case CC0:
5290       return ad;
5291 
5292     case REG:
5293       {
5294 	int regno = REGNO (ad);
5295 
5296 	if (reg_equiv_constant[regno] != 0)
5297 	  {
5298 	    subst_reg_equivs_changed = 1;
5299 	    return reg_equiv_constant[regno];
5300 	  }
5301 	if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5302 	  {
5303 	    rtx mem = make_memloc (ad, regno);
5304 	    if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5305 	      {
5306 		subst_reg_equivs_changed = 1;
5307 		/* We mark the USE with QImode so that we recognize it
5308 		   as one that can be safely deleted at the end of
5309 		   reload.  */
5310 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5311 			  QImode);
5312 		return mem;
5313 	      }
5314 	  }
5315       }
5316       return ad;
5317 
5318     case PLUS:
5319       /* Quickly dispose of a common case.  */
5320       if (XEXP (ad, 0) == frame_pointer_rtx
5321 	  && CONST_INT_P (XEXP (ad, 1)))
5322 	return ad;
5323       break;
5324 
5325     default:
5326       break;
5327     }
5328 
5329   fmt = GET_RTX_FORMAT (code);
5330   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5331     if (fmt[i] == 'e')
5332       XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5333   return ad;
5334 }
5335 
5336 /* Compute the sum of X and Y, making canonicalizations assumed in an
5337    address, namely: sum constant integers, surround the sum of two
5338    constants with a CONST, put the constant as the second operand, and
5339    group the constant on the outermost sum.
5340 
5341    This routine assumes both inputs are already in canonical form.  */
5342 
5343 rtx
5344 form_sum (enum machine_mode mode, rtx x, rtx y)
5345 {
5346   rtx tem;
5347 
5348   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5349   gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5350 
5351   if (CONST_INT_P (x))
5352     return plus_constant (y, INTVAL (x));
5353   else if (CONST_INT_P (y))
5354     return plus_constant (x, INTVAL (y));
5355   else if (CONSTANT_P (x))
5356     tem = x, x = y, y = tem;
5357 
5358   if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5359     return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5360 
5361   /* Note that if the operands of Y are specified in the opposite
5362      order in the recursive calls below, infinite recursion will occur.  */
5363   if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5364     return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5365 
5366   /* If both constant, encapsulate sum.  Otherwise, just form sum.  A
5367      constant will have been placed second.  */
5368   if (CONSTANT_P (x) && CONSTANT_P (y))
5369     {
5370       if (GET_CODE (x) == CONST)
5371 	x = XEXP (x, 0);
5372       if (GET_CODE (y) == CONST)
5373 	y = XEXP (y, 0);
5374 
5375       return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5376     }
5377 
5378   return gen_rtx_PLUS (mode, x, y);
5379 }
5380 
5381 /* If ADDR is a sum containing a pseudo register that should be
5382    replaced with a constant (from reg_equiv_constant),
5383    return the result of doing so, and also apply the associative
5384    law so that the result is more likely to be a valid address.
5385    (But it is not guaranteed to be one.)
5386 
5387    Note that at most one register is replaced, even if more are
5388    replaceable.  Also, we try to put the result into a canonical form
5389    so it is more likely to be a valid address.
5390 
5391    In all other cases, return ADDR.  */
5392 
5393 static rtx
5394 subst_indexed_address (rtx addr)
5395 {
5396   rtx op0 = 0, op1 = 0, op2 = 0;
5397   rtx tem;
5398   int regno;
5399 
5400   if (GET_CODE (addr) == PLUS)
5401     {
5402       /* Try to find a register to replace.  */
5403       op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5404       if (REG_P (op0)
5405 	  && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5406 	  && reg_renumber[regno] < 0
5407 	  && reg_equiv_constant[regno] != 0)
5408 	op0 = reg_equiv_constant[regno];
5409       else if (REG_P (op1)
5410 	       && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5411 	       && reg_renumber[regno] < 0
5412 	       && reg_equiv_constant[regno] != 0)
5413 	op1 = reg_equiv_constant[regno];
5414       else if (GET_CODE (op0) == PLUS
5415 	       && (tem = subst_indexed_address (op0)) != op0)
5416 	op0 = tem;
5417       else if (GET_CODE (op1) == PLUS
5418 	       && (tem = subst_indexed_address (op1)) != op1)
5419 	op1 = tem;
5420       else
5421 	return addr;
5422 
5423       /* Pick out up to three things to add.  */
5424       if (GET_CODE (op1) == PLUS)
5425 	op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5426       else if (GET_CODE (op0) == PLUS)
5427 	op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5428 
5429       /* Compute the sum.  */
5430       if (op2 != 0)
5431 	op1 = form_sum (GET_MODE (addr), op1, op2);
5432       if (op1 != 0)
5433 	op0 = form_sum (GET_MODE (addr), op0, op1);
5434 
5435       return op0;
5436     }
5437   return addr;
5438 }
5439 
5440 /* Update the REG_INC notes for an insn.  It updates all REG_INC
5441    notes for the instruction which refer to REGNO the to refer
5442    to the reload number.
5443 
5444    INSN is the insn for which any REG_INC notes need updating.
5445 
5446    REGNO is the register number which has been reloaded.
5447 
5448    RELOADNUM is the reload number.  */
5449 
5450 static void
5451 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5452 		       int reloadnum ATTRIBUTE_UNUSED)
5453 {
5454 #ifdef AUTO_INC_DEC
5455   rtx link;
5456 
5457   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5458     if (REG_NOTE_KIND (link) == REG_INC
5459         && (int) REGNO (XEXP (link, 0)) == regno)
5460       push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5461 #endif
5462 }
5463 
5464 /* Record the pseudo registers we must reload into hard registers in a
5465    subexpression of a would-be memory address, X referring to a value
5466    in mode MODE.  (This function is not called if the address we find
5467    is strictly valid.)
5468 
5469    CONTEXT = 1 means we are considering regs as index regs,
5470    = 0 means we are considering them as base regs.
5471    OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5472    or an autoinc code.
5473    If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5474    is the code of the index part of the address.  Otherwise, pass SCRATCH
5475    for this argument.
5476    OPNUM and TYPE specify the purpose of any reloads made.
5477 
5478    IND_LEVELS says how many levels of indirect addressing are
5479    supported at this point in the address.
5480 
5481    INSN, if nonzero, is the insn in which we do the reload.  It is used
5482    to determine if we may generate output reloads.
5483 
5484    We return nonzero if X, as a whole, is reloaded or replaced.  */
5485 
5486 /* Note that we take shortcuts assuming that no multi-reg machine mode
5487    occurs as part of an address.
5488    Also, this is not fully machine-customizable; it works for machines
5489    such as VAXen and 68000's and 32000's, but other possible machines
5490    could have addressing modes that this does not handle right.
5491    If you add push_reload calls here, you need to make sure gen_reload
5492    handles those cases gracefully.  */
5493 
5494 static int
5495 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5496 			enum rtx_code outer_code, enum rtx_code index_code,
5497 			rtx *loc, int opnum, enum reload_type type,
5498 			int ind_levels, rtx insn)
5499 {
5500 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX)		\
5501   ((CONTEXT) == 0							\
5502    ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX)			\
5503    : REGNO_OK_FOR_INDEX_P (REGNO))
5504 
5505   enum reg_class context_reg_class;
5506   RTX_CODE code = GET_CODE (x);
5507 
5508   if (context == 1)
5509     context_reg_class = INDEX_REG_CLASS;
5510   else
5511     context_reg_class = base_reg_class (mode, outer_code, index_code);
5512 
5513   switch (code)
5514     {
5515     case PLUS:
5516       {
5517 	rtx orig_op0 = XEXP (x, 0);
5518 	rtx orig_op1 = XEXP (x, 1);
5519 	RTX_CODE code0 = GET_CODE (orig_op0);
5520 	RTX_CODE code1 = GET_CODE (orig_op1);
5521 	rtx op0 = orig_op0;
5522 	rtx op1 = orig_op1;
5523 
5524 	if (GET_CODE (op0) == SUBREG)
5525 	  {
5526 	    op0 = SUBREG_REG (op0);
5527 	    code0 = GET_CODE (op0);
5528 	    if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5529 	      op0 = gen_rtx_REG (word_mode,
5530 				 (REGNO (op0) +
5531 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5532 						       GET_MODE (SUBREG_REG (orig_op0)),
5533 						       SUBREG_BYTE (orig_op0),
5534 						       GET_MODE (orig_op0))));
5535 	  }
5536 
5537 	if (GET_CODE (op1) == SUBREG)
5538 	  {
5539 	    op1 = SUBREG_REG (op1);
5540 	    code1 = GET_CODE (op1);
5541 	    if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5542 	      /* ??? Why is this given op1's mode and above for
5543 		 ??? op0 SUBREGs we use word_mode?  */
5544 	      op1 = gen_rtx_REG (GET_MODE (op1),
5545 				 (REGNO (op1) +
5546 				  subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5547 						       GET_MODE (SUBREG_REG (orig_op1)),
5548 						       SUBREG_BYTE (orig_op1),
5549 						       GET_MODE (orig_op1))));
5550 	  }
5551 	/* Plus in the index register may be created only as a result of
5552 	   register rematerialization for expression like &localvar*4.  Reload it.
5553 	   It may be possible to combine the displacement on the outer level,
5554 	   but it is probably not worthwhile to do so.  */
5555 	if (context == 1)
5556 	  {
5557 	    find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5558 				  opnum, ADDR_TYPE (type), ind_levels, insn);
5559 	    push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5560 			 context_reg_class,
5561 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5562 	    return 1;
5563 	  }
5564 
5565 	if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5566 	    || code0 == ZERO_EXTEND || code1 == MEM)
5567 	  {
5568 	    find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5569 				    &XEXP (x, 0), opnum, type, ind_levels,
5570 				    insn);
5571 	    find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5572 				    &XEXP (x, 1), opnum, type, ind_levels,
5573 				    insn);
5574 	  }
5575 
5576 	else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5577 		 || code1 == ZERO_EXTEND || code0 == MEM)
5578 	  {
5579 	    find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5580 				    &XEXP (x, 0), opnum, type, ind_levels,
5581 				    insn);
5582 	    find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5583 				    &XEXP (x, 1), opnum, type, ind_levels,
5584 				    insn);
5585 	  }
5586 
5587 	else if (code0 == CONST_INT || code0 == CONST
5588 		 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5589 	  find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5590 				  &XEXP (x, 1), opnum, type, ind_levels,
5591 				  insn);
5592 
5593 	else if (code1 == CONST_INT || code1 == CONST
5594 		 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5595 	  find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5596 				  &XEXP (x, 0), opnum, type, ind_levels,
5597 				  insn);
5598 
5599 	else if (code0 == REG && code1 == REG)
5600 	  {
5601 	    if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5602 		&& regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5603 	      return 0;
5604 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5605 		     && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5606 	      return 0;
5607 	    else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5608 	      find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5609 				      &XEXP (x, 1), opnum, type, ind_levels,
5610 				      insn);
5611 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5612 	      find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5613 				      &XEXP (x, 0), opnum, type, ind_levels,
5614 				      insn);
5615 	    else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5616 	      find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5617 				      &XEXP (x, 0), opnum, type, ind_levels,
5618 				      insn);
5619 	    else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5620 	      find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5621 				      &XEXP (x, 1), opnum, type, ind_levels,
5622 				      insn);
5623 	    else
5624 	      {
5625 		find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5626 					&XEXP (x, 0), opnum, type, ind_levels,
5627 					insn);
5628 		find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5629 					&XEXP (x, 1), opnum, type, ind_levels,
5630 					insn);
5631 	      }
5632 	  }
5633 
5634 	else if (code0 == REG)
5635 	  {
5636 	    find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5637 				    &XEXP (x, 0), opnum, type, ind_levels,
5638 				    insn);
5639 	    find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5640 				    &XEXP (x, 1), opnum, type, ind_levels,
5641 				    insn);
5642 	  }
5643 
5644 	else if (code1 == REG)
5645 	  {
5646 	    find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5647 				    &XEXP (x, 1), opnum, type, ind_levels,
5648 				    insn);
5649 	    find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5650 				    &XEXP (x, 0), opnum, type, ind_levels,
5651 				    insn);
5652 	  }
5653       }
5654 
5655       return 0;
5656 
5657     case POST_MODIFY:
5658     case PRE_MODIFY:
5659       {
5660 	rtx op0 = XEXP (x, 0);
5661 	rtx op1 = XEXP (x, 1);
5662 	enum rtx_code index_code;
5663 	int regno;
5664 	int reloadnum;
5665 
5666 	if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5667 	  return 0;
5668 
5669 	/* Currently, we only support {PRE,POST}_MODIFY constructs
5670 	   where a base register is {inc,dec}remented by the contents
5671 	   of another register or by a constant value.  Thus, these
5672 	   operands must match.  */
5673 	gcc_assert (op0 == XEXP (op1, 0));
5674 
5675 	/* Require index register (or constant).  Let's just handle the
5676 	   register case in the meantime... If the target allows
5677 	   auto-modify by a constant then we could try replacing a pseudo
5678 	   register with its equivalent constant where applicable.
5679 
5680 	   We also handle the case where the register was eliminated
5681 	   resulting in a PLUS subexpression.
5682 
5683 	   If we later decide to reload the whole PRE_MODIFY or
5684 	   POST_MODIFY, inc_for_reload might clobber the reload register
5685 	   before reading the index.  The index register might therefore
5686 	   need to live longer than a TYPE reload normally would, so be
5687 	   conservative and class it as RELOAD_OTHER.  */
5688 	if ((REG_P (XEXP (op1, 1))
5689 	     && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5690 	    || GET_CODE (XEXP (op1, 1)) == PLUS)
5691 	  find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5692 				  &XEXP (op1, 1), opnum, RELOAD_OTHER,
5693 				  ind_levels, insn);
5694 
5695 	gcc_assert (REG_P (XEXP (op1, 0)));
5696 
5697 	regno = REGNO (XEXP (op1, 0));
5698 	index_code = GET_CODE (XEXP (op1, 1));
5699 
5700 	/* A register that is incremented cannot be constant!  */
5701 	gcc_assert (regno < FIRST_PSEUDO_REGISTER
5702 		    || reg_equiv_constant[regno] == 0);
5703 
5704 	/* Handle a register that is equivalent to a memory location
5705 	    which cannot be addressed directly.  */
5706 	if (reg_equiv_memory_loc[regno] != 0
5707 	    && (reg_equiv_address[regno] != 0
5708 		|| num_not_at_initial_offset))
5709 	  {
5710 	    rtx tem = make_memloc (XEXP (x, 0), regno);
5711 
5712 	    if (reg_equiv_address[regno]
5713 		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5714 	      {
5715 		rtx orig = tem;
5716 
5717 		/* First reload the memory location's address.
5718 		    We can't use ADDR_TYPE (type) here, because we need to
5719 		    write back the value after reading it, hence we actually
5720 		    need two registers.  */
5721 		find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5722 				      &XEXP (tem, 0), opnum,
5723 				      RELOAD_OTHER,
5724 				      ind_levels, insn);
5725 
5726 		if (!rtx_equal_p (tem, orig))
5727 		  push_reg_equiv_alt_mem (regno, tem);
5728 
5729 		/* Then reload the memory location into a base
5730 		   register.  */
5731 		reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5732 					 &XEXP (op1, 0),
5733 					 base_reg_class (mode, code,
5734 							 index_code),
5735 					 GET_MODE (x), GET_MODE (x), 0,
5736 					 0, opnum, RELOAD_OTHER);
5737 
5738 		update_auto_inc_notes (this_insn, regno, reloadnum);
5739 		return 0;
5740 	      }
5741 	  }
5742 
5743 	if (reg_renumber[regno] >= 0)
5744 	  regno = reg_renumber[regno];
5745 
5746 	/* We require a base register here...  */
5747 	if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5748 	  {
5749 	    reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5750 				     &XEXP (op1, 0), &XEXP (x, 0),
5751 				     base_reg_class (mode, code, index_code),
5752 				     GET_MODE (x), GET_MODE (x), 0, 0,
5753 				     opnum, RELOAD_OTHER);
5754 
5755 	    update_auto_inc_notes (this_insn, regno, reloadnum);
5756 	    return 0;
5757 	  }
5758       }
5759       return 0;
5760 
5761     case POST_INC:
5762     case POST_DEC:
5763     case PRE_INC:
5764     case PRE_DEC:
5765       if (REG_P (XEXP (x, 0)))
5766 	{
5767 	  int regno = REGNO (XEXP (x, 0));
5768 	  int value = 0;
5769 	  rtx x_orig = x;
5770 
5771 	  /* A register that is incremented cannot be constant!  */
5772 	  gcc_assert (regno < FIRST_PSEUDO_REGISTER
5773 		      || reg_equiv_constant[regno] == 0);
5774 
5775 	  /* Handle a register that is equivalent to a memory location
5776 	     which cannot be addressed directly.  */
5777 	  if (reg_equiv_memory_loc[regno] != 0
5778 	      && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5779 	    {
5780 	      rtx tem = make_memloc (XEXP (x, 0), regno);
5781 	      if (reg_equiv_address[regno]
5782 		  || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5783 		{
5784 		  rtx orig = tem;
5785 
5786 		  /* First reload the memory location's address.
5787 		     We can't use ADDR_TYPE (type) here, because we need to
5788 		     write back the value after reading it, hence we actually
5789 		     need two registers.  */
5790 		  find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5791 					&XEXP (tem, 0), opnum, type,
5792 					ind_levels, insn);
5793 		  if (!rtx_equal_p (tem, orig))
5794 		    push_reg_equiv_alt_mem (regno, tem);
5795 		  /* Put this inside a new increment-expression.  */
5796 		  x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5797 		  /* Proceed to reload that, as if it contained a register.  */
5798 		}
5799 	    }
5800 
5801 	  /* If we have a hard register that is ok in this incdec context,
5802 	     don't make a reload.  If the register isn't nice enough for
5803 	     autoincdec, we can reload it.  But, if an autoincrement of a
5804 	     register that we here verified as playing nice, still outside
5805 	     isn't "valid", it must be that no autoincrement is "valid".
5806 	     If that is true and something made an autoincrement anyway,
5807 	     this must be a special context where one is allowed.
5808 	     (For example, a "push" instruction.)
5809 	     We can't improve this address, so leave it alone.  */
5810 
5811 	  /* Otherwise, reload the autoincrement into a suitable hard reg
5812 	     and record how much to increment by.  */
5813 
5814 	  if (reg_renumber[regno] >= 0)
5815 	    regno = reg_renumber[regno];
5816 	  if (regno >= FIRST_PSEUDO_REGISTER
5817 	      || !REG_OK_FOR_CONTEXT (context, regno, mode, code,
5818 				      index_code))
5819 	    {
5820 	      int reloadnum;
5821 
5822 	      /* If we can output the register afterwards, do so, this
5823 		 saves the extra update.
5824 		 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5825 		 CALL_INSN - and it does not set CC0.
5826 		 But don't do this if we cannot directly address the
5827 		 memory location, since this will make it harder to
5828 		 reuse address reloads, and increases register pressure.
5829 		 Also don't do this if we can probably update x directly.  */
5830 	      rtx equiv = (MEM_P (XEXP (x, 0))
5831 			   ? XEXP (x, 0)
5832 			   : reg_equiv_mem[regno]);
5833 	      int icode
5834 		= (int) optab_handler (add_optab, GET_MODE (x))->insn_code;
5835 	      if (insn && NONJUMP_INSN_P (insn) && equiv
5836 		  && memory_operand (equiv, GET_MODE (equiv))
5837 #ifdef HAVE_cc0
5838 		  && ! sets_cc0_p (PATTERN (insn))
5839 #endif
5840 		  && ! (icode != CODE_FOR_nothing
5841 			&& ((*insn_data[icode].operand[0].predicate)
5842 			    (equiv, GET_MODE (x)))
5843 			&& ((*insn_data[icode].operand[1].predicate)
5844 			    (equiv, GET_MODE (x)))))
5845 		{
5846 		  /* We use the original pseudo for loc, so that
5847 		     emit_reload_insns() knows which pseudo this
5848 		     reload refers to and updates the pseudo rtx, not
5849 		     its equivalent memory location, as well as the
5850 		     corresponding entry in reg_last_reload_reg.  */
5851 		  loc = &XEXP (x_orig, 0);
5852 		  x = XEXP (x, 0);
5853 		  reloadnum
5854 		    = push_reload (x, x, loc, loc,
5855 				   context_reg_class,
5856 				   GET_MODE (x), GET_MODE (x), 0, 0,
5857 				   opnum, RELOAD_OTHER);
5858 		}
5859 	      else
5860 		{
5861 		  reloadnum
5862 		    = push_reload (x, x, loc, (rtx*) 0,
5863 				   context_reg_class,
5864 				   GET_MODE (x), GET_MODE (x), 0, 0,
5865 				   opnum, type);
5866 		  rld[reloadnum].inc
5867 		    = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5868 
5869 		  value = 1;
5870 		}
5871 
5872 	      update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5873 				     reloadnum);
5874 	    }
5875 	  return value;
5876 	}
5877       return 0;
5878 
5879     case TRUNCATE:
5880     case SIGN_EXTEND:
5881     case ZERO_EXTEND:
5882       /* Look for parts to reload in the inner expression and reload them
5883 	 too, in addition to this operation.  Reloading all inner parts in
5884 	 addition to this one shouldn't be necessary, but at this point,
5885 	 we don't know if we can possibly omit any part that *can* be
5886 	 reloaded.  Targets that are better off reloading just either part
5887 	 (or perhaps even a different part of an outer expression), should
5888 	 define LEGITIMIZE_RELOAD_ADDRESS.  */
5889       find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5890 			      context, code, SCRATCH, &XEXP (x, 0), opnum,
5891 			      type, ind_levels, insn);
5892       push_reload (x, NULL_RTX, loc, (rtx*) 0,
5893 		   context_reg_class,
5894 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5895       return 1;
5896 
5897     case MEM:
5898       /* This is probably the result of a substitution, by eliminate_regs, of
5899 	 an equivalent address for a pseudo that was not allocated to a hard
5900 	 register.  Verify that the specified address is valid and reload it
5901 	 into a register.
5902 
5903 	 Since we know we are going to reload this item, don't decrement for
5904 	 the indirection level.
5905 
5906 	 Note that this is actually conservative:  it would be slightly more
5907 	 efficient to use the value of SPILL_INDIRECT_LEVELS from
5908 	 reload1.c here.  */
5909 
5910       find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5911 			    opnum, ADDR_TYPE (type), ind_levels, insn);
5912       push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5913 		   context_reg_class,
5914 		   GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5915       return 1;
5916 
5917     case REG:
5918       {
5919 	int regno = REGNO (x);
5920 
5921 	if (reg_equiv_constant[regno] != 0)
5922 	  {
5923 	    find_reloads_address_part (reg_equiv_constant[regno], loc,
5924 				       context_reg_class,
5925 				       GET_MODE (x), opnum, type, ind_levels);
5926 	    return 1;
5927 	  }
5928 
5929 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5930 	 that feeds this insn.  */
5931 	if (reg_equiv_mem[regno] != 0)
5932 	  {
5933 	    push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5934 			 context_reg_class,
5935 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5936 	    return 1;
5937 	  }
5938 #endif
5939 
5940 	if (reg_equiv_memory_loc[regno]
5941 	    && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5942 	  {
5943 	    rtx tem = make_memloc (x, regno);
5944 	    if (reg_equiv_address[regno] != 0
5945 		|| ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5946 	      {
5947 		x = tem;
5948 		find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5949 				      &XEXP (x, 0), opnum, ADDR_TYPE (type),
5950 				      ind_levels, insn);
5951 		if (!rtx_equal_p (x, tem))
5952 		  push_reg_equiv_alt_mem (regno, x);
5953 	      }
5954 	  }
5955 
5956 	if (reg_renumber[regno] >= 0)
5957 	  regno = reg_renumber[regno];
5958 
5959 	if (regno >= FIRST_PSEUDO_REGISTER
5960 	    || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5961 				    index_code))
5962 	  {
5963 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5964 			 context_reg_class,
5965 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5966 	    return 1;
5967 	  }
5968 
5969 	/* If a register appearing in an address is the subject of a CLOBBER
5970 	   in this insn, reload it into some other register to be safe.
5971 	   The CLOBBER is supposed to make the register unavailable
5972 	   from before this insn to after it.  */
5973 	if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5974 	  {
5975 	    push_reload (x, NULL_RTX, loc, (rtx*) 0,
5976 			 context_reg_class,
5977 			 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5978 	    return 1;
5979 	  }
5980       }
5981       return 0;
5982 
5983     case SUBREG:
5984       if (REG_P (SUBREG_REG (x)))
5985 	{
5986 	  /* If this is a SUBREG of a hard register and the resulting register
5987 	     is of the wrong class, reload the whole SUBREG.  This avoids
5988 	     needless copies if SUBREG_REG is multi-word.  */
5989 	  if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5990 	    {
5991 	      int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5992 
5993 	      if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5994 				       index_code))
5995 		{
5996 		  push_reload (x, NULL_RTX, loc, (rtx*) 0,
5997 			       context_reg_class,
5998 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5999 		  return 1;
6000 		}
6001 	    }
6002 	  /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6003 	     is larger than the class size, then reload the whole SUBREG.  */
6004 	  else
6005 	    {
6006 	      enum reg_class rclass = context_reg_class;
6007 	      if ((unsigned) CLASS_MAX_NREGS (rclass, GET_MODE (SUBREG_REG (x)))
6008 		  > reg_class_size[rclass])
6009 		{
6010 		  x = find_reloads_subreg_address (x, 0, opnum,
6011 						   ADDR_TYPE (type),
6012 						   ind_levels, insn);
6013 		  push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6014 			       GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6015 		  return 1;
6016 		}
6017 	    }
6018 	}
6019       break;
6020 
6021     default:
6022       break;
6023     }
6024 
6025   {
6026     const char *fmt = GET_RTX_FORMAT (code);
6027     int i;
6028 
6029     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6030       {
6031 	if (fmt[i] == 'e')
6032 	  /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6033 	     we get here.  */
6034 	  find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
6035 				  &XEXP (x, i), opnum, type, ind_levels, insn);
6036       }
6037   }
6038 
6039 #undef REG_OK_FOR_CONTEXT
6040   return 0;
6041 }
6042 
6043 /* X, which is found at *LOC, is a part of an address that needs to be
6044    reloaded into a register of class RCLASS.  If X is a constant, or if
6045    X is a PLUS that contains a constant, check that the constant is a
6046    legitimate operand and that we are supposed to be able to load
6047    it into the register.
6048 
6049    If not, force the constant into memory and reload the MEM instead.
6050 
6051    MODE is the mode to use, in case X is an integer constant.
6052 
6053    OPNUM and TYPE describe the purpose of any reloads made.
6054 
6055    IND_LEVELS says how many levels of indirect addressing this machine
6056    supports.  */
6057 
6058 static void
6059 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6060 			   enum machine_mode mode, int opnum,
6061 			   enum reload_type type, int ind_levels)
6062 {
6063   if (CONSTANT_P (x)
6064       && (! LEGITIMATE_CONSTANT_P (x)
6065 	  || PREFERRED_RELOAD_CLASS (x, rclass) == NO_REGS))
6066     {
6067       x = force_const_mem (mode, x);
6068       find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6069 			    opnum, type, ind_levels, 0);
6070     }
6071 
6072   else if (GET_CODE (x) == PLUS
6073 	   && CONSTANT_P (XEXP (x, 1))
6074 	   && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
6075 	       || PREFERRED_RELOAD_CLASS (XEXP (x, 1), rclass) == NO_REGS))
6076     {
6077       rtx tem;
6078 
6079       tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6080       x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6081       find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6082 			    opnum, type, ind_levels, 0);
6083     }
6084 
6085   push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6086 	       mode, VOIDmode, 0, 0, opnum, type);
6087 }
6088 
6089 /* X, a subreg of a pseudo, is a part of an address that needs to be
6090    reloaded.
6091 
6092    If the pseudo is equivalent to a memory location that cannot be directly
6093    addressed, make the necessary address reloads.
6094 
6095    If address reloads have been necessary, or if the address is changed
6096    by register elimination, return the rtx of the memory location;
6097    otherwise, return X.
6098 
6099    If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
6100    memory location.
6101 
6102    OPNUM and TYPE identify the purpose of the reload.
6103 
6104    IND_LEVELS says how many levels of indirect addressing are
6105    supported at this point in the address.
6106 
6107    INSN, if nonzero, is the insn in which we do the reload.  It is used
6108    to determine where to put USEs for pseudos that we have to replace with
6109    stack slots.  */
6110 
6111 static rtx
6112 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
6113 			     enum reload_type type, int ind_levels, rtx insn)
6114 {
6115   int regno = REGNO (SUBREG_REG (x));
6116 
6117   if (reg_equiv_memory_loc[regno])
6118     {
6119       /* If the address is not directly addressable, or if the address is not
6120 	 offsettable, then it must be replaced.  */
6121       if (! force_replace
6122 	  && (reg_equiv_address[regno]
6123 	      || ! offsettable_memref_p (reg_equiv_mem[regno])))
6124 	force_replace = 1;
6125 
6126       if (force_replace || num_not_at_initial_offset)
6127 	{
6128 	  rtx tem = make_memloc (SUBREG_REG (x), regno);
6129 
6130 	  /* If the address changes because of register elimination, then
6131 	     it must be replaced.  */
6132 	  if (force_replace
6133 	      || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
6134 	    {
6135 	      unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
6136 	      unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
6137 	      int offset;
6138 	      rtx orig = tem;
6139 	      int reloaded;
6140 
6141 	      /* For big-endian paradoxical subregs, SUBREG_BYTE does not
6142 		 hold the correct (negative) byte offset.  */
6143 	      if (BYTES_BIG_ENDIAN && outer_size > inner_size)
6144 		offset = inner_size - outer_size;
6145 	      else
6146 		offset = SUBREG_BYTE (x);
6147 
6148 	      XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
6149 	      PUT_MODE (tem, GET_MODE (x));
6150 	      if (MEM_OFFSET (tem))
6151 		set_mem_offset (tem, plus_constant (MEM_OFFSET (tem), offset));
6152 	      if (MEM_SIZE (tem)
6153 		  && INTVAL (MEM_SIZE (tem)) != (HOST_WIDE_INT) outer_size)
6154 		set_mem_size (tem, GEN_INT (outer_size));
6155 
6156 	      /* If this was a paradoxical subreg that we replaced, the
6157 		 resulting memory must be sufficiently aligned to allow
6158 		 us to widen the mode of the memory.  */
6159 	      if (outer_size > inner_size)
6160 		{
6161 		  rtx base;
6162 
6163 		  base = XEXP (tem, 0);
6164 		  if (GET_CODE (base) == PLUS)
6165 		    {
6166 		      if (CONST_INT_P (XEXP (base, 1))
6167 			  && INTVAL (XEXP (base, 1)) % outer_size != 0)
6168 			return x;
6169 		      base = XEXP (base, 0);
6170 		    }
6171 		  if (!REG_P (base)
6172 		      || (REGNO_POINTER_ALIGN (REGNO (base))
6173 			  < outer_size * BITS_PER_UNIT))
6174 		    return x;
6175 		}
6176 
6177 	      reloaded = find_reloads_address (GET_MODE (tem), &tem,
6178 					       XEXP (tem, 0), &XEXP (tem, 0),
6179 					       opnum, type, ind_levels, insn);
6180 	      /* ??? Do we need to handle nonzero offsets somehow?  */
6181 	      if (!offset && !rtx_equal_p (tem, orig))
6182 		push_reg_equiv_alt_mem (regno, tem);
6183 
6184 	      /* For some processors an address may be valid in the
6185 		 original mode but not in a smaller mode.  For
6186 		 example, ARM accepts a scaled index register in
6187 		 SImode but not in HImode.  Note that this is only
6188 		 a problem if the address in reg_equiv_mem is already
6189 		 invalid in the new mode; other cases would be fixed
6190 		 by find_reloads_address as usual.
6191 
6192 		 ??? We attempt to handle such cases here by doing an
6193 		 additional reload of the full address after the
6194 		 usual processing by find_reloads_address.  Note that
6195 		 this may not work in the general case, but it seems
6196 		 to cover the cases where this situation currently
6197 		 occurs.  A more general fix might be to reload the
6198 		 *value* instead of the address, but this would not
6199 		 be expected by the callers of this routine as-is.
6200 
6201 		 If find_reloads_address already completed replaced
6202 		 the address, there is nothing further to do.  */
6203 	      if (reloaded == 0
6204 		  && reg_equiv_mem[regno] != 0
6205 		  && !strict_memory_address_addr_space_p
6206 			(GET_MODE (x), XEXP (reg_equiv_mem[regno], 0),
6207 			 MEM_ADDR_SPACE (reg_equiv_mem[regno])))
6208 		push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6209 			     base_reg_class (GET_MODE (tem), MEM, SCRATCH),
6210 			     GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0,
6211 			     opnum, type);
6212 
6213 	      /* If this is not a toplevel operand, find_reloads doesn't see
6214 		 this substitution.  We have to emit a USE of the pseudo so
6215 		 that delete_output_reload can see it.  */
6216 	      if (replace_reloads && recog_data.operand[opnum] != x)
6217 		/* We mark the USE with QImode so that we recognize it
6218 		   as one that can be safely deleted at the end of
6219 		   reload.  */
6220 		PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6221 							 SUBREG_REG (x)),
6222 					    insn), QImode);
6223 	      x = tem;
6224 	    }
6225 	}
6226     }
6227   return x;
6228 }
6229 
6230 /* Substitute into the current INSN the registers into which we have reloaded
6231    the things that need reloading.  The array `replacements'
6232    contains the locations of all pointers that must be changed
6233    and says what to replace them with.
6234 
6235    Return the rtx that X translates into; usually X, but modified.  */
6236 
6237 void
6238 subst_reloads (rtx insn)
6239 {
6240   int i;
6241 
6242   for (i = 0; i < n_replacements; i++)
6243     {
6244       struct replacement *r = &replacements[i];
6245       rtx reloadreg = rld[r->what].reg_rtx;
6246       if (reloadreg)
6247 	{
6248 #ifdef DEBUG_RELOAD
6249 	  /* This checking takes a very long time on some platforms
6250 	     causing the gcc.c-torture/compile/limits-fnargs.c test
6251 	     to time out during testing.  See PR 31850.
6252 
6253 	     Internal consistency test.  Check that we don't modify
6254 	     anything in the equivalence arrays.  Whenever something from
6255 	     those arrays needs to be reloaded, it must be unshared before
6256 	     being substituted into; the equivalence must not be modified.
6257 	     Otherwise, if the equivalence is used after that, it will
6258 	     have been modified, and the thing substituted (probably a
6259 	     register) is likely overwritten and not a usable equivalence.  */
6260 	  int check_regno;
6261 
6262 	  for (check_regno = 0; check_regno < max_regno; check_regno++)
6263 	    {
6264 #define CHECK_MODF(ARRAY)						\
6265 	      gcc_assert (!ARRAY[check_regno]				\
6266 			  || !loc_mentioned_in_p (r->where,		\
6267 						  ARRAY[check_regno]))
6268 
6269 	      CHECK_MODF (reg_equiv_constant);
6270 	      CHECK_MODF (reg_equiv_memory_loc);
6271 	      CHECK_MODF (reg_equiv_address);
6272 	      CHECK_MODF (reg_equiv_mem);
6273 #undef CHECK_MODF
6274 	    }
6275 #endif /* DEBUG_RELOAD */
6276 
6277 	  /* If we're replacing a LABEL_REF with a register, there must
6278 	     already be an indication (to e.g. flow) which label this
6279 	     register refers to.  */
6280 	  gcc_assert (GET_CODE (*r->where) != LABEL_REF
6281 		      || !JUMP_P (insn)
6282 		      || find_reg_note (insn,
6283 					REG_LABEL_OPERAND,
6284 					XEXP (*r->where, 0))
6285 		      || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6286 
6287 	  /* Encapsulate RELOADREG so its machine mode matches what
6288 	     used to be there.  Note that gen_lowpart_common will
6289 	     do the wrong thing if RELOADREG is multi-word.  RELOADREG
6290 	     will always be a REG here.  */
6291 	  if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6292 	    reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6293 
6294 	  /* If we are putting this into a SUBREG and RELOADREG is a
6295 	     SUBREG, we would be making nested SUBREGs, so we have to fix
6296 	     this up.  Note that r->where == &SUBREG_REG (*r->subreg_loc).  */
6297 
6298 	  if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6299 	    {
6300 	      if (GET_MODE (*r->subreg_loc)
6301 		  == GET_MODE (SUBREG_REG (reloadreg)))
6302 		*r->subreg_loc = SUBREG_REG (reloadreg);
6303 	      else
6304 		{
6305 		  int final_offset =
6306 		    SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6307 
6308 		  /* When working with SUBREGs the rule is that the byte
6309 		     offset must be a multiple of the SUBREG's mode.  */
6310 		  final_offset = (final_offset /
6311 				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6312 		  final_offset = (final_offset *
6313 				  GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6314 
6315 		  *r->where = SUBREG_REG (reloadreg);
6316 		  SUBREG_BYTE (*r->subreg_loc) = final_offset;
6317 		}
6318 	    }
6319 	  else
6320 	    *r->where = reloadreg;
6321 	}
6322       /* If reload got no reg and isn't optional, something's wrong.  */
6323       else
6324 	gcc_assert (rld[r->what].optional);
6325     }
6326 }
6327 
6328 /* Make a copy of any replacements being done into X and move those
6329    copies to locations in Y, a copy of X.  */
6330 
6331 void
6332 copy_replacements (rtx x, rtx y)
6333 {
6334   /* We can't support X being a SUBREG because we might then need to know its
6335      location if something inside it was replaced.  */
6336   gcc_assert (GET_CODE (x) != SUBREG);
6337 
6338   copy_replacements_1 (&x, &y, n_replacements);
6339 }
6340 
6341 static void
6342 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6343 {
6344   int i, j;
6345   rtx x, y;
6346   struct replacement *r;
6347   enum rtx_code code;
6348   const char *fmt;
6349 
6350   for (j = 0; j < orig_replacements; j++)
6351     {
6352       if (replacements[j].subreg_loc == px)
6353 	{
6354 	  r = &replacements[n_replacements++];
6355 	  r->where = replacements[j].where;
6356 	  r->subreg_loc = py;
6357 	  r->what = replacements[j].what;
6358 	  r->mode = replacements[j].mode;
6359 	}
6360       else if (replacements[j].where == px)
6361 	{
6362 	  r = &replacements[n_replacements++];
6363 	  r->where = py;
6364 	  r->subreg_loc = 0;
6365 	  r->what = replacements[j].what;
6366 	  r->mode = replacements[j].mode;
6367 	}
6368     }
6369 
6370   x = *px;
6371   y = *py;
6372   code = GET_CODE (x);
6373   fmt = GET_RTX_FORMAT (code);
6374 
6375   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6376     {
6377       if (fmt[i] == 'e')
6378 	copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6379       else if (fmt[i] == 'E')
6380 	for (j = XVECLEN (x, i); --j >= 0; )
6381 	  copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6382 			       orig_replacements);
6383     }
6384 }
6385 
6386 /* Change any replacements being done to *X to be done to *Y.  */
6387 
6388 void
6389 move_replacements (rtx *x, rtx *y)
6390 {
6391   int i;
6392 
6393   for (i = 0; i < n_replacements; i++)
6394     if (replacements[i].subreg_loc == x)
6395       replacements[i].subreg_loc = y;
6396     else if (replacements[i].where == x)
6397       {
6398 	replacements[i].where = y;
6399 	replacements[i].subreg_loc = 0;
6400       }
6401 }
6402 
6403 /* If LOC was scheduled to be replaced by something, return the replacement.
6404    Otherwise, return *LOC.  */
6405 
6406 rtx
6407 find_replacement (rtx *loc)
6408 {
6409   struct replacement *r;
6410 
6411   for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6412     {
6413       rtx reloadreg = rld[r->what].reg_rtx;
6414 
6415       if (reloadreg && r->where == loc)
6416 	{
6417 	  if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6418 	    reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6419 
6420 	  return reloadreg;
6421 	}
6422       else if (reloadreg && r->subreg_loc == loc)
6423 	{
6424 	  /* RELOADREG must be either a REG or a SUBREG.
6425 
6426 	     ??? Is it actually still ever a SUBREG?  If so, why?  */
6427 
6428 	  if (REG_P (reloadreg))
6429 	    return gen_rtx_REG (GET_MODE (*loc),
6430 				(REGNO (reloadreg) +
6431 				 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6432 						      GET_MODE (SUBREG_REG (*loc)),
6433 						      SUBREG_BYTE (*loc),
6434 						      GET_MODE (*loc))));
6435 	  else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6436 	    return reloadreg;
6437 	  else
6438 	    {
6439 	      int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6440 
6441 	      /* When working with SUBREGs the rule is that the byte
6442 		 offset must be a multiple of the SUBREG's mode.  */
6443 	      final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6444 	      final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6445 	      return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6446 				     final_offset);
6447 	    }
6448 	}
6449     }
6450 
6451   /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6452      what's inside and make a new rtl if so.  */
6453   if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6454       || GET_CODE (*loc) == MULT)
6455     {
6456       rtx x = find_replacement (&XEXP (*loc, 0));
6457       rtx y = find_replacement (&XEXP (*loc, 1));
6458 
6459       if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6460 	return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6461     }
6462 
6463   return *loc;
6464 }
6465 
6466 /* Return nonzero if register in range [REGNO, ENDREGNO)
6467    appears either explicitly or implicitly in X
6468    other than being stored into (except for earlyclobber operands).
6469 
6470    References contained within the substructure at LOC do not count.
6471    LOC may be zero, meaning don't ignore anything.
6472 
6473    This is similar to refers_to_regno_p in rtlanal.c except that we
6474    look at equivalences for pseudos that didn't get hard registers.  */
6475 
6476 static int
6477 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6478 			      rtx x, rtx *loc)
6479 {
6480   int i;
6481   unsigned int r;
6482   RTX_CODE code;
6483   const char *fmt;
6484 
6485   if (x == 0)
6486     return 0;
6487 
6488  repeat:
6489   code = GET_CODE (x);
6490 
6491   switch (code)
6492     {
6493     case REG:
6494       r = REGNO (x);
6495 
6496       /* If this is a pseudo, a hard register must not have been allocated.
6497 	 X must therefore either be a constant or be in memory.  */
6498       if (r >= FIRST_PSEUDO_REGISTER)
6499 	{
6500 	  if (reg_equiv_memory_loc[r])
6501 	    return refers_to_regno_for_reload_p (regno, endregno,
6502 						 reg_equiv_memory_loc[r],
6503 						 (rtx*) 0);
6504 
6505 	  gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6506 	  return 0;
6507 	}
6508 
6509       return (endregno > r
6510 	      && regno < r + (r < FIRST_PSEUDO_REGISTER
6511 			      ? hard_regno_nregs[r][GET_MODE (x)]
6512 			      : 1));
6513 
6514     case SUBREG:
6515       /* If this is a SUBREG of a hard reg, we can see exactly which
6516 	 registers are being modified.  Otherwise, handle normally.  */
6517       if (REG_P (SUBREG_REG (x))
6518 	  && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6519 	{
6520 	  unsigned int inner_regno = subreg_regno (x);
6521 	  unsigned int inner_endregno
6522 	    = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6523 			     ? subreg_nregs (x) : 1);
6524 
6525 	  return endregno > inner_regno && regno < inner_endregno;
6526 	}
6527       break;
6528 
6529     case CLOBBER:
6530     case SET:
6531       if (&SET_DEST (x) != loc
6532 	  /* Note setting a SUBREG counts as referring to the REG it is in for
6533 	     a pseudo but not for hard registers since we can
6534 	     treat each word individually.  */
6535 	  && ((GET_CODE (SET_DEST (x)) == SUBREG
6536 	       && loc != &SUBREG_REG (SET_DEST (x))
6537 	       && REG_P (SUBREG_REG (SET_DEST (x)))
6538 	       && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6539 	       && refers_to_regno_for_reload_p (regno, endregno,
6540 						SUBREG_REG (SET_DEST (x)),
6541 						loc))
6542 	      /* If the output is an earlyclobber operand, this is
6543 		 a conflict.  */
6544 	      || ((!REG_P (SET_DEST (x))
6545 		   || earlyclobber_operand_p (SET_DEST (x)))
6546 		  && refers_to_regno_for_reload_p (regno, endregno,
6547 						   SET_DEST (x), loc))))
6548 	return 1;
6549 
6550       if (code == CLOBBER || loc == &SET_SRC (x))
6551 	return 0;
6552       x = SET_SRC (x);
6553       goto repeat;
6554 
6555     default:
6556       break;
6557     }
6558 
6559   /* X does not match, so try its subexpressions.  */
6560 
6561   fmt = GET_RTX_FORMAT (code);
6562   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6563     {
6564       if (fmt[i] == 'e' && loc != &XEXP (x, i))
6565 	{
6566 	  if (i == 0)
6567 	    {
6568 	      x = XEXP (x, 0);
6569 	      goto repeat;
6570 	    }
6571 	  else
6572 	    if (refers_to_regno_for_reload_p (regno, endregno,
6573 					      XEXP (x, i), loc))
6574 	      return 1;
6575 	}
6576       else if (fmt[i] == 'E')
6577 	{
6578 	  int j;
6579 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6580 	    if (loc != &XVECEXP (x, i, j)
6581 		&& refers_to_regno_for_reload_p (regno, endregno,
6582 						 XVECEXP (x, i, j), loc))
6583 	      return 1;
6584 	}
6585     }
6586   return 0;
6587 }
6588 
6589 /* Nonzero if modifying X will affect IN.  If X is a register or a SUBREG,
6590    we check if any register number in X conflicts with the relevant register
6591    numbers.  If X is a constant, return 0.  If X is a MEM, return 1 iff IN
6592    contains a MEM (we don't bother checking for memory addresses that can't
6593    conflict because we expect this to be a rare case.
6594 
6595    This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6596    that we look at equivalences for pseudos that didn't get hard registers.  */
6597 
6598 int
6599 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6600 {
6601   int regno, endregno;
6602 
6603   /* Overly conservative.  */
6604   if (GET_CODE (x) == STRICT_LOW_PART
6605       || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6606     x = XEXP (x, 0);
6607 
6608   /* If either argument is a constant, then modifying X can not affect IN.  */
6609   if (CONSTANT_P (x) || CONSTANT_P (in))
6610     return 0;
6611   else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6612     return refers_to_mem_for_reload_p (in);
6613   else if (GET_CODE (x) == SUBREG)
6614     {
6615       regno = REGNO (SUBREG_REG (x));
6616       if (regno < FIRST_PSEUDO_REGISTER)
6617 	regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6618 				      GET_MODE (SUBREG_REG (x)),
6619 				      SUBREG_BYTE (x),
6620 				      GET_MODE (x));
6621       endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6622 			  ? subreg_nregs (x) : 1);
6623 
6624       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6625     }
6626   else if (REG_P (x))
6627     {
6628       regno = REGNO (x);
6629 
6630       /* If this is a pseudo, it must not have been assigned a hard register.
6631 	 Therefore, it must either be in memory or be a constant.  */
6632 
6633       if (regno >= FIRST_PSEUDO_REGISTER)
6634 	{
6635 	  if (reg_equiv_memory_loc[regno])
6636 	    return refers_to_mem_for_reload_p (in);
6637 	  gcc_assert (reg_equiv_constant[regno]);
6638 	  return 0;
6639 	}
6640 
6641       endregno = END_HARD_REGNO (x);
6642 
6643       return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6644     }
6645   else if (MEM_P (x))
6646     return refers_to_mem_for_reload_p (in);
6647   else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6648 	   || GET_CODE (x) == CC0)
6649     return reg_mentioned_p (x, in);
6650   else
6651     {
6652       gcc_assert (GET_CODE (x) == PLUS);
6653 
6654       /* We actually want to know if X is mentioned somewhere inside IN.
6655 	 We must not say that (plus (sp) (const_int 124)) is in
6656 	 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6657 	 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6658 	 into a RELOAD_OTHER on behalf of another RELOAD_OTHER.  */
6659       while (MEM_P (in))
6660 	in = XEXP (in, 0);
6661       if (REG_P (in))
6662 	return 0;
6663       else if (GET_CODE (in) == PLUS)
6664 	return (rtx_equal_p (x, in)
6665 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6666 		|| reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6667       else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6668 		   || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6669     }
6670 
6671   gcc_unreachable ();
6672 }
6673 
6674 /* Return nonzero if anything in X contains a MEM.  Look also for pseudo
6675    registers.  */
6676 
6677 static int
6678 refers_to_mem_for_reload_p (rtx x)
6679 {
6680   const char *fmt;
6681   int i;
6682 
6683   if (MEM_P (x))
6684     return 1;
6685 
6686   if (REG_P (x))
6687     return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6688 	    && reg_equiv_memory_loc[REGNO (x)]);
6689 
6690   fmt = GET_RTX_FORMAT (GET_CODE (x));
6691   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6692     if (fmt[i] == 'e'
6693 	&& (MEM_P (XEXP (x, i))
6694 	    || refers_to_mem_for_reload_p (XEXP (x, i))))
6695       return 1;
6696 
6697   return 0;
6698 }
6699 
6700 /* Check the insns before INSN to see if there is a suitable register
6701    containing the same value as GOAL.
6702    If OTHER is -1, look for a register in class RCLASS.
6703    Otherwise, just see if register number OTHER shares GOAL's value.
6704 
6705    Return an rtx for the register found, or zero if none is found.
6706 
6707    If RELOAD_REG_P is (short *)1,
6708    we reject any hard reg that appears in reload_reg_rtx
6709    because such a hard reg is also needed coming into this insn.
6710 
6711    If RELOAD_REG_P is any other nonzero value,
6712    it is a vector indexed by hard reg number
6713    and we reject any hard reg whose element in the vector is nonnegative
6714    as well as any that appears in reload_reg_rtx.
6715 
6716    If GOAL is zero, then GOALREG is a register number; we look
6717    for an equivalent for that register.
6718 
6719    MODE is the machine mode of the value we want an equivalence for.
6720    If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6721 
6722    This function is used by jump.c as well as in the reload pass.
6723 
6724    If GOAL is the sum of the stack pointer and a constant, we treat it
6725    as if it were a constant except that sp is required to be unchanging.  */
6726 
6727 rtx
6728 find_equiv_reg (rtx goal, rtx insn, enum reg_class rclass, int other,
6729 		short *reload_reg_p, int goalreg, enum machine_mode mode)
6730 {
6731   rtx p = insn;
6732   rtx goaltry, valtry, value, where;
6733   rtx pat;
6734   int regno = -1;
6735   int valueno;
6736   int goal_mem = 0;
6737   int goal_const = 0;
6738   int goal_mem_addr_varies = 0;
6739   int need_stable_sp = 0;
6740   int nregs;
6741   int valuenregs;
6742   int num = 0;
6743 
6744   if (goal == 0)
6745     regno = goalreg;
6746   else if (REG_P (goal))
6747     regno = REGNO (goal);
6748   else if (MEM_P (goal))
6749     {
6750       enum rtx_code code = GET_CODE (XEXP (goal, 0));
6751       if (MEM_VOLATILE_P (goal))
6752 	return 0;
6753       if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6754 	return 0;
6755       /* An address with side effects must be reexecuted.  */
6756       switch (code)
6757 	{
6758 	case POST_INC:
6759 	case PRE_INC:
6760 	case POST_DEC:
6761 	case PRE_DEC:
6762 	case POST_MODIFY:
6763 	case PRE_MODIFY:
6764 	  return 0;
6765 	default:
6766 	  break;
6767 	}
6768       goal_mem = 1;
6769     }
6770   else if (CONSTANT_P (goal))
6771     goal_const = 1;
6772   else if (GET_CODE (goal) == PLUS
6773 	   && XEXP (goal, 0) == stack_pointer_rtx
6774 	   && CONSTANT_P (XEXP (goal, 1)))
6775     goal_const = need_stable_sp = 1;
6776   else if (GET_CODE (goal) == PLUS
6777 	   && XEXP (goal, 0) == frame_pointer_rtx
6778 	   && CONSTANT_P (XEXP (goal, 1)))
6779     goal_const = 1;
6780   else
6781     return 0;
6782 
6783   num = 0;
6784   /* Scan insns back from INSN, looking for one that copies
6785      a value into or out of GOAL.
6786      Stop and give up if we reach a label.  */
6787 
6788   while (1)
6789     {
6790       p = PREV_INSN (p);
6791       if (p && DEBUG_INSN_P (p))
6792 	continue;
6793       num++;
6794       if (p == 0 || LABEL_P (p)
6795 	  || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6796 	return 0;
6797 
6798       /* Don't reuse register contents from before a setjmp-type
6799 	 function call; on the second return (from the longjmp) it
6800 	 might have been clobbered by a later reuse.  It doesn't
6801 	 seem worthwhile to actually go and see if it is actually
6802 	 reused even if that information would be readily available;
6803 	 just don't reuse it across the setjmp call.  */
6804       if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6805 	return 0;
6806 
6807       if (NONJUMP_INSN_P (p)
6808 	  /* If we don't want spill regs ...  */
6809 	  && (! (reload_reg_p != 0
6810 		 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6811 	      /* ... then ignore insns introduced by reload; they aren't
6812 		 useful and can cause results in reload_as_needed to be
6813 		 different from what they were when calculating the need for
6814 		 spills.  If we notice an input-reload insn here, we will
6815 		 reject it below, but it might hide a usable equivalent.
6816 		 That makes bad code.  It may even fail: perhaps no reg was
6817 		 spilled for this insn because it was assumed we would find
6818 		 that equivalent.  */
6819 	      || INSN_UID (p) < reload_first_uid))
6820 	{
6821 	  rtx tem;
6822 	  pat = single_set (p);
6823 
6824 	  /* First check for something that sets some reg equal to GOAL.  */
6825 	  if (pat != 0
6826 	      && ((regno >= 0
6827 		   && true_regnum (SET_SRC (pat)) == regno
6828 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6829 		  ||
6830 		  (regno >= 0
6831 		   && true_regnum (SET_DEST (pat)) == regno
6832 		   && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6833 		  ||
6834 		  (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6835 		   /* When looking for stack pointer + const,
6836 		      make sure we don't use a stack adjust.  */
6837 		   && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6838 		   && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6839 		  || (goal_mem
6840 		      && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6841 		      && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6842 		  || (goal_mem
6843 		      && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6844 		      && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6845 		  /* If we are looking for a constant,
6846 		     and something equivalent to that constant was copied
6847 		     into a reg, we can use that reg.  */
6848 		  || (goal_const && REG_NOTES (p) != 0
6849 		      && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6850 		      && ((rtx_equal_p (XEXP (tem, 0), goal)
6851 			   && (valueno
6852 			       = true_regnum (valtry = SET_DEST (pat))) >= 0)
6853 			  || (REG_P (SET_DEST (pat))
6854 			      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6855 			      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6856 			      && CONST_INT_P (goal)
6857 			      && 0 != (goaltry
6858 				       = operand_subword (XEXP (tem, 0), 0, 0,
6859 							  VOIDmode))
6860 			      && rtx_equal_p (goal, goaltry)
6861 			      && (valtry
6862 				  = operand_subword (SET_DEST (pat), 0, 0,
6863 						     VOIDmode))
6864 			      && (valueno = true_regnum (valtry)) >= 0)))
6865 		  || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6866 							  NULL_RTX))
6867 		      && REG_P (SET_DEST (pat))
6868 		      && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6869 		      && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6870 		      && CONST_INT_P (goal)
6871 		      && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6872 							  VOIDmode))
6873 		      && rtx_equal_p (goal, goaltry)
6874 		      && (valtry
6875 			  = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6876 		      && (valueno = true_regnum (valtry)) >= 0)))
6877 	    {
6878 	      if (other >= 0)
6879 		{
6880 		  if (valueno != other)
6881 		    continue;
6882 		}
6883 	      else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6884 		continue;
6885 	      else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6886 					  mode, valueno))
6887 		continue;
6888 	      value = valtry;
6889 	      where = p;
6890 	      break;
6891 	    }
6892 	}
6893     }
6894 
6895   /* We found a previous insn copying GOAL into a suitable other reg VALUE
6896      (or copying VALUE into GOAL, if GOAL is also a register).
6897      Now verify that VALUE is really valid.  */
6898 
6899   /* VALUENO is the register number of VALUE; a hard register.  */
6900 
6901   /* Don't try to re-use something that is killed in this insn.  We want
6902      to be able to trust REG_UNUSED notes.  */
6903   if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6904     return 0;
6905 
6906   /* If we propose to get the value from the stack pointer or if GOAL is
6907      a MEM based on the stack pointer, we need a stable SP.  */
6908   if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6909       || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6910 							  goal)))
6911     need_stable_sp = 1;
6912 
6913   /* Reject VALUE if the copy-insn moved the wrong sort of datum.  */
6914   if (GET_MODE (value) != mode)
6915     return 0;
6916 
6917   /* Reject VALUE if it was loaded from GOAL
6918      and is also a register that appears in the address of GOAL.  */
6919 
6920   if (goal_mem && value == SET_DEST (single_set (where))
6921       && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6922 				       goal, (rtx*) 0))
6923     return 0;
6924 
6925   /* Reject registers that overlap GOAL.  */
6926 
6927   if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6928     nregs = hard_regno_nregs[regno][mode];
6929   else
6930     nregs = 1;
6931   valuenregs = hard_regno_nregs[valueno][mode];
6932 
6933   if (!goal_mem && !goal_const
6934       && regno + nregs > valueno && regno < valueno + valuenregs)
6935     return 0;
6936 
6937   /* Reject VALUE if it is one of the regs reserved for reloads.
6938      Reload1 knows how to reuse them anyway, and it would get
6939      confused if we allocated one without its knowledge.
6940      (Now that insns introduced by reload are ignored above,
6941      this case shouldn't happen, but I'm not positive.)  */
6942 
6943   if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6944     {
6945       int i;
6946       for (i = 0; i < valuenregs; ++i)
6947 	if (reload_reg_p[valueno + i] >= 0)
6948 	  return 0;
6949     }
6950 
6951   /* Reject VALUE if it is a register being used for an input reload
6952      even if it is not one of those reserved.  */
6953 
6954   if (reload_reg_p != 0)
6955     {
6956       int i;
6957       for (i = 0; i < n_reloads; i++)
6958 	if (rld[i].reg_rtx != 0 && rld[i].in)
6959 	  {
6960 	    int regno1 = REGNO (rld[i].reg_rtx);
6961 	    int nregs1 = hard_regno_nregs[regno1]
6962 					 [GET_MODE (rld[i].reg_rtx)];
6963 	    if (regno1 < valueno + valuenregs
6964 		&& regno1 + nregs1 > valueno)
6965 	      return 0;
6966 	  }
6967     }
6968 
6969   if (goal_mem)
6970     /* We must treat frame pointer as varying here,
6971        since it can vary--in a nonlocal goto as generated by expand_goto.  */
6972     goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6973 
6974   /* Now verify that the values of GOAL and VALUE remain unaltered
6975      until INSN is reached.  */
6976 
6977   p = insn;
6978   while (1)
6979     {
6980       p = PREV_INSN (p);
6981       if (p == where)
6982 	return value;
6983 
6984       /* Don't trust the conversion past a function call
6985 	 if either of the two is in a call-clobbered register, or memory.  */
6986       if (CALL_P (p))
6987 	{
6988 	  int i;
6989 
6990 	  if (goal_mem || need_stable_sp)
6991 	    return 0;
6992 
6993 	  if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6994 	    for (i = 0; i < nregs; ++i)
6995 	      if (call_used_regs[regno + i]
6996 		  || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6997 		return 0;
6998 
6999 	  if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
7000 	    for (i = 0; i < valuenregs; ++i)
7001 	      if (call_used_regs[valueno + i]
7002 		  || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
7003 		return 0;
7004 	}
7005 
7006       if (INSN_P (p))
7007 	{
7008 	  pat = PATTERN (p);
7009 
7010 	  /* Watch out for unspec_volatile, and volatile asms.  */
7011 	  if (volatile_insn_p (pat))
7012 	    return 0;
7013 
7014 	  /* If this insn P stores in either GOAL or VALUE, return 0.
7015 	     If GOAL is a memory ref and this insn writes memory, return 0.
7016 	     If GOAL is a memory ref and its address is not constant,
7017 	     and this insn P changes a register used in GOAL, return 0.  */
7018 
7019 	  if (GET_CODE (pat) == COND_EXEC)
7020 	    pat = COND_EXEC_CODE (pat);
7021 	  if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
7022 	    {
7023 	      rtx dest = SET_DEST (pat);
7024 	      while (GET_CODE (dest) == SUBREG
7025 		     || GET_CODE (dest) == ZERO_EXTRACT
7026 		     || GET_CODE (dest) == STRICT_LOW_PART)
7027 		dest = XEXP (dest, 0);
7028 	      if (REG_P (dest))
7029 		{
7030 		  int xregno = REGNO (dest);
7031 		  int xnregs;
7032 		  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7033 		    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7034 		  else
7035 		    xnregs = 1;
7036 		  if (xregno < regno + nregs && xregno + xnregs > regno)
7037 		    return 0;
7038 		  if (xregno < valueno + valuenregs
7039 		      && xregno + xnregs > valueno)
7040 		    return 0;
7041 		  if (goal_mem_addr_varies
7042 		      && reg_overlap_mentioned_for_reload_p (dest, goal))
7043 		    return 0;
7044 		  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7045 		    return 0;
7046 		}
7047 	      else if (goal_mem && MEM_P (dest)
7048 		       && ! push_operand (dest, GET_MODE (dest)))
7049 		return 0;
7050 	      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7051 		       && reg_equiv_memory_loc[regno] != 0)
7052 		return 0;
7053 	      else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7054 		return 0;
7055 	    }
7056 	  else if (GET_CODE (pat) == PARALLEL)
7057 	    {
7058 	      int i;
7059 	      for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7060 		{
7061 		  rtx v1 = XVECEXP (pat, 0, i);
7062 		  if (GET_CODE (v1) == COND_EXEC)
7063 		    v1 = COND_EXEC_CODE (v1);
7064 		  if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7065 		    {
7066 		      rtx dest = SET_DEST (v1);
7067 		      while (GET_CODE (dest) == SUBREG
7068 			     || GET_CODE (dest) == ZERO_EXTRACT
7069 			     || GET_CODE (dest) == STRICT_LOW_PART)
7070 			dest = XEXP (dest, 0);
7071 		      if (REG_P (dest))
7072 			{
7073 			  int xregno = REGNO (dest);
7074 			  int xnregs;
7075 			  if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7076 			    xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7077 			  else
7078 			    xnregs = 1;
7079 			  if (xregno < regno + nregs
7080 			      && xregno + xnregs > regno)
7081 			    return 0;
7082 			  if (xregno < valueno + valuenregs
7083 			      && xregno + xnregs > valueno)
7084 			    return 0;
7085 			  if (goal_mem_addr_varies
7086 			      && reg_overlap_mentioned_for_reload_p (dest,
7087 								     goal))
7088 			    return 0;
7089 			  if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7090 			    return 0;
7091 			}
7092 		      else if (goal_mem && MEM_P (dest)
7093 			       && ! push_operand (dest, GET_MODE (dest)))
7094 			return 0;
7095 		      else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7096 			       && reg_equiv_memory_loc[regno] != 0)
7097 			return 0;
7098 		      else if (need_stable_sp
7099 			       && push_operand (dest, GET_MODE (dest)))
7100 			return 0;
7101 		    }
7102 		}
7103 	    }
7104 
7105 	  if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7106 	    {
7107 	      rtx link;
7108 
7109 	      for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7110 		   link = XEXP (link, 1))
7111 		{
7112 		  pat = XEXP (link, 0);
7113 		  if (GET_CODE (pat) == CLOBBER)
7114 		    {
7115 		      rtx dest = SET_DEST (pat);
7116 
7117 		      if (REG_P (dest))
7118 			{
7119 			  int xregno = REGNO (dest);
7120 			  int xnregs
7121 			    = hard_regno_nregs[xregno][GET_MODE (dest)];
7122 
7123 			  if (xregno < regno + nregs
7124 			      && xregno + xnregs > regno)
7125 			    return 0;
7126 			  else if (xregno < valueno + valuenregs
7127 				   && xregno + xnregs > valueno)
7128 			    return 0;
7129 			  else if (goal_mem_addr_varies
7130 				   && reg_overlap_mentioned_for_reload_p (dest,
7131 								     goal))
7132 			    return 0;
7133 			}
7134 
7135 		      else if (goal_mem && MEM_P (dest)
7136 			       && ! push_operand (dest, GET_MODE (dest)))
7137 			return 0;
7138 		      else if (need_stable_sp
7139 			       && push_operand (dest, GET_MODE (dest)))
7140 			return 0;
7141 		    }
7142 		}
7143 	    }
7144 
7145 #ifdef AUTO_INC_DEC
7146 	  /* If this insn auto-increments or auto-decrements
7147 	     either regno or valueno, return 0 now.
7148 	     If GOAL is a memory ref and its address is not constant,
7149 	     and this insn P increments a register used in GOAL, return 0.  */
7150 	  {
7151 	    rtx link;
7152 
7153 	    for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7154 	      if (REG_NOTE_KIND (link) == REG_INC
7155 		  && REG_P (XEXP (link, 0)))
7156 		{
7157 		  int incno = REGNO (XEXP (link, 0));
7158 		  if (incno < regno + nregs && incno >= regno)
7159 		    return 0;
7160 		  if (incno < valueno + valuenregs && incno >= valueno)
7161 		    return 0;
7162 		  if (goal_mem_addr_varies
7163 		      && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7164 							     goal))
7165 		    return 0;
7166 		}
7167 	  }
7168 #endif
7169 	}
7170     }
7171 }
7172 
7173 /* Find a place where INCED appears in an increment or decrement operator
7174    within X, and return the amount INCED is incremented or decremented by.
7175    The value is always positive.  */
7176 
7177 static int
7178 find_inc_amount (rtx x, rtx inced)
7179 {
7180   enum rtx_code code = GET_CODE (x);
7181   const char *fmt;
7182   int i;
7183 
7184   if (code == MEM)
7185     {
7186       rtx addr = XEXP (x, 0);
7187       if ((GET_CODE (addr) == PRE_DEC
7188 	   || GET_CODE (addr) == POST_DEC
7189 	   || GET_CODE (addr) == PRE_INC
7190 	   || GET_CODE (addr) == POST_INC)
7191 	  && XEXP (addr, 0) == inced)
7192 	return GET_MODE_SIZE (GET_MODE (x));
7193       else if ((GET_CODE (addr) == PRE_MODIFY
7194 		|| GET_CODE (addr) == POST_MODIFY)
7195 	       && GET_CODE (XEXP (addr, 1)) == PLUS
7196 	       && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7197 	       && XEXP (addr, 0) == inced
7198 	       && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7199 	{
7200 	  i = INTVAL (XEXP (XEXP (addr, 1), 1));
7201 	  return i < 0 ? -i : i;
7202 	}
7203     }
7204 
7205   fmt = GET_RTX_FORMAT (code);
7206   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7207     {
7208       if (fmt[i] == 'e')
7209 	{
7210 	  int tem = find_inc_amount (XEXP (x, i), inced);
7211 	  if (tem != 0)
7212 	    return tem;
7213 	}
7214       if (fmt[i] == 'E')
7215 	{
7216 	  int j;
7217 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7218 	    {
7219 	      int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7220 	      if (tem != 0)
7221 		return tem;
7222 	    }
7223 	}
7224     }
7225 
7226   return 0;
7227 }
7228 
7229 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7230    REG_INC note in insn INSN.  REGNO must refer to a hard register.  */
7231 
7232 #ifdef AUTO_INC_DEC
7233 static int
7234 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7235 			   rtx insn)
7236 {
7237   rtx link;
7238 
7239   gcc_assert (insn);
7240 
7241   if (! INSN_P (insn))
7242     return 0;
7243 
7244   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7245     if (REG_NOTE_KIND (link) == REG_INC)
7246       {
7247 	unsigned int test = (int) REGNO (XEXP (link, 0));
7248 	if (test >= regno && test < endregno)
7249 	  return 1;
7250       }
7251   return 0;
7252 }
7253 #else
7254 
7255 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7256 
7257 #endif
7258 
7259 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7260    If SETS is 1, also consider SETs.  If SETS is 2, enable checking
7261    REG_INC.  REGNO must refer to a hard register.  */
7262 
7263 int
7264 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7265 		   int sets)
7266 {
7267   unsigned int nregs, endregno;
7268 
7269   /* regno must be a hard register.  */
7270   gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7271 
7272   nregs = hard_regno_nregs[regno][mode];
7273   endregno = regno + nregs;
7274 
7275   if ((GET_CODE (PATTERN (insn)) == CLOBBER
7276        || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7277       && REG_P (XEXP (PATTERN (insn), 0)))
7278     {
7279       unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7280 
7281       return test >= regno && test < endregno;
7282     }
7283 
7284   if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7285     return 1;
7286 
7287   if (GET_CODE (PATTERN (insn)) == PARALLEL)
7288     {
7289       int i = XVECLEN (PATTERN (insn), 0) - 1;
7290 
7291       for (; i >= 0; i--)
7292 	{
7293 	  rtx elt = XVECEXP (PATTERN (insn), 0, i);
7294 	  if ((GET_CODE (elt) == CLOBBER
7295 	       || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7296 	      && REG_P (XEXP (elt, 0)))
7297 	    {
7298 	      unsigned int test = REGNO (XEXP (elt, 0));
7299 
7300 	      if (test >= regno && test < endregno)
7301 		return 1;
7302 	    }
7303 	  if (sets == 2
7304 	      && reg_inc_found_and_valid_p (regno, endregno, elt))
7305 	    return 1;
7306 	}
7307     }
7308 
7309   return 0;
7310 }
7311 
7312 /* Find the low part, with mode MODE, of a hard regno RELOADREG.  */
7313 rtx
7314 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7315 {
7316   int regno;
7317 
7318   if (GET_MODE (reloadreg) == mode)
7319     return reloadreg;
7320 
7321   regno = REGNO (reloadreg);
7322 
7323   if (WORDS_BIG_ENDIAN)
7324     regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7325       - (int) hard_regno_nregs[regno][mode];
7326 
7327   return gen_rtx_REG (mode, regno);
7328 }
7329 
7330 static const char *const reload_when_needed_name[] =
7331 {
7332   "RELOAD_FOR_INPUT",
7333   "RELOAD_FOR_OUTPUT",
7334   "RELOAD_FOR_INSN",
7335   "RELOAD_FOR_INPUT_ADDRESS",
7336   "RELOAD_FOR_INPADDR_ADDRESS",
7337   "RELOAD_FOR_OUTPUT_ADDRESS",
7338   "RELOAD_FOR_OUTADDR_ADDRESS",
7339   "RELOAD_FOR_OPERAND_ADDRESS",
7340   "RELOAD_FOR_OPADDR_ADDR",
7341   "RELOAD_OTHER",
7342   "RELOAD_FOR_OTHER_ADDRESS"
7343 };
7344 
7345 /* These functions are used to print the variables set by 'find_reloads' */
7346 
7347 void
7348 debug_reload_to_stream (FILE *f)
7349 {
7350   int r;
7351   const char *prefix;
7352 
7353   if (! f)
7354     f = stderr;
7355   for (r = 0; r < n_reloads; r++)
7356     {
7357       fprintf (f, "Reload %d: ", r);
7358 
7359       if (rld[r].in != 0)
7360 	{
7361 	  fprintf (f, "reload_in (%s) = ",
7362 		   GET_MODE_NAME (rld[r].inmode));
7363 	  print_inline_rtx (f, rld[r].in, 24);
7364 	  fprintf (f, "\n\t");
7365 	}
7366 
7367       if (rld[r].out != 0)
7368 	{
7369 	  fprintf (f, "reload_out (%s) = ",
7370 		   GET_MODE_NAME (rld[r].outmode));
7371 	  print_inline_rtx (f, rld[r].out, 24);
7372 	  fprintf (f, "\n\t");
7373 	}
7374 
7375       fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7376 
7377       fprintf (f, "%s (opnum = %d)",
7378 	       reload_when_needed_name[(int) rld[r].when_needed],
7379 	       rld[r].opnum);
7380 
7381       if (rld[r].optional)
7382 	fprintf (f, ", optional");
7383 
7384       if (rld[r].nongroup)
7385 	fprintf (f, ", nongroup");
7386 
7387       if (rld[r].inc != 0)
7388 	fprintf (f, ", inc by %d", rld[r].inc);
7389 
7390       if (rld[r].nocombine)
7391 	fprintf (f, ", can't combine");
7392 
7393       if (rld[r].secondary_p)
7394 	fprintf (f, ", secondary_reload_p");
7395 
7396       if (rld[r].in_reg != 0)
7397 	{
7398 	  fprintf (f, "\n\treload_in_reg: ");
7399 	  print_inline_rtx (f, rld[r].in_reg, 24);
7400 	}
7401 
7402       if (rld[r].out_reg != 0)
7403 	{
7404 	  fprintf (f, "\n\treload_out_reg: ");
7405 	  print_inline_rtx (f, rld[r].out_reg, 24);
7406 	}
7407 
7408       if (rld[r].reg_rtx != 0)
7409 	{
7410 	  fprintf (f, "\n\treload_reg_rtx: ");
7411 	  print_inline_rtx (f, rld[r].reg_rtx, 24);
7412 	}
7413 
7414       prefix = "\n\t";
7415       if (rld[r].secondary_in_reload != -1)
7416 	{
7417 	  fprintf (f, "%ssecondary_in_reload = %d",
7418 		   prefix, rld[r].secondary_in_reload);
7419 	  prefix = ", ";
7420 	}
7421 
7422       if (rld[r].secondary_out_reload != -1)
7423 	fprintf (f, "%ssecondary_out_reload = %d\n",
7424 		 prefix, rld[r].secondary_out_reload);
7425 
7426       prefix = "\n\t";
7427       if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7428 	{
7429 	  fprintf (f, "%ssecondary_in_icode = %s", prefix,
7430 		   insn_data[rld[r].secondary_in_icode].name);
7431 	  prefix = ", ";
7432 	}
7433 
7434       if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7435 	fprintf (f, "%ssecondary_out_icode = %s", prefix,
7436 		 insn_data[rld[r].secondary_out_icode].name);
7437 
7438       fprintf (f, "\n");
7439     }
7440 }
7441 
7442 void
7443 debug_reload (void)
7444 {
7445   debug_reload_to_stream (stderr);
7446 }
7447