xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reg-stack.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100 	All explicitly referenced input operands may not "skip" a reg.
101 	Otherwise we can have holes in the stack.
102 
103    3. It is possible that if an input dies in an insn, reload might
104       use the input reg for an output reload.  Consider this example:
105 
106 		asm ("foo" : "=t" (a) : "f" (b));
107 
108       This asm says that input B is not popped by the asm, and that
109       the asm pushes a result onto the reg-stack, i.e., the stack is one
110       deeper after the asm than it was before.  But, it is possible that
111       reload will think that it can use the same reg for both the input and
112       the output, if input B dies in this insn.
113 
114 	If any input operand uses the "f" constraint, all output reg
115 	constraints must use the "&" earlyclobber.
116 
117       The asm above would be written as
118 
119 		asm ("foo" : "=&t" (a) : "f" (b));
120 
121    4. Some operands need to be in particular places on the stack.  All
122       output operands fall in this category - there is no other way to
123       know which regs the outputs appear in unless the user indicates
124       this in the constraints.
125 
126 	Output operands must specifically indicate which reg an output
127 	appears in after an asm.  "=f" is not allowed: the operand
128 	constraints must select a class with a single reg.
129 
130    5. Output operands may not be "inserted" between existing stack regs.
131       Since no 387 opcode uses a read/write operand, all output operands
132       are dead before the asm_operands, and are pushed by the asm_operands.
133       It makes no sense to push anywhere but the top of the reg-stack.
134 
135 	Output operands must start at the top of the reg-stack: output
136 	operands may not "skip" a reg.
137 
138    6. Some asm statements may need extra stack space for internal
139       calculations.  This can be guaranteed by clobbering stack registers
140       unrelated to the inputs and outputs.
141 
142    Here are a couple of reasonable asms to want to write.  This asm
143    takes one input, which is internally popped, and produces two outputs.
144 
145 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 
147    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148    and replaces them with one output.  The user must code the "st(1)"
149    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 
151 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 
153 */
154 
155 #include "config.h"
156 #include "system.h"
157 #include "coretypes.h"
158 #include "backend.h"
159 #include "target.h"
160 #include "rtl.h"
161 #include "tree.h"
162 #include "df.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
165 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
166 #include "recog.h"
167 #include "varasm.h"
168 #include "rtl-error.h"
169 #include "cfgrtl.h"
170 #include "cfganal.h"
171 #include "cfgbuild.h"
172 #include "cfgcleanup.h"
173 #include "reload.h"
174 #include "tree-pass.h"
175 #include "rtl-iter.h"
176 
177 #ifdef STACK_REGS
178 
179 /* We use this array to cache info about insns, because otherwise we
180    spend too much time in stack_regs_mentioned_p.
181 
182    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
183    the insn uses stack registers, two indicates the insn does not use
184    stack registers.  */
185 static vec<char> stack_regs_mentioned_data;
186 
187 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
188 
189 int regstack_completed = 0;
190 
191 /* This is the basic stack record.  TOP is an index into REG[] such
192    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
193 
194    If TOP is -2, REG[] is not yet initialized.  Stack initialization
195    consists of placing each live reg in array `reg' and setting `top'
196    appropriately.
197 
198    REG_SET indicates which registers are live.  */
199 
200 typedef struct stack_def
201 {
202   int top;			/* index to top stack element */
203   HARD_REG_SET reg_set;		/* set of live registers */
204   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
205 } *stack_ptr;
206 
207 /* This is used to carry information about basic blocks.  It is
208    attached to the AUX field of the standard CFG block.  */
209 
210 typedef struct block_info_def
211 {
212   struct stack_def stack_in;	/* Input stack configuration.  */
213   struct stack_def stack_out;	/* Output stack configuration.  */
214   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
215   int done;			/* True if block already converted.  */
216   int predecessors;		/* Number of predecessors that need
217 				   to be visited.  */
218 } *block_info;
219 
220 #define BLOCK_INFO(B)	((block_info) (B)->aux)
221 
222 /* Passed to change_stack to indicate where to emit insns.  */
223 enum emit_where
224 {
225   EMIT_AFTER,
226   EMIT_BEFORE
227 };
228 
229 /* The block we're currently working on.  */
230 static basic_block current_block;
231 
232 /* In the current_block, whether we're processing the first register
233    stack or call instruction, i.e. the regstack is currently the
234    same as BLOCK_INFO(current_block)->stack_in.  */
235 static bool starting_stack_p;
236 
237 /* This is the register file for all register after conversion.  */
238 static rtx
239   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
240 
241 #define FP_MODE_REG(regno,mode)	\
242   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
243 
244 /* Used to initialize uninitialized registers.  */
245 static rtx not_a_num;
246 
247 /* Forward declarations */
248 
249 static int stack_regs_mentioned_p (const_rtx pat);
250 static void pop_stack (stack_ptr, int);
251 static rtx *get_true_reg (rtx *);
252 
253 static int check_asm_stack_operands (rtx_insn *);
254 static void get_asm_operands_in_out (rtx, int *, int *);
255 static rtx stack_result (tree);
256 static void replace_reg (rtx *, int);
257 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
258 static int get_hard_regnum (stack_ptr, rtx);
259 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
260 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
261 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
263 static int swap_rtx_condition_1 (rtx);
264 static int swap_rtx_condition (rtx_insn *);
265 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
266 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
267 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
268 static bool subst_stack_regs (rtx_insn *, stack_ptr);
269 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
270 static void print_stack (FILE *, stack_ptr);
271 static rtx_insn *next_flags_user (rtx_insn *);
272 
273 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
274 
275 static int
276 stack_regs_mentioned_p (const_rtx pat)
277 {
278   const char *fmt;
279   int i;
280 
281   if (STACK_REG_P (pat))
282     return 1;
283 
284   fmt = GET_RTX_FORMAT (GET_CODE (pat));
285   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
286     {
287       if (fmt[i] == 'E')
288 	{
289 	  int j;
290 
291 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
292 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
293 	      return 1;
294 	}
295       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
296 	return 1;
297     }
298 
299   return 0;
300 }
301 
302 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
303 
304 int
305 stack_regs_mentioned (const_rtx insn)
306 {
307   unsigned int uid, max;
308   int test;
309 
310   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
311     return 0;
312 
313   uid = INSN_UID (insn);
314   max = stack_regs_mentioned_data.length ();
315   if (uid >= max)
316     {
317       /* Allocate some extra size to avoid too many reallocs, but
318 	 do not grow too quickly.  */
319       max = uid + uid / 20 + 1;
320       stack_regs_mentioned_data.safe_grow_cleared (max);
321     }
322 
323   test = stack_regs_mentioned_data[uid];
324   if (test == 0)
325     {
326       /* This insn has yet to be examined.  Do so now.  */
327       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
328       stack_regs_mentioned_data[uid] = test;
329     }
330 
331   return test == 1;
332 }
333 
334 static rtx ix86_flags_rtx;
335 
336 static rtx_insn *
337 next_flags_user (rtx_insn *insn)
338 {
339   /* Search forward looking for the first use of this value.
340      Stop at block boundaries.  */
341 
342   while (insn != BB_END (current_block))
343     {
344       insn = NEXT_INSN (insn);
345 
346       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
347 	return insn;
348 
349       if (CALL_P (insn))
350 	return NULL;
351     }
352   return NULL;
353 }
354 
355 /* Reorganize the stack into ascending numbers, before this insn.  */
356 
357 static void
358 straighten_stack (rtx_insn *insn, stack_ptr regstack)
359 {
360   struct stack_def temp_stack;
361   int top;
362 
363   /* If there is only a single register on the stack, then the stack is
364      already in increasing order and no reorganization is needed.
365 
366      Similarly if the stack is empty.  */
367   if (regstack->top <= 0)
368     return;
369 
370   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 
372   for (top = temp_stack.top = regstack->top; top >= 0; top--)
373     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 
375   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
376 }
377 
378 /* Pop a register from the stack.  */
379 
380 static void
381 pop_stack (stack_ptr regstack, int regno)
382 {
383   int top = regstack->top;
384 
385   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
386   regstack->top--;
387   /* If regno was not at the top of stack then adjust stack.  */
388   if (regstack->reg [top] != regno)
389     {
390       int i;
391       for (i = regstack->top; i >= 0; i--)
392 	if (regstack->reg [i] == regno)
393 	  {
394 	    int j;
395 	    for (j = i; j < top; j++)
396 	      regstack->reg [j] = regstack->reg [j + 1];
397 	    break;
398 	  }
399     }
400 }
401 
402 /* Return a pointer to the REG expression within PAT.  If PAT is not a
403    REG, possible enclosed by a conversion rtx, return the inner part of
404    PAT that stopped the search.  */
405 
406 static rtx *
407 get_true_reg (rtx *pat)
408 {
409   for (;;)
410     switch (GET_CODE (*pat))
411       {
412       case SUBREG:
413 	/* Eliminate FP subregister accesses in favor of the
414 	   actual FP register in use.  */
415 	{
416 	  rtx subreg;
417 	  if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
418 	    {
419 	      int regno_off = subreg_regno_offset (REGNO (subreg),
420 						   GET_MODE (subreg),
421 						   SUBREG_BYTE (*pat),
422 						   GET_MODE (*pat));
423 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
424 				  GET_MODE (subreg));
425 	      return pat;
426 	    }
427 	  pat = &XEXP (*pat, 0);
428 	  break;
429 	}
430       case FLOAT:
431       case FIX:
432       case FLOAT_EXTEND:
433 	pat = &XEXP (*pat, 0);
434 	break;
435 
436       case UNSPEC:
437 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
438 	    || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
439 	  pat = &XVECEXP (*pat, 0, 0);
440 	return pat;
441 
442       case FLOAT_TRUNCATE:
443 	if (!flag_unsafe_math_optimizations)
444 	  return pat;
445 	pat = &XEXP (*pat, 0);
446 	break;
447 
448       default:
449 	return pat;
450       }
451 }
452 
453 /* Set if we find any malformed asms in a block.  */
454 static bool any_malformed_asm;
455 
456 /* There are many rules that an asm statement for stack-like regs must
457    follow.  Those rules are explained at the top of this file: the rule
458    numbers below refer to that explanation.  */
459 
460 static int
461 check_asm_stack_operands (rtx_insn *insn)
462 {
463   int i;
464   int n_clobbers;
465   int malformed_asm = 0;
466   rtx body = PATTERN (insn);
467 
468   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469   char implicitly_dies[FIRST_PSEUDO_REGISTER];
470   char explicitly_used[FIRST_PSEUDO_REGISTER];
471 
472   rtx *clobber_reg = 0;
473   int n_inputs, n_outputs;
474 
475   /* Find out what the constraints require.  If no constraint
476      alternative matches, this asm is malformed.  */
477   extract_constrain_insn (insn);
478 
479   preprocess_constraints (insn);
480 
481   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
482 
483   if (which_alternative < 0)
484     {
485       malformed_asm = 1;
486       /* Avoid further trouble with this insn.  */
487       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
488       return 0;
489     }
490   const operand_alternative *op_alt = which_op_alt ();
491 
492   /* Strip SUBREGs here to make the following code simpler.  */
493   for (i = 0; i < recog_data.n_operands; i++)
494     if (GET_CODE (recog_data.operand[i]) == SUBREG
495 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
496       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
497 
498   /* Set up CLOBBER_REG.  */
499 
500   n_clobbers = 0;
501 
502   if (GET_CODE (body) == PARALLEL)
503     {
504       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
505 
506       for (i = 0; i < XVECLEN (body, 0); i++)
507 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
508 	  {
509 	    rtx clobber = XVECEXP (body, 0, i);
510 	    rtx reg = XEXP (clobber, 0);
511 
512 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
513 	      reg = SUBREG_REG (reg);
514 
515 	    if (STACK_REG_P (reg))
516 	      {
517 		clobber_reg[n_clobbers] = reg;
518 		n_clobbers++;
519 	      }
520 	  }
521     }
522 
523   /* Enforce rule #4: Output operands must specifically indicate which
524      reg an output appears in after an asm.  "=f" is not allowed: the
525      operand constraints must select a class with a single reg.
526 
527      Also enforce rule #5: Output operands must start at the top of
528      the reg-stack: output operands may not "skip" a reg.  */
529 
530   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
531   for (i = 0; i < n_outputs; i++)
532     if (STACK_REG_P (recog_data.operand[i]))
533       {
534 	if (reg_class_size[(int) op_alt[i].cl] != 1)
535 	  {
536 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
537 	    malformed_asm = 1;
538 	  }
539 	else
540 	  {
541 	    int j;
542 
543 	    for (j = 0; j < n_clobbers; j++)
544 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
545 		{
546 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
547 				 i, reg_names [REGNO (clobber_reg[j])]);
548 		  malformed_asm = 1;
549 		  break;
550 		}
551 	    if (j == n_clobbers)
552 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
553 	  }
554       }
555 
556 
557   /* Search for first non-popped reg.  */
558   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
559     if (! reg_used_as_output[i])
560       break;
561 
562   /* If there are any other popped regs, that's an error.  */
563   for (; i < LAST_STACK_REG + 1; i++)
564     if (reg_used_as_output[i])
565       break;
566 
567   if (i != LAST_STACK_REG + 1)
568     {
569       error_for_asm (insn, "output regs must be grouped at top of stack");
570       malformed_asm = 1;
571     }
572 
573   /* Enforce rule #2: All implicitly popped input regs must be closer
574      to the top of the reg-stack than any input that is not implicitly
575      popped.  */
576 
577   memset (implicitly_dies, 0, sizeof (implicitly_dies));
578   memset (explicitly_used, 0, sizeof (explicitly_used));
579   for (i = n_outputs; i < n_outputs + n_inputs; i++)
580     if (STACK_REG_P (recog_data.operand[i]))
581       {
582 	/* An input reg is implicitly popped if it is tied to an
583 	   output, or if there is a CLOBBER for it.  */
584 	int j;
585 
586 	for (j = 0; j < n_clobbers; j++)
587 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 	    break;
589 
590 	if (j < n_clobbers || op_alt[i].matches >= 0)
591 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592 	else if (reg_class_size[(int) op_alt[i].cl] == 1)
593 	  explicitly_used[REGNO (recog_data.operand[i])] = 1;
594       }
595 
596   /* Search for first non-popped reg.  */
597   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
598     if (! implicitly_dies[i])
599       break;
600 
601   /* If there are any other popped regs, that's an error.  */
602   for (; i < LAST_STACK_REG + 1; i++)
603     if (implicitly_dies[i])
604       break;
605 
606   if (i != LAST_STACK_REG + 1)
607     {
608       error_for_asm (insn,
609 		     "implicitly popped regs must be grouped at top of stack");
610       malformed_asm = 1;
611     }
612 
613   /* Search for first not-explicitly used reg.  */
614   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
615     if (! implicitly_dies[i] && ! explicitly_used[i])
616       break;
617 
618   /* If there are any other explicitly used regs, that's an error.  */
619   for (; i < LAST_STACK_REG + 1; i++)
620     if (explicitly_used[i])
621       break;
622 
623   if (i != LAST_STACK_REG + 1)
624     {
625       error_for_asm (insn,
626 		     "explicitly used regs must be grouped at top of stack");
627       malformed_asm = 1;
628     }
629 
630   /* Enforce rule #3: If any input operand uses the "f" constraint, all
631      output constraints must use the "&" earlyclobber.
632 
633      ??? Detect this more deterministically by having constrain_asm_operands
634      record any earlyclobber.  */
635 
636   for (i = n_outputs; i < n_outputs + n_inputs; i++)
637     if (STACK_REG_P (recog_data.operand[i]) && op_alt[i].matches == -1)
638       {
639 	int j;
640 
641 	for (j = 0; j < n_outputs; j++)
642 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
643 	    {
644 	      error_for_asm (insn,
645 			     "output operand %d must use %<&%> constraint", j);
646 	      malformed_asm = 1;
647 	    }
648       }
649 
650   if (malformed_asm)
651     {
652       /* Avoid further trouble with this insn.  */
653       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
654       any_malformed_asm = true;
655       return 0;
656     }
657 
658   return 1;
659 }
660 
661 /* Calculate the number of inputs and outputs in BODY, an
662    asm_operands.  N_OPERANDS is the total number of operands, and
663    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
664    placed.  */
665 
666 static void
667 get_asm_operands_in_out (rtx body, int *pout, int *pin)
668 {
669   rtx asmop = extract_asm_operands (body);
670 
671   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
672   *pout = (recog_data.n_operands
673 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
674 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
675 }
676 
677 /* If current function returns its result in an fp stack register,
678    return the REG.  Otherwise, return 0.  */
679 
680 static rtx
681 stack_result (tree decl)
682 {
683   rtx result;
684 
685   /* If the value is supposed to be returned in memory, then clearly
686      it is not returned in a stack register.  */
687   if (aggregate_value_p (DECL_RESULT (decl), decl))
688     return 0;
689 
690   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
691   if (result != 0)
692     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
693 					   decl, true);
694 
695   return result != 0 && STACK_REG_P (result) ? result : 0;
696 }
697 
698 
699 /*
700  * This section deals with stack register substitution, and forms the second
701  * pass over the RTL.
702  */
703 
704 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
705    the desired hard REGNO.  */
706 
707 static void
708 replace_reg (rtx *reg, int regno)
709 {
710   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
711   gcc_assert (STACK_REG_P (*reg));
712 
713   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
714 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
715 
716   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
717 }
718 
719 /* Remove a note of type NOTE, which must be found, for register
720    number REGNO from INSN.  Remove only one such note.  */
721 
722 static void
723 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
724 {
725   rtx *note_link, this_rtx;
726 
727   note_link = &REG_NOTES (insn);
728   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
729     if (REG_NOTE_KIND (this_rtx) == note
730 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
731       {
732 	*note_link = XEXP (this_rtx, 1);
733 	return;
734       }
735     else
736       note_link = &XEXP (this_rtx, 1);
737 
738   gcc_unreachable ();
739 }
740 
741 /* Find the hard register number of virtual register REG in REGSTACK.
742    The hard register number is relative to the top of the stack.  -1 is
743    returned if the register is not found.  */
744 
745 static int
746 get_hard_regnum (stack_ptr regstack, rtx reg)
747 {
748   int i;
749 
750   gcc_assert (STACK_REG_P (reg));
751 
752   for (i = regstack->top; i >= 0; i--)
753     if (regstack->reg[i] == REGNO (reg))
754       break;
755 
756   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
757 }
758 
759 /* Emit an insn to pop virtual register REG before or after INSN.
760    REGSTACK is the stack state after INSN and is updated to reflect this
761    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
762    is represented as a SET whose destination is the register to be popped
763    and source is the top of stack.  A death note for the top of stack
764    cases the movdf pattern to pop.  */
765 
766 static rtx_insn *
767 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
768 {
769   rtx_insn *pop_insn;
770   rtx pop_rtx;
771   int hard_regno;
772 
773   /* For complex types take care to pop both halves.  These may survive in
774      CLOBBER and USE expressions.  */
775   if (COMPLEX_MODE_P (GET_MODE (reg)))
776     {
777       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
778       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
779 
780       pop_insn = NULL;
781       if (get_hard_regnum (regstack, reg1) >= 0)
782 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
783       if (get_hard_regnum (regstack, reg2) >= 0)
784 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
785       gcc_assert (pop_insn);
786       return pop_insn;
787     }
788 
789   hard_regno = get_hard_regnum (regstack, reg);
790 
791   gcc_assert (hard_regno >= FIRST_STACK_REG);
792 
793   pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
794 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
795 
796   if (where == EMIT_AFTER)
797     pop_insn = emit_insn_after (pop_rtx, insn);
798   else
799     pop_insn = emit_insn_before (pop_rtx, insn);
800 
801   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
802 
803   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
804     = regstack->reg[regstack->top];
805   regstack->top -= 1;
806   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
807 
808   return pop_insn;
809 }
810 
811 /* Emit an insn before or after INSN to swap virtual register REG with
812    the top of stack.  REGSTACK is the stack state before the swap, and
813    is updated to reflect the swap.  A swap insn is represented as a
814    PARALLEL of two patterns: each pattern moves one reg to the other.
815 
816    If REG is already at the top of the stack, no insn is emitted.  */
817 
818 static void
819 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
820 {
821   int hard_regno;
822   rtx swap_rtx;
823   int other_reg;		/* swap regno temps */
824   rtx_insn *i1;			/* the stack-reg insn prior to INSN */
825   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
826 
827   hard_regno = get_hard_regnum (regstack, reg);
828 
829   if (hard_regno == FIRST_STACK_REG)
830     return;
831   if (hard_regno == -1)
832     {
833       /* Something failed if the register wasn't on the stack.  If we had
834 	 malformed asms, we zapped the instruction itself, but that didn't
835 	 produce the same pattern of register sets as before.  To prevent
836 	 further failure, adjust REGSTACK to include REG at TOP.  */
837       gcc_assert (any_malformed_asm);
838       regstack->reg[++regstack->top] = REGNO (reg);
839       return;
840     }
841   gcc_assert (hard_regno >= FIRST_STACK_REG);
842 
843   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
844   std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
845 
846   /* Find the previous insn involving stack regs, but don't pass a
847      block boundary.  */
848   i1 = NULL;
849   if (current_block && insn != BB_HEAD (current_block))
850     {
851       rtx_insn *tmp = PREV_INSN (insn);
852       rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
853       while (tmp != limit)
854 	{
855 	  if (LABEL_P (tmp)
856 	      || CALL_P (tmp)
857 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
858 	      || (NONJUMP_INSN_P (tmp)
859 		  && stack_regs_mentioned (tmp)))
860 	    {
861 	      i1 = tmp;
862 	      break;
863 	    }
864 	  tmp = PREV_INSN (tmp);
865 	}
866     }
867 
868   if (i1 != NULL_RTX
869       && (i1set = single_set (i1)) != NULL_RTX)
870     {
871       rtx i1src = *get_true_reg (&SET_SRC (i1set));
872       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
873 
874       /* If the previous register stack push was from the reg we are to
875 	 swap with, omit the swap.  */
876 
877       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
878 	  && REG_P (i1src)
879 	  && REGNO (i1src) == (unsigned) hard_regno - 1
880 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
881 	return;
882 
883       /* If the previous insn wrote to the reg we are to swap with,
884 	 omit the swap.  */
885 
886       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
887 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
888 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
889 	return;
890 
891       /* Instead of
892 	   fld a
893 	   fld b
894 	   fxch %st(1)
895 	 just use
896 	   fld b
897 	   fld a
898 	 if possible.  Similarly for fld1, fldz, fldpi etc. instead of any
899 	 of the loads or for float extension from memory.  */
900 
901       i1src = SET_SRC (i1set);
902       if (GET_CODE (i1src) == FLOAT_EXTEND)
903 	i1src = XEXP (i1src, 0);
904       if (REG_P (i1dest)
905 	  && REGNO (i1dest) == FIRST_STACK_REG
906 	  && (MEM_P (i1src) || GET_CODE (i1src) == CONST_DOUBLE)
907 	  && !side_effects_p (i1src)
908 	  && hard_regno == FIRST_STACK_REG + 1
909 	  && i1 != BB_HEAD (current_block))
910 	{
911 	  /* i1 is the last insn that involves stack regs before insn, and
912 	     is known to be a load without other side-effects, i.e. fld b
913 	     in the above comment.  */
914 	  rtx_insn *i2 = NULL;
915 	  rtx i2set;
916 	  rtx_insn *tmp = PREV_INSN (i1);
917 	  rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
918 	  bool sp_used = reg_overlap_mentioned_p (stack_pointer_rtx, i1src);
919 	  /* Find the previous insn involving stack regs, but don't pass a
920 	     block boundary.  */
921 	  while (tmp != limit)
922 	    {
923 	      if (LABEL_P (tmp)
924 		  || CALL_P (tmp)
925 		  || NOTE_INSN_BASIC_BLOCK_P (tmp)
926 		  || (NONJUMP_INSN_P (tmp)
927 		      && stack_regs_mentioned (tmp)))
928 		{
929 		  i2 = tmp;
930 		  break;
931 		}
932 	      /* FIXME: modified_between_p does not consider autoinc
933 		 modifications of stack pointer if i1src refers to
934 		 stack pointer, check it here manually.  */
935 	      if (sp_used && NONDEBUG_INSN_P (tmp))
936 		{
937 		  subrtx_var_iterator::array_type array;
938 		  FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (tmp), NONCONST)
939 		    {
940 		      rtx mem = *iter;
941 		      if (mem
942 			  && MEM_P (mem)
943 			  && (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))
944 			      == RTX_AUTOINC))
945 			{
946 			  if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
947 			    {
948 			      i2 = tmp;
949 			      break;
950 			    }
951 			  iter.skip_subrtxes ();
952 			}
953 		    }
954 		  if (i2)
955 		    break;
956 		}
957 	      tmp = PREV_INSN (tmp);
958 	    }
959 	  if (i2 != NULL_RTX
960 	      && (i2set = single_set (i2)) != NULL_RTX)
961 	    {
962 	      rtx i2dest = *get_true_reg (&SET_DEST (i2set));
963 	      rtx i2src = SET_SRC (i2set);
964 	      if (GET_CODE (i2src) == FLOAT_EXTEND)
965 		i2src = XEXP (i2src, 0);
966 	      /* If the last two insns before insn that involve
967 		 stack regs are loads, where the latter (i1)
968 		 pushes onto the register stack and thus
969 		 moves the value from the first load (i2) from
970 		 %st to %st(1), consider swapping them.  */
971 	      if (REG_P (i2dest)
972 		  && REGNO (i2dest) == FIRST_STACK_REG
973 		  && (MEM_P (i2src) || GET_CODE (i2src) == CONST_DOUBLE)
974 		  /* Ensure i2 doesn't have other side-effects.  */
975 		  && !side_effects_p (i2src)
976 		  /* And that the two instructions can actually be
977 		     swapped, i.e. there shouldn't be any stores
978 		     in between i2 and i1 that might alias with
979 		     the i1 memory, and the memory address can't
980 		     use registers set in between i2 and i1.  */
981 		  && !modified_between_p (SET_SRC (i1set), i2, i1))
982 		{
983 		  /* Move i1 (fld b above) right before i2 (fld a
984 		     above.  */
985 		  remove_insn (i1);
986 		  SET_PREV_INSN (i1) = NULL_RTX;
987 		  SET_NEXT_INSN (i1) = NULL_RTX;
988 		  set_block_for_insn (i1, NULL);
989 		  emit_insn_before (i1, i2);
990 		  return;
991 		}
992 	    }
993 	}
994     }
995 
996   /* Avoid emitting the swap if this is the first register stack insn
997      of the current_block.  Instead update the current_block's stack_in
998      and let compensate edges take care of this for us.  */
999   if (current_block && starting_stack_p)
1000     {
1001       BLOCK_INFO (current_block)->stack_in = *regstack;
1002       starting_stack_p = false;
1003       return;
1004     }
1005 
1006   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1007 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1008 
1009   if (i1)
1010     emit_insn_after (swap_rtx, i1);
1011   else if (current_block)
1012     emit_insn_before (swap_rtx, BB_HEAD (current_block));
1013   else
1014     emit_insn_before (swap_rtx, insn);
1015 }
1016 
1017 /* Emit an insns before INSN to swap virtual register SRC1 with
1018    the top of stack and virtual register SRC2 with second stack
1019    slot. REGSTACK is the stack state before the swaps, and
1020    is updated to reflect the swaps.  A swap insn is represented as a
1021    PARALLEL of two patterns: each pattern moves one reg to the other.
1022 
1023    If SRC1 and/or SRC2 are already at the right place, no swap insn
1024    is emitted.  */
1025 
1026 static void
1027 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
1028 {
1029   struct stack_def temp_stack;
1030   int regno, j, k;
1031 
1032   temp_stack = *regstack;
1033 
1034   /* Place operand 1 at the top of stack.  */
1035   regno = get_hard_regnum (&temp_stack, src1);
1036   gcc_assert (regno >= 0);
1037   if (regno != FIRST_STACK_REG)
1038     {
1039       k = temp_stack.top - (regno - FIRST_STACK_REG);
1040       j = temp_stack.top;
1041 
1042       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1043     }
1044 
1045   /* Place operand 2 next on the stack.  */
1046   regno = get_hard_regnum (&temp_stack, src2);
1047   gcc_assert (regno >= 0);
1048   if (regno != FIRST_STACK_REG + 1)
1049     {
1050       k = temp_stack.top - (regno - FIRST_STACK_REG);
1051       j = temp_stack.top - 1;
1052 
1053       std::swap (temp_stack.reg[j], temp_stack.reg[k]);
1054     }
1055 
1056   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1057 }
1058 
1059 /* Handle a move to or from a stack register in PAT, which is in INSN.
1060    REGSTACK is the current stack.  Return whether a control flow insn
1061    was deleted in the process.  */
1062 
1063 static bool
1064 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
1065 {
1066   rtx *psrc =  get_true_reg (&SET_SRC (pat));
1067   rtx *pdest = get_true_reg (&SET_DEST (pat));
1068   rtx src, dest;
1069   rtx note;
1070   bool control_flow_insn_deleted = false;
1071 
1072   src = *psrc; dest = *pdest;
1073 
1074   if (STACK_REG_P (src) && STACK_REG_P (dest))
1075     {
1076       /* Write from one stack reg to another.  If SRC dies here, then
1077 	 just change the register mapping and delete the insn.  */
1078 
1079       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1080       if (note)
1081 	{
1082 	  int i;
1083 
1084 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
1085 	  gcc_assert (REGNO (src) != REGNO (dest));
1086 
1087 	  for (i = regstack->top; i >= 0; i--)
1088 	    if (regstack->reg[i] == REGNO (src))
1089 	      break;
1090 
1091 	  /* The destination must be dead, or life analysis is borked.  */
1092 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1093 
1094 	  /* If the source is not live, this is yet another case of
1095 	     uninitialized variables.  Load up a NaN instead.  */
1096 	  if (i < 0)
1097 	    return move_nan_for_stack_reg (insn, regstack, dest);
1098 
1099 	  /* It is possible that the dest is unused after this insn.
1100 	     If so, just pop the src.  */
1101 
1102 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1103 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1104 	  else
1105 	    {
1106 	      regstack->reg[i] = REGNO (dest);
1107 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1108 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1109 	    }
1110 
1111 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1112 	  delete_insn (insn);
1113 	  return control_flow_insn_deleted;
1114 	}
1115 
1116       /* The source reg does not die.  */
1117 
1118       /* If this appears to be a no-op move, delete it, or else it
1119 	 will confuse the machine description output patterns. But if
1120 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1121 	 for REG_UNUSED will not work for deleted insns.  */
1122 
1123       if (REGNO (src) == REGNO (dest))
1124 	{
1125 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1126 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1127 
1128 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1129 	  delete_insn (insn);
1130 	  return control_flow_insn_deleted;
1131 	}
1132 
1133       /* The destination ought to be dead.  */
1134       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1135 
1136       replace_reg (psrc, get_hard_regnum (regstack, src));
1137 
1138       regstack->reg[++regstack->top] = REGNO (dest);
1139       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1140       replace_reg (pdest, FIRST_STACK_REG);
1141     }
1142   else if (STACK_REG_P (src))
1143     {
1144       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1145 	 only top of stack may be saved, emit an exchange first if
1146 	 needs be.  */
1147 
1148       emit_swap_insn (insn, regstack, src);
1149 
1150       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1151       if (note)
1152 	{
1153 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1154 	  regstack->top--;
1155 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1156 	}
1157       else if ((GET_MODE (src) == XFmode)
1158 	       && regstack->top < REG_STACK_SIZE - 1)
1159 	{
1160 	  /* A 387 cannot write an XFmode value to a MEM without
1161 	     clobbering the source reg.  The output code can handle
1162 	     this by reading back the value from the MEM.
1163 	     But it is more efficient to use a temp register if one is
1164 	     available.  Push the source value here if the register
1165 	     stack is not full, and then write the value to memory via
1166 	     a pop.  */
1167 	  rtx push_rtx;
1168 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1169 
1170 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1171 	  emit_insn_before (push_rtx, insn);
1172 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1173 	}
1174 
1175       replace_reg (psrc, FIRST_STACK_REG);
1176     }
1177   else
1178     {
1179       rtx pat = PATTERN (insn);
1180 
1181       gcc_assert (STACK_REG_P (dest));
1182 
1183       /* Load from MEM, or possibly integer REG or constant, into the
1184 	 stack regs.  The actual target is always the top of the
1185 	 stack. The stack mapping is changed to reflect that DEST is
1186 	 now at top of stack.  */
1187 
1188       /* The destination ought to be dead.  However, there is a
1189 	 special case with i387 UNSPEC_TAN, where destination is live
1190 	 (an argument to fptan) but inherent load of 1.0 is modelled
1191 	 as a load from a constant.  */
1192       if (GET_CODE (pat) == PARALLEL
1193 	  && XVECLEN (pat, 0) == 2
1194 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1195 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1196 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1197 	emit_swap_insn (insn, regstack, dest);
1198       else
1199 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1200 
1201       gcc_assert (regstack->top < REG_STACK_SIZE);
1202 
1203       regstack->reg[++regstack->top] = REGNO (dest);
1204       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1205       replace_reg (pdest, FIRST_STACK_REG);
1206     }
1207 
1208   return control_flow_insn_deleted;
1209 }
1210 
1211 /* A helper function which replaces INSN with a pattern that loads up
1212    a NaN into DEST, then invokes move_for_stack_reg.  */
1213 
1214 static bool
1215 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1216 {
1217   rtx pat;
1218 
1219   dest = FP_MODE_REG (REGNO (dest), SFmode);
1220   pat = gen_rtx_SET (dest, not_a_num);
1221   PATTERN (insn) = pat;
1222   INSN_CODE (insn) = -1;
1223 
1224   return move_for_stack_reg (insn, regstack, pat);
1225 }
1226 
1227 /* Swap the condition on a branch, if there is one.  Return true if we
1228    found a condition to swap.  False if the condition was not used as
1229    such.  */
1230 
1231 static int
1232 swap_rtx_condition_1 (rtx pat)
1233 {
1234   const char *fmt;
1235   int i, r = 0;
1236 
1237   if (COMPARISON_P (pat))
1238     {
1239       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1240       r = 1;
1241     }
1242   else
1243     {
1244       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1245       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1246 	{
1247 	  if (fmt[i] == 'E')
1248 	    {
1249 	      int j;
1250 
1251 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1252 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1253 	    }
1254 	  else if (fmt[i] == 'e')
1255 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1256 	}
1257     }
1258 
1259   return r;
1260 }
1261 
1262 static int
1263 swap_rtx_condition (rtx_insn *insn)
1264 {
1265   rtx pat = PATTERN (insn);
1266 
1267   /* We're looking for a single set to cc0 or an HImode temporary.  */
1268 
1269   if (GET_CODE (pat) == SET
1270       && REG_P (SET_DEST (pat))
1271       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1272     {
1273       insn = next_flags_user (insn);
1274       if (insn == NULL_RTX)
1275 	return 0;
1276       pat = PATTERN (insn);
1277     }
1278 
1279   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1280      with the cc value right now.  We may be able to search for one
1281      though.  */
1282 
1283   if (GET_CODE (pat) == SET
1284       && GET_CODE (SET_SRC (pat)) == UNSPEC
1285       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1286     {
1287       rtx dest = SET_DEST (pat);
1288 
1289       /* Search forward looking for the first use of this value.
1290 	 Stop at block boundaries.  */
1291       while (insn != BB_END (current_block))
1292 	{
1293 	  insn = NEXT_INSN (insn);
1294 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1295 	    break;
1296 	  if (CALL_P (insn))
1297 	    return 0;
1298 	}
1299 
1300       /* We haven't found it.  */
1301       if (insn == BB_END (current_block))
1302 	return 0;
1303 
1304       /* So we've found the insn using this value.  If it is anything
1305 	 other than sahf or the value does not die (meaning we'd have
1306 	 to search further), then we must give up.  */
1307       pat = PATTERN (insn);
1308       if (GET_CODE (pat) != SET
1309 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1310 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1311 	  || ! dead_or_set_p (insn, dest))
1312 	return 0;
1313 
1314       /* Now we are prepared to handle this as a normal cc0 setter.  */
1315       insn = next_flags_user (insn);
1316       if (insn == NULL_RTX)
1317 	return 0;
1318       pat = PATTERN (insn);
1319     }
1320 
1321   if (swap_rtx_condition_1 (pat))
1322     {
1323       int fail = 0;
1324       INSN_CODE (insn) = -1;
1325       if (recog_memoized (insn) == -1)
1326 	fail = 1;
1327       /* In case the flags don't die here, recurse to try fix
1328          following user too.  */
1329       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1330 	{
1331 	  insn = next_flags_user (insn);
1332 	  if (!insn || !swap_rtx_condition (insn))
1333 	    fail = 1;
1334 	}
1335       if (fail)
1336 	{
1337 	  swap_rtx_condition_1 (pat);
1338 	  return 0;
1339 	}
1340       return 1;
1341     }
1342   return 0;
1343 }
1344 
1345 /* Handle a comparison.  Special care needs to be taken to avoid
1346    causing comparisons that a 387 cannot do correctly, such as EQ.
1347 
1348    Also, a pop insn may need to be emitted.  The 387 does have an
1349    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1350    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1351    set up.  */
1352 
1353 static void
1354 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1355 {
1356   rtx *src1, *src2;
1357   rtx src1_note, src2_note;
1358 
1359   src1 = get_true_reg (&XEXP (pat_src, 0));
1360   src2 = get_true_reg (&XEXP (pat_src, 1));
1361 
1362   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1363      registers that die in this insn - move those to stack top first.  */
1364   if ((! STACK_REG_P (*src1)
1365        || (STACK_REG_P (*src2)
1366 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1367       && swap_rtx_condition (insn))
1368     {
1369       std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1370 
1371       src1 = get_true_reg (&XEXP (pat_src, 0));
1372       src2 = get_true_reg (&XEXP (pat_src, 1));
1373 
1374       INSN_CODE (insn) = -1;
1375     }
1376 
1377   /* We will fix any death note later.  */
1378 
1379   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1380 
1381   if (STACK_REG_P (*src2))
1382     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1383   else
1384     src2_note = NULL_RTX;
1385 
1386   emit_swap_insn (insn, regstack, *src1);
1387 
1388   replace_reg (src1, FIRST_STACK_REG);
1389 
1390   if (STACK_REG_P (*src2))
1391     replace_reg (src2, get_hard_regnum (regstack, *src2));
1392 
1393   if (src1_note)
1394     {
1395       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1396       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1397     }
1398 
1399   /* If the second operand dies, handle that.  But if the operands are
1400      the same stack register, don't bother, because only one death is
1401      needed, and it was just handled.  */
1402 
1403   if (src2_note
1404       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1405 	    && REGNO (*src1) == REGNO (*src2)))
1406     {
1407       /* As a special case, two regs may die in this insn if src2 is
1408 	 next to top of stack and the top of stack also dies.  Since
1409 	 we have already popped src1, "next to top of stack" is really
1410 	 at top (FIRST_STACK_REG) now.  */
1411 
1412       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1413 	  && src1_note)
1414 	{
1415 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1416 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1417 	}
1418       else
1419 	{
1420 	  /* The 386 can only represent death of the first operand in
1421 	     the case handled above.  In all other cases, emit a separate
1422 	     pop and remove the death note from here.  */
1423 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1424 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1425 			 EMIT_AFTER);
1426 	}
1427     }
1428 }
1429 
1430 /* Substitute hardware stack regs in debug insn INSN, using stack
1431    layout REGSTACK.  If we can't find a hardware stack reg for any of
1432    the REGs in it, reset the debug insn.  */
1433 
1434 static void
1435 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1436 {
1437   subrtx_ptr_iterator::array_type array;
1438   FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1439     {
1440       rtx *loc = *iter;
1441       rtx x = *loc;
1442       if (STACK_REG_P (x))
1443 	{
1444 	  int hard_regno = get_hard_regnum (regstack, x);
1445 
1446 	  /* If we can't find an active register, reset this debug insn.  */
1447 	  if (hard_regno == -1)
1448 	    {
1449 	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1450 	      return;
1451 	    }
1452 
1453 	  gcc_assert (hard_regno >= FIRST_STACK_REG);
1454 	  replace_reg (loc, hard_regno);
1455 	  iter.skip_subrtxes ();
1456 	}
1457     }
1458 }
1459 
1460 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1461    is the current register layout.  Return whether a control flow insn
1462    was deleted in the process.  */
1463 
1464 static bool
1465 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1466 {
1467   rtx *dest, *src;
1468   bool control_flow_insn_deleted = false;
1469 
1470   switch (GET_CODE (pat))
1471     {
1472     case USE:
1473       /* Deaths in USE insns can happen in non optimizing compilation.
1474 	 Handle them by popping the dying register.  */
1475       src = get_true_reg (&XEXP (pat, 0));
1476       if (STACK_REG_P (*src)
1477 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1478 	{
1479 	  /* USEs are ignored for liveness information so USEs of dead
1480 	     register might happen.  */
1481           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1482 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1483 	  return control_flow_insn_deleted;
1484 	}
1485       /* Uninitialized USE might happen for functions returning uninitialized
1486          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1487 	 so it is safe to ignore the use here. This is consistent with behavior
1488 	 of dataflow analyzer that ignores USE too.  (This also imply that
1489 	 forcibly initializing the register to NaN here would lead to ICE later,
1490 	 since the REG_DEAD notes are not issued.)  */
1491       break;
1492 
1493     case VAR_LOCATION:
1494       gcc_unreachable ();
1495 
1496     case CLOBBER:
1497       {
1498 	rtx note;
1499 
1500 	dest = get_true_reg (&XEXP (pat, 0));
1501 	if (STACK_REG_P (*dest))
1502 	  {
1503 	    note = find_reg_note (insn, REG_DEAD, *dest);
1504 
1505 	    if (pat != PATTERN (insn))
1506 	      {
1507 		/* The fix_truncdi_1 pattern wants to be able to
1508 		   allocate its own scratch register.  It does this by
1509 		   clobbering an fp reg so that it is assured of an
1510 		   empty reg-stack register.  If the register is live,
1511 		   kill it now.  Remove the DEAD/UNUSED note so we
1512 		   don't try to kill it later too.
1513 
1514 		   In reality the UNUSED note can be absent in some
1515 		   complicated cases when the register is reused for
1516 		   partially set variable.  */
1517 
1518 		if (note)
1519 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1520 		else
1521 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1522 		if (note)
1523 		  remove_note (insn, note);
1524 		replace_reg (dest, FIRST_STACK_REG + 1);
1525 	      }
1526 	    else
1527 	      {
1528 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1529 		   indicates an uninitialized value.  Because reload removed
1530 		   all other clobbers, this must be due to a function
1531 		   returning without a value.  Load up a NaN.  */
1532 
1533 		if (!note)
1534 		  {
1535 		    rtx t = *dest;
1536 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1537 		      {
1538 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1539 			if (get_hard_regnum (regstack, u) == -1)
1540 			  {
1541 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1542 			    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1543 			    control_flow_insn_deleted
1544 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1545 			  }
1546 		      }
1547 		    if (get_hard_regnum (regstack, t) == -1)
1548 		      control_flow_insn_deleted
1549 			|= move_nan_for_stack_reg (insn, regstack, t);
1550 		  }
1551 	      }
1552 	  }
1553 	break;
1554       }
1555 
1556     case SET:
1557       {
1558 	rtx *src1 = (rtx *) 0, *src2;
1559 	rtx src1_note, src2_note;
1560 	rtx pat_src;
1561 
1562 	dest = get_true_reg (&SET_DEST (pat));
1563 	src  = get_true_reg (&SET_SRC (pat));
1564 	pat_src = SET_SRC (pat);
1565 
1566 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1567 	if (STACK_REG_P (*src)
1568 	    || (STACK_REG_P (*dest)
1569 		&& (REG_P (*src) || MEM_P (*src)
1570 		    || CONST_DOUBLE_P (*src))))
1571 	  {
1572 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1573 	    break;
1574 	  }
1575 
1576 	switch (GET_CODE (pat_src))
1577 	  {
1578 	  case COMPARE:
1579 	    compare_for_stack_reg (insn, regstack, pat_src);
1580 	    break;
1581 
1582 	  case CALL:
1583 	    {
1584 	      int count;
1585 	      for (count = REG_NREGS (*dest); --count >= 0;)
1586 		{
1587 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1588 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1589 		}
1590 	    }
1591 	    replace_reg (dest, FIRST_STACK_REG);
1592 	    break;
1593 
1594 	  case REG:
1595 	    /* This is a `tstM2' case.  */
1596 	    gcc_assert (*dest == cc0_rtx);
1597 	    src1 = src;
1598 
1599 	    /* Fall through.  */
1600 
1601 	  case FLOAT_TRUNCATE:
1602 	  case SQRT:
1603 	  case ABS:
1604 	  case NEG:
1605 	    /* These insns only operate on the top of the stack. DEST might
1606 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1607 	       possible that the tstM case results in a REG_DEAD note on the
1608 	       source.  */
1609 
1610 	    if (src1 == 0)
1611 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1612 
1613 	    emit_swap_insn (insn, regstack, *src1);
1614 
1615 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1616 
1617 	    if (STACK_REG_P (*dest))
1618 	      replace_reg (dest, FIRST_STACK_REG);
1619 
1620 	    if (src1_note)
1621 	      {
1622 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1623 		regstack->top--;
1624 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1625 	      }
1626 
1627 	    replace_reg (src1, FIRST_STACK_REG);
1628 	    break;
1629 
1630 	  case MINUS:
1631 	  case DIV:
1632 	    /* On i386, reversed forms of subM3 and divM3 exist for
1633 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1634 	       can be used.  */
1635 	  case MULT:
1636 	  case PLUS:
1637 	    /* These insns can accept the top of stack as a destination
1638 	       from a stack reg or mem, or can use the top of stack as a
1639 	       source and some other stack register (possibly top of stack)
1640 	       as a destination.  */
1641 
1642 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1643 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1644 
1645 	    /* We will fix any death note later.  */
1646 
1647 	    if (STACK_REG_P (*src1))
1648 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1649 	    else
1650 	      src1_note = NULL_RTX;
1651 	    if (STACK_REG_P (*src2))
1652 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1653 	    else
1654 	      src2_note = NULL_RTX;
1655 
1656 	    /* If either operand is not a stack register, then the dest
1657 	       must be top of stack.  */
1658 
1659 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1660 	      emit_swap_insn (insn, regstack, *dest);
1661 	    else
1662 	      {
1663 		/* Both operands are REG.  If neither operand is already
1664 		   at the top of stack, choose to make the one that is the
1665 		   dest the new top of stack.  */
1666 
1667 		int src1_hard_regnum, src2_hard_regnum;
1668 
1669 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1670 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1671 
1672 		/* If the source is not live, this is yet another case of
1673 		   uninitialized variables.  Load up a NaN instead.  */
1674 		if (src1_hard_regnum == -1)
1675 		  {
1676 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1677 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1678 		    control_flow_insn_deleted
1679 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1680 		  }
1681 		if (src2_hard_regnum == -1)
1682 		  {
1683 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1684 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1685 		    control_flow_insn_deleted
1686 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1687 		  }
1688 
1689 		if (src1_hard_regnum != FIRST_STACK_REG
1690 		    && src2_hard_regnum != FIRST_STACK_REG)
1691 		  emit_swap_insn (insn, regstack, *dest);
1692 	      }
1693 
1694 	    if (STACK_REG_P (*src1))
1695 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1696 	    if (STACK_REG_P (*src2))
1697 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1698 
1699 	    if (src1_note)
1700 	      {
1701 		rtx src1_reg = XEXP (src1_note, 0);
1702 
1703 		/* If the register that dies is at the top of stack, then
1704 		   the destination is somewhere else - merely substitute it.
1705 		   But if the reg that dies is not at top of stack, then
1706 		   move the top of stack to the dead reg, as though we had
1707 		   done the insn and then a store-with-pop.  */
1708 
1709 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1710 		  {
1711 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1712 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1713 		  }
1714 		else
1715 		  {
1716 		    int regno = get_hard_regnum (regstack, src1_reg);
1717 
1718 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1719 		    replace_reg (dest, regno);
1720 
1721 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1722 		      = regstack->reg[regstack->top];
1723 		  }
1724 
1725 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1726 				    REGNO (XEXP (src1_note, 0)));
1727 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1728 		regstack->top--;
1729 	      }
1730 	    else if (src2_note)
1731 	      {
1732 		rtx src2_reg = XEXP (src2_note, 0);
1733 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1734 		  {
1735 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1736 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1737 		  }
1738 		else
1739 		  {
1740 		    int regno = get_hard_regnum (regstack, src2_reg);
1741 
1742 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1743 		    replace_reg (dest, regno);
1744 
1745 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1746 		      = regstack->reg[regstack->top];
1747 		  }
1748 
1749 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1750 				    REGNO (XEXP (src2_note, 0)));
1751 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1752 		regstack->top--;
1753 	      }
1754 	    else
1755 	      {
1756 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1757 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1758 	      }
1759 
1760 	    /* Keep operand 1 matching with destination.  */
1761 	    if (COMMUTATIVE_ARITH_P (pat_src)
1762 		&& REG_P (*src1) && REG_P (*src2)
1763 		&& REGNO (*src1) != REGNO (*dest))
1764 	     {
1765 		int tmp = REGNO (*src1);
1766 		replace_reg (src1, REGNO (*src2));
1767 		replace_reg (src2, tmp);
1768 	     }
1769 	    break;
1770 
1771 	  case UNSPEC:
1772 	    switch (XINT (pat_src, 1))
1773 	      {
1774 	      case UNSPEC_FIST:
1775 	      case UNSPEC_FIST_ATOMIC:
1776 
1777 	      case UNSPEC_FIST_FLOOR:
1778 	      case UNSPEC_FIST_CEIL:
1779 
1780 		/* These insns only operate on the top of the stack.  */
1781 
1782 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1783 		emit_swap_insn (insn, regstack, *src1);
1784 
1785 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1786 
1787 		if (STACK_REG_P (*dest))
1788 		  replace_reg (dest, FIRST_STACK_REG);
1789 
1790 		if (src1_note)
1791 		  {
1792 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1793 		    regstack->top--;
1794 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1795 		  }
1796 
1797 		replace_reg (src1, FIRST_STACK_REG);
1798 		break;
1799 
1800 	      case UNSPEC_FXAM:
1801 
1802 		/* This insn only operate on the top of the stack.  */
1803 
1804 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1805 		emit_swap_insn (insn, regstack, *src1);
1806 
1807 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1808 
1809 		replace_reg (src1, FIRST_STACK_REG);
1810 
1811 		if (src1_note)
1812 		  {
1813 		    remove_regno_note (insn, REG_DEAD,
1814 				       REGNO (XEXP (src1_note, 0)));
1815 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1816 				   EMIT_AFTER);
1817 		  }
1818 
1819 		break;
1820 
1821 	      case UNSPEC_SIN:
1822 	      case UNSPEC_COS:
1823 	      case UNSPEC_FRNDINT:
1824 	      case UNSPEC_F2XM1:
1825 
1826 	      case UNSPEC_FRNDINT_FLOOR:
1827 	      case UNSPEC_FRNDINT_CEIL:
1828 	      case UNSPEC_FRNDINT_TRUNC:
1829 	      case UNSPEC_FRNDINT_MASK_PM:
1830 
1831 		/* Above insns operate on the top of the stack.  */
1832 
1833 	      case UNSPEC_SINCOS_COS:
1834 	      case UNSPEC_XTRACT_FRACT:
1835 
1836 		/* Above insns operate on the top two stack slots,
1837 		   first part of one input, double output insn.  */
1838 
1839 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1840 
1841 		emit_swap_insn (insn, regstack, *src1);
1842 
1843 		/* Input should never die, it is replaced with output.  */
1844 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1845 		gcc_assert (!src1_note);
1846 
1847 		if (STACK_REG_P (*dest))
1848 		  replace_reg (dest, FIRST_STACK_REG);
1849 
1850 		replace_reg (src1, FIRST_STACK_REG);
1851 		break;
1852 
1853 	      case UNSPEC_SINCOS_SIN:
1854 	      case UNSPEC_XTRACT_EXP:
1855 
1856 		/* These insns operate on the top two stack slots,
1857 		   second part of one input, double output insn.  */
1858 
1859 		regstack->top++;
1860 		/* FALLTHRU */
1861 
1862 	      case UNSPEC_TAN:
1863 
1864 		/* For UNSPEC_TAN, regstack->top is already increased
1865 		   by inherent load of constant 1.0.  */
1866 
1867 		/* Output value is generated in the second stack slot.
1868 		   Move current value from second slot to the top.  */
1869 		regstack->reg[regstack->top]
1870 		  = regstack->reg[regstack->top - 1];
1871 
1872 		gcc_assert (STACK_REG_P (*dest));
1873 
1874 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1875 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1876 		replace_reg (dest, FIRST_STACK_REG + 1);
1877 
1878 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1879 
1880 		replace_reg (src1, FIRST_STACK_REG);
1881 		break;
1882 
1883 	      case UNSPEC_FPATAN:
1884 	      case UNSPEC_FYL2X:
1885 	      case UNSPEC_FYL2XP1:
1886 		/* These insns operate on the top two stack slots.  */
1887 
1888 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1889 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1890 
1891 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1892 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1893 
1894 		swap_to_top (insn, regstack, *src1, *src2);
1895 
1896 		replace_reg (src1, FIRST_STACK_REG);
1897 		replace_reg (src2, FIRST_STACK_REG + 1);
1898 
1899 		if (src1_note)
1900 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1901 		if (src2_note)
1902 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1903 
1904 		/* Pop both input operands from the stack.  */
1905 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1906 				    regstack->reg[regstack->top]);
1907 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1908 				    regstack->reg[regstack->top - 1]);
1909 		regstack->top -= 2;
1910 
1911 		/* Push the result back onto the stack.  */
1912 		regstack->reg[++regstack->top] = REGNO (*dest);
1913 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1914 		replace_reg (dest, FIRST_STACK_REG);
1915 		break;
1916 
1917 	      case UNSPEC_FSCALE_FRACT:
1918 	      case UNSPEC_FPREM_F:
1919 	      case UNSPEC_FPREM1_F:
1920 		/* These insns operate on the top two stack slots,
1921 		   first part of double input, double output insn.  */
1922 
1923 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1924 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1925 
1926 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1927 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1928 
1929 		/* Inputs should never die, they are
1930 		   replaced with outputs.  */
1931 		gcc_assert (!src1_note);
1932 		gcc_assert (!src2_note);
1933 
1934 		swap_to_top (insn, regstack, *src1, *src2);
1935 
1936 		/* Push the result back onto stack. Empty stack slot
1937 		   will be filled in second part of insn.  */
1938 		if (STACK_REG_P (*dest))
1939 		  {
1940 		    regstack->reg[regstack->top] = REGNO (*dest);
1941 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1942 		    replace_reg (dest, FIRST_STACK_REG);
1943 		  }
1944 
1945 		replace_reg (src1, FIRST_STACK_REG);
1946 		replace_reg (src2, FIRST_STACK_REG + 1);
1947 		break;
1948 
1949 	      case UNSPEC_FSCALE_EXP:
1950 	      case UNSPEC_FPREM_U:
1951 	      case UNSPEC_FPREM1_U:
1952 		/* These insns operate on the top two stack slots,
1953 		   second part of double input, double output insn.  */
1954 
1955 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1956 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1957 
1958 		/* Push the result back onto stack. Fill empty slot from
1959 		   first part of insn and fix top of stack pointer.  */
1960 		if (STACK_REG_P (*dest))
1961 		  {
1962 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1963 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1964 		    replace_reg (dest, FIRST_STACK_REG + 1);
1965 		  }
1966 
1967 		replace_reg (src1, FIRST_STACK_REG);
1968 		replace_reg (src2, FIRST_STACK_REG + 1);
1969 		break;
1970 
1971 	      case UNSPEC_C2_FLAG:
1972 		/* This insn operates on the top two stack slots,
1973 		   third part of C2 setting double input insn.  */
1974 
1975 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1976 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1977 
1978 		replace_reg (src1, FIRST_STACK_REG);
1979 		replace_reg (src2, FIRST_STACK_REG + 1);
1980 		break;
1981 
1982 	      case UNSPEC_SAHF:
1983 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1984 		   The combination matches the PPRO fcomi instruction.  */
1985 
1986 		pat_src = XVECEXP (pat_src, 0, 0);
1987 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1988 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1989 		/* Fall through.  */
1990 
1991 	      case UNSPEC_FNSTSW:
1992 		/* Combined fcomp+fnstsw generated for doing well with
1993 		   CSE.  When optimizing this would have been broken
1994 		   up before now.  */
1995 
1996 		pat_src = XVECEXP (pat_src, 0, 0);
1997 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1998 
1999 		compare_for_stack_reg (insn, regstack, pat_src);
2000 		break;
2001 
2002 	      default:
2003 		gcc_unreachable ();
2004 	      }
2005 	    break;
2006 
2007 	  case IF_THEN_ELSE:
2008 	    /* This insn requires the top of stack to be the destination.  */
2009 
2010 	    src1 = get_true_reg (&XEXP (pat_src, 1));
2011 	    src2 = get_true_reg (&XEXP (pat_src, 2));
2012 
2013 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
2014 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
2015 
2016 	    /* If the comparison operator is an FP comparison operator,
2017 	       it is handled correctly by compare_for_stack_reg () who
2018 	       will move the destination to the top of stack. But if the
2019 	       comparison operator is not an FP comparison operator, we
2020 	       have to handle it here.  */
2021 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
2022 		&& REGNO (*dest) != regstack->reg[regstack->top])
2023 	      {
2024 		/* In case one of operands is the top of stack and the operands
2025 		   dies, it is safe to make it the destination operand by
2026 		   reversing the direction of cmove and avoid fxch.  */
2027 		if ((REGNO (*src1) == regstack->reg[regstack->top]
2028 		     && src1_note)
2029 		    || (REGNO (*src2) == regstack->reg[regstack->top]
2030 			&& src2_note))
2031 		  {
2032 		    int idx1 = (get_hard_regnum (regstack, *src1)
2033 				- FIRST_STACK_REG);
2034 		    int idx2 = (get_hard_regnum (regstack, *src2)
2035 				- FIRST_STACK_REG);
2036 
2037 		    /* Make reg-stack believe that the operands are already
2038 		       swapped on the stack */
2039 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
2040 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
2041 
2042 		    /* Reverse condition to compensate the operand swap.
2043 		       i386 do have comparison always reversible.  */
2044 		    PUT_CODE (XEXP (pat_src, 0),
2045 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
2046 		  }
2047 		else
2048 	          emit_swap_insn (insn, regstack, *dest);
2049 	      }
2050 
2051 	    {
2052 	      rtx src_note [3];
2053 	      int i;
2054 
2055 	      src_note[0] = 0;
2056 	      src_note[1] = src1_note;
2057 	      src_note[2] = src2_note;
2058 
2059 	      if (STACK_REG_P (*src1))
2060 		replace_reg (src1, get_hard_regnum (regstack, *src1));
2061 	      if (STACK_REG_P (*src2))
2062 		replace_reg (src2, get_hard_regnum (regstack, *src2));
2063 
2064 	      for (i = 1; i <= 2; i++)
2065 		if (src_note [i])
2066 		  {
2067 		    int regno = REGNO (XEXP (src_note[i], 0));
2068 
2069 		    /* If the register that dies is not at the top of
2070 		       stack, then move the top of stack to the dead reg.
2071 		       Top of stack should never die, as it is the
2072 		       destination.  */
2073 		    gcc_assert (regno != regstack->reg[regstack->top]);
2074 		    remove_regno_note (insn, REG_DEAD, regno);
2075 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
2076 				    EMIT_AFTER);
2077 		  }
2078 	    }
2079 
2080 	    /* Make dest the top of stack.  Add dest to regstack if
2081 	       not present.  */
2082 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2083 	      regstack->reg[++regstack->top] = REGNO (*dest);
2084 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2085 	    replace_reg (dest, FIRST_STACK_REG);
2086 	    break;
2087 
2088 	  default:
2089 	    gcc_unreachable ();
2090 	  }
2091 	break;
2092       }
2093 
2094     default:
2095       break;
2096     }
2097 
2098   return control_flow_insn_deleted;
2099 }
2100 
2101 /* Substitute hard regnums for any stack regs in INSN, which has
2102    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2103    before the insn, and is updated with changes made here.
2104 
2105    There are several requirements and assumptions about the use of
2106    stack-like regs in asm statements.  These rules are enforced by
2107    record_asm_stack_regs; see comments there for details.  Any
2108    asm_operands left in the RTL at this point may be assume to meet the
2109    requirements, since record_asm_stack_regs removes any problem asm.  */
2110 
2111 static void
2112 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2113 {
2114   rtx body = PATTERN (insn);
2115 
2116   rtx *note_reg;		/* Array of note contents */
2117   rtx **note_loc;		/* Address of REG field of each note */
2118   enum reg_note *note_kind;	/* The type of each note */
2119 
2120   rtx *clobber_reg = 0;
2121   rtx **clobber_loc = 0;
2122 
2123   struct stack_def temp_stack;
2124   int n_notes;
2125   int n_clobbers;
2126   rtx note;
2127   int i;
2128   int n_inputs, n_outputs;
2129 
2130   if (! check_asm_stack_operands (insn))
2131     return;
2132 
2133   /* Find out what the constraints required.  If no constraint
2134      alternative matches, that is a compiler bug: we should have caught
2135      such an insn in check_asm_stack_operands.  */
2136   extract_constrain_insn (insn);
2137 
2138   preprocess_constraints (insn);
2139   const operand_alternative *op_alt = which_op_alt ();
2140 
2141   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2142 
2143   /* Strip SUBREGs here to make the following code simpler.  */
2144   for (i = 0; i < recog_data.n_operands; i++)
2145     if (GET_CODE (recog_data.operand[i]) == SUBREG
2146 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2147       {
2148 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2149 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2150       }
2151 
2152   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2153 
2154   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2155     i++;
2156 
2157   note_reg = XALLOCAVEC (rtx, i);
2158   note_loc = XALLOCAVEC (rtx *, i);
2159   note_kind = XALLOCAVEC (enum reg_note, i);
2160 
2161   n_notes = 0;
2162   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2163     {
2164       if (GET_CODE (note) != EXPR_LIST)
2165 	continue;
2166       rtx reg = XEXP (note, 0);
2167       rtx *loc = & XEXP (note, 0);
2168 
2169       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2170 	{
2171 	  loc = & SUBREG_REG (reg);
2172 	  reg = SUBREG_REG (reg);
2173 	}
2174 
2175       if (STACK_REG_P (reg)
2176 	  && (REG_NOTE_KIND (note) == REG_DEAD
2177 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2178 	{
2179 	  note_reg[n_notes] = reg;
2180 	  note_loc[n_notes] = loc;
2181 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2182 	  n_notes++;
2183 	}
2184     }
2185 
2186   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2187 
2188   n_clobbers = 0;
2189 
2190   if (GET_CODE (body) == PARALLEL)
2191     {
2192       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2193       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2194 
2195       for (i = 0; i < XVECLEN (body, 0); i++)
2196 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2197 	  {
2198 	    rtx clobber = XVECEXP (body, 0, i);
2199 	    rtx reg = XEXP (clobber, 0);
2200 	    rtx *loc = & XEXP (clobber, 0);
2201 
2202 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2203 	      {
2204 		loc = & SUBREG_REG (reg);
2205 		reg = SUBREG_REG (reg);
2206 	      }
2207 
2208 	    if (STACK_REG_P (reg))
2209 	      {
2210 		clobber_reg[n_clobbers] = reg;
2211 		clobber_loc[n_clobbers] = loc;
2212 		n_clobbers++;
2213 	      }
2214 	  }
2215     }
2216 
2217   temp_stack = *regstack;
2218 
2219   /* Put the input regs into the desired place in TEMP_STACK.  */
2220 
2221   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2222     if (STACK_REG_P (recog_data.operand[i])
2223 	&& reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2224 	&& op_alt[i].cl != FLOAT_REGS)
2225       {
2226 	/* If an operand needs to be in a particular reg in
2227 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2228 	   these constraints are for single register classes, and
2229 	   reload guaranteed that operand[i] is already in that class,
2230 	   we can just use REGNO (recog_data.operand[i]) to know which
2231 	   actual reg this operand needs to be in.  */
2232 
2233 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2234 
2235 	gcc_assert (regno >= 0);
2236 
2237 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2238 	  {
2239 	    /* recog_data.operand[i] is not in the right place.  Find
2240 	       it and swap it with whatever is already in I's place.
2241 	       K is where recog_data.operand[i] is now.  J is where it
2242 	       should be.  */
2243 	    int j, k;
2244 
2245 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2246 	    j = (temp_stack.top
2247 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2248 
2249 	    std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2250 	  }
2251       }
2252 
2253   /* Emit insns before INSN to make sure the reg-stack is in the right
2254      order.  */
2255 
2256   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2257 
2258   /* Make the needed input register substitutions.  Do death notes and
2259      clobbers too, because these are for inputs, not outputs.  */
2260 
2261   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2262     if (STACK_REG_P (recog_data.operand[i]))
2263       {
2264 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2265 
2266 	gcc_assert (regnum >= 0);
2267 
2268 	replace_reg (recog_data.operand_loc[i], regnum);
2269       }
2270 
2271   for (i = 0; i < n_notes; i++)
2272     if (note_kind[i] == REG_DEAD)
2273       {
2274 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2275 
2276 	gcc_assert (regnum >= 0);
2277 
2278 	replace_reg (note_loc[i], regnum);
2279       }
2280 
2281   for (i = 0; i < n_clobbers; i++)
2282     {
2283       /* It's OK for a CLOBBER to reference a reg that is not live.
2284          Don't try to replace it in that case.  */
2285       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2286 
2287       if (regnum >= 0)
2288 	{
2289 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2290 	     that these regs can't be MODE_INT and will assert.  Just put
2291 	     the right reg there without calling replace_reg.  */
2292 
2293 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2294 	}
2295     }
2296 
2297   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2298 
2299   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2300     if (STACK_REG_P (recog_data.operand[i]))
2301       {
2302 	/* An input reg is implicitly popped if it is tied to an
2303 	   output, or if there is a CLOBBER for it.  */
2304 	int j;
2305 
2306 	for (j = 0; j < n_clobbers; j++)
2307 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2308 	    break;
2309 
2310 	if (j < n_clobbers || op_alt[i].matches >= 0)
2311 	  {
2312 	    /* recog_data.operand[i] might not be at the top of stack.
2313 	       But that's OK, because all we need to do is pop the
2314 	       right number of regs off of the top of the reg-stack.
2315 	       record_asm_stack_regs guaranteed that all implicitly
2316 	       popped regs were grouped at the top of the reg-stack.  */
2317 
2318 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2319 				regstack->reg[regstack->top]);
2320 	    regstack->top--;
2321 	  }
2322       }
2323 
2324   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2325      Note that there isn't any need to substitute register numbers.
2326      ???  Explain why this is true.  */
2327 
2328   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2329     {
2330       /* See if there is an output for this hard reg.  */
2331       int j;
2332 
2333       for (j = 0; j < n_outputs; j++)
2334 	if (STACK_REG_P (recog_data.operand[j])
2335 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2336 	  {
2337 	    regstack->reg[++regstack->top] = i;
2338 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2339 	    break;
2340 	  }
2341     }
2342 
2343   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2344      input that the asm didn't implicitly pop.  If the asm didn't
2345      implicitly pop an input reg, that reg will still be live.
2346 
2347      Note that we can't use find_regno_note here: the register numbers
2348      in the death notes have already been substituted.  */
2349 
2350   for (i = 0; i < n_outputs; i++)
2351     if (STACK_REG_P (recog_data.operand[i]))
2352       {
2353 	int j;
2354 
2355 	for (j = 0; j < n_notes; j++)
2356 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2357 	      && note_kind[j] == REG_UNUSED)
2358 	    {
2359 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2360 				    EMIT_AFTER);
2361 	      break;
2362 	    }
2363       }
2364 
2365   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2366     if (STACK_REG_P (recog_data.operand[i]))
2367       {
2368 	int j;
2369 
2370 	for (j = 0; j < n_notes; j++)
2371 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2372 	      && note_kind[j] == REG_DEAD
2373 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2374 				    REGNO (recog_data.operand[i])))
2375 	    {
2376 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2377 				    EMIT_AFTER);
2378 	      break;
2379 	    }
2380       }
2381 }
2382 
2383 /* Substitute stack hard reg numbers for stack virtual registers in
2384    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2385    current stack content.  Insns may be emitted as needed to arrange the
2386    stack for the 387 based on the contents of the insn.  Return whether
2387    a control flow insn was deleted in the process.  */
2388 
2389 static bool
2390 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2391 {
2392   rtx *note_link, note;
2393   bool control_flow_insn_deleted = false;
2394   int i;
2395 
2396   if (CALL_P (insn))
2397     {
2398       int top = regstack->top;
2399 
2400       /* If there are any floating point parameters to be passed in
2401 	 registers for this call, make sure they are in the right
2402 	 order.  */
2403 
2404       if (top >= 0)
2405 	{
2406 	  straighten_stack (insn, regstack);
2407 
2408 	  /* Now mark the arguments as dead after the call.  */
2409 
2410 	  while (regstack->top >= 0)
2411 	    {
2412 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2413 	      regstack->top--;
2414 	    }
2415 	}
2416     }
2417 
2418   /* Do the actual substitution if any stack regs are mentioned.
2419      Since we only record whether entire insn mentions stack regs, and
2420      subst_stack_regs_pat only works for patterns that contain stack regs,
2421      we must check each pattern in a parallel here.  A call_value_pop could
2422      fail otherwise.  */
2423 
2424   if (stack_regs_mentioned (insn))
2425     {
2426       int n_operands = asm_noperands (PATTERN (insn));
2427       if (n_operands >= 0)
2428 	{
2429 	  /* This insn is an `asm' with operands.  Decode the operands,
2430 	     decide how many are inputs, and do register substitution.
2431 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2432 
2433 	  subst_asm_stack_regs (insn, regstack);
2434 	  return control_flow_insn_deleted;
2435 	}
2436 
2437       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2438 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2439 	  {
2440 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2441 	      {
2442 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2443 	           XVECEXP (PATTERN (insn), 0, i)
2444 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2445 		control_flow_insn_deleted
2446 		  |= subst_stack_regs_pat (insn, regstack,
2447 					   XVECEXP (PATTERN (insn), 0, i));
2448 	      }
2449 	  }
2450       else
2451 	control_flow_insn_deleted
2452 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2453     }
2454 
2455   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2456      REG_UNUSED will already have been dealt with, so just return.  */
2457 
2458   if (NOTE_P (insn) || insn->deleted ())
2459     return control_flow_insn_deleted;
2460 
2461   /* If this a noreturn call, we can't insert pop insns after it.
2462      Instead, reset the stack state to empty.  */
2463   if (CALL_P (insn)
2464       && find_reg_note (insn, REG_NORETURN, NULL))
2465     {
2466       regstack->top = -1;
2467       CLEAR_HARD_REG_SET (regstack->reg_set);
2468       return control_flow_insn_deleted;
2469     }
2470 
2471   /* If there is a REG_UNUSED note on a stack register on this insn,
2472      the indicated reg must be popped.  The REG_UNUSED note is removed,
2473      since the form of the newly emitted pop insn references the reg,
2474      making it no longer `unset'.  */
2475 
2476   note_link = &REG_NOTES (insn);
2477   for (note = *note_link; note; note = XEXP (note, 1))
2478     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2479       {
2480 	*note_link = XEXP (note, 1);
2481 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2482       }
2483     else
2484       note_link = &XEXP (note, 1);
2485 
2486   return control_flow_insn_deleted;
2487 }
2488 
2489 /* Change the organization of the stack so that it fits a new basic
2490    block.  Some registers might have to be popped, but there can never be
2491    a register live in the new block that is not now live.
2492 
2493    Insert any needed insns before or after INSN, as indicated by
2494    WHERE.  OLD is the original stack layout, and NEW is the desired
2495    form.  OLD is updated to reflect the code emitted, i.e., it will be
2496    the same as NEW upon return.
2497 
2498    This function will not preserve block_end[].  But that information
2499    is no longer needed once this has executed.  */
2500 
2501 static void
2502 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2503 	      enum emit_where where)
2504 {
2505   int reg;
2506   int update_end = 0;
2507   int i;
2508 
2509   /* Stack adjustments for the first insn in a block update the
2510      current_block's stack_in instead of inserting insns directly.
2511      compensate_edges will add the necessary code later.  */
2512   if (current_block
2513       && starting_stack_p
2514       && where == EMIT_BEFORE)
2515     {
2516       BLOCK_INFO (current_block)->stack_in = *new_stack;
2517       starting_stack_p = false;
2518       *old = *new_stack;
2519       return;
2520     }
2521 
2522   /* We will be inserting new insns "backwards".  If we are to insert
2523      after INSN, find the next insn, and insert before it.  */
2524 
2525   if (where == EMIT_AFTER)
2526     {
2527       if (current_block && BB_END (current_block) == insn)
2528 	update_end = 1;
2529       insn = NEXT_INSN (insn);
2530     }
2531 
2532   /* Initialize partially dead variables.  */
2533   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2534     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2535 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2536       {
2537 	old->reg[++old->top] = i;
2538         SET_HARD_REG_BIT (old->reg_set, i);
2539 	emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2540 			  insn);
2541       }
2542 
2543   /* Pop any registers that are not needed in the new block.  */
2544 
2545   /* If the destination block's stack already has a specified layout
2546      and contains two or more registers, use a more intelligent algorithm
2547      to pop registers that minimizes the number of fxchs below.  */
2548   if (new_stack->top > 0)
2549     {
2550       bool slots[REG_STACK_SIZE];
2551       int pops[REG_STACK_SIZE];
2552       int next, dest, topsrc;
2553 
2554       /* First pass to determine the free slots.  */
2555       for (reg = 0; reg <= new_stack->top; reg++)
2556 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2557 
2558       /* Second pass to allocate preferred slots.  */
2559       topsrc = -1;
2560       for (reg = old->top; reg > new_stack->top; reg--)
2561 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2562 	  {
2563 	    dest = -1;
2564 	    for (next = 0; next <= new_stack->top; next++)
2565 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2566 		{
2567 		  /* If this is a preference for the new top of stack, record
2568 		     the fact by remembering it's old->reg in topsrc.  */
2569                   if (next == new_stack->top)
2570 		    topsrc = reg;
2571 		  slots[next] = true;
2572 		  dest = next;
2573 		  break;
2574 		}
2575 	    pops[reg] = dest;
2576 	  }
2577 	else
2578 	  pops[reg] = reg;
2579 
2580       /* Intentionally, avoid placing the top of stack in it's correct
2581 	 location, if we still need to permute the stack below and we
2582 	 can usefully place it somewhere else.  This is the case if any
2583 	 slot is still unallocated, in which case we should place the
2584 	 top of stack there.  */
2585       if (topsrc != -1)
2586 	for (reg = 0; reg < new_stack->top; reg++)
2587 	  if (!slots[reg])
2588 	    {
2589 	      pops[topsrc] = reg;
2590 	      slots[new_stack->top] = false;
2591 	      slots[reg] = true;
2592 	      break;
2593 	    }
2594 
2595       /* Third pass allocates remaining slots and emits pop insns.  */
2596       next = new_stack->top;
2597       for (reg = old->top; reg > new_stack->top; reg--)
2598 	{
2599 	  dest = pops[reg];
2600 	  if (dest == -1)
2601 	    {
2602 	      /* Find next free slot.  */
2603 	      while (slots[next])
2604 		next--;
2605 	      dest = next--;
2606 	    }
2607 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2608 			 EMIT_BEFORE);
2609 	}
2610     }
2611   else
2612     {
2613       /* The following loop attempts to maximize the number of times we
2614 	 pop the top of the stack, as this permits the use of the faster
2615 	 ffreep instruction on platforms that support it.  */
2616       int live, next;
2617 
2618       live = 0;
2619       for (reg = 0; reg <= old->top; reg++)
2620         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2621           live++;
2622 
2623       next = live;
2624       while (old->top >= live)
2625         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2626 	  {
2627 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2628 	      next--;
2629 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2630 			   EMIT_BEFORE);
2631 	  }
2632 	else
2633 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2634 			 EMIT_BEFORE);
2635     }
2636 
2637   if (new_stack->top == -2)
2638     {
2639       /* If the new block has never been processed, then it can inherit
2640 	 the old stack order.  */
2641 
2642       new_stack->top = old->top;
2643       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2644     }
2645   else
2646     {
2647       /* This block has been entered before, and we must match the
2648 	 previously selected stack order.  */
2649 
2650       /* By now, the only difference should be the order of the stack,
2651 	 not their depth or liveliness.  */
2652 
2653       gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2654       gcc_assert (old->top == new_stack->top);
2655 
2656       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2657 	 swaps until the stack is correct.
2658 
2659 	 The worst case number of swaps emitted is N + 2, where N is the
2660 	 depth of the stack.  In some cases, the reg at the top of
2661 	 stack may be correct, but swapped anyway in order to fix
2662 	 other regs.  But since we never swap any other reg away from
2663 	 its correct slot, this algorithm will converge.  */
2664 
2665       if (new_stack->top != -1)
2666 	do
2667 	  {
2668 	    /* Swap the reg at top of stack into the position it is
2669 	       supposed to be in, until the correct top of stack appears.  */
2670 
2671 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2672 	      {
2673 		for (reg = new_stack->top; reg >= 0; reg--)
2674 		  if (new_stack->reg[reg] == old->reg[old->top])
2675 		    break;
2676 
2677 		gcc_assert (reg != -1);
2678 
2679 		emit_swap_insn (insn, old,
2680 				FP_MODE_REG (old->reg[reg], DFmode));
2681 	      }
2682 
2683 	    /* See if any regs remain incorrect.  If so, bring an
2684 	     incorrect reg to the top of stack, and let the while loop
2685 	     above fix it.  */
2686 
2687 	    for (reg = new_stack->top; reg >= 0; reg--)
2688 	      if (new_stack->reg[reg] != old->reg[reg])
2689 		{
2690 		  emit_swap_insn (insn, old,
2691 				  FP_MODE_REG (old->reg[reg], DFmode));
2692 		  break;
2693 		}
2694 	  } while (reg >= 0);
2695 
2696       /* At this point there must be no differences.  */
2697 
2698       for (reg = old->top; reg >= 0; reg--)
2699 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2700     }
2701 
2702   if (update_end)
2703     BB_END (current_block) = PREV_INSN (insn);
2704 }
2705 
2706 /* Print stack configuration.  */
2707 
2708 static void
2709 print_stack (FILE *file, stack_ptr s)
2710 {
2711   if (! file)
2712     return;
2713 
2714   if (s->top == -2)
2715     fprintf (file, "uninitialized\n");
2716   else if (s->top == -1)
2717     fprintf (file, "empty\n");
2718   else
2719     {
2720       int i;
2721       fputs ("[ ", file);
2722       for (i = 0; i <= s->top; ++i)
2723 	fprintf (file, "%d ", s->reg[i]);
2724       fputs ("]\n", file);
2725     }
2726 }
2727 
2728 /* This function was doing life analysis.  We now let the regular live
2729    code do it's job, so we only need to check some extra invariants
2730    that reg-stack expects.  Primary among these being that all registers
2731    are initialized before use.
2732 
2733    The function returns true when code was emitted to CFG edges and
2734    commit_edge_insertions needs to be called.  */
2735 
2736 static int
2737 convert_regs_entry (void)
2738 {
2739   int inserted = 0;
2740   edge e;
2741   edge_iterator ei;
2742 
2743   /* Load something into each stack register live at function entry.
2744      Such live registers can be caused by uninitialized variables or
2745      functions not returning values on all paths.  In order to keep
2746      the push/pop code happy, and to not scrog the register stack, we
2747      must put something in these registers.  Use a QNaN.
2748 
2749      Note that we are inserting converted code here.  This code is
2750      never seen by the convert_regs pass.  */
2751 
2752   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2753     {
2754       basic_block block = e->dest;
2755       block_info bi = BLOCK_INFO (block);
2756       int reg, top = -1;
2757 
2758       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2759 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2760 	  {
2761 	    rtx init;
2762 
2763 	    bi->stack_in.reg[++top] = reg;
2764 
2765 	    init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2766 				not_a_num);
2767 	    insert_insn_on_edge (init, e);
2768 	    inserted = 1;
2769 	  }
2770 
2771       bi->stack_in.top = top;
2772     }
2773 
2774   return inserted;
2775 }
2776 
2777 /* Construct the desired stack for function exit.  This will either
2778    be `empty', or the function return value at top-of-stack.  */
2779 
2780 static void
2781 convert_regs_exit (void)
2782 {
2783   int value_reg_low, value_reg_high;
2784   stack_ptr output_stack;
2785   rtx retvalue;
2786 
2787   retvalue = stack_result (current_function_decl);
2788   value_reg_low = value_reg_high = -1;
2789   if (retvalue)
2790     {
2791       value_reg_low = REGNO (retvalue);
2792       value_reg_high = END_REGNO (retvalue) - 1;
2793     }
2794 
2795   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2796   if (value_reg_low == -1)
2797     output_stack->top = -1;
2798   else
2799     {
2800       int reg;
2801 
2802       output_stack->top = value_reg_high - value_reg_low;
2803       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2804 	{
2805 	  output_stack->reg[value_reg_high - reg] = reg;
2806 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2807 	}
2808     }
2809 }
2810 
2811 /* Copy the stack info from the end of edge E's source block to the
2812    start of E's destination block.  */
2813 
2814 static void
2815 propagate_stack (edge e)
2816 {
2817   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2818   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2819   int reg;
2820 
2821   /* Preserve the order of the original stack, but check whether
2822      any pops are needed.  */
2823   dest_stack->top = -1;
2824   for (reg = 0; reg <= src_stack->top; ++reg)
2825     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2826       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2827 
2828   /* Push in any partially dead values.  */
2829   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2830     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2831         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2832       dest_stack->reg[++dest_stack->top] = reg;
2833 }
2834 
2835 
2836 /* Adjust the stack of edge E's source block on exit to match the stack
2837    of it's target block upon input.  The stack layouts of both blocks
2838    should have been defined by now.  */
2839 
2840 static bool
2841 compensate_edge (edge e)
2842 {
2843   basic_block source = e->src, target = e->dest;
2844   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2845   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2846   struct stack_def regstack;
2847   int reg;
2848 
2849   if (dump_file)
2850     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2851 
2852   gcc_assert (target_stack->top != -2);
2853 
2854   /* Check whether stacks are identical.  */
2855   if (target_stack->top == source_stack->top)
2856     {
2857       for (reg = target_stack->top; reg >= 0; --reg)
2858 	if (target_stack->reg[reg] != source_stack->reg[reg])
2859 	  break;
2860 
2861       if (reg == -1)
2862 	{
2863 	  if (dump_file)
2864 	    fprintf (dump_file, "no changes needed\n");
2865 	  return false;
2866 	}
2867     }
2868 
2869   if (dump_file)
2870     {
2871       fprintf (dump_file, "correcting stack to ");
2872       print_stack (dump_file, target_stack);
2873     }
2874 
2875   /* Abnormal calls may appear to have values live in st(0), but the
2876      abnormal return path will not have actually loaded the values.  */
2877   if (e->flags & EDGE_ABNORMAL_CALL)
2878     {
2879       /* Assert that the lifetimes are as we expect -- one value
2880          live at st(0) on the end of the source block, and no
2881          values live at the beginning of the destination block.
2882 	 For complex return values, we may have st(1) live as well.  */
2883       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2884       gcc_assert (target_stack->top == -1);
2885       return false;
2886     }
2887 
2888   /* Handle non-call EH edges specially.  The normal return path have
2889      values in registers.  These will be popped en masse by the unwind
2890      library.  */
2891   if (e->flags & EDGE_EH)
2892     {
2893       gcc_assert (target_stack->top == -1);
2894       return false;
2895     }
2896 
2897   /* We don't support abnormal edges.  Global takes care to
2898      avoid any live register across them, so we should never
2899      have to insert instructions on such edges.  */
2900   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2901 
2902   /* Make a copy of source_stack as change_stack is destructive.  */
2903   regstack = *source_stack;
2904 
2905   /* It is better to output directly to the end of the block
2906      instead of to the edge, because emit_swap can do minimal
2907      insn scheduling.  We can do this when there is only one
2908      edge out, and it is not abnormal.  */
2909   if (EDGE_COUNT (source->succs) == 1)
2910     {
2911       current_block = source;
2912       change_stack (BB_END (source), &regstack, target_stack,
2913 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2914     }
2915   else
2916     {
2917       rtx_insn *seq;
2918       rtx_note *after;
2919 
2920       current_block = NULL;
2921       start_sequence ();
2922 
2923       /* ??? change_stack needs some point to emit insns after.  */
2924       after = emit_note (NOTE_INSN_DELETED);
2925 
2926       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2927 
2928       seq = get_insns ();
2929       end_sequence ();
2930 
2931       insert_insn_on_edge (seq, e);
2932       return true;
2933     }
2934   return false;
2935 }
2936 
2937 /* Traverse all non-entry edges in the CFG, and emit the necessary
2938    edge compensation code to change the stack from stack_out of the
2939    source block to the stack_in of the destination block.  */
2940 
2941 static bool
2942 compensate_edges (void)
2943 {
2944   bool inserted = false;
2945   basic_block bb;
2946 
2947   starting_stack_p = false;
2948 
2949   FOR_EACH_BB_FN (bb, cfun)
2950     if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2951       {
2952         edge e;
2953         edge_iterator ei;
2954 
2955         FOR_EACH_EDGE (e, ei, bb->succs)
2956 	  inserted |= compensate_edge (e);
2957       }
2958   return inserted;
2959 }
2960 
2961 /* Select the better of two edges E1 and E2 to use to determine the
2962    stack layout for their shared destination basic block.  This is
2963    typically the more frequently executed.  The edge E1 may be NULL
2964    (in which case E2 is returned), but E2 is always non-NULL.  */
2965 
2966 static edge
2967 better_edge (edge e1, edge e2)
2968 {
2969   if (!e1)
2970     return e2;
2971 
2972   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2973     return e1;
2974   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2975     return e2;
2976 
2977   if (e1->count > e2->count)
2978     return e1;
2979   if (e1->count < e2->count)
2980     return e2;
2981 
2982   /* Prefer critical edges to minimize inserting compensation code on
2983      critical edges.  */
2984 
2985   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2986     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2987 
2988   /* Avoid non-deterministic behavior.  */
2989   return (e1->src->index < e2->src->index) ? e1 : e2;
2990 }
2991 
2992 /* Convert stack register references in one block.  Return true if the CFG
2993    has been modified in the process.  */
2994 
2995 static bool
2996 convert_regs_1 (basic_block block)
2997 {
2998   struct stack_def regstack;
2999   block_info bi = BLOCK_INFO (block);
3000   int reg;
3001   rtx_insn *insn, *next;
3002   bool control_flow_insn_deleted = false;
3003   bool cfg_altered = false;
3004   int debug_insns_with_starting_stack = 0;
3005 
3006   any_malformed_asm = false;
3007 
3008   /* Choose an initial stack layout, if one hasn't already been chosen.  */
3009   if (bi->stack_in.top == -2)
3010     {
3011       edge e, beste = NULL;
3012       edge_iterator ei;
3013 
3014       /* Select the best incoming edge (typically the most frequent) to
3015 	 use as a template for this basic block.  */
3016       FOR_EACH_EDGE (e, ei, block->preds)
3017 	if (BLOCK_INFO (e->src)->done)
3018 	  beste = better_edge (beste, e);
3019 
3020       if (beste)
3021 	propagate_stack (beste);
3022       else
3023 	{
3024 	  /* No predecessors.  Create an arbitrary input stack.  */
3025 	  bi->stack_in.top = -1;
3026 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
3027 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
3028 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
3029 	}
3030     }
3031 
3032   if (dump_file)
3033     {
3034       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
3035       print_stack (dump_file, &bi->stack_in);
3036     }
3037 
3038   /* Process all insns in this block.  Keep track of NEXT so that we
3039      don't process insns emitted while substituting in INSN.  */
3040   current_block = block;
3041   next = BB_HEAD (block);
3042   regstack = bi->stack_in;
3043   starting_stack_p = true;
3044 
3045   do
3046     {
3047       insn = next;
3048       next = NEXT_INSN (insn);
3049 
3050       /* Ensure we have not missed a block boundary.  */
3051       gcc_assert (next);
3052       if (insn == BB_END (block))
3053 	next = NULL;
3054 
3055       /* Don't bother processing unless there is a stack reg
3056 	 mentioned or if it's a CALL_INSN.  */
3057       if (DEBUG_INSN_P (insn))
3058 	{
3059 	  if (starting_stack_p)
3060 	    debug_insns_with_starting_stack++;
3061 	  else
3062 	    {
3063 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
3064 
3065 	      /* Nothing must ever die at a debug insn.  If something
3066 		 is referenced in it that becomes dead, it should have
3067 		 died before and the reference in the debug insn
3068 		 should have been removed so as to avoid changing code
3069 		 generation.  */
3070 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
3071 	    }
3072 	}
3073       else if (stack_regs_mentioned (insn)
3074 	       || CALL_P (insn))
3075 	{
3076 	  if (dump_file)
3077 	    {
3078 	      fprintf (dump_file, "  insn %d input stack: ",
3079 		       INSN_UID (insn));
3080 	      print_stack (dump_file, &regstack);
3081 	    }
3082 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3083 	  starting_stack_p = false;
3084 	}
3085     }
3086   while (next);
3087 
3088   if (debug_insns_with_starting_stack)
3089     {
3090       /* Since it's the first non-debug instruction that determines
3091 	 the stack requirements of the current basic block, we refrain
3092 	 from updating debug insns before it in the loop above, and
3093 	 fix them up here.  */
3094       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
3095 	   insn = NEXT_INSN (insn))
3096 	{
3097 	  if (!DEBUG_INSN_P (insn))
3098 	    continue;
3099 
3100 	  debug_insns_with_starting_stack--;
3101 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3102 	}
3103     }
3104 
3105   if (dump_file)
3106     {
3107       fprintf (dump_file, "Expected live registers [");
3108       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3109 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3110 	  fprintf (dump_file, " %d", reg);
3111       fprintf (dump_file, " ]\nOutput stack: ");
3112       print_stack (dump_file, &regstack);
3113     }
3114 
3115   insn = BB_END (block);
3116   if (JUMP_P (insn))
3117     insn = PREV_INSN (insn);
3118 
3119   /* If the function is declared to return a value, but it returns one
3120      in only some cases, some registers might come live here.  Emit
3121      necessary moves for them.  */
3122 
3123   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3124     {
3125       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3126 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3127 	{
3128 	  rtx set;
3129 
3130 	  if (dump_file)
3131 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3132 
3133 	  set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3134 	  insn = emit_insn_after (set, insn);
3135 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3136 	}
3137     }
3138 
3139   /* Amongst the insns possibly deleted during the substitution process above,
3140      might have been the only trapping insn in the block.  We purge the now
3141      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3142      called at the end of convert_regs.  The order in which we process the
3143      blocks ensures that we never delete an already processed edge.
3144 
3145      Note that, at this point, the CFG may have been damaged by the emission
3146      of instructions after an abnormal call, which moves the basic block end
3147      (and is the reason why we call fixup_abnormal_edges later).  So we must
3148      be sure that the trapping insn has been deleted before trying to purge
3149      dead edges, otherwise we risk purging valid edges.
3150 
3151      ??? We are normally supposed not to delete trapping insns, so we pretend
3152      that the insns deleted above don't actually trap.  It would have been
3153      better to detect this earlier and avoid creating the EH edge in the first
3154      place, still, but we don't have enough information at that time.  */
3155 
3156   if (control_flow_insn_deleted)
3157     cfg_altered |= purge_dead_edges (block);
3158 
3159   /* Something failed if the stack lives don't match.  If we had malformed
3160      asms, we zapped the instruction itself, but that didn't produce the
3161      same pattern of register kills as before.  */
3162 
3163   gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3164 	      || any_malformed_asm);
3165   bi->stack_out = regstack;
3166   bi->done = true;
3167 
3168   return cfg_altered;
3169 }
3170 
3171 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3172    CFG has been modified in the process.  */
3173 
3174 static bool
3175 convert_regs_2 (basic_block block)
3176 {
3177   basic_block *stack, *sp;
3178   bool cfg_altered = false;
3179 
3180   /* We process the blocks in a top-down manner, in a way such that one block
3181      is only processed after all its predecessors.  The number of predecessors
3182      of every block has already been computed.  */
3183 
3184   stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3185   sp = stack;
3186 
3187   *sp++ = block;
3188 
3189   do
3190     {
3191       edge e;
3192       edge_iterator ei;
3193 
3194       block = *--sp;
3195 
3196       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3197 	 some dead EH outgoing edge after the deletion of the trapping
3198 	 insn inside the block.  Since the number of predecessors of
3199 	 BLOCK's successors was computed based on the initial edge set,
3200 	 we check the necessity to process some of these successors
3201 	 before such an edge deletion may happen.  However, there is
3202 	 a pitfall: if BLOCK is the only predecessor of a successor and
3203 	 the edge between them happens to be deleted, the successor
3204 	 becomes unreachable and should not be processed.  The problem
3205 	 is that there is no way to preventively detect this case so we
3206 	 stack the successor in all cases and hand over the task of
3207 	 fixing up the discrepancy to convert_regs_1.  */
3208 
3209       FOR_EACH_EDGE (e, ei, block->succs)
3210 	if (! (e->flags & EDGE_DFS_BACK))
3211 	  {
3212 	    BLOCK_INFO (e->dest)->predecessors--;
3213 	    if (!BLOCK_INFO (e->dest)->predecessors)
3214 	      *sp++ = e->dest;
3215 	  }
3216 
3217       cfg_altered |= convert_regs_1 (block);
3218     }
3219   while (sp != stack);
3220 
3221   free (stack);
3222 
3223   return cfg_altered;
3224 }
3225 
3226 /* Traverse all basic blocks in a function, converting the register
3227    references in each insn from the "flat" register file that gcc uses,
3228    to the stack-like registers the 387 uses.  */
3229 
3230 static void
3231 convert_regs (void)
3232 {
3233   bool cfg_altered = false;
3234   int inserted;
3235   basic_block b;
3236   edge e;
3237   edge_iterator ei;
3238 
3239   /* Initialize uninitialized registers on function entry.  */
3240   inserted = convert_regs_entry ();
3241 
3242   /* Construct the desired stack for function exit.  */
3243   convert_regs_exit ();
3244   BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3245 
3246   /* ??? Future: process inner loops first, and give them arbitrary
3247      initial stacks which emit_swap_insn can modify.  This ought to
3248      prevent double fxch that often appears at the head of a loop.  */
3249 
3250   /* Process all blocks reachable from all entry points.  */
3251   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3252     cfg_altered |= convert_regs_2 (e->dest);
3253 
3254   /* ??? Process all unreachable blocks.  Though there's no excuse
3255      for keeping these even when not optimizing.  */
3256   FOR_EACH_BB_FN (b, cfun)
3257     {
3258       block_info bi = BLOCK_INFO (b);
3259 
3260       if (! bi->done)
3261 	cfg_altered |= convert_regs_2 (b);
3262     }
3263 
3264   /* We must fix up abnormal edges before inserting compensation code
3265      because both mechanisms insert insns on edges.  */
3266   inserted |= fixup_abnormal_edges ();
3267 
3268   inserted |= compensate_edges ();
3269 
3270   clear_aux_for_blocks ();
3271 
3272   if (inserted)
3273     commit_edge_insertions ();
3274 
3275   if (cfg_altered)
3276     cleanup_cfg (0);
3277 
3278   if (dump_file)
3279     fputc ('\n', dump_file);
3280 }
3281 
3282 /* Convert register usage from "flat" register file usage to a "stack
3283    register file.  FILE is the dump file, if used.
3284 
3285    Construct a CFG and run life analysis.  Then convert each insn one
3286    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3287    code duplication created when the converter inserts pop insns on
3288    the edges.  */
3289 
3290 static bool
3291 reg_to_stack (void)
3292 {
3293   basic_block bb;
3294   int i;
3295   int max_uid;
3296 
3297   /* Clean up previous run.  */
3298   stack_regs_mentioned_data.release ();
3299 
3300   /* See if there is something to do.  Flow analysis is quite
3301      expensive so we might save some compilation time.  */
3302   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3303     if (df_regs_ever_live_p (i))
3304       break;
3305   if (i > LAST_STACK_REG)
3306     return false;
3307 
3308   df_note_add_problem ();
3309   df_analyze ();
3310 
3311   mark_dfs_back_edges ();
3312 
3313   /* Set up block info for each basic block.  */
3314   alloc_aux_for_blocks (sizeof (struct block_info_def));
3315   FOR_EACH_BB_FN (bb, cfun)
3316     {
3317       block_info bi = BLOCK_INFO (bb);
3318       edge_iterator ei;
3319       edge e;
3320       int reg;
3321 
3322       FOR_EACH_EDGE (e, ei, bb->preds)
3323 	if (!(e->flags & EDGE_DFS_BACK)
3324 	    && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3325 	  bi->predecessors++;
3326 
3327       /* Set current register status at last instruction `uninitialized'.  */
3328       bi->stack_in.top = -2;
3329 
3330       /* Copy live_at_end and live_at_start into temporaries.  */
3331       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3332 	{
3333 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3334 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3335 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3336 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3337 	}
3338     }
3339 
3340   /* Create the replacement registers up front.  */
3341   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3342     {
3343       machine_mode mode;
3344       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3345 	   mode != VOIDmode;
3346 	   mode = GET_MODE_WIDER_MODE (mode))
3347 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3348       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3349 	   mode != VOIDmode;
3350 	   mode = GET_MODE_WIDER_MODE (mode))
3351 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3352     }
3353 
3354   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3355 
3356   /* A QNaN for initializing uninitialized variables.
3357 
3358      ??? We can't load from constant memory in PIC mode, because
3359      we're inserting these instructions before the prologue and
3360      the PIC register hasn't been set up.  In that case, fall back
3361      on zero, which we can get from `fldz'.  */
3362 
3363   if ((flag_pic && !TARGET_64BIT)
3364       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3365     not_a_num = CONST0_RTX (SFmode);
3366   else
3367     {
3368       REAL_VALUE_TYPE r;
3369 
3370       real_nan (&r, "", 1, SFmode);
3371       not_a_num = const_double_from_real_value (r, SFmode);
3372       not_a_num = force_const_mem (SFmode, not_a_num);
3373     }
3374 
3375   /* Allocate a cache for stack_regs_mentioned.  */
3376   max_uid = get_max_uid ();
3377   stack_regs_mentioned_data.create (max_uid + 1);
3378   memset (stack_regs_mentioned_data.address (),
3379 	  0, sizeof (char) * (max_uid + 1));
3380 
3381   convert_regs ();
3382 
3383   free_aux_for_blocks ();
3384   return true;
3385 }
3386 #endif /* STACK_REGS */
3387 
3388 namespace {
3389 
3390 const pass_data pass_data_stack_regs =
3391 {
3392   RTL_PASS, /* type */
3393   "*stack_regs", /* name */
3394   OPTGROUP_NONE, /* optinfo_flags */
3395   TV_REG_STACK, /* tv_id */
3396   0, /* properties_required */
3397   0, /* properties_provided */
3398   0, /* properties_destroyed */
3399   0, /* todo_flags_start */
3400   0, /* todo_flags_finish */
3401 };
3402 
3403 class pass_stack_regs : public rtl_opt_pass
3404 {
3405 public:
3406   pass_stack_regs (gcc::context *ctxt)
3407     : rtl_opt_pass (pass_data_stack_regs, ctxt)
3408   {}
3409 
3410   /* opt_pass methods: */
3411   virtual bool gate (function *)
3412     {
3413 #ifdef STACK_REGS
3414       return true;
3415 #else
3416       return false;
3417 #endif
3418     }
3419 
3420 }; // class pass_stack_regs
3421 
3422 } // anon namespace
3423 
3424 rtl_opt_pass *
3425 make_pass_stack_regs (gcc::context *ctxt)
3426 {
3427   return new pass_stack_regs (ctxt);
3428 }
3429 
3430 /* Convert register usage from flat register file usage to a stack
3431    register file.  */
3432 static unsigned int
3433 rest_of_handle_stack_regs (void)
3434 {
3435 #ifdef STACK_REGS
3436   reg_to_stack ();
3437   regstack_completed = 1;
3438 #endif
3439   return 0;
3440 }
3441 
3442 namespace {
3443 
3444 const pass_data pass_data_stack_regs_run =
3445 {
3446   RTL_PASS, /* type */
3447   "stack", /* name */
3448   OPTGROUP_NONE, /* optinfo_flags */
3449   TV_REG_STACK, /* tv_id */
3450   0, /* properties_required */
3451   0, /* properties_provided */
3452   0, /* properties_destroyed */
3453   0, /* todo_flags_start */
3454   TODO_df_finish, /* todo_flags_finish */
3455 };
3456 
3457 class pass_stack_regs_run : public rtl_opt_pass
3458 {
3459 public:
3460   pass_stack_regs_run (gcc::context *ctxt)
3461     : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3462   {}
3463 
3464   /* opt_pass methods: */
3465   virtual unsigned int execute (function *)
3466     {
3467       return rest_of_handle_stack_regs ();
3468     }
3469 
3470 }; // class pass_stack_regs_run
3471 
3472 } // anon namespace
3473 
3474 rtl_opt_pass *
3475 make_pass_stack_regs_run (gcc::context *ctxt)
3476 {
3477   return new pass_stack_regs_run (ctxt);
3478 }
3479