xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reg-stack.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3    2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4    Free Software Foundation, Inc.
5 
6    This file is part of GCC.
7 
8    GCC is free software; you can redistribute it and/or modify it
9    under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3, or (at your option)
11    any later version.
12 
13    GCC is distributed in the hope that it will be useful, but WITHOUT
14    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
16    License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with GCC; see the file COPYING3.  If not see
20    <http://www.gnu.org/licenses/>.  */
21 
22 /* This pass converts stack-like registers from the "flat register
23    file" model that gcc uses, to a stack convention that the 387 uses.
24 
25    * The form of the input:
26 
27    On input, the function consists of insn that have had their
28    registers fully allocated to a set of "virtual" registers.  Note that
29    the word "virtual" is used differently here than elsewhere in gcc: for
30    each virtual stack reg, there is a hard reg, but the mapping between
31    them is not known until this pass is run.  On output, hard register
32    numbers have been substituted, and various pop and exchange insns have
33    been emitted.  The hard register numbers and the virtual register
34    numbers completely overlap - before this pass, all stack register
35    numbers are virtual, and afterward they are all hard.
36 
37    The virtual registers can be manipulated normally by gcc, and their
38    semantics are the same as for normal registers.  After the hard
39    register numbers are substituted, the semantics of an insn containing
40    stack-like regs are not the same as for an insn with normal regs: for
41    instance, it is not safe to delete an insn that appears to be a no-op
42    move.  In general, no insn containing hard regs should be changed
43    after this pass is done.
44 
45    * The form of the output:
46 
47    After this pass, hard register numbers represent the distance from
48    the current top of stack to the desired register.  A reference to
49    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50    represents the register just below that, and so forth.  Also, REG_DEAD
51    notes indicate whether or not a stack register should be popped.
52 
53    A "swap" insn looks like a parallel of two patterns, where each
54    pattern is a SET: one sets A to B, the other B to A.
55 
56    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
58    will replace the existing stack top, not push a new value.
59 
60    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61    SET_SRC is REG or MEM.
62 
63    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64    appears ambiguous.  As a special case, the presence of a REG_DEAD note
65    for FIRST_STACK_REG differentiates between a load insn and a pop.
66 
67    If a REG_DEAD is present, the insn represents a "pop" that discards
68    the top of the register stack.  If there is no REG_DEAD note, then the
69    insn represents a "dup" or a push of the current top of stack onto the
70    stack.
71 
72    * Methodology:
73 
74    Existing REG_DEAD and REG_UNUSED notes for stack registers are
75    deleted and recreated from scratch.  REG_DEAD is never created for a
76    SET_DEST, only REG_UNUSED.
77 
78    * asm_operands:
79 
80    There are several rules on the usage of stack-like regs in
81    asm_operands insns.  These rules apply only to the operands that are
82    stack-like regs:
83 
84    1. Given a set of input regs that die in an asm_operands, it is
85       necessary to know which are implicitly popped by the asm, and
86       which must be explicitly popped by gcc.
87 
88 	An input reg that is implicitly popped by the asm must be
89 	explicitly clobbered, unless it is constrained to match an
90 	output operand.
91 
92    2. For any input reg that is implicitly popped by an asm, it is
93       necessary to know how to adjust the stack to compensate for the pop.
94       If any non-popped input is closer to the top of the reg-stack than
95       the implicitly popped reg, it would not be possible to know what the
96       stack looked like - it's not clear how the rest of the stack "slides
97       up".
98 
99 	All implicitly popped input regs must be closer to the top of
100 	the reg-stack than any input that is not implicitly popped.
101 
102    3. It is possible that if an input dies in an insn, reload might
103       use the input reg for an output reload.  Consider this example:
104 
105 		asm ("foo" : "=t" (a) : "f" (b));
106 
107       This asm says that input B is not popped by the asm, and that
108       the asm pushes a result onto the reg-stack, i.e., the stack is one
109       deeper after the asm than it was before.  But, it is possible that
110       reload will think that it can use the same reg for both the input and
111       the output, if input B dies in this insn.
112 
113 	If any input operand uses the "f" constraint, all output reg
114 	constraints must use the "&" earlyclobber.
115 
116       The asm above would be written as
117 
118 		asm ("foo" : "=&t" (a) : "f" (b));
119 
120    4. Some operands need to be in particular places on the stack.  All
121       output operands fall in this category - there is no other way to
122       know which regs the outputs appear in unless the user indicates
123       this in the constraints.
124 
125 	Output operands must specifically indicate which reg an output
126 	appears in after an asm.  "=f" is not allowed: the operand
127 	constraints must select a class with a single reg.
128 
129    5. Output operands may not be "inserted" between existing stack regs.
130       Since no 387 opcode uses a read/write operand, all output operands
131       are dead before the asm_operands, and are pushed by the asm_operands.
132       It makes no sense to push anywhere but the top of the reg-stack.
133 
134 	Output operands must start at the top of the reg-stack: output
135 	operands may not "skip" a reg.
136 
137    6. Some asm statements may need extra stack space for internal
138       calculations.  This can be guaranteed by clobbering stack registers
139       unrelated to the inputs and outputs.
140 
141    Here are a couple of reasonable asms to want to write.  This asm
142    takes one input, which is internally popped, and produces two outputs.
143 
144 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
145 
146    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147    and replaces them with one output.  The user must code the "st(1)"
148    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
149 
150 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
151 
152 */
153 
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "cfglayout.h"
171 #include "varray.h"
172 #include "reload.h"
173 #include "ggc.h"
174 #include "timevar.h"
175 #include "tree-pass.h"
176 #include "target.h"
177 #include "df.h"
178 #include "vecprim.h"
179 
180 #ifdef STACK_REGS
181 
182 /* We use this array to cache info about insns, because otherwise we
183    spend too much time in stack_regs_mentioned_p.
184 
185    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
186    the insn uses stack registers, two indicates the insn does not use
187    stack registers.  */
188 static VEC(char,heap) *stack_regs_mentioned_data;
189 
190 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191 
192 int regstack_completed = 0;
193 
194 /* This is the basic stack record.  TOP is an index into REG[] such
195    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
196 
197    If TOP is -2, REG[] is not yet initialized.  Stack initialization
198    consists of placing each live reg in array `reg' and setting `top'
199    appropriately.
200 
201    REG_SET indicates which registers are live.  */
202 
203 typedef struct stack_def
204 {
205   int top;			/* index to top stack element */
206   HARD_REG_SET reg_set;		/* set of live registers */
207   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
208 } *stack;
209 
210 /* This is used to carry information about basic blocks.  It is
211    attached to the AUX field of the standard CFG block.  */
212 
213 typedef struct block_info_def
214 {
215   struct stack_def stack_in;	/* Input stack configuration.  */
216   struct stack_def stack_out;	/* Output stack configuration.  */
217   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
218   int done;			/* True if block already converted.  */
219   int predecessors;		/* Number of predecessors that need
220 				   to be visited.  */
221 } *block_info;
222 
223 #define BLOCK_INFO(B)	((block_info) (B)->aux)
224 
225 /* Passed to change_stack to indicate where to emit insns.  */
226 enum emit_where
227 {
228   EMIT_AFTER,
229   EMIT_BEFORE
230 };
231 
232 /* The block we're currently working on.  */
233 static basic_block current_block;
234 
235 /* In the current_block, whether we're processing the first register
236    stack or call instruction, i.e. the regstack is currently the
237    same as BLOCK_INFO(current_block)->stack_in.  */
238 static bool starting_stack_p;
239 
240 /* This is the register file for all register after conversion.  */
241 static rtx
242   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
243 
244 #define FP_MODE_REG(regno,mode)	\
245   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246 
247 /* Used to initialize uninitialized registers.  */
248 static rtx not_a_num;
249 
250 /* Forward declarations */
251 
252 static int stack_regs_mentioned_p (const_rtx pat);
253 static void pop_stack (stack, int);
254 static rtx *get_true_reg (rtx *);
255 
256 static int check_asm_stack_operands (rtx);
257 static void get_asm_operands_in_out (rtx, int *, int *);
258 static rtx stack_result (tree);
259 static void replace_reg (rtx *, int);
260 static void remove_regno_note (rtx, enum reg_note, unsigned int);
261 static int get_hard_regnum (stack, rtx);
262 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
263 static void swap_to_top(rtx, stack, rtx, rtx);
264 static bool move_for_stack_reg (rtx, stack, rtx);
265 static bool move_nan_for_stack_reg (rtx, stack, rtx);
266 static int swap_rtx_condition_1 (rtx);
267 static int swap_rtx_condition (rtx);
268 static void compare_for_stack_reg (rtx, stack, rtx);
269 static bool subst_stack_regs_pat (rtx, stack, rtx);
270 static void subst_asm_stack_regs (rtx, stack);
271 static bool subst_stack_regs (rtx, stack);
272 static void change_stack (rtx, stack, stack, enum emit_where);
273 static void print_stack (FILE *, stack);
274 static rtx next_flags_user (rtx);
275 
276 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
277 
278 static int
279 stack_regs_mentioned_p (const_rtx pat)
280 {
281   const char *fmt;
282   int i;
283 
284   if (STACK_REG_P (pat))
285     return 1;
286 
287   fmt = GET_RTX_FORMAT (GET_CODE (pat));
288   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
289     {
290       if (fmt[i] == 'E')
291 	{
292 	  int j;
293 
294 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
295 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
296 	      return 1;
297 	}
298       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
299 	return 1;
300     }
301 
302   return 0;
303 }
304 
305 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
306 
307 int
308 stack_regs_mentioned (const_rtx insn)
309 {
310   unsigned int uid, max;
311   int test;
312 
313   if (! INSN_P (insn) || !stack_regs_mentioned_data)
314     return 0;
315 
316   uid = INSN_UID (insn);
317   max = VEC_length (char, stack_regs_mentioned_data);
318   if (uid >= max)
319     {
320       /* Allocate some extra size to avoid too many reallocs, but
321 	 do not grow too quickly.  */
322       max = uid + uid / 20 + 1;
323       VEC_safe_grow_cleared (char, heap, stack_regs_mentioned_data, max);
324     }
325 
326   test = VEC_index (char, stack_regs_mentioned_data, uid);
327   if (test == 0)
328     {
329       /* This insn has yet to be examined.  Do so now.  */
330       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
331       VEC_replace (char, stack_regs_mentioned_data, uid, test);
332     }
333 
334   return test == 1;
335 }
336 
337 static rtx ix86_flags_rtx;
338 
339 static rtx
340 next_flags_user (rtx insn)
341 {
342   /* Search forward looking for the first use of this value.
343      Stop at block boundaries.  */
344 
345   while (insn != BB_END (current_block))
346     {
347       insn = NEXT_INSN (insn);
348 
349       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
350 	return insn;
351 
352       if (CALL_P (insn))
353 	return NULL_RTX;
354     }
355   return NULL_RTX;
356 }
357 
358 /* Reorganize the stack into ascending numbers, before this insn.  */
359 
360 static void
361 straighten_stack (rtx insn, stack regstack)
362 {
363   struct stack_def temp_stack;
364   int top;
365 
366   /* If there is only a single register on the stack, then the stack is
367      already in increasing order and no reorganization is needed.
368 
369      Similarly if the stack is empty.  */
370   if (regstack->top <= 0)
371     return;
372 
373   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
374 
375   for (top = temp_stack.top = regstack->top; top >= 0; top--)
376     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
377 
378   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
379 }
380 
381 /* Pop a register from the stack.  */
382 
383 static void
384 pop_stack (stack regstack, int regno)
385 {
386   int top = regstack->top;
387 
388   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
389   regstack->top--;
390   /* If regno was not at the top of stack then adjust stack.  */
391   if (regstack->reg [top] != regno)
392     {
393       int i;
394       for (i = regstack->top; i >= 0; i--)
395 	if (regstack->reg [i] == regno)
396 	  {
397 	    int j;
398 	    for (j = i; j < top; j++)
399 	      regstack->reg [j] = regstack->reg [j + 1];
400 	    break;
401 	  }
402     }
403 }
404 
405 /* Return a pointer to the REG expression within PAT.  If PAT is not a
406    REG, possible enclosed by a conversion rtx, return the inner part of
407    PAT that stopped the search.  */
408 
409 static rtx *
410 get_true_reg (rtx *pat)
411 {
412   for (;;)
413     switch (GET_CODE (*pat))
414       {
415       case SUBREG:
416 	/* Eliminate FP subregister accesses in favor of the
417 	   actual FP register in use.  */
418 	{
419 	  rtx subreg;
420 	  if (FP_REG_P (subreg = SUBREG_REG (*pat)))
421 	    {
422 	      int regno_off = subreg_regno_offset (REGNO (subreg),
423 						   GET_MODE (subreg),
424 						   SUBREG_BYTE (*pat),
425 						   GET_MODE (*pat));
426 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
427 				  GET_MODE (subreg));
428 	      return pat;
429 	    }
430 	}
431       case FLOAT:
432       case FIX:
433       case FLOAT_EXTEND:
434 	pat = & XEXP (*pat, 0);
435 	break;
436 
437       case UNSPEC:
438 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP)
439 	  pat = & XVECEXP (*pat, 0, 0);
440 	return pat;
441 
442       case FLOAT_TRUNCATE:
443 	if (!flag_unsafe_math_optimizations)
444 	  return pat;
445 	pat = & XEXP (*pat, 0);
446 	break;
447 
448       default:
449 	return pat;
450       }
451 }
452 
453 /* Set if we find any malformed asms in a block.  */
454 static bool any_malformed_asm;
455 
456 /* There are many rules that an asm statement for stack-like regs must
457    follow.  Those rules are explained at the top of this file: the rule
458    numbers below refer to that explanation.  */
459 
460 static int
461 check_asm_stack_operands (rtx insn)
462 {
463   int i;
464   int n_clobbers;
465   int malformed_asm = 0;
466   rtx body = PATTERN (insn);
467 
468   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
469   char implicitly_dies[FIRST_PSEUDO_REGISTER];
470   int alt;
471 
472   rtx *clobber_reg = 0;
473   int n_inputs, n_outputs;
474 
475   /* Find out what the constraints require.  If no constraint
476      alternative matches, this asm is malformed.  */
477   extract_insn (insn);
478   constrain_operands (1);
479   alt = which_alternative;
480 
481   preprocess_constraints ();
482 
483   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
484 
485   if (alt < 0)
486     {
487       malformed_asm = 1;
488       /* Avoid further trouble with this insn.  */
489       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
490       return 0;
491     }
492 
493   /* Strip SUBREGs here to make the following code simpler.  */
494   for (i = 0; i < recog_data.n_operands; i++)
495     if (GET_CODE (recog_data.operand[i]) == SUBREG
496 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
497       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
498 
499   /* Set up CLOBBER_REG.  */
500 
501   n_clobbers = 0;
502 
503   if (GET_CODE (body) == PARALLEL)
504     {
505       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
506 
507       for (i = 0; i < XVECLEN (body, 0); i++)
508 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
509 	  {
510 	    rtx clobber = XVECEXP (body, 0, i);
511 	    rtx reg = XEXP (clobber, 0);
512 
513 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
514 	      reg = SUBREG_REG (reg);
515 
516 	    if (STACK_REG_P (reg))
517 	      {
518 		clobber_reg[n_clobbers] = reg;
519 		n_clobbers++;
520 	      }
521 	  }
522     }
523 
524   /* Enforce rule #4: Output operands must specifically indicate which
525      reg an output appears in after an asm.  "=f" is not allowed: the
526      operand constraints must select a class with a single reg.
527 
528      Also enforce rule #5: Output operands must start at the top of
529      the reg-stack: output operands may not "skip" a reg.  */
530 
531   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
532   for (i = 0; i < n_outputs; i++)
533     if (STACK_REG_P (recog_data.operand[i]))
534       {
535 	if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
536 	  {
537 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
538 	    malformed_asm = 1;
539 	  }
540 	else
541 	  {
542 	    int j;
543 
544 	    for (j = 0; j < n_clobbers; j++)
545 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
546 		{
547 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
548 				 i, reg_names [REGNO (clobber_reg[j])]);
549 		  malformed_asm = 1;
550 		  break;
551 		}
552 	    if (j == n_clobbers)
553 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
554 	  }
555       }
556 
557 
558   /* Search for first non-popped reg.  */
559   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
560     if (! reg_used_as_output[i])
561       break;
562 
563   /* If there are any other popped regs, that's an error.  */
564   for (; i < LAST_STACK_REG + 1; i++)
565     if (reg_used_as_output[i])
566       break;
567 
568   if (i != LAST_STACK_REG + 1)
569     {
570       error_for_asm (insn, "output regs must be grouped at top of stack");
571       malformed_asm = 1;
572     }
573 
574   /* Enforce rule #2: All implicitly popped input regs must be closer
575      to the top of the reg-stack than any input that is not implicitly
576      popped.  */
577 
578   memset (implicitly_dies, 0, sizeof (implicitly_dies));
579   for (i = n_outputs; i < n_outputs + n_inputs; i++)
580     if (STACK_REG_P (recog_data.operand[i]))
581       {
582 	/* An input reg is implicitly popped if it is tied to an
583 	   output, or if there is a CLOBBER for it.  */
584 	int j;
585 
586 	for (j = 0; j < n_clobbers; j++)
587 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
588 	    break;
589 
590 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
591 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
592       }
593 
594   /* Search for first non-popped reg.  */
595   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
596     if (! implicitly_dies[i])
597       break;
598 
599   /* If there are any other popped regs, that's an error.  */
600   for (; i < LAST_STACK_REG + 1; i++)
601     if (implicitly_dies[i])
602       break;
603 
604   if (i != LAST_STACK_REG + 1)
605     {
606       error_for_asm (insn,
607 		     "implicitly popped regs must be grouped at top of stack");
608       malformed_asm = 1;
609     }
610 
611   /* Enforce rule #3: If any input operand uses the "f" constraint, all
612      output constraints must use the "&" earlyclobber.
613 
614      ??? Detect this more deterministically by having constrain_asm_operands
615      record any earlyclobber.  */
616 
617   for (i = n_outputs; i < n_outputs + n_inputs; i++)
618     if (recog_op_alt[i][alt].matches == -1)
619       {
620 	int j;
621 
622 	for (j = 0; j < n_outputs; j++)
623 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
624 	    {
625 	      error_for_asm (insn,
626 			     "output operand %d must use %<&%> constraint", j);
627 	      malformed_asm = 1;
628 	    }
629       }
630 
631   if (malformed_asm)
632     {
633       /* Avoid further trouble with this insn.  */
634       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
635       any_malformed_asm = true;
636       return 0;
637     }
638 
639   return 1;
640 }
641 
642 /* Calculate the number of inputs and outputs in BODY, an
643    asm_operands.  N_OPERANDS is the total number of operands, and
644    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
645    placed.  */
646 
647 static void
648 get_asm_operands_in_out (rtx body, int *pout, int *pin)
649 {
650   rtx asmop = extract_asm_operands (body);
651 
652   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
653   *pout = (recog_data.n_operands
654 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
655 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
656 }
657 
658 /* If current function returns its result in an fp stack register,
659    return the REG.  Otherwise, return 0.  */
660 
661 static rtx
662 stack_result (tree decl)
663 {
664   rtx result;
665 
666   /* If the value is supposed to be returned in memory, then clearly
667      it is not returned in a stack register.  */
668   if (aggregate_value_p (DECL_RESULT (decl), decl))
669     return 0;
670 
671   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
672   if (result != 0)
673     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
674 					   decl, true);
675 
676   return result != 0 && STACK_REG_P (result) ? result : 0;
677 }
678 
679 
680 /*
681  * This section deals with stack register substitution, and forms the second
682  * pass over the RTL.
683  */
684 
685 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
686    the desired hard REGNO.  */
687 
688 static void
689 replace_reg (rtx *reg, int regno)
690 {
691   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
692   gcc_assert (STACK_REG_P (*reg));
693 
694   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
695 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
696 
697   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
698 }
699 
700 /* Remove a note of type NOTE, which must be found, for register
701    number REGNO from INSN.  Remove only one such note.  */
702 
703 static void
704 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
705 {
706   rtx *note_link, this_rtx;
707 
708   note_link = &REG_NOTES (insn);
709   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
710     if (REG_NOTE_KIND (this_rtx) == note
711 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
712       {
713 	*note_link = XEXP (this_rtx, 1);
714 	return;
715       }
716     else
717       note_link = &XEXP (this_rtx, 1);
718 
719   gcc_unreachable ();
720 }
721 
722 /* Find the hard register number of virtual register REG in REGSTACK.
723    The hard register number is relative to the top of the stack.  -1 is
724    returned if the register is not found.  */
725 
726 static int
727 get_hard_regnum (stack regstack, rtx reg)
728 {
729   int i;
730 
731   gcc_assert (STACK_REG_P (reg));
732 
733   for (i = regstack->top; i >= 0; i--)
734     if (regstack->reg[i] == REGNO (reg))
735       break;
736 
737   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
738 }
739 
740 /* Emit an insn to pop virtual register REG before or after INSN.
741    REGSTACK is the stack state after INSN and is updated to reflect this
742    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
743    is represented as a SET whose destination is the register to be popped
744    and source is the top of stack.  A death note for the top of stack
745    cases the movdf pattern to pop.  */
746 
747 static rtx
748 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
749 {
750   rtx pop_insn, pop_rtx;
751   int hard_regno;
752 
753   /* For complex types take care to pop both halves.  These may survive in
754      CLOBBER and USE expressions.  */
755   if (COMPLEX_MODE_P (GET_MODE (reg)))
756     {
757       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
758       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
759 
760       pop_insn = NULL_RTX;
761       if (get_hard_regnum (regstack, reg1) >= 0)
762 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
763       if (get_hard_regnum (regstack, reg2) >= 0)
764 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
765       gcc_assert (pop_insn);
766       return pop_insn;
767     }
768 
769   hard_regno = get_hard_regnum (regstack, reg);
770 
771   gcc_assert (hard_regno >= FIRST_STACK_REG);
772 
773   pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
774 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
775 
776   if (where == EMIT_AFTER)
777     pop_insn = emit_insn_after (pop_rtx, insn);
778   else
779     pop_insn = emit_insn_before (pop_rtx, insn);
780 
781   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
782 
783   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
784     = regstack->reg[regstack->top];
785   regstack->top -= 1;
786   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
787 
788   return pop_insn;
789 }
790 
791 /* Emit an insn before or after INSN to swap virtual register REG with
792    the top of stack.  REGSTACK is the stack state before the swap, and
793    is updated to reflect the swap.  A swap insn is represented as a
794    PARALLEL of two patterns: each pattern moves one reg to the other.
795 
796    If REG is already at the top of the stack, no insn is emitted.  */
797 
798 static void
799 emit_swap_insn (rtx insn, stack regstack, rtx reg)
800 {
801   int hard_regno;
802   rtx swap_rtx;
803   int tmp, other_reg;		/* swap regno temps */
804   rtx i1;			/* the stack-reg insn prior to INSN */
805   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
806 
807   hard_regno = get_hard_regnum (regstack, reg);
808 
809   if (hard_regno == FIRST_STACK_REG)
810     return;
811   if (hard_regno == -1)
812     {
813       /* Something failed if the register wasn't on the stack.  If we had
814 	 malformed asms, we zapped the instruction itself, but that didn't
815 	 produce the same pattern of register sets as before.  To prevent
816 	 further failure, adjust REGSTACK to include REG at TOP.  */
817       gcc_assert (any_malformed_asm);
818       regstack->reg[++regstack->top] = REGNO (reg);
819       return;
820     }
821   gcc_assert (hard_regno >= FIRST_STACK_REG);
822 
823   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
824 
825   tmp = regstack->reg[other_reg];
826   regstack->reg[other_reg] = regstack->reg[regstack->top];
827   regstack->reg[regstack->top] = tmp;
828 
829   /* Find the previous insn involving stack regs, but don't pass a
830      block boundary.  */
831   i1 = NULL;
832   if (current_block && insn != BB_HEAD (current_block))
833     {
834       rtx tmp = PREV_INSN (insn);
835       rtx limit = PREV_INSN (BB_HEAD (current_block));
836       while (tmp != limit)
837 	{
838 	  if (LABEL_P (tmp)
839 	      || CALL_P (tmp)
840 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
841 	      || (NONJUMP_INSN_P (tmp)
842 		  && stack_regs_mentioned (tmp)))
843 	    {
844 	      i1 = tmp;
845 	      break;
846 	    }
847 	  tmp = PREV_INSN (tmp);
848 	}
849     }
850 
851   if (i1 != NULL_RTX
852       && (i1set = single_set (i1)) != NULL_RTX)
853     {
854       rtx i1src = *get_true_reg (&SET_SRC (i1set));
855       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
856 
857       /* If the previous register stack push was from the reg we are to
858 	 swap with, omit the swap.  */
859 
860       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
861 	  && REG_P (i1src)
862 	  && REGNO (i1src) == (unsigned) hard_regno - 1
863 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
864 	return;
865 
866       /* If the previous insn wrote to the reg we are to swap with,
867 	 omit the swap.  */
868 
869       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
870 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
871 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
872 	return;
873     }
874 
875   /* Avoid emitting the swap if this is the first register stack insn
876      of the current_block.  Instead update the current_block's stack_in
877      and let compensate edges take care of this for us.  */
878   if (current_block && starting_stack_p)
879     {
880       BLOCK_INFO (current_block)->stack_in = *regstack;
881       starting_stack_p = false;
882       return;
883     }
884 
885   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
886 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
887 
888   if (i1)
889     emit_insn_after (swap_rtx, i1);
890   else if (current_block)
891     emit_insn_before (swap_rtx, BB_HEAD (current_block));
892   else
893     emit_insn_before (swap_rtx, insn);
894 }
895 
896 /* Emit an insns before INSN to swap virtual register SRC1 with
897    the top of stack and virtual register SRC2 with second stack
898    slot. REGSTACK is the stack state before the swaps, and
899    is updated to reflect the swaps.  A swap insn is represented as a
900    PARALLEL of two patterns: each pattern moves one reg to the other.
901 
902    If SRC1 and/or SRC2 are already at the right place, no swap insn
903    is emitted.  */
904 
905 static void
906 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
907 {
908   struct stack_def temp_stack;
909   int regno, j, k, temp;
910 
911   temp_stack = *regstack;
912 
913   /* Place operand 1 at the top of stack.  */
914   regno = get_hard_regnum (&temp_stack, src1);
915   gcc_assert (regno >= 0);
916   if (regno != FIRST_STACK_REG)
917     {
918       k = temp_stack.top - (regno - FIRST_STACK_REG);
919       j = temp_stack.top;
920 
921       temp = temp_stack.reg[k];
922       temp_stack.reg[k] = temp_stack.reg[j];
923       temp_stack.reg[j] = temp;
924     }
925 
926   /* Place operand 2 next on the stack.  */
927   regno = get_hard_regnum (&temp_stack, src2);
928   gcc_assert (regno >= 0);
929   if (regno != FIRST_STACK_REG + 1)
930     {
931       k = temp_stack.top - (regno - FIRST_STACK_REG);
932       j = temp_stack.top - 1;
933 
934       temp = temp_stack.reg[k];
935       temp_stack.reg[k] = temp_stack.reg[j];
936       temp_stack.reg[j] = temp;
937     }
938 
939   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
940 }
941 
942 /* Handle a move to or from a stack register in PAT, which is in INSN.
943    REGSTACK is the current stack.  Return whether a control flow insn
944    was deleted in the process.  */
945 
946 static bool
947 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
948 {
949   rtx *psrc =  get_true_reg (&SET_SRC (pat));
950   rtx *pdest = get_true_reg (&SET_DEST (pat));
951   rtx src, dest;
952   rtx note;
953   bool control_flow_insn_deleted = false;
954 
955   src = *psrc; dest = *pdest;
956 
957   if (STACK_REG_P (src) && STACK_REG_P (dest))
958     {
959       /* Write from one stack reg to another.  If SRC dies here, then
960 	 just change the register mapping and delete the insn.  */
961 
962       note = find_regno_note (insn, REG_DEAD, REGNO (src));
963       if (note)
964 	{
965 	  int i;
966 
967 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
968 	  gcc_assert (REGNO (src) != REGNO (dest));
969 
970 	  for (i = regstack->top; i >= 0; i--)
971 	    if (regstack->reg[i] == REGNO (src))
972 	      break;
973 
974 	  /* The destination must be dead, or life analysis is borked.  */
975 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
976 
977 	  /* If the source is not live, this is yet another case of
978 	     uninitialized variables.  Load up a NaN instead.  */
979 	  if (i < 0)
980 	    return move_nan_for_stack_reg (insn, regstack, dest);
981 
982 	  /* It is possible that the dest is unused after this insn.
983 	     If so, just pop the src.  */
984 
985 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
986 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
987 	  else
988 	    {
989 	      regstack->reg[i] = REGNO (dest);
990 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
991 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
992 	    }
993 
994 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
995 	  delete_insn (insn);
996 	  return control_flow_insn_deleted;
997 	}
998 
999       /* The source reg does not die.  */
1000 
1001       /* If this appears to be a no-op move, delete it, or else it
1002 	 will confuse the machine description output patterns. But if
1003 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1004 	 for REG_UNUSED will not work for deleted insns.  */
1005 
1006       if (REGNO (src) == REGNO (dest))
1007 	{
1008 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1009 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1010 
1011 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1012 	  delete_insn (insn);
1013 	  return control_flow_insn_deleted;
1014 	}
1015 
1016       /* The destination ought to be dead.  */
1017       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1018 
1019       replace_reg (psrc, get_hard_regnum (regstack, src));
1020 
1021       regstack->reg[++regstack->top] = REGNO (dest);
1022       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1023       replace_reg (pdest, FIRST_STACK_REG);
1024     }
1025   else if (STACK_REG_P (src))
1026     {
1027       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1028 	 only top of stack may be saved, emit an exchange first if
1029 	 needs be.  */
1030 
1031       emit_swap_insn (insn, regstack, src);
1032 
1033       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1034       if (note)
1035 	{
1036 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1037 	  regstack->top--;
1038 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1039 	}
1040       else if ((GET_MODE (src) == XFmode)
1041 	       && regstack->top < REG_STACK_SIZE - 1)
1042 	{
1043 	  /* A 387 cannot write an XFmode value to a MEM without
1044 	     clobbering the source reg.  The output code can handle
1045 	     this by reading back the value from the MEM.
1046 	     But it is more efficient to use a temp register if one is
1047 	     available.  Push the source value here if the register
1048 	     stack is not full, and then write the value to memory via
1049 	     a pop.  */
1050 	  rtx push_rtx;
1051 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1052 
1053 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1054 	  emit_insn_before (push_rtx, insn);
1055 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1056 	}
1057 
1058       replace_reg (psrc, FIRST_STACK_REG);
1059     }
1060   else
1061     {
1062       rtx pat = PATTERN (insn);
1063 
1064       gcc_assert (STACK_REG_P (dest));
1065 
1066       /* Load from MEM, or possibly integer REG or constant, into the
1067 	 stack regs.  The actual target is always the top of the
1068 	 stack. The stack mapping is changed to reflect that DEST is
1069 	 now at top of stack.  */
1070 
1071       /* The destination ought to be dead.  However, there is a
1072 	 special case with i387 UNSPEC_TAN, where destination is live
1073 	 (an argument to fptan) but inherent load of 1.0 is modelled
1074 	 as a load from a constant.  */
1075       if (GET_CODE (pat) == PARALLEL
1076 	  && XVECLEN (pat, 0) == 2
1077 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1078 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1079 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1080 	emit_swap_insn (insn, regstack, dest);
1081       else
1082 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1083 
1084       gcc_assert (regstack->top < REG_STACK_SIZE);
1085 
1086       regstack->reg[++regstack->top] = REGNO (dest);
1087       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1088       replace_reg (pdest, FIRST_STACK_REG);
1089     }
1090 
1091   return control_flow_insn_deleted;
1092 }
1093 
1094 /* A helper function which replaces INSN with a pattern that loads up
1095    a NaN into DEST, then invokes move_for_stack_reg.  */
1096 
1097 static bool
1098 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1099 {
1100   rtx pat;
1101 
1102   dest = FP_MODE_REG (REGNO (dest), SFmode);
1103   pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1104   PATTERN (insn) = pat;
1105   INSN_CODE (insn) = -1;
1106 
1107   return move_for_stack_reg (insn, regstack, pat);
1108 }
1109 
1110 /* Swap the condition on a branch, if there is one.  Return true if we
1111    found a condition to swap.  False if the condition was not used as
1112    such.  */
1113 
1114 static int
1115 swap_rtx_condition_1 (rtx pat)
1116 {
1117   const char *fmt;
1118   int i, r = 0;
1119 
1120   if (COMPARISON_P (pat))
1121     {
1122       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1123       r = 1;
1124     }
1125   else
1126     {
1127       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1128       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1129 	{
1130 	  if (fmt[i] == 'E')
1131 	    {
1132 	      int j;
1133 
1134 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1135 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1136 	    }
1137 	  else if (fmt[i] == 'e')
1138 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1139 	}
1140     }
1141 
1142   return r;
1143 }
1144 
1145 static int
1146 swap_rtx_condition (rtx insn)
1147 {
1148   rtx pat = PATTERN (insn);
1149 
1150   /* We're looking for a single set to cc0 or an HImode temporary.  */
1151 
1152   if (GET_CODE (pat) == SET
1153       && REG_P (SET_DEST (pat))
1154       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1155     {
1156       insn = next_flags_user (insn);
1157       if (insn == NULL_RTX)
1158 	return 0;
1159       pat = PATTERN (insn);
1160     }
1161 
1162   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1163      with the cc value right now.  We may be able to search for one
1164      though.  */
1165 
1166   if (GET_CODE (pat) == SET
1167       && GET_CODE (SET_SRC (pat)) == UNSPEC
1168       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1169     {
1170       rtx dest = SET_DEST (pat);
1171 
1172       /* Search forward looking for the first use of this value.
1173 	 Stop at block boundaries.  */
1174       while (insn != BB_END (current_block))
1175 	{
1176 	  insn = NEXT_INSN (insn);
1177 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1178 	    break;
1179 	  if (CALL_P (insn))
1180 	    return 0;
1181 	}
1182 
1183       /* We haven't found it.  */
1184       if (insn == BB_END (current_block))
1185 	return 0;
1186 
1187       /* So we've found the insn using this value.  If it is anything
1188 	 other than sahf or the value does not die (meaning we'd have
1189 	 to search further), then we must give up.  */
1190       pat = PATTERN (insn);
1191       if (GET_CODE (pat) != SET
1192 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1193 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1194 	  || ! dead_or_set_p (insn, dest))
1195 	return 0;
1196 
1197       /* Now we are prepared to handle this as a normal cc0 setter.  */
1198       insn = next_flags_user (insn);
1199       if (insn == NULL_RTX)
1200 	return 0;
1201       pat = PATTERN (insn);
1202     }
1203 
1204   if (swap_rtx_condition_1 (pat))
1205     {
1206       int fail = 0;
1207       INSN_CODE (insn) = -1;
1208       if (recog_memoized (insn) == -1)
1209 	fail = 1;
1210       /* In case the flags don't die here, recurse to try fix
1211          following user too.  */
1212       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1213 	{
1214 	  insn = next_flags_user (insn);
1215 	  if (!insn || !swap_rtx_condition (insn))
1216 	    fail = 1;
1217 	}
1218       if (fail)
1219 	{
1220 	  swap_rtx_condition_1 (pat);
1221 	  return 0;
1222 	}
1223       return 1;
1224     }
1225   return 0;
1226 }
1227 
1228 /* Handle a comparison.  Special care needs to be taken to avoid
1229    causing comparisons that a 387 cannot do correctly, such as EQ.
1230 
1231    Also, a pop insn may need to be emitted.  The 387 does have an
1232    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1233    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1234    set up.  */
1235 
1236 static void
1237 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1238 {
1239   rtx *src1, *src2;
1240   rtx src1_note, src2_note;
1241 
1242   src1 = get_true_reg (&XEXP (pat_src, 0));
1243   src2 = get_true_reg (&XEXP (pat_src, 1));
1244 
1245   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1246      registers that die in this insn - move those to stack top first.  */
1247   if ((! STACK_REG_P (*src1)
1248        || (STACK_REG_P (*src2)
1249 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1250       && swap_rtx_condition (insn))
1251     {
1252       rtx temp;
1253       temp = XEXP (pat_src, 0);
1254       XEXP (pat_src, 0) = XEXP (pat_src, 1);
1255       XEXP (pat_src, 1) = temp;
1256 
1257       src1 = get_true_reg (&XEXP (pat_src, 0));
1258       src2 = get_true_reg (&XEXP (pat_src, 1));
1259 
1260       INSN_CODE (insn) = -1;
1261     }
1262 
1263   /* We will fix any death note later.  */
1264 
1265   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1266 
1267   if (STACK_REG_P (*src2))
1268     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1269   else
1270     src2_note = NULL_RTX;
1271 
1272   emit_swap_insn (insn, regstack, *src1);
1273 
1274   replace_reg (src1, FIRST_STACK_REG);
1275 
1276   if (STACK_REG_P (*src2))
1277     replace_reg (src2, get_hard_regnum (regstack, *src2));
1278 
1279   if (src1_note)
1280     {
1281       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1282       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1283     }
1284 
1285   /* If the second operand dies, handle that.  But if the operands are
1286      the same stack register, don't bother, because only one death is
1287      needed, and it was just handled.  */
1288 
1289   if (src2_note
1290       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1291 	    && REGNO (*src1) == REGNO (*src2)))
1292     {
1293       /* As a special case, two regs may die in this insn if src2 is
1294 	 next to top of stack and the top of stack also dies.  Since
1295 	 we have already popped src1, "next to top of stack" is really
1296 	 at top (FIRST_STACK_REG) now.  */
1297 
1298       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1299 	  && src1_note)
1300 	{
1301 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1302 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1303 	}
1304       else
1305 	{
1306 	  /* The 386 can only represent death of the first operand in
1307 	     the case handled above.  In all other cases, emit a separate
1308 	     pop and remove the death note from here.  */
1309 
1310 	  /* link_cc0_insns (insn); */
1311 
1312 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1313 
1314 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1315 			 EMIT_AFTER);
1316 	}
1317     }
1318 }
1319 
1320 /* Substitute new registers in LOC, which is part of a debug insn.
1321    REGSTACK is the current register layout.  */
1322 
1323 static int
1324 subst_stack_regs_in_debug_insn (rtx *loc, void *data)
1325 {
1326   rtx *tloc = get_true_reg (loc);
1327   stack regstack = (stack)data;
1328   int hard_regno;
1329 
1330   if (!STACK_REG_P (*tloc))
1331     return 0;
1332 
1333   if (tloc != loc)
1334     return 0;
1335 
1336   hard_regno = get_hard_regnum (regstack, *loc);
1337   gcc_assert (hard_regno >= FIRST_STACK_REG);
1338 
1339   replace_reg (loc, hard_regno);
1340 
1341   return -1;
1342 }
1343 
1344 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1345    is the current register layout.  Return whether a control flow insn
1346    was deleted in the process.  */
1347 
1348 static bool
1349 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1350 {
1351   rtx *dest, *src;
1352   bool control_flow_insn_deleted = false;
1353 
1354   switch (GET_CODE (pat))
1355     {
1356     case USE:
1357       /* Deaths in USE insns can happen in non optimizing compilation.
1358 	 Handle them by popping the dying register.  */
1359       src = get_true_reg (&XEXP (pat, 0));
1360       if (STACK_REG_P (*src)
1361 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1362 	{
1363 	  /* USEs are ignored for liveness information so USEs of dead
1364 	     register might happen.  */
1365           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1366 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1367 	  return control_flow_insn_deleted;
1368 	}
1369       /* Uninitialized USE might happen for functions returning uninitialized
1370          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1371 	 so it is safe to ignore the use here. This is consistent with behavior
1372 	 of dataflow analyzer that ignores USE too.  (This also imply that
1373 	 forcibly initializing the register to NaN here would lead to ICE later,
1374 	 since the REG_DEAD notes are not issued.)  */
1375       break;
1376 
1377     case VAR_LOCATION:
1378       gcc_unreachable ();
1379 
1380     case CLOBBER:
1381       {
1382 	rtx note;
1383 
1384 	dest = get_true_reg (&XEXP (pat, 0));
1385 	if (STACK_REG_P (*dest))
1386 	  {
1387 	    note = find_reg_note (insn, REG_DEAD, *dest);
1388 
1389 	    if (pat != PATTERN (insn))
1390 	      {
1391 		/* The fix_truncdi_1 pattern wants to be able to
1392 		   allocate its own scratch register.  It does this by
1393 		   clobbering an fp reg so that it is assured of an
1394 		   empty reg-stack register.  If the register is live,
1395 		   kill it now.  Remove the DEAD/UNUSED note so we
1396 		   don't try to kill it later too.
1397 
1398 		   In reality the UNUSED note can be absent in some
1399 		   complicated cases when the register is reused for
1400 		   partially set variable.  */
1401 
1402 		if (note)
1403 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1404 		else
1405 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1406 		if (note)
1407 		  remove_note (insn, note);
1408 		replace_reg (dest, FIRST_STACK_REG + 1);
1409 	      }
1410 	    else
1411 	      {
1412 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1413 		   indicates an uninitialized value.  Because reload removed
1414 		   all other clobbers, this must be due to a function
1415 		   returning without a value.  Load up a NaN.  */
1416 
1417 		if (!note)
1418 		  {
1419 		    rtx t = *dest;
1420 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1421 		      {
1422 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1423 			if (get_hard_regnum (regstack, u) == -1)
1424 			  {
1425 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1426 			    rtx insn2 = emit_insn_before (pat2, insn);
1427 			    control_flow_insn_deleted
1428 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1429 			  }
1430 		      }
1431 		    if (get_hard_regnum (regstack, t) == -1)
1432 		      control_flow_insn_deleted
1433 			|= move_nan_for_stack_reg (insn, regstack, t);
1434 		  }
1435 	      }
1436 	  }
1437 	break;
1438       }
1439 
1440     case SET:
1441       {
1442 	rtx *src1 = (rtx *) 0, *src2;
1443 	rtx src1_note, src2_note;
1444 	rtx pat_src;
1445 
1446 	dest = get_true_reg (&SET_DEST (pat));
1447 	src  = get_true_reg (&SET_SRC (pat));
1448 	pat_src = SET_SRC (pat);
1449 
1450 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1451 	if (STACK_REG_P (*src)
1452 	    || (STACK_REG_P (*dest)
1453 		&& (REG_P (*src) || MEM_P (*src)
1454 		    || GET_CODE (*src) == CONST_DOUBLE)))
1455 	  {
1456 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1457 	    break;
1458 	  }
1459 
1460 	switch (GET_CODE (pat_src))
1461 	  {
1462 	  case COMPARE:
1463 	    compare_for_stack_reg (insn, regstack, pat_src);
1464 	    break;
1465 
1466 	  case CALL:
1467 	    {
1468 	      int count;
1469 	      for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1470 		   --count >= 0;)
1471 		{
1472 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1473 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1474 		}
1475 	    }
1476 	    replace_reg (dest, FIRST_STACK_REG);
1477 	    break;
1478 
1479 	  case REG:
1480 	    /* This is a `tstM2' case.  */
1481 	    gcc_assert (*dest == cc0_rtx);
1482 	    src1 = src;
1483 
1484 	    /* Fall through.  */
1485 
1486 	  case FLOAT_TRUNCATE:
1487 	  case SQRT:
1488 	  case ABS:
1489 	  case NEG:
1490 	    /* These insns only operate on the top of the stack. DEST might
1491 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1492 	       possible that the tstM case results in a REG_DEAD note on the
1493 	       source.  */
1494 
1495 	    if (src1 == 0)
1496 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1497 
1498 	    emit_swap_insn (insn, regstack, *src1);
1499 
1500 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1501 
1502 	    if (STACK_REG_P (*dest))
1503 	      replace_reg (dest, FIRST_STACK_REG);
1504 
1505 	    if (src1_note)
1506 	      {
1507 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1508 		regstack->top--;
1509 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1510 	      }
1511 
1512 	    replace_reg (src1, FIRST_STACK_REG);
1513 	    break;
1514 
1515 	  case MINUS:
1516 	  case DIV:
1517 	    /* On i386, reversed forms of subM3 and divM3 exist for
1518 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1519 	       can be used.  */
1520 	  case MULT:
1521 	  case PLUS:
1522 	    /* These insns can accept the top of stack as a destination
1523 	       from a stack reg or mem, or can use the top of stack as a
1524 	       source and some other stack register (possibly top of stack)
1525 	       as a destination.  */
1526 
1527 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1528 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1529 
1530 	    /* We will fix any death note later.  */
1531 
1532 	    if (STACK_REG_P (*src1))
1533 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1534 	    else
1535 	      src1_note = NULL_RTX;
1536 	    if (STACK_REG_P (*src2))
1537 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1538 	    else
1539 	      src2_note = NULL_RTX;
1540 
1541 	    /* If either operand is not a stack register, then the dest
1542 	       must be top of stack.  */
1543 
1544 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1545 	      emit_swap_insn (insn, regstack, *dest);
1546 	    else
1547 	      {
1548 		/* Both operands are REG.  If neither operand is already
1549 		   at the top of stack, choose to make the one that is the
1550 		   dest the new top of stack.  */
1551 
1552 		int src1_hard_regnum, src2_hard_regnum;
1553 
1554 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1555 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1556 
1557 		/* If the source is not live, this is yet another case of
1558 		   uninitialized variables.  Load up a NaN instead.  */
1559 		if (src1_hard_regnum == -1)
1560 		  {
1561 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1562 		    rtx insn2 = emit_insn_before (pat2, insn);
1563 		    control_flow_insn_deleted
1564 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1565 		  }
1566 		if (src2_hard_regnum == -1)
1567 		  {
1568 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1569 		    rtx insn2 = emit_insn_before (pat2, insn);
1570 		    control_flow_insn_deleted
1571 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1572 		  }
1573 
1574 		if (src1_hard_regnum != FIRST_STACK_REG
1575 		    && src2_hard_regnum != FIRST_STACK_REG)
1576 		  emit_swap_insn (insn, regstack, *dest);
1577 	      }
1578 
1579 	    if (STACK_REG_P (*src1))
1580 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1581 	    if (STACK_REG_P (*src2))
1582 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1583 
1584 	    if (src1_note)
1585 	      {
1586 		rtx src1_reg = XEXP (src1_note, 0);
1587 
1588 		/* If the register that dies is at the top of stack, then
1589 		   the destination is somewhere else - merely substitute it.
1590 		   But if the reg that dies is not at top of stack, then
1591 		   move the top of stack to the dead reg, as though we had
1592 		   done the insn and then a store-with-pop.  */
1593 
1594 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1595 		  {
1596 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1597 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1598 		  }
1599 		else
1600 		  {
1601 		    int regno = get_hard_regnum (regstack, src1_reg);
1602 
1603 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1604 		    replace_reg (dest, regno);
1605 
1606 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1607 		      = regstack->reg[regstack->top];
1608 		  }
1609 
1610 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1611 				    REGNO (XEXP (src1_note, 0)));
1612 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1613 		regstack->top--;
1614 	      }
1615 	    else if (src2_note)
1616 	      {
1617 		rtx src2_reg = XEXP (src2_note, 0);
1618 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1619 		  {
1620 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1621 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1622 		  }
1623 		else
1624 		  {
1625 		    int regno = get_hard_regnum (regstack, src2_reg);
1626 
1627 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1628 		    replace_reg (dest, regno);
1629 
1630 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1631 		      = regstack->reg[regstack->top];
1632 		  }
1633 
1634 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1635 				    REGNO (XEXP (src2_note, 0)));
1636 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1637 		regstack->top--;
1638 	      }
1639 	    else
1640 	      {
1641 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1643 	      }
1644 
1645 	    /* Keep operand 1 matching with destination.  */
1646 	    if (COMMUTATIVE_ARITH_P (pat_src)
1647 		&& REG_P (*src1) && REG_P (*src2)
1648 		&& REGNO (*src1) != REGNO (*dest))
1649 	     {
1650 		int tmp = REGNO (*src1);
1651 		replace_reg (src1, REGNO (*src2));
1652 		replace_reg (src2, tmp);
1653 	     }
1654 	    break;
1655 
1656 	  case UNSPEC:
1657 	    switch (XINT (pat_src, 1))
1658 	      {
1659 	      case UNSPEC_FIST:
1660 
1661 	      case UNSPEC_FIST_FLOOR:
1662 	      case UNSPEC_FIST_CEIL:
1663 
1664 		/* These insns only operate on the top of the stack.  */
1665 
1666 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1667 		emit_swap_insn (insn, regstack, *src1);
1668 
1669 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1670 
1671 		if (STACK_REG_P (*dest))
1672 		  replace_reg (dest, FIRST_STACK_REG);
1673 
1674 		if (src1_note)
1675 		  {
1676 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1677 		    regstack->top--;
1678 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1679 		  }
1680 
1681 		replace_reg (src1, FIRST_STACK_REG);
1682 		break;
1683 
1684 	      case UNSPEC_FXAM:
1685 
1686 		/* This insn only operate on the top of the stack.  */
1687 
1688 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1689 		emit_swap_insn (insn, regstack, *src1);
1690 
1691 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1692 
1693 		replace_reg (src1, FIRST_STACK_REG);
1694 
1695 		if (src1_note)
1696 		  {
1697 		    remove_regno_note (insn, REG_DEAD,
1698 				       REGNO (XEXP (src1_note, 0)));
1699 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1700 				   EMIT_AFTER);
1701 		  }
1702 
1703 		break;
1704 
1705 	      case UNSPEC_SIN:
1706 	      case UNSPEC_COS:
1707 	      case UNSPEC_FRNDINT:
1708 	      case UNSPEC_F2XM1:
1709 
1710 	      case UNSPEC_FRNDINT_FLOOR:
1711 	      case UNSPEC_FRNDINT_CEIL:
1712 	      case UNSPEC_FRNDINT_TRUNC:
1713 	      case UNSPEC_FRNDINT_MASK_PM:
1714 
1715 		/* Above insns operate on the top of the stack.  */
1716 
1717 	      case UNSPEC_SINCOS_COS:
1718 	      case UNSPEC_XTRACT_FRACT:
1719 
1720 		/* Above insns operate on the top two stack slots,
1721 		   first part of one input, double output insn.  */
1722 
1723 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1724 
1725 		emit_swap_insn (insn, regstack, *src1);
1726 
1727 		/* Input should never die, it is replaced with output.  */
1728 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1729 		gcc_assert (!src1_note);
1730 
1731 		if (STACK_REG_P (*dest))
1732 		  replace_reg (dest, FIRST_STACK_REG);
1733 
1734 		replace_reg (src1, FIRST_STACK_REG);
1735 		break;
1736 
1737 	      case UNSPEC_SINCOS_SIN:
1738 	      case UNSPEC_XTRACT_EXP:
1739 
1740 		/* These insns operate on the top two stack slots,
1741 		   second part of one input, double output insn.  */
1742 
1743 		regstack->top++;
1744 		/* FALLTHRU */
1745 
1746 	      case UNSPEC_TAN:
1747 
1748 		/* For UNSPEC_TAN, regstack->top is already increased
1749 		   by inherent load of constant 1.0.  */
1750 
1751 		/* Output value is generated in the second stack slot.
1752 		   Move current value from second slot to the top.  */
1753 		regstack->reg[regstack->top]
1754 		  = regstack->reg[regstack->top - 1];
1755 
1756 		gcc_assert (STACK_REG_P (*dest));
1757 
1758 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1759 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1760 		replace_reg (dest, FIRST_STACK_REG + 1);
1761 
1762 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1763 
1764 		replace_reg (src1, FIRST_STACK_REG);
1765 		break;
1766 
1767 	      case UNSPEC_FPATAN:
1768 	      case UNSPEC_FYL2X:
1769 	      case UNSPEC_FYL2XP1:
1770 		/* These insns operate on the top two stack slots.  */
1771 
1772 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1773 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1774 
1775 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1776 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1777 
1778 		swap_to_top (insn, regstack, *src1, *src2);
1779 
1780 		replace_reg (src1, FIRST_STACK_REG);
1781 		replace_reg (src2, FIRST_STACK_REG + 1);
1782 
1783 		if (src1_note)
1784 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1785 		if (src2_note)
1786 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1787 
1788 		/* Pop both input operands from the stack.  */
1789 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1790 				    regstack->reg[regstack->top]);
1791 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1792 				    regstack->reg[regstack->top - 1]);
1793 		regstack->top -= 2;
1794 
1795 		/* Push the result back onto the stack.  */
1796 		regstack->reg[++regstack->top] = REGNO (*dest);
1797 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1798 		replace_reg (dest, FIRST_STACK_REG);
1799 		break;
1800 
1801 	      case UNSPEC_FSCALE_FRACT:
1802 	      case UNSPEC_FPREM_F:
1803 	      case UNSPEC_FPREM1_F:
1804 		/* These insns operate on the top two stack slots,
1805 		   first part of double input, double output insn.  */
1806 
1807 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1808 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1809 
1810 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1811 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1812 
1813 		/* Inputs should never die, they are
1814 		   replaced with outputs.  */
1815 		gcc_assert (!src1_note);
1816 		gcc_assert (!src2_note);
1817 
1818 		swap_to_top (insn, regstack, *src1, *src2);
1819 
1820 		/* Push the result back onto stack. Empty stack slot
1821 		   will be filled in second part of insn.  */
1822 		if (STACK_REG_P (*dest))
1823 		  {
1824 		    regstack->reg[regstack->top] = REGNO (*dest);
1825 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1826 		    replace_reg (dest, FIRST_STACK_REG);
1827 		  }
1828 
1829 		replace_reg (src1, FIRST_STACK_REG);
1830 		replace_reg (src2, FIRST_STACK_REG + 1);
1831 		break;
1832 
1833 	      case UNSPEC_FSCALE_EXP:
1834 	      case UNSPEC_FPREM_U:
1835 	      case UNSPEC_FPREM1_U:
1836 		/* These insns operate on the top two stack slots,
1837 		   second part of double input, double output insn.  */
1838 
1839 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1840 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1841 
1842 		/* Push the result back onto stack. Fill empty slot from
1843 		   first part of insn and fix top of stack pointer.  */
1844 		if (STACK_REG_P (*dest))
1845 		  {
1846 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1847 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1848 		    replace_reg (dest, FIRST_STACK_REG + 1);
1849 		  }
1850 
1851 		replace_reg (src1, FIRST_STACK_REG);
1852 		replace_reg (src2, FIRST_STACK_REG + 1);
1853 		break;
1854 
1855 	      case UNSPEC_C2_FLAG:
1856 		/* This insn operates on the top two stack slots,
1857 		   third part of C2 setting double input insn.  */
1858 
1859 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1860 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1861 
1862 		replace_reg (src1, FIRST_STACK_REG);
1863 		replace_reg (src2, FIRST_STACK_REG + 1);
1864 		break;
1865 
1866 	      case UNSPEC_SAHF:
1867 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1868 		   The combination matches the PPRO fcomi instruction.  */
1869 
1870 		pat_src = XVECEXP (pat_src, 0, 0);
1871 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1872 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1873 		/* Fall through.  */
1874 
1875 	      case UNSPEC_FNSTSW:
1876 		/* Combined fcomp+fnstsw generated for doing well with
1877 		   CSE.  When optimizing this would have been broken
1878 		   up before now.  */
1879 
1880 		pat_src = XVECEXP (pat_src, 0, 0);
1881 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1882 
1883 		compare_for_stack_reg (insn, regstack, pat_src);
1884 		break;
1885 
1886 	      default:
1887 		gcc_unreachable ();
1888 	      }
1889 	    break;
1890 
1891 	  case IF_THEN_ELSE:
1892 	    /* This insn requires the top of stack to be the destination.  */
1893 
1894 	    src1 = get_true_reg (&XEXP (pat_src, 1));
1895 	    src2 = get_true_reg (&XEXP (pat_src, 2));
1896 
1897 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1898 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1899 
1900 	    /* If the comparison operator is an FP comparison operator,
1901 	       it is handled correctly by compare_for_stack_reg () who
1902 	       will move the destination to the top of stack. But if the
1903 	       comparison operator is not an FP comparison operator, we
1904 	       have to handle it here.  */
1905 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1906 		&& REGNO (*dest) != regstack->reg[regstack->top])
1907 	      {
1908 		/* In case one of operands is the top of stack and the operands
1909 		   dies, it is safe to make it the destination operand by
1910 		   reversing the direction of cmove and avoid fxch.  */
1911 		if ((REGNO (*src1) == regstack->reg[regstack->top]
1912 		     && src1_note)
1913 		    || (REGNO (*src2) == regstack->reg[regstack->top]
1914 			&& src2_note))
1915 		  {
1916 		    int idx1 = (get_hard_regnum (regstack, *src1)
1917 				- FIRST_STACK_REG);
1918 		    int idx2 = (get_hard_regnum (regstack, *src2)
1919 				- FIRST_STACK_REG);
1920 
1921 		    /* Make reg-stack believe that the operands are already
1922 		       swapped on the stack */
1923 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1924 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1925 
1926 		    /* Reverse condition to compensate the operand swap.
1927 		       i386 do have comparison always reversible.  */
1928 		    PUT_CODE (XEXP (pat_src, 0),
1929 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1930 		  }
1931 		else
1932 	          emit_swap_insn (insn, regstack, *dest);
1933 	      }
1934 
1935 	    {
1936 	      rtx src_note [3];
1937 	      int i;
1938 
1939 	      src_note[0] = 0;
1940 	      src_note[1] = src1_note;
1941 	      src_note[2] = src2_note;
1942 
1943 	      if (STACK_REG_P (*src1))
1944 		replace_reg (src1, get_hard_regnum (regstack, *src1));
1945 	      if (STACK_REG_P (*src2))
1946 		replace_reg (src2, get_hard_regnum (regstack, *src2));
1947 
1948 	      for (i = 1; i <= 2; i++)
1949 		if (src_note [i])
1950 		  {
1951 		    int regno = REGNO (XEXP (src_note[i], 0));
1952 
1953 		    /* If the register that dies is not at the top of
1954 		       stack, then move the top of stack to the dead reg.
1955 		       Top of stack should never die, as it is the
1956 		       destination.  */
1957 		    gcc_assert (regno != regstack->reg[regstack->top]);
1958 		    remove_regno_note (insn, REG_DEAD, regno);
1959 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1960 				    EMIT_AFTER);
1961 		  }
1962 	    }
1963 
1964 	    /* Make dest the top of stack.  Add dest to regstack if
1965 	       not present.  */
1966 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1967 	      regstack->reg[++regstack->top] = REGNO (*dest);
1968 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1969 	    replace_reg (dest, FIRST_STACK_REG);
1970 	    break;
1971 
1972 	  default:
1973 	    gcc_unreachable ();
1974 	  }
1975 	break;
1976       }
1977 
1978     default:
1979       break;
1980     }
1981 
1982   return control_flow_insn_deleted;
1983 }
1984 
1985 /* Substitute hard regnums for any stack regs in INSN, which has
1986    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
1987    before the insn, and is updated with changes made here.
1988 
1989    There are several requirements and assumptions about the use of
1990    stack-like regs in asm statements.  These rules are enforced by
1991    record_asm_stack_regs; see comments there for details.  Any
1992    asm_operands left in the RTL at this point may be assume to meet the
1993    requirements, since record_asm_stack_regs removes any problem asm.  */
1994 
1995 static void
1996 subst_asm_stack_regs (rtx insn, stack regstack)
1997 {
1998   rtx body = PATTERN (insn);
1999   int alt;
2000 
2001   rtx *note_reg;		/* Array of note contents */
2002   rtx **note_loc;		/* Address of REG field of each note */
2003   enum reg_note *note_kind;	/* The type of each note */
2004 
2005   rtx *clobber_reg = 0;
2006   rtx **clobber_loc = 0;
2007 
2008   struct stack_def temp_stack;
2009   int n_notes;
2010   int n_clobbers;
2011   rtx note;
2012   int i;
2013   int n_inputs, n_outputs;
2014 
2015   if (! check_asm_stack_operands (insn))
2016     return;
2017 
2018   /* Find out what the constraints required.  If no constraint
2019      alternative matches, that is a compiler bug: we should have caught
2020      such an insn in check_asm_stack_operands.  */
2021   extract_insn (insn);
2022   constrain_operands (1);
2023   alt = which_alternative;
2024 
2025   preprocess_constraints ();
2026 
2027   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2028 
2029   gcc_assert (alt >= 0);
2030 
2031   /* Strip SUBREGs here to make the following code simpler.  */
2032   for (i = 0; i < recog_data.n_operands; i++)
2033     if (GET_CODE (recog_data.operand[i]) == SUBREG
2034 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2035       {
2036 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2037 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2038       }
2039 
2040   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2041 
2042   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2043     i++;
2044 
2045   note_reg = XALLOCAVEC (rtx, i);
2046   note_loc = XALLOCAVEC (rtx *, i);
2047   note_kind = XALLOCAVEC (enum reg_note, i);
2048 
2049   n_notes = 0;
2050   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2051     {
2052       rtx reg = XEXP (note, 0);
2053       rtx *loc = & XEXP (note, 0);
2054 
2055       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2056 	{
2057 	  loc = & SUBREG_REG (reg);
2058 	  reg = SUBREG_REG (reg);
2059 	}
2060 
2061       if (STACK_REG_P (reg)
2062 	  && (REG_NOTE_KIND (note) == REG_DEAD
2063 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2064 	{
2065 	  note_reg[n_notes] = reg;
2066 	  note_loc[n_notes] = loc;
2067 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2068 	  n_notes++;
2069 	}
2070     }
2071 
2072   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2073 
2074   n_clobbers = 0;
2075 
2076   if (GET_CODE (body) == PARALLEL)
2077     {
2078       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2079       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2080 
2081       for (i = 0; i < XVECLEN (body, 0); i++)
2082 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2083 	  {
2084 	    rtx clobber = XVECEXP (body, 0, i);
2085 	    rtx reg = XEXP (clobber, 0);
2086 	    rtx *loc = & XEXP (clobber, 0);
2087 
2088 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2089 	      {
2090 		loc = & SUBREG_REG (reg);
2091 		reg = SUBREG_REG (reg);
2092 	      }
2093 
2094 	    if (STACK_REG_P (reg))
2095 	      {
2096 		clobber_reg[n_clobbers] = reg;
2097 		clobber_loc[n_clobbers] = loc;
2098 		n_clobbers++;
2099 	      }
2100 	  }
2101     }
2102 
2103   temp_stack = *regstack;
2104 
2105   /* Put the input regs into the desired place in TEMP_STACK.  */
2106 
2107   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2108     if (STACK_REG_P (recog_data.operand[i])
2109 	&& reg_class_subset_p (recog_op_alt[i][alt].cl,
2110 			       FLOAT_REGS)
2111 	&& recog_op_alt[i][alt].cl != FLOAT_REGS)
2112       {
2113 	/* If an operand needs to be in a particular reg in
2114 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2115 	   these constraints are for single register classes, and
2116 	   reload guaranteed that operand[i] is already in that class,
2117 	   we can just use REGNO (recog_data.operand[i]) to know which
2118 	   actual reg this operand needs to be in.  */
2119 
2120 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2121 
2122 	gcc_assert (regno >= 0);
2123 
2124 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2125 	  {
2126 	    /* recog_data.operand[i] is not in the right place.  Find
2127 	       it and swap it with whatever is already in I's place.
2128 	       K is where recog_data.operand[i] is now.  J is where it
2129 	       should be.  */
2130 	    int j, k, temp;
2131 
2132 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2133 	    j = (temp_stack.top
2134 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2135 
2136 	    temp = temp_stack.reg[k];
2137 	    temp_stack.reg[k] = temp_stack.reg[j];
2138 	    temp_stack.reg[j] = temp;
2139 	  }
2140       }
2141 
2142   /* Emit insns before INSN to make sure the reg-stack is in the right
2143      order.  */
2144 
2145   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2146 
2147   /* Make the needed input register substitutions.  Do death notes and
2148      clobbers too, because these are for inputs, not outputs.  */
2149 
2150   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2151     if (STACK_REG_P (recog_data.operand[i]))
2152       {
2153 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2154 
2155 	gcc_assert (regnum >= 0);
2156 
2157 	replace_reg (recog_data.operand_loc[i], regnum);
2158       }
2159 
2160   for (i = 0; i < n_notes; i++)
2161     if (note_kind[i] == REG_DEAD)
2162       {
2163 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2164 
2165 	gcc_assert (regnum >= 0);
2166 
2167 	replace_reg (note_loc[i], regnum);
2168       }
2169 
2170   for (i = 0; i < n_clobbers; i++)
2171     {
2172       /* It's OK for a CLOBBER to reference a reg that is not live.
2173          Don't try to replace it in that case.  */
2174       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2175 
2176       if (regnum >= 0)
2177 	{
2178 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2179 	     that these regs can't be MODE_INT and will assert.  Just put
2180 	     the right reg there without calling replace_reg.  */
2181 
2182 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2183 	}
2184     }
2185 
2186   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2187 
2188   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2189     if (STACK_REG_P (recog_data.operand[i]))
2190       {
2191 	/* An input reg is implicitly popped if it is tied to an
2192 	   output, or if there is a CLOBBER for it.  */
2193 	int j;
2194 
2195 	for (j = 0; j < n_clobbers; j++)
2196 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2197 	    break;
2198 
2199 	if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2200 	  {
2201 	    /* recog_data.operand[i] might not be at the top of stack.
2202 	       But that's OK, because all we need to do is pop the
2203 	       right number of regs off of the top of the reg-stack.
2204 	       record_asm_stack_regs guaranteed that all implicitly
2205 	       popped regs were grouped at the top of the reg-stack.  */
2206 
2207 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2208 				regstack->reg[regstack->top]);
2209 	    regstack->top--;
2210 	  }
2211       }
2212 
2213   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2214      Note that there isn't any need to substitute register numbers.
2215      ???  Explain why this is true.  */
2216 
2217   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2218     {
2219       /* See if there is an output for this hard reg.  */
2220       int j;
2221 
2222       for (j = 0; j < n_outputs; j++)
2223 	if (STACK_REG_P (recog_data.operand[j])
2224 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2225 	  {
2226 	    regstack->reg[++regstack->top] = i;
2227 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2228 	    break;
2229 	  }
2230     }
2231 
2232   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2233      input that the asm didn't implicitly pop.  If the asm didn't
2234      implicitly pop an input reg, that reg will still be live.
2235 
2236      Note that we can't use find_regno_note here: the register numbers
2237      in the death notes have already been substituted.  */
2238 
2239   for (i = 0; i < n_outputs; i++)
2240     if (STACK_REG_P (recog_data.operand[i]))
2241       {
2242 	int j;
2243 
2244 	for (j = 0; j < n_notes; j++)
2245 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2246 	      && note_kind[j] == REG_UNUSED)
2247 	    {
2248 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2249 				    EMIT_AFTER);
2250 	      break;
2251 	    }
2252       }
2253 
2254   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2255     if (STACK_REG_P (recog_data.operand[i]))
2256       {
2257 	int j;
2258 
2259 	for (j = 0; j < n_notes; j++)
2260 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2261 	      && note_kind[j] == REG_DEAD
2262 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2263 				    REGNO (recog_data.operand[i])))
2264 	    {
2265 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2266 				    EMIT_AFTER);
2267 	      break;
2268 	    }
2269       }
2270 }
2271 
2272 /* Substitute stack hard reg numbers for stack virtual registers in
2273    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2274    current stack content.  Insns may be emitted as needed to arrange the
2275    stack for the 387 based on the contents of the insn.  Return whether
2276    a control flow insn was deleted in the process.  */
2277 
2278 static bool
2279 subst_stack_regs (rtx insn, stack regstack)
2280 {
2281   rtx *note_link, note;
2282   bool control_flow_insn_deleted = false;
2283   int i;
2284 
2285   if (CALL_P (insn))
2286     {
2287       int top = regstack->top;
2288 
2289       /* If there are any floating point parameters to be passed in
2290 	 registers for this call, make sure they are in the right
2291 	 order.  */
2292 
2293       if (top >= 0)
2294 	{
2295 	  straighten_stack (insn, regstack);
2296 
2297 	  /* Now mark the arguments as dead after the call.  */
2298 
2299 	  while (regstack->top >= 0)
2300 	    {
2301 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2302 	      regstack->top--;
2303 	    }
2304 	}
2305     }
2306 
2307   /* Do the actual substitution if any stack regs are mentioned.
2308      Since we only record whether entire insn mentions stack regs, and
2309      subst_stack_regs_pat only works for patterns that contain stack regs,
2310      we must check each pattern in a parallel here.  A call_value_pop could
2311      fail otherwise.  */
2312 
2313   if (stack_regs_mentioned (insn))
2314     {
2315       int n_operands = asm_noperands (PATTERN (insn));
2316       if (n_operands >= 0)
2317 	{
2318 	  /* This insn is an `asm' with operands.  Decode the operands,
2319 	     decide how many are inputs, and do register substitution.
2320 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2321 
2322 	  subst_asm_stack_regs (insn, regstack);
2323 	  return control_flow_insn_deleted;
2324 	}
2325 
2326       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2327 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2328 	  {
2329 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2330 	      {
2331 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2332 	           XVECEXP (PATTERN (insn), 0, i)
2333 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2334 		control_flow_insn_deleted
2335 		  |= subst_stack_regs_pat (insn, regstack,
2336 					   XVECEXP (PATTERN (insn), 0, i));
2337 	      }
2338 	  }
2339       else
2340 	control_flow_insn_deleted
2341 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2342     }
2343 
2344   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2345      REG_UNUSED will already have been dealt with, so just return.  */
2346 
2347   if (NOTE_P (insn) || INSN_DELETED_P (insn))
2348     return control_flow_insn_deleted;
2349 
2350   /* If this a noreturn call, we can't insert pop insns after it.
2351      Instead, reset the stack state to empty.  */
2352   if (CALL_P (insn)
2353       && find_reg_note (insn, REG_NORETURN, NULL))
2354     {
2355       regstack->top = -1;
2356       CLEAR_HARD_REG_SET (regstack->reg_set);
2357       return control_flow_insn_deleted;
2358     }
2359 
2360   /* If there is a REG_UNUSED note on a stack register on this insn,
2361      the indicated reg must be popped.  The REG_UNUSED note is removed,
2362      since the form of the newly emitted pop insn references the reg,
2363      making it no longer `unset'.  */
2364 
2365   note_link = &REG_NOTES (insn);
2366   for (note = *note_link; note; note = XEXP (note, 1))
2367     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2368       {
2369 	*note_link = XEXP (note, 1);
2370 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2371       }
2372     else
2373       note_link = &XEXP (note, 1);
2374 
2375   return control_flow_insn_deleted;
2376 }
2377 
2378 /* Change the organization of the stack so that it fits a new basic
2379    block.  Some registers might have to be popped, but there can never be
2380    a register live in the new block that is not now live.
2381 
2382    Insert any needed insns before or after INSN, as indicated by
2383    WHERE.  OLD is the original stack layout, and NEW is the desired
2384    form.  OLD is updated to reflect the code emitted, i.e., it will be
2385    the same as NEW upon return.
2386 
2387    This function will not preserve block_end[].  But that information
2388    is no longer needed once this has executed.  */
2389 
2390 static void
2391 change_stack (rtx insn, stack old, stack new_stack, enum emit_where where)
2392 {
2393   int reg;
2394   int update_end = 0;
2395   int i;
2396 
2397   /* Stack adjustments for the first insn in a block update the
2398      current_block's stack_in instead of inserting insns directly.
2399      compensate_edges will add the necessary code later.  */
2400   if (current_block
2401       && starting_stack_p
2402       && where == EMIT_BEFORE)
2403     {
2404       BLOCK_INFO (current_block)->stack_in = *new_stack;
2405       starting_stack_p = false;
2406       *old = *new_stack;
2407       return;
2408     }
2409 
2410   /* We will be inserting new insns "backwards".  If we are to insert
2411      after INSN, find the next insn, and insert before it.  */
2412 
2413   if (where == EMIT_AFTER)
2414     {
2415       if (current_block && BB_END (current_block) == insn)
2416 	update_end = 1;
2417       insn = NEXT_INSN (insn);
2418     }
2419 
2420   /* Initialize partially dead variables.  */
2421   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2422     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2423 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2424       {
2425 	old->reg[++old->top] = i;
2426         SET_HARD_REG_BIT (old->reg_set, i);
2427 	emit_insn_before (gen_rtx_SET (VOIDmode,
2428 				       FP_MODE_REG (i, SFmode), not_a_num), insn);
2429       }
2430 
2431   /* Pop any registers that are not needed in the new block.  */
2432 
2433   /* If the destination block's stack already has a specified layout
2434      and contains two or more registers, use a more intelligent algorithm
2435      to pop registers that minimizes the number number of fxchs below.  */
2436   if (new_stack->top > 0)
2437     {
2438       bool slots[REG_STACK_SIZE];
2439       int pops[REG_STACK_SIZE];
2440       int next, dest, topsrc;
2441 
2442       /* First pass to determine the free slots.  */
2443       for (reg = 0; reg <= new_stack->top; reg++)
2444 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2445 
2446       /* Second pass to allocate preferred slots.  */
2447       topsrc = -1;
2448       for (reg = old->top; reg > new_stack->top; reg--)
2449 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2450 	  {
2451 	    dest = -1;
2452 	    for (next = 0; next <= new_stack->top; next++)
2453 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2454 		{
2455 		  /* If this is a preference for the new top of stack, record
2456 		     the fact by remembering it's old->reg in topsrc.  */
2457                   if (next == new_stack->top)
2458 		    topsrc = reg;
2459 		  slots[next] = true;
2460 		  dest = next;
2461 		  break;
2462 		}
2463 	    pops[reg] = dest;
2464 	  }
2465 	else
2466 	  pops[reg] = reg;
2467 
2468       /* Intentionally, avoid placing the top of stack in it's correct
2469 	 location, if we still need to permute the stack below and we
2470 	 can usefully place it somewhere else.  This is the case if any
2471 	 slot is still unallocated, in which case we should place the
2472 	 top of stack there.  */
2473       if (topsrc != -1)
2474 	for (reg = 0; reg < new_stack->top; reg++)
2475 	  if (!slots[reg])
2476 	    {
2477 	      pops[topsrc] = reg;
2478 	      slots[new_stack->top] = false;
2479 	      slots[reg] = true;
2480 	      break;
2481 	    }
2482 
2483       /* Third pass allocates remaining slots and emits pop insns.  */
2484       next = new_stack->top;
2485       for (reg = old->top; reg > new_stack->top; reg--)
2486 	{
2487 	  dest = pops[reg];
2488 	  if (dest == -1)
2489 	    {
2490 	      /* Find next free slot.  */
2491 	      while (slots[next])
2492 		next--;
2493 	      dest = next--;
2494 	    }
2495 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2496 			 EMIT_BEFORE);
2497 	}
2498     }
2499   else
2500     {
2501       /* The following loop attempts to maximize the number of times we
2502 	 pop the top of the stack, as this permits the use of the faster
2503 	 ffreep instruction on platforms that support it.  */
2504       int live, next;
2505 
2506       live = 0;
2507       for (reg = 0; reg <= old->top; reg++)
2508         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2509           live++;
2510 
2511       next = live;
2512       while (old->top >= live)
2513         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2514 	  {
2515 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2516 	      next--;
2517 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2518 			   EMIT_BEFORE);
2519 	  }
2520 	else
2521 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2522 			 EMIT_BEFORE);
2523     }
2524 
2525   if (new_stack->top == -2)
2526     {
2527       /* If the new block has never been processed, then it can inherit
2528 	 the old stack order.  */
2529 
2530       new_stack->top = old->top;
2531       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2532     }
2533   else
2534     {
2535       /* This block has been entered before, and we must match the
2536 	 previously selected stack order.  */
2537 
2538       /* By now, the only difference should be the order of the stack,
2539 	 not their depth or liveliness.  */
2540 
2541       gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2542       gcc_assert (old->top == new_stack->top);
2543 
2544       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2545 	 swaps until the stack is correct.
2546 
2547 	 The worst case number of swaps emitted is N + 2, where N is the
2548 	 depth of the stack.  In some cases, the reg at the top of
2549 	 stack may be correct, but swapped anyway in order to fix
2550 	 other regs.  But since we never swap any other reg away from
2551 	 its correct slot, this algorithm will converge.  */
2552 
2553       if (new_stack->top != -1)
2554 	do
2555 	  {
2556 	    /* Swap the reg at top of stack into the position it is
2557 	       supposed to be in, until the correct top of stack appears.  */
2558 
2559 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2560 	      {
2561 		for (reg = new_stack->top; reg >= 0; reg--)
2562 		  if (new_stack->reg[reg] == old->reg[old->top])
2563 		    break;
2564 
2565 		gcc_assert (reg != -1);
2566 
2567 		emit_swap_insn (insn, old,
2568 				FP_MODE_REG (old->reg[reg], DFmode));
2569 	      }
2570 
2571 	    /* See if any regs remain incorrect.  If so, bring an
2572 	     incorrect reg to the top of stack, and let the while loop
2573 	     above fix it.  */
2574 
2575 	    for (reg = new_stack->top; reg >= 0; reg--)
2576 	      if (new_stack->reg[reg] != old->reg[reg])
2577 		{
2578 		  emit_swap_insn (insn, old,
2579 				  FP_MODE_REG (old->reg[reg], DFmode));
2580 		  break;
2581 		}
2582 	  } while (reg >= 0);
2583 
2584       /* At this point there must be no differences.  */
2585 
2586       for (reg = old->top; reg >= 0; reg--)
2587 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2588     }
2589 
2590   if (update_end)
2591     BB_END (current_block) = PREV_INSN (insn);
2592 }
2593 
2594 /* Print stack configuration.  */
2595 
2596 static void
2597 print_stack (FILE *file, stack s)
2598 {
2599   if (! file)
2600     return;
2601 
2602   if (s->top == -2)
2603     fprintf (file, "uninitialized\n");
2604   else if (s->top == -1)
2605     fprintf (file, "empty\n");
2606   else
2607     {
2608       int i;
2609       fputs ("[ ", file);
2610       for (i = 0; i <= s->top; ++i)
2611 	fprintf (file, "%d ", s->reg[i]);
2612       fputs ("]\n", file);
2613     }
2614 }
2615 
2616 /* This function was doing life analysis.  We now let the regular live
2617    code do it's job, so we only need to check some extra invariants
2618    that reg-stack expects.  Primary among these being that all registers
2619    are initialized before use.
2620 
2621    The function returns true when code was emitted to CFG edges and
2622    commit_edge_insertions needs to be called.  */
2623 
2624 static int
2625 convert_regs_entry (void)
2626 {
2627   int inserted = 0;
2628   edge e;
2629   edge_iterator ei;
2630 
2631   /* Load something into each stack register live at function entry.
2632      Such live registers can be caused by uninitialized variables or
2633      functions not returning values on all paths.  In order to keep
2634      the push/pop code happy, and to not scrog the register stack, we
2635      must put something in these registers.  Use a QNaN.
2636 
2637      Note that we are inserting converted code here.  This code is
2638      never seen by the convert_regs pass.  */
2639 
2640   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2641     {
2642       basic_block block = e->dest;
2643       block_info bi = BLOCK_INFO (block);
2644       int reg, top = -1;
2645 
2646       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2647 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2648 	  {
2649 	    rtx init;
2650 
2651 	    bi->stack_in.reg[++top] = reg;
2652 
2653 	    init = gen_rtx_SET (VOIDmode,
2654 				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2655 				not_a_num);
2656 	    insert_insn_on_edge (init, e);
2657 	    inserted = 1;
2658 	  }
2659 
2660       bi->stack_in.top = top;
2661     }
2662 
2663   return inserted;
2664 }
2665 
2666 /* Construct the desired stack for function exit.  This will either
2667    be `empty', or the function return value at top-of-stack.  */
2668 
2669 static void
2670 convert_regs_exit (void)
2671 {
2672   int value_reg_low, value_reg_high;
2673   stack output_stack;
2674   rtx retvalue;
2675 
2676   retvalue = stack_result (current_function_decl);
2677   value_reg_low = value_reg_high = -1;
2678   if (retvalue)
2679     {
2680       value_reg_low = REGNO (retvalue);
2681       value_reg_high = END_HARD_REGNO (retvalue) - 1;
2682     }
2683 
2684   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2685   if (value_reg_low == -1)
2686     output_stack->top = -1;
2687   else
2688     {
2689       int reg;
2690 
2691       output_stack->top = value_reg_high - value_reg_low;
2692       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2693 	{
2694 	  output_stack->reg[value_reg_high - reg] = reg;
2695 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2696 	}
2697     }
2698 }
2699 
2700 /* Copy the stack info from the end of edge E's source block to the
2701    start of E's destination block.  */
2702 
2703 static void
2704 propagate_stack (edge e)
2705 {
2706   stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2707   stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2708   int reg;
2709 
2710   /* Preserve the order of the original stack, but check whether
2711      any pops are needed.  */
2712   dest_stack->top = -1;
2713   for (reg = 0; reg <= src_stack->top; ++reg)
2714     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2715       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2716 
2717   /* Push in any partially dead values.  */
2718   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2719     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2720         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2721       dest_stack->reg[++dest_stack->top] = reg;
2722 }
2723 
2724 
2725 /* Adjust the stack of edge E's source block on exit to match the stack
2726    of it's target block upon input.  The stack layouts of both blocks
2727    should have been defined by now.  */
2728 
2729 static bool
2730 compensate_edge (edge e)
2731 {
2732   basic_block source = e->src, target = e->dest;
2733   stack target_stack = &BLOCK_INFO (target)->stack_in;
2734   stack source_stack = &BLOCK_INFO (source)->stack_out;
2735   struct stack_def regstack;
2736   int reg;
2737 
2738   if (dump_file)
2739     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2740 
2741   gcc_assert (target_stack->top != -2);
2742 
2743   /* Check whether stacks are identical.  */
2744   if (target_stack->top == source_stack->top)
2745     {
2746       for (reg = target_stack->top; reg >= 0; --reg)
2747 	if (target_stack->reg[reg] != source_stack->reg[reg])
2748 	  break;
2749 
2750       if (reg == -1)
2751 	{
2752 	  if (dump_file)
2753 	    fprintf (dump_file, "no changes needed\n");
2754 	  return false;
2755 	}
2756     }
2757 
2758   if (dump_file)
2759     {
2760       fprintf (dump_file, "correcting stack to ");
2761       print_stack (dump_file, target_stack);
2762     }
2763 
2764   /* Abnormal calls may appear to have values live in st(0), but the
2765      abnormal return path will not have actually loaded the values.  */
2766   if (e->flags & EDGE_ABNORMAL_CALL)
2767     {
2768       /* Assert that the lifetimes are as we expect -- one value
2769          live at st(0) on the end of the source block, and no
2770          values live at the beginning of the destination block.
2771 	 For complex return values, we may have st(1) live as well.  */
2772       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2773       gcc_assert (target_stack->top == -1);
2774       return false;
2775     }
2776 
2777   /* Handle non-call EH edges specially.  The normal return path have
2778      values in registers.  These will be popped en masse by the unwind
2779      library.  */
2780   if (e->flags & EDGE_EH)
2781     {
2782       gcc_assert (target_stack->top == -1);
2783       return false;
2784     }
2785 
2786   /* We don't support abnormal edges.  Global takes care to
2787      avoid any live register across them, so we should never
2788      have to insert instructions on such edges.  */
2789   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2790 
2791   /* Make a copy of source_stack as change_stack is destructive.  */
2792   regstack = *source_stack;
2793 
2794   /* It is better to output directly to the end of the block
2795      instead of to the edge, because emit_swap can do minimal
2796      insn scheduling.  We can do this when there is only one
2797      edge out, and it is not abnormal.  */
2798   if (EDGE_COUNT (source->succs) == 1)
2799     {
2800       current_block = source;
2801       change_stack (BB_END (source), &regstack, target_stack,
2802 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2803     }
2804   else
2805     {
2806       rtx seq, after;
2807 
2808       current_block = NULL;
2809       start_sequence ();
2810 
2811       /* ??? change_stack needs some point to emit insns after.  */
2812       after = emit_note (NOTE_INSN_DELETED);
2813 
2814       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2815 
2816       seq = get_insns ();
2817       end_sequence ();
2818 
2819       insert_insn_on_edge (seq, e);
2820       return true;
2821     }
2822   return false;
2823 }
2824 
2825 /* Traverse all non-entry edges in the CFG, and emit the necessary
2826    edge compensation code to change the stack from stack_out of the
2827    source block to the stack_in of the destination block.  */
2828 
2829 static bool
2830 compensate_edges (void)
2831 {
2832   bool inserted = false;
2833   basic_block bb;
2834 
2835   starting_stack_p = false;
2836 
2837   FOR_EACH_BB (bb)
2838     if (bb != ENTRY_BLOCK_PTR)
2839       {
2840         edge e;
2841         edge_iterator ei;
2842 
2843         FOR_EACH_EDGE (e, ei, bb->succs)
2844 	  inserted |= compensate_edge (e);
2845       }
2846   return inserted;
2847 }
2848 
2849 /* Select the better of two edges E1 and E2 to use to determine the
2850    stack layout for their shared destination basic block.  This is
2851    typically the more frequently executed.  The edge E1 may be NULL
2852    (in which case E2 is returned), but E2 is always non-NULL.  */
2853 
2854 static edge
2855 better_edge (edge e1, edge e2)
2856 {
2857   if (!e1)
2858     return e2;
2859 
2860   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2861     return e1;
2862   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2863     return e2;
2864 
2865   if (e1->count > e2->count)
2866     return e1;
2867   if (e1->count < e2->count)
2868     return e2;
2869 
2870   /* Prefer critical edges to minimize inserting compensation code on
2871      critical edges.  */
2872 
2873   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2874     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2875 
2876   /* Avoid non-deterministic behavior.  */
2877   return (e1->src->index < e2->src->index) ? e1 : e2;
2878 }
2879 
2880 /* Convert stack register references in one block.  Return true if the CFG
2881    has been modified in the process.  */
2882 
2883 static bool
2884 convert_regs_1 (basic_block block)
2885 {
2886   struct stack_def regstack;
2887   block_info bi = BLOCK_INFO (block);
2888   int reg;
2889   rtx insn, next;
2890   bool control_flow_insn_deleted = false;
2891   bool cfg_altered = false;
2892   int debug_insns_with_starting_stack = 0;
2893 
2894   any_malformed_asm = false;
2895 
2896   /* Choose an initial stack layout, if one hasn't already been chosen.  */
2897   if (bi->stack_in.top == -2)
2898     {
2899       edge e, beste = NULL;
2900       edge_iterator ei;
2901 
2902       /* Select the best incoming edge (typically the most frequent) to
2903 	 use as a template for this basic block.  */
2904       FOR_EACH_EDGE (e, ei, block->preds)
2905 	if (BLOCK_INFO (e->src)->done)
2906 	  beste = better_edge (beste, e);
2907 
2908       if (beste)
2909 	propagate_stack (beste);
2910       else
2911 	{
2912 	  /* No predecessors.  Create an arbitrary input stack.  */
2913 	  bi->stack_in.top = -1;
2914 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2915 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2916 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2917 	}
2918     }
2919 
2920   if (dump_file)
2921     {
2922       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2923       print_stack (dump_file, &bi->stack_in);
2924     }
2925 
2926   /* Process all insns in this block.  Keep track of NEXT so that we
2927      don't process insns emitted while substituting in INSN.  */
2928   current_block = block;
2929   next = BB_HEAD (block);
2930   regstack = bi->stack_in;
2931   starting_stack_p = true;
2932 
2933   do
2934     {
2935       insn = next;
2936       next = NEXT_INSN (insn);
2937 
2938       /* Ensure we have not missed a block boundary.  */
2939       gcc_assert (next);
2940       if (insn == BB_END (block))
2941 	next = NULL;
2942 
2943       /* Don't bother processing unless there is a stack reg
2944 	 mentioned or if it's a CALL_INSN.  */
2945       if (DEBUG_INSN_P (insn))
2946 	{
2947 	  if (starting_stack_p)
2948 	    debug_insns_with_starting_stack++;
2949 	  else
2950 	    {
2951 	      for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2952 			    &regstack);
2953 
2954 	      /* Nothing must ever die at a debug insn.  If something
2955 		 is referenced in it that becomes dead, it should have
2956 		 died before and the reference in the debug insn
2957 		 should have been removed so as to avoid changing code
2958 		 generation.  */
2959 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2960 	    }
2961 	}
2962       else if (stack_regs_mentioned (insn)
2963 	       || CALL_P (insn))
2964 	{
2965 	  if (dump_file)
2966 	    {
2967 	      fprintf (dump_file, "  insn %d input stack: ",
2968 		       INSN_UID (insn));
2969 	      print_stack (dump_file, &regstack);
2970 	    }
2971 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2972 	  starting_stack_p = false;
2973 	}
2974     }
2975   while (next);
2976 
2977   if (debug_insns_with_starting_stack)
2978     {
2979       /* Since it's the first non-debug instruction that determines
2980 	 the stack requirements of the current basic block, we refrain
2981 	 from updating debug insns before it in the loop above, and
2982 	 fix them up here.  */
2983       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2984 	   insn = NEXT_INSN (insn))
2985 	{
2986 	  if (!DEBUG_INSN_P (insn))
2987 	    continue;
2988 
2989 	  debug_insns_with_starting_stack--;
2990 	  for_each_rtx (&PATTERN (insn), subst_stack_regs_in_debug_insn,
2991 			&bi->stack_in);
2992 	}
2993     }
2994 
2995   if (dump_file)
2996     {
2997       fprintf (dump_file, "Expected live registers [");
2998       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2999 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3000 	  fprintf (dump_file, " %d", reg);
3001       fprintf (dump_file, " ]\nOutput stack: ");
3002       print_stack (dump_file, &regstack);
3003     }
3004 
3005   insn = BB_END (block);
3006   if (JUMP_P (insn))
3007     insn = PREV_INSN (insn);
3008 
3009   /* If the function is declared to return a value, but it returns one
3010      in only some cases, some registers might come live here.  Emit
3011      necessary moves for them.  */
3012 
3013   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3014     {
3015       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3016 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3017 	{
3018 	  rtx set;
3019 
3020 	  if (dump_file)
3021 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3022 
3023 	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3024 	  insn = emit_insn_after (set, insn);
3025 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3026 	}
3027     }
3028 
3029   /* Amongst the insns possibly deleted during the substitution process above,
3030      might have been the only trapping insn in the block.  We purge the now
3031      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3032      called at the end of convert_regs.  The order in which we process the
3033      blocks ensures that we never delete an already processed edge.
3034 
3035      Note that, at this point, the CFG may have been damaged by the emission
3036      of instructions after an abnormal call, which moves the basic block end
3037      (and is the reason why we call fixup_abnormal_edges later).  So we must
3038      be sure that the trapping insn has been deleted before trying to purge
3039      dead edges, otherwise we risk purging valid edges.
3040 
3041      ??? We are normally supposed not to delete trapping insns, so we pretend
3042      that the insns deleted above don't actually trap.  It would have been
3043      better to detect this earlier and avoid creating the EH edge in the first
3044      place, still, but we don't have enough information at that time.  */
3045 
3046   if (control_flow_insn_deleted)
3047     cfg_altered |= purge_dead_edges (block);
3048 
3049   /* Something failed if the stack lives don't match.  If we had malformed
3050      asms, we zapped the instruction itself, but that didn't produce the
3051      same pattern of register kills as before.  */
3052 
3053   gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3054 	      || any_malformed_asm);
3055   bi->stack_out = regstack;
3056   bi->done = true;
3057 
3058   return cfg_altered;
3059 }
3060 
3061 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3062    CFG has been modified in the process.  */
3063 
3064 static bool
3065 convert_regs_2 (basic_block block)
3066 {
3067   basic_block *stack, *sp;
3068   bool cfg_altered = false;
3069 
3070   /* We process the blocks in a top-down manner, in a way such that one block
3071      is only processed after all its predecessors.  The number of predecessors
3072      of every block has already been computed.  */
3073 
3074   stack = XNEWVEC (basic_block, n_basic_blocks);
3075   sp = stack;
3076 
3077   *sp++ = block;
3078 
3079   do
3080     {
3081       edge e;
3082       edge_iterator ei;
3083 
3084       block = *--sp;
3085 
3086       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3087 	 some dead EH outgoing edge after the deletion of the trapping
3088 	 insn inside the block.  Since the number of predecessors of
3089 	 BLOCK's successors was computed based on the initial edge set,
3090 	 we check the necessity to process some of these successors
3091 	 before such an edge deletion may happen.  However, there is
3092 	 a pitfall: if BLOCK is the only predecessor of a successor and
3093 	 the edge between them happens to be deleted, the successor
3094 	 becomes unreachable and should not be processed.  The problem
3095 	 is that there is no way to preventively detect this case so we
3096 	 stack the successor in all cases and hand over the task of
3097 	 fixing up the discrepancy to convert_regs_1.  */
3098 
3099       FOR_EACH_EDGE (e, ei, block->succs)
3100 	if (! (e->flags & EDGE_DFS_BACK))
3101 	  {
3102 	    BLOCK_INFO (e->dest)->predecessors--;
3103 	    if (!BLOCK_INFO (e->dest)->predecessors)
3104 	      *sp++ = e->dest;
3105 	  }
3106 
3107       cfg_altered |= convert_regs_1 (block);
3108     }
3109   while (sp != stack);
3110 
3111   free (stack);
3112 
3113   return cfg_altered;
3114 }
3115 
3116 /* Traverse all basic blocks in a function, converting the register
3117    references in each insn from the "flat" register file that gcc uses,
3118    to the stack-like registers the 387 uses.  */
3119 
3120 static void
3121 convert_regs (void)
3122 {
3123   bool cfg_altered = false;
3124   int inserted;
3125   basic_block b;
3126   edge e;
3127   edge_iterator ei;
3128 
3129   /* Initialize uninitialized registers on function entry.  */
3130   inserted = convert_regs_entry ();
3131 
3132   /* Construct the desired stack for function exit.  */
3133   convert_regs_exit ();
3134   BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3135 
3136   /* ??? Future: process inner loops first, and give them arbitrary
3137      initial stacks which emit_swap_insn can modify.  This ought to
3138      prevent double fxch that often appears at the head of a loop.  */
3139 
3140   /* Process all blocks reachable from all entry points.  */
3141   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3142     cfg_altered |= convert_regs_2 (e->dest);
3143 
3144   /* ??? Process all unreachable blocks.  Though there's no excuse
3145      for keeping these even when not optimizing.  */
3146   FOR_EACH_BB (b)
3147     {
3148       block_info bi = BLOCK_INFO (b);
3149 
3150       if (! bi->done)
3151 	cfg_altered |= convert_regs_2 (b);
3152     }
3153 
3154   inserted |= compensate_edges ();
3155 
3156   clear_aux_for_blocks ();
3157 
3158   fixup_abnormal_edges ();
3159   if (inserted)
3160     commit_edge_insertions ();
3161 
3162   if (cfg_altered)
3163     cleanup_cfg (0);
3164 
3165   if (dump_file)
3166     fputc ('\n', dump_file);
3167 }
3168 
3169 /* Convert register usage from "flat" register file usage to a "stack
3170    register file.  FILE is the dump file, if used.
3171 
3172    Construct a CFG and run life analysis.  Then convert each insn one
3173    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3174    code duplication created when the converter inserts pop insns on
3175    the edges.  */
3176 
3177 static bool
3178 reg_to_stack (void)
3179 {
3180   basic_block bb;
3181   int i;
3182   int max_uid;
3183 
3184   /* Clean up previous run.  */
3185   if (stack_regs_mentioned_data != NULL)
3186     VEC_free (char, heap, stack_regs_mentioned_data);
3187 
3188   /* See if there is something to do.  Flow analysis is quite
3189      expensive so we might save some compilation time.  */
3190   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3191     if (df_regs_ever_live_p (i))
3192       break;
3193   if (i > LAST_STACK_REG)
3194     return false;
3195 
3196   df_note_add_problem ();
3197   df_analyze ();
3198 
3199   mark_dfs_back_edges ();
3200 
3201   /* Set up block info for each basic block.  */
3202   alloc_aux_for_blocks (sizeof (struct block_info_def));
3203   FOR_EACH_BB (bb)
3204     {
3205       block_info bi = BLOCK_INFO (bb);
3206       edge_iterator ei;
3207       edge e;
3208       int reg;
3209 
3210       FOR_EACH_EDGE (e, ei, bb->preds)
3211 	if (!(e->flags & EDGE_DFS_BACK)
3212 	    && e->src != ENTRY_BLOCK_PTR)
3213 	  bi->predecessors++;
3214 
3215       /* Set current register status at last instruction `uninitialized'.  */
3216       bi->stack_in.top = -2;
3217 
3218       /* Copy live_at_end and live_at_start into temporaries.  */
3219       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3220 	{
3221 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3222 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3223 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3224 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3225 	}
3226     }
3227 
3228   /* Create the replacement registers up front.  */
3229   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3230     {
3231       enum machine_mode mode;
3232       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3233 	   mode != VOIDmode;
3234 	   mode = GET_MODE_WIDER_MODE (mode))
3235 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3236       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3237 	   mode != VOIDmode;
3238 	   mode = GET_MODE_WIDER_MODE (mode))
3239 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3240     }
3241 
3242   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3243 
3244   /* A QNaN for initializing uninitialized variables.
3245 
3246      ??? We can't load from constant memory in PIC mode, because
3247      we're inserting these instructions before the prologue and
3248      the PIC register hasn't been set up.  In that case, fall back
3249      on zero, which we can get from `fldz'.  */
3250 
3251   if ((flag_pic && !TARGET_64BIT)
3252       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3253     not_a_num = CONST0_RTX (SFmode);
3254   else
3255     {
3256       REAL_VALUE_TYPE r;
3257 
3258       real_nan (&r, "", 1, SFmode);
3259       not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3260       not_a_num = force_const_mem (SFmode, not_a_num);
3261     }
3262 
3263   /* Allocate a cache for stack_regs_mentioned.  */
3264   max_uid = get_max_uid ();
3265   stack_regs_mentioned_data = VEC_alloc (char, heap, max_uid + 1);
3266   memset (VEC_address (char, stack_regs_mentioned_data),
3267 	  0, sizeof (char) * (max_uid + 1));
3268 
3269   convert_regs ();
3270 
3271   free_aux_for_blocks ();
3272   return true;
3273 }
3274 #endif /* STACK_REGS */
3275 
3276 static bool
3277 gate_handle_stack_regs (void)
3278 {
3279 #ifdef STACK_REGS
3280   return 1;
3281 #else
3282   return 0;
3283 #endif
3284 }
3285 
3286 struct rtl_opt_pass pass_stack_regs =
3287 {
3288  {
3289   RTL_PASS,
3290   "*stack_regs",                        /* name */
3291   gate_handle_stack_regs,               /* gate */
3292   NULL,					/* execute */
3293   NULL,                                 /* sub */
3294   NULL,                                 /* next */
3295   0,                                    /* static_pass_number */
3296   TV_REG_STACK,                         /* tv_id */
3297   0,                                    /* properties_required */
3298   0,                                    /* properties_provided */
3299   0,                                    /* properties_destroyed */
3300   0,                                    /* todo_flags_start */
3301   0                                     /* todo_flags_finish */
3302  }
3303 };
3304 
3305 /* Convert register usage from flat register file usage to a stack
3306    register file.  */
3307 static unsigned int
3308 rest_of_handle_stack_regs (void)
3309 {
3310 #ifdef STACK_REGS
3311   reg_to_stack ();
3312   regstack_completed = 1;
3313 #endif
3314   return 0;
3315 }
3316 
3317 struct rtl_opt_pass pass_stack_regs_run =
3318 {
3319  {
3320   RTL_PASS,
3321   "stack",                              /* name */
3322   NULL,                                 /* gate */
3323   rest_of_handle_stack_regs,            /* execute */
3324   NULL,                                 /* sub */
3325   NULL,                                 /* next */
3326   0,                                    /* static_pass_number */
3327   TV_REG_STACK,                         /* tv_id */
3328   0,                                    /* properties_required */
3329   0,                                    /* properties_provided */
3330   0,                                    /* properties_destroyed */
3331   0,                                    /* todo_flags_start */
3332   TODO_df_finish | TODO_verify_rtl_sharing |
3333   TODO_dump_func |
3334   TODO_ggc_collect                      /* todo_flags_finish */
3335  }
3336 };
3337