xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/reg-stack.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Register to Stack convert for GNU compiler.
2    Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This pass converts stack-like registers from the "flat register
21    file" model that gcc uses, to a stack convention that the 387 uses.
22 
23    * The form of the input:
24 
25    On input, the function consists of insn that have had their
26    registers fully allocated to a set of "virtual" registers.  Note that
27    the word "virtual" is used differently here than elsewhere in gcc: for
28    each virtual stack reg, there is a hard reg, but the mapping between
29    them is not known until this pass is run.  On output, hard register
30    numbers have been substituted, and various pop and exchange insns have
31    been emitted.  The hard register numbers and the virtual register
32    numbers completely overlap - before this pass, all stack register
33    numbers are virtual, and afterward they are all hard.
34 
35    The virtual registers can be manipulated normally by gcc, and their
36    semantics are the same as for normal registers.  After the hard
37    register numbers are substituted, the semantics of an insn containing
38    stack-like regs are not the same as for an insn with normal regs: for
39    instance, it is not safe to delete an insn that appears to be a no-op
40    move.  In general, no insn containing hard regs should be changed
41    after this pass is done.
42 
43    * The form of the output:
44 
45    After this pass, hard register numbers represent the distance from
46    the current top of stack to the desired register.  A reference to
47    FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48    represents the register just below that, and so forth.  Also, REG_DEAD
49    notes indicate whether or not a stack register should be popped.
50 
51    A "swap" insn looks like a parallel of two patterns, where each
52    pattern is a SET: one sets A to B, the other B to A.
53 
54    A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55    and whose SET_DEST is REG or MEM.  Any other SET_DEST, such as PLUS,
56    will replace the existing stack top, not push a new value.
57 
58    A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59    SET_SRC is REG or MEM.
60 
61    The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62    appears ambiguous.  As a special case, the presence of a REG_DEAD note
63    for FIRST_STACK_REG differentiates between a load insn and a pop.
64 
65    If a REG_DEAD is present, the insn represents a "pop" that discards
66    the top of the register stack.  If there is no REG_DEAD note, then the
67    insn represents a "dup" or a push of the current top of stack onto the
68    stack.
69 
70    * Methodology:
71 
72    Existing REG_DEAD and REG_UNUSED notes for stack registers are
73    deleted and recreated from scratch.  REG_DEAD is never created for a
74    SET_DEST, only REG_UNUSED.
75 
76    * asm_operands:
77 
78    There are several rules on the usage of stack-like regs in
79    asm_operands insns.  These rules apply only to the operands that are
80    stack-like regs:
81 
82    1. Given a set of input regs that die in an asm_operands, it is
83       necessary to know which are implicitly popped by the asm, and
84       which must be explicitly popped by gcc.
85 
86 	An input reg that is implicitly popped by the asm must be
87 	explicitly clobbered, unless it is constrained to match an
88 	output operand.
89 
90    2. For any input reg that is implicitly popped by an asm, it is
91       necessary to know how to adjust the stack to compensate for the pop.
92       If any non-popped input is closer to the top of the reg-stack than
93       the implicitly popped reg, it would not be possible to know what the
94       stack looked like - it's not clear how the rest of the stack "slides
95       up".
96 
97 	All implicitly popped input regs must be closer to the top of
98 	the reg-stack than any input that is not implicitly popped.
99 
100    3. It is possible that if an input dies in an insn, reload might
101       use the input reg for an output reload.  Consider this example:
102 
103 		asm ("foo" : "=t" (a) : "f" (b));
104 
105       This asm says that input B is not popped by the asm, and that
106       the asm pushes a result onto the reg-stack, i.e., the stack is one
107       deeper after the asm than it was before.  But, it is possible that
108       reload will think that it can use the same reg for both the input and
109       the output, if input B dies in this insn.
110 
111 	If any input operand uses the "f" constraint, all output reg
112 	constraints must use the "&" earlyclobber.
113 
114       The asm above would be written as
115 
116 		asm ("foo" : "=&t" (a) : "f" (b));
117 
118    4. Some operands need to be in particular places on the stack.  All
119       output operands fall in this category - there is no other way to
120       know which regs the outputs appear in unless the user indicates
121       this in the constraints.
122 
123 	Output operands must specifically indicate which reg an output
124 	appears in after an asm.  "=f" is not allowed: the operand
125 	constraints must select a class with a single reg.
126 
127    5. Output operands may not be "inserted" between existing stack regs.
128       Since no 387 opcode uses a read/write operand, all output operands
129       are dead before the asm_operands, and are pushed by the asm_operands.
130       It makes no sense to push anywhere but the top of the reg-stack.
131 
132 	Output operands must start at the top of the reg-stack: output
133 	operands may not "skip" a reg.
134 
135    6. Some asm statements may need extra stack space for internal
136       calculations.  This can be guaranteed by clobbering stack registers
137       unrelated to the inputs and outputs.
138 
139    Here are a couple of reasonable asms to want to write.  This asm
140    takes one input, which is internally popped, and produces two outputs.
141 
142 	asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
143 
144    This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145    and replaces them with one output.  The user must code the "st(1)"
146    clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
147 
148 	asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
149 
150 */
151 
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "tm.h"
156 #include "hash-set.h"
157 #include "machmode.h"
158 #include "vec.h"
159 #include "double-int.h"
160 #include "input.h"
161 #include "alias.h"
162 #include "symtab.h"
163 #include "wide-int.h"
164 #include "inchash.h"
165 #include "tree.h"
166 #include "varasm.h"
167 #include "rtl-error.h"
168 #include "tm_p.h"
169 #include "hard-reg-set.h"
170 #include "input.h"
171 #include "function.h"
172 #include "insn-config.h"
173 #include "regs.h"
174 #include "flags.h"
175 #include "recog.h"
176 #include "predict.h"
177 #include "dominance.h"
178 #include "cfg.h"
179 #include "cfgrtl.h"
180 #include "cfganal.h"
181 #include "cfgbuild.h"
182 #include "cfgcleanup.h"
183 #include "basic-block.h"
184 #include "reload.h"
185 #include "ggc.h"
186 #include "tree-pass.h"
187 #include "target.h"
188 #include "df.h"
189 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
190 #include "rtl-iter.h"
191 
192 #ifdef STACK_REGS
193 
194 /* We use this array to cache info about insns, because otherwise we
195    spend too much time in stack_regs_mentioned_p.
196 
197    Indexed by insn UIDs.  A value of zero is uninitialized, one indicates
198    the insn uses stack registers, two indicates the insn does not use
199    stack registers.  */
200 static vec<char> stack_regs_mentioned_data;
201 
202 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
203 
204 int regstack_completed = 0;
205 
206 /* This is the basic stack record.  TOP is an index into REG[] such
207    that REG[TOP] is the top of stack.  If TOP is -1 the stack is empty.
208 
209    If TOP is -2, REG[] is not yet initialized.  Stack initialization
210    consists of placing each live reg in array `reg' and setting `top'
211    appropriately.
212 
213    REG_SET indicates which registers are live.  */
214 
215 typedef struct stack_def
216 {
217   int top;			/* index to top stack element */
218   HARD_REG_SET reg_set;		/* set of live registers */
219   unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
220 } *stack_ptr;
221 
222 /* This is used to carry information about basic blocks.  It is
223    attached to the AUX field of the standard CFG block.  */
224 
225 typedef struct block_info_def
226 {
227   struct stack_def stack_in;	/* Input stack configuration.  */
228   struct stack_def stack_out;	/* Output stack configuration.  */
229   HARD_REG_SET out_reg_set;	/* Stack regs live on output.  */
230   int done;			/* True if block already converted.  */
231   int predecessors;		/* Number of predecessors that need
232 				   to be visited.  */
233 } *block_info;
234 
235 #define BLOCK_INFO(B)	((block_info) (B)->aux)
236 
237 /* Passed to change_stack to indicate where to emit insns.  */
238 enum emit_where
239 {
240   EMIT_AFTER,
241   EMIT_BEFORE
242 };
243 
244 /* The block we're currently working on.  */
245 static basic_block current_block;
246 
247 /* In the current_block, whether we're processing the first register
248    stack or call instruction, i.e. the regstack is currently the
249    same as BLOCK_INFO(current_block)->stack_in.  */
250 static bool starting_stack_p;
251 
252 /* This is the register file for all register after conversion.  */
253 static rtx
254   FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
255 
256 #define FP_MODE_REG(regno,mode)	\
257   (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
258 
259 /* Used to initialize uninitialized registers.  */
260 static rtx not_a_num;
261 
262 /* Forward declarations */
263 
264 static int stack_regs_mentioned_p (const_rtx pat);
265 static void pop_stack (stack_ptr, int);
266 static rtx *get_true_reg (rtx *);
267 
268 static int check_asm_stack_operands (rtx_insn *);
269 static void get_asm_operands_in_out (rtx, int *, int *);
270 static rtx stack_result (tree);
271 static void replace_reg (rtx *, int);
272 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
273 static int get_hard_regnum (stack_ptr, rtx);
274 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
275 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
276 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
277 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
278 static int swap_rtx_condition_1 (rtx);
279 static int swap_rtx_condition (rtx_insn *);
280 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
281 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
282 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
283 static bool subst_stack_regs (rtx_insn *, stack_ptr);
284 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
285 static void print_stack (FILE *, stack_ptr);
286 static rtx_insn *next_flags_user (rtx_insn *);
287 
288 /* Return nonzero if any stack register is mentioned somewhere within PAT.  */
289 
290 static int
291 stack_regs_mentioned_p (const_rtx pat)
292 {
293   const char *fmt;
294   int i;
295 
296   if (STACK_REG_P (pat))
297     return 1;
298 
299   fmt = GET_RTX_FORMAT (GET_CODE (pat));
300   for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
301     {
302       if (fmt[i] == 'E')
303 	{
304 	  int j;
305 
306 	  for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
307 	    if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
308 	      return 1;
309 	}
310       else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
311 	return 1;
312     }
313 
314   return 0;
315 }
316 
317 /* Return nonzero if INSN mentions stacked registers, else return zero.  */
318 
319 int
320 stack_regs_mentioned (const_rtx insn)
321 {
322   unsigned int uid, max;
323   int test;
324 
325   if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
326     return 0;
327 
328   uid = INSN_UID (insn);
329   max = stack_regs_mentioned_data.length ();
330   if (uid >= max)
331     {
332       /* Allocate some extra size to avoid too many reallocs, but
333 	 do not grow too quickly.  */
334       max = uid + uid / 20 + 1;
335       stack_regs_mentioned_data.safe_grow_cleared (max);
336     }
337 
338   test = stack_regs_mentioned_data[uid];
339   if (test == 0)
340     {
341       /* This insn has yet to be examined.  Do so now.  */
342       test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
343       stack_regs_mentioned_data[uid] = test;
344     }
345 
346   return test == 1;
347 }
348 
349 static rtx ix86_flags_rtx;
350 
351 static rtx_insn *
352 next_flags_user (rtx_insn *insn)
353 {
354   /* Search forward looking for the first use of this value.
355      Stop at block boundaries.  */
356 
357   while (insn != BB_END (current_block))
358     {
359       insn = NEXT_INSN (insn);
360 
361       if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
362 	return insn;
363 
364       if (CALL_P (insn))
365 	return NULL;
366     }
367   return NULL;
368 }
369 
370 /* Reorganize the stack into ascending numbers, before this insn.  */
371 
372 static void
373 straighten_stack (rtx_insn *insn, stack_ptr regstack)
374 {
375   struct stack_def temp_stack;
376   int top;
377 
378   /* If there is only a single register on the stack, then the stack is
379      already in increasing order and no reorganization is needed.
380 
381      Similarly if the stack is empty.  */
382   if (regstack->top <= 0)
383     return;
384 
385   COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
386 
387   for (top = temp_stack.top = regstack->top; top >= 0; top--)
388     temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
389 
390   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
391 }
392 
393 /* Pop a register from the stack.  */
394 
395 static void
396 pop_stack (stack_ptr regstack, int regno)
397 {
398   int top = regstack->top;
399 
400   CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
401   regstack->top--;
402   /* If regno was not at the top of stack then adjust stack.  */
403   if (regstack->reg [top] != regno)
404     {
405       int i;
406       for (i = regstack->top; i >= 0; i--)
407 	if (regstack->reg [i] == regno)
408 	  {
409 	    int j;
410 	    for (j = i; j < top; j++)
411 	      regstack->reg [j] = regstack->reg [j + 1];
412 	    break;
413 	  }
414     }
415 }
416 
417 /* Return a pointer to the REG expression within PAT.  If PAT is not a
418    REG, possible enclosed by a conversion rtx, return the inner part of
419    PAT that stopped the search.  */
420 
421 static rtx *
422 get_true_reg (rtx *pat)
423 {
424   for (;;)
425     switch (GET_CODE (*pat))
426       {
427       case SUBREG:
428 	/* Eliminate FP subregister accesses in favor of the
429 	   actual FP register in use.  */
430 	{
431 	  rtx subreg;
432 	  if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
433 	    {
434 	      int regno_off = subreg_regno_offset (REGNO (subreg),
435 						   GET_MODE (subreg),
436 						   SUBREG_BYTE (*pat),
437 						   GET_MODE (*pat));
438 	      *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
439 				  GET_MODE (subreg));
440 	      return pat;
441 	    }
442 	}
443       case FLOAT:
444       case FIX:
445       case FLOAT_EXTEND:
446 	pat = & XEXP (*pat, 0);
447 	break;
448 
449       case UNSPEC:
450 	if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
451 	    || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
452 	  pat = & XVECEXP (*pat, 0, 0);
453 	return pat;
454 
455       case FLOAT_TRUNCATE:
456 	if (!flag_unsafe_math_optimizations)
457 	  return pat;
458 	pat = & XEXP (*pat, 0);
459 	break;
460 
461       default:
462 	return pat;
463       }
464 }
465 
466 /* Set if we find any malformed asms in a block.  */
467 static bool any_malformed_asm;
468 
469 /* There are many rules that an asm statement for stack-like regs must
470    follow.  Those rules are explained at the top of this file: the rule
471    numbers below refer to that explanation.  */
472 
473 static int
474 check_asm_stack_operands (rtx_insn *insn)
475 {
476   int i;
477   int n_clobbers;
478   int malformed_asm = 0;
479   rtx body = PATTERN (insn);
480 
481   char reg_used_as_output[FIRST_PSEUDO_REGISTER];
482   char implicitly_dies[FIRST_PSEUDO_REGISTER];
483 
484   rtx *clobber_reg = 0;
485   int n_inputs, n_outputs;
486 
487   /* Find out what the constraints require.  If no constraint
488      alternative matches, this asm is malformed.  */
489   extract_constrain_insn (insn);
490 
491   preprocess_constraints (insn);
492 
493   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
494 
495   if (which_alternative < 0)
496     {
497       malformed_asm = 1;
498       /* Avoid further trouble with this insn.  */
499       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
500       return 0;
501     }
502   const operand_alternative *op_alt = which_op_alt ();
503 
504   /* Strip SUBREGs here to make the following code simpler.  */
505   for (i = 0; i < recog_data.n_operands; i++)
506     if (GET_CODE (recog_data.operand[i]) == SUBREG
507 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
508       recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
509 
510   /* Set up CLOBBER_REG.  */
511 
512   n_clobbers = 0;
513 
514   if (GET_CODE (body) == PARALLEL)
515     {
516       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
517 
518       for (i = 0; i < XVECLEN (body, 0); i++)
519 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
520 	  {
521 	    rtx clobber = XVECEXP (body, 0, i);
522 	    rtx reg = XEXP (clobber, 0);
523 
524 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
525 	      reg = SUBREG_REG (reg);
526 
527 	    if (STACK_REG_P (reg))
528 	      {
529 		clobber_reg[n_clobbers] = reg;
530 		n_clobbers++;
531 	      }
532 	  }
533     }
534 
535   /* Enforce rule #4: Output operands must specifically indicate which
536      reg an output appears in after an asm.  "=f" is not allowed: the
537      operand constraints must select a class with a single reg.
538 
539      Also enforce rule #5: Output operands must start at the top of
540      the reg-stack: output operands may not "skip" a reg.  */
541 
542   memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
543   for (i = 0; i < n_outputs; i++)
544     if (STACK_REG_P (recog_data.operand[i]))
545       {
546 	if (reg_class_size[(int) op_alt[i].cl] != 1)
547 	  {
548 	    error_for_asm (insn, "output constraint %d must specify a single register", i);
549 	    malformed_asm = 1;
550 	  }
551 	else
552 	  {
553 	    int j;
554 
555 	    for (j = 0; j < n_clobbers; j++)
556 	      if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
557 		{
558 		  error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
559 				 i, reg_names [REGNO (clobber_reg[j])]);
560 		  malformed_asm = 1;
561 		  break;
562 		}
563 	    if (j == n_clobbers)
564 	      reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
565 	  }
566       }
567 
568 
569   /* Search for first non-popped reg.  */
570   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
571     if (! reg_used_as_output[i])
572       break;
573 
574   /* If there are any other popped regs, that's an error.  */
575   for (; i < LAST_STACK_REG + 1; i++)
576     if (reg_used_as_output[i])
577       break;
578 
579   if (i != LAST_STACK_REG + 1)
580     {
581       error_for_asm (insn, "output regs must be grouped at top of stack");
582       malformed_asm = 1;
583     }
584 
585   /* Enforce rule #2: All implicitly popped input regs must be closer
586      to the top of the reg-stack than any input that is not implicitly
587      popped.  */
588 
589   memset (implicitly_dies, 0, sizeof (implicitly_dies));
590   for (i = n_outputs; i < n_outputs + n_inputs; i++)
591     if (STACK_REG_P (recog_data.operand[i]))
592       {
593 	/* An input reg is implicitly popped if it is tied to an
594 	   output, or if there is a CLOBBER for it.  */
595 	int j;
596 
597 	for (j = 0; j < n_clobbers; j++)
598 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
599 	    break;
600 
601 	if (j < n_clobbers || op_alt[i].matches >= 0)
602 	  implicitly_dies[REGNO (recog_data.operand[i])] = 1;
603       }
604 
605   /* Search for first non-popped reg.  */
606   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
607     if (! implicitly_dies[i])
608       break;
609 
610   /* If there are any other popped regs, that's an error.  */
611   for (; i < LAST_STACK_REG + 1; i++)
612     if (implicitly_dies[i])
613       break;
614 
615   if (i != LAST_STACK_REG + 1)
616     {
617       error_for_asm (insn,
618 		     "implicitly popped regs must be grouped at top of stack");
619       malformed_asm = 1;
620     }
621 
622   /* Enforce rule #3: If any input operand uses the "f" constraint, all
623      output constraints must use the "&" earlyclobber.
624 
625      ??? Detect this more deterministically by having constrain_asm_operands
626      record any earlyclobber.  */
627 
628   for (i = n_outputs; i < n_outputs + n_inputs; i++)
629     if (op_alt[i].matches == -1)
630       {
631 	int j;
632 
633 	for (j = 0; j < n_outputs; j++)
634 	  if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
635 	    {
636 	      error_for_asm (insn,
637 			     "output operand %d must use %<&%> constraint", j);
638 	      malformed_asm = 1;
639 	    }
640       }
641 
642   if (malformed_asm)
643     {
644       /* Avoid further trouble with this insn.  */
645       PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
646       any_malformed_asm = true;
647       return 0;
648     }
649 
650   return 1;
651 }
652 
653 /* Calculate the number of inputs and outputs in BODY, an
654    asm_operands.  N_OPERANDS is the total number of operands, and
655    N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
656    placed.  */
657 
658 static void
659 get_asm_operands_in_out (rtx body, int *pout, int *pin)
660 {
661   rtx asmop = extract_asm_operands (body);
662 
663   *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
664   *pout = (recog_data.n_operands
665 	   - ASM_OPERANDS_INPUT_LENGTH (asmop)
666 	   - ASM_OPERANDS_LABEL_LENGTH (asmop));
667 }
668 
669 /* If current function returns its result in an fp stack register,
670    return the REG.  Otherwise, return 0.  */
671 
672 static rtx
673 stack_result (tree decl)
674 {
675   rtx result;
676 
677   /* If the value is supposed to be returned in memory, then clearly
678      it is not returned in a stack register.  */
679   if (aggregate_value_p (DECL_RESULT (decl), decl))
680     return 0;
681 
682   result = DECL_RTL_IF_SET (DECL_RESULT (decl));
683   if (result != 0)
684     result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
685 					   decl, true);
686 
687   return result != 0 && STACK_REG_P (result) ? result : 0;
688 }
689 
690 
691 /*
692  * This section deals with stack register substitution, and forms the second
693  * pass over the RTL.
694  */
695 
696 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
697    the desired hard REGNO.  */
698 
699 static void
700 replace_reg (rtx *reg, int regno)
701 {
702   gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
703   gcc_assert (STACK_REG_P (*reg));
704 
705   gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
706 	      || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
707 
708   *reg = FP_MODE_REG (regno, GET_MODE (*reg));
709 }
710 
711 /* Remove a note of type NOTE, which must be found, for register
712    number REGNO from INSN.  Remove only one such note.  */
713 
714 static void
715 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
716 {
717   rtx *note_link, this_rtx;
718 
719   note_link = &REG_NOTES (insn);
720   for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
721     if (REG_NOTE_KIND (this_rtx) == note
722 	&& REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
723       {
724 	*note_link = XEXP (this_rtx, 1);
725 	return;
726       }
727     else
728       note_link = &XEXP (this_rtx, 1);
729 
730   gcc_unreachable ();
731 }
732 
733 /* Find the hard register number of virtual register REG in REGSTACK.
734    The hard register number is relative to the top of the stack.  -1 is
735    returned if the register is not found.  */
736 
737 static int
738 get_hard_regnum (stack_ptr regstack, rtx reg)
739 {
740   int i;
741 
742   gcc_assert (STACK_REG_P (reg));
743 
744   for (i = regstack->top; i >= 0; i--)
745     if (regstack->reg[i] == REGNO (reg))
746       break;
747 
748   return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
749 }
750 
751 /* Emit an insn to pop virtual register REG before or after INSN.
752    REGSTACK is the stack state after INSN and is updated to reflect this
753    pop.  WHEN is either emit_insn_before or emit_insn_after.  A pop insn
754    is represented as a SET whose destination is the register to be popped
755    and source is the top of stack.  A death note for the top of stack
756    cases the movdf pattern to pop.  */
757 
758 static rtx_insn *
759 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
760 {
761   rtx_insn *pop_insn;
762   rtx pop_rtx;
763   int hard_regno;
764 
765   /* For complex types take care to pop both halves.  These may survive in
766      CLOBBER and USE expressions.  */
767   if (COMPLEX_MODE_P (GET_MODE (reg)))
768     {
769       rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
770       rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
771 
772       pop_insn = NULL;
773       if (get_hard_regnum (regstack, reg1) >= 0)
774 	pop_insn = emit_pop_insn (insn, regstack, reg1, where);
775       if (get_hard_regnum (regstack, reg2) >= 0)
776 	pop_insn = emit_pop_insn (insn, regstack, reg2, where);
777       gcc_assert (pop_insn);
778       return pop_insn;
779     }
780 
781   hard_regno = get_hard_regnum (regstack, reg);
782 
783   gcc_assert (hard_regno >= FIRST_STACK_REG);
784 
785   pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
786 			 FP_MODE_REG (FIRST_STACK_REG, DFmode));
787 
788   if (where == EMIT_AFTER)
789     pop_insn = emit_insn_after (pop_rtx, insn);
790   else
791     pop_insn = emit_insn_before (pop_rtx, insn);
792 
793   add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
794 
795   regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
796     = regstack->reg[regstack->top];
797   regstack->top -= 1;
798   CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
799 
800   return pop_insn;
801 }
802 
803 /* Emit an insn before or after INSN to swap virtual register REG with
804    the top of stack.  REGSTACK is the stack state before the swap, and
805    is updated to reflect the swap.  A swap insn is represented as a
806    PARALLEL of two patterns: each pattern moves one reg to the other.
807 
808    If REG is already at the top of the stack, no insn is emitted.  */
809 
810 static void
811 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
812 {
813   int hard_regno;
814   rtx swap_rtx;
815   int tmp, other_reg;		/* swap regno temps */
816   rtx_insn *i1;			/* the stack-reg insn prior to INSN */
817   rtx i1set = NULL_RTX;		/* the SET rtx within I1 */
818 
819   hard_regno = get_hard_regnum (regstack, reg);
820 
821   if (hard_regno == FIRST_STACK_REG)
822     return;
823   if (hard_regno == -1)
824     {
825       /* Something failed if the register wasn't on the stack.  If we had
826 	 malformed asms, we zapped the instruction itself, but that didn't
827 	 produce the same pattern of register sets as before.  To prevent
828 	 further failure, adjust REGSTACK to include REG at TOP.  */
829       gcc_assert (any_malformed_asm);
830       regstack->reg[++regstack->top] = REGNO (reg);
831       return;
832     }
833   gcc_assert (hard_regno >= FIRST_STACK_REG);
834 
835   other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
836 
837   tmp = regstack->reg[other_reg];
838   regstack->reg[other_reg] = regstack->reg[regstack->top];
839   regstack->reg[regstack->top] = tmp;
840 
841   /* Find the previous insn involving stack regs, but don't pass a
842      block boundary.  */
843   i1 = NULL;
844   if (current_block && insn != BB_HEAD (current_block))
845     {
846       rtx_insn *tmp = PREV_INSN (insn);
847       rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
848       while (tmp != limit)
849 	{
850 	  if (LABEL_P (tmp)
851 	      || CALL_P (tmp)
852 	      || NOTE_INSN_BASIC_BLOCK_P (tmp)
853 	      || (NONJUMP_INSN_P (tmp)
854 		  && stack_regs_mentioned (tmp)))
855 	    {
856 	      i1 = tmp;
857 	      break;
858 	    }
859 	  tmp = PREV_INSN (tmp);
860 	}
861     }
862 
863   if (i1 != NULL_RTX
864       && (i1set = single_set (i1)) != NULL_RTX)
865     {
866       rtx i1src = *get_true_reg (&SET_SRC (i1set));
867       rtx i1dest = *get_true_reg (&SET_DEST (i1set));
868 
869       /* If the previous register stack push was from the reg we are to
870 	 swap with, omit the swap.  */
871 
872       if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
873 	  && REG_P (i1src)
874 	  && REGNO (i1src) == (unsigned) hard_regno - 1
875 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
876 	return;
877 
878       /* If the previous insn wrote to the reg we are to swap with,
879 	 omit the swap.  */
880 
881       if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
882 	  && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
883 	  && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
884 	return;
885     }
886 
887   /* Avoid emitting the swap if this is the first register stack insn
888      of the current_block.  Instead update the current_block's stack_in
889      and let compensate edges take care of this for us.  */
890   if (current_block && starting_stack_p)
891     {
892       BLOCK_INFO (current_block)->stack_in = *regstack;
893       starting_stack_p = false;
894       return;
895     }
896 
897   swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
898 			 FP_MODE_REG (FIRST_STACK_REG, XFmode));
899 
900   if (i1)
901     emit_insn_after (swap_rtx, i1);
902   else if (current_block)
903     emit_insn_before (swap_rtx, BB_HEAD (current_block));
904   else
905     emit_insn_before (swap_rtx, insn);
906 }
907 
908 /* Emit an insns before INSN to swap virtual register SRC1 with
909    the top of stack and virtual register SRC2 with second stack
910    slot. REGSTACK is the stack state before the swaps, and
911    is updated to reflect the swaps.  A swap insn is represented as a
912    PARALLEL of two patterns: each pattern moves one reg to the other.
913 
914    If SRC1 and/or SRC2 are already at the right place, no swap insn
915    is emitted.  */
916 
917 static void
918 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
919 {
920   struct stack_def temp_stack;
921   int regno, j, k, temp;
922 
923   temp_stack = *regstack;
924 
925   /* Place operand 1 at the top of stack.  */
926   regno = get_hard_regnum (&temp_stack, src1);
927   gcc_assert (regno >= 0);
928   if (regno != FIRST_STACK_REG)
929     {
930       k = temp_stack.top - (regno - FIRST_STACK_REG);
931       j = temp_stack.top;
932 
933       temp = temp_stack.reg[k];
934       temp_stack.reg[k] = temp_stack.reg[j];
935       temp_stack.reg[j] = temp;
936     }
937 
938   /* Place operand 2 next on the stack.  */
939   regno = get_hard_regnum (&temp_stack, src2);
940   gcc_assert (regno >= 0);
941   if (regno != FIRST_STACK_REG + 1)
942     {
943       k = temp_stack.top - (regno - FIRST_STACK_REG);
944       j = temp_stack.top - 1;
945 
946       temp = temp_stack.reg[k];
947       temp_stack.reg[k] = temp_stack.reg[j];
948       temp_stack.reg[j] = temp;
949     }
950 
951   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
952 }
953 
954 /* Handle a move to or from a stack register in PAT, which is in INSN.
955    REGSTACK is the current stack.  Return whether a control flow insn
956    was deleted in the process.  */
957 
958 static bool
959 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
960 {
961   rtx *psrc =  get_true_reg (&SET_SRC (pat));
962   rtx *pdest = get_true_reg (&SET_DEST (pat));
963   rtx src, dest;
964   rtx note;
965   bool control_flow_insn_deleted = false;
966 
967   src = *psrc; dest = *pdest;
968 
969   if (STACK_REG_P (src) && STACK_REG_P (dest))
970     {
971       /* Write from one stack reg to another.  If SRC dies here, then
972 	 just change the register mapping and delete the insn.  */
973 
974       note = find_regno_note (insn, REG_DEAD, REGNO (src));
975       if (note)
976 	{
977 	  int i;
978 
979 	  /* If this is a no-op move, there must not be a REG_DEAD note.  */
980 	  gcc_assert (REGNO (src) != REGNO (dest));
981 
982 	  for (i = regstack->top; i >= 0; i--)
983 	    if (regstack->reg[i] == REGNO (src))
984 	      break;
985 
986 	  /* The destination must be dead, or life analysis is borked.  */
987 	  gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
988 
989 	  /* If the source is not live, this is yet another case of
990 	     uninitialized variables.  Load up a NaN instead.  */
991 	  if (i < 0)
992 	    return move_nan_for_stack_reg (insn, regstack, dest);
993 
994 	  /* It is possible that the dest is unused after this insn.
995 	     If so, just pop the src.  */
996 
997 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
998 	    emit_pop_insn (insn, regstack, src, EMIT_AFTER);
999 	  else
1000 	    {
1001 	      regstack->reg[i] = REGNO (dest);
1002 	      SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1003 	      CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1004 	    }
1005 
1006 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1007 	  delete_insn (insn);
1008 	  return control_flow_insn_deleted;
1009 	}
1010 
1011       /* The source reg does not die.  */
1012 
1013       /* If this appears to be a no-op move, delete it, or else it
1014 	 will confuse the machine description output patterns. But if
1015 	 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1016 	 for REG_UNUSED will not work for deleted insns.  */
1017 
1018       if (REGNO (src) == REGNO (dest))
1019 	{
1020 	  if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1021 	    emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1022 
1023 	  control_flow_insn_deleted |= control_flow_insn_p (insn);
1024 	  delete_insn (insn);
1025 	  return control_flow_insn_deleted;
1026 	}
1027 
1028       /* The destination ought to be dead.  */
1029       gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1030 
1031       replace_reg (psrc, get_hard_regnum (regstack, src));
1032 
1033       regstack->reg[++regstack->top] = REGNO (dest);
1034       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1035       replace_reg (pdest, FIRST_STACK_REG);
1036     }
1037   else if (STACK_REG_P (src))
1038     {
1039       /* Save from a stack reg to MEM, or possibly integer reg.  Since
1040 	 only top of stack may be saved, emit an exchange first if
1041 	 needs be.  */
1042 
1043       emit_swap_insn (insn, regstack, src);
1044 
1045       note = find_regno_note (insn, REG_DEAD, REGNO (src));
1046       if (note)
1047 	{
1048 	  replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1049 	  regstack->top--;
1050 	  CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1051 	}
1052       else if ((GET_MODE (src) == XFmode)
1053 	       && regstack->top < REG_STACK_SIZE - 1)
1054 	{
1055 	  /* A 387 cannot write an XFmode value to a MEM without
1056 	     clobbering the source reg.  The output code can handle
1057 	     this by reading back the value from the MEM.
1058 	     But it is more efficient to use a temp register if one is
1059 	     available.  Push the source value here if the register
1060 	     stack is not full, and then write the value to memory via
1061 	     a pop.  */
1062 	  rtx push_rtx;
1063 	  rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1064 
1065 	  push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1066 	  emit_insn_before (push_rtx, insn);
1067 	  add_reg_note (insn, REG_DEAD, top_stack_reg);
1068 	}
1069 
1070       replace_reg (psrc, FIRST_STACK_REG);
1071     }
1072   else
1073     {
1074       rtx pat = PATTERN (insn);
1075 
1076       gcc_assert (STACK_REG_P (dest));
1077 
1078       /* Load from MEM, or possibly integer REG or constant, into the
1079 	 stack regs.  The actual target is always the top of the
1080 	 stack. The stack mapping is changed to reflect that DEST is
1081 	 now at top of stack.  */
1082 
1083       /* The destination ought to be dead.  However, there is a
1084 	 special case with i387 UNSPEC_TAN, where destination is live
1085 	 (an argument to fptan) but inherent load of 1.0 is modelled
1086 	 as a load from a constant.  */
1087       if (GET_CODE (pat) == PARALLEL
1088 	  && XVECLEN (pat, 0) == 2
1089 	  && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1090 	  && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1091 	  && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1092 	emit_swap_insn (insn, regstack, dest);
1093       else
1094 	gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1095 
1096       gcc_assert (regstack->top < REG_STACK_SIZE);
1097 
1098       regstack->reg[++regstack->top] = REGNO (dest);
1099       SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1100       replace_reg (pdest, FIRST_STACK_REG);
1101     }
1102 
1103   return control_flow_insn_deleted;
1104 }
1105 
1106 /* A helper function which replaces INSN with a pattern that loads up
1107    a NaN into DEST, then invokes move_for_stack_reg.  */
1108 
1109 static bool
1110 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1111 {
1112   rtx pat;
1113 
1114   dest = FP_MODE_REG (REGNO (dest), SFmode);
1115   pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1116   PATTERN (insn) = pat;
1117   INSN_CODE (insn) = -1;
1118 
1119   return move_for_stack_reg (insn, regstack, pat);
1120 }
1121 
1122 /* Swap the condition on a branch, if there is one.  Return true if we
1123    found a condition to swap.  False if the condition was not used as
1124    such.  */
1125 
1126 static int
1127 swap_rtx_condition_1 (rtx pat)
1128 {
1129   const char *fmt;
1130   int i, r = 0;
1131 
1132   if (COMPARISON_P (pat))
1133     {
1134       PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1135       r = 1;
1136     }
1137   else
1138     {
1139       fmt = GET_RTX_FORMAT (GET_CODE (pat));
1140       for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1141 	{
1142 	  if (fmt[i] == 'E')
1143 	    {
1144 	      int j;
1145 
1146 	      for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1147 		r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1148 	    }
1149 	  else if (fmt[i] == 'e')
1150 	    r |= swap_rtx_condition_1 (XEXP (pat, i));
1151 	}
1152     }
1153 
1154   return r;
1155 }
1156 
1157 static int
1158 swap_rtx_condition (rtx_insn *insn)
1159 {
1160   rtx pat = PATTERN (insn);
1161 
1162   /* We're looking for a single set to cc0 or an HImode temporary.  */
1163 
1164   if (GET_CODE (pat) == SET
1165       && REG_P (SET_DEST (pat))
1166       && REGNO (SET_DEST (pat)) == FLAGS_REG)
1167     {
1168       insn = next_flags_user (insn);
1169       if (insn == NULL_RTX)
1170 	return 0;
1171       pat = PATTERN (insn);
1172     }
1173 
1174   /* See if this is, or ends in, a fnstsw.  If so, we're not doing anything
1175      with the cc value right now.  We may be able to search for one
1176      though.  */
1177 
1178   if (GET_CODE (pat) == SET
1179       && GET_CODE (SET_SRC (pat)) == UNSPEC
1180       && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1181     {
1182       rtx dest = SET_DEST (pat);
1183 
1184       /* Search forward looking for the first use of this value.
1185 	 Stop at block boundaries.  */
1186       while (insn != BB_END (current_block))
1187 	{
1188 	  insn = NEXT_INSN (insn);
1189 	  if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1190 	    break;
1191 	  if (CALL_P (insn))
1192 	    return 0;
1193 	}
1194 
1195       /* We haven't found it.  */
1196       if (insn == BB_END (current_block))
1197 	return 0;
1198 
1199       /* So we've found the insn using this value.  If it is anything
1200 	 other than sahf or the value does not die (meaning we'd have
1201 	 to search further), then we must give up.  */
1202       pat = PATTERN (insn);
1203       if (GET_CODE (pat) != SET
1204 	  || GET_CODE (SET_SRC (pat)) != UNSPEC
1205 	  || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1206 	  || ! dead_or_set_p (insn, dest))
1207 	return 0;
1208 
1209       /* Now we are prepared to handle this as a normal cc0 setter.  */
1210       insn = next_flags_user (insn);
1211       if (insn == NULL_RTX)
1212 	return 0;
1213       pat = PATTERN (insn);
1214     }
1215 
1216   if (swap_rtx_condition_1 (pat))
1217     {
1218       int fail = 0;
1219       INSN_CODE (insn) = -1;
1220       if (recog_memoized (insn) == -1)
1221 	fail = 1;
1222       /* In case the flags don't die here, recurse to try fix
1223          following user too.  */
1224       else if (! dead_or_set_p (insn, ix86_flags_rtx))
1225 	{
1226 	  insn = next_flags_user (insn);
1227 	  if (!insn || !swap_rtx_condition (insn))
1228 	    fail = 1;
1229 	}
1230       if (fail)
1231 	{
1232 	  swap_rtx_condition_1 (pat);
1233 	  return 0;
1234 	}
1235       return 1;
1236     }
1237   return 0;
1238 }
1239 
1240 /* Handle a comparison.  Special care needs to be taken to avoid
1241    causing comparisons that a 387 cannot do correctly, such as EQ.
1242 
1243    Also, a pop insn may need to be emitted.  The 387 does have an
1244    `fcompp' insn that can pop two regs, but it is sometimes too expensive
1245    to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1246    set up.  */
1247 
1248 static void
1249 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1250 {
1251   rtx *src1, *src2;
1252   rtx src1_note, src2_note;
1253 
1254   src1 = get_true_reg (&XEXP (pat_src, 0));
1255   src2 = get_true_reg (&XEXP (pat_src, 1));
1256 
1257   /* ??? If fxch turns out to be cheaper than fstp, give priority to
1258      registers that die in this insn - move those to stack top first.  */
1259   if ((! STACK_REG_P (*src1)
1260        || (STACK_REG_P (*src2)
1261 	   && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1262       && swap_rtx_condition (insn))
1263     {
1264       rtx temp;
1265       temp = XEXP (pat_src, 0);
1266       XEXP (pat_src, 0) = XEXP (pat_src, 1);
1267       XEXP (pat_src, 1) = temp;
1268 
1269       src1 = get_true_reg (&XEXP (pat_src, 0));
1270       src2 = get_true_reg (&XEXP (pat_src, 1));
1271 
1272       INSN_CODE (insn) = -1;
1273     }
1274 
1275   /* We will fix any death note later.  */
1276 
1277   src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1278 
1279   if (STACK_REG_P (*src2))
1280     src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1281   else
1282     src2_note = NULL_RTX;
1283 
1284   emit_swap_insn (insn, regstack, *src1);
1285 
1286   replace_reg (src1, FIRST_STACK_REG);
1287 
1288   if (STACK_REG_P (*src2))
1289     replace_reg (src2, get_hard_regnum (regstack, *src2));
1290 
1291   if (src1_note)
1292     {
1293       pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1294       replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1295     }
1296 
1297   /* If the second operand dies, handle that.  But if the operands are
1298      the same stack register, don't bother, because only one death is
1299      needed, and it was just handled.  */
1300 
1301   if (src2_note
1302       && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1303 	    && REGNO (*src1) == REGNO (*src2)))
1304     {
1305       /* As a special case, two regs may die in this insn if src2 is
1306 	 next to top of stack and the top of stack also dies.  Since
1307 	 we have already popped src1, "next to top of stack" is really
1308 	 at top (FIRST_STACK_REG) now.  */
1309 
1310       if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1311 	  && src1_note)
1312 	{
1313 	  pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1314 	  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1315 	}
1316       else
1317 	{
1318 	  /* The 386 can only represent death of the first operand in
1319 	     the case handled above.  In all other cases, emit a separate
1320 	     pop and remove the death note from here.  */
1321 	  remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1322 	  emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1323 			 EMIT_AFTER);
1324 	}
1325     }
1326 }
1327 
1328 /* Substitute hardware stack regs in debug insn INSN, using stack
1329    layout REGSTACK.  If we can't find a hardware stack reg for any of
1330    the REGs in it, reset the debug insn.  */
1331 
1332 static void
1333 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1334 {
1335   subrtx_ptr_iterator::array_type array;
1336   FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1337     {
1338       rtx *loc = *iter;
1339       rtx x = *loc;
1340       if (STACK_REG_P (x))
1341 	{
1342 	  int hard_regno = get_hard_regnum (regstack, x);
1343 
1344 	  /* If we can't find an active register, reset this debug insn.  */
1345 	  if (hard_regno == -1)
1346 	    {
1347 	      INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1348 	      return;
1349 	    }
1350 
1351 	  gcc_assert (hard_regno >= FIRST_STACK_REG);
1352 	  replace_reg (loc, hard_regno);
1353 	  iter.skip_subrtxes ();
1354 	}
1355     }
1356 }
1357 
1358 /* Substitute new registers in PAT, which is part of INSN.  REGSTACK
1359    is the current register layout.  Return whether a control flow insn
1360    was deleted in the process.  */
1361 
1362 static bool
1363 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1364 {
1365   rtx *dest, *src;
1366   bool control_flow_insn_deleted = false;
1367 
1368   switch (GET_CODE (pat))
1369     {
1370     case USE:
1371       /* Deaths in USE insns can happen in non optimizing compilation.
1372 	 Handle them by popping the dying register.  */
1373       src = get_true_reg (&XEXP (pat, 0));
1374       if (STACK_REG_P (*src)
1375 	  && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1376 	{
1377 	  /* USEs are ignored for liveness information so USEs of dead
1378 	     register might happen.  */
1379           if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1380 	    emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1381 	  return control_flow_insn_deleted;
1382 	}
1383       /* Uninitialized USE might happen for functions returning uninitialized
1384          value.  We will properly initialize the USE on the edge to EXIT_BLOCK,
1385 	 so it is safe to ignore the use here. This is consistent with behavior
1386 	 of dataflow analyzer that ignores USE too.  (This also imply that
1387 	 forcibly initializing the register to NaN here would lead to ICE later,
1388 	 since the REG_DEAD notes are not issued.)  */
1389       break;
1390 
1391     case VAR_LOCATION:
1392       gcc_unreachable ();
1393 
1394     case CLOBBER:
1395       {
1396 	rtx note;
1397 
1398 	dest = get_true_reg (&XEXP (pat, 0));
1399 	if (STACK_REG_P (*dest))
1400 	  {
1401 	    note = find_reg_note (insn, REG_DEAD, *dest);
1402 
1403 	    if (pat != PATTERN (insn))
1404 	      {
1405 		/* The fix_truncdi_1 pattern wants to be able to
1406 		   allocate its own scratch register.  It does this by
1407 		   clobbering an fp reg so that it is assured of an
1408 		   empty reg-stack register.  If the register is live,
1409 		   kill it now.  Remove the DEAD/UNUSED note so we
1410 		   don't try to kill it later too.
1411 
1412 		   In reality the UNUSED note can be absent in some
1413 		   complicated cases when the register is reused for
1414 		   partially set variable.  */
1415 
1416 		if (note)
1417 		  emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1418 		else
1419 		  note = find_reg_note (insn, REG_UNUSED, *dest);
1420 		if (note)
1421 		  remove_note (insn, note);
1422 		replace_reg (dest, FIRST_STACK_REG + 1);
1423 	      }
1424 	    else
1425 	      {
1426 		/* A top-level clobber with no REG_DEAD, and no hard-regnum
1427 		   indicates an uninitialized value.  Because reload removed
1428 		   all other clobbers, this must be due to a function
1429 		   returning without a value.  Load up a NaN.  */
1430 
1431 		if (!note)
1432 		  {
1433 		    rtx t = *dest;
1434 		    if (COMPLEX_MODE_P (GET_MODE (t)))
1435 		      {
1436 			rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1437 			if (get_hard_regnum (regstack, u) == -1)
1438 			  {
1439 			    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1440 			    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1441 			    control_flow_insn_deleted
1442 			      |= move_nan_for_stack_reg (insn2, regstack, u);
1443 			  }
1444 		      }
1445 		    if (get_hard_regnum (regstack, t) == -1)
1446 		      control_flow_insn_deleted
1447 			|= move_nan_for_stack_reg (insn, regstack, t);
1448 		  }
1449 	      }
1450 	  }
1451 	break;
1452       }
1453 
1454     case SET:
1455       {
1456 	rtx *src1 = (rtx *) 0, *src2;
1457 	rtx src1_note, src2_note;
1458 	rtx pat_src;
1459 
1460 	dest = get_true_reg (&SET_DEST (pat));
1461 	src  = get_true_reg (&SET_SRC (pat));
1462 	pat_src = SET_SRC (pat);
1463 
1464 	/* See if this is a `movM' pattern, and handle elsewhere if so.  */
1465 	if (STACK_REG_P (*src)
1466 	    || (STACK_REG_P (*dest)
1467 		&& (REG_P (*src) || MEM_P (*src)
1468 		    || CONST_DOUBLE_P (*src))))
1469 	  {
1470 	    control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1471 	    break;
1472 	  }
1473 
1474 	switch (GET_CODE (pat_src))
1475 	  {
1476 	  case COMPARE:
1477 	    compare_for_stack_reg (insn, regstack, pat_src);
1478 	    break;
1479 
1480 	  case CALL:
1481 	    {
1482 	      int count;
1483 	      for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1484 		   --count >= 0;)
1485 		{
1486 		  regstack->reg[++regstack->top] = REGNO (*dest) + count;
1487 		  SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1488 		}
1489 	    }
1490 	    replace_reg (dest, FIRST_STACK_REG);
1491 	    break;
1492 
1493 	  case REG:
1494 	    /* This is a `tstM2' case.  */
1495 	    gcc_assert (*dest == cc0_rtx);
1496 	    src1 = src;
1497 
1498 	    /* Fall through.  */
1499 
1500 	  case FLOAT_TRUNCATE:
1501 	  case SQRT:
1502 	  case ABS:
1503 	  case NEG:
1504 	    /* These insns only operate on the top of the stack. DEST might
1505 	       be cc0_rtx if we're processing a tstM pattern. Also, it's
1506 	       possible that the tstM case results in a REG_DEAD note on the
1507 	       source.  */
1508 
1509 	    if (src1 == 0)
1510 	      src1 = get_true_reg (&XEXP (pat_src, 0));
1511 
1512 	    emit_swap_insn (insn, regstack, *src1);
1513 
1514 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1515 
1516 	    if (STACK_REG_P (*dest))
1517 	      replace_reg (dest, FIRST_STACK_REG);
1518 
1519 	    if (src1_note)
1520 	      {
1521 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1522 		regstack->top--;
1523 		CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1524 	      }
1525 
1526 	    replace_reg (src1, FIRST_STACK_REG);
1527 	    break;
1528 
1529 	  case MINUS:
1530 	  case DIV:
1531 	    /* On i386, reversed forms of subM3 and divM3 exist for
1532 	       MODE_FLOAT, so the same code that works for addM3 and mulM3
1533 	       can be used.  */
1534 	  case MULT:
1535 	  case PLUS:
1536 	    /* These insns can accept the top of stack as a destination
1537 	       from a stack reg or mem, or can use the top of stack as a
1538 	       source and some other stack register (possibly top of stack)
1539 	       as a destination.  */
1540 
1541 	    src1 = get_true_reg (&XEXP (pat_src, 0));
1542 	    src2 = get_true_reg (&XEXP (pat_src, 1));
1543 
1544 	    /* We will fix any death note later.  */
1545 
1546 	    if (STACK_REG_P (*src1))
1547 	      src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1548 	    else
1549 	      src1_note = NULL_RTX;
1550 	    if (STACK_REG_P (*src2))
1551 	      src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1552 	    else
1553 	      src2_note = NULL_RTX;
1554 
1555 	    /* If either operand is not a stack register, then the dest
1556 	       must be top of stack.  */
1557 
1558 	    if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1559 	      emit_swap_insn (insn, regstack, *dest);
1560 	    else
1561 	      {
1562 		/* Both operands are REG.  If neither operand is already
1563 		   at the top of stack, choose to make the one that is the
1564 		   dest the new top of stack.  */
1565 
1566 		int src1_hard_regnum, src2_hard_regnum;
1567 
1568 		src1_hard_regnum = get_hard_regnum (regstack, *src1);
1569 		src2_hard_regnum = get_hard_regnum (regstack, *src2);
1570 
1571 		/* If the source is not live, this is yet another case of
1572 		   uninitialized variables.  Load up a NaN instead.  */
1573 		if (src1_hard_regnum == -1)
1574 		  {
1575 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1576 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1577 		    control_flow_insn_deleted
1578 		      |= move_nan_for_stack_reg (insn2, regstack, *src1);
1579 		  }
1580 		if (src2_hard_regnum == -1)
1581 		  {
1582 		    rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1583 		    rtx_insn *insn2 = emit_insn_before (pat2, insn);
1584 		    control_flow_insn_deleted
1585 		      |= move_nan_for_stack_reg (insn2, regstack, *src2);
1586 		  }
1587 
1588 		if (src1_hard_regnum != FIRST_STACK_REG
1589 		    && src2_hard_regnum != FIRST_STACK_REG)
1590 		  emit_swap_insn (insn, regstack, *dest);
1591 	      }
1592 
1593 	    if (STACK_REG_P (*src1))
1594 	      replace_reg (src1, get_hard_regnum (regstack, *src1));
1595 	    if (STACK_REG_P (*src2))
1596 	      replace_reg (src2, get_hard_regnum (regstack, *src2));
1597 
1598 	    if (src1_note)
1599 	      {
1600 		rtx src1_reg = XEXP (src1_note, 0);
1601 
1602 		/* If the register that dies is at the top of stack, then
1603 		   the destination is somewhere else - merely substitute it.
1604 		   But if the reg that dies is not at top of stack, then
1605 		   move the top of stack to the dead reg, as though we had
1606 		   done the insn and then a store-with-pop.  */
1607 
1608 		if (REGNO (src1_reg) == regstack->reg[regstack->top])
1609 		  {
1610 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1611 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1612 		  }
1613 		else
1614 		  {
1615 		    int regno = get_hard_regnum (regstack, src1_reg);
1616 
1617 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1618 		    replace_reg (dest, regno);
1619 
1620 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1621 		      = regstack->reg[regstack->top];
1622 		  }
1623 
1624 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1625 				    REGNO (XEXP (src1_note, 0)));
1626 		replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1627 		regstack->top--;
1628 	      }
1629 	    else if (src2_note)
1630 	      {
1631 		rtx src2_reg = XEXP (src2_note, 0);
1632 		if (REGNO (src2_reg) == regstack->reg[regstack->top])
1633 		  {
1634 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1635 		    replace_reg (dest, get_hard_regnum (regstack, *dest));
1636 		  }
1637 		else
1638 		  {
1639 		    int regno = get_hard_regnum (regstack, src2_reg);
1640 
1641 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1642 		    replace_reg (dest, regno);
1643 
1644 		    regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1645 		      = regstack->reg[regstack->top];
1646 		  }
1647 
1648 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1649 				    REGNO (XEXP (src2_note, 0)));
1650 		replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1651 		regstack->top--;
1652 	      }
1653 	    else
1654 	      {
1655 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1656 		replace_reg (dest, get_hard_regnum (regstack, *dest));
1657 	      }
1658 
1659 	    /* Keep operand 1 matching with destination.  */
1660 	    if (COMMUTATIVE_ARITH_P (pat_src)
1661 		&& REG_P (*src1) && REG_P (*src2)
1662 		&& REGNO (*src1) != REGNO (*dest))
1663 	     {
1664 		int tmp = REGNO (*src1);
1665 		replace_reg (src1, REGNO (*src2));
1666 		replace_reg (src2, tmp);
1667 	     }
1668 	    break;
1669 
1670 	  case UNSPEC:
1671 	    switch (XINT (pat_src, 1))
1672 	      {
1673 	      case UNSPEC_FIST:
1674 	      case UNSPEC_FIST_ATOMIC:
1675 
1676 	      case UNSPEC_FIST_FLOOR:
1677 	      case UNSPEC_FIST_CEIL:
1678 
1679 		/* These insns only operate on the top of the stack.  */
1680 
1681 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1682 		emit_swap_insn (insn, regstack, *src1);
1683 
1684 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1685 
1686 		if (STACK_REG_P (*dest))
1687 		  replace_reg (dest, FIRST_STACK_REG);
1688 
1689 		if (src1_note)
1690 		  {
1691 		    replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1692 		    regstack->top--;
1693 		    CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1694 		  }
1695 
1696 		replace_reg (src1, FIRST_STACK_REG);
1697 		break;
1698 
1699 	      case UNSPEC_FXAM:
1700 
1701 		/* This insn only operate on the top of the stack.  */
1702 
1703 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1704 		emit_swap_insn (insn, regstack, *src1);
1705 
1706 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1707 
1708 		replace_reg (src1, FIRST_STACK_REG);
1709 
1710 		if (src1_note)
1711 		  {
1712 		    remove_regno_note (insn, REG_DEAD,
1713 				       REGNO (XEXP (src1_note, 0)));
1714 		    emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1715 				   EMIT_AFTER);
1716 		  }
1717 
1718 		break;
1719 
1720 	      case UNSPEC_SIN:
1721 	      case UNSPEC_COS:
1722 	      case UNSPEC_FRNDINT:
1723 	      case UNSPEC_F2XM1:
1724 
1725 	      case UNSPEC_FRNDINT_FLOOR:
1726 	      case UNSPEC_FRNDINT_CEIL:
1727 	      case UNSPEC_FRNDINT_TRUNC:
1728 	      case UNSPEC_FRNDINT_MASK_PM:
1729 
1730 		/* Above insns operate on the top of the stack.  */
1731 
1732 	      case UNSPEC_SINCOS_COS:
1733 	      case UNSPEC_XTRACT_FRACT:
1734 
1735 		/* Above insns operate on the top two stack slots,
1736 		   first part of one input, double output insn.  */
1737 
1738 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1739 
1740 		emit_swap_insn (insn, regstack, *src1);
1741 
1742 		/* Input should never die, it is replaced with output.  */
1743 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1744 		gcc_assert (!src1_note);
1745 
1746 		if (STACK_REG_P (*dest))
1747 		  replace_reg (dest, FIRST_STACK_REG);
1748 
1749 		replace_reg (src1, FIRST_STACK_REG);
1750 		break;
1751 
1752 	      case UNSPEC_SINCOS_SIN:
1753 	      case UNSPEC_XTRACT_EXP:
1754 
1755 		/* These insns operate on the top two stack slots,
1756 		   second part of one input, double output insn.  */
1757 
1758 		regstack->top++;
1759 		/* FALLTHRU */
1760 
1761 	      case UNSPEC_TAN:
1762 
1763 		/* For UNSPEC_TAN, regstack->top is already increased
1764 		   by inherent load of constant 1.0.  */
1765 
1766 		/* Output value is generated in the second stack slot.
1767 		   Move current value from second slot to the top.  */
1768 		regstack->reg[regstack->top]
1769 		  = regstack->reg[regstack->top - 1];
1770 
1771 		gcc_assert (STACK_REG_P (*dest));
1772 
1773 		regstack->reg[regstack->top - 1] = REGNO (*dest);
1774 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1775 		replace_reg (dest, FIRST_STACK_REG + 1);
1776 
1777 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1778 
1779 		replace_reg (src1, FIRST_STACK_REG);
1780 		break;
1781 
1782 	      case UNSPEC_FPATAN:
1783 	      case UNSPEC_FYL2X:
1784 	      case UNSPEC_FYL2XP1:
1785 		/* These insns operate on the top two stack slots.  */
1786 
1787 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1788 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1789 
1790 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1791 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1792 
1793 		swap_to_top (insn, regstack, *src1, *src2);
1794 
1795 		replace_reg (src1, FIRST_STACK_REG);
1796 		replace_reg (src2, FIRST_STACK_REG + 1);
1797 
1798 		if (src1_note)
1799 		  replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1800 		if (src2_note)
1801 		  replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1802 
1803 		/* Pop both input operands from the stack.  */
1804 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1805 				    regstack->reg[regstack->top]);
1806 		CLEAR_HARD_REG_BIT (regstack->reg_set,
1807 				    regstack->reg[regstack->top - 1]);
1808 		regstack->top -= 2;
1809 
1810 		/* Push the result back onto the stack.  */
1811 		regstack->reg[++regstack->top] = REGNO (*dest);
1812 		SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1813 		replace_reg (dest, FIRST_STACK_REG);
1814 		break;
1815 
1816 	      case UNSPEC_FSCALE_FRACT:
1817 	      case UNSPEC_FPREM_F:
1818 	      case UNSPEC_FPREM1_F:
1819 		/* These insns operate on the top two stack slots,
1820 		   first part of double input, double output insn.  */
1821 
1822 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1823 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1824 
1825 		src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1826 		src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1827 
1828 		/* Inputs should never die, they are
1829 		   replaced with outputs.  */
1830 		gcc_assert (!src1_note);
1831 		gcc_assert (!src2_note);
1832 
1833 		swap_to_top (insn, regstack, *src1, *src2);
1834 
1835 		/* Push the result back onto stack. Empty stack slot
1836 		   will be filled in second part of insn.  */
1837 		if (STACK_REG_P (*dest))
1838 		  {
1839 		    regstack->reg[regstack->top] = REGNO (*dest);
1840 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1841 		    replace_reg (dest, FIRST_STACK_REG);
1842 		  }
1843 
1844 		replace_reg (src1, FIRST_STACK_REG);
1845 		replace_reg (src2, FIRST_STACK_REG + 1);
1846 		break;
1847 
1848 	      case UNSPEC_FSCALE_EXP:
1849 	      case UNSPEC_FPREM_U:
1850 	      case UNSPEC_FPREM1_U:
1851 		/* These insns operate on the top two stack slots,
1852 		   second part of double input, double output insn.  */
1853 
1854 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1855 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1856 
1857 		/* Push the result back onto stack. Fill empty slot from
1858 		   first part of insn and fix top of stack pointer.  */
1859 		if (STACK_REG_P (*dest))
1860 		  {
1861 		    regstack->reg[regstack->top - 1] = REGNO (*dest);
1862 		    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1863 		    replace_reg (dest, FIRST_STACK_REG + 1);
1864 		  }
1865 
1866 		replace_reg (src1, FIRST_STACK_REG);
1867 		replace_reg (src2, FIRST_STACK_REG + 1);
1868 		break;
1869 
1870 	      case UNSPEC_C2_FLAG:
1871 		/* This insn operates on the top two stack slots,
1872 		   third part of C2 setting double input insn.  */
1873 
1874 		src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1875 		src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1876 
1877 		replace_reg (src1, FIRST_STACK_REG);
1878 		replace_reg (src2, FIRST_STACK_REG + 1);
1879 		break;
1880 
1881 	      case UNSPEC_SAHF:
1882 		/* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1883 		   The combination matches the PPRO fcomi instruction.  */
1884 
1885 		pat_src = XVECEXP (pat_src, 0, 0);
1886 		gcc_assert (GET_CODE (pat_src) == UNSPEC);
1887 		gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1888 		/* Fall through.  */
1889 
1890 	      case UNSPEC_FNSTSW:
1891 		/* Combined fcomp+fnstsw generated for doing well with
1892 		   CSE.  When optimizing this would have been broken
1893 		   up before now.  */
1894 
1895 		pat_src = XVECEXP (pat_src, 0, 0);
1896 		gcc_assert (GET_CODE (pat_src) == COMPARE);
1897 
1898 		compare_for_stack_reg (insn, regstack, pat_src);
1899 		break;
1900 
1901 	      default:
1902 		gcc_unreachable ();
1903 	      }
1904 	    break;
1905 
1906 	  case IF_THEN_ELSE:
1907 	    /* This insn requires the top of stack to be the destination.  */
1908 
1909 	    src1 = get_true_reg (&XEXP (pat_src, 1));
1910 	    src2 = get_true_reg (&XEXP (pat_src, 2));
1911 
1912 	    src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1913 	    src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1914 
1915 	    /* If the comparison operator is an FP comparison operator,
1916 	       it is handled correctly by compare_for_stack_reg () who
1917 	       will move the destination to the top of stack. But if the
1918 	       comparison operator is not an FP comparison operator, we
1919 	       have to handle it here.  */
1920 	    if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1921 		&& REGNO (*dest) != regstack->reg[regstack->top])
1922 	      {
1923 		/* In case one of operands is the top of stack and the operands
1924 		   dies, it is safe to make it the destination operand by
1925 		   reversing the direction of cmove and avoid fxch.  */
1926 		if ((REGNO (*src1) == regstack->reg[regstack->top]
1927 		     && src1_note)
1928 		    || (REGNO (*src2) == regstack->reg[regstack->top]
1929 			&& src2_note))
1930 		  {
1931 		    int idx1 = (get_hard_regnum (regstack, *src1)
1932 				- FIRST_STACK_REG);
1933 		    int idx2 = (get_hard_regnum (regstack, *src2)
1934 				- FIRST_STACK_REG);
1935 
1936 		    /* Make reg-stack believe that the operands are already
1937 		       swapped on the stack */
1938 		    regstack->reg[regstack->top - idx1] = REGNO (*src2);
1939 		    regstack->reg[regstack->top - idx2] = REGNO (*src1);
1940 
1941 		    /* Reverse condition to compensate the operand swap.
1942 		       i386 do have comparison always reversible.  */
1943 		    PUT_CODE (XEXP (pat_src, 0),
1944 			      reversed_comparison_code (XEXP (pat_src, 0), insn));
1945 		  }
1946 		else
1947 	          emit_swap_insn (insn, regstack, *dest);
1948 	      }
1949 
1950 	    {
1951 	      rtx src_note [3];
1952 	      int i;
1953 
1954 	      src_note[0] = 0;
1955 	      src_note[1] = src1_note;
1956 	      src_note[2] = src2_note;
1957 
1958 	      if (STACK_REG_P (*src1))
1959 		replace_reg (src1, get_hard_regnum (regstack, *src1));
1960 	      if (STACK_REG_P (*src2))
1961 		replace_reg (src2, get_hard_regnum (regstack, *src2));
1962 
1963 	      for (i = 1; i <= 2; i++)
1964 		if (src_note [i])
1965 		  {
1966 		    int regno = REGNO (XEXP (src_note[i], 0));
1967 
1968 		    /* If the register that dies is not at the top of
1969 		       stack, then move the top of stack to the dead reg.
1970 		       Top of stack should never die, as it is the
1971 		       destination.  */
1972 		    gcc_assert (regno != regstack->reg[regstack->top]);
1973 		    remove_regno_note (insn, REG_DEAD, regno);
1974 		    emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1975 				    EMIT_AFTER);
1976 		  }
1977 	    }
1978 
1979 	    /* Make dest the top of stack.  Add dest to regstack if
1980 	       not present.  */
1981 	    if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1982 	      regstack->reg[++regstack->top] = REGNO (*dest);
1983 	    SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1984 	    replace_reg (dest, FIRST_STACK_REG);
1985 	    break;
1986 
1987 	  default:
1988 	    gcc_unreachable ();
1989 	  }
1990 	break;
1991       }
1992 
1993     default:
1994       break;
1995     }
1996 
1997   return control_flow_insn_deleted;
1998 }
1999 
2000 /* Substitute hard regnums for any stack regs in INSN, which has
2001    N_INPUTS inputs and N_OUTPUTS outputs.  REGSTACK is the stack info
2002    before the insn, and is updated with changes made here.
2003 
2004    There are several requirements and assumptions about the use of
2005    stack-like regs in asm statements.  These rules are enforced by
2006    record_asm_stack_regs; see comments there for details.  Any
2007    asm_operands left in the RTL at this point may be assume to meet the
2008    requirements, since record_asm_stack_regs removes any problem asm.  */
2009 
2010 static void
2011 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
2012 {
2013   rtx body = PATTERN (insn);
2014 
2015   rtx *note_reg;		/* Array of note contents */
2016   rtx **note_loc;		/* Address of REG field of each note */
2017   enum reg_note *note_kind;	/* The type of each note */
2018 
2019   rtx *clobber_reg = 0;
2020   rtx **clobber_loc = 0;
2021 
2022   struct stack_def temp_stack;
2023   int n_notes;
2024   int n_clobbers;
2025   rtx note;
2026   int i;
2027   int n_inputs, n_outputs;
2028 
2029   if (! check_asm_stack_operands (insn))
2030     return;
2031 
2032   /* Find out what the constraints required.  If no constraint
2033      alternative matches, that is a compiler bug: we should have caught
2034      such an insn in check_asm_stack_operands.  */
2035   extract_constrain_insn (insn);
2036 
2037   preprocess_constraints (insn);
2038   const operand_alternative *op_alt = which_op_alt ();
2039 
2040   get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2041 
2042   /* Strip SUBREGs here to make the following code simpler.  */
2043   for (i = 0; i < recog_data.n_operands; i++)
2044     if (GET_CODE (recog_data.operand[i]) == SUBREG
2045 	&& REG_P (SUBREG_REG (recog_data.operand[i])))
2046       {
2047 	recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2048 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2049       }
2050 
2051   /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND.  */
2052 
2053   for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2054     i++;
2055 
2056   note_reg = XALLOCAVEC (rtx, i);
2057   note_loc = XALLOCAVEC (rtx *, i);
2058   note_kind = XALLOCAVEC (enum reg_note, i);
2059 
2060   n_notes = 0;
2061   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2062     {
2063       if (GET_CODE (note) != EXPR_LIST)
2064 	continue;
2065       rtx reg = XEXP (note, 0);
2066       rtx *loc = & XEXP (note, 0);
2067 
2068       if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2069 	{
2070 	  loc = & SUBREG_REG (reg);
2071 	  reg = SUBREG_REG (reg);
2072 	}
2073 
2074       if (STACK_REG_P (reg)
2075 	  && (REG_NOTE_KIND (note) == REG_DEAD
2076 	      || REG_NOTE_KIND (note) == REG_UNUSED))
2077 	{
2078 	  note_reg[n_notes] = reg;
2079 	  note_loc[n_notes] = loc;
2080 	  note_kind[n_notes] = REG_NOTE_KIND (note);
2081 	  n_notes++;
2082 	}
2083     }
2084 
2085   /* Set up CLOBBER_REG and CLOBBER_LOC.  */
2086 
2087   n_clobbers = 0;
2088 
2089   if (GET_CODE (body) == PARALLEL)
2090     {
2091       clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2092       clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2093 
2094       for (i = 0; i < XVECLEN (body, 0); i++)
2095 	if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2096 	  {
2097 	    rtx clobber = XVECEXP (body, 0, i);
2098 	    rtx reg = XEXP (clobber, 0);
2099 	    rtx *loc = & XEXP (clobber, 0);
2100 
2101 	    if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2102 	      {
2103 		loc = & SUBREG_REG (reg);
2104 		reg = SUBREG_REG (reg);
2105 	      }
2106 
2107 	    if (STACK_REG_P (reg))
2108 	      {
2109 		clobber_reg[n_clobbers] = reg;
2110 		clobber_loc[n_clobbers] = loc;
2111 		n_clobbers++;
2112 	      }
2113 	  }
2114     }
2115 
2116   temp_stack = *regstack;
2117 
2118   /* Put the input regs into the desired place in TEMP_STACK.  */
2119 
2120   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2121     if (STACK_REG_P (recog_data.operand[i])
2122 	&& reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2123 	&& op_alt[i].cl != FLOAT_REGS)
2124       {
2125 	/* If an operand needs to be in a particular reg in
2126 	   FLOAT_REGS, the constraint was either 't' or 'u'.  Since
2127 	   these constraints are for single register classes, and
2128 	   reload guaranteed that operand[i] is already in that class,
2129 	   we can just use REGNO (recog_data.operand[i]) to know which
2130 	   actual reg this operand needs to be in.  */
2131 
2132 	int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2133 
2134 	gcc_assert (regno >= 0);
2135 
2136 	if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2137 	  {
2138 	    /* recog_data.operand[i] is not in the right place.  Find
2139 	       it and swap it with whatever is already in I's place.
2140 	       K is where recog_data.operand[i] is now.  J is where it
2141 	       should be.  */
2142 	    int j, k, temp;
2143 
2144 	    k = temp_stack.top - (regno - FIRST_STACK_REG);
2145 	    j = (temp_stack.top
2146 		 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2147 
2148 	    temp = temp_stack.reg[k];
2149 	    temp_stack.reg[k] = temp_stack.reg[j];
2150 	    temp_stack.reg[j] = temp;
2151 	  }
2152       }
2153 
2154   /* Emit insns before INSN to make sure the reg-stack is in the right
2155      order.  */
2156 
2157   change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2158 
2159   /* Make the needed input register substitutions.  Do death notes and
2160      clobbers too, because these are for inputs, not outputs.  */
2161 
2162   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2163     if (STACK_REG_P (recog_data.operand[i]))
2164       {
2165 	int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2166 
2167 	gcc_assert (regnum >= 0);
2168 
2169 	replace_reg (recog_data.operand_loc[i], regnum);
2170       }
2171 
2172   for (i = 0; i < n_notes; i++)
2173     if (note_kind[i] == REG_DEAD)
2174       {
2175 	int regnum = get_hard_regnum (regstack, note_reg[i]);
2176 
2177 	gcc_assert (regnum >= 0);
2178 
2179 	replace_reg (note_loc[i], regnum);
2180       }
2181 
2182   for (i = 0; i < n_clobbers; i++)
2183     {
2184       /* It's OK for a CLOBBER to reference a reg that is not live.
2185          Don't try to replace it in that case.  */
2186       int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2187 
2188       if (regnum >= 0)
2189 	{
2190 	  /* Sigh - clobbers always have QImode.  But replace_reg knows
2191 	     that these regs can't be MODE_INT and will assert.  Just put
2192 	     the right reg there without calling replace_reg.  */
2193 
2194 	  *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2195 	}
2196     }
2197 
2198   /* Now remove from REGSTACK any inputs that the asm implicitly popped.  */
2199 
2200   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2201     if (STACK_REG_P (recog_data.operand[i]))
2202       {
2203 	/* An input reg is implicitly popped if it is tied to an
2204 	   output, or if there is a CLOBBER for it.  */
2205 	int j;
2206 
2207 	for (j = 0; j < n_clobbers; j++)
2208 	  if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2209 	    break;
2210 
2211 	if (j < n_clobbers || op_alt[i].matches >= 0)
2212 	  {
2213 	    /* recog_data.operand[i] might not be at the top of stack.
2214 	       But that's OK, because all we need to do is pop the
2215 	       right number of regs off of the top of the reg-stack.
2216 	       record_asm_stack_regs guaranteed that all implicitly
2217 	       popped regs were grouped at the top of the reg-stack.  */
2218 
2219 	    CLEAR_HARD_REG_BIT (regstack->reg_set,
2220 				regstack->reg[regstack->top]);
2221 	    regstack->top--;
2222 	  }
2223       }
2224 
2225   /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2226      Note that there isn't any need to substitute register numbers.
2227      ???  Explain why this is true.  */
2228 
2229   for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2230     {
2231       /* See if there is an output for this hard reg.  */
2232       int j;
2233 
2234       for (j = 0; j < n_outputs; j++)
2235 	if (STACK_REG_P (recog_data.operand[j])
2236 	    && REGNO (recog_data.operand[j]) == (unsigned) i)
2237 	  {
2238 	    regstack->reg[++regstack->top] = i;
2239 	    SET_HARD_REG_BIT (regstack->reg_set, i);
2240 	    break;
2241 	  }
2242     }
2243 
2244   /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2245      input that the asm didn't implicitly pop.  If the asm didn't
2246      implicitly pop an input reg, that reg will still be live.
2247 
2248      Note that we can't use find_regno_note here: the register numbers
2249      in the death notes have already been substituted.  */
2250 
2251   for (i = 0; i < n_outputs; i++)
2252     if (STACK_REG_P (recog_data.operand[i]))
2253       {
2254 	int j;
2255 
2256 	for (j = 0; j < n_notes; j++)
2257 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2258 	      && note_kind[j] == REG_UNUSED)
2259 	    {
2260 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2261 				    EMIT_AFTER);
2262 	      break;
2263 	    }
2264       }
2265 
2266   for (i = n_outputs; i < n_outputs + n_inputs; i++)
2267     if (STACK_REG_P (recog_data.operand[i]))
2268       {
2269 	int j;
2270 
2271 	for (j = 0; j < n_notes; j++)
2272 	  if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2273 	      && note_kind[j] == REG_DEAD
2274 	      && TEST_HARD_REG_BIT (regstack->reg_set,
2275 				    REGNO (recog_data.operand[i])))
2276 	    {
2277 	      insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2278 				    EMIT_AFTER);
2279 	      break;
2280 	    }
2281       }
2282 }
2283 
2284 /* Substitute stack hard reg numbers for stack virtual registers in
2285    INSN.  Non-stack register numbers are not changed.  REGSTACK is the
2286    current stack content.  Insns may be emitted as needed to arrange the
2287    stack for the 387 based on the contents of the insn.  Return whether
2288    a control flow insn was deleted in the process.  */
2289 
2290 static bool
2291 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2292 {
2293   rtx *note_link, note;
2294   bool control_flow_insn_deleted = false;
2295   int i;
2296 
2297   if (CALL_P (insn))
2298     {
2299       int top = regstack->top;
2300 
2301       /* If there are any floating point parameters to be passed in
2302 	 registers for this call, make sure they are in the right
2303 	 order.  */
2304 
2305       if (top >= 0)
2306 	{
2307 	  straighten_stack (insn, regstack);
2308 
2309 	  /* Now mark the arguments as dead after the call.  */
2310 
2311 	  while (regstack->top >= 0)
2312 	    {
2313 	      CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2314 	      regstack->top--;
2315 	    }
2316 	}
2317     }
2318 
2319   /* Do the actual substitution if any stack regs are mentioned.
2320      Since we only record whether entire insn mentions stack regs, and
2321      subst_stack_regs_pat only works for patterns that contain stack regs,
2322      we must check each pattern in a parallel here.  A call_value_pop could
2323      fail otherwise.  */
2324 
2325   if (stack_regs_mentioned (insn))
2326     {
2327       int n_operands = asm_noperands (PATTERN (insn));
2328       if (n_operands >= 0)
2329 	{
2330 	  /* This insn is an `asm' with operands.  Decode the operands,
2331 	     decide how many are inputs, and do register substitution.
2332 	     Any REG_UNUSED notes will be handled by subst_asm_stack_regs.  */
2333 
2334 	  subst_asm_stack_regs (insn, regstack);
2335 	  return control_flow_insn_deleted;
2336 	}
2337 
2338       if (GET_CODE (PATTERN (insn)) == PARALLEL)
2339 	for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2340 	  {
2341 	    if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2342 	      {
2343 	        if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2344 	           XVECEXP (PATTERN (insn), 0, i)
2345 		     = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2346 		control_flow_insn_deleted
2347 		  |= subst_stack_regs_pat (insn, regstack,
2348 					   XVECEXP (PATTERN (insn), 0, i));
2349 	      }
2350 	  }
2351       else
2352 	control_flow_insn_deleted
2353 	  |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2354     }
2355 
2356   /* subst_stack_regs_pat may have deleted a no-op insn.  If so, any
2357      REG_UNUSED will already have been dealt with, so just return.  */
2358 
2359   if (NOTE_P (insn) || insn->deleted ())
2360     return control_flow_insn_deleted;
2361 
2362   /* If this a noreturn call, we can't insert pop insns after it.
2363      Instead, reset the stack state to empty.  */
2364   if (CALL_P (insn)
2365       && find_reg_note (insn, REG_NORETURN, NULL))
2366     {
2367       regstack->top = -1;
2368       CLEAR_HARD_REG_SET (regstack->reg_set);
2369       return control_flow_insn_deleted;
2370     }
2371 
2372   /* If there is a REG_UNUSED note on a stack register on this insn,
2373      the indicated reg must be popped.  The REG_UNUSED note is removed,
2374      since the form of the newly emitted pop insn references the reg,
2375      making it no longer `unset'.  */
2376 
2377   note_link = &REG_NOTES (insn);
2378   for (note = *note_link; note; note = XEXP (note, 1))
2379     if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2380       {
2381 	*note_link = XEXP (note, 1);
2382 	insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2383       }
2384     else
2385       note_link = &XEXP (note, 1);
2386 
2387   return control_flow_insn_deleted;
2388 }
2389 
2390 /* Change the organization of the stack so that it fits a new basic
2391    block.  Some registers might have to be popped, but there can never be
2392    a register live in the new block that is not now live.
2393 
2394    Insert any needed insns before or after INSN, as indicated by
2395    WHERE.  OLD is the original stack layout, and NEW is the desired
2396    form.  OLD is updated to reflect the code emitted, i.e., it will be
2397    the same as NEW upon return.
2398 
2399    This function will not preserve block_end[].  But that information
2400    is no longer needed once this has executed.  */
2401 
2402 static void
2403 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2404 	      enum emit_where where)
2405 {
2406   int reg;
2407   int update_end = 0;
2408   int i;
2409 
2410   /* Stack adjustments for the first insn in a block update the
2411      current_block's stack_in instead of inserting insns directly.
2412      compensate_edges will add the necessary code later.  */
2413   if (current_block
2414       && starting_stack_p
2415       && where == EMIT_BEFORE)
2416     {
2417       BLOCK_INFO (current_block)->stack_in = *new_stack;
2418       starting_stack_p = false;
2419       *old = *new_stack;
2420       return;
2421     }
2422 
2423   /* We will be inserting new insns "backwards".  If we are to insert
2424      after INSN, find the next insn, and insert before it.  */
2425 
2426   if (where == EMIT_AFTER)
2427     {
2428       if (current_block && BB_END (current_block) == insn)
2429 	update_end = 1;
2430       insn = NEXT_INSN (insn);
2431     }
2432 
2433   /* Initialize partially dead variables.  */
2434   for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2435     if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2436 	&& !TEST_HARD_REG_BIT (old->reg_set, i))
2437       {
2438 	old->reg[++old->top] = i;
2439         SET_HARD_REG_BIT (old->reg_set, i);
2440 	emit_insn_before (gen_rtx_SET (VOIDmode,
2441 				       FP_MODE_REG (i, SFmode), not_a_num), insn);
2442       }
2443 
2444   /* Pop any registers that are not needed in the new block.  */
2445 
2446   /* If the destination block's stack already has a specified layout
2447      and contains two or more registers, use a more intelligent algorithm
2448      to pop registers that minimizes the number number of fxchs below.  */
2449   if (new_stack->top > 0)
2450     {
2451       bool slots[REG_STACK_SIZE];
2452       int pops[REG_STACK_SIZE];
2453       int next, dest, topsrc;
2454 
2455       /* First pass to determine the free slots.  */
2456       for (reg = 0; reg <= new_stack->top; reg++)
2457 	slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2458 
2459       /* Second pass to allocate preferred slots.  */
2460       topsrc = -1;
2461       for (reg = old->top; reg > new_stack->top; reg--)
2462 	if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2463 	  {
2464 	    dest = -1;
2465 	    for (next = 0; next <= new_stack->top; next++)
2466 	      if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2467 		{
2468 		  /* If this is a preference for the new top of stack, record
2469 		     the fact by remembering it's old->reg in topsrc.  */
2470                   if (next == new_stack->top)
2471 		    topsrc = reg;
2472 		  slots[next] = true;
2473 		  dest = next;
2474 		  break;
2475 		}
2476 	    pops[reg] = dest;
2477 	  }
2478 	else
2479 	  pops[reg] = reg;
2480 
2481       /* Intentionally, avoid placing the top of stack in it's correct
2482 	 location, if we still need to permute the stack below and we
2483 	 can usefully place it somewhere else.  This is the case if any
2484 	 slot is still unallocated, in which case we should place the
2485 	 top of stack there.  */
2486       if (topsrc != -1)
2487 	for (reg = 0; reg < new_stack->top; reg++)
2488 	  if (!slots[reg])
2489 	    {
2490 	      pops[topsrc] = reg;
2491 	      slots[new_stack->top] = false;
2492 	      slots[reg] = true;
2493 	      break;
2494 	    }
2495 
2496       /* Third pass allocates remaining slots and emits pop insns.  */
2497       next = new_stack->top;
2498       for (reg = old->top; reg > new_stack->top; reg--)
2499 	{
2500 	  dest = pops[reg];
2501 	  if (dest == -1)
2502 	    {
2503 	      /* Find next free slot.  */
2504 	      while (slots[next])
2505 		next--;
2506 	      dest = next--;
2507 	    }
2508 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2509 			 EMIT_BEFORE);
2510 	}
2511     }
2512   else
2513     {
2514       /* The following loop attempts to maximize the number of times we
2515 	 pop the top of the stack, as this permits the use of the faster
2516 	 ffreep instruction on platforms that support it.  */
2517       int live, next;
2518 
2519       live = 0;
2520       for (reg = 0; reg <= old->top; reg++)
2521         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2522           live++;
2523 
2524       next = live;
2525       while (old->top >= live)
2526         if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2527 	  {
2528 	    while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2529 	      next--;
2530 	    emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2531 			   EMIT_BEFORE);
2532 	  }
2533 	else
2534 	  emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2535 			 EMIT_BEFORE);
2536     }
2537 
2538   if (new_stack->top == -2)
2539     {
2540       /* If the new block has never been processed, then it can inherit
2541 	 the old stack order.  */
2542 
2543       new_stack->top = old->top;
2544       memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2545     }
2546   else
2547     {
2548       /* This block has been entered before, and we must match the
2549 	 previously selected stack order.  */
2550 
2551       /* By now, the only difference should be the order of the stack,
2552 	 not their depth or liveliness.  */
2553 
2554       gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2555       gcc_assert (old->top == new_stack->top);
2556 
2557       /* If the stack is not empty (new_stack->top != -1), loop here emitting
2558 	 swaps until the stack is correct.
2559 
2560 	 The worst case number of swaps emitted is N + 2, where N is the
2561 	 depth of the stack.  In some cases, the reg at the top of
2562 	 stack may be correct, but swapped anyway in order to fix
2563 	 other regs.  But since we never swap any other reg away from
2564 	 its correct slot, this algorithm will converge.  */
2565 
2566       if (new_stack->top != -1)
2567 	do
2568 	  {
2569 	    /* Swap the reg at top of stack into the position it is
2570 	       supposed to be in, until the correct top of stack appears.  */
2571 
2572 	    while (old->reg[old->top] != new_stack->reg[new_stack->top])
2573 	      {
2574 		for (reg = new_stack->top; reg >= 0; reg--)
2575 		  if (new_stack->reg[reg] == old->reg[old->top])
2576 		    break;
2577 
2578 		gcc_assert (reg != -1);
2579 
2580 		emit_swap_insn (insn, old,
2581 				FP_MODE_REG (old->reg[reg], DFmode));
2582 	      }
2583 
2584 	    /* See if any regs remain incorrect.  If so, bring an
2585 	     incorrect reg to the top of stack, and let the while loop
2586 	     above fix it.  */
2587 
2588 	    for (reg = new_stack->top; reg >= 0; reg--)
2589 	      if (new_stack->reg[reg] != old->reg[reg])
2590 		{
2591 		  emit_swap_insn (insn, old,
2592 				  FP_MODE_REG (old->reg[reg], DFmode));
2593 		  break;
2594 		}
2595 	  } while (reg >= 0);
2596 
2597       /* At this point there must be no differences.  */
2598 
2599       for (reg = old->top; reg >= 0; reg--)
2600 	gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2601     }
2602 
2603   if (update_end)
2604     BB_END (current_block) = PREV_INSN (insn);
2605 }
2606 
2607 /* Print stack configuration.  */
2608 
2609 static void
2610 print_stack (FILE *file, stack_ptr s)
2611 {
2612   if (! file)
2613     return;
2614 
2615   if (s->top == -2)
2616     fprintf (file, "uninitialized\n");
2617   else if (s->top == -1)
2618     fprintf (file, "empty\n");
2619   else
2620     {
2621       int i;
2622       fputs ("[ ", file);
2623       for (i = 0; i <= s->top; ++i)
2624 	fprintf (file, "%d ", s->reg[i]);
2625       fputs ("]\n", file);
2626     }
2627 }
2628 
2629 /* This function was doing life analysis.  We now let the regular live
2630    code do it's job, so we only need to check some extra invariants
2631    that reg-stack expects.  Primary among these being that all registers
2632    are initialized before use.
2633 
2634    The function returns true when code was emitted to CFG edges and
2635    commit_edge_insertions needs to be called.  */
2636 
2637 static int
2638 convert_regs_entry (void)
2639 {
2640   int inserted = 0;
2641   edge e;
2642   edge_iterator ei;
2643 
2644   /* Load something into each stack register live at function entry.
2645      Such live registers can be caused by uninitialized variables or
2646      functions not returning values on all paths.  In order to keep
2647      the push/pop code happy, and to not scrog the register stack, we
2648      must put something in these registers.  Use a QNaN.
2649 
2650      Note that we are inserting converted code here.  This code is
2651      never seen by the convert_regs pass.  */
2652 
2653   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2654     {
2655       basic_block block = e->dest;
2656       block_info bi = BLOCK_INFO (block);
2657       int reg, top = -1;
2658 
2659       for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2660 	if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2661 	  {
2662 	    rtx init;
2663 
2664 	    bi->stack_in.reg[++top] = reg;
2665 
2666 	    init = gen_rtx_SET (VOIDmode,
2667 				FP_MODE_REG (FIRST_STACK_REG, SFmode),
2668 				not_a_num);
2669 	    insert_insn_on_edge (init, e);
2670 	    inserted = 1;
2671 	  }
2672 
2673       bi->stack_in.top = top;
2674     }
2675 
2676   return inserted;
2677 }
2678 
2679 /* Construct the desired stack for function exit.  This will either
2680    be `empty', or the function return value at top-of-stack.  */
2681 
2682 static void
2683 convert_regs_exit (void)
2684 {
2685   int value_reg_low, value_reg_high;
2686   stack_ptr output_stack;
2687   rtx retvalue;
2688 
2689   retvalue = stack_result (current_function_decl);
2690   value_reg_low = value_reg_high = -1;
2691   if (retvalue)
2692     {
2693       value_reg_low = REGNO (retvalue);
2694       value_reg_high = END_HARD_REGNO (retvalue) - 1;
2695     }
2696 
2697   output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2698   if (value_reg_low == -1)
2699     output_stack->top = -1;
2700   else
2701     {
2702       int reg;
2703 
2704       output_stack->top = value_reg_high - value_reg_low;
2705       for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2706 	{
2707 	  output_stack->reg[value_reg_high - reg] = reg;
2708 	  SET_HARD_REG_BIT (output_stack->reg_set, reg);
2709 	}
2710     }
2711 }
2712 
2713 /* Copy the stack info from the end of edge E's source block to the
2714    start of E's destination block.  */
2715 
2716 static void
2717 propagate_stack (edge e)
2718 {
2719   stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2720   stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2721   int reg;
2722 
2723   /* Preserve the order of the original stack, but check whether
2724      any pops are needed.  */
2725   dest_stack->top = -1;
2726   for (reg = 0; reg <= src_stack->top; ++reg)
2727     if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2728       dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2729 
2730   /* Push in any partially dead values.  */
2731   for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2732     if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2733         && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2734       dest_stack->reg[++dest_stack->top] = reg;
2735 }
2736 
2737 
2738 /* Adjust the stack of edge E's source block on exit to match the stack
2739    of it's target block upon input.  The stack layouts of both blocks
2740    should have been defined by now.  */
2741 
2742 static bool
2743 compensate_edge (edge e)
2744 {
2745   basic_block source = e->src, target = e->dest;
2746   stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2747   stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2748   struct stack_def regstack;
2749   int reg;
2750 
2751   if (dump_file)
2752     fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2753 
2754   gcc_assert (target_stack->top != -2);
2755 
2756   /* Check whether stacks are identical.  */
2757   if (target_stack->top == source_stack->top)
2758     {
2759       for (reg = target_stack->top; reg >= 0; --reg)
2760 	if (target_stack->reg[reg] != source_stack->reg[reg])
2761 	  break;
2762 
2763       if (reg == -1)
2764 	{
2765 	  if (dump_file)
2766 	    fprintf (dump_file, "no changes needed\n");
2767 	  return false;
2768 	}
2769     }
2770 
2771   if (dump_file)
2772     {
2773       fprintf (dump_file, "correcting stack to ");
2774       print_stack (dump_file, target_stack);
2775     }
2776 
2777   /* Abnormal calls may appear to have values live in st(0), but the
2778      abnormal return path will not have actually loaded the values.  */
2779   if (e->flags & EDGE_ABNORMAL_CALL)
2780     {
2781       /* Assert that the lifetimes are as we expect -- one value
2782          live at st(0) on the end of the source block, and no
2783          values live at the beginning of the destination block.
2784 	 For complex return values, we may have st(1) live as well.  */
2785       gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2786       gcc_assert (target_stack->top == -1);
2787       return false;
2788     }
2789 
2790   /* Handle non-call EH edges specially.  The normal return path have
2791      values in registers.  These will be popped en masse by the unwind
2792      library.  */
2793   if (e->flags & EDGE_EH)
2794     {
2795       gcc_assert (target_stack->top == -1);
2796       return false;
2797     }
2798 
2799   /* We don't support abnormal edges.  Global takes care to
2800      avoid any live register across them, so we should never
2801      have to insert instructions on such edges.  */
2802   gcc_assert (! (e->flags & EDGE_ABNORMAL));
2803 
2804   /* Make a copy of source_stack as change_stack is destructive.  */
2805   regstack = *source_stack;
2806 
2807   /* It is better to output directly to the end of the block
2808      instead of to the edge, because emit_swap can do minimal
2809      insn scheduling.  We can do this when there is only one
2810      edge out, and it is not abnormal.  */
2811   if (EDGE_COUNT (source->succs) == 1)
2812     {
2813       current_block = source;
2814       change_stack (BB_END (source), &regstack, target_stack,
2815 		    (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2816     }
2817   else
2818     {
2819       rtx_insn *seq;
2820       rtx_note *after;
2821 
2822       current_block = NULL;
2823       start_sequence ();
2824 
2825       /* ??? change_stack needs some point to emit insns after.  */
2826       after = emit_note (NOTE_INSN_DELETED);
2827 
2828       change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2829 
2830       seq = get_insns ();
2831       end_sequence ();
2832 
2833       insert_insn_on_edge (seq, e);
2834       return true;
2835     }
2836   return false;
2837 }
2838 
2839 /* Traverse all non-entry edges in the CFG, and emit the necessary
2840    edge compensation code to change the stack from stack_out of the
2841    source block to the stack_in of the destination block.  */
2842 
2843 static bool
2844 compensate_edges (void)
2845 {
2846   bool inserted = false;
2847   basic_block bb;
2848 
2849   starting_stack_p = false;
2850 
2851   FOR_EACH_BB_FN (bb, cfun)
2852     if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2853       {
2854         edge e;
2855         edge_iterator ei;
2856 
2857         FOR_EACH_EDGE (e, ei, bb->succs)
2858 	  inserted |= compensate_edge (e);
2859       }
2860   return inserted;
2861 }
2862 
2863 /* Select the better of two edges E1 and E2 to use to determine the
2864    stack layout for their shared destination basic block.  This is
2865    typically the more frequently executed.  The edge E1 may be NULL
2866    (in which case E2 is returned), but E2 is always non-NULL.  */
2867 
2868 static edge
2869 better_edge (edge e1, edge e2)
2870 {
2871   if (!e1)
2872     return e2;
2873 
2874   if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2875     return e1;
2876   if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2877     return e2;
2878 
2879   if (e1->count > e2->count)
2880     return e1;
2881   if (e1->count < e2->count)
2882     return e2;
2883 
2884   /* Prefer critical edges to minimize inserting compensation code on
2885      critical edges.  */
2886 
2887   if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2888     return EDGE_CRITICAL_P (e1) ? e1 : e2;
2889 
2890   /* Avoid non-deterministic behavior.  */
2891   return (e1->src->index < e2->src->index) ? e1 : e2;
2892 }
2893 
2894 /* Convert stack register references in one block.  Return true if the CFG
2895    has been modified in the process.  */
2896 
2897 static bool
2898 convert_regs_1 (basic_block block)
2899 {
2900   struct stack_def regstack;
2901   block_info bi = BLOCK_INFO (block);
2902   int reg;
2903   rtx_insn *insn, *next;
2904   bool control_flow_insn_deleted = false;
2905   bool cfg_altered = false;
2906   int debug_insns_with_starting_stack = 0;
2907 
2908   any_malformed_asm = false;
2909 
2910   /* Choose an initial stack layout, if one hasn't already been chosen.  */
2911   if (bi->stack_in.top == -2)
2912     {
2913       edge e, beste = NULL;
2914       edge_iterator ei;
2915 
2916       /* Select the best incoming edge (typically the most frequent) to
2917 	 use as a template for this basic block.  */
2918       FOR_EACH_EDGE (e, ei, block->preds)
2919 	if (BLOCK_INFO (e->src)->done)
2920 	  beste = better_edge (beste, e);
2921 
2922       if (beste)
2923 	propagate_stack (beste);
2924       else
2925 	{
2926 	  /* No predecessors.  Create an arbitrary input stack.  */
2927 	  bi->stack_in.top = -1;
2928 	  for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2929 	    if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2930 	      bi->stack_in.reg[++bi->stack_in.top] = reg;
2931 	}
2932     }
2933 
2934   if (dump_file)
2935     {
2936       fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2937       print_stack (dump_file, &bi->stack_in);
2938     }
2939 
2940   /* Process all insns in this block.  Keep track of NEXT so that we
2941      don't process insns emitted while substituting in INSN.  */
2942   current_block = block;
2943   next = BB_HEAD (block);
2944   regstack = bi->stack_in;
2945   starting_stack_p = true;
2946 
2947   do
2948     {
2949       insn = next;
2950       next = NEXT_INSN (insn);
2951 
2952       /* Ensure we have not missed a block boundary.  */
2953       gcc_assert (next);
2954       if (insn == BB_END (block))
2955 	next = NULL;
2956 
2957       /* Don't bother processing unless there is a stack reg
2958 	 mentioned or if it's a CALL_INSN.  */
2959       if (DEBUG_INSN_P (insn))
2960 	{
2961 	  if (starting_stack_p)
2962 	    debug_insns_with_starting_stack++;
2963 	  else
2964 	    {
2965 	      subst_all_stack_regs_in_debug_insn (insn, &regstack);
2966 
2967 	      /* Nothing must ever die at a debug insn.  If something
2968 		 is referenced in it that becomes dead, it should have
2969 		 died before and the reference in the debug insn
2970 		 should have been removed so as to avoid changing code
2971 		 generation.  */
2972 	      gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2973 	    }
2974 	}
2975       else if (stack_regs_mentioned (insn)
2976 	       || CALL_P (insn))
2977 	{
2978 	  if (dump_file)
2979 	    {
2980 	      fprintf (dump_file, "  insn %d input stack: ",
2981 		       INSN_UID (insn));
2982 	      print_stack (dump_file, &regstack);
2983 	    }
2984 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2985 	  starting_stack_p = false;
2986 	}
2987     }
2988   while (next);
2989 
2990   if (debug_insns_with_starting_stack)
2991     {
2992       /* Since it's the first non-debug instruction that determines
2993 	 the stack requirements of the current basic block, we refrain
2994 	 from updating debug insns before it in the loop above, and
2995 	 fix them up here.  */
2996       for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2997 	   insn = NEXT_INSN (insn))
2998 	{
2999 	  if (!DEBUG_INSN_P (insn))
3000 	    continue;
3001 
3002 	  debug_insns_with_starting_stack--;
3003 	  subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
3004 	}
3005     }
3006 
3007   if (dump_file)
3008     {
3009       fprintf (dump_file, "Expected live registers [");
3010       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3011 	if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
3012 	  fprintf (dump_file, " %d", reg);
3013       fprintf (dump_file, " ]\nOutput stack: ");
3014       print_stack (dump_file, &regstack);
3015     }
3016 
3017   insn = BB_END (block);
3018   if (JUMP_P (insn))
3019     insn = PREV_INSN (insn);
3020 
3021   /* If the function is declared to return a value, but it returns one
3022      in only some cases, some registers might come live here.  Emit
3023      necessary moves for them.  */
3024 
3025   for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
3026     {
3027       if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
3028 	  && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
3029 	{
3030 	  rtx set;
3031 
3032 	  if (dump_file)
3033 	    fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3034 
3035 	  set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
3036 	  insn = emit_insn_after (set, insn);
3037 	  control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3038 	}
3039     }
3040 
3041   /* Amongst the insns possibly deleted during the substitution process above,
3042      might have been the only trapping insn in the block.  We purge the now
3043      possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3044      called at the end of convert_regs.  The order in which we process the
3045      blocks ensures that we never delete an already processed edge.
3046 
3047      Note that, at this point, the CFG may have been damaged by the emission
3048      of instructions after an abnormal call, which moves the basic block end
3049      (and is the reason why we call fixup_abnormal_edges later).  So we must
3050      be sure that the trapping insn has been deleted before trying to purge
3051      dead edges, otherwise we risk purging valid edges.
3052 
3053      ??? We are normally supposed not to delete trapping insns, so we pretend
3054      that the insns deleted above don't actually trap.  It would have been
3055      better to detect this earlier and avoid creating the EH edge in the first
3056      place, still, but we don't have enough information at that time.  */
3057 
3058   if (control_flow_insn_deleted)
3059     cfg_altered |= purge_dead_edges (block);
3060 
3061   /* Something failed if the stack lives don't match.  If we had malformed
3062      asms, we zapped the instruction itself, but that didn't produce the
3063      same pattern of register kills as before.  */
3064 
3065   gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3066 	      || any_malformed_asm);
3067   bi->stack_out = regstack;
3068   bi->done = true;
3069 
3070   return cfg_altered;
3071 }
3072 
3073 /* Convert registers in all blocks reachable from BLOCK.  Return true if the
3074    CFG has been modified in the process.  */
3075 
3076 static bool
3077 convert_regs_2 (basic_block block)
3078 {
3079   basic_block *stack, *sp;
3080   bool cfg_altered = false;
3081 
3082   /* We process the blocks in a top-down manner, in a way such that one block
3083      is only processed after all its predecessors.  The number of predecessors
3084      of every block has already been computed.  */
3085 
3086   stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3087   sp = stack;
3088 
3089   *sp++ = block;
3090 
3091   do
3092     {
3093       edge e;
3094       edge_iterator ei;
3095 
3096       block = *--sp;
3097 
3098       /* Processing BLOCK is achieved by convert_regs_1, which may purge
3099 	 some dead EH outgoing edge after the deletion of the trapping
3100 	 insn inside the block.  Since the number of predecessors of
3101 	 BLOCK's successors was computed based on the initial edge set,
3102 	 we check the necessity to process some of these successors
3103 	 before such an edge deletion may happen.  However, there is
3104 	 a pitfall: if BLOCK is the only predecessor of a successor and
3105 	 the edge between them happens to be deleted, the successor
3106 	 becomes unreachable and should not be processed.  The problem
3107 	 is that there is no way to preventively detect this case so we
3108 	 stack the successor in all cases and hand over the task of
3109 	 fixing up the discrepancy to convert_regs_1.  */
3110 
3111       FOR_EACH_EDGE (e, ei, block->succs)
3112 	if (! (e->flags & EDGE_DFS_BACK))
3113 	  {
3114 	    BLOCK_INFO (e->dest)->predecessors--;
3115 	    if (!BLOCK_INFO (e->dest)->predecessors)
3116 	      *sp++ = e->dest;
3117 	  }
3118 
3119       cfg_altered |= convert_regs_1 (block);
3120     }
3121   while (sp != stack);
3122 
3123   free (stack);
3124 
3125   return cfg_altered;
3126 }
3127 
3128 /* Traverse all basic blocks in a function, converting the register
3129    references in each insn from the "flat" register file that gcc uses,
3130    to the stack-like registers the 387 uses.  */
3131 
3132 static void
3133 convert_regs (void)
3134 {
3135   bool cfg_altered = false;
3136   int inserted;
3137   basic_block b;
3138   edge e;
3139   edge_iterator ei;
3140 
3141   /* Initialize uninitialized registers on function entry.  */
3142   inserted = convert_regs_entry ();
3143 
3144   /* Construct the desired stack for function exit.  */
3145   convert_regs_exit ();
3146   BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3147 
3148   /* ??? Future: process inner loops first, and give them arbitrary
3149      initial stacks which emit_swap_insn can modify.  This ought to
3150      prevent double fxch that often appears at the head of a loop.  */
3151 
3152   /* Process all blocks reachable from all entry points.  */
3153   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3154     cfg_altered |= convert_regs_2 (e->dest);
3155 
3156   /* ??? Process all unreachable blocks.  Though there's no excuse
3157      for keeping these even when not optimizing.  */
3158   FOR_EACH_BB_FN (b, cfun)
3159     {
3160       block_info bi = BLOCK_INFO (b);
3161 
3162       if (! bi->done)
3163 	cfg_altered |= convert_regs_2 (b);
3164     }
3165 
3166   /* We must fix up abnormal edges before inserting compensation code
3167      because both mechanisms insert insns on edges.  */
3168   inserted |= fixup_abnormal_edges ();
3169 
3170   inserted |= compensate_edges ();
3171 
3172   clear_aux_for_blocks ();
3173 
3174   if (inserted)
3175     commit_edge_insertions ();
3176 
3177   if (cfg_altered)
3178     cleanup_cfg (0);
3179 
3180   if (dump_file)
3181     fputc ('\n', dump_file);
3182 }
3183 
3184 /* Convert register usage from "flat" register file usage to a "stack
3185    register file.  FILE is the dump file, if used.
3186 
3187    Construct a CFG and run life analysis.  Then convert each insn one
3188    by one.  Run a last cleanup_cfg pass, if optimizing, to eliminate
3189    code duplication created when the converter inserts pop insns on
3190    the edges.  */
3191 
3192 static bool
3193 reg_to_stack (void)
3194 {
3195   basic_block bb;
3196   int i;
3197   int max_uid;
3198 
3199   /* Clean up previous run.  */
3200   stack_regs_mentioned_data.release ();
3201 
3202   /* See if there is something to do.  Flow analysis is quite
3203      expensive so we might save some compilation time.  */
3204   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3205     if (df_regs_ever_live_p (i))
3206       break;
3207   if (i > LAST_STACK_REG)
3208     return false;
3209 
3210   df_note_add_problem ();
3211   df_analyze ();
3212 
3213   mark_dfs_back_edges ();
3214 
3215   /* Set up block info for each basic block.  */
3216   alloc_aux_for_blocks (sizeof (struct block_info_def));
3217   FOR_EACH_BB_FN (bb, cfun)
3218     {
3219       block_info bi = BLOCK_INFO (bb);
3220       edge_iterator ei;
3221       edge e;
3222       int reg;
3223 
3224       FOR_EACH_EDGE (e, ei, bb->preds)
3225 	if (!(e->flags & EDGE_DFS_BACK)
3226 	    && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3227 	  bi->predecessors++;
3228 
3229       /* Set current register status at last instruction `uninitialized'.  */
3230       bi->stack_in.top = -2;
3231 
3232       /* Copy live_at_end and live_at_start into temporaries.  */
3233       for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3234 	{
3235 	  if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3236 	    SET_HARD_REG_BIT (bi->out_reg_set, reg);
3237 	  if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3238 	    SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3239 	}
3240     }
3241 
3242   /* Create the replacement registers up front.  */
3243   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3244     {
3245       machine_mode mode;
3246       for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3247 	   mode != VOIDmode;
3248 	   mode = GET_MODE_WIDER_MODE (mode))
3249 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3250       for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3251 	   mode != VOIDmode;
3252 	   mode = GET_MODE_WIDER_MODE (mode))
3253 	FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3254     }
3255 
3256   ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3257 
3258   /* A QNaN for initializing uninitialized variables.
3259 
3260      ??? We can't load from constant memory in PIC mode, because
3261      we're inserting these instructions before the prologue and
3262      the PIC register hasn't been set up.  In that case, fall back
3263      on zero, which we can get from `fldz'.  */
3264 
3265   if ((flag_pic && !TARGET_64BIT)
3266       || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3267     not_a_num = CONST0_RTX (SFmode);
3268   else
3269     {
3270       REAL_VALUE_TYPE r;
3271 
3272       real_nan (&r, "", 1, SFmode);
3273       not_a_num = CONST_DOUBLE_FROM_REAL_VALUE (r, SFmode);
3274       not_a_num = force_const_mem (SFmode, not_a_num);
3275     }
3276 
3277   /* Allocate a cache for stack_regs_mentioned.  */
3278   max_uid = get_max_uid ();
3279   stack_regs_mentioned_data.create (max_uid + 1);
3280   memset (stack_regs_mentioned_data.address (),
3281 	  0, sizeof (char) * (max_uid + 1));
3282 
3283   convert_regs ();
3284 
3285   free_aux_for_blocks ();
3286   return true;
3287 }
3288 #endif /* STACK_REGS */
3289 
3290 namespace {
3291 
3292 const pass_data pass_data_stack_regs =
3293 {
3294   RTL_PASS, /* type */
3295   "*stack_regs", /* name */
3296   OPTGROUP_NONE, /* optinfo_flags */
3297   TV_REG_STACK, /* tv_id */
3298   0, /* properties_required */
3299   0, /* properties_provided */
3300   0, /* properties_destroyed */
3301   0, /* todo_flags_start */
3302   0, /* todo_flags_finish */
3303 };
3304 
3305 class pass_stack_regs : public rtl_opt_pass
3306 {
3307 public:
3308   pass_stack_regs (gcc::context *ctxt)
3309     : rtl_opt_pass (pass_data_stack_regs, ctxt)
3310   {}
3311 
3312   /* opt_pass methods: */
3313   virtual bool gate (function *)
3314     {
3315 #ifdef STACK_REGS
3316       return true;
3317 #else
3318       return false;
3319 #endif
3320     }
3321 
3322 }; // class pass_stack_regs
3323 
3324 } // anon namespace
3325 
3326 rtl_opt_pass *
3327 make_pass_stack_regs (gcc::context *ctxt)
3328 {
3329   return new pass_stack_regs (ctxt);
3330 }
3331 
3332 /* Convert register usage from flat register file usage to a stack
3333    register file.  */
3334 static unsigned int
3335 rest_of_handle_stack_regs (void)
3336 {
3337 #ifdef STACK_REGS
3338   reg_to_stack ();
3339   regstack_completed = 1;
3340 #endif
3341   return 0;
3342 }
3343 
3344 namespace {
3345 
3346 const pass_data pass_data_stack_regs_run =
3347 {
3348   RTL_PASS, /* type */
3349   "stack", /* name */
3350   OPTGROUP_NONE, /* optinfo_flags */
3351   TV_REG_STACK, /* tv_id */
3352   0, /* properties_required */
3353   0, /* properties_provided */
3354   0, /* properties_destroyed */
3355   0, /* todo_flags_start */
3356   TODO_df_finish, /* todo_flags_finish */
3357 };
3358 
3359 class pass_stack_regs_run : public rtl_opt_pass
3360 {
3361 public:
3362   pass_stack_regs_run (gcc::context *ctxt)
3363     : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3364   {}
3365 
3366   /* opt_pass methods: */
3367   virtual unsigned int execute (function *)
3368     {
3369       return rest_of_handle_stack_regs ();
3370     }
3371 
3372 }; // class pass_stack_regs_run
3373 
3374 } // anon namespace
3375 
3376 rtl_opt_pass *
3377 make_pass_stack_regs_run (gcc::context *ctxt)
3378 {
3379   return new pass_stack_regs_run (ctxt);
3380 }
3381