xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/recog.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /* Subroutines used by or related to instruction recognition.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43 
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
51 
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
55 
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
60 
61 /* Nonzero means allow operands to be volatile.
62    This should be 0 if you are generating rtl, such as if you are calling
63    the functions in optabs.c and expmed.c (most of the time).
64    This should be 1 if all valid insns need to be recognized,
65    such as in reginfo.c and final.c and reload.c.
66 
67    init_recog and init_recog_no_volatile are responsible for setting this.  */
68 
69 int volatile_ok;
70 
71 struct recog_data_d recog_data;
72 
73 /* Contains a vector of operand_alternative structures, such that
74    operand OP of alternative A is at index A * n_operands + OP.
75    Set up by preprocess_constraints.  */
76 const operand_alternative *recog_op_alt;
77 
78 /* Used to provide recog_op_alt for asms.  */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 				      * MAX_RECOG_ALTERNATIVES];
81 
82 /* On return from `constrain_operands', indicate which alternative
83    was satisfied.  */
84 
85 int which_alternative;
86 
87 /* Nonzero after end of reload pass.
88    Set to 1 or 0 by toplev.c.
89    Controls the significance of (SUBREG (MEM)).  */
90 
91 int reload_completed;
92 
93 /* Nonzero after thread_prologue_and_epilogue_insns has run.  */
94 int epilogue_completed;
95 
96 /* Initialize data used by the function `recog'.
97    This must be called once in the compilation of a function
98    before any insn recognition may be done in the function.  */
99 
100 void
101 init_recog_no_volatile (void)
102 {
103   volatile_ok = 0;
104 }
105 
106 void
107 init_recog (void)
108 {
109   volatile_ok = 1;
110 }
111 
112 
113 /* Return true if labels in asm operands BODY are LABEL_REFs.  */
114 
115 static bool
116 asm_labels_ok (rtx body)
117 {
118   rtx asmop;
119   int i;
120 
121   asmop = extract_asm_operands (body);
122   if (asmop == NULL_RTX)
123     return true;
124 
125   for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126     if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127       return false;
128 
129   return true;
130 }
131 
132 /* Check that X is an insn-body for an `asm' with operands
133    and that the operands mentioned in it are legitimate.  */
134 
135 int
136 check_asm_operands (rtx x)
137 {
138   int noperands;
139   rtx *operands;
140   const char **constraints;
141   int i;
142 
143   if (!asm_labels_ok (x))
144     return 0;
145 
146   /* Post-reload, be more strict with things.  */
147   if (reload_completed)
148     {
149       /* ??? Doh!  We've not got the wrapping insn.  Cook one up.  */
150       rtx_insn *insn = make_insn_raw (x);
151       extract_insn (insn);
152       constrain_operands (1, get_enabled_alternatives (insn));
153       return which_alternative >= 0;
154     }
155 
156   noperands = asm_noperands (x);
157   if (noperands < 0)
158     return 0;
159   if (noperands == 0)
160     return 1;
161 
162   operands = XALLOCAVEC (rtx, noperands);
163   constraints = XALLOCAVEC (const char *, noperands);
164 
165   decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
166 
167   for (i = 0; i < noperands; i++)
168     {
169       const char *c = constraints[i];
170       if (c[0] == '%')
171 	c++;
172       if (! asm_operand_ok (operands[i], c, constraints))
173 	return 0;
174     }
175 
176   return 1;
177 }
178 
179 /* Static data for the next two routines.  */
180 
181 struct change_t
182 {
183   rtx object;
184   int old_code;
185   bool unshare;
186   rtx *loc;
187   rtx old;
188 };
189 
190 static change_t *changes;
191 static int changes_allocated;
192 
193 static int num_changes = 0;
194 
195 /* Validate a proposed change to OBJECT.  LOC is the location in the rtl
196    at which NEW_RTX will be placed.  If OBJECT is zero, no validation is done,
197    the change is simply made.
198 
199    Two types of objects are supported:  If OBJECT is a MEM, memory_address_p
200    will be called with the address and mode as parameters.  If OBJECT is
201    an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202    the change in place.
203 
204    IN_GROUP is nonzero if this is part of a group of changes that must be
205    performed as a group.  In that case, the changes will be stored.  The
206    function `apply_change_group' will validate and apply the changes.
207 
208    If IN_GROUP is zero, this is a single change.  Try to recognize the insn
209    or validate the memory reference with the change applied.  If the result
210    is not valid for the machine, suppress the change and return zero.
211    Otherwise, perform the change and return 1.  */
212 
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
215 {
216   rtx old = *loc;
217 
218   if (old == new_rtx || rtx_equal_p (old, new_rtx))
219     return 1;
220 
221   gcc_assert (in_group != 0 || num_changes == 0);
222 
223   *loc = new_rtx;
224 
225   /* Save the information describing this change.  */
226   if (num_changes >= changes_allocated)
227     {
228       if (changes_allocated == 0)
229 	/* This value allows for repeated substitutions inside complex
230 	   indexed addresses, or changes in up to 5 insns.  */
231 	changes_allocated = MAX_RECOG_OPERANDS * 5;
232       else
233 	changes_allocated *= 2;
234 
235       changes = XRESIZEVEC (change_t, changes, changes_allocated);
236     }
237 
238   changes[num_changes].object = object;
239   changes[num_changes].loc = loc;
240   changes[num_changes].old = old;
241   changes[num_changes].unshare = unshare;
242 
243   if (object && !MEM_P (object))
244     {
245       /* Set INSN_CODE to force rerecognition of insn.  Save old code in
246 	 case invalid.  */
247       changes[num_changes].old_code = INSN_CODE (object);
248       INSN_CODE (object) = -1;
249     }
250 
251   num_changes++;
252 
253   /* If we are making a group of changes, return 1.  Otherwise, validate the
254      change group we made.  */
255 
256   if (in_group)
257     return 1;
258   else
259     return apply_change_group ();
260 }
261 
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263    UNSHARE to false.  */
264 
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
267 {
268   return validate_change_1 (object, loc, new_rtx, in_group, false);
269 }
270 
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272    UNSHARE to true.  */
273 
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 {
277   return validate_change_1 (object, loc, new_rtx, in_group, true);
278 }
279 
280 
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282    modifies the operands of X, not (for example) its code.  Simplifications
283    are not the job of this routine.
284 
285    Return true if anything was changed.  */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
288 {
289   if (COMMUTATIVE_P (x)
290       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
291     {
292       /* Oops, the caller has made X no longer canonical.
293 	 Let's redo the changes in the correct order.  */
294       rtx tem = XEXP (x, 0);
295       validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296       validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297       return true;
298     }
299   else
300     return false;
301 }
302 
303 
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305    were valid; i.e. whether INSN can still be recognized.
306 
307    If IN_GROUP is true clobbers which have to be added in order to
308    match the instructions will be added to the current change group.
309    Otherwise the changes will take effect immediately.  */
310 
311 int
312 insn_invalid_p (rtx_insn *insn, bool in_group)
313 {
314   rtx pat = PATTERN (insn);
315   int num_clobbers = 0;
316   /* If we are before reload and the pattern is a SET, see if we can add
317      clobbers.  */
318   int icode = recog (pat, insn,
319 		     (GET_CODE (pat) == SET
320 		      && ! reload_completed
321                       && ! reload_in_progress)
322 		     ? &num_clobbers : 0);
323   int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
324 
325 
326   /* If this is an asm and the operand aren't legal, then fail.  Likewise if
327      this is not an asm and the insn wasn't recognized.  */
328   if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329       || (!is_asm && icode < 0))
330     return 1;
331 
332   /* If we have to add CLOBBERs, fail if we have to add ones that reference
333      hard registers since our callers can't know if they are live or not.
334      Otherwise, add them.  */
335   if (num_clobbers > 0)
336     {
337       rtx newpat;
338 
339       if (added_clobbers_hard_reg_p (icode))
340 	return 1;
341 
342       newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343       XVECEXP (newpat, 0, 0) = pat;
344       add_clobbers (newpat, icode);
345       if (in_group)
346 	validate_change (insn, &PATTERN (insn), newpat, 1);
347       else
348 	PATTERN (insn) = pat = newpat;
349     }
350 
351   /* After reload, verify that all constraints are satisfied.  */
352   if (reload_completed)
353     {
354       extract_insn (insn);
355 
356       if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 	return 1;
358     }
359 
360   INSN_CODE (insn) = icode;
361   return 0;
362 }
363 
364 /* Return number of changes made and not validated yet.  */
365 int
366 num_changes_pending (void)
367 {
368   return num_changes;
369 }
370 
371 /* Tentatively apply the changes numbered NUM and up.
372    Return 1 if all changes are valid, zero otherwise.  */
373 
374 int
375 verify_changes (int num)
376 {
377   int i;
378   rtx last_validated = NULL_RTX;
379 
380   /* The changes have been applied and all INSN_CODEs have been reset to force
381      rerecognition.
382 
383      The changes are valid if we aren't given an object, or if we are
384      given a MEM and it still is a valid address, or if this is in insn
385      and it is recognized.  In the latter case, if reload has completed,
386      we also require that the operands meet the constraints for
387      the insn.  */
388 
389   for (i = num; i < num_changes; i++)
390     {
391       rtx object = changes[i].object;
392 
393       /* If there is no object to test or if it is the same as the one we
394          already tested, ignore it.  */
395       if (object == 0 || object == last_validated)
396 	continue;
397 
398       if (MEM_P (object))
399 	{
400 	  if (! memory_address_addr_space_p (GET_MODE (object),
401 					     XEXP (object, 0),
402 					     MEM_ADDR_SPACE (object)))
403 	    break;
404 	}
405       else if (/* changes[i].old might be zero, e.g. when putting a
406 	       REG_FRAME_RELATED_EXPR into a previously empty list.  */
407 	       changes[i].old
408 	       && REG_P (changes[i].old)
409 	       && asm_noperands (PATTERN (object)) > 0
410 	       && REG_EXPR (changes[i].old) != NULL_TREE
411 	       && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
412 	       && DECL_REGISTER (REG_EXPR (changes[i].old)))
413 	{
414 	  /* Don't allow changes of hard register operands to inline
415 	     assemblies if they have been defined as register asm ("x").  */
416 	  break;
417 	}
418       else if (DEBUG_INSN_P (object))
419 	continue;
420       else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
421 	{
422 	  rtx pat = PATTERN (object);
423 
424 	  /* Perhaps we couldn't recognize the insn because there were
425 	     extra CLOBBERs at the end.  If so, try to re-recognize
426 	     without the last CLOBBER (later iterations will cause each of
427 	     them to be eliminated, in turn).  But don't do this if we
428 	     have an ASM_OPERAND.  */
429 	  if (GET_CODE (pat) == PARALLEL
430 	      && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
431 	      && asm_noperands (PATTERN (object)) < 0)
432 	    {
433 	      rtx newpat;
434 
435 	      if (XVECLEN (pat, 0) == 2)
436 		newpat = XVECEXP (pat, 0, 0);
437 	      else
438 		{
439 		  int j;
440 
441 		  newpat
442 		    = gen_rtx_PARALLEL (VOIDmode,
443 					rtvec_alloc (XVECLEN (pat, 0) - 1));
444 		  for (j = 0; j < XVECLEN (newpat, 0); j++)
445 		    XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
446 		}
447 
448 	      /* Add a new change to this group to replace the pattern
449 		 with this new pattern.  Then consider this change
450 		 as having succeeded.  The change we added will
451 		 cause the entire call to fail if things remain invalid.
452 
453 		 Note that this can lose if a later change than the one
454 		 we are processing specified &XVECEXP (PATTERN (object), 0, X)
455 		 but this shouldn't occur.  */
456 
457 	      validate_change (object, &PATTERN (object), newpat, 1);
458 	      continue;
459 	    }
460 	  else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
461 		   || GET_CODE (pat) == VAR_LOCATION)
462 	    /* If this insn is a CLOBBER or USE, it is always valid, but is
463 	       never recognized.  */
464 	    continue;
465 	  else
466 	    break;
467 	}
468       last_validated = object;
469     }
470 
471   return (i == num_changes);
472 }
473 
474 /* A group of changes has previously been issued with validate_change
475    and verified with verify_changes.  Call df_insn_rescan for each of
476    the insn changed and clear num_changes.  */
477 
478 void
479 confirm_change_group (void)
480 {
481   int i;
482   rtx last_object = NULL;
483 
484   for (i = 0; i < num_changes; i++)
485     {
486       rtx object = changes[i].object;
487 
488       if (changes[i].unshare)
489 	*changes[i].loc = copy_rtx (*changes[i].loc);
490 
491       /* Avoid unnecessary rescanning when multiple changes to same instruction
492          are made.  */
493       if (object)
494 	{
495 	  if (object != last_object && last_object && INSN_P (last_object))
496 	    df_insn_rescan (as_a <rtx_insn *> (last_object));
497 	  last_object = object;
498 	}
499     }
500 
501   if (last_object && INSN_P (last_object))
502     df_insn_rescan (as_a <rtx_insn *> (last_object));
503   num_changes = 0;
504 }
505 
506 /* Apply a group of changes previously issued with `validate_change'.
507    If all changes are valid, call confirm_change_group and return 1,
508    otherwise, call cancel_changes and return 0.  */
509 
510 int
511 apply_change_group (void)
512 {
513   if (verify_changes (0))
514     {
515       confirm_change_group ();
516       return 1;
517     }
518   else
519     {
520       cancel_changes (0);
521       return 0;
522     }
523 }
524 
525 
526 /* Return the number of changes so far in the current group.  */
527 
528 int
529 num_validated_changes (void)
530 {
531   return num_changes;
532 }
533 
534 /* Retract the changes numbered NUM and up.  */
535 
536 void
537 cancel_changes (int num)
538 {
539   int i;
540 
541   /* Back out all the changes.  Do this in the opposite order in which
542      they were made.  */
543   for (i = num_changes - 1; i >= num; i--)
544     {
545       *changes[i].loc = changes[i].old;
546       if (changes[i].object && !MEM_P (changes[i].object))
547 	INSN_CODE (changes[i].object) = changes[i].old_code;
548     }
549   num_changes = num;
550 }
551 
552 /* Reduce conditional compilation elsewhere.  */
553 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
554    rtx.  */
555 
556 static void
557 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
558                           machine_mode op0_mode)
559 {
560   rtx x = *loc;
561   enum rtx_code code = GET_CODE (x);
562   rtx new_rtx = NULL_RTX;
563 
564   if (SWAPPABLE_OPERANDS_P (x)
565       && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
566     {
567       validate_unshare_change (object, loc,
568 			       gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
569 					       : swap_condition (code),
570 					       GET_MODE (x), XEXP (x, 1),
571 					       XEXP (x, 0)), 1);
572       x = *loc;
573       code = GET_CODE (x);
574     }
575 
576   /* Canonicalize arithmetics with all constant operands.  */
577   switch (GET_RTX_CLASS (code))
578     {
579     case RTX_UNARY:
580       if (CONSTANT_P (XEXP (x, 0)))
581 	new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
582 					    op0_mode);
583       break;
584     case RTX_COMM_ARITH:
585     case RTX_BIN_ARITH:
586       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
587 	new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
588 					     XEXP (x, 1));
589       break;
590     case RTX_COMPARE:
591     case RTX_COMM_COMPARE:
592       if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
593 	new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
594 						 XEXP (x, 0), XEXP (x, 1));
595       break;
596     default:
597       break;
598     }
599   if (new_rtx)
600     {
601       validate_change (object, loc, new_rtx, 1);
602       return;
603     }
604 
605   switch (code)
606     {
607     case PLUS:
608       /* If we have a PLUS whose second operand is now a CONST_INT, use
609          simplify_gen_binary to try to simplify it.
610          ??? We may want later to remove this, once simplification is
611          separated from this function.  */
612       if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
613 	validate_change (object, loc,
614 			 simplify_gen_binary
615 			 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
616       break;
617     case MINUS:
618       if (CONST_SCALAR_INT_P (XEXP (x, 1)))
619 	validate_change (object, loc,
620 			 simplify_gen_binary
621 			 (PLUS, GET_MODE (x), XEXP (x, 0),
622 			  simplify_gen_unary (NEG,
623 					      GET_MODE (x), XEXP (x, 1),
624 					      GET_MODE (x))), 1);
625       break;
626     case ZERO_EXTEND:
627     case SIGN_EXTEND:
628       if (GET_MODE (XEXP (x, 0)) == VOIDmode)
629 	{
630 	  new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
631 				    op0_mode);
632 	  /* If any of the above failed, substitute in something that
633 	     we know won't be recognized.  */
634 	  if (!new_rtx)
635 	    new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
636 	  validate_change (object, loc, new_rtx, 1);
637 	}
638       break;
639     case SUBREG:
640       /* All subregs possible to simplify should be simplified.  */
641       new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
642 			     SUBREG_BYTE (x));
643 
644       /* Subregs of VOIDmode operands are incorrect.  */
645       if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
646 	new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
647       if (new_rtx)
648 	validate_change (object, loc, new_rtx, 1);
649       break;
650     case ZERO_EXTRACT:
651     case SIGN_EXTRACT:
652       /* If we are replacing a register with memory, try to change the memory
653          to be the mode required for memory in extract operations (this isn't
654          likely to be an insertion operation; if it was, nothing bad will
655          happen, we might just fail in some cases).  */
656 
657       if (MEM_P (XEXP (x, 0))
658 	  && CONST_INT_P (XEXP (x, 1))
659 	  && CONST_INT_P (XEXP (x, 2))
660 	  && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
661 					MEM_ADDR_SPACE (XEXP (x, 0)))
662 	  && !MEM_VOLATILE_P (XEXP (x, 0)))
663 	{
664 	  machine_mode wanted_mode = VOIDmode;
665 	  machine_mode is_mode = GET_MODE (XEXP (x, 0));
666 	  int pos = INTVAL (XEXP (x, 2));
667 
668 	  if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
669 	    {
670 	      wanted_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 	      if (wanted_mode == VOIDmode)
672 		wanted_mode = word_mode;
673 	    }
674 	  else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
675 	    {
676 	      wanted_mode = insn_data[targetm.code_for_extv].operand[1].mode;
677 	      if (wanted_mode == VOIDmode)
678 		wanted_mode = word_mode;
679 	    }
680 
681 	  /* If we have a narrower mode, we can do something.  */
682 	  if (wanted_mode != VOIDmode
683 	      && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
684 	    {
685 	      int offset = pos / BITS_PER_UNIT;
686 	      rtx newmem;
687 
688 	      /* If the bytes and bits are counted differently, we
689 	         must adjust the offset.  */
690 	      if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
691 		offset =
692 		  (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
693 		   offset);
694 
695 	      gcc_assert (GET_MODE_PRECISION (wanted_mode)
696 			  == GET_MODE_BITSIZE (wanted_mode));
697 	      pos %= GET_MODE_BITSIZE (wanted_mode);
698 
699 	      newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
700 
701 	      validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
702 	      validate_change (object, &XEXP (x, 0), newmem, 1);
703 	    }
704 	}
705 
706       break;
707 
708     default:
709       break;
710     }
711 }
712 
713 /* Replace every occurrence of FROM in X with TO.  Mark each change with
714    validate_change passing OBJECT.  */
715 
716 static void
717 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
718                         bool simplify)
719 {
720   int i, j;
721   const char *fmt;
722   rtx x = *loc;
723   enum rtx_code code;
724   machine_mode op0_mode = VOIDmode;
725   int prev_changes = num_changes;
726 
727   if (!x)
728     return;
729 
730   code = GET_CODE (x);
731   fmt = GET_RTX_FORMAT (code);
732   if (fmt[0] == 'e')
733     op0_mode = GET_MODE (XEXP (x, 0));
734 
735   /* X matches FROM if it is the same rtx or they are both referring to the
736      same register in the same mode.  Avoid calling rtx_equal_p unless the
737      operands look similar.  */
738 
739   if (x == from
740       || (REG_P (x) && REG_P (from)
741 	  && GET_MODE (x) == GET_MODE (from)
742 	  && REGNO (x) == REGNO (from))
743       || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
744 	  && rtx_equal_p (x, from)))
745     {
746       validate_unshare_change (object, loc, to, 1);
747       return;
748     }
749 
750   /* Call ourself recursively to perform the replacements.
751      We must not replace inside already replaced expression, otherwise we
752      get infinite recursion for replacements like (reg X)->(subreg (reg X))
753      so we must special case shared ASM_OPERANDS.  */
754 
755   if (GET_CODE (x) == PARALLEL)
756     {
757       for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
758 	{
759 	  if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
760 	      && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
761 	    {
762 	      /* Verify that operands are really shared.  */
763 	      gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
764 			  == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
765 							      (x, 0, j))));
766 	      validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
767 				      from, to, object, simplify);
768 	    }
769 	  else
770 	    validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
771                                     simplify);
772 	}
773     }
774   else
775     for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
776       {
777 	if (fmt[i] == 'e')
778 	  validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
779 	else if (fmt[i] == 'E')
780 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
781 	    validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
782                                     simplify);
783       }
784 
785   /* If we didn't substitute, there is nothing more to do.  */
786   if (num_changes == prev_changes)
787     return;
788 
789   /* ??? The regmove is no more, so is this aberration still necessary?  */
790   /* Allow substituted expression to have different mode.  This is used by
791      regmove to change mode of pseudo register.  */
792   if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
793     op0_mode = GET_MODE (XEXP (x, 0));
794 
795   /* Do changes needed to keep rtx consistent.  Don't do any other
796      simplifications, as it is not our job.  */
797   if (simplify)
798     simplify_while_replacing (loc, to, object, op0_mode);
799 }
800 
801 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
802    with TO.  After all changes have been made, validate by seeing
803    if INSN is still valid.  */
804 
805 int
806 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
807 {
808   validate_replace_rtx_1 (loc, from, to, insn, true);
809   return apply_change_group ();
810 }
811 
812 /* Try replacing every occurrence of FROM in INSN with TO.  After all
813    changes have been made, validate by seeing if INSN is still valid.  */
814 
815 int
816 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
817 {
818   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
819   return apply_change_group ();
820 }
821 
822 /* Try replacing every occurrence of FROM in WHERE with TO.  Assume that WHERE
823    is a part of INSN.  After all changes have been made, validate by seeing if
824    INSN is still valid.
825    validate_replace_rtx (from, to, insn) is equivalent to
826    validate_replace_rtx_part (from, to, &PATTERN (insn), insn).  */
827 
828 int
829 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
830 {
831   validate_replace_rtx_1 (where, from, to, insn, true);
832   return apply_change_group ();
833 }
834 
835 /* Same as above, but do not simplify rtx afterwards.  */
836 int
837 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
838 				      rtx_insn *insn)
839 {
840   validate_replace_rtx_1 (where, from, to, insn, false);
841   return apply_change_group ();
842 
843 }
844 
845 /* Try replacing every occurrence of FROM in INSN with TO.  This also
846    will replace in REG_EQUAL and REG_EQUIV notes.  */
847 
848 void
849 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
850 {
851   rtx note;
852   validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
853   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
854     if (REG_NOTE_KIND (note) == REG_EQUAL
855 	|| REG_NOTE_KIND (note) == REG_EQUIV)
856       validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
857 }
858 
859 /* Function called by note_uses to replace used subexpressions.  */
860 struct validate_replace_src_data
861 {
862   rtx from;			/* Old RTX */
863   rtx to;			/* New RTX */
864   rtx_insn *insn;			/* Insn in which substitution is occurring.  */
865 };
866 
867 static void
868 validate_replace_src_1 (rtx *x, void *data)
869 {
870   struct validate_replace_src_data *d
871     = (struct validate_replace_src_data *) data;
872 
873   validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
874 }
875 
876 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
877    SET_DESTs.  */
878 
879 void
880 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
881 {
882   struct validate_replace_src_data d;
883 
884   d.from = from;
885   d.to = to;
886   d.insn = insn;
887   note_uses (&PATTERN (insn), validate_replace_src_1, &d);
888 }
889 
890 /* Try simplify INSN.
891    Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
892    pattern and return true if something was simplified.  */
893 
894 bool
895 validate_simplify_insn (rtx_insn *insn)
896 {
897   int i;
898   rtx pat = NULL;
899   rtx newpat = NULL;
900 
901   pat = PATTERN (insn);
902 
903   if (GET_CODE (pat) == SET)
904     {
905       newpat = simplify_rtx (SET_SRC (pat));
906       if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
907 	validate_change (insn, &SET_SRC (pat), newpat, 1);
908       newpat = simplify_rtx (SET_DEST (pat));
909       if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
910 	validate_change (insn, &SET_DEST (pat), newpat, 1);
911     }
912   else if (GET_CODE (pat) == PARALLEL)
913     for (i = 0; i < XVECLEN (pat, 0); i++)
914       {
915 	rtx s = XVECEXP (pat, 0, i);
916 
917 	if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
918 	  {
919 	    newpat = simplify_rtx (SET_SRC (s));
920 	    if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
921 	      validate_change (insn, &SET_SRC (s), newpat, 1);
922 	    newpat = simplify_rtx (SET_DEST (s));
923 	    if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
924 	      validate_change (insn, &SET_DEST (s), newpat, 1);
925 	  }
926       }
927   return ((num_changes_pending () > 0) && (apply_change_group () > 0));
928 }
929 
930 /* Return 1 if the insn using CC0 set by INSN does not contain
931    any ordered tests applied to the condition codes.
932    EQ and NE tests do not count.  */
933 
934 int
935 next_insn_tests_no_inequality (rtx_insn *insn)
936 {
937   rtx_insn *next = next_cc0_user (insn);
938 
939   /* If there is no next insn, we have to take the conservative choice.  */
940   if (next == 0)
941     return 0;
942 
943   return (INSN_P (next)
944 	  && ! inequality_comparisons_p (PATTERN (next)));
945 }
946 
947 /* Return 1 if OP is a valid general operand for machine mode MODE.
948    This is either a register reference, a memory reference,
949    or a constant.  In the case of a memory reference, the address
950    is checked for general validity for the target machine.
951 
952    Register and memory references must have mode MODE in order to be valid,
953    but some constants have no machine mode and are valid for any mode.
954 
955    If MODE is VOIDmode, OP is checked for validity for whatever mode
956    it has.
957 
958    The main use of this function is as a predicate in match_operand
959    expressions in the machine description.  */
960 
961 int
962 general_operand (rtx op, machine_mode mode)
963 {
964   enum rtx_code code = GET_CODE (op);
965 
966   if (mode == VOIDmode)
967     mode = GET_MODE (op);
968 
969   /* Don't accept CONST_INT or anything similar
970      if the caller wants something floating.  */
971   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
972       && GET_MODE_CLASS (mode) != MODE_INT
973       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
974     return 0;
975 
976   if (CONST_INT_P (op)
977       && mode != VOIDmode
978       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
979     return 0;
980 
981   if (CONSTANT_P (op))
982     return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
983 	     || mode == VOIDmode)
984 	    && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
985 	    && targetm.legitimate_constant_p (mode == VOIDmode
986 					      ? GET_MODE (op)
987 					      : mode, op));
988 
989   /* Except for certain constants with VOIDmode, already checked for,
990      OP's mode must match MODE if MODE specifies a mode.  */
991 
992   if (GET_MODE (op) != mode)
993     return 0;
994 
995   if (code == SUBREG)
996     {
997       rtx sub = SUBREG_REG (op);
998 
999 #ifdef INSN_SCHEDULING
1000       /* On machines that have insn scheduling, we want all memory
1001 	 reference to be explicit, so outlaw paradoxical SUBREGs.
1002 	 However, we must allow them after reload so that they can
1003 	 get cleaned up by cleanup_subreg_operands.  */
1004       if (!reload_completed && MEM_P (sub)
1005 	  && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
1006 	return 0;
1007 #endif
1008       /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1009          may result in incorrect reference.  We should simplify all valid
1010          subregs of MEM anyway.  But allow this after reload because we
1011 	 might be called from cleanup_subreg_operands.
1012 
1013 	 ??? This is a kludge.  */
1014       if (!reload_completed && SUBREG_BYTE (op) != 0
1015 	  && MEM_P (sub))
1016 	return 0;
1017 
1018 #ifdef CANNOT_CHANGE_MODE_CLASS
1019       if (REG_P (sub)
1020 	  && REGNO (sub) < FIRST_PSEUDO_REGISTER
1021 	  && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1022 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1023 	  && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1024 	  /* LRA can generate some invalid SUBREGS just for matched
1025 	     operand reload presentation.  LRA needs to treat them as
1026 	     valid.  */
1027 	  && ! LRA_SUBREG_P (op))
1028 	return 0;
1029 #endif
1030 
1031       /* FLOAT_MODE subregs can't be paradoxical.  Combine will occasionally
1032 	 create such rtl, and we must reject it.  */
1033       if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1034 	  /* LRA can use subreg to store a floating point value in an
1035 	     integer mode.  Although the floating point and the
1036 	     integer modes need the same number of hard registers, the
1037 	     size of floating point mode can be less than the integer
1038 	     mode.  */
1039 	  && ! lra_in_progress
1040 	  && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1041 	return 0;
1042 
1043       op = sub;
1044       code = GET_CODE (op);
1045     }
1046 
1047   if (code == REG)
1048     return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1049 	    || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1050 
1051   if (code == MEM)
1052     {
1053       rtx y = XEXP (op, 0);
1054 
1055       if (! volatile_ok && MEM_VOLATILE_P (op))
1056 	return 0;
1057 
1058       /* Use the mem's mode, since it will be reloaded thus.  LRA can
1059 	 generate move insn with invalid addresses which is made valid
1060 	 and efficiently calculated by LRA through further numerous
1061 	 transformations.  */
1062       if (lra_in_progress
1063 	  || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1064 	return 1;
1065     }
1066 
1067   return 0;
1068 }
1069 
1070 /* Return 1 if OP is a valid memory address for a memory reference
1071    of mode MODE.
1072 
1073    The main use of this function is as a predicate in match_operand
1074    expressions in the machine description.  */
1075 
1076 int
1077 address_operand (rtx op, machine_mode mode)
1078 {
1079   return memory_address_p (mode, op);
1080 }
1081 
1082 /* Return 1 if OP is a register reference of mode MODE.
1083    If MODE is VOIDmode, accept a register in any mode.
1084 
1085    The main use of this function is as a predicate in match_operand
1086    expressions in the machine description.  */
1087 
1088 int
1089 register_operand (rtx op, machine_mode mode)
1090 {
1091   if (GET_CODE (op) == SUBREG)
1092     {
1093       rtx sub = SUBREG_REG (op);
1094 
1095       /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1096 	 because it is guaranteed to be reloaded into one.
1097 	 Just make sure the MEM is valid in itself.
1098 	 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1099 	 but currently it does result from (SUBREG (REG)...) where the
1100 	 reg went on the stack.)  */
1101       if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1102 	return 0;
1103     }
1104   else if (!REG_P (op))
1105     return 0;
1106   return general_operand (op, mode);
1107 }
1108 
1109 /* Return 1 for a register in Pmode; ignore the tested mode.  */
1110 
1111 int
1112 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1113 {
1114   return register_operand (op, Pmode);
1115 }
1116 
1117 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1118    or a hard register.  */
1119 
1120 int
1121 scratch_operand (rtx op, machine_mode mode)
1122 {
1123   if (GET_MODE (op) != mode && mode != VOIDmode)
1124     return 0;
1125 
1126   return (GET_CODE (op) == SCRATCH
1127 	  || (REG_P (op)
1128 	      && (lra_in_progress
1129 		  || (REGNO (op) < FIRST_PSEUDO_REGISTER
1130 		      && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1131 }
1132 
1133 /* Return 1 if OP is a valid immediate operand for mode MODE.
1134 
1135    The main use of this function is as a predicate in match_operand
1136    expressions in the machine description.  */
1137 
1138 int
1139 immediate_operand (rtx op, machine_mode mode)
1140 {
1141   /* Don't accept CONST_INT or anything similar
1142      if the caller wants something floating.  */
1143   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1144       && GET_MODE_CLASS (mode) != MODE_INT
1145       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1146     return 0;
1147 
1148   if (CONST_INT_P (op)
1149       && mode != VOIDmode
1150       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1151     return 0;
1152 
1153   return (CONSTANT_P (op)
1154 	  && (GET_MODE (op) == mode || mode == VOIDmode
1155 	      || GET_MODE (op) == VOIDmode)
1156 	  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1157 	  && targetm.legitimate_constant_p (mode == VOIDmode
1158 					    ? GET_MODE (op)
1159 					    : mode, op));
1160 }
1161 
1162 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE.  */
1163 
1164 int
1165 const_int_operand (rtx op, machine_mode mode)
1166 {
1167   if (!CONST_INT_P (op))
1168     return 0;
1169 
1170   if (mode != VOIDmode
1171       && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1172     return 0;
1173 
1174   return 1;
1175 }
1176 
1177 #if TARGET_SUPPORTS_WIDE_INT
1178 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1179    of mode MODE.  */
1180 int
1181 const_scalar_int_operand (rtx op, machine_mode mode)
1182 {
1183   if (!CONST_SCALAR_INT_P (op))
1184     return 0;
1185 
1186   if (CONST_INT_P (op))
1187     return const_int_operand (op, mode);
1188 
1189   if (mode != VOIDmode)
1190     {
1191       int prec = GET_MODE_PRECISION (mode);
1192       int bitsize = GET_MODE_BITSIZE (mode);
1193 
1194       if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1195 	return 0;
1196 
1197       if (prec == bitsize)
1198 	return 1;
1199       else
1200 	{
1201 	  /* Multiword partial int.  */
1202 	  HOST_WIDE_INT x
1203 	    = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1204 	  return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1205 	}
1206     }
1207   return 1;
1208 }
1209 
1210 /* Returns 1 if OP is an operand that is a constant integer or constant
1211    floating-point number of MODE.  */
1212 
1213 int
1214 const_double_operand (rtx op, machine_mode mode)
1215 {
1216   return (GET_CODE (op) == CONST_DOUBLE)
1217 	  && (GET_MODE (op) == mode || mode == VOIDmode);
1218 }
1219 #else
1220 /* Returns 1 if OP is an operand that is a constant integer or constant
1221    floating-point number of MODE.  */
1222 
1223 int
1224 const_double_operand (rtx op, machine_mode mode)
1225 {
1226   /* Don't accept CONST_INT or anything similar
1227      if the caller wants something floating.  */
1228   if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1229       && GET_MODE_CLASS (mode) != MODE_INT
1230       && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1231     return 0;
1232 
1233   return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1234 	  && (mode == VOIDmode || GET_MODE (op) == mode
1235 	      || GET_MODE (op) == VOIDmode));
1236 }
1237 #endif
1238 /* Return 1 if OP is a general operand that is not an immediate
1239    operand of mode MODE.  */
1240 
1241 int
1242 nonimmediate_operand (rtx op, machine_mode mode)
1243 {
1244   return (general_operand (op, mode) && ! CONSTANT_P (op));
1245 }
1246 
1247 /* Return 1 if OP is a register reference or immediate value of mode MODE.  */
1248 
1249 int
1250 nonmemory_operand (rtx op, machine_mode mode)
1251 {
1252   if (CONSTANT_P (op))
1253     return immediate_operand (op, mode);
1254   return register_operand (op, mode);
1255 }
1256 
1257 /* Return 1 if OP is a valid operand that stands for pushing a
1258    value of mode MODE onto the stack.
1259 
1260    The main use of this function is as a predicate in match_operand
1261    expressions in the machine description.  */
1262 
1263 int
1264 push_operand (rtx op, machine_mode mode)
1265 {
1266   unsigned int rounded_size = GET_MODE_SIZE (mode);
1267 
1268 #ifdef PUSH_ROUNDING
1269   rounded_size = PUSH_ROUNDING (rounded_size);
1270 #endif
1271 
1272   if (!MEM_P (op))
1273     return 0;
1274 
1275   if (mode != VOIDmode && GET_MODE (op) != mode)
1276     return 0;
1277 
1278   op = XEXP (op, 0);
1279 
1280   if (rounded_size == GET_MODE_SIZE (mode))
1281     {
1282       if (GET_CODE (op) != STACK_PUSH_CODE)
1283 	return 0;
1284     }
1285   else
1286     {
1287       if (GET_CODE (op) != PRE_MODIFY
1288 	  || GET_CODE (XEXP (op, 1)) != PLUS
1289 	  || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1290 	  || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1291 	  || INTVAL (XEXP (XEXP (op, 1), 1))
1292 	     != ((STACK_GROWS_DOWNWARD ? -1 : 1) * (int) rounded_size))
1293 	return 0;
1294     }
1295 
1296   return XEXP (op, 0) == stack_pointer_rtx;
1297 }
1298 
1299 /* Return 1 if OP is a valid operand that stands for popping a
1300    value of mode MODE off the stack.
1301 
1302    The main use of this function is as a predicate in match_operand
1303    expressions in the machine description.  */
1304 
1305 int
1306 pop_operand (rtx op, machine_mode mode)
1307 {
1308   if (!MEM_P (op))
1309     return 0;
1310 
1311   if (mode != VOIDmode && GET_MODE (op) != mode)
1312     return 0;
1313 
1314   op = XEXP (op, 0);
1315 
1316   if (GET_CODE (op) != STACK_POP_CODE)
1317     return 0;
1318 
1319   return XEXP (op, 0) == stack_pointer_rtx;
1320 }
1321 
1322 /* Return 1 if ADDR is a valid memory address
1323    for mode MODE in address space AS.  */
1324 
1325 int
1326 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1327 			     rtx addr, addr_space_t as)
1328 {
1329 #ifdef GO_IF_LEGITIMATE_ADDRESS
1330   gcc_assert (ADDR_SPACE_GENERIC_P (as));
1331   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1332   return 0;
1333 
1334  win:
1335   return 1;
1336 #else
1337   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1338 #endif
1339 }
1340 
1341 /* Return 1 if OP is a valid memory reference with mode MODE,
1342    including a valid address.
1343 
1344    The main use of this function is as a predicate in match_operand
1345    expressions in the machine description.  */
1346 
1347 int
1348 memory_operand (rtx op, machine_mode mode)
1349 {
1350   rtx inner;
1351 
1352   if (! reload_completed)
1353     /* Note that no SUBREG is a memory operand before end of reload pass,
1354        because (SUBREG (MEM...)) forces reloading into a register.  */
1355     return MEM_P (op) && general_operand (op, mode);
1356 
1357   if (mode != VOIDmode && GET_MODE (op) != mode)
1358     return 0;
1359 
1360   inner = op;
1361   if (GET_CODE (inner) == SUBREG)
1362     inner = SUBREG_REG (inner);
1363 
1364   return (MEM_P (inner) && general_operand (op, mode));
1365 }
1366 
1367 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1368    that is, a memory reference whose address is a general_operand.  */
1369 
1370 int
1371 indirect_operand (rtx op, machine_mode mode)
1372 {
1373   /* Before reload, a SUBREG isn't in memory (see memory_operand, above).  */
1374   if (! reload_completed
1375       && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1376     {
1377       int offset = SUBREG_BYTE (op);
1378       rtx inner = SUBREG_REG (op);
1379 
1380       if (mode != VOIDmode && GET_MODE (op) != mode)
1381 	return 0;
1382 
1383       /* The only way that we can have a general_operand as the resulting
1384 	 address is if OFFSET is zero and the address already is an operand
1385 	 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1386 	 operand.  */
1387 
1388       return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1389 	      || (GET_CODE (XEXP (inner, 0)) == PLUS
1390 		  && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1391 		  && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1392 		  && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1393     }
1394 
1395   return (MEM_P (op)
1396 	  && memory_operand (op, mode)
1397 	  && general_operand (XEXP (op, 0), Pmode));
1398 }
1399 
1400 /* Return 1 if this is an ordered comparison operator (not including
1401    ORDERED and UNORDERED).  */
1402 
1403 int
1404 ordered_comparison_operator (rtx op, machine_mode mode)
1405 {
1406   if (mode != VOIDmode && GET_MODE (op) != mode)
1407     return false;
1408   switch (GET_CODE (op))
1409     {
1410     case EQ:
1411     case NE:
1412     case LT:
1413     case LTU:
1414     case LE:
1415     case LEU:
1416     case GT:
1417     case GTU:
1418     case GE:
1419     case GEU:
1420       return true;
1421     default:
1422       return false;
1423     }
1424 }
1425 
1426 /* Return 1 if this is a comparison operator.  This allows the use of
1427    MATCH_OPERATOR to recognize all the branch insns.  */
1428 
1429 int
1430 comparison_operator (rtx op, machine_mode mode)
1431 {
1432   return ((mode == VOIDmode || GET_MODE (op) == mode)
1433 	  && COMPARISON_P (op));
1434 }
1435 
1436 /* If BODY is an insn body that uses ASM_OPERANDS, return it.  */
1437 
1438 rtx
1439 extract_asm_operands (rtx body)
1440 {
1441   rtx tmp;
1442   switch (GET_CODE (body))
1443     {
1444     case ASM_OPERANDS:
1445       return body;
1446 
1447     case SET:
1448       /* Single output operand: BODY is (set OUTPUT (asm_operands ...)).  */
1449       tmp = SET_SRC (body);
1450       if (GET_CODE (tmp) == ASM_OPERANDS)
1451 	return tmp;
1452       break;
1453 
1454     case PARALLEL:
1455       tmp = XVECEXP (body, 0, 0);
1456       if (GET_CODE (tmp) == ASM_OPERANDS)
1457 	return tmp;
1458       if (GET_CODE (tmp) == SET)
1459 	{
1460 	  tmp = SET_SRC (tmp);
1461 	  if (GET_CODE (tmp) == ASM_OPERANDS)
1462 	    return tmp;
1463 	}
1464       break;
1465 
1466     default:
1467       break;
1468     }
1469   return NULL;
1470 }
1471 
1472 /* If BODY is an insn body that uses ASM_OPERANDS,
1473    return the number of operands (both input and output) in the insn.
1474    If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1475    return 0.
1476    Otherwise return -1.  */
1477 
1478 int
1479 asm_noperands (const_rtx body)
1480 {
1481   rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1482   int i, n_sets = 0;
1483 
1484   if (asm_op == NULL)
1485     {
1486       if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1487 	  && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1488 	{
1489 	  /* body is [(asm_input ...) (clobber (reg ...))...].  */
1490 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1491 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1492 	      return -1;
1493 	  return 0;
1494 	}
1495       return -1;
1496     }
1497 
1498   if (GET_CODE (body) == SET)
1499     n_sets = 1;
1500   else if (GET_CODE (body) == PARALLEL)
1501     {
1502       if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1503 	{
1504 	  /* Multiple output operands, or 1 output plus some clobbers:
1505 	     body is
1506 	     [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...].  */
1507 	  /* Count backwards through CLOBBERs to determine number of SETs.  */
1508 	  for (i = XVECLEN (body, 0); i > 0; i--)
1509 	    {
1510 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1511 		break;
1512 	      if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1513 		return -1;
1514 	    }
1515 
1516 	  /* N_SETS is now number of output operands.  */
1517 	  n_sets = i;
1518 
1519 	  /* Verify that all the SETs we have
1520 	     came from a single original asm_operands insn
1521 	     (so that invalid combinations are blocked).  */
1522 	  for (i = 0; i < n_sets; i++)
1523 	    {
1524 	      rtx elt = XVECEXP (body, 0, i);
1525 	      if (GET_CODE (elt) != SET)
1526 		return -1;
1527 	      if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1528 		return -1;
1529 	      /* If these ASM_OPERANDS rtx's came from different original insns
1530 	         then they aren't allowed together.  */
1531 	      if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1532 		  != ASM_OPERANDS_INPUT_VEC (asm_op))
1533 		return -1;
1534 	    }
1535 	}
1536       else
1537 	{
1538 	  /* 0 outputs, but some clobbers:
1539 	     body is [(asm_operands ...) (clobber (reg ...))...].  */
1540 	  /* Make sure all the other parallel things really are clobbers.  */
1541 	  for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1542 	    if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1543 	      return -1;
1544 	}
1545     }
1546 
1547   return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1548 	  + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1549 }
1550 
1551 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1552    copy its operands (both input and output) into the vector OPERANDS,
1553    the locations of the operands within the insn into the vector OPERAND_LOCS,
1554    and the constraints for the operands into CONSTRAINTS.
1555    Write the modes of the operands into MODES.
1556    Write the location info into LOC.
1557    Return the assembler-template.
1558    If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1559    return the basic assembly string.
1560 
1561    If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1562    we don't store that info.  */
1563 
1564 const char *
1565 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1566 		     const char **constraints, machine_mode *modes,
1567 		     location_t *loc)
1568 {
1569   int nbase = 0, n, i;
1570   rtx asmop;
1571 
1572   switch (GET_CODE (body))
1573     {
1574     case ASM_OPERANDS:
1575       /* Zero output asm: BODY is (asm_operands ...).  */
1576       asmop = body;
1577       break;
1578 
1579     case SET:
1580       /* Single output asm: BODY is (set OUTPUT (asm_operands ...)).  */
1581       asmop = SET_SRC (body);
1582 
1583       /* The output is in the SET.
1584 	 Its constraint is in the ASM_OPERANDS itself.  */
1585       if (operands)
1586 	operands[0] = SET_DEST (body);
1587       if (operand_locs)
1588 	operand_locs[0] = &SET_DEST (body);
1589       if (constraints)
1590 	constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1591       if (modes)
1592 	modes[0] = GET_MODE (SET_DEST (body));
1593       nbase = 1;
1594       break;
1595 
1596     case PARALLEL:
1597       {
1598 	int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs.  */
1599 
1600 	asmop = XVECEXP (body, 0, 0);
1601 	if (GET_CODE (asmop) == SET)
1602 	  {
1603 	    asmop = SET_SRC (asmop);
1604 
1605 	    /* At least one output, plus some CLOBBERs.  The outputs are in
1606 	       the SETs.  Their constraints are in the ASM_OPERANDS itself.  */
1607 	    for (i = 0; i < nparallel; i++)
1608 	      {
1609 		if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1610 		  break;		/* Past last SET */
1611 		if (operands)
1612 		  operands[i] = SET_DEST (XVECEXP (body, 0, i));
1613 		if (operand_locs)
1614 		  operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1615 		if (constraints)
1616 		  constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1617 		if (modes)
1618 		  modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1619 	      }
1620 	    nbase = i;
1621 	  }
1622 	else if (GET_CODE (asmop) == ASM_INPUT)
1623 	  {
1624 	    if (loc)
1625 	      *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1626 	    return XSTR (asmop, 0);
1627 	  }
1628 	break;
1629       }
1630 
1631     default:
1632       gcc_unreachable ();
1633     }
1634 
1635   n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1636   for (i = 0; i < n; i++)
1637     {
1638       if (operand_locs)
1639 	operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1640       if (operands)
1641 	operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1642       if (constraints)
1643 	constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1644       if (modes)
1645 	modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1646     }
1647   nbase += n;
1648 
1649   n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1650   for (i = 0; i < n; i++)
1651     {
1652       if (operand_locs)
1653 	operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1654       if (operands)
1655 	operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1656       if (constraints)
1657 	constraints[nbase + i] = "";
1658       if (modes)
1659 	modes[nbase + i] = Pmode;
1660     }
1661 
1662   if (loc)
1663     *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1664 
1665   return ASM_OPERANDS_TEMPLATE (asmop);
1666 }
1667 
1668 /* Parse inline assembly string STRING and determine which operands are
1669    referenced by % markers.  For the first NOPERANDS operands, set USED[I]
1670    to true if operand I is referenced.
1671 
1672    This is intended to distinguish barrier-like asms such as:
1673 
1674       asm ("" : "=m" (...));
1675 
1676    from real references such as:
1677 
1678       asm ("sw\t$0, %0" : "=m" (...));  */
1679 
1680 void
1681 get_referenced_operands (const char *string, bool *used,
1682 			 unsigned int noperands)
1683 {
1684   memset (used, 0, sizeof (bool) * noperands);
1685   const char *p = string;
1686   while (*p)
1687     switch (*p)
1688       {
1689       case '%':
1690 	p += 1;
1691 	/* A letter followed by a digit indicates an operand number.  */
1692 	if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1693 	  p += 1;
1694 	if (ISDIGIT (*p))
1695 	  {
1696 	    char *endptr;
1697 	    unsigned long opnum = strtoul (p, &endptr, 10);
1698 	    if (endptr != p && opnum < noperands)
1699 	      used[opnum] = true;
1700 	    p = endptr;
1701 	  }
1702 	else
1703 	  p += 1;
1704 	break;
1705 
1706       default:
1707 	p++;
1708 	break;
1709       }
1710 }
1711 
1712 /* Check if an asm_operand matches its constraints.
1713    Return > 0 if ok, = 0 if bad, < 0 if inconclusive.  */
1714 
1715 int
1716 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1717 {
1718   int result = 0;
1719   bool incdec_ok = false;
1720 
1721   /* Use constrain_operands after reload.  */
1722   gcc_assert (!reload_completed);
1723 
1724   /* Empty constraint string is the same as "X,...,X", i.e. X for as
1725      many alternatives as required to match the other operands.  */
1726   if (*constraint == '\0')
1727     result = 1;
1728 
1729   while (*constraint)
1730     {
1731       enum constraint_num cn;
1732       char c = *constraint;
1733       int len;
1734       switch (c)
1735 	{
1736 	case ',':
1737 	  constraint++;
1738 	  continue;
1739 
1740 	case '0': case '1': case '2': case '3': case '4':
1741 	case '5': case '6': case '7': case '8': case '9':
1742 	  /* If caller provided constraints pointer, look up
1743 	     the matching constraint.  Otherwise, our caller should have
1744 	     given us the proper matching constraint, but we can't
1745 	     actually fail the check if they didn't.  Indicate that
1746 	     results are inconclusive.  */
1747 	  if (constraints)
1748 	    {
1749 	      char *end;
1750 	      unsigned long match;
1751 
1752 	      match = strtoul (constraint, &end, 10);
1753 	      if (!result)
1754 		result = asm_operand_ok (op, constraints[match], NULL);
1755 	      constraint = (const char *) end;
1756 	    }
1757 	  else
1758 	    {
1759 	      do
1760 		constraint++;
1761 	      while (ISDIGIT (*constraint));
1762 	      if (! result)
1763 		result = -1;
1764 	    }
1765 	  continue;
1766 
1767 	  /* The rest of the compiler assumes that reloading the address
1768 	     of a MEM into a register will make it fit an 'o' constraint.
1769 	     That is, if it sees a MEM operand for an 'o' constraint,
1770 	     it assumes that (mem (base-reg)) will fit.
1771 
1772 	     That assumption fails on targets that don't have offsettable
1773 	     addresses at all.  We therefore need to treat 'o' asm
1774 	     constraints as a special case and only accept operands that
1775 	     are already offsettable, thus proving that at least one
1776 	     offsettable address exists.  */
1777 	case 'o': /* offsettable */
1778 	  if (offsettable_nonstrict_memref_p (op))
1779 	    result = 1;
1780 	  break;
1781 
1782 	case 'g':
1783 	  if (general_operand (op, VOIDmode))
1784 	    result = 1;
1785 	  break;
1786 
1787 	case '<':
1788 	case '>':
1789 	  /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1790 	     to exist, excepting those that expand_call created.  Further,
1791 	     on some machines which do not have generalized auto inc/dec,
1792 	     an inc/dec is not a memory_operand.
1793 
1794 	     Match any memory and hope things are resolved after reload.  */
1795 	  incdec_ok = true;
1796 	  /* FALLTHRU */
1797 	default:
1798 	  cn = lookup_constraint (constraint);
1799 	  switch (get_constraint_type (cn))
1800 	    {
1801 	    case CT_REGISTER:
1802 	      if (!result
1803 		  && reg_class_for_constraint (cn) != NO_REGS
1804 		  && GET_MODE (op) != BLKmode
1805 		  && register_operand (op, VOIDmode))
1806 		result = 1;
1807 	      break;
1808 
1809 	    case CT_CONST_INT:
1810 	      if (!result
1811 		  && CONST_INT_P (op)
1812 		  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1813 		result = 1;
1814 	      break;
1815 
1816 	    case CT_MEMORY:
1817 	    case CT_SPECIAL_MEMORY:
1818 	      /* Every memory operand can be reloaded to fit.  */
1819 	      result = result || memory_operand (op, VOIDmode);
1820 	      break;
1821 
1822 	    case CT_ADDRESS:
1823 	      /* Every address operand can be reloaded to fit.  */
1824 	      result = result || address_operand (op, VOIDmode);
1825 	      break;
1826 
1827 	    case CT_FIXED_FORM:
1828 	      result = result || constraint_satisfied_p (op, cn);
1829 	      break;
1830 	    }
1831 	  break;
1832 	}
1833       len = CONSTRAINT_LEN (c, constraint);
1834       do
1835 	constraint++;
1836       while (--len && *constraint);
1837       if (len)
1838 	return 0;
1839     }
1840 
1841   /* For operands without < or > constraints reject side-effects.  */
1842   if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1843     switch (GET_CODE (XEXP (op, 0)))
1844       {
1845       case PRE_INC:
1846       case POST_INC:
1847       case PRE_DEC:
1848       case POST_DEC:
1849       case PRE_MODIFY:
1850       case POST_MODIFY:
1851 	return 0;
1852       default:
1853 	break;
1854       }
1855 
1856   return result;
1857 }
1858 
1859 /* Given an rtx *P, if it is a sum containing an integer constant term,
1860    return the location (type rtx *) of the pointer to that constant term.
1861    Otherwise, return a null pointer.  */
1862 
1863 rtx *
1864 find_constant_term_loc (rtx *p)
1865 {
1866   rtx *tem;
1867   enum rtx_code code = GET_CODE (*p);
1868 
1869   /* If *P IS such a constant term, P is its location.  */
1870 
1871   if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1872       || code == CONST)
1873     return p;
1874 
1875   /* Otherwise, if not a sum, it has no constant term.  */
1876 
1877   if (GET_CODE (*p) != PLUS)
1878     return 0;
1879 
1880   /* If one of the summands is constant, return its location.  */
1881 
1882   if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1883       && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1884     return p;
1885 
1886   /* Otherwise, check each summand for containing a constant term.  */
1887 
1888   if (XEXP (*p, 0) != 0)
1889     {
1890       tem = find_constant_term_loc (&XEXP (*p, 0));
1891       if (tem != 0)
1892 	return tem;
1893     }
1894 
1895   if (XEXP (*p, 1) != 0)
1896     {
1897       tem = find_constant_term_loc (&XEXP (*p, 1));
1898       if (tem != 0)
1899 	return tem;
1900     }
1901 
1902   return 0;
1903 }
1904 
1905 /* Return 1 if OP is a memory reference
1906    whose address contains no side effects
1907    and remains valid after the addition
1908    of a positive integer less than the
1909    size of the object being referenced.
1910 
1911    We assume that the original address is valid and do not check it.
1912 
1913    This uses strict_memory_address_p as a subroutine, so
1914    don't use it before reload.  */
1915 
1916 int
1917 offsettable_memref_p (rtx op)
1918 {
1919   return ((MEM_P (op))
1920 	  && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1921 					       MEM_ADDR_SPACE (op)));
1922 }
1923 
1924 /* Similar, but don't require a strictly valid mem ref:
1925    consider pseudo-regs valid as index or base regs.  */
1926 
1927 int
1928 offsettable_nonstrict_memref_p (rtx op)
1929 {
1930   return ((MEM_P (op))
1931 	  && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1932 					       MEM_ADDR_SPACE (op)));
1933 }
1934 
1935 /* Return 1 if Y is a memory address which contains no side effects
1936    and would remain valid for address space AS after the addition of
1937    a positive integer less than the size of that mode.
1938 
1939    We assume that the original address is valid and do not check it.
1940    We do check that it is valid for narrower modes.
1941 
1942    If STRICTP is nonzero, we require a strictly valid address,
1943    for the sake of use in reload.c.  */
1944 
1945 int
1946 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1947 				  addr_space_t as)
1948 {
1949   enum rtx_code ycode = GET_CODE (y);
1950   rtx z;
1951   rtx y1 = y;
1952   rtx *y2;
1953   int (*addressp) (machine_mode, rtx, addr_space_t) =
1954     (strictp ? strict_memory_address_addr_space_p
1955 	     : memory_address_addr_space_p);
1956   unsigned int mode_sz = GET_MODE_SIZE (mode);
1957 
1958   if (CONSTANT_ADDRESS_P (y))
1959     return 1;
1960 
1961   /* Adjusting an offsettable address involves changing to a narrower mode.
1962      Make sure that's OK.  */
1963 
1964   if (mode_dependent_address_p (y, as))
1965     return 0;
1966 
1967   machine_mode address_mode = GET_MODE (y);
1968   if (address_mode == VOIDmode)
1969     address_mode = targetm.addr_space.address_mode (as);
1970 #ifdef POINTERS_EXTEND_UNSIGNED
1971   machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1972 #endif
1973 
1974   /* ??? How much offset does an offsettable BLKmode reference need?
1975      Clearly that depends on the situation in which it's being used.
1976      However, the current situation in which we test 0xffffffff is
1977      less than ideal.  Caveat user.  */
1978   if (mode_sz == 0)
1979     mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1980 
1981   /* If the expression contains a constant term,
1982      see if it remains valid when max possible offset is added.  */
1983 
1984   if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1985     {
1986       int good;
1987 
1988       y1 = *y2;
1989       *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1990       /* Use QImode because an odd displacement may be automatically invalid
1991 	 for any wider mode.  But it should be valid for a single byte.  */
1992       good = (*addressp) (QImode, y, as);
1993 
1994       /* In any case, restore old contents of memory.  */
1995       *y2 = y1;
1996       return good;
1997     }
1998 
1999   if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
2000     return 0;
2001 
2002   /* The offset added here is chosen as the maximum offset that
2003      any instruction could need to add when operating on something
2004      of the specified mode.  We assume that if Y and Y+c are
2005      valid addresses then so is Y+d for all 0<d<c.  adjust_address will
2006      go inside a LO_SUM here, so we do so as well.  */
2007   if (GET_CODE (y) == LO_SUM
2008       && mode != BLKmode
2009       && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2010     z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2011 			plus_constant (address_mode, XEXP (y, 1),
2012 				       mode_sz - 1));
2013 #ifdef POINTERS_EXTEND_UNSIGNED
2014   /* Likewise for a ZERO_EXTEND from pointer_mode.  */
2015   else if (POINTERS_EXTEND_UNSIGNED > 0
2016 	   && GET_CODE (y) == ZERO_EXTEND
2017 	   && GET_MODE (XEXP (y, 0)) == pointer_mode)
2018     z = gen_rtx_ZERO_EXTEND (address_mode,
2019 			     plus_constant (pointer_mode, XEXP (y, 0),
2020 					    mode_sz - 1));
2021 #endif
2022   else
2023     z = plus_constant (address_mode, y, mode_sz - 1);
2024 
2025   /* Use QImode because an odd displacement may be automatically invalid
2026      for any wider mode.  But it should be valid for a single byte.  */
2027   return (*addressp) (QImode, z, as);
2028 }
2029 
2030 /* Return 1 if ADDR is an address-expression whose effect depends
2031    on the mode of the memory reference it is used in.
2032 
2033    ADDRSPACE is the address space associated with the address.
2034 
2035    Autoincrement addressing is a typical example of mode-dependence
2036    because the amount of the increment depends on the mode.  */
2037 
2038 bool
2039 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2040 {
2041   /* Auto-increment addressing with anything other than post_modify
2042      or pre_modify always introduces a mode dependency.  Catch such
2043      cases now instead of deferring to the target.  */
2044   if (GET_CODE (addr) == PRE_INC
2045       || GET_CODE (addr) == POST_INC
2046       || GET_CODE (addr) == PRE_DEC
2047       || GET_CODE (addr) == POST_DEC)
2048     return true;
2049 
2050   return targetm.mode_dependent_address_p (addr, addrspace);
2051 }
2052 
2053 /* Return true if boolean attribute ATTR is supported.  */
2054 
2055 static bool
2056 have_bool_attr (bool_attr attr)
2057 {
2058   switch (attr)
2059     {
2060     case BA_ENABLED:
2061       return HAVE_ATTR_enabled;
2062     case BA_PREFERRED_FOR_SIZE:
2063       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2064     case BA_PREFERRED_FOR_SPEED:
2065       return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2066     }
2067   gcc_unreachable ();
2068 }
2069 
2070 /* Return the value of ATTR for instruction INSN.  */
2071 
2072 static bool
2073 get_bool_attr (rtx_insn *insn, bool_attr attr)
2074 {
2075   switch (attr)
2076     {
2077     case BA_ENABLED:
2078       return get_attr_enabled (insn);
2079     case BA_PREFERRED_FOR_SIZE:
2080       return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2081     case BA_PREFERRED_FOR_SPEED:
2082       return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2083     }
2084   gcc_unreachable ();
2085 }
2086 
2087 /* Like get_bool_attr_mask, but don't use the cache.  */
2088 
2089 static alternative_mask
2090 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2091 {
2092   /* Temporarily install enough information for get_attr_<foo> to assume
2093      that the insn operands are already cached.  As above, the attribute
2094      mustn't depend on the values of operands, so we don't provide their
2095      real values here.  */
2096   rtx_insn *old_insn = recog_data.insn;
2097   int old_alternative = which_alternative;
2098 
2099   recog_data.insn = insn;
2100   alternative_mask mask = ALL_ALTERNATIVES;
2101   int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2102   for (int i = 0; i < n_alternatives; i++)
2103     {
2104       which_alternative = i;
2105       if (!get_bool_attr (insn, attr))
2106 	mask &= ~ALTERNATIVE_BIT (i);
2107     }
2108 
2109   recog_data.insn = old_insn;
2110   which_alternative = old_alternative;
2111   return mask;
2112 }
2113 
2114 /* Return the mask of operand alternatives that are allowed for INSN
2115    by boolean attribute ATTR.  This mask depends only on INSN and on
2116    the current target; it does not depend on things like the values of
2117    operands.  */
2118 
2119 static alternative_mask
2120 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2121 {
2122   /* Quick exit for asms and for targets that don't use these attributes.  */
2123   int code = INSN_CODE (insn);
2124   if (code < 0 || !have_bool_attr (attr))
2125     return ALL_ALTERNATIVES;
2126 
2127   /* Calling get_attr_<foo> can be expensive, so cache the mask
2128      for speed.  */
2129   if (!this_target_recog->x_bool_attr_masks[code][attr])
2130     this_target_recog->x_bool_attr_masks[code][attr]
2131       = get_bool_attr_mask_uncached (insn, attr);
2132   return this_target_recog->x_bool_attr_masks[code][attr];
2133 }
2134 
2135 /* Return the set of alternatives of INSN that are allowed by the current
2136    target.  */
2137 
2138 alternative_mask
2139 get_enabled_alternatives (rtx_insn *insn)
2140 {
2141   return get_bool_attr_mask (insn, BA_ENABLED);
2142 }
2143 
2144 /* Return the set of alternatives of INSN that are allowed by the current
2145    target and are preferred for the current size/speed optimization
2146    choice.  */
2147 
2148 alternative_mask
2149 get_preferred_alternatives (rtx_insn *insn)
2150 {
2151   if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2152     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2153   else
2154     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2155 }
2156 
2157 /* Return the set of alternatives of INSN that are allowed by the current
2158    target and are preferred for the size/speed optimization choice
2159    associated with BB.  Passing a separate BB is useful if INSN has not
2160    been emitted yet or if we are considering moving it to a different
2161    block.  */
2162 
2163 alternative_mask
2164 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2165 {
2166   if (optimize_bb_for_speed_p (bb))
2167     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2168   else
2169     return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2170 }
2171 
2172 /* Assert that the cached boolean attributes for INSN are still accurate.
2173    The backend is required to define these attributes in a way that only
2174    depends on the current target (rather than operands, compiler phase,
2175    etc.).  */
2176 
2177 bool
2178 check_bool_attrs (rtx_insn *insn)
2179 {
2180   int code = INSN_CODE (insn);
2181   if (code >= 0)
2182     for (int i = 0; i <= BA_LAST; ++i)
2183       {
2184 	enum bool_attr attr = (enum bool_attr) i;
2185 	if (this_target_recog->x_bool_attr_masks[code][attr])
2186 	  gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2187 		      == get_bool_attr_mask_uncached (insn, attr));
2188       }
2189   return true;
2190 }
2191 
2192 /* Like extract_insn, but save insn extracted and don't extract again, when
2193    called again for the same insn expecting that recog_data still contain the
2194    valid information.  This is used primary by gen_attr infrastructure that
2195    often does extract insn again and again.  */
2196 void
2197 extract_insn_cached (rtx_insn *insn)
2198 {
2199   if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2200     return;
2201   extract_insn (insn);
2202   recog_data.insn = insn;
2203 }
2204 
2205 /* Do uncached extract_insn, constrain_operands and complain about failures.
2206    This should be used when extracting a pre-existing constrained instruction
2207    if the caller wants to know which alternative was chosen.  */
2208 void
2209 extract_constrain_insn (rtx_insn *insn)
2210 {
2211   extract_insn (insn);
2212   if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2213     fatal_insn_not_found (insn);
2214 }
2215 
2216 /* Do cached extract_insn, constrain_operands and complain about failures.
2217    Used by insn_attrtab.  */
2218 void
2219 extract_constrain_insn_cached (rtx_insn *insn)
2220 {
2221   extract_insn_cached (insn);
2222   if (which_alternative == -1
2223       && !constrain_operands (reload_completed,
2224 			      get_enabled_alternatives (insn)))
2225     fatal_insn_not_found (insn);
2226 }
2227 
2228 /* Do cached constrain_operands on INSN and complain about failures.  */
2229 int
2230 constrain_operands_cached (rtx_insn *insn, int strict)
2231 {
2232   if (which_alternative == -1)
2233     return constrain_operands (strict, get_enabled_alternatives (insn));
2234   else
2235     return 1;
2236 }
2237 
2238 /* Analyze INSN and fill in recog_data.  */
2239 
2240 void
2241 extract_insn (rtx_insn *insn)
2242 {
2243   int i;
2244   int icode;
2245   int noperands;
2246   rtx body = PATTERN (insn);
2247 
2248   recog_data.n_operands = 0;
2249   recog_data.n_alternatives = 0;
2250   recog_data.n_dups = 0;
2251   recog_data.is_asm = false;
2252 
2253   switch (GET_CODE (body))
2254     {
2255     case USE:
2256     case CLOBBER:
2257     case ASM_INPUT:
2258     case ADDR_VEC:
2259     case ADDR_DIFF_VEC:
2260     case VAR_LOCATION:
2261       return;
2262 
2263     case SET:
2264       if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2265 	goto asm_insn;
2266       else
2267 	goto normal_insn;
2268     case PARALLEL:
2269       if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2270 	   && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2271 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2272 	  || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2273 	goto asm_insn;
2274       else
2275 	goto normal_insn;
2276     case ASM_OPERANDS:
2277     asm_insn:
2278       recog_data.n_operands = noperands = asm_noperands (body);
2279       if (noperands >= 0)
2280 	{
2281 	  /* This insn is an `asm' with operands.  */
2282 
2283 	  /* expand_asm_operands makes sure there aren't too many operands.  */
2284 	  gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2285 
2286 	  /* Now get the operand values and constraints out of the insn.  */
2287 	  decode_asm_operands (body, recog_data.operand,
2288 			       recog_data.operand_loc,
2289 			       recog_data.constraints,
2290 			       recog_data.operand_mode, NULL);
2291 	  memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2292 	  if (noperands > 0)
2293 	    {
2294 	      const char *p =  recog_data.constraints[0];
2295 	      recog_data.n_alternatives = 1;
2296 	      while (*p)
2297 		recog_data.n_alternatives += (*p++ == ',');
2298 	    }
2299 	  recog_data.is_asm = true;
2300 	  break;
2301 	}
2302       fatal_insn_not_found (insn);
2303 
2304     default:
2305     normal_insn:
2306       /* Ordinary insn: recognize it, get the operands via insn_extract
2307 	 and get the constraints.  */
2308 
2309       icode = recog_memoized (insn);
2310       if (icode < 0)
2311 	fatal_insn_not_found (insn);
2312 
2313       recog_data.n_operands = noperands = insn_data[icode].n_operands;
2314       recog_data.n_alternatives = insn_data[icode].n_alternatives;
2315       recog_data.n_dups = insn_data[icode].n_dups;
2316 
2317       insn_extract (insn);
2318 
2319       for (i = 0; i < noperands; i++)
2320 	{
2321 	  recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2322 	  recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2323 	  recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2324 	  /* VOIDmode match_operands gets mode from their real operand.  */
2325 	  if (recog_data.operand_mode[i] == VOIDmode)
2326 	    recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2327 	}
2328     }
2329   for (i = 0; i < noperands; i++)
2330     recog_data.operand_type[i]
2331       = (recog_data.constraints[i][0] == '=' ? OP_OUT
2332 	 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2333 	 : OP_IN);
2334 
2335   gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2336 
2337   recog_data.insn = NULL;
2338   which_alternative = -1;
2339 }
2340 
2341 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS operands,
2342    N_ALTERNATIVES alternatives and constraint strings CONSTRAINTS.
2343    OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries and CONSTRAINTS
2344    has N_OPERANDS entries.  */
2345 
2346 void
2347 preprocess_constraints (int n_operands, int n_alternatives,
2348 			const char **constraints,
2349 			operand_alternative *op_alt_base)
2350 {
2351   for (int i = 0; i < n_operands; i++)
2352     {
2353       int j;
2354       struct operand_alternative *op_alt;
2355       const char *p = constraints[i];
2356 
2357       op_alt = op_alt_base;
2358 
2359       for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2360 	{
2361 	  op_alt[i].cl = NO_REGS;
2362 	  op_alt[i].constraint = p;
2363 	  op_alt[i].matches = -1;
2364 	  op_alt[i].matched = -1;
2365 
2366 	  if (*p == '\0' || *p == ',')
2367 	    {
2368 	      op_alt[i].anything_ok = 1;
2369 	      continue;
2370 	    }
2371 
2372 	  for (;;)
2373 	    {
2374 	      char c = *p;
2375 	      if (c == '#')
2376 		do
2377 		  c = *++p;
2378 		while (c != ',' && c != '\0');
2379 	      if (c == ',' || c == '\0')
2380 		{
2381 		  p++;
2382 		  break;
2383 		}
2384 
2385 	      switch (c)
2386 		{
2387 		case '?':
2388 		  op_alt[i].reject += 6;
2389 		  break;
2390 		case '!':
2391 		  op_alt[i].reject += 600;
2392 		  break;
2393 		case '&':
2394 		  op_alt[i].earlyclobber = 1;
2395 		  break;
2396 
2397 		case '0': case '1': case '2': case '3': case '4':
2398 		case '5': case '6': case '7': case '8': case '9':
2399 		  {
2400 		    char *end;
2401 		    op_alt[i].matches = strtoul (p, &end, 10);
2402 		    op_alt[op_alt[i].matches].matched = i;
2403 		    p = end;
2404 		  }
2405 		  continue;
2406 
2407 		case 'X':
2408 		  op_alt[i].anything_ok = 1;
2409 		  break;
2410 
2411 		case 'g':
2412 		  op_alt[i].cl =
2413 		   reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2414 		  break;
2415 
2416 		default:
2417 		  enum constraint_num cn = lookup_constraint (p);
2418 		  enum reg_class cl;
2419 		  switch (get_constraint_type (cn))
2420 		    {
2421 		    case CT_REGISTER:
2422 		      cl = reg_class_for_constraint (cn);
2423 		      if (cl != NO_REGS)
2424 			op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2425 		      break;
2426 
2427 		    case CT_CONST_INT:
2428 		      break;
2429 
2430 		    case CT_MEMORY:
2431 		    case CT_SPECIAL_MEMORY:
2432 		      op_alt[i].memory_ok = 1;
2433 		      break;
2434 
2435 		    case CT_ADDRESS:
2436 		      op_alt[i].is_address = 1;
2437 		      op_alt[i].cl
2438 			= (reg_class_subunion
2439 			   [(int) op_alt[i].cl]
2440 			   [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2441 						  ADDRESS, SCRATCH)]);
2442 		      break;
2443 
2444 		    case CT_FIXED_FORM:
2445 		      break;
2446 		    }
2447 		  break;
2448 		}
2449 	      p += CONSTRAINT_LEN (c, p);
2450 	    }
2451 	}
2452     }
2453 }
2454 
2455 /* Return an array of operand_alternative instructions for
2456    instruction ICODE.  */
2457 
2458 const operand_alternative *
2459 preprocess_insn_constraints (unsigned int icode)
2460 {
2461   gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2462   if (this_target_recog->x_op_alt[icode])
2463     return this_target_recog->x_op_alt[icode];
2464 
2465   int n_operands = insn_data[icode].n_operands;
2466   if (n_operands == 0)
2467     return 0;
2468   /* Always provide at least one alternative so that which_op_alt ()
2469      works correctly.  If the instruction has 0 alternatives (i.e. all
2470      constraint strings are empty) then each operand in this alternative
2471      will have anything_ok set.  */
2472   int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2473   int n_entries = n_operands * n_alternatives;
2474 
2475   operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2476   const char **constraints = XALLOCAVEC (const char *, n_operands);
2477 
2478   for (int i = 0; i < n_operands; ++i)
2479     constraints[i] = insn_data[icode].operand[i].constraint;
2480   preprocess_constraints (n_operands, n_alternatives, constraints, op_alt);
2481 
2482   this_target_recog->x_op_alt[icode] = op_alt;
2483   return op_alt;
2484 }
2485 
2486 /* After calling extract_insn, you can use this function to extract some
2487    information from the constraint strings into a more usable form.
2488    The collected data is stored in recog_op_alt.  */
2489 
2490 void
2491 preprocess_constraints (rtx_insn *insn)
2492 {
2493   int icode = INSN_CODE (insn);
2494   if (icode >= 0)
2495     recog_op_alt = preprocess_insn_constraints (icode);
2496   else
2497     {
2498       int n_operands = recog_data.n_operands;
2499       int n_alternatives = recog_data.n_alternatives;
2500       int n_entries = n_operands * n_alternatives;
2501       memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2502       preprocess_constraints (n_operands, n_alternatives,
2503 			      recog_data.constraints, asm_op_alt);
2504       recog_op_alt = asm_op_alt;
2505     }
2506 }
2507 
2508 /* Check the operands of an insn against the insn's operand constraints
2509    and return 1 if they match any of the alternatives in ALTERNATIVES.
2510 
2511    The information about the insn's operands, constraints, operand modes
2512    etc. is obtained from the global variables set up by extract_insn.
2513 
2514    WHICH_ALTERNATIVE is set to a number which indicates which
2515    alternative of constraints was matched: 0 for the first alternative,
2516    1 for the next, etc.
2517 
2518    In addition, when two operands are required to match
2519    and it happens that the output operand is (reg) while the
2520    input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2521    make the output operand look like the input.
2522    This is because the output operand is the one the template will print.
2523 
2524    This is used in final, just before printing the assembler code and by
2525    the routines that determine an insn's attribute.
2526 
2527    If STRICT is a positive nonzero value, it means that we have been
2528    called after reload has been completed.  In that case, we must
2529    do all checks strictly.  If it is zero, it means that we have been called
2530    before reload has completed.  In that case, we first try to see if we can
2531    find an alternative that matches strictly.  If not, we try again, this
2532    time assuming that reload will fix up the insn.  This provides a "best
2533    guess" for the alternative and is used to compute attributes of insns prior
2534    to reload.  A negative value of STRICT is used for this internal call.  */
2535 
2536 struct funny_match
2537 {
2538   int this_op, other;
2539 };
2540 
2541 int
2542 constrain_operands (int strict, alternative_mask alternatives)
2543 {
2544   const char *constraints[MAX_RECOG_OPERANDS];
2545   int matching_operands[MAX_RECOG_OPERANDS];
2546   int earlyclobber[MAX_RECOG_OPERANDS];
2547   int c;
2548 
2549   struct funny_match funny_match[MAX_RECOG_OPERANDS];
2550   int funny_match_index;
2551 
2552   which_alternative = 0;
2553   if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2554     return 1;
2555 
2556   for (c = 0; c < recog_data.n_operands; c++)
2557     {
2558       constraints[c] = recog_data.constraints[c];
2559       matching_operands[c] = -1;
2560     }
2561 
2562   do
2563     {
2564       int seen_earlyclobber_at = -1;
2565       int opno;
2566       int lose = 0;
2567       funny_match_index = 0;
2568 
2569       if (!TEST_BIT (alternatives, which_alternative))
2570 	{
2571 	  int i;
2572 
2573 	  for (i = 0; i < recog_data.n_operands; i++)
2574 	    constraints[i] = skip_alternative (constraints[i]);
2575 
2576 	  which_alternative++;
2577 	  continue;
2578 	}
2579 
2580       for (opno = 0; opno < recog_data.n_operands; opno++)
2581 	{
2582 	  rtx op = recog_data.operand[opno];
2583 	  machine_mode mode = GET_MODE (op);
2584 	  const char *p = constraints[opno];
2585 	  int offset = 0;
2586 	  int win = 0;
2587 	  int val;
2588 	  int len;
2589 
2590 	  earlyclobber[opno] = 0;
2591 
2592 	  /* A unary operator may be accepted by the predicate, but it
2593 	     is irrelevant for matching constraints.  */
2594 	  if (UNARY_P (op))
2595 	    op = XEXP (op, 0);
2596 
2597 	  if (GET_CODE (op) == SUBREG)
2598 	    {
2599 	      if (REG_P (SUBREG_REG (op))
2600 		  && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2601 		offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2602 					      GET_MODE (SUBREG_REG (op)),
2603 					      SUBREG_BYTE (op),
2604 					      GET_MODE (op));
2605 	      op = SUBREG_REG (op);
2606 	    }
2607 
2608 	  /* An empty constraint or empty alternative
2609 	     allows anything which matched the pattern.  */
2610 	  if (*p == 0 || *p == ',')
2611 	    win = 1;
2612 
2613 	  do
2614 	    switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2615 	      {
2616 	      case '\0':
2617 		len = 0;
2618 		break;
2619 	      case ',':
2620 		c = '\0';
2621 		break;
2622 
2623 	      case '#':
2624 		/* Ignore rest of this alternative as far as
2625 		   constraint checking is concerned.  */
2626 		do
2627 		  p++;
2628 		while (*p && *p != ',');
2629 		len = 0;
2630 		break;
2631 
2632 	      case '&':
2633 		earlyclobber[opno] = 1;
2634 		if (seen_earlyclobber_at < 0)
2635 		  seen_earlyclobber_at = opno;
2636 		break;
2637 
2638 	      case '0':  case '1':  case '2':  case '3':  case '4':
2639 	      case '5':  case '6':  case '7':  case '8':  case '9':
2640 		{
2641 		  /* This operand must be the same as a previous one.
2642 		     This kind of constraint is used for instructions such
2643 		     as add when they take only two operands.
2644 
2645 		     Note that the lower-numbered operand is passed first.
2646 
2647 		     If we are not testing strictly, assume that this
2648 		     constraint will be satisfied.  */
2649 
2650 		  char *end;
2651 		  int match;
2652 
2653 		  match = strtoul (p, &end, 10);
2654 		  p = end;
2655 
2656 		  if (strict < 0)
2657 		    val = 1;
2658 		  else
2659 		    {
2660 		      rtx op1 = recog_data.operand[match];
2661 		      rtx op2 = recog_data.operand[opno];
2662 
2663 		      /* A unary operator may be accepted by the predicate,
2664 			 but it is irrelevant for matching constraints.  */
2665 		      if (UNARY_P (op1))
2666 			op1 = XEXP (op1, 0);
2667 		      if (UNARY_P (op2))
2668 			op2 = XEXP (op2, 0);
2669 
2670 		      val = operands_match_p (op1, op2);
2671 		    }
2672 
2673 		  matching_operands[opno] = match;
2674 		  matching_operands[match] = opno;
2675 
2676 		  if (val != 0)
2677 		    win = 1;
2678 
2679 		  /* If output is *x and input is *--x, arrange later
2680 		     to change the output to *--x as well, since the
2681 		     output op is the one that will be printed.  */
2682 		  if (val == 2 && strict > 0)
2683 		    {
2684 		      funny_match[funny_match_index].this_op = opno;
2685 		      funny_match[funny_match_index++].other = match;
2686 		    }
2687 		}
2688 		len = 0;
2689 		break;
2690 
2691 	      case 'p':
2692 		/* p is used for address_operands.  When we are called by
2693 		   gen_reload, no one will have checked that the address is
2694 		   strictly valid, i.e., that all pseudos requiring hard regs
2695 		   have gotten them.  */
2696 		if (strict <= 0
2697 		    || (strict_memory_address_p (recog_data.operand_mode[opno],
2698 						 op)))
2699 		  win = 1;
2700 		break;
2701 
2702 		/* No need to check general_operand again;
2703 		   it was done in insn-recog.c.  Well, except that reload
2704 		   doesn't check the validity of its replacements, but
2705 		   that should only matter when there's a bug.  */
2706 	      case 'g':
2707 		/* Anything goes unless it is a REG and really has a hard reg
2708 		   but the hard reg is not in the class GENERAL_REGS.  */
2709 		if (REG_P (op))
2710 		  {
2711 		    if (strict < 0
2712 			|| GENERAL_REGS == ALL_REGS
2713 			|| (reload_in_progress
2714 			    && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2715 			|| reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2716 		      win = 1;
2717 		  }
2718 		else if (strict < 0 || general_operand (op, mode))
2719 		  win = 1;
2720 		break;
2721 
2722 	      default:
2723 		{
2724 		  enum constraint_num cn = lookup_constraint (p);
2725 		  enum reg_class cl = reg_class_for_constraint (cn);
2726 		  if (cl != NO_REGS)
2727 		    {
2728 		      if (strict < 0
2729 			  || (strict == 0
2730 			      && REG_P (op)
2731 			      && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2732 			  || (strict == 0 && GET_CODE (op) == SCRATCH)
2733 			  || (REG_P (op)
2734 			      && reg_fits_class_p (op, cl, offset, mode)))
2735 		        win = 1;
2736 		    }
2737 
2738 		  else if (constraint_satisfied_p (op, cn))
2739 		    win = 1;
2740 
2741 		  else if (insn_extra_memory_constraint (cn)
2742 			   /* Every memory operand can be reloaded to fit.  */
2743 			   && ((strict < 0 && MEM_P (op))
2744 			       /* Before reload, accept what reload can turn
2745 				  into a mem.  */
2746 			       || (strict < 0 && CONSTANT_P (op))
2747 			       /* Before reload, accept a pseudo,
2748 				  since LRA can turn it into a mem.  */
2749 			       || (strict < 0 && targetm.lra_p () && REG_P (op)
2750 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2751 			       /* During reload, accept a pseudo  */
2752 			       || (reload_in_progress && REG_P (op)
2753 				   && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2754 		    win = 1;
2755 		  else if (insn_extra_address_constraint (cn)
2756 			   /* Every address operand can be reloaded to fit.  */
2757 			   && strict < 0)
2758 		    win = 1;
2759 		  /* Cater to architectures like IA-64 that define extra memory
2760 		     constraints without using define_memory_constraint.  */
2761 		  else if (reload_in_progress
2762 			   && REG_P (op)
2763 			   && REGNO (op) >= FIRST_PSEUDO_REGISTER
2764 			   && reg_renumber[REGNO (op)] < 0
2765 			   && reg_equiv_mem (REGNO (op)) != 0
2766 			   && constraint_satisfied_p
2767 			      (reg_equiv_mem (REGNO (op)), cn))
2768 		    win = 1;
2769 		  break;
2770 		}
2771 	      }
2772 	  while (p += len, c);
2773 
2774 	  constraints[opno] = p;
2775 	  /* If this operand did not win somehow,
2776 	     this alternative loses.  */
2777 	  if (! win)
2778 	    lose = 1;
2779 	}
2780       /* This alternative won; the operands are ok.
2781 	 Change whichever operands this alternative says to change.  */
2782       if (! lose)
2783 	{
2784 	  int opno, eopno;
2785 
2786 	  /* See if any earlyclobber operand conflicts with some other
2787 	     operand.  */
2788 
2789 	  if (strict > 0  && seen_earlyclobber_at >= 0)
2790 	    for (eopno = seen_earlyclobber_at;
2791 		 eopno < recog_data.n_operands;
2792 		 eopno++)
2793 	      /* Ignore earlyclobber operands now in memory,
2794 		 because we would often report failure when we have
2795 		 two memory operands, one of which was formerly a REG.  */
2796 	      if (earlyclobber[eopno]
2797 		  && REG_P (recog_data.operand[eopno]))
2798 		for (opno = 0; opno < recog_data.n_operands; opno++)
2799 		  if ((MEM_P (recog_data.operand[opno])
2800 		       || recog_data.operand_type[opno] != OP_OUT)
2801 		      && opno != eopno
2802 		      /* Ignore things like match_operator operands.  */
2803 		      && *recog_data.constraints[opno] != 0
2804 		      && ! (matching_operands[opno] == eopno
2805 			    && operands_match_p (recog_data.operand[opno],
2806 						 recog_data.operand[eopno]))
2807 		      && ! safe_from_earlyclobber (recog_data.operand[opno],
2808 						   recog_data.operand[eopno]))
2809 		    lose = 1;
2810 
2811 	  if (! lose)
2812 	    {
2813 	      while (--funny_match_index >= 0)
2814 		{
2815 		  recog_data.operand[funny_match[funny_match_index].other]
2816 		    = recog_data.operand[funny_match[funny_match_index].this_op];
2817 		}
2818 
2819 	      /* For operands without < or > constraints reject side-effects.  */
2820 	      if (AUTO_INC_DEC && recog_data.is_asm)
2821 		{
2822 		  for (opno = 0; opno < recog_data.n_operands; opno++)
2823 		    if (MEM_P (recog_data.operand[opno]))
2824 		      switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2825 			{
2826 			case PRE_INC:
2827 			case POST_INC:
2828 			case PRE_DEC:
2829 			case POST_DEC:
2830 			case PRE_MODIFY:
2831 			case POST_MODIFY:
2832 			  if (strchr (recog_data.constraints[opno], '<') == NULL
2833 			      && strchr (recog_data.constraints[opno], '>')
2834 				 == NULL)
2835 			    return 0;
2836 			  break;
2837 			default:
2838 			  break;
2839 			}
2840 		}
2841 
2842 	      return 1;
2843 	    }
2844 	}
2845 
2846       which_alternative++;
2847     }
2848   while (which_alternative < recog_data.n_alternatives);
2849 
2850   which_alternative = -1;
2851   /* If we are about to reject this, but we are not to test strictly,
2852      try a very loose test.  Only return failure if it fails also.  */
2853   if (strict == 0)
2854     return constrain_operands (-1, alternatives);
2855   else
2856     return 0;
2857 }
2858 
2859 /* Return true iff OPERAND (assumed to be a REG rtx)
2860    is a hard reg in class CLASS when its regno is offset by OFFSET
2861    and changed to mode MODE.
2862    If REG occupies multiple hard regs, all of them must be in CLASS.  */
2863 
2864 bool
2865 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2866 		  machine_mode mode)
2867 {
2868   unsigned int regno = REGNO (operand);
2869 
2870   if (cl == NO_REGS)
2871     return false;
2872 
2873   /* Regno must not be a pseudo register.  Offset may be negative.  */
2874   return (HARD_REGISTER_NUM_P (regno)
2875 	  && HARD_REGISTER_NUM_P (regno + offset)
2876 	  && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2877 				regno + offset));
2878 }
2879 
2880 /* Split single instruction.  Helper function for split_all_insns and
2881    split_all_insns_noflow.  Return last insn in the sequence if successful,
2882    or NULL if unsuccessful.  */
2883 
2884 static rtx_insn *
2885 split_insn (rtx_insn *insn)
2886 {
2887   /* Split insns here to get max fine-grain parallelism.  */
2888   rtx_insn *first = PREV_INSN (insn);
2889   rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2890   rtx insn_set, last_set, note;
2891 
2892   if (last == insn)
2893     return NULL;
2894 
2895   /* If the original instruction was a single set that was known to be
2896      equivalent to a constant, see if we can say the same about the last
2897      instruction in the split sequence.  The two instructions must set
2898      the same destination.  */
2899   insn_set = single_set (insn);
2900   if (insn_set)
2901     {
2902       last_set = single_set (last);
2903       if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2904 	{
2905 	  note = find_reg_equal_equiv_note (insn);
2906 	  if (note && CONSTANT_P (XEXP (note, 0)))
2907 	    set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2908 	  else if (CONSTANT_P (SET_SRC (insn_set)))
2909 	    set_unique_reg_note (last, REG_EQUAL,
2910 				 copy_rtx (SET_SRC (insn_set)));
2911 	}
2912     }
2913 
2914   /* try_split returns the NOTE that INSN became.  */
2915   SET_INSN_DELETED (insn);
2916 
2917   /* ??? Coddle to md files that generate subregs in post-reload
2918      splitters instead of computing the proper hard register.  */
2919   if (reload_completed && first != last)
2920     {
2921       first = NEXT_INSN (first);
2922       for (;;)
2923 	{
2924 	  if (INSN_P (first))
2925 	    cleanup_subreg_operands (first);
2926 	  if (first == last)
2927 	    break;
2928 	  first = NEXT_INSN (first);
2929 	}
2930     }
2931 
2932   return last;
2933 }
2934 
2935 /* Split all insns in the function.  If UPD_LIFE, update life info after.  */
2936 
2937 void
2938 split_all_insns (void)
2939 {
2940   bool changed;
2941   basic_block bb;
2942 
2943   auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2944   bitmap_clear (blocks);
2945   changed = false;
2946 
2947   FOR_EACH_BB_REVERSE_FN (bb, cfun)
2948     {
2949       rtx_insn *insn, *next;
2950       bool finish = false;
2951 
2952       rtl_profile_for_bb (bb);
2953       for (insn = BB_HEAD (bb); !finish ; insn = next)
2954 	{
2955 	  /* Can't use `next_real_insn' because that might go across
2956 	     CODE_LABELS and short-out basic blocks.  */
2957 	  next = NEXT_INSN (insn);
2958 	  finish = (insn == BB_END (bb));
2959 	  if (INSN_P (insn))
2960 	    {
2961 	      rtx set = single_set (insn);
2962 
2963 	      /* Don't split no-op move insns.  These should silently
2964 		 disappear later in final.  Splitting such insns would
2965 		 break the code that handles LIBCALL blocks.  */
2966 	      if (set && set_noop_p (set))
2967 		{
2968 		  /* Nops get in the way while scheduling, so delete them
2969 		     now if register allocation has already been done.  It
2970 		     is too risky to try to do this before register
2971 		     allocation, and there are unlikely to be very many
2972 		     nops then anyways.  */
2973 		  if (reload_completed)
2974 		      delete_insn_and_edges (insn);
2975 		}
2976 	      else
2977 		{
2978 		  if (split_insn (insn))
2979 		    {
2980 		      bitmap_set_bit (blocks, bb->index);
2981 		      changed = true;
2982 		    }
2983 		}
2984 	    }
2985 	}
2986     }
2987 
2988   default_rtl_profile ();
2989   if (changed)
2990     find_many_sub_basic_blocks (blocks);
2991 
2992   checking_verify_flow_info ();
2993 }
2994 
2995 /* Same as split_all_insns, but do not expect CFG to be available.
2996    Used by machine dependent reorg passes.  */
2997 
2998 unsigned int
2999 split_all_insns_noflow (void)
3000 {
3001   rtx_insn *next, *insn;
3002 
3003   for (insn = get_insns (); insn; insn = next)
3004     {
3005       next = NEXT_INSN (insn);
3006       if (INSN_P (insn))
3007 	{
3008 	  /* Don't split no-op move insns.  These should silently
3009 	     disappear later in final.  Splitting such insns would
3010 	     break the code that handles LIBCALL blocks.  */
3011 	  rtx set = single_set (insn);
3012 	  if (set && set_noop_p (set))
3013 	    {
3014 	      /* Nops get in the way while scheduling, so delete them
3015 		 now if register allocation has already been done.  It
3016 		 is too risky to try to do this before register
3017 		 allocation, and there are unlikely to be very many
3018 		 nops then anyways.
3019 
3020 		 ??? Should we use delete_insn when the CFG isn't valid?  */
3021 	      if (reload_completed)
3022 		delete_insn_and_edges (insn);
3023 	    }
3024 	  else
3025 	    split_insn (insn);
3026 	}
3027     }
3028   return 0;
3029 }
3030 
3031 struct peep2_insn_data
3032 {
3033   rtx_insn *insn;
3034   regset live_before;
3035 };
3036 
3037 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3038 static int peep2_current;
3039 
3040 static bool peep2_do_rebuild_jump_labels;
3041 static bool peep2_do_cleanup_cfg;
3042 
3043 /* The number of instructions available to match a peep2.  */
3044 int peep2_current_count;
3045 
3046 /* A marker indicating the last insn of the block.  The live_before regset
3047    for this element is correct, indicating DF_LIVE_OUT for the block.  */
3048 #define PEEP2_EOB invalid_insn_rtx
3049 
3050 /* Wrap N to fit into the peep2_insn_data buffer.  */
3051 
3052 static int
3053 peep2_buf_position (int n)
3054 {
3055   if (n >= MAX_INSNS_PER_PEEP2 + 1)
3056     n -= MAX_INSNS_PER_PEEP2 + 1;
3057   return n;
3058 }
3059 
3060 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3061    does not exist.  Used by the recognizer to find the next insn to match
3062    in a multi-insn pattern.  */
3063 
3064 rtx_insn *
3065 peep2_next_insn (int n)
3066 {
3067   gcc_assert (n <= peep2_current_count);
3068 
3069   n = peep2_buf_position (peep2_current + n);
3070 
3071   return peep2_insn_data[n].insn;
3072 }
3073 
3074 /* Return true if REGNO is dead before the Nth non-note insn
3075    after `current'.  */
3076 
3077 int
3078 peep2_regno_dead_p (int ofs, int regno)
3079 {
3080   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3081 
3082   ofs = peep2_buf_position (peep2_current + ofs);
3083 
3084   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3085 
3086   return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3087 }
3088 
3089 /* Similarly for a REG.  */
3090 
3091 int
3092 peep2_reg_dead_p (int ofs, rtx reg)
3093 {
3094   gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3095 
3096   ofs = peep2_buf_position (peep2_current + ofs);
3097 
3098   gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3099 
3100   unsigned int end_regno = END_REGNO (reg);
3101   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3102     if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3103       return 0;
3104   return 1;
3105 }
3106 
3107 /* Regno offset to be used in the register search.  */
3108 static int search_ofs;
3109 
3110 /* Try to find a hard register of mode MODE, matching the register class in
3111    CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3112    remains available until the end of LAST_INSN.  LAST_INSN may be NULL_RTX,
3113    in which case the only condition is that the register must be available
3114    before CURRENT_INSN.
3115    Registers that already have bits set in REG_SET will not be considered.
3116 
3117    If an appropriate register is available, it will be returned and the
3118    corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3119    returned.  */
3120 
3121 rtx
3122 peep2_find_free_register (int from, int to, const char *class_str,
3123 			  machine_mode mode, HARD_REG_SET *reg_set)
3124 {
3125   enum reg_class cl;
3126   HARD_REG_SET live;
3127   df_ref def;
3128   int i;
3129 
3130   gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3131   gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3132 
3133   from = peep2_buf_position (peep2_current + from);
3134   to = peep2_buf_position (peep2_current + to);
3135 
3136   gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3137   REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3138 
3139   while (from != to)
3140     {
3141       gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3142 
3143       /* Don't use registers set or clobbered by the insn.  */
3144       FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3145 	SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3146 
3147       from = peep2_buf_position (from + 1);
3148     }
3149 
3150   cl = reg_class_for_constraint (lookup_constraint (class_str));
3151 
3152   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3153     {
3154       int raw_regno, regno, success, j;
3155 
3156       /* Distribute the free registers as much as possible.  */
3157       raw_regno = search_ofs + i;
3158       if (raw_regno >= FIRST_PSEUDO_REGISTER)
3159 	raw_regno -= FIRST_PSEUDO_REGISTER;
3160 #ifdef REG_ALLOC_ORDER
3161       regno = reg_alloc_order[raw_regno];
3162 #else
3163       regno = raw_regno;
3164 #endif
3165 
3166       /* Can it support the mode we need?  */
3167       if (! HARD_REGNO_MODE_OK (regno, mode))
3168 	continue;
3169 
3170       success = 1;
3171       for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3172 	{
3173 	  /* Don't allocate fixed registers.  */
3174 	  if (fixed_regs[regno + j])
3175 	    {
3176 	      success = 0;
3177 	      break;
3178 	    }
3179 	  /* Don't allocate global registers.  */
3180 	  if (global_regs[regno + j])
3181 	    {
3182 	      success = 0;
3183 	      break;
3184 	    }
3185 	  /* Make sure the register is of the right class.  */
3186 	  if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3187 	    {
3188 	      success = 0;
3189 	      break;
3190 	    }
3191 	  /* And that we don't create an extra save/restore.  */
3192 	  if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3193 	    {
3194 	      success = 0;
3195 	      break;
3196 	    }
3197 
3198 	  if (! targetm.hard_regno_scratch_ok (regno + j))
3199 	    {
3200 	      success = 0;
3201 	      break;
3202 	    }
3203 
3204 	  /* And we don't clobber traceback for noreturn functions.  */
3205 	  if ((regno + j == FRAME_POINTER_REGNUM
3206 	       || regno + j == HARD_FRAME_POINTER_REGNUM)
3207 	      && (! reload_completed || frame_pointer_needed))
3208 	    {
3209 	      success = 0;
3210 	      break;
3211 	    }
3212 
3213 	  if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3214 	      || TEST_HARD_REG_BIT (live, regno + j))
3215 	    {
3216 	      success = 0;
3217 	      break;
3218 	    }
3219 	}
3220 
3221       if (success)
3222 	{
3223 	  add_to_hard_reg_set (reg_set, mode, regno);
3224 
3225 	  /* Start the next search with the next register.  */
3226 	  if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3227 	    raw_regno = 0;
3228 	  search_ofs = raw_regno;
3229 
3230 	  return gen_rtx_REG (mode, regno);
3231 	}
3232     }
3233 
3234   search_ofs = 0;
3235   return NULL_RTX;
3236 }
3237 
3238 /* Forget all currently tracked instructions, only remember current
3239    LIVE regset.  */
3240 
3241 static void
3242 peep2_reinit_state (regset live)
3243 {
3244   int i;
3245 
3246   /* Indicate that all slots except the last holds invalid data.  */
3247   for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3248     peep2_insn_data[i].insn = NULL;
3249   peep2_current_count = 0;
3250 
3251   /* Indicate that the last slot contains live_after data.  */
3252   peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3253   peep2_current = MAX_INSNS_PER_PEEP2;
3254 
3255   COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3256 }
3257 
3258 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3259    starting at INSN.  Perform the replacement, removing the old insns and
3260    replacing them with ATTEMPT.  Returns the last insn emitted, or NULL
3261    if the replacement is rejected.  */
3262 
3263 static rtx_insn *
3264 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3265 {
3266   int i;
3267   rtx_insn *last, *before_try, *x;
3268   rtx eh_note, as_note;
3269   rtx_insn *old_insn;
3270   rtx_insn *new_insn;
3271   bool was_call = false;
3272 
3273   /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3274      match more than one insn, or to be split into more than one insn.  */
3275   old_insn = peep2_insn_data[peep2_current].insn;
3276   if (RTX_FRAME_RELATED_P (old_insn))
3277     {
3278       bool any_note = false;
3279       rtx note;
3280 
3281       if (match_len != 0)
3282 	return NULL;
3283 
3284       /* Look for one "active" insn.  I.e. ignore any "clobber" insns that
3285 	 may be in the stream for the purpose of register allocation.  */
3286       if (active_insn_p (attempt))
3287 	new_insn = attempt;
3288       else
3289 	new_insn = next_active_insn (attempt);
3290       if (next_active_insn (new_insn))
3291 	return NULL;
3292 
3293       /* We have a 1-1 replacement.  Copy over any frame-related info.  */
3294       RTX_FRAME_RELATED_P (new_insn) = 1;
3295 
3296       /* Allow the backend to fill in a note during the split.  */
3297       for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3298 	switch (REG_NOTE_KIND (note))
3299 	  {
3300 	  case REG_FRAME_RELATED_EXPR:
3301 	  case REG_CFA_DEF_CFA:
3302 	  case REG_CFA_ADJUST_CFA:
3303 	  case REG_CFA_OFFSET:
3304 	  case REG_CFA_REGISTER:
3305 	  case REG_CFA_EXPRESSION:
3306 	  case REG_CFA_RESTORE:
3307 	  case REG_CFA_SET_VDRAP:
3308 	    any_note = true;
3309 	    break;
3310 	  default:
3311 	    break;
3312 	  }
3313 
3314       /* If the backend didn't supply a note, copy one over.  */
3315       if (!any_note)
3316         for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3317 	  switch (REG_NOTE_KIND (note))
3318 	    {
3319 	    case REG_FRAME_RELATED_EXPR:
3320 	    case REG_CFA_DEF_CFA:
3321 	    case REG_CFA_ADJUST_CFA:
3322 	    case REG_CFA_OFFSET:
3323 	    case REG_CFA_REGISTER:
3324 	    case REG_CFA_EXPRESSION:
3325 	    case REG_CFA_RESTORE:
3326 	    case REG_CFA_SET_VDRAP:
3327 	      add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3328 	      any_note = true;
3329 	      break;
3330 	    default:
3331 	      break;
3332 	    }
3333 
3334       /* If there still isn't a note, make sure the unwind info sees the
3335 	 same expression as before the split.  */
3336       if (!any_note)
3337 	{
3338 	  rtx old_set, new_set;
3339 
3340 	  /* The old insn had better have been simple, or annotated.  */
3341 	  old_set = single_set (old_insn);
3342 	  gcc_assert (old_set != NULL);
3343 
3344 	  new_set = single_set (new_insn);
3345 	  if (!new_set || !rtx_equal_p (new_set, old_set))
3346 	    add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3347 	}
3348 
3349       /* Copy prologue/epilogue status.  This is required in order to keep
3350 	 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state.  */
3351       maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3352     }
3353 
3354   /* If we are splitting a CALL_INSN, look for the CALL_INSN
3355      in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3356      cfg-related call notes.  */
3357   for (i = 0; i <= match_len; ++i)
3358     {
3359       int j;
3360       rtx note;
3361 
3362       j = peep2_buf_position (peep2_current + i);
3363       old_insn = peep2_insn_data[j].insn;
3364       if (!CALL_P (old_insn))
3365 	continue;
3366       was_call = true;
3367 
3368       new_insn = attempt;
3369       while (new_insn != NULL_RTX)
3370 	{
3371 	  if (CALL_P (new_insn))
3372 	    break;
3373 	  new_insn = NEXT_INSN (new_insn);
3374 	}
3375 
3376       gcc_assert (new_insn != NULL_RTX);
3377 
3378       CALL_INSN_FUNCTION_USAGE (new_insn)
3379 	= CALL_INSN_FUNCTION_USAGE (old_insn);
3380       SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3381 
3382       for (note = REG_NOTES (old_insn);
3383 	   note;
3384 	   note = XEXP (note, 1))
3385 	switch (REG_NOTE_KIND (note))
3386 	  {
3387 	  case REG_NORETURN:
3388 	  case REG_SETJMP:
3389 	  case REG_TM:
3390 	    add_reg_note (new_insn, REG_NOTE_KIND (note),
3391 			  XEXP (note, 0));
3392 	    break;
3393 	  default:
3394 	    /* Discard all other reg notes.  */
3395 	    break;
3396 	  }
3397 
3398       /* Croak if there is another call in the sequence.  */
3399       while (++i <= match_len)
3400 	{
3401 	  j = peep2_buf_position (peep2_current + i);
3402 	  old_insn = peep2_insn_data[j].insn;
3403 	  gcc_assert (!CALL_P (old_insn));
3404 	}
3405       break;
3406     }
3407 
3408   /* If we matched any instruction that had a REG_ARGS_SIZE, then
3409      move those notes over to the new sequence.  */
3410   as_note = NULL;
3411   for (i = match_len; i >= 0; --i)
3412     {
3413       int j = peep2_buf_position (peep2_current + i);
3414       old_insn = peep2_insn_data[j].insn;
3415 
3416       as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3417       if (as_note)
3418 	break;
3419     }
3420 
3421   i = peep2_buf_position (peep2_current + match_len);
3422   eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3423 
3424   /* Replace the old sequence with the new.  */
3425   rtx_insn *peepinsn = peep2_insn_data[i].insn;
3426   last = emit_insn_after_setloc (attempt,
3427 				 peep2_insn_data[i].insn,
3428 				 INSN_LOCATION (peepinsn));
3429   before_try = PREV_INSN (insn);
3430   delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3431 
3432   /* Re-insert the EH_REGION notes.  */
3433   if (eh_note || (was_call && nonlocal_goto_handler_labels))
3434     {
3435       edge eh_edge;
3436       edge_iterator ei;
3437 
3438       FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3439 	if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3440 	  break;
3441 
3442       if (eh_note)
3443 	copy_reg_eh_region_note_backward (eh_note, last, before_try);
3444 
3445       if (eh_edge)
3446 	for (x = last; x != before_try; x = PREV_INSN (x))
3447 	  if (x != BB_END (bb)
3448 	      && (can_throw_internal (x)
3449 		  || can_nonlocal_goto (x)))
3450 	    {
3451 	      edge nfte, nehe;
3452 	      int flags;
3453 
3454 	      nfte = split_block (bb, x);
3455 	      flags = (eh_edge->flags
3456 		       & (EDGE_EH | EDGE_ABNORMAL));
3457 	      if (CALL_P (x))
3458 		flags |= EDGE_ABNORMAL_CALL;
3459 	      nehe = make_edge (nfte->src, eh_edge->dest,
3460 				flags);
3461 
3462 	      nehe->probability = eh_edge->probability;
3463 	      nfte->probability
3464 		= REG_BR_PROB_BASE - nehe->probability;
3465 
3466 	      peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3467 	      bb = nfte->src;
3468 	      eh_edge = nehe;
3469 	    }
3470 
3471       /* Converting possibly trapping insn to non-trapping is
3472 	 possible.  Zap dummy outgoing edges.  */
3473       peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3474     }
3475 
3476   /* Re-insert the ARGS_SIZE notes.  */
3477   if (as_note)
3478     fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3479 
3480   /* If we generated a jump instruction, it won't have
3481      JUMP_LABEL set.  Recompute after we're done.  */
3482   for (x = last; x != before_try; x = PREV_INSN (x))
3483     if (JUMP_P (x))
3484       {
3485 	peep2_do_rebuild_jump_labels = true;
3486 	break;
3487       }
3488 
3489   return last;
3490 }
3491 
3492 /* After performing a replacement in basic block BB, fix up the life
3493    information in our buffer.  LAST is the last of the insns that we
3494    emitted as a replacement.  PREV is the insn before the start of
3495    the replacement.  MATCH_LEN is the number of instructions that were
3496    matched, and which now need to be replaced in the buffer.  */
3497 
3498 static void
3499 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3500 		   rtx_insn *prev)
3501 {
3502   int i = peep2_buf_position (peep2_current + match_len + 1);
3503   rtx_insn *x;
3504   regset_head live;
3505 
3506   INIT_REG_SET (&live);
3507   COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3508 
3509   gcc_assert (peep2_current_count >= match_len + 1);
3510   peep2_current_count -= match_len + 1;
3511 
3512   x = last;
3513   do
3514     {
3515       if (INSN_P (x))
3516 	{
3517 	  df_insn_rescan (x);
3518 	  if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3519 	    {
3520 	      peep2_current_count++;
3521 	      if (--i < 0)
3522 		i = MAX_INSNS_PER_PEEP2;
3523 	      peep2_insn_data[i].insn = x;
3524 	      df_simulate_one_insn_backwards (bb, x, &live);
3525 	      COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3526 	    }
3527 	}
3528       x = PREV_INSN (x);
3529     }
3530   while (x != prev);
3531   CLEAR_REG_SET (&live);
3532 
3533   peep2_current = i;
3534 }
3535 
3536 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3537    Return true if we added it, false otherwise.  The caller will try to match
3538    peepholes against the buffer if we return false; otherwise it will try to
3539    add more instructions to the buffer.  */
3540 
3541 static bool
3542 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3543 {
3544   int pos;
3545 
3546   /* Once we have filled the maximum number of insns the buffer can hold,
3547      allow the caller to match the insns against peepholes.  We wait until
3548      the buffer is full in case the target has similar peepholes of different
3549      length; we always want to match the longest if possible.  */
3550   if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3551     return false;
3552 
3553   /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3554      any other pattern, lest it change the semantics of the frame info.  */
3555   if (RTX_FRAME_RELATED_P (insn))
3556     {
3557       /* Let the buffer drain first.  */
3558       if (peep2_current_count > 0)
3559 	return false;
3560       /* Now the insn will be the only thing in the buffer.  */
3561     }
3562 
3563   pos = peep2_buf_position (peep2_current + peep2_current_count);
3564   peep2_insn_data[pos].insn = insn;
3565   COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3566   peep2_current_count++;
3567 
3568   df_simulate_one_insn_forwards (bb, insn, live);
3569   return true;
3570 }
3571 
3572 /* Perform the peephole2 optimization pass.  */
3573 
3574 static void
3575 peephole2_optimize (void)
3576 {
3577   rtx_insn *insn;
3578   bitmap live;
3579   int i;
3580   basic_block bb;
3581 
3582   peep2_do_cleanup_cfg = false;
3583   peep2_do_rebuild_jump_labels = false;
3584 
3585   df_set_flags (DF_LR_RUN_DCE);
3586   df_note_add_problem ();
3587   df_analyze ();
3588 
3589   /* Initialize the regsets we're going to use.  */
3590   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3591     peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3592   search_ofs = 0;
3593   live = BITMAP_ALLOC (&reg_obstack);
3594 
3595   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3596     {
3597       bool past_end = false;
3598       int pos;
3599 
3600       rtl_profile_for_bb (bb);
3601 
3602       /* Start up propagation.  */
3603       bitmap_copy (live, DF_LR_IN (bb));
3604       df_simulate_initialize_forwards (bb, live);
3605       peep2_reinit_state (live);
3606 
3607       insn = BB_HEAD (bb);
3608       for (;;)
3609 	{
3610 	  rtx_insn *attempt, *head;
3611 	  int match_len;
3612 
3613 	  if (!past_end && !NONDEBUG_INSN_P (insn))
3614 	    {
3615 	    next_insn:
3616 	      insn = NEXT_INSN (insn);
3617 	      if (insn == NEXT_INSN (BB_END (bb)))
3618 		past_end = true;
3619 	      continue;
3620 	    }
3621 	  if (!past_end && peep2_fill_buffer (bb, insn, live))
3622 	    goto next_insn;
3623 
3624 	  /* If we did not fill an empty buffer, it signals the end of the
3625 	     block.  */
3626 	  if (peep2_current_count == 0)
3627 	    break;
3628 
3629 	  /* The buffer filled to the current maximum, so try to match.  */
3630 
3631 	  pos = peep2_buf_position (peep2_current + peep2_current_count);
3632 	  peep2_insn_data[pos].insn = PEEP2_EOB;
3633 	  COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3634 
3635 	  /* Match the peephole.  */
3636 	  head = peep2_insn_data[peep2_current].insn;
3637 	  attempt = peephole2_insns (PATTERN (head), head, &match_len);
3638 	  if (attempt != NULL)
3639 	    {
3640 	      rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3641 	      if (last)
3642 		{
3643 		  peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3644 		  continue;
3645 		}
3646 	    }
3647 
3648 	  /* No match: advance the buffer by one insn.  */
3649 	  peep2_current = peep2_buf_position (peep2_current + 1);
3650 	  peep2_current_count--;
3651 	}
3652     }
3653 
3654   default_rtl_profile ();
3655   for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3656     BITMAP_FREE (peep2_insn_data[i].live_before);
3657   BITMAP_FREE (live);
3658   if (peep2_do_rebuild_jump_labels)
3659     rebuild_jump_labels (get_insns ());
3660   if (peep2_do_cleanup_cfg)
3661     cleanup_cfg (CLEANUP_CFG_CHANGED);
3662 }
3663 
3664 /* Common predicates for use with define_bypass.  */
3665 
3666 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3667    data not the address operand(s) of the store.  IN_INSN and OUT_INSN
3668    must be either a single_set or a PARALLEL with SETs inside.  */
3669 
3670 int
3671 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3672 {
3673   rtx out_set, in_set;
3674   rtx out_pat, in_pat;
3675   rtx out_exp, in_exp;
3676   int i, j;
3677 
3678   in_set = single_set (in_insn);
3679   if (in_set)
3680     {
3681       if (!MEM_P (SET_DEST (in_set)))
3682 	return false;
3683 
3684       out_set = single_set (out_insn);
3685       if (out_set)
3686         {
3687           if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3688             return false;
3689         }
3690       else
3691         {
3692           out_pat = PATTERN (out_insn);
3693 
3694 	  if (GET_CODE (out_pat) != PARALLEL)
3695 	    return false;
3696 
3697           for (i = 0; i < XVECLEN (out_pat, 0); i++)
3698           {
3699             out_exp = XVECEXP (out_pat, 0, i);
3700 
3701             if (GET_CODE (out_exp) == CLOBBER)
3702               continue;
3703 
3704             gcc_assert (GET_CODE (out_exp) == SET);
3705 
3706             if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3707               return false;
3708           }
3709       }
3710     }
3711   else
3712     {
3713       in_pat = PATTERN (in_insn);
3714       gcc_assert (GET_CODE (in_pat) == PARALLEL);
3715 
3716       for (i = 0; i < XVECLEN (in_pat, 0); i++)
3717 	{
3718 	  in_exp = XVECEXP (in_pat, 0, i);
3719 
3720 	  if (GET_CODE (in_exp) == CLOBBER)
3721 	    continue;
3722 
3723 	  gcc_assert (GET_CODE (in_exp) == SET);
3724 
3725 	  if (!MEM_P (SET_DEST (in_exp)))
3726 	    return false;
3727 
3728           out_set = single_set (out_insn);
3729           if (out_set)
3730             {
3731               if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3732                 return false;
3733             }
3734           else
3735             {
3736               out_pat = PATTERN (out_insn);
3737               gcc_assert (GET_CODE (out_pat) == PARALLEL);
3738 
3739               for (j = 0; j < XVECLEN (out_pat, 0); j++)
3740                 {
3741                   out_exp = XVECEXP (out_pat, 0, j);
3742 
3743                   if (GET_CODE (out_exp) == CLOBBER)
3744                     continue;
3745 
3746                   gcc_assert (GET_CODE (out_exp) == SET);
3747 
3748                   if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3749                     return false;
3750                 }
3751             }
3752         }
3753     }
3754 
3755   return true;
3756 }
3757 
3758 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3759    condition, and not the THEN or ELSE branch.  OUT_INSN may be either a single
3760    or multiple set; IN_INSN should be single_set for truth, but for convenience
3761    of insn categorization may be any JUMP or CALL insn.  */
3762 
3763 int
3764 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3765 {
3766   rtx out_set, in_set;
3767 
3768   in_set = single_set (in_insn);
3769   if (! in_set)
3770     {
3771       gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3772       return false;
3773     }
3774 
3775   if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3776     return false;
3777   in_set = SET_SRC (in_set);
3778 
3779   out_set = single_set (out_insn);
3780   if (out_set)
3781     {
3782       if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3783 	  || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3784 	return false;
3785     }
3786   else
3787     {
3788       rtx out_pat;
3789       int i;
3790 
3791       out_pat = PATTERN (out_insn);
3792       gcc_assert (GET_CODE (out_pat) == PARALLEL);
3793 
3794       for (i = 0; i < XVECLEN (out_pat, 0); i++)
3795 	{
3796 	  rtx exp = XVECEXP (out_pat, 0, i);
3797 
3798 	  if (GET_CODE (exp) == CLOBBER)
3799 	    continue;
3800 
3801 	  gcc_assert (GET_CODE (exp) == SET);
3802 
3803 	  if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3804 	      || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3805 	    return false;
3806 	}
3807     }
3808 
3809   return true;
3810 }
3811 
3812 static unsigned int
3813 rest_of_handle_peephole2 (void)
3814 {
3815   if (HAVE_peephole2)
3816     peephole2_optimize ();
3817 
3818   return 0;
3819 }
3820 
3821 namespace {
3822 
3823 const pass_data pass_data_peephole2 =
3824 {
3825   RTL_PASS, /* type */
3826   "peephole2", /* name */
3827   OPTGROUP_NONE, /* optinfo_flags */
3828   TV_PEEPHOLE2, /* tv_id */
3829   0, /* properties_required */
3830   0, /* properties_provided */
3831   0, /* properties_destroyed */
3832   0, /* todo_flags_start */
3833   TODO_df_finish, /* todo_flags_finish */
3834 };
3835 
3836 class pass_peephole2 : public rtl_opt_pass
3837 {
3838 public:
3839   pass_peephole2 (gcc::context *ctxt)
3840     : rtl_opt_pass (pass_data_peephole2, ctxt)
3841   {}
3842 
3843   /* opt_pass methods: */
3844   /* The epiphany backend creates a second instance of this pass, so we need
3845      a clone method.  */
3846   opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3847   virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3848   virtual unsigned int execute (function *)
3849     {
3850       return rest_of_handle_peephole2 ();
3851     }
3852 
3853 }; // class pass_peephole2
3854 
3855 } // anon namespace
3856 
3857 rtl_opt_pass *
3858 make_pass_peephole2 (gcc::context *ctxt)
3859 {
3860   return new pass_peephole2 (ctxt);
3861 }
3862 
3863 namespace {
3864 
3865 const pass_data pass_data_split_all_insns =
3866 {
3867   RTL_PASS, /* type */
3868   "split1", /* name */
3869   OPTGROUP_NONE, /* optinfo_flags */
3870   TV_NONE, /* tv_id */
3871   0, /* properties_required */
3872   0, /* properties_provided */
3873   0, /* properties_destroyed */
3874   0, /* todo_flags_start */
3875   0, /* todo_flags_finish */
3876 };
3877 
3878 class pass_split_all_insns : public rtl_opt_pass
3879 {
3880 public:
3881   pass_split_all_insns (gcc::context *ctxt)
3882     : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3883   {}
3884 
3885   /* opt_pass methods: */
3886   /* The epiphany backend creates a second instance of this pass, so
3887      we need a clone method.  */
3888   opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3889   virtual unsigned int execute (function *)
3890     {
3891       split_all_insns ();
3892       return 0;
3893     }
3894 
3895 }; // class pass_split_all_insns
3896 
3897 } // anon namespace
3898 
3899 rtl_opt_pass *
3900 make_pass_split_all_insns (gcc::context *ctxt)
3901 {
3902   return new pass_split_all_insns (ctxt);
3903 }
3904 
3905 namespace {
3906 
3907 const pass_data pass_data_split_after_reload =
3908 {
3909   RTL_PASS, /* type */
3910   "split2", /* name */
3911   OPTGROUP_NONE, /* optinfo_flags */
3912   TV_NONE, /* tv_id */
3913   0, /* properties_required */
3914   0, /* properties_provided */
3915   0, /* properties_destroyed */
3916   0, /* todo_flags_start */
3917   0, /* todo_flags_finish */
3918 };
3919 
3920 class pass_split_after_reload : public rtl_opt_pass
3921 {
3922 public:
3923   pass_split_after_reload (gcc::context *ctxt)
3924     : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3925   {}
3926 
3927   /* opt_pass methods: */
3928   virtual bool gate (function *)
3929     {
3930       /* If optimizing, then go ahead and split insns now.  */
3931       if (optimize > 0)
3932 	return true;
3933 
3934 #ifdef STACK_REGS
3935       return true;
3936 #else
3937       return false;
3938 #endif
3939     }
3940 
3941   virtual unsigned int execute (function *)
3942     {
3943       split_all_insns ();
3944       return 0;
3945     }
3946 
3947 }; // class pass_split_after_reload
3948 
3949 } // anon namespace
3950 
3951 rtl_opt_pass *
3952 make_pass_split_after_reload (gcc::context *ctxt)
3953 {
3954   return new pass_split_after_reload (ctxt);
3955 }
3956 
3957 namespace {
3958 
3959 const pass_data pass_data_split_before_regstack =
3960 {
3961   RTL_PASS, /* type */
3962   "split3", /* name */
3963   OPTGROUP_NONE, /* optinfo_flags */
3964   TV_NONE, /* tv_id */
3965   0, /* properties_required */
3966   0, /* properties_provided */
3967   0, /* properties_destroyed */
3968   0, /* todo_flags_start */
3969   0, /* todo_flags_finish */
3970 };
3971 
3972 class pass_split_before_regstack : public rtl_opt_pass
3973 {
3974 public:
3975   pass_split_before_regstack (gcc::context *ctxt)
3976     : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3977   {}
3978 
3979   /* opt_pass methods: */
3980   virtual bool gate (function *);
3981   virtual unsigned int execute (function *)
3982     {
3983       split_all_insns ();
3984       return 0;
3985     }
3986 
3987 }; // class pass_split_before_regstack
3988 
3989 bool
3990 pass_split_before_regstack::gate (function *)
3991 {
3992 #if HAVE_ATTR_length && defined (STACK_REGS)
3993   /* If flow2 creates new instructions which need splitting
3994      and scheduling after reload is not done, they might not be
3995      split until final which doesn't allow splitting
3996      if HAVE_ATTR_length.  */
3997 # ifdef INSN_SCHEDULING
3998   return (optimize && !flag_schedule_insns_after_reload);
3999 # else
4000   return (optimize);
4001 # endif
4002 #else
4003   return 0;
4004 #endif
4005 }
4006 
4007 } // anon namespace
4008 
4009 rtl_opt_pass *
4010 make_pass_split_before_regstack (gcc::context *ctxt)
4011 {
4012   return new pass_split_before_regstack (ctxt);
4013 }
4014 
4015 static unsigned int
4016 rest_of_handle_split_before_sched2 (void)
4017 {
4018 #ifdef INSN_SCHEDULING
4019   split_all_insns ();
4020 #endif
4021   return 0;
4022 }
4023 
4024 namespace {
4025 
4026 const pass_data pass_data_split_before_sched2 =
4027 {
4028   RTL_PASS, /* type */
4029   "split4", /* name */
4030   OPTGROUP_NONE, /* optinfo_flags */
4031   TV_NONE, /* tv_id */
4032   0, /* properties_required */
4033   0, /* properties_provided */
4034   0, /* properties_destroyed */
4035   0, /* todo_flags_start */
4036   0, /* todo_flags_finish */
4037 };
4038 
4039 class pass_split_before_sched2 : public rtl_opt_pass
4040 {
4041 public:
4042   pass_split_before_sched2 (gcc::context *ctxt)
4043     : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4044   {}
4045 
4046   /* opt_pass methods: */
4047   virtual bool gate (function *)
4048     {
4049 #ifdef INSN_SCHEDULING
4050       return optimize > 0 && flag_schedule_insns_after_reload;
4051 #else
4052       return false;
4053 #endif
4054     }
4055 
4056   virtual unsigned int execute (function *)
4057     {
4058       return rest_of_handle_split_before_sched2 ();
4059     }
4060 
4061 }; // class pass_split_before_sched2
4062 
4063 } // anon namespace
4064 
4065 rtl_opt_pass *
4066 make_pass_split_before_sched2 (gcc::context *ctxt)
4067 {
4068   return new pass_split_before_sched2 (ctxt);
4069 }
4070 
4071 namespace {
4072 
4073 const pass_data pass_data_split_for_shorten_branches =
4074 {
4075   RTL_PASS, /* type */
4076   "split5", /* name */
4077   OPTGROUP_NONE, /* optinfo_flags */
4078   TV_NONE, /* tv_id */
4079   0, /* properties_required */
4080   0, /* properties_provided */
4081   0, /* properties_destroyed */
4082   0, /* todo_flags_start */
4083   0, /* todo_flags_finish */
4084 };
4085 
4086 class pass_split_for_shorten_branches : public rtl_opt_pass
4087 {
4088 public:
4089   pass_split_for_shorten_branches (gcc::context *ctxt)
4090     : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4091   {}
4092 
4093   /* opt_pass methods: */
4094   virtual bool gate (function *)
4095     {
4096       /* The placement of the splitting that we do for shorten_branches
4097 	 depends on whether regstack is used by the target or not.  */
4098 #if HAVE_ATTR_length && !defined (STACK_REGS)
4099       return true;
4100 #else
4101       return false;
4102 #endif
4103     }
4104 
4105   virtual unsigned int execute (function *)
4106     {
4107       return split_all_insns_noflow ();
4108     }
4109 
4110 }; // class pass_split_for_shorten_branches
4111 
4112 } // anon namespace
4113 
4114 rtl_opt_pass *
4115 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4116 {
4117   return new pass_split_for_shorten_branches (ctxt);
4118 }
4119 
4120 /* (Re)initialize the target information after a change in target.  */
4121 
4122 void
4123 recog_init ()
4124 {
4125   /* The information is zero-initialized, so we don't need to do anything
4126      first time round.  */
4127   if (!this_target_recog->x_initialized)
4128     {
4129       this_target_recog->x_initialized = true;
4130       return;
4131     }
4132   memset (this_target_recog->x_bool_attr_masks, 0,
4133 	  sizeof (this_target_recog->x_bool_attr_masks));
4134   for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4135     if (this_target_recog->x_op_alt[i])
4136       {
4137 	free (this_target_recog->x_op_alt[i]);
4138 	this_target_recog->x_op_alt[i] = 0;
4139       }
4140 }
4141