1 /* Definitions of floating-point access for GNU compiler. 2 Copyright (C) 1989-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #ifndef GCC_REAL_H 21 #define GCC_REAL_H 22 23 /* An expanded form of the represented number. */ 24 25 /* Enumerate the special cases of numbers that we encounter. */ 26 enum real_value_class { 27 rvc_zero, 28 rvc_normal, 29 rvc_inf, 30 rvc_nan 31 }; 32 33 #define SIGNIFICAND_BITS (128 + HOST_BITS_PER_LONG) 34 #define EXP_BITS (32 - 6) 35 #define MAX_EXP ((1 << (EXP_BITS - 1)) - 1) 36 #define SIGSZ (SIGNIFICAND_BITS / HOST_BITS_PER_LONG) 37 #define SIG_MSB ((unsigned long)1 << (HOST_BITS_PER_LONG - 1)) 38 39 struct GTY(()) real_value { 40 /* Use the same underlying type for all bit-fields, so as to make 41 sure they're packed together, otherwise REAL_VALUE_TYPE_SIZE will 42 be miscomputed. */ 43 unsigned int /* ENUM_BITFIELD (real_value_class) */ cl : 2; 44 unsigned int decimal : 1; 45 unsigned int sign : 1; 46 unsigned int signalling : 1; 47 unsigned int canonical : 1; 48 unsigned int uexp : EXP_BITS; 49 unsigned long sig[SIGSZ]; 50 }; 51 52 #define REAL_EXP(REAL) \ 53 ((int)((REAL)->uexp ^ (unsigned int)(1 << (EXP_BITS - 1))) \ 54 - (1 << (EXP_BITS - 1))) 55 #define SET_REAL_EXP(REAL, EXP) \ 56 ((REAL)->uexp = ((unsigned int)(EXP) & (unsigned int)((1 << EXP_BITS) - 1))) 57 58 /* Various headers condition prototypes on #ifdef REAL_VALUE_TYPE, so it 59 needs to be a macro. We do need to continue to have a structure tag 60 so that other headers can forward declare it. */ 61 #define REAL_VALUE_TYPE struct real_value 62 63 /* We store a REAL_VALUE_TYPE into an rtx, and we do this by putting it in 64 consecutive "w" slots. Moreover, we've got to compute the number of "w" 65 slots at preprocessor time, which means we can't use sizeof. Guess. */ 66 67 #define REAL_VALUE_TYPE_SIZE (SIGNIFICAND_BITS + 32) 68 #define REAL_WIDTH \ 69 (REAL_VALUE_TYPE_SIZE/HOST_BITS_PER_WIDE_INT \ 70 + (REAL_VALUE_TYPE_SIZE%HOST_BITS_PER_WIDE_INT ? 1 : 0)) /* round up */ 71 72 /* Verify the guess. */ 73 extern char test_real_width 74 [sizeof (REAL_VALUE_TYPE) <= REAL_WIDTH * sizeof (HOST_WIDE_INT) ? 1 : -1]; 75 76 /* Calculate the format for CONST_DOUBLE. We need as many slots as 77 are necessary to overlay a REAL_VALUE_TYPE on them. This could be 78 as many as four (32-bit HOST_WIDE_INT, 128-bit REAL_VALUE_TYPE). 79 80 A number of places assume that there are always at least two 'w' 81 slots in a CONST_DOUBLE, so we provide them even if one would suffice. */ 82 83 #if REAL_WIDTH == 1 84 # define CONST_DOUBLE_FORMAT "ww" 85 #else 86 # if REAL_WIDTH == 2 87 # define CONST_DOUBLE_FORMAT "ww" 88 # else 89 # if REAL_WIDTH == 3 90 # define CONST_DOUBLE_FORMAT "www" 91 # else 92 # if REAL_WIDTH == 4 93 # define CONST_DOUBLE_FORMAT "wwww" 94 # else 95 # if REAL_WIDTH == 5 96 # define CONST_DOUBLE_FORMAT "wwwww" 97 # else 98 # if REAL_WIDTH == 6 99 # define CONST_DOUBLE_FORMAT "wwwwww" 100 # else 101 #error "REAL_WIDTH > 6 not supported" 102 # endif 103 # endif 104 # endif 105 # endif 106 # endif 107 #endif 108 109 110 /* Describes the properties of the specific target format in use. */ 111 struct real_format 112 { 113 /* Move to and from the target bytes. */ 114 void (*encode) (const struct real_format *, long *, 115 const REAL_VALUE_TYPE *); 116 void (*decode) (const struct real_format *, REAL_VALUE_TYPE *, 117 const long *); 118 119 /* The radix of the exponent and digits of the significand. */ 120 int b; 121 122 /* Size of the significand in digits of radix B. */ 123 int p; 124 125 /* Size of the significant of a NaN, in digits of radix B. */ 126 int pnan; 127 128 /* The minimum negative integer, x, such that b**(x-1) is normalized. */ 129 int emin; 130 131 /* The maximum integer, x, such that b**(x-1) is representable. */ 132 int emax; 133 134 /* The bit position of the sign bit, for determining whether a value 135 is positive/negative, or -1 for a complex encoding. */ 136 int signbit_ro; 137 138 /* The bit position of the sign bit, for changing the sign of a number, 139 or -1 for a complex encoding. */ 140 int signbit_rw; 141 142 /* If this is an IEEE interchange format, the number of bits in the 143 format; otherwise, if it is an IEEE extended format, one more 144 than the greatest number of bits in an interchange format it 145 extends; otherwise 0. Formats need not follow the IEEE 754-2008 146 recommended practice regarding how signaling NaNs are identified, 147 and may vary in the choice of default NaN, but must follow other 148 IEEE practice regarding having NaNs, infinities and subnormal 149 values, and the relation of minimum and maximum exponents, and, 150 for interchange formats, the details of the encoding. */ 151 int ieee_bits; 152 153 /* Default rounding mode for operations on this format. */ 154 bool round_towards_zero; 155 bool has_sign_dependent_rounding; 156 157 /* Properties of the format. */ 158 bool has_nans; 159 bool has_inf; 160 bool has_denorm; 161 bool has_signed_zero; 162 bool qnan_msb_set; 163 bool canonical_nan_lsbs_set; 164 const char *name; 165 }; 166 167 168 /* The target format used for each floating point mode. 169 Float modes are followed by decimal float modes, with entries for 170 float modes indexed by (MODE - first float mode), and entries for 171 decimal float modes indexed by (MODE - first decimal float mode) + 172 the number of float modes. */ 173 extern const struct real_format * 174 real_format_for_mode[MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1 175 + MAX_MODE_DECIMAL_FLOAT - MIN_MODE_DECIMAL_FLOAT + 1]; 176 177 #define REAL_MODE_FORMAT(MODE) \ 178 (real_format_for_mode[DECIMAL_FLOAT_MODE_P (MODE) \ 179 ? (((MODE) - MIN_MODE_DECIMAL_FLOAT) \ 180 + (MAX_MODE_FLOAT - MIN_MODE_FLOAT + 1)) \ 181 : GET_MODE_CLASS (MODE) == MODE_FLOAT \ 182 ? ((MODE) - MIN_MODE_FLOAT) \ 183 : (gcc_unreachable (), 0)]) 184 185 #define FLOAT_MODE_FORMAT(MODE) \ 186 (REAL_MODE_FORMAT (as_a <scalar_float_mode> (GET_MODE_INNER (MODE)))) 187 188 /* The following macro determines whether the floating point format is 189 composite, i.e. may contain non-consecutive mantissa bits, in which 190 case compile-time FP overflow may not model run-time overflow. */ 191 #define MODE_COMPOSITE_P(MODE) \ 192 (FLOAT_MODE_P (MODE) \ 193 && FLOAT_MODE_FORMAT (MODE)->pnan < FLOAT_MODE_FORMAT (MODE)->p) 194 195 /* Accessor macros for format properties. */ 196 #define MODE_HAS_NANS(MODE) \ 197 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_nans) 198 #define MODE_HAS_INFINITIES(MODE) \ 199 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_inf) 200 #define MODE_HAS_SIGNED_ZEROS(MODE) \ 201 (FLOAT_MODE_P (MODE) && FLOAT_MODE_FORMAT (MODE)->has_signed_zero) 202 #define MODE_HAS_SIGN_DEPENDENT_ROUNDING(MODE) \ 203 (FLOAT_MODE_P (MODE) \ 204 && FLOAT_MODE_FORMAT (MODE)->has_sign_dependent_rounding) 205 206 /* This class allows functions in this file to accept a floating-point 207 format as either a mode or an explicit real_format pointer. In the 208 former case the mode must be VOIDmode (which means "no particular 209 format") or must satisfy SCALAR_FLOAT_MODE_P. */ 210 class format_helper 211 { 212 public: 213 format_helper (const real_format *format) : m_format (format) {} 214 template<typename T> format_helper (const T &); 215 const real_format *operator-> () const { return m_format; } 216 operator const real_format *() const { return m_format; } 217 218 bool decimal_p () const { return m_format && m_format->b == 10; } 219 bool can_represent_integral_type_p (tree type) const; 220 221 private: 222 const real_format *m_format; 223 }; 224 225 template<typename T> 226 inline format_helper::format_helper (const T &m) 227 : m_format (m == VOIDmode ? 0 : REAL_MODE_FORMAT (m)) 228 {} 229 230 /* Declare functions in real.c. */ 231 232 /* True if the given mode has a NaN representation and the treatment of 233 NaN operands is important. Certain optimizations, such as folding 234 x * 0 into 0, are not correct for NaN operands, and are normally 235 disabled for modes with NaNs. The user can ask for them to be 236 done anyway using the -funsafe-math-optimizations switch. */ 237 extern bool HONOR_NANS (machine_mode); 238 extern bool HONOR_NANS (const_tree); 239 extern bool HONOR_NANS (const_rtx); 240 241 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */ 242 extern bool HONOR_SNANS (machine_mode); 243 extern bool HONOR_SNANS (const_tree); 244 extern bool HONOR_SNANS (const_rtx); 245 246 /* As for HONOR_NANS, but true if the mode can represent infinity and 247 the treatment of infinite values is important. */ 248 extern bool HONOR_INFINITIES (machine_mode); 249 extern bool HONOR_INFINITIES (const_tree); 250 extern bool HONOR_INFINITIES (const_rtx); 251 252 /* Like HONOR_NANS, but true if the given mode distinguishes between 253 positive and negative zero, and the sign of zero is important. */ 254 extern bool HONOR_SIGNED_ZEROS (machine_mode); 255 extern bool HONOR_SIGNED_ZEROS (const_tree); 256 extern bool HONOR_SIGNED_ZEROS (const_rtx); 257 258 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding, 259 and the rounding mode is important. */ 260 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode); 261 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_tree); 262 extern bool HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx); 263 264 /* Binary or unary arithmetic on tree_code. */ 265 extern bool real_arithmetic (REAL_VALUE_TYPE *, int, const REAL_VALUE_TYPE *, 266 const REAL_VALUE_TYPE *); 267 268 /* Compare reals by tree_code. */ 269 extern bool real_compare (int, const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 270 271 /* Determine whether a floating-point value X is infinite. */ 272 extern bool real_isinf (const REAL_VALUE_TYPE *); 273 274 /* Determine whether a floating-point value X is a NaN. */ 275 extern bool real_isnan (const REAL_VALUE_TYPE *); 276 277 /* Determine whether a floating-point value X is a signaling NaN. */ 278 extern bool real_issignaling_nan (const REAL_VALUE_TYPE *); 279 280 /* Determine whether a floating-point value X is finite. */ 281 extern bool real_isfinite (const REAL_VALUE_TYPE *); 282 283 /* Determine whether a floating-point value X is negative. */ 284 extern bool real_isneg (const REAL_VALUE_TYPE *); 285 286 /* Determine whether a floating-point value X is minus zero. */ 287 extern bool real_isnegzero (const REAL_VALUE_TYPE *); 288 289 /* Test relationships between reals. */ 290 extern bool real_identical (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 291 extern bool real_equal (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 292 extern bool real_less (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 293 294 /* Extend or truncate to a new format. */ 295 extern void real_convert (REAL_VALUE_TYPE *, format_helper, 296 const REAL_VALUE_TYPE *); 297 298 /* Return true if truncating to NEW is exact. */ 299 extern bool exact_real_truncate (format_helper, const REAL_VALUE_TYPE *); 300 301 /* Render R as a decimal floating point constant. */ 302 extern void real_to_decimal (char *, const REAL_VALUE_TYPE *, size_t, 303 size_t, int); 304 305 /* Render R as a decimal floating point constant, rounded so as to be 306 parsed back to the same value when interpreted in mode MODE. */ 307 extern void real_to_decimal_for_mode (char *, const REAL_VALUE_TYPE *, size_t, 308 size_t, int, machine_mode); 309 310 /* Render R as a hexadecimal floating point constant. */ 311 extern void real_to_hexadecimal (char *, const REAL_VALUE_TYPE *, 312 size_t, size_t, int); 313 314 /* Render R as an integer. */ 315 extern HOST_WIDE_INT real_to_integer (const REAL_VALUE_TYPE *); 316 317 /* Initialize R from a decimal or hexadecimal string. Return -1 if 318 the value underflows, +1 if overflows, and 0 otherwise. */ 319 extern int real_from_string (REAL_VALUE_TYPE *, const char *); 320 /* Wrapper to allow different internal representation for decimal floats. */ 321 extern void real_from_string3 (REAL_VALUE_TYPE *, const char *, format_helper); 322 323 extern long real_to_target (long *, const REAL_VALUE_TYPE *, format_helper); 324 325 extern void real_from_target (REAL_VALUE_TYPE *, const long *, 326 format_helper); 327 328 extern void real_inf (REAL_VALUE_TYPE *); 329 330 extern bool real_nan (REAL_VALUE_TYPE *, const char *, int, format_helper); 331 332 extern void real_maxval (REAL_VALUE_TYPE *, int, machine_mode); 333 334 extern void real_2expN (REAL_VALUE_TYPE *, int, format_helper); 335 336 extern unsigned int real_hash (const REAL_VALUE_TYPE *); 337 338 339 /* Target formats defined in real.c. */ 340 extern const struct real_format ieee_single_format; 341 extern const struct real_format mips_single_format; 342 extern const struct real_format motorola_single_format; 343 extern const struct real_format spu_single_format; 344 extern const struct real_format ieee_double_format; 345 extern const struct real_format mips_double_format; 346 extern const struct real_format motorola_double_format; 347 extern const struct real_format ieee_extended_motorola_format; 348 extern const struct real_format ieee_extended_intel_96_format; 349 extern const struct real_format ieee_extended_intel_96_round_53_format; 350 extern const struct real_format ieee_extended_intel_128_format; 351 extern const struct real_format ibm_extended_format; 352 extern const struct real_format mips_extended_format; 353 extern const struct real_format ieee_quad_format; 354 extern const struct real_format mips_quad_format; 355 extern const struct real_format vax_f_format; 356 extern const struct real_format vax_d_format; 357 extern const struct real_format vax_g_format; 358 extern const struct real_format real_internal_format; 359 extern const struct real_format decimal_single_format; 360 extern const struct real_format decimal_double_format; 361 extern const struct real_format decimal_quad_format; 362 extern const struct real_format ieee_half_format; 363 extern const struct real_format arm_half_format; 364 365 366 /* ====================================================================== */ 367 /* Crap. */ 368 369 /* Determine whether a floating-point value X is infinite. */ 370 #define REAL_VALUE_ISINF(x) real_isinf (&(x)) 371 372 /* Determine whether a floating-point value X is a NaN. */ 373 #define REAL_VALUE_ISNAN(x) real_isnan (&(x)) 374 375 /* Determine whether a floating-point value X is a signaling NaN. */ 376 #define REAL_VALUE_ISSIGNALING_NAN(x) real_issignaling_nan (&(x)) 377 378 /* Determine whether a floating-point value X is negative. */ 379 #define REAL_VALUE_NEGATIVE(x) real_isneg (&(x)) 380 381 /* Determine whether a floating-point value X is minus zero. */ 382 #define REAL_VALUE_MINUS_ZERO(x) real_isnegzero (&(x)) 383 384 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ 385 #define REAL_VALUE_TO_TARGET_LONG_DOUBLE(IN, OUT) \ 386 real_to_target (OUT, &(IN), \ 387 float_mode_for_size (LONG_DOUBLE_TYPE_SIZE).require ()) 388 389 #define REAL_VALUE_TO_TARGET_DOUBLE(IN, OUT) \ 390 real_to_target (OUT, &(IN), float_mode_for_size (64).require ()) 391 392 /* IN is a REAL_VALUE_TYPE. OUT is a long. */ 393 #define REAL_VALUE_TO_TARGET_SINGLE(IN, OUT) \ 394 ((OUT) = real_to_target (NULL, &(IN), float_mode_for_size (32).require ())) 395 396 /* Real values to IEEE 754 decimal floats. */ 397 398 /* IN is a REAL_VALUE_TYPE. OUT is an array of longs. */ 399 #define REAL_VALUE_TO_TARGET_DECIMAL128(IN, OUT) \ 400 real_to_target (OUT, &(IN), decimal_float_mode_for_size (128).require ()) 401 402 #define REAL_VALUE_TO_TARGET_DECIMAL64(IN, OUT) \ 403 real_to_target (OUT, &(IN), decimal_float_mode_for_size (64).require ()) 404 405 /* IN is a REAL_VALUE_TYPE. OUT is a long. */ 406 #define REAL_VALUE_TO_TARGET_DECIMAL32(IN, OUT) \ 407 ((OUT) = real_to_target (NULL, &(IN), \ 408 decimal_float_mode_for_size (32).require ())) 409 410 extern REAL_VALUE_TYPE real_value_truncate (format_helper, REAL_VALUE_TYPE); 411 412 extern REAL_VALUE_TYPE real_value_negate (const REAL_VALUE_TYPE *); 413 extern REAL_VALUE_TYPE real_value_abs (const REAL_VALUE_TYPE *); 414 415 extern int significand_size (format_helper); 416 417 extern REAL_VALUE_TYPE real_from_string2 (const char *, format_helper); 418 419 #define REAL_VALUE_ATOF(s, m) \ 420 real_from_string2 (s, m) 421 422 #define CONST_DOUBLE_ATOF(s, m) \ 423 const_double_from_real_value (real_from_string2 (s, m), m) 424 425 #define REAL_VALUE_FIX(r) \ 426 real_to_integer (&(r)) 427 428 /* ??? Not quite right. */ 429 #define REAL_VALUE_UNSIGNED_FIX(r) \ 430 real_to_integer (&(r)) 431 432 /* ??? These were added for Paranoia support. */ 433 434 /* Return floor log2(R). */ 435 extern int real_exponent (const REAL_VALUE_TYPE *); 436 437 /* R = A * 2**EXP. */ 438 extern void real_ldexp (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int); 439 440 /* **** End of software floating point emulator interface macros **** */ 441 442 /* Constant real values 0, 1, 2, -1 and 0.5. */ 443 444 extern REAL_VALUE_TYPE dconst0; 445 extern REAL_VALUE_TYPE dconst1; 446 extern REAL_VALUE_TYPE dconst2; 447 extern REAL_VALUE_TYPE dconstm1; 448 extern REAL_VALUE_TYPE dconsthalf; 449 450 #define dconst_e() (*dconst_e_ptr ()) 451 #define dconst_third() (*dconst_third_ptr ()) 452 #define dconst_quarter() (*dconst_quarter_ptr ()) 453 #define dconst_sixth() (*dconst_sixth_ptr ()) 454 #define dconst_ninth() (*dconst_ninth_ptr ()) 455 #define dconst_sqrt2() (*dconst_sqrt2_ptr ()) 456 457 /* Function to return the real value special constant 'e'. */ 458 extern const REAL_VALUE_TYPE * dconst_e_ptr (void); 459 460 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */ 461 extern const REAL_VALUE_TYPE *dconst_third_ptr (void); 462 extern const REAL_VALUE_TYPE *dconst_quarter_ptr (void); 463 extern const REAL_VALUE_TYPE *dconst_sixth_ptr (void); 464 extern const REAL_VALUE_TYPE *dconst_ninth_ptr (void); 465 466 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */ 467 extern const REAL_VALUE_TYPE * dconst_sqrt2_ptr (void); 468 469 /* Function to return a real value (not a tree node) 470 from a given integer constant. */ 471 REAL_VALUE_TYPE real_value_from_int_cst (const_tree, const_tree); 472 473 /* Return a CONST_DOUBLE with value R and mode M. */ 474 extern rtx const_double_from_real_value (REAL_VALUE_TYPE, machine_mode); 475 476 /* Replace R by 1/R in the given format, if the result is exact. */ 477 extern bool exact_real_inverse (format_helper, REAL_VALUE_TYPE *); 478 479 /* Return true if arithmetic on values in IMODE that were promoted 480 from values in TMODE is equivalent to direct arithmetic on values 481 in TMODE. */ 482 bool real_can_shorten_arithmetic (machine_mode, machine_mode); 483 484 /* In tree.c: wrap up a REAL_VALUE_TYPE in a tree node. */ 485 extern tree build_real (tree, REAL_VALUE_TYPE); 486 487 /* Likewise, but first truncate the value to the type. */ 488 extern tree build_real_truncate (tree, REAL_VALUE_TYPE); 489 490 /* Calculate R as X raised to the integer exponent N in format FMT. */ 491 extern bool real_powi (REAL_VALUE_TYPE *, format_helper, 492 const REAL_VALUE_TYPE *, HOST_WIDE_INT); 493 494 /* Standard round to integer value functions. */ 495 extern void real_trunc (REAL_VALUE_TYPE *, format_helper, 496 const REAL_VALUE_TYPE *); 497 extern void real_floor (REAL_VALUE_TYPE *, format_helper, 498 const REAL_VALUE_TYPE *); 499 extern void real_ceil (REAL_VALUE_TYPE *, format_helper, 500 const REAL_VALUE_TYPE *); 501 extern void real_round (REAL_VALUE_TYPE *, format_helper, 502 const REAL_VALUE_TYPE *); 503 504 /* Set the sign of R to the sign of X. */ 505 extern void real_copysign (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 506 507 /* Check whether the real constant value given is an integer. */ 508 extern bool real_isinteger (const REAL_VALUE_TYPE *, format_helper); 509 extern bool real_isinteger (const REAL_VALUE_TYPE *, HOST_WIDE_INT *); 510 511 /* Calculate nextafter (X, Y) in format FMT. */ 512 extern bool real_nextafter (REAL_VALUE_TYPE *, format_helper, 513 const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *); 514 515 /* Write into BUF the maximum representable finite floating-point 516 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex 517 float string. BUF must be large enough to contain the result. */ 518 extern void get_max_float (const struct real_format *, char *, size_t); 519 520 #ifndef GENERATOR_FILE 521 /* real related routines. */ 522 extern wide_int real_to_integer (const REAL_VALUE_TYPE *, bool *, int); 523 extern void real_from_integer (REAL_VALUE_TYPE *, format_helper, 524 const wide_int_ref &, signop); 525 #endif 526 527 /* Fills r with the largest value such that 1 + r*r won't overflow. 528 This is used in both sin (atan (x)) and cos (atan(x)) optimizations. */ 529 extern void build_sinatan_real (REAL_VALUE_TYPE *, tree); 530 531 #endif /* ! GCC_REAL_H */ 532